Molecular tuning of a neural circuit that drives aggregation behaviour in C. elegans

This dissertation is submitted for the degree of
Doctor of Philosophy

by

Sean Flynn

MRC Laboratory of Molecular Biology

Wolfson College
University of Cambridge

April 2017
Abstract

Modulation of network state is a ubiquitous feature of nervous systems. A major challenge in understanding the physiological flexibility of neural circuits is linking molecules that regulate behaviour to changes in the properties of individual neurons. Here, we use a defined neural circuit in *C. elegans* to frame this universal problem. By genetic dissection of the behavioural state that sustains escape of 21% O\(_2\), we identify novel neuronal functions for several highly conserved genes, including a paracaspase similar to human MALT1, a calmodulin-binding transcription activator (CAMTA), and two accessory subunits of the eIF3 complex. These molecules have been implicated in diverse forms of human disease, but their role in the nervous system is either unexplored or poorly understood. Using *in vivo* Ca\(^{2+}\) imaging techniques to investigate neuron physiology in immobilized and behaving animals, we demonstrate their effect on the properties of individual neurons.

The activity of RMG hub neurons is associated with the switch in behavioural state induced by 21% O\(_2\). Recently it has been shown that the input-output relationship of RMG is controlled by cytokine signaling, an increasingly appreciated form of neuromodulation. We now present biochemical and genetic evidence that MALT-1 functions downstream of IL-17 receptors to mediate cytokine signaling in RMG. Our data suggest that, reminiscent of its role in the immune system, MALT1 performs both scaffolding and enzymatic functions in neurons. Additionally, we show that RMG responsiveness is controlled by the widely expressed, putative regulators of gene expression CAMT-1 and EIF-3.K/L. Our analyses of these proteins elucidate their function within the URX-RMG circuit, but also raise hypotheses that can be tested more generally in the nervous system. We propose that CAMT-1 regulates adaptation to ambient O\(_2\) conditions, which may reflect a widespread requirement for controlling homeostatic plasticity. EIF-3.K and EIF-3.L have been shown to be dispensable for general translation, but important for regulation of the response to stress. Our study raises the possibility that their role in promoting the activity of all, or some
subset of, neurons might underlie this contextual requirement. Together, our findings provide mechanistic insight into the regulation of a behavioural state associated with a specific environmental context.
Preface

This dissertation is the result of my own work and includes nothing that is the outcome of work done in collaboration except as specified in the text.

It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other University or similar institution. I further state that no substantial part of my dissertation has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution.

It does not exceed 60,000 words in length.
Acknowledgements

All work described in this thesis was carried out in the de Bono lab. Mario has been a patient and always-supportive advisor. I hope that I have learned from his way of finding questions that are interesting, and pursuing them with care. Most of all, it has been inspiring to experience his enthusiasm for science. Changchun Chen shared with me his collection of mutants, on which this thesis is based, and provided help, reagents, techniques, and advice on countless occasions. It has been nice too, that he has let me win at ping pong every once in a while (or maybe just once).

I have greatly enjoyed the light-hearted breaks, and helpful ideas provided over coffee by Geoff Nelson, Isabel Beets, Giulio Valperga and Patrick Laurent. Geoff performed WGS-based analysis of mutants in this study. It was a pleasure too to collaborate with Alastair Crisp, who analyzed RNA-seq data. My thanks to Mark Skehel and the LMB Mass Spec team for proteomic analyses, to Marta Grzelak and the CRUK Genomics Core who performed Illumina sequencing, and to Mark, Heather and Martyn in the LMB media kitchen.

I am grateful to Jonathan Hodgkin and Greg Jefferis for constructive and thought-provoking discussions. I would also like to thank my second supervisors Berthold Hedwig and Madan Babu for helpful advice.

Thanks to Alison Turnock and Amie Blake, who were a constant source of invaluable support, to Robin Burns for helpful comments, and to Tom Williams, Susan Shao, Jack Monahan and Callum Hayes for fond memories of my time here. I am indebted to Mani Ramaswami and Stephen Goodwin for inspiring me to follow this path, to Mum who taught me that no goal is unachievable, and to Dad, from whom I learned that anything worth doing is worth doing right. Finally, to Abi, who has shared everything with me, and without whom this wouldn’t have been half as fun.
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>2</td>
</tr>
<tr>
<td>PREFACE</td>
<td>4</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>5</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>6</td>
</tr>
<tr>
<td>FIGURES</td>
<td>7</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>9</td>
</tr>
<tr>
<td>CHAPTER 1. Introduction: Immune signaling in neuromodulation</td>
<td>10</td>
</tr>
<tr>
<td>CHAPTER 2. MALT1 mediates IL-17 signaling in C. elegans neurons</td>
<td>38</td>
</tr>
<tr>
<td>CHAPTER 3. Control of neuronal Ca(^{2+}) homeostasis by a CAMTA</td>
<td>69</td>
</tr>
<tr>
<td>chapter 4. Translation initiation factors eIF3k and eIF3l specifically</td>
<td>104</td>
</tr>
<tr>
<td>regulate the responsiveness of RMG neurons</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 5. Induced mutants and natural variation for the study of</td>
<td>126</td>
</tr>
<tr>
<td>nematode aggregation behaviour</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 6. Conclusions and future directions</td>
<td>141</td>
</tr>
<tr>
<td>APPENDIX Strain list</td>
<td>149</td>
</tr>
</tbody>
</table>
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Inflammatory cytokine signaling pathways</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Signaling from URX and RMG drives aggregation behaviour</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>C. elegans paracaspase mediates O2-related behaviours</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Temporal dynamics of MALT-1 requirement</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>MALT-1 modulates RMG physiology</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Broad neuronal expression of malt-1 rescues behavioural defects</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>MALT-1 physically interacts with ACTL-1 and PIK-1</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>MALT1 acts like an IL-17 signaling component</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Transcriptional fingerprints of malt-1, nfki-1 and ilc-17.1 mutants</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>MALT-1 functions as a protease</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>MALT-1 signaling in C. elegans neurons and the mammalian immune system</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>camt-1 mutants exhibit several behavioural defects</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>CAMT-1 is expressed widely and specifically in the nervous system</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Inducing CAMT-1 expression in L4 animals can rescue mutant phenotypes</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>CAMT-1 likely acts in multiple neurons</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>CAMT-1 negatively regulates sensory neuron activity</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>CAMT-1 promotes RMG responsiveness</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>CAMT-1 controls acclimation to previous O2 conditions</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>camt-1 induced URX hyperactivity is dependent on O2 sensation but not synaptic communication</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Mutational domain analysis and localization of CAMT-1</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>CAMT-1 overexpression overrides defects in IkBζ signaling</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>Transcriptional remodeling by CAMT-1</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>Two models for activity-dependent feedback within the URX-RMG</td>
</tr>
</tbody>
</table>
circuit..92

Figure 4.1 EIF-3.K and EIF-3.L promote avoidance of 21% O₂.................. 108
Figure 4.2 EIF-3.L functions in RMG neurons... 110
Figure 4.3 Broad expression and function of EIF-3.K and EIF-3.L........... 112
Figure 4.4 General reductions in translation do not modify avoidance of 21% O₂... 113
Figure 4.5 Elevated IkBζ signaling compensates for loss of EIF-3.L..........114
Figure 4.6 Overlapping transcriptional changes in eif-3.L/eif-3.K and IL-17 signaling mutants...115

Figure 5.1 Mutations in unc-22, egl-2, unc-42, plc-1 and F11A10.5 are associated with loss of aggregation... 129
Figure 5.2 C. elegans ST7 promotes O₂-related behaviours......................... 131
Figure 5.3 Natural variation in O₂- and CO₂- avoidance.............................. 133
Figure 5.4 Interspecies variation in O₂- and CO₂- avoidance.................... 135
Glossary
AMPA \(\alpha\text{-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid}\)
ANOVA analysis of variance
C. elegans *Caenorhabditis elegans*
cho-1 CHOline transporter
CNS Central Nervous System
CRISPR clustered regularly interspaced short palindromic repeats
Drosophila *Drosophila melanogaster*
egl EGg Laying defective
flip FMRF-Like peptide
GABA \(\gamma\text{-Aminobutyric acid}\)
Gcn GCN (yeast General Control Nondepressible) homolog
gcy Guanylyl CYclase
GFP green fluorescent protein
HA human influenza hemagglutinin
HEK human embryonic Kidney
HSD honest significant difference
ife Initiation Factor 4E (eIF4E) Family
hsp Heat Shock Protein
ion LONg
KO Knockout
NMDA N-methyl-D-aspartate
npr NeuroPeptide Receptor family
rab RAB family
slo SLOwpoke potassium channel family
tax abnormal chemotaxis
unc UNCoordinated
WGS whole genome sequencing
WT wild type
1

Immune signaling in neuromodulation
The healthy nervous system expresses many molecules that were once thought to be specific to the immune response (Kioussis and Pachnis, 2009; Kipnis, 2016). Rather than being markers of injury or infection, it is now clear that the presence of these proteins in the brain reflects their fundamental role in neuronal physiology (Boulanger et al., 2001). Conceptual parallels between the immune system and the brain were first drawn by Jerne, who likened the adaptability of immunity to the “miracle that young children easily learn the language of any environment into which they were born” (Jerne, 1984). In fact, we now know that the inherent plasticity of both systems is encoded in part by the same genes (Boulanger, 2009; Habibi et al., 2009; Pribiag and Stellwagen, 2014). Whether they have specialized from a common ancestral cell-type or co-opted the same mechanisms independently, an emerging picture is that the brain and immune system make use of the same molecular pathways to serve their own tissue-specific functions (Kioussis and Pachnis, 2009).

The classical complement cascade facilitates the recognition and removal of pathogens by opsonizing (tagging) harmful cells. In neural networks, it also functions to eliminate inappropriate synapses (Stephan et al., 2012); during a developmental window when activity-dependent synaptic pruning is critical for the formation of functional circuits, complement proteins are used to opsonize synapses (Stevens et al., 2007). Similarly, cell-surface proteins of the major histocompatibility complex class I (MHCI) family, which mediate the presentation of non-self antigens in the adaptive immune system, are required for activity-dependent changes at neuronal synapses (Boulanger and Shatz, 2004). As well as remodeling neuronal projections, MHCI proteins control changes in synapse strength by promoting long-term depression (LTD) and inhibiting long-term potentiation (LTP) (Huh et al., 2000).

The inflammatory response is controlled by secreted molecules, including cytokines that regulate the expression of pro-inflammatory genes, and chemokines (chemotactic chemokines) that attract leukocytes to inflamed areas.
(Turner et al., 2014). In the brain, these chemical messengers function as neuromodulators (Rostene et al., 2007; Vezzani and Viviani, 2015). There is substantial evidence that by driving neuroinflammation, aberrant cytokine signaling can induce depression and neurodegeneration, making mechanistic delineation of the link between pathological immune signaling and brain dysfunction an area of immense therapeutic interest (Heppner et al., 2015; Wohleb et al., 2016; Yirmiya et al., 2015). In the non-inflamed brain however, basal cytokine levels are critical for a range of developmental and behavioural functions that are only beginning to be understood (Bauer et al., 2007; see below). Many of the intracellular signaling pathways that mediate cytokine function in immune cells are constitutively expressed in the nervous system, although an understanding of how they specifically alter neuronal properties has lagged behind functional studies of the cytokines themselves.

Neuromodulation by brain-borne cytokines

Neuromodulators confer behavioural adaptability by controlling the gain of sensory responses or altering the excitability of specific neural circuits dependent on context (Taghert and Nitabach, 2012). The list of molecules now considered neuromodulators is long and diverse, including hormones, neuropeptides, gases and amines that can be released in combination or in isolation (Kumar, 2011; Marder, 2012; Stein, 2009). Accumulating evidence indicates that cytokine signaling systems are yet another class of state-specific modulators.

Almost three decades ago Breder and colleagues identified interleukin-1 (IL-1) protein in neurons innervating the hypothalamus, and speculated that it may function there to modulate neuronal activity (Breder et al., 1988). Since then a range of other cytokines have been found to be expressed in neurons and/or glia (Rostene et al., 2007; Vezzani and Viviani, 2015). In most cases, their functions seem to be context-specific, exerting little or no effect on basal neuronal activity/transmission, but augmenting or limiting certain adaptive changes - such
as learning (Goshen et al., 2007; Rostene et al., 2007; Stellwagen and Malenka, 2006).

Memory is thought to be encoded by activity-dependent changes in synaptic strength (Martin et al., 2000). LTP and LTD represent a feed-forward relationship between post-synaptic response and sustained pre-synaptic activity that allow circuit properties to be modified over time. To prevent long-term destabilizing change however, homeostatic plasticity mechanisms function to keep average activity close to an optimal set point (Turrigiano, 2017). Interestingly, cytokinergic neuromodulation plays a role in regulating both of these two opposing forms of plasticity. The most important examples characterized to date are the pro-inflammatory cytokines IL-1β and tumour necrosis factor α (TNFα).

IL-1β regulates LTP
During LTP, IL-1β mRNA expression is induced in the CA1 region of the hippocampus (Schneider et al., 1998). Initially, it was thought that hippocampal IL-1β was an inhibitor of LTP (Murray and Lynch, 1998), but it was later shown that its effect is dose-dependent, following an inverted U-shape curve. At low levels, IL-1β facilitates LTP in culture and learning *in vivo* (Brennan et al., 2003; Schneider et al., 1998). Thus, physiological and pathological IL-1β signaling may have opposite effects in the hippocampus. Both IL-1 receptor (IL-1R) KO mice and animals treated with an IL-1R antagonist are defective in hippocampal-dependent memory tasks, confirming that physiological levels of IL-1β are required for learning (Avital et al., 2003; Goshen et al., 2007; Yirmiya, 2002).

NMDA receptors (NMDARs) are the primary source of LTP-driving Ca$^{2+}$ influx at hippocampal CA1 synapses (Kumar, 2011). IL-1β can strengthen glutamatergic synapses through Src-kinase mediated phosphorylation of NMDARs, thereby facilitating long-lasting Ca$^{2+}$ influx (Viviani et al., 2003). Blocking IL-1R has no effect under basal conditions, consistent with a specific role during LTP (Zhu et al., 2006).
Interestingly, a CNS-specific isoform of the IL-1R accessory protein (AcP), AcPb, has been identified that is able to transduce IL-1β signals in neurons but not in lymphocytes (Smith et al., 2009). AcPb forms a functional complex with an IL-1R isoform, IL-1R3, that is preferentially expressed in the nervous system (Qian et al., 2012). These findings suggest that some degree of divergence has occurred between tissues. Therefore, although extensive immunological studies of IL-1 signaling provide a valuable framework for exploring its role in the neurons, they are not necessarily predictive of the specific signaling pathways used. IL-1β commonly signals through multiple intracellular pathways including nuclear factor kappa B proteins (NF-κB), c-Jun N-terminal kinases (JNKs), extracellular signal-regulated kinases (ERK) 1/2 and p38 mitogen-activated protein kinases (MAPKs) (Fig. 1.1A) (Risbud and Shapiro, 2014). In hippocampal cells, IL-1β signaling is independent of NF-κB, JNK and ERK1/2 activation (Choi and Friedman, 2009; Srinivasan et al., 2004). Instead, by inducing the p38 MAPK pathway it activates cyclic AMP response element binding protein (CREB), a transcription factor (TF) important for the formation long-term memory (Silva et al., 1998), but not a target of IL-1 in immune cells (Srinivasan et al., 2004).

TNFα controls homeostatic plasticity

Synaptic scaling occurs widely in the nervous system in response to a long-term reduction or overload in synaptic input (Turrigiano and Nelson, 2004; Turrigiano et al., 1998). TNFα, mostly of glial origin, regulates homeostatic upregulation of synaptic strength during activity blockade in the hippocampus, cortex and striatum (Lewitus et al., 2014; 2016; Stellwagen and Malenka, 2006). Hippocampal slices from TNF receptor (TNFR) KO mice are WT in terms of basal activity, but show abnormal changes during activity perturbation (Albensi and Mattson, 2000; Stellwagen and Malenka, 2006). Specifically, TNF signaling is upregulated by pre-synaptic blockade in the hippocampus, and functions to increase post-synaptic AMPA receptor (AMPA) levels (Beattie et al., 2002; Stellwagen and Malenka, 2006). Similarly *in vivo*, after monocular deprivation,
the increased sensitivity of visual cortex neurons to input from the open eye depends on TNFα signaling (Kaneko et al., 2008). Interestingly, in GABAergic medium spiny neurons (MSNs) of the striatum, TNFα is again upregulated by activity blockade, but functions to reduce AMPAR currents (Lewitus et al., 2014). Together, these findings suggest that (i) TNFα serves to simultaneously promote excitatory and reduce inhibitory output during periods of low circuit activity and (ii) that its modulation of AMPAR currents may be secondary to specific effects that vary with neuronal type (Konefal and Stellwagen, 2017). Importantly, temporal delineation of the role played by TNFα during synaptic homeostasis showed that it is not itself a signal that correlates with scaling, but rather its long-term levels determine whether a synapse has the ability to induce scaling (i.e. it is permissive not instructive) (Steinmetz and Turrigiano, 2010).

One mechanism by which TNFα is able to influence AMPAR levels is by controlling the activity of protein phosphatase 1 (PP1). In MSN neurons, TNFα signaling downregulates DARP-32 phosphorylation, thereby activating PP1 and increasing AMAPR endocytosis (Lewitus et al., 2014). PP1 also mediates TNFα-induced endocytosis of GABA_A receptors (GABA_ARs) in hippocampal neurons (Pribiag and Stellwagen, 2013). Like IL-1β, TNFα function depends on p38 MAPKs (Pribiag and Stellwagen, 2013). Unlike IL-1β however, TNFα signaling has no effect on CREB activation, but is mediated specifically by NF-κB (Albens and Mattson, 2000; Choi and Friedman, 2009; Segond von Banchet et al., 2016). One reason that TNFα but not IL-1β signals through NF-κB in neurons is that IL-1β requires TRAF6 to activate NF-κB, whereas TNFα does not (Fig. 1.1B) (Cao et al., 1996); TRAF6 is highly expressed in immune cells, but was not detected in hippocampal neurons (Srinivasan et al., 2004).

Towards a network view of cytokines in the CNS

Although IL-1β and TNFα are the best-characterized examples, it is likely that other cytokines play a role in the healthy brain. Stimulation of cortical neurons upregulates IL-6 expression (Sallman et al., 2000). Furthermore, chemokines
such as SDF1/CXCL12, MCP1/CCL2 and fractalkine/CX3CL1 are constitutively expressed in neurons, are released in response to neural activity, and have neuromodulatory effects (Rostene et al., 2007). For example, both fractalkine and its receptor CX3CR1 are expressed by hippocampal neurons (Harrison et al., 1998; Meucci et al., 2000) and fractalkine expression is induced by spatial learning (Sheridan and Murphy, 2014).

Transcriptional fingerprinting during retrieval and extinction of fear-conditioned memories show that a number of chemokines and pro-inflammatory cytokines (including IL-1 and IL-6) are specifically associated with memory retrieval, while a non-overlapping range (that includes TNF receptor family genes) are associated with extinction (Scholz et al., 2016). This suggests that most cytokine-type neuromodulators are yet to be characterized.

Ancient origins of cytokinergic neuromodulation

Recent work in invertebrate models show that neuromodulation by cytokine-like molecules is an evolutionary conserved feature of nervous systems. Additionally, the remarkable conservation of the signaling pathways identified raises the hypothesis that homologous molecular mechanisms function in invertebrate and mammalian neurons.

In mammals, the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway is an important intracellular target of Type I cytokines such as IL-6 (Fig. 1.1C) (O'Shea et al., 2002). Homologs of this signaling pathway are present in *Drosophila*, including a ligand, Unpaired (Upd), with an α-helical structure typical of the IL-6 family (Copf et al., 2011). Upd is expressed in a subset of mushroom body (MB) neurons, where it specifically promotes associative long-term memory (LTM) via JAK/STAT signaling (Copf et al., 2011). A second Upd family member, Upd2, acts as a neuromodulator in a manner analogous to human leptin (Rajan and Perrimon, 2012). By engaging JAK/STAT signaling in GABAergic neurons in well-fed flies, it reduces inhibitory signaling
Figure 1.1 Inflammatory cytokine signaling pathways. Cytokine signaling components also implicated in neuromodulation are shown in red. (A) IL-1β stimulates the assembly of an IL-1R/Acp/MyD88/IRAK complex, which recruits TRAF6 to induce TAK1-mediated activation of IKK, JNK, ERK1/2, and p38 MAPK signaling. IKK phosphorylates IκB, triggering its ubiquitination and degradation, and allowing NF-κB complexes to translocate to the nucleus and activate transcription (O’Neill and Greene, 1998; Risbud and Shapiro, 2014). MAPK pathways have a large range of intracellular targets (Johnson and Lapadat, 2002). (B) TNFα drives IKK activation through the formation of a scaffolding complex containing TNFR-associated death domain (TRADD) and TRAF2 at TNFR1 (Aggarwal, 2003; Ting and Bertrand, 2016). (C) IL-6 type cytokines activate JAK tyrosine kinases, which phosphorylate latent cytoplasmic STAT TFs. Phosphorylated STATs dimerize and enter the nucleus, dependent on nucleoprotein-interactor 1 (NPI-1) and Ras-related nuclear protein (Ran), to drive transcription. STAT3 is able to directly interact with intracellular trafficking machinery, independent of its role in the nucleus (Gao and Bromberg, 2006; Rawlings, 2004). (D) In response to IL-17R activation, Act1 acts as a scaffolding hub for signaling molecules including TRAF6, culminating in the activation of NF-κB heterodimers. A non-canonical IκB, called IκBζ, boosts IL-17R/Act1 signaling by promoting the activity of NF-κB homodimers (Amatya et al., 2017; Johansen et al., 2015).
onto neurons that release insulin-like peptides (Rajan and Perrimon, 2012). Interestingly, JAK/STAT signaling mediates NMDAR-dependent LTD (NMDAR-LTD) in hippocampal neurons (Nicolas et al., 2012). Surprisingly however, this process does not depend on STAT TF activity – usually the culmination of JAK/STAT signaling (Sacktor, 2012); STAT3 is able to promote NMDAR-LTD without translocating to the nucleus (Nicolas et al., 2012). Together, these findings suggest that the role of JAK/STAT in neuromodulation of synaptic strength is conserved between diverged nervous systems. Additionally, they serve as motivation for exploring the function of IL-6 family cytokines in neuromodulation and learning. Indeed, there is already some evidence that IL-6 signals through STAT3 to modulate transmitter release and LTP (D'Arcangelo et al., 2000; Tancredi et al., 2000).

A recent study in *C. elegans* raises the possibility that IL-17 family cytokines may function as neuromodulators in the healthy brain. In worms, IL-17/ILC-17.1 and its receptors are constitutively expressed in hub neurons called RMG that integrate a variety of sensory responses (Chen et al., 2017). IL-17 signaling in RMG neurons specifically promotes these sensory responses and drives escape of unfavourable environments. The evidence so far suggests that signal transduction mechanisms engaged by mammalian IL-17 is at least partly conserved in worms. Like in mammals, *C. elegans* IL-17 receptors (IL-17Rs) contain an intracellular SEF/IL17R (SEFIR) domain, form a functional complex with an Act1-type adaptor, and signal through a non-canonical IκB (inhibitor of NF-κB) similar to IκBζ (Fig. 1.1D). Additionally, an IRAK (IL-1R-associated kinase)-like protein, usually associated with toll-like receptor or IL-1 signaling (Flannery and Bowie, 2010), is recruited to the IL-17Rs in RMG neurons. Interestingly, although IL-17 is thought to signal primarily through NF-κB (Amatya et al., 2017), no Rel homology transcription factors have been identified in *C. elegans* (Sullivan et al., 2009). Therefore, a different transcriptional regulator may be engaged by IL-17 signaling in neurons. In humans, IL-17 is known to induce neuroinflammation (Kang et al., 2013; Xiao et al., 2014), perhaps explaining its
link to anxiety and depression (Haroon et al., 2011; Liu et al., 2012), but its role under basal conditions in the CNS awaits investigation.

Specificity of signal transduction pathways

In general, molecular studies of the nervous system have been biased towards membrane proteins that sit at the interface of ion gradients and cell-cell communication (Kennedy, 2017). As a result, the intricate molecular signaling pathways that regulate or mediate the function of cell-surface receptors have been characterized in less detail in neurons than in other tissues. Yet, it is likely that they lie at the heart of a significant outstanding question in the study of cytokines in the nervous system: how do specific biological effects arise from common signals?

Several mechanisms have been proposed to explain the puzzling specificity of broadly expressed signaling proteins, including (i) qualitative or quantitative differences in their expression (ii) cell-specific proteomic context and (iii) the diversity of information encoded by Ca\(^{2+}\) signatures (Crabtree, 1999). The following examples suggest that all three contribute to the specificity of cytokine signaling.

1) As described above, neurons express a repertoire of IL-1\(\beta\) signal-transducers that is both qualitatively (AcPb) and quantitatively (IL-1R3) different from that of immune cells. By abolishing the ability of IL-1R complexes to recruit Myd88/IRAK4, IL-1R3/AcPb complexes appear to direct signaling towards different downstream effectors (Qian et al., 2012; Smith et al., 2009). 2) Cytokines can engage different signaling pathways in different cell-types/conditions. The presence or absence of TRAF6 directs IL-1\(\beta\) signaling towards different fates in astrocytes and neurons (Choi and Friedman, 2009; Huang et al., 2011; Srinivasan et al., 2004). Additionally, for reasons that are not well understood, IL-1\(\beta\) specifically activates the p38 MAPK pathway in some contexts (Choi and Friedman, 2009; Srinivasan et al., 2004), but can also activate JNK signaling in
others (Curran et al., 2003; Vereker et al., 2000). Similarly, cellular context likely underlies the opposing effects of IL-6 signaling on ERK activity in neurons and other tissues; whereas in most cell-types IL-6 stimulates ERK activity, it deactivates ERK in the cerebral cortex to downregulate transmitter release (D'Arcangelo et al., 2000). 3) Both CREB and NF-κB are regulated by spatiotemporal Ca\(^{2+}\) codes (Berridge, 2010; Dolmetsch et al., 1998). The fact that, depending on cell-type, IL-1β can signal specifically through either of these Ca\(^{2+}\)-sensitive TFs (Srinivasan et al., 2004) suggests that Ca\(^{2+}\) profiles of a particular cell type influence the outcome of cytokine-receptor stimulation.

Regulation of gene expression

NF-κB and NFAT (nuclear factor of activated T cells) were initially thought to be lymphocyte-specific activators of inflammatory gene programmes (Sen and Baltimore, 1986; Shaw et al., 1988). Subsequent studies showed them to be constitutively expressed in neurons too (Ho et al., 1994; Kaltschmidt et al., 1994), where their translocation from the cytoplasm to the nucleus is driven by excitatory input and depolarization (Graef et al., 1999; Kaltschmidt et al., 1995). Interestingly, although both NF-κB and NFAT are activated by Ca\(^{2+}\), their sensitivity to the frequency of Ca\(^{2+}\) oscillations differs – suggesting specific roles in linking Ca\(^{2+}\) signatures to transcriptional state (Dolmetsch et al., 1998). In the nervous system, synapse-to-nucleus signaling is fundamental to long-term, activity-dependent change (Tully, 1997; West et al., 2002). It is thought that Ca\(^{2+}\)-sensitive transcriptional regulators provide an important means of coupling synaptic use to gene expression during neuronal development and long-term plasticity (Berridge et al., 2000; West et al., 2002).

Recent work suggests that NF-κB and NFAT play opposing roles in regulating the persistence of associative memory (de la Fuente et al., 2011). Associative memories are thought to undergo two rounds of consolidation. Initially, training establishes changes in gene expression that stabilize the memory until it is first reactivated. Re-exposure to the training condition then disrupts this stabilization,
leaving memories open to either reconsolidation or extinction (Misanin et al., 1968). In mammals and crabs, NF-κB-mediated transcriptional changes are essential for reconsolidation, and inhibiting NF-κB is a mechanism used to promote extinction (Boccia et al., 2007; Merlo and Romano, 2008). Extinction itself is also an active process that depends on changes in gene expression mediated by NFAT (la Fuente et al., 2011). Inhibition of NFAT signaling promotes reconsolidation in a manner dependent on NF-κB, suggesting that altering the balance in activity of these two TFs is used as a transcriptional switch to determine the fate of re-activated memories in the hippocampus (la Fuente et al., 2011; 2014).

A range of extracellular and intracellular factors regulate the activity NF-κB and NFAT in lymphocytes, making them important nodes for the integration of Ca\(^{2+}\) and other signaling cues (Macian, 2005; Zhang et al., 2017). In the nervous system, neuromodulators (Choi and Friedman, 2009; Kim et al., 2014) and ion-permeable cell-surface receptors (Kaltschmidt et al., 1995; Murphy et al., 2014; Sheridan et al., 2007) are important upstream regulators.

A number of intracellular Ca\(^{2+}\) sensors converge on NF-κB, including PKC, PI3K/Akt, and calmodulin (CaM) (Lilienbaum and Israel, 2003). The CaM-regulated phosphatase calcineurin maintains constitutive NF-κB activity, while Ca\(^{2+}/\)CaM-dependent protein kinase II (CAMKII) contributes to full NF-κB activation following Ca\(^{2+}\) influx (Lilienbaum and Israel, 2003). Interestingly, TNFα-induced NF-κB activation does not proceed via IκB degradation, indicating that an alternative pathway, such as MEKK-3-dependent IκB-dissociation (Yao et al., 2007), facilitates NF-κB activation in hippocampal neurons (Choi and Friedman, 2009). Furthermore, contrary to its role in immune cells, NF-κB ‘inducing’ kinase (NIK) was found to inhibit NF-κB in neurons, suggesting that regulatory mechanisms vary between tissues (Mao et al., 2016).
Dephosphorylation of NFAT by calcineurin drives its nuclear localization in response to Ca\(^{2+}\) signaling. The Ca\(^{2+}\) signatures sufficient to keep NFAT in the nucleus, however, differ between lymphocytes, where a prolonged Ca\(^{2+}\) increase is required, and neurons, where a short spike is sufficient (Graef et al., 1999). Phosphorylation by glycogen synthase kinase-3β (GSK-3β) is one means of driving nuclear export of NFAT in neurons (Graef et al., 1999), but otherwise mechanisms that regulate its localization in the CNS are not well understood.

An interesting question is how NF-κB and NFAT interact with other Ca\(^{2+}\)-dependent neuronal TFs. Cooperative function of different transcription and epigenetic factors is a common feature of transcriptional regulation (Reiter et al., 2017). Indeed, NF-κB is known to coordinate with multiple chromatin remodelers and TFs to activate transcription (Pradhan et al., 2011; Wienerroither et al., 2015). In the hippocampus, it promotes the function of histone acetyltransferase(s) to potentiate memory consolidation (Federman et al., 2013). Importantly, NF-κB-dependent histone acetylation at the Camk2d locus is required for the upregulation of CAMKIIδ during memory stabilization (Federman et al., 2013). Furthermore, the expression of hippocampal MHCII, required for use-dependent synaptic plasticity, is upregulated by the combined action of NF-κB, CREB, and IRF-1 (Lv et al., 2015).

One well-characterized target of NFAT in the hippocampus is IP\(_3\)R1 (1,4,5 inositol triphosphate receptor 1), which controls Ca\(^{2+}\) release from endoplasmic reticulum (ER) and is essential for LTD (Graef et al., 1999; Sugawara et al., 2013). Activator protein 1 (AP-1) is the most common transcriptional partner of NFAT (Jain et al., 2002; Macian, 2005), although others, such as Sox10 in Schwann cells, have been described (Kao et al., 2009). AP-1 was ruled out as a potential NFAT binding partner for hippocampal IP\(_3\)R1 regulation (Graef et al., 1999), so transcriptional complexes formed by NFAT in the nervous system remain uncharacterized. Intriguingly, the promoter of the brain-derived neurotrophic factor (BDNF) gene harbours binding sites for CREB, NFAT and
CaRF (Calcium Regulatory Factor) (Groth and Mermelstein, 2003). It will be interesting to discover whether Ca2+-sensitive TFs commonly regulate the same genes, and if so how they function in combination.

The transcriptional targets of NF-κB and NFAT in neurons represent a significant gap in our understanding of long-term plasticity. CAMKIIδ, MHCI and IP\textsubscript{3}R1 are strong candidates for the molecular link between proinflammatory transcription factors and synaptic plasticity, but it is as yet unknown whether they are functionally relevant targets. Attempts to gain a transcriptome-wide gene expression profiles during learning will also be valuable. Finally, uncovering the full repertoire of transcription factors and their targets regulated by neuromodulatory cytokine signaling is an important long-term goal.

Modulation of the 21% O\textsubscript{2}-escape circuit of *C. elegans*

Many general principles of neuromodulation have been gleaned from studies of simple nervous systems (Marder et al., 2014). With only 302 neurons, the nematode *C. elegans* offers an opportunity to dissect neural circuits coordinating behavioural responses at single-cell resolution. The small size of this nervous system does not, however, reflect a reduced repertoire of neuromodulatory systems. On the contrary, the fact that *C. elegans* expresses almost as many peptide neuromodulators as neurons suggests that the structural simplicity of its nervous system carries hidden complexity in terms of molecular modulation (Schafer, 2016). Neuromodulatory pathways, such as cytokine signaling, continue to be uncovered, so it is not yet known how rich this picture is in its entirety.

As a rapidly reproducing, hermaphroditic, genetically-tractable organism, *C. elegans* offers special opportunities to study neuromodulatory mechanisms. As a case in point, the unexpected role for IL-17 signaling in promoting specific sensory responses was identified by a forward genetic screen for mutants
defective in aggregation behaviour (Chen et al., 2017). Here, we further exploit
this approach and describe novel molecular mechanisms that regulate behaviour.

Aggregation describes the accumulation of foraging nematode populations in the
thickest regions of a bacteria food lawn (Fig. 1.2A) (de Bono and Bargmann,
1998). It is driven largely by the activity of sensory neurons that are stimulated
when O₂ concentrations approach 21% (Cheung et al., 2004; Gray et al., 2004).
Two neurons in the head, called URX, extend dendritic endings to the tip of the
nose. Two additional O₂ sensors, AQR and PQR, have sensory endings exposed
to the pseudocoelomic body fluid and thereby tuned to internal O₂ conditions. In
mid-low O₂ concentrations (~7%), preferred by C. elegans, these neurons show
low activity. When O₂ levels rise to 21%, URX, AQR and PQR sensory receptors
signal to downstream neurons to initiate first a transient bout of re-orientation as
animals seek to avoid the 21% O₂, and then, if this fails, a switch to rapid
locomotion that is sustained until the animal has escaped the stimulus (Busch et
al., 2012). The responses that enable C. elegans to avoid and escape 21% O₂
also enable them to aggregate, since groups of animals generate local low O₂
environments. Animals kept in 7% O₂ do not aggregate.

The ecological relevance of 21% O₂-avoidance for C. elegans is not clear, but it
is known that O₂-deprived environments such as decomposing fruits and plants
make the primary natural habitat for this animal (Frézal and Félix, 2015).
Environmental O₂ might be a proxy for the availability of food, or dangers
associated with surface exposure. Although almost all known wild isolates
aggregate and avoid 21% O₂, these behaviours were lost in the N2 laboratory
reference strain that accumulated a gain of function mutation in the neuropeptide
receptor NPR-1 during domestication (Rockman and Kruglyak, 2009; Weber et
al., 2010). Circuit-level dissection of NPR-1 function showed that it acts primarily
to inhibit the activity of RMG hub interneurons (Macosko et al., 2009; Laurent et
al., 2015). RMG neurons are connected by gap junctions to (i) URX O₂ sensors
(ii) ASH and ADL nociceptors and (iii) ASK pheromone receptors, and therefore
Figure 1.2 Signaling from URX and RMG drives aggregation behaviour. (A) npr-1 animals aggregate on the borders of an E. coli food lawn (left). Mutants isolated in an EMS-based genetic screen do not (right). (B) Cartoon showing the location of URX and RMG neuron pairs in the anterior of the worm. (C) RMG hub-and-spoke circuit. URX and other sensory neurons (spokes) are connected by electrical synapses to RMG (hub). High activity in RMG drives fast forward speed through peptidergic communication with downstream command interneurons (Jang et al., 2017; Laurent et al., 2015; Macosko et al., 2009). In 21% O₂, URX tonically activates RMG via gap junctions and neuropeptide transmission. O₂-sensation in URX is mediated by soluble guanylate cyclases (GCY-35/GCY-36) that synthesize cGMP and stimulate opening of cGMP-gated ion channels (TAX-2/TAX-4). Ca²⁺ release from intracellular stores is necessary to sustain tonic URX activity (Busch et al., 2012). IL-17 signaling enhances the input-output ratio of RMG, promoting Ca²⁺ signaling and neuropeptide secretion in response to 21% O₂. An IL-17R/Actl-1/IRAK complex signals to IκBζ to mediate neuromodulation by IL-17 (Chen et al., 2017).

serve as a site of integration for sensory information (Fig. 1.2C). In 21% O₂, chronically high activity in RMG drives fast locomotion through the secretion of
neuropeptides (Laurent et al., 2015). IL-17 enhances O$_2$-evoked Ca$^{2+}$ responses in RMG and sustains this behavioural state (Chen et al., 2017). Consequently, blocking IL-17 signaling attenuates behavioural responses to pheromones and 21% O$_2$, without any noticeable effect on other sensory modalities.

The goal of this project was to characterize additional molecular mechanisms that regulate the URX-RMG circuit. A collection of npr-1 animals that fail to aggregate had already been generated by EMS-mutagenesis, providing a resource for gene discovery. Using a combination of linkage analysis, reverse genetics and transgenic rescue experiments, I identified the causal genetic loci in several of these mutants. Then, using Ca$^{2+}$ imaging to explore their function in vivo I focused on novel genes that modulate the responsiveness of the URX-RMG circuit.

In Chapter 2 I explore the signal transduction mechanisms that mediate neuromodulation by IL-17, and show that the paracaspase MALT1 is critical for promoting RMG responsiveness. In chapter 3 I explore the role of a putative Ca$^{2+}$-regulated TF, CAMTA. I propose that CAMTA has pan-neuronal function in regulating Ca$^{2+}$ homeostasis and adaptation. In chapter 4 I demonstrate that accessory subunits of the eIF3 complex, a universal component of the translation initiation machinery, play a specific regulatory role in neurons. In chapter 5 I present additional, as yet uncharacterized, genes linked to aggregation and consider approaches for probing the natural genetic basis and evolution of this behaviour. Finally in chapter 6 I discuss major questions raised by this work and hypotheses that can now be tested more directly.

References

Choi, S., and Friedman, W.J. (2009). Inflammatory Cytokines IL-1β and TNF-α Regulate p75 NTR Expression in CNS Neurons and Astrocytes by Distinct Cell-Type-Specific Signalling Mechanisms. ASN Neuro 1, AN20090009–AN20090011.

Sheridan, G.K., and Murphy, K.J. (2014). CX3CL1 is up-regulated in the rat hippocampus during memory-associated synaptic plasticity. Front Cell Neurosci 8, Article233.

Huang, Y., Smith, D.E., Ibanez-Sandoval, O., Sims, J.E., and Friedman, W.J.
(2011). Neuron-Specific Effects of Interleukin-1 Are Mediated by a Novel Isoform of the IL-1 Receptor Accessory Protein. J Neurosci 31, 18048–18059.

MALT1 mediates IL-17 signaling in *C. elegans* neurons
Introduction

Neuromodulators tune the nervous systems to an ever-changing environment by locally and/or globally reconfiguring circuit activity (Katz and Lillvis, 2014; Taghert and Nitabach, 2012). As their contribution to brain state is typically contextual, assigning their functional roles in circuits and behaviour remains a significant challenge (Marder, 2012; Wester and McBain, 2014).

Cytokines are intercellular messengers that regulate the immune response. Accumulating evidence suggests these messengers can also play neuromodulatory roles in the CNS (Marin and Kipnis, 2013; Chapter 1). For example, during hippocampal-dependent memory formation, tight control of IL-1β levels is critical for LTP (Goshen et al., 2007; Schneider et al., 1998), while glutamatergic synaptic strength in the nucleus accumbens is homeostatically regulated by TNF-α (Beattie et al., 2002; Lewitus et al., 2016). Several studies over the last two decades suggest the neuromodulatory roles of cytokines are widespread (Vezzani and Viviani, 2015). However, the intracellular signaling pathways by which they alter neuronal properties are poorly understood.

Named after their sequence and structural similarity to caspases, paracaspases are a family of cysteine proteases with specificity for arginine residues (Hachmann et al., 2012; Uren et al., 2000). Their caspase-like protease domain is highly conserved, most notably containing an invariant histidine-cysteine pair. Their domain organization has also been retained across much of the animal kingdom (Hulpiau et al., 2015) and consists of an N-terminal death domain (DD) followed by 2-3 Ig (immunoglobulin)-like motifs that flank the paracaspase domain. Paracaspases have been studied almost exclusively in the mammalian immune system.

Human paracaspase, better known as MALT1 (mucosa-associated lymphoid tissue translocation protein 1), is a key signaling molecule in mammalian innate and adaptive immunity. Reduced *MALT1* expression is linked to combined
immunodeficiency (Jabara et al., 2013; McKinnon et al., 2014; Punwani et al., 2015), a phenotype recapitulated in Malt1−/− mice (Ruefi-Brasse et al., 2003; Ruland et al., 2003). Conversely, MALT1 hyper-activation drives the lymphocyte proliferation found in two forms of lymphoma: mucosa-associated lymphoid tissue (MALT) lymphoma (Dierlamm et al., 2008) and activated B-cell subtype of diffuse large B-cell lymphoma (ABC-DLBCL) (Dierlamm et al., 2008; Ngo et al., 2006). MALT1 has also been identified as a susceptibility locus for multiple sclerosis (Sawcer et al., 2011).

MALT1 promotes NF-κB signaling downstream of ITAM-containing receptors by two mechanisms (Jaworski and Thome, 2015). First, MALT1 forms a complex, called the CBM signalosome, by interacting with BCL10 and CARD-containing proteins. This assembly serves a scaffolding function during activation of the IKK complex (Qiao et al., 2013; Sun et al., 2004). In addition, MALT1’s protease activity contributes to the immune response by cleaving factors that inhibit NF-κB (Coornaert et al., 2008) or destabilize its target mRNAs (Jeltsch et al., 2014; Uehata et al., 2013).

NF-κB-dependent (McAllister-Lucas, 2001) and -independent (Klei et al., 2016) effects have also been reported for MALT1 downstream of specific GPCRs, suggesting it has diverse functions across different tissues. In the brain, in situ hybridization data indicate widespread MALT1 expression (Allen Mouse Brain Atlas, 2004), however no physiological role in neurons has been reported yet.

It was recently discovered that IL-17 acts like a neuromodulator in C. elegans (Chen et al., 2017). By acting directly on RMG hub interneurons, IL-17 increases neuronal output and sustains escape from an aversive cue, 21% O2. Here, I show that C.elegans paracaspase (MALT-1) contributes to IL-17-mediated neuromodulation. Biochemical and genetic data suggest MALT-1 forms a complex with ACT1 and IRAK homologs, consistent with a scaffolding role. Additionally, using a paracaspase-dead mutant I identify a functional role for
MALT-1 protease activity in regulating neural function and behavioural state. These results represent the first described role for MALT1 signaling in the nervous system in any animal.

Results

MALT-1 promotes *C. elegans* aggregation and escape from 21% O$_2$

We studied mutants isolated after EMS-induced mutagenesis of *npr-1* animals that had lost the ability to aggregate on the border of bacterial food lawns. The phenotypes of two mutants, *db699* and *db867*, mapped to mutations in *F22D3.6* (Fig. 2.1A and B). Reciprocal BLAST showed that this gene encodes the *C. elegans* ortholog of human MALT1, with a conserved protease, death- and Ig-like domains (Fig. 2.1C and D). We therefore named *F22D3.6 malt-1*.

In the wild, *C. elegans* thrives in decomposing substrates, which are typically O$_2$-depleted, but rich in CO$_2$ (Frézal and Félix, 2015). Aggregation is driven largely by a preference for such conditions (Cheung et al., 2004; 2005; Gray et al., 2004). Feeding *npr-1* animals, like natural *C. elegans* isolates, dramatically increase their locomotory activity when subjected to 21% O$_2$, but exhibit little or no increased activity in response to elevated CO$_2$ (Bretscher et al., 2008; Rogers et al., 2006). The *db699; npr-1* and *db867; npr-1* mutants showed defects in escape from 21% O$_2$ and increased escape from elevated CO$_2$. To confirm that these phenotypes reflected loss of MALT-1, we generated three independent deletions in the *malt-1* locus using CRISPR-Cas9 (Fig. 2.1E). Among these, *db1194* encodes a premature stop codon resulting in the loss of all but the first 101 amino acids. These mutants recapitulated the aggregation, O$_2$-response and CO$_2$-response defects we observed in our original mutants. The *db1194* phenotypes were rescued by pan-neuronal expression of *malt-1* cDNA (Fig. 2.1G and H), suggesting MALT-1 functions in the nervous system.
Figure 2.1 C. elegans paracaspase mediates O₂-related behaviours. (A) WGS-based CloudMap Hawaiian Variant Mapping of db867. An enrichment of parental SNPs on chromosome II is shown in aggregation-defective recombinant F₂ harboring a missense mutation in malt-1 (physical location 6.9 Mb).
Strikingly, the O₂-evoked locomotory responses of \textit{malt-1} mutants were normal when assayed immediately after animals were transferred to assay plates (Fig. 2.1F), but became defective by 2h after transfer (Fig. 2.1G). This phenotype is highly reminiscent of that of IL-17 signaling, (Chen et al., 2017), and suggested that \textit{malt-1} mutants have reduced IL-17 signaling.

To determine whether \textit{malt-1} is required developmentally we limited its expression to adults using a heat-shock-inducible promoter. Without heat-shock, a \textit{hsp-16::malt-1} cDNA transgene did not rescue the O₂-response phenotype of

\textbf{Figure 2.2 Temporal dynamics of MALT-1 requirement.} (A) A transgene expressing \textit{malt-1} cDNA from the \textit{hsp-16.41} promoter does not rescue \textit{malt-1} phenotypes in the absence of heat-shock. (B) Heat-shock-induced cDNA expression in adults restores O₂-evoked responses to \textit{malt-1} mutants. Average speed (line) and SEM (shaded regions) are plotted (n ≥ 35 animals, N = 4 assays). **** = P < 0.0001, Mann-Whitney U test.

(B) \textit{Drai} digest-based Hawaiian variant mapping of \textit{db699}. An enrichment of parental SNPs is visible at -6 (516bp band) and +4 (224 band) surrounding a nonsense mutation in \textit{malt-1} (W495*, genetic location 0). (C) Paracaspase domain organization. DD=death domain, Ig=Immunoglobulin-like fold. (D) Sequence alignment of paracaspases, highlighting the conserved Death Domain (orange) and Paracaspase Domain (green). Arrowheads point to active site histidine and cysteine residues. Residue colouring indicates % identity. (E) Lesions generated by sgRNA-directed Cas9 cleavage at the \textit{malt-1} locus reduce locomotory responses to 21% O₂, and increase responses to 3% CO₂ (n ≥ 48 animals, N = 4 assays). O₂ responses immediately after transfer to assay plate are not \textit{malt-1} dependent (F), but are not sustained over a 2h period in \textit{malt-1} mutants (G), n ≥ 43 animals, N = 4 assays. Average speed (line) and SEM (shaded regions) are plotted. Time of assay, after transfer, is shown at top left. **** = P < 0.0001, Mann-Whitney U test. (H) \textit{malt-1} is required for aggregation (N ≥ 4 assays). *** = P < 0.001, ANOVA with Tukey’s post hoc HSD.
malt-1 mutants (Fig. 2.2A). Delivering a heat-shock during the 4th larval stage was sufficient to restore behavioural responses (Fig. 2.2B). MALT-1 expression is therefore able to regulate 21% O2 responsiveness acutely.

MALT-1 modulates RMG activity
To identify cells in which MALT-1 is expressed, we tagged MALT-1 at its C-terminus with RFP. This construct was expressed broadly in the nervous system, including the RMG neuron pair, ASG, URX, and AQR (Fig. 2.3A and C). As it appears that most neurons express MALT-1 we have not characterized this pattern fully.

Previous work has shown that escape from 21% O2 is driven by the RMG interneurons, which are tonically stimulated by the URX O2 sensors when O2 levels approach 21% (Busch et al., 2012; Laurent et al., 2015). To test whether MALT-1 acts in RMG to promote responsiveness to 21% O2, we imaged O2-evoked Ca2+ responses in this neuron using Yellow Cameleon, a genetically encoded FRET-based reporter (Kerr et al., 2000). RMG responses were significantly reduced in malt-1 mutants in both freely moving (Fig. 2.3D) and immobilized animals (Fig. 2.3F). This defect was rescued by expressing malt-1 cDNA from the npr-1 promoter (Fig. 2.3F), which drives expression in a broad subset of neurons including RMG (de Bono and Bargmann, 1998; Macosko, 2009).

We next asked whether malt-1 influences Ca2+ transients specifically at the interneuron level, or whether upstream sensory responses are also altered. Ca2+ responses in the URX sensory neurons were normal in freely moving (Fig. 2.3B) and immobilized (Fig. 2.3E) malt-1 mutants. We also tested the dependency of Ca2+ transients in BAG sensory neurons exposed to 3% CO2 on malt-1. malt-1 mutants responded at least as well as WT animals (Fig. 2.3G), indicating that MALT-1 does not universally promote neuronal responsiveness but does so dependant on context/signal.
We directly addressed the question of where MALT-1 functions by testing its sufficiency in different subsets of neurons to promote O\textsubscript{2}-escape. Consistent with its role not being confined to RMG, we observed most complete rescue when MALT-1 was expressed broadly by the rab-3 promoter (Fig. 2.1G and H) or in both O\textsubscript{2}-sensing neurons and RMG simultaneously (Fig. 2.4A and B).

![Image of Figure 2.3](image-url)

Figure 2.3 MALT-1 modulates RMG physiology. (A,C) A MALT-1::mCherry translational fusion, driven by 4kb of upstream sequence, colocalizes with a gcy-32 reporter that stains URX, AQR and PQR neurons (A), and a flp-5 reporter that is expressed in RMG, ASG and several other neurons (C, Kim and Li, 2004). The effect of malt-1 LOF on Ca2+ transients in RMG (D and F), URX (B and E) and BAG (G), as reported by YC2.60 (B, D, E and F) or YC3.60 (G) are shown. RMG responses are attenuated in malt-1 mutants (D and F), whereas URX neurons are WT in freely moving and immobilized animals (B and E). n ≥ 13 (B), n ≥ 32 (D), n ≥ 32 (E), n ≥ 25 (F), n ≥ 19 (G). ** = P < 0.01, Mann-Whitney U test.
Limiting expression to O₂-sensing neurons, or a small subset of neurons including RMG conferred significant but only partial rescue (Fig. 2.4A and B). This supports a scenario in which MALT-1 functions in multiple neurons to promote aggregation and responsiveness to 21% O₂.

![Figure 2.4](image)

Expression of *malt-1* in RMG and O₂-sensing neurons rescues behavioural defects. (A) The aggregation phenotype of *malt-1* mutants is rescued by expressing *malt-1* cDNA from the *flp-5* promoter (RMG, ASG, PVT, I4, M4 and pharyngeal muscle), or the *gcy-32* promoter (URX, AQR and PQR). N = 4 assays. ** = P < 0.01, *** = P < 0.001, ANOVA with Tukey’s post hoc HSD. (B) The O₂-response phenotype of *malt-1* mutants is rescued by expressing *malt-1* cDNA from the *gcy-32* promoter (URX, AQR and PQR) and *flp-5* promoter simultaneously. Lines indicate average and shaded regions indicate SEM. n ≥ 46 animals, N = 4 assays. *** = P < 0.001, Mann-Whitney *U* test.

MALT-1 functions downstream of IL-17 receptors

To identify partners that interact with MALT-1 we expressed C-terminally GFP-tagged MALT-1 throughout the nervous system in *malt-1* mutants, and performed immunoprecipitation from whole worm extracts using anti-GFP antibody. MALT-1-GFP rescued the *malt-1* phenotype (Fig. 2.1G) and localized to the cytoplasm of neurons (Fig. 2.5A). As a control we also performed immunoprecipitation from a strain that expressed GFP pan-neuronally. By mass spectrometry, we identified peptides corresponding to ACTL-1 and PIK-1 bound specifically to MALT-1 (Fig. 2.5B). In *C. elegans* ACTL-1 and PIK-1 encode an adaptor similar to Act1 and an IRAK-like kinase respectively, and mediate signaling downstream of the IL-17 receptor (Chen et al., 2017).
To confirm their physical interaction, we co-immunoprecipitated MALT-1-GFP and PIK-1-HA heterologously expressed in 293T cells. Preliminary experiments suggest pull-down of PIK-1-HA specifically captured MALT-1-GFP, while we observed an enrichment for PIK-1-HA after MALT-1-GFP pulldown (Fig. 2.5C and D). These results suggest MALT-1 forms a complex with ACTL-1 and PIK-1.

The similar phenotypes of *malt-1* and *pik-1* mutants suggested these proteins act in the same signaling pathway. The co-IP of MALT-1-GFP and PIK-1/IRAK support this hypothesis. To test this further, we investigated whether *malt-1* and *pik-1* mutations exhibit any phenotypic additivity. *malt-1; pik-1* double mutants did not enhance the *malt-1* Ca$^{2+}$ signaling defect in RMG (Fig. 2.6A), suggesting MALT-1 and PIK-1 function in the same pathway.

In *C. elegans*, IL-17 signaling downstream of PIK-1/IRAK requires an IκBζ homolog called NFKI-1 (Chen et al., 2017). Overexpressing NFKI-1 suppresses
the null phenotypes of upstream signaling components, including the receptors and pik-1. Consistent with MALT-1 functioning upstream of IkBζ, overexpressing NFKI-1 restored 21% O₂ responses (Fig. 2.6B) and aggregation (Fig. 2.6C) to malt-1(null) mutants. Together, our data suggest that MALT-1 forms a signaling complex with ACTL-1 and PIK-1/IRAK at the IL-17 receptors.

Our model predicts that IL-17/ILC17.1 and MALT-1 drive the same transcriptional changes in neurons. To test whether this is the case across the whole animal, in collaboration with Alastair Crisp, we compared the RNA-seq profiles of malt-1, nfki-1, and ilc-17.1 mutants to WT(npr-1). Around 2/3 of the genes whose expression was decreased two-fold by loss of MALT-1 were also downregulated in nfki-1, and/or ilc-17.1 mutants (Fig. 2.7A). We also observed that more than half of the genes that were two-fold upregulated in malt-1 animals were comparably changed in both nfki-1 and ilc-17.1 mutants (Fig. 2.7B). These
findings suggest that there is substantial overlap in the transcriptional signatures of malt-1, nfki-1 and ilc-17.1 mutants, and that much of the perturbation observed in malt-1 mutants is explained by defects in IL-17 signaling. Interestingly, gene ontology and pathway annotations of the genes positively regulated by MALT-1, NFKI-1 and IL-17 revealed an enrichment for immune system molecules (Fig. 2.7D). This may indicate that MALT-1 and IL-17 are positive regulators of the immune response in C. elegans. Metabolic processes were over-represented among the genes negatively regulated by this pathway, but the implications of this are not clear (Fig. 2.7E).

We also explored the consequence of MALT-1, NFKI-1 or ILC-17.1 overexpression, in order to identify genes that are consistently regulated by this pathway. The expression of 7 genes was significantly increased in all three overexpression conditions, and reciprocally regulated in all three mutants (Fig. 2.7C). Again, several of these genes are related to immunity (Fig. 2.7F). It will be interesting to verify whether these genes are effectors of IL-17 signaling, and what their role is in the organism. It will be especially important to identify the genes that are regulated in neuronal tissue.

Paracaspase activity promotes O_2 responses

To test if MALT-1 signaling activity involves protease function, we changed the catalytic cysteine residue in the active site to alanine. This mutant has been established as a paracaspase-dead model in mice (Gewies et al., 2014). The C374A mutation abolished the ability of malt-1 cDNA to rescue our mutant phenotype (Fig. 2.8A), indicating that MALT-1 functions as a protease in the C. elegans nervous system.
Figure 2.7 Transcriptional fingerprints of malt-1, nfki-1 and ilc-17.1 mutants. The total number of genes that are downregulated (A) and upregulated (B) two-fold or more in malt-1;npr-1, ilc-17.1;npr-1 and nfki-1;npr-1 conditions compared to npr-1. (C) The number of genes whose expression is significantly increased by overexpression of MALT-1, NFKI-1 or ILC-17.1, and is significantly reduced in the corresponding mutant condition, is shown. (D and E) Gene ontology (GO) terms and pathways significantly overrepresented among genes dysregulated in all three mutant conditions. (D) Downregulated genes, corresponding to those underlined in (A). (E) Upregulated genes, corresponding to those underlined in (B). (F) The identities and descriptions of the genes underlined in (C). MALT-1 was overexpressed pan-neuronally, NFKI-1 and ILC-17.1 were overexpressed from their endogenous promoters.

Eight substrates of mammalian MALT1 are known (Hachmann and Salvesen, 2016), four of which have homologs in C. elegans (Fig. 2.9B). Among these only REGE-1 (REGnasE-1) retains the arginine residue at which MALT1 cleavage occurs (Fig. 2.8B). Mammalian Regnase-1 is an RNase which inhibits the activation of IL-17 expressing T\textsubscript{H}17 cells, by promoting the degradation of mRNA such as that encoding I\textkappa\textB\textz (Jeltsch et al., 2014; Uehata et al., 2013). Both its RNase activity and regulatory role in the expression of immune genes are conserved in C. elegans (Habacher et al., 2016).
Figure 2.8 MALT-1 functions as a protease. (A) cDNA encoding a C374A mutant, expressed from the rab-3 promoter, does not rescue the reduced speed responses of malt-1 (n ≥ 43 animals, N = 4 assays). Data corresponding to npr-1 and npr-1; malt-1; rab-3p::malt-1 are same as in Fig. 2.1G, plotted here because it was obtained in parallel to the other genotypes shown. (B) Regnase-1 R111, which directs MALT1 cleavage in mammals, is conserved in C. elegans REGE-1. (C-F) Lesions generated by sgRNA-directed Cas9 cleavage at the rege-1 locus (C) increase behavioural responses to 21% O₂ (D and E). malt-1 and rege-1 have opposite effects on body size (F). (D-F) n ≥ 57 animals, N = 4 assays. * = P < 0.05, **** = P < 0.0001, Mann-Whitney U test.

To test for a role in the O₂-escape circuit we generated frameshift mutations in the rege-1 locus using CRISPR-Cas9 (Fig. 2.8C). rege-1; npr-1 mutants aggregated strongly (data not shown), and exhibited sensitized responses to high O₂ compared to npr-1 controls (Fig. 2.8D). A similar effect was seen on reversals; rege-1 enhanced the extent to which npr-1 animals ceased reversals after a switch to intermediate O₂ levels (Fig. 2.8E). We reasoned that if the MALT1 inhibition of Regnase1 is conserved in C. elegans, it might regulate other...
aspects of worm physiology. We therefore looked for traits reciprocally modulated by *malt-1* and *rege-1*. Whereas disrupting *malt-1* increased body size, *rege-1* mutants are smaller than normal (Fig. 2.8E). Our data suggest paracaspase activity contributes to IL-17 signaling. It will be interesting to discover whether cleavage of REGE-1 or other, novel substrates is required.

Discussion

MALT-1 is required for IL-17 signaling

Several lines of evidence suggest MALT-1 mediates the neuromodulatory effects of IL-17. (1) *malt-1* mutants respond to 21% O₂ shortly after being picked for assay, but are unable to sustain this escape behaviour. Of the mutants characterized to date, only those affecting IL-17 signaling exhibit this phenotype. (2) We previously showed that heat-shock induced expression of IL-17 can rescue IL-17 null phenotypes within ~6h of a heat-shock pulse. Heat-shock inducted *malt-1* expression similarly restores responses within 6h.

(3) Our unbiased *in vivo* biochemical analysis of MALT-1 suggests it forms a complex with ACT1 and IRAK homologs in neurons. We previously showed that ACTL-1 and PIK-1 are IL-17 signaling components (Chen et al., 2017). In mammals, ACT1 adaptors are engaged by IL-17R activation and provide a docking surface critical for signal transduction (Chang et al., 2006; Gaffen et al., 2014). PIK-1 is the only *C. elegans* member of the IRAK family of serine-threonine kinases, which like MALT1 perform both scaffolding and enzymatic functions during NF-κB signaling (Song et al., 2009).

A high-throughput yeast two-hybrid study suggests that the ACTL-1-PIK-1 interaction is direct (Li et al., 2004), but it is not clear which is a direct binding partner of MALT-1. As all three proteins contain death domains, which participate exclusively in homotypic interactions (Park et al., 2007). It is tempting to speculate that this complex might turn out to be the first known binding partner of a paracaspase death domain.
(4) The phenotype of malt-1; pik-1 double mutants is non-additive, consistent with MALT1 and IRAK functioning in the same pathway. (5) malt-1(null) phenotypes, like those of IL-17 signaling components, can be suppressed by overexpressing IkBζ/NFKI-1. (6) The transcriptional signature of malt-1 mutants overlaps substantially with that of ilc-17.1 and nfki-1. To explore this further, we aim to compare RNA-seq profiles after genetic perturbation of ilc-17.1, malt-1 and nfki-1 in the nervous system, and specifically in RMG.

MALT-1 protease activity functions to sustain O$_2$-responsiveness

While MALT1-ACT1-IRAK complexes likely represent a scaffolding function of MALT-1, we showed that MALT-1 protease activity is functionally essential. Therefore, as in the mammalian immune system, MALT-1 likely performs a dual function during signal transduction in the nervous system.

Whether RNA stability is regulated by *C. elegans* paracaspase activity remains an open question. In mammalian immunity, cleavage of Regnase-1 and Roquin by MALT1 prevents degradation of mRNAs important for T cell activation (Jeltsch et al., 2014; Uehata et al., 2013). By comparing exonic to intronic ratios among *C. elegans* mRNAs Habacher et al. (2016) identified a subset of transcripts that may be post-transcriptionally regulated by Regnase-1/rege-1. It would be interesting to quantify levels of these mRNAs in the absence of MALT-1.

The ACT1/MALT1/IRAK/IκBζ cascade is required in and beyond RMG

Although expressed broadly in the nervous system, the phenotypic effects of disrupting malt-1 were surprisingly specific. General locomotion patterns and sensory neuron responses were largely unaffected by malt-1 knockout. Instead, RMG output appears to be a major site of MALT-1 modulation. Ca$^{2+}$ responses in RMG, but not URX, neurons are dependent on malt-1. Our finding that the responsiveness of URX and BAG neurons to sensory stimuli is not dependent on
Increased mRNA stability

Microtubule disruption
JNK activation,

1)ț%GLVLQKLELWLRQ

T-cell adhesion
Integrin-mediated

1)ț%DFWLYDWLRQ

Figure 2.9 Malt1 signaling in C. elegans neurons and the mammalian immune system. (A) Activation of nematode IL-17Rs engages ACT1-like adaptors, which recruit IRAK and MALT1 homologs (Chen et al., 2017). The ACT1-IRAK-MALT1 signalosome serves a scaffolding function to activate IkBζ/NFKI-1 by an unknown mechanism. IkBζ, probably by cooperating with another transcriptional regulator, orchestrates changes in the RMG transcriptome that result in increased neuronal output. MALT1-mediated cleavage of an unknown substrate positively regulates IkBζ signaling. (B) Multiple pathways converge to regulate mammalian NF-κB-mediated immune responses. CBM signalosomes form in response to stimulation of GPCRs (non-immune cells) or ITAM-containing receptors (immune cells) such as BCRs or TCRs (Jaworski and Thome, 2015). MALT1, IRAKs and Act1 signal downstream of non-overlapping immune receptors, but all promote NF-κB mobilization via recruitment of the E3 ubiquitin ligase TRAF6 and subsequent activation of the IKK complex (Gaffen, 2009; Wu and Arron, 2003). IkBζ is an atypical member of the IκB family which functions in the nucleus to promote the transcription of a second-wave of NF-κB targets (Yamamoto et al., 2004). Although still poorly characterized, IkBζ appears to be particularly important in mediating the effects of IL-17 (Johansen et al., 2015). MALT1 paracaspase activity provides an additional layer of regulation to the NF-κB pathway by controlling protein degradation directly (RelB cleavage) or indirectly (through CYLD, CYLD, HOIL1), and by regulating mRNA stability (Regnase-1 and Roquin) (Hachmann et al., 2012).
malt-1 supports the hypothesis that its requirement is greatest in neurons modulated by IL-17 or other neuromodulatory cytokines.

Our cell-specific rescue experiments support a role for MALT-1 in neurons additional to RMG. Previous work in the lab reported that this is likely also the case for ACTL-1, PIK-1 and NFKI-1, which are also broadly expressed. It is possible that the ACT1/IRAK/MALT1/ΙκΒζ cascade mediates signaling from other, as yet unknown, receptors within the O₂ escape circuit. It will be interesting to discover under what conditions this pathway is required in other circuits.

Neuromodulation: a novel function for paracaspase

Paracaspases are highly conserved across bilaterian species, but the function responsible for this conservation is unknown. The absence of Rel homology domains in *C. elegans* (Sullivan et al., 2009) raises the possibility that an NF-κB-independent mechanism may contribute (Staal et al., 2016). Our study presents one potential explanation (Fig. 2.9). It will be important to investigate the role of paracaspases a) across diverse species, to determine whether IL-17/ΙκΒζ signaling is a theme or an exception, and b) in the mammalian brain, to establish whether its expression there reflects a function in cytokine-mediated neuromodulation.

Given its role in automimmunity and cancer, inhibiting MALT1 protease activity is considered a promising therapeutic avenue (Demeyer et al., 2016). In order to understand potential side-effects of paracaspase inhibitors it will be important to more fully characterize the functions of MALT1 outside the immune system. In this study I describe for the first time a physiological role for paracaspase in neurons.
Materials and Methods

C. elegans strains
A full list of strains is provided in the Appendix. Worms were maintained on nematode growth medium (NGM) at room temperature (20°C) unless stated otherwise, with OP50 E. coli as a food source.

Mapping mutant alleles
To localize causal variants we used Hawaiian SNP-based mapping in combination with WGS, following the methods of (Davis et al., 2005) and (Minevich et al., 2012). To facilitate phenotyping, we used the AX288 [lon-2(e678) npr-1(ad609)] strain for mapping; the npr-1 null allele confers stronger aggregation than the CB4856 Hawaiian strain typically used for mapping. AX288 was constructed by backcrossing lon-2 npr-1(ad609) 16 times into CB4856. For each mutant, 40-60 recombinant F2 animals were singled, and their progeny scored for aggregation. Genomic DNA from aggregating and non-aggregating F3 lines was pooled. SNP genotyping was performed either by Dra I restriction digest or WGS. Library preparation and HiSeq WGS were performed by the CRI Genomics Core Facility (Cancer Research UK Cambridge Institute). In collaboration with Geoff Nelson, I ran the Cloudmap pipeline on the public galaxy server to identify genomic intervals harbouring the causal mutation.

Protein alignment
Protein sequences were obtained from UniProt, and aligned using Clustal Omega. Percentage identity was viewed in Jalview using default settings. Domain annotations were obtained from InterPro and UniProt.

Molecular Biology
Gateway cloning
Most C. elegans expression constructs were generated using MultiSite Gateway Recombination (Invitrogen). The following Entry clones were a gift from Changchun Chen: rab-3p, npr-1p, flp-5p, gcy-32p, hsp-16.41p, gfp::unc-54utr,
SL2::mCherry, mCherry. C. elegans gDNA and cDNA was isolated using DNeasy Blood and Tissue (Qiagen) and RevertAid First Strand cDNA synthesis (Thermo Scientific) kits respectively. Phusion polymerase (NEB) was used to amplify malt-1 and its promoter. The following primers were used:
To amplify the malt-1 promoter (4kb): ggggACAACCTTTGTATAGAAAAGTTGcgc
cgggtgattcaacatattg and
ggggACTGCTTTTTGTACAAAACCTTGtctgaatggtctgctcaagaaattatattttgttttttaata
To amplify the malt-1 ORF (gDNA):
ggggACAAGTTTGTACAAAAAAGCAGGCTtactgacactttgtcttgtaatcaaaatgaccaatbtc
and ggggACCAGTTTTGTACAAAAAAGCAGGCTACTGTAGACCATTTGATTCTGTGATCAATATCAATACATTC

Gibson assembly
sgRNAs were cloned downstream of the rpr-1 promoter using Gibson Assembly (NEB) as described in (Chen et al., 2013). To target the F22D3.6 locus we expressed gatcaggtatccaccgtag. To target the rege-1 locus we expressed TAAAAATGGGTCTTCCTGGGTATTAGAGCTAGAA. The primers used to amplify these sequences for insertion into EcoRI-cut expression plasmids were
gcggtcagtgtGgatcaggtatccaccgtagGTTTTAGAGCTAGAA and
TTCTAGCTCTAAAAACctacggtgatacctgtacCacaaccttgacgcgc for malt-1, and
gcggtcagtgtGTAAAAATGGGTCTTCCTGGGGTTTAGAGCTAGAA and
TTCTAGCTCTAAAAACCCAGGAAAGACCCATTTTACacaaccttgacgcgc for rege-1.
For HEK293T cell expression malt-1 cDNA was cloned into a modified pcDNA4 vector, with EGFP inserted between Nar I and Xba I sites. To amplify malt-1 cDNA for Gibson Assembly into Not I- and Eco RV- cut plasmid we used
TAGTCCAGTG TGGTGGAAATTCTGCAGCCACCAtgaacacaaacttgccggaggtacctg and CCTGCCC
TCGATGGCCCTGTGCTGCTcttagacattgtcttgtatcaaatatgaccaatatacaacctcttc.
PIK-1-FLAG was a gift from Changchun Chen.

Site-directed mutagenesis

The Q5 Site-Directed Mutagenesis Kit (NEB) was used to create C734A mutant cDNA, with the following primers:

```
TCTTGATGTGCgcCAGAAAATTTGTTCCATATG
```

and

```
gcgcgtcaagttgtGCCTGACGACGAGTTGTGCTGTTTTAGAGCTAGAA
```

C. elegans Microinjection

Expression constructs were injected at 50 ng/µl, with the exception of CRISPR-Cas9 mixes that were prepared as previously described (Chen et al., 2013): 30ng ng/µl *eft-3::cas9*, 100 ng/µl sgRNA, 30ng ng/µl *cc::GFP*.

Behavioural assays

All behavioural assays were performed at room temperature (20°C).

Aggregation assays

Aggregation was assayed as previously described (de Bono and Bargmann, 1998). 60 young adults per assay were picked onto plates seeded with 100 µl OP50 48h previously. Animals were left undisturbed for 2h before scoring, which was performed blind to genotype. The % of animals in groups was calculated, with a group defined as 3 or more animals in contact with one another.

Locomotion assays

Aerotaxis was performed as previously described (Laurent et al., 2015; Fenk and de Bono, 2015) with minor modifications. 15-25 young adults per assay were picked onto plates seeded with 20 µl OP50 14-18h previously. [O₂] was controlled using a microfluidic system. Gas mixes, bubbled through H₂O, were delivered to a PDMS chamber at a rate of 1.4ml/min using a PHD 2000 Infusion syringe pump (Harvard Apparatus). Video recordings were taken at 2fps with
FlyCapture software, using a Point Grey Grasshopper camera mounted on a Leica MZ6 microscope. Speed and reversals were measured using Zentracker (https://github.com/wormtracker/zentracker). For measuring *ilc-17.1*-like phenotypes, worms were left undisturbed for 2h on assay plates prior to recording. In Fig. 2.1E, assays were performed using a manifold setup described in Chapter V.

Heat-shock
We observed leaky expression from the *hsp-16.41* promoter in animals grown at room temperature. For this reason animals were kept at 15˚C until the time of heatshock (late L4). To induce heat-shock, parafilm-wrapped plates were submerged in a 34˚C water bath for 30 min, and then recovered at room temperature until the time of assay.

Light microscopy
Worms were immobilized in 25mM sodium azide on 2% agarose pads. Samples were imaged by spinning disk confocal laser microscopy as previously described (Chen et al., 2014). Z stacks were acquired using an Andor Ixon EMCCD on a Nikon Eclipse Ti inverted microscope. Average intensity images were generated in Image J.

Calcium Imaging
Worms expressing cameleon (YC2.60 and YC3.60) were recorded using a Nikon AZ100 microscope fitted with ORCA-Flash4.0 digital cameras (Hamamatsu). Excitation light was provided from an Intensilight C-HGFI (Nikon), through a 438/24nm filter and an FF458DiO2 dichroic (Semrock). Emission light was split using a TwinCam dual camera adaptor (Cairn Research) and passed through CFP (483/32nm) and YFP (542/27) filters, and a DC/T510LPXRXTUf2 dichroic. We acquired movies using NIS-Elements, with exposure time set to 100ms.
Ca2+ imaging in freely moving animals

Single young adults were transferred to peptone-free agar plates spotted with 4 µl of concentrated OP50 food in M9 buffer. A 2x AZ-Plan Fluor objective lens (Nikon) was used with 2x zoom.

Ca2+ imaging in immobilized animals

4-8 young adults were transferred to peptone-free agar plates, and immobilized on a 2µl patch of concentrated OP50 in M9 buffer using Dermabond adhesive. Animals were immobilized so as to leave the nose exposed. The same 2x objective lens was used as above, with 4x zoom.

Immunoprecipitation from C. elegans

Lysis buffer was prepared with 50mM HEPES (pH 7.4), 1mM EGTA, 1mM MgCl\textsubscript{2}, 100 mM KCl, 10% glycerol, 0.05% Tergitol type-NP40(Sigma-Aldrich), 1mM DTT, 0.1M PMSF with 1 complete EDTA-free proteinase inhibitor cocktail tablet (Roche Applied Science) per 12ml (Zanin et al., 2011). Worms were washed twice in M9 and once in ice-cold lysis buffer, then pelleted at 2000-3000 rpm at 4°C. After snap-freezing in LN\textsubscript{2}, worm pellets were broken into small pieces in preparation for cryogenic grinding. Samples were pulverized using a Freezer/Mill (SPEX SamplePrep). Crude extract was clarified at 4°C for 10 min at 20,000g, and again for 20 min at 100,000g with a TLA-100 rotor (Beckman Coulter). For immunoprecipitation, samples were incubated with 30µl GFP-Trap (ChromoTek) for 4h at 4°C, then washed 6 times with 100mM/300mM KCl. Protein was eluted in SDS-sample buffer (90°C for 5min).

Immunoprecipitation from HEK293T cells

HEK293T cells were cultured in DMEM with high glucose (GlutaMax, Life Technologies) and 10% FBS. Cells were transfected with 1µl plasmid using transIT (Mirus) in Opti-MEM (Life Technologies). After 48h cells were washed twice in PBS and lysed in 1% CHAPS buffer (50 mM Hepes pH 7.4, 150 mM NaCl, 1% CHAPS, 1 mM PMSF with complete EDTA-free proteinase inhibitor
cocktail (Roche Applied Science). After clarification at 4°C for 30min (14,000 rpm) lysate was incubated with 10µl GFP-Trap (ChromoTek)/ANTI-FLAG M2 Affinity Gel (Sigma Aldrich) for 3h. Beads were washed four times with 150mM NaCl and 1% CHAPS, then eluted in SDS-sample buffer (90°C for 5min).

Immunoblotting

After SDS-PAGE using 4-12% Bis-Tris gels (Life Technologies), protein was transferred to nitrocellulose membrane (0.45 micrometers, 7 x 8.4 cm, Bio-Rad) using a Trans-Blot semi-dry transfer cell (Bio-Rad). Membranes were blocked with 5% milk for 1h, then incubated with primary and secondary antibodies (gifts from S Shao) for 1h each. Unbound antibody was washed away with PBST (3 washes, 5min each), and Amersham ECL reagent (GE Healthcare Life Sciences) used for detection.

Mass spectrometry

Samples were separated by SDS-PAGE, using 4-12% Bis-Tris gels (Life Technologies). Bands were excised after 30min staining in Colloidal Coomassie (Thermo Fisher Scientific), followed by 3h washing in H₂O. Proteolysis, Orbitrap-mass spectrometry and MASCOT database searching were performed by the LMB Biological Mass Spectrometry & Proteomics Laboratory.

RNA-seq

RNA preparation

10 Gravid adults were left to lay eggs for 2h on an OP50 lawn seeded 24h previously, before being picked away. 8-10 plates were used per replicate, and all genetics backgrounds were prepared in parallel. Once animals reached late L4 stage, they were washed twice in M9 and frozen in LN₂. 1ml Qiazol Lysis Regaent (Qiagen) and 300-400µl 0.7mm Zirconia beads (BioSpec) were added to worm pellets in preparation for mechanical disruption. Samples were disrupted with a TissueLyser (Qiagen), using 1min at maximum power followed by 1min on ice (repeated 4 times). RNA was extracted using the RNeasy Plus Universal Mini
Kit (Qiagen), following the manufacturer’s instructions with the exception that 1-Bromo-3-chloropropane (Sigma, B673) was used instead of chloroform.

Library preparation, sequencing and analysis
Libraries were prepared and sequenced by the CRI, using TruSeq stranded mRNA kit with polyA capture for mRNA (Illumina) and the HiSeq 4000 platform (Illumina, with 50bp read length, SE). Transcript quantification and differential expression was performed by Alastair Crisp; reads were aligned to the *C. elegans* genome using TopHat v2.1.0, and assembled using Cufflinks v2.2.1.

GO and pathway enrichment
GO enrichment was obtained from modMine (Smith et al., 2012), using default settings (biological process, Holm-Bonferroni test correction, $P < 0.05$). Pathway enrichment ($P < 0.05$) was also performed on modMine, using data from KEGG and Reactome, with Holm-Bonferroni test correction. Because little or no GO/pathway enrichment was found using *C. elegans* annotations, *Drosophila* orthologs were used instead. *C. elegans* gene descriptions were obtained from SimpleMine.

Contributions
C Chen isolated *db699* and *db897* after EMS-mutagenesis of *npr-1* and helped with mapping. G Nelson analysed WGS data to identify *malt-1* mutations, and helped find a workaround for CloudMap file size limits. JM Skehel and colleagues in the LMB Mass Spectrometry facility performed proteomics analysis. The CRI prepared DNA/RNA libraries and performed sequencing, and A Crisp analyzed RNA-seq data.

References

cytokines and their impact on neuronal excitability. Neuropharmacology 96, 70–82.

Control of neuronal Ca$^{2+}$ homeostasis by a CAMTA transcription factor
Introduction

The excitability of neurons and circuits is not fixed, but can vary with experience and animal state. For example, many sensory systems change the dynamic range of their responses according to their current environment, enabling them to encode a range of potential stimuli efficiently (Barlow, 1961; Rieke and Rudd, 2009). Maintaining the appropriate balance between excitation and inhibition is important for circuits to function properly. Deranged activity can have long-term destabilizing effects on neural networks. Insufficient activity levels can impede neuronal development and plasticity (Ganguly and Poo, 2013) whereas excitotoxic signaling can promote epileptic states and a host of neurological disorders (Bezprozvanny, 2009; Wolfart and Laker, 2015). Uncontrolled Ca\(^{2+}\) rises can damage mitochondria and trigger cell death (Kass and Orrenius, 1999). Failure to control intracellular Ca\(^{2+}\) accumulation is thought to be a critical step in the onset of progressive neurodegenerative diseases such as Alzheimer’s and spinocerebellar ataxias (Berridge, 2010; Kasumu and Bezprozvanny, 2010).

To prevent the establishment of these extreme states, homeostatic mechanisms keep neuronal activity close to an optimal setpoint (Davis, 2006). In response to sustained changes in activity, synaptic strength and membrane excitability are stabilized by negative feedback mechanisms (Temporal et al., 2014; Turrigiano, 2017; Turrigiano et al., 1998). Many of the mechanisms that compensate for perturbation of cell-intrinsic activity or synaptic transmission rely on Ca\(^{2+}\)-triggered transcriptional remodeling (Goold and Nicoll, 2010; Ibata et al., 2008) since most neuronal responses alter Ca\(^{2+}\) levels (Berridge et al., 2000).

One class of Ca\(^{2+}\)-responsive transcription factors are the CAMTAs (calmodulin-binding transcription activators) (Bouche, 2002). This family of transcription factors is characterized by a unique DNA binding domain (CG-1), an immunoglobulin-like fold similar to those found in non-specific DNA-binding/dimerization domains of other transcription factors (IPT/TIG), ankyrin repeats, and a calmodulin (CaM)-binding region that includes multiple IQ motifs.
(Fig. 3.1 G and H). Most CAMTAs also encode both nuclear localisation and export signals (NLS/NES) (Finkler et al., 2007).

In plants, CAMTAs provide a link between Ca\(^{2+}\)/CaM signaling and transcriptional responses to biotic/abiotic stress (Doherty et al., 2009; Du et al., 2009). Mammals encode two CAMTA proteins that are enriched in heart and brain tissue (Song et al., 2006). Loss of CAMTA1 in the nervous system induces degeneration of cerebellar Purkinje cells, ataxia onset, and defects in hippocampal-dependent memory formation (Bas-Orth et al., 2016; Long et al., 2014). A variety of neurological disorders, including intellectual disability, attention deficit hyperactivity disorder (ADHD), cerebellar ataxia, and reduced memory performance have been reported in individuals with lesions in the human CAMTA1 gene (Huentelman et al., 2007; Shinawi et al., 2014; Thevenon et al., 2012). Mechanistically however, little is known about the origin of these neurobehavioural phenotypes.

In a small number of specific contexts, the physiological role of CAMTAs has been well characterized. During cardiac growth, mammalian CAMTA2 is critical for signal-dependent transcriptional reprogramming (Song et al., 2006). Additionally, Drosophila CAMTA plays an important role in terminating photoreceptor activation by promoting rhodopsin degradation (Han et al., 2006). Otherwise however, the physiological functions of CAMTAs in the nervous system are poorly understood.

I show here that the C. elegans ortholog of CAMTA, CAMT-1, acts broadly in the nervous system to control neuronal excitability. A variety of behaviours are dependent on CAMT-1, and Ca\(^{2+}\) imaging in different neurons reveals that camt-1 mutants respond abnormally to sensory stimuli. By dissecting its role in acclimation to ambient O\(_2\) conditions, we propose that CAMT-1 regulates multiple adaptive drives within the same neural circuit.
Results

CAMT-1 functions broadly to control C. elegans behaviour

Changes in ambient O$_2$ conditions reset the behavioural state of aggregating C. elegans strains feeding on a bacterial food lawn (Laurent et al., 2015). npr-1 animals exhibit behavioural quiescence in 7% O$_2$ but immediate and sustained arousal in 21% O$_2$. A high-throughput effort quantified the behavioural fingerprint of >500 whole-genome sequenced mutants unable to orchestrate these behavioural states appropriately (Changchun Chen, Geoff Nelson, personal communication; Chen et al., 2017). Clustering analysis performed by Zoltan Soltesz grouped these fingerprints by similarity (Frey and Dueck, 2007).

Two mutant strains in one of the phenotypic clusters harboured premature stop codons in camt-1, the sole C. elegans CAMTA (Fig. 3.1A). In addition to being defective in their response to 21% O$_2$, these mutants, called db894 and db973, were hyperactive in 7% O$_2$. Additional camt-1 KO lines recapitulated these specific defects (Fig. 3.1B and 3.9C), supporting the hypothesis that loss of CAMTA impairs responses to ambient O$_2$. A WT copy of the camt-1 genomic locus conferred to mutants enhanced responsiveness in 21% O$_2$, and rescued their hyperactive speed in 7% O$_2$ (Fig. 3.1C). These results suggest that CAMT-1 is required for C. elegans to respond appropriately to different O$_2$ levels.

I asked whether CAMT-1 is also required for behavioural responses to cues other than O$_2$. C. elegans is attracted towards a range of salts and volatile compounds (Bargmann et al., 1993; Ward, 1973). Chemotaxis towards benzaldehyde, diacetyl and NaCl was reduced in camt-1 mutants (Fig. 3.1D). I next asked if camt-1 was also required for aversive behaviours, such as avoidance of CO$_2$. In response to a rise in CO$_2$, WT N2 worms transiently perform omega turns, Ω-shaped body bends generated by an 180° reversal serve to orientate the animal away from the stimulus (Bretscher et al., 2008). camt-1 mutants exhibited abnormally high levels of omega-turns without a CO$_2$ stimulus (Fig. 3.1E). N2 animals also exhibit an OFF response upon removal of a CO$_2$ stimulus, during
Figure 3.1 camt-1 mutants exhibit several behavioural defects. (A) Speed of EMS-derived mutant strains at 7% O₂, 21% O₂, 1% O₂ and 3% CO₂ (C Chen). Mutants were iteratively clustered by phenotypic
which they transiently increase their speed (Fenk and de Bono, 2015). Termination of this OFF response was delayed in camt-1 mutants, suggesting that speed responses to cues other than O₂ are also modulated by camt-1.

In humans, CAMTA transcription factors are expressed in many brain regions (Huentelman et al., 2007). We generated a reporter to map the expression pattern of CAMT-1 in C. elegans. To retain as much endogenous regulatory information as possible, we recombined GFP immediately prior to the camt-1 stop codon on a fosmid including >10 kb of flanking sequences 5’ of the initiation codon and 3’ of the stop codon for camt-1. This reporter was functional (Fig. 3.1C) and was expressed broadly and specifically in the nervous system (Fig. 3.2A). We observed CAMT-1 expression in dye-filled sensory neurons (Fig. 3.2B), motor neurons of the ventral cord (Fig. 3.2A), the URX O₂ sensing neurons and the RMG hub interneurons (Fig. 3.2C and D), and most cholinergic neurons (Fig. 3.2E).

similarity using affinity propagation (Z Soltesz). The phenotypic group shown contains two strains bearing lesions in camt-1 (G Nelson). (B) camt-1 mutants exhibit altered locomotory responses to 21% O₂ and hyperactive movement at 7% O₂. (C) A WT copy of the camt-1 genomic locus rescues the speed defects of camt-1 mutants. (D - F) camt-1 mutants show chemotaxis defects (D), an increased frequency of omega turns both in the presence and absence of a CO₂ stimulus (E), and a prolonged locomotory OFF response after removal of CO₂ (F). For chemotaxis, average and SEM are shown, using ANOVA with Tukey’s post hoc HSD, N ≥ 4, * = P < 0.05, ** = P < 0.01, *** = P < 0.001. For speed/omega turns, I plot average (line) and SEM (shaded regions), n ≥ 25 animals, N ≥ 3. ** = P < 0.01, **** = P < 0.0001, Mann-Whitney U test. Black bars indicate time points used for statistical tests. (E) and (F) were performed in 7% O₂. (G and H) Sequence alignment (G) and domain organization (H) of CAMTA proteins, highlighting the conserved CG-1 DNA binding domain (orange), the IPT/TIG Domain (black), Ankyrin repeats (purple), putative CaM-binding domain (yellow) and IQ region (green). Black arrowheads point to CG-1 histidine (H190 in C. elegans, see Fig. 3.9A), light grey arrowheads point to IQ1 isoleucine (11803 in Drosophila, see (Han et al., 2006)), dark grey arrowheads point to CaM-binding domain lysine (K907 in Arabidopsis, see (Du et al., 2009)), and red arrowheads point to the site of insertion of a premature stop codon in db1214 (see below). Residue colour intensity indicates % identity. Domain predictions are based on Uniprot and Calmodulin Target Database (http://calcium.uhnres.utoronto.ca/ctdb/ctdb/home.html).
Figure 3.2 CAMT-1 is expressed widely and specifically in the nervous system. C-terminally GFP-tagged CAMT-1, driven from its endogenous regulatory sequences, colocalizes with (A) a rab-3p::mCherry reporter expressed in most neurons, including motor neurons of the ventral cord (white arrowhead), (B) Dil-filled amphid neurons, (C) URX O₂-sensors visualized using gcy-32p::mCherry, (D) RMG visualized using flip-5p::mCherry and (E) cholinergic neurons visualized using a cho-1p::mCherry reporter.
Calcium-dependent changes in gene expression are known to be important for both development and function of the nervous system (West et al., 2002). To elucidate if CAMT-1 activity was required during development, we expressed \textit{camt-1} cDNA from a heatshock-inducible promoter. Without heat-shock, this induced expression of CAMT-1 in L4 animals rescues \textit{camt-1} O\textsubscript{2}-evoked responses. Plotted are average speed (line) and SEM (shaded regions), n ≥ 50 animals, N = 4 assays. **** = P < 0.0001, Mann-Whitney U test.

transgene did not rescue the hyperactivity phenotype of \textit{camt-1} mutants (Fig. 3.3A). However, inducing \textit{camt-1} expression specifically in late L4s/young adults was sufficient to rescue the phenotype, indicating that CAMT-1 is not required developmentally (Fig. 3.3B).

We limited \textit{camt-1} cDNA expression to different subsets of neurons to find out where it is required to promote aerotaxis. As expected, pan-neuronal expression rescued mutant phenotypes (Fig. 3.4C). Interestingly neuronal \textit{camt-1} overexpression reduced speed at 7% O\textsubscript{2} even beyond \textit{npr-1} levels, suggesting that speed is correlated with CAMT-1 levels. Restricting expression to O\textsubscript{2} sensory neurons or RMG did not, however, substantially restore behaviour (Fig. 3.4A and B).

The \textit{camt-1} locus is predicted to encode 2 alternatively spliced CAMTA proteins. Our fosmid reporter and rescue experiments above specifically tagged or
expressed the longer a isoform. We found that rescue conferred by the shorter b isoform was comparable to that obtained by the a isoform (Fig. 3.4D). It is therefore unclear if there are functional differences between the two isoforms, although it is possible that they are differentially expressed.

CAMT-1 dampens sensory neuron signaling

To test whether disrupting *camt-1* altered sensory responses we recorded stimulus-evoked Ca\(^{2+}\) levels in O\(_2\)- and CO\(_2\)-sensing neurons with Yellow Cameleon (YC2.60/3.60). URX activity tracks environmental O\(_2\) levels, and tonic signaling from URX to RMG drives high locomotory activity at 21% O\(_2\) (Busch et al., 2012). AFD and BAG neurons are CO\(_2\) sensors, and BAG drives omega turns when CO\(_2\) levels rise (Bretschcher et al., 2011; Fenk et al., 2015). We found that Ca\(^{2+}\) levels in URX, AFD and BAG were significantly elevated in *camt-1* mutants

![Figure 3.4 CAMT-1 likely acts in multiple neurons.](image) Defective responses of *camt-1* mutants to 21% O\(_2\) are only partially rescued by expression of the longest CAMT-1 isoform (CAMT-1a) in O\(_2\)-sensing neurons (A), or RMG (B). (C) Pan-neuronal expression of CAMT-1a restores responsiveness to 21% O\(_2\) and low speed in 7% O\(_2\). (D) Pan-neuronal expression of the shorter CAMT-1b isoform also rescues the mutant's speed defect in 21% O\(_2\). Average speed (line) and SEM (shaded regions) are plotted, n ≥ 59 animals, N ≥ 4 assays. ** = P < 0.01, **** = P < 0.0001, Mann-Whitney U test.
across all O\textsubscript{2}/CO\textsubscript{2} conditions, suggesting that \textit{camt-1} dampens the excitability of these sensory neurons (Fig. 3.5A, C, E). Remarkably, we observed the converse phenotype, dramatically reduced Ca2+ levels, when we overexpressed \textit{camt-1} cDNA specifically in WT O\textsubscript{2} sensors or in BAG neurons (Fig. 3.5B, D).

To express YC2.60 in O\textsubscript{2} sensors we used the \textit{gcy-37} promoter (Fig. 3.5A and B). \textit{gcy-37} encodes one of 5 atypical soluble guanylate cyclases expressed in the AQR, PQR and URX neurons, at least two of which are molecular O\textsubscript{2} sensors.

We investigated whether CAMT-1 altered expression from the \textit{gcy-37} promoter,

\textbf{Figure 3.5 CAMT-1 negatively regulates sensory neuron activity.} The URX O\textsubscript{2}-sensing neurons and the BAG and AFD CO\textsubscript{2} sensors have enhanced Ca2+ levels in \textit{camt-1} mutants across a range of stimulus intensities (A, C, E). Conversely, overexpressing \textit{camt-1} cDNA in O\textsubscript{2} sensing or BAG neurons strongly reduces Ca2+ levels (B and D). YFP/CFP ratios in URX were reported by YC2.60 driven from the \textit{gcy-32} promoter (A and B), in BAG by YC3.60 driven from the \textit{flp-17} promoter (C and D) and in AFD by YC3.60 driven from the \textit{gcy-8} promoter (E). (F) Quantification of GFP expression driven from the \textit{gcy-37} promoter suggests that YC2.60 expression levels are not significantly affected by disrupting \textit{camt-1}, but are reduced when CAMT-1 is overexpressed. For speed and omega turns, I plot the average (line) and SEM (shaded regions). (A) n \geq 15. (B) n \geq 17. (C) n \geq 18. (D) n \geq 20. (E) n \geq 15. (F) n \geq 23. ** = P < 0.01, *** = P < 0.001, **** = P < 0.0001, Mann-Whitney \textit{U} test (YFP/CFP ratios) or ANOVA with Tukey's post hoc HSD (GFP quantification). Black bars indicate timepoints used for statistical test.
by quantifying the expression of a \textit{gcy-37p::GFP} transgene in WT, \textit{camt-1} and CAMT-1 overexpression strains. We found that GFP levels were reduced by CAMT-1 overexpression, but unaltered by loss of CAMT-1 (Fig. 3.5F). Although YC2.60 is a ratiometric sensor, we cannot exclude the possibility that its reduced expression in animals overexpressing CAMT-1 contributes to the reduced baseline YFP/CFP ratio. An alternative hypothesis is that CAMT-1 overexpression inhibits expression not only of \textit{gcy-37}, but also of \textit{gcy-35} and \textit{gcy-36}, which are required for O_2-evoked Ca$^{2+}$ responses in URX.

CAMT-1 promotes RMG interneuron responsiveness

RMG hub interneurons integrate inputs from multiple sensory stimuli, including food, pheromones and O_2, and drive the change in locomotory state associated with a switch from 7% to 21% O_2 (Laurent et al., 2015; Macosko et al., 2009). The O_2-evoked responses in RMG depend on URX: URX ablation abolishes these responses. Unexpectedly, we found that at 7% O_2, baseline Ca$^{2+}$ in RMG was higher in \textit{camt-1} animals than controls, whereas Ca$^{2+}$ responses to 21% O_2 were strongly reduced in \textit{camt-1} mutants, despite CAMT-1 loss dramatically increasing URX Ca$^{2+}$ responses (Fig. 3.6A). Since these observations were made in immobilized animals, we confirmed them by imaging freely moving animals. RMG responses were elevated in freely moving \textit{camt-1} mutants in 7% O_2, but the amplitude of response to 21% O_2 was decreased (Fig. 3.6B and C). Whether the RMG phenotype reflects a homeostatic response to hyperactivation by URX, or altered input into RMG from other neurons is unclear. However, our analysis of URX and RMG physiology is consistent with \textit{camt-1} mutants showing reduced locomotory activity at 21% O_2 due to defective RMG responsiveness.

CAMT-1 regulates experience-dependent plasticity

The URX-RMG circuit acclimates to previous O_2 experience. Long-term exposure to 21% O_2 enhances URX and RMG responsiveness to subsequent 21% O_2 input (Fenk and de Bono, 2017), while cultivation in 7% O_2 shifts the dynamic range of URX towards lower O_2 concentrations (Emmanuel Busch, unpubl.).
The increased sensitivity of camt-1 mutants to low O₂ concentrations suggested CAMT-1 may regulate experience-dependent plasticity in the O₂ circuit. Consistent with this, we found that camt-1 mutants grown at 7% O₂ showed increased tonic Ca²⁺ levels in both URX and RMG neurons when animals were kept at 7% O₂, whereas npr-1 animals showed no significant shift. A simple interpretation is that CAMT-1 counteracts an increase in URX excitability following long periods of low activity. By contrast, camt-1 mutants acclimated to 7% O₂ showed a decrease in tonic Ca²⁺ levels at 21% O₂ (Fig. 3.7A and B). Thus, while CAMT-1 helps set the excitability of the O₂ circuit, its effects are complex.

The decreased URX response to 21% O₂ in animals cultivated at 7% O₂ might reflect negative feedback loops that prevent excitotoxicity in this neuron. More specifically, transiently exposing camt-1 animals cultivated in 7% O₂ to room air while preparing them for imaging could reduce URX excitability relative to WT. To test this, we kept animals reared at 7% O₂ inside an air-tight chamber during assay setup. Under these conditions we found that the amplitude of the URX response to 21% O₂ was similar in npr-1 and npr-1; camt-1 animals (Fig. 3.7C).
To explore whether CAMT-1 altered the dynamic range of URX, we plotted the relative change in the YFP/CFP ratio, instead of the ratio itself. In npr-1 animals URX is most responsive to O₂ concentrations around 13% and shows little or no response to lower concentrations (Oda et al., 2016). We found that loss of CAMT-1 shifted the dynamic range of URX towards lower O₂ concentrations (Fig. 3.7D and E). Thus, as well as being a negative regulator of URX Ca²⁺ signaling,

Figure 3.7 CAMT-1 controls acclimation to previous O₂ conditions. In camt-1 mutants reared in 7% O₂, Ca²⁺ levels in URX and RMG are elevated, but responsiveness to 21% O₂ is decreased (A and B). Preventing any exposure to 21% O₂ before recording eliminates the difference in response amplitude between npr-1 and npr-1; camt-1, but does not eliminate enhanced activity at 7% O₂ (C). camt-1 shifts the dynamic range of URX towards lower O₂ levels in worms reared in 21% O₂, but has little effect on the dynamic range of animals reared in 7% O₂ (D-F). (D) % change in YFP/CFP ratio relative to the average ratio at 21% O₂. (E and F) Maximum % change in YFP/CFP during each stimulus. Plotted are the average (represented by the lines in A-D and coloured bars in E and F) and SEM (represented by the shaded regions in A-E and error bars in F and G). Data from Fig. 3.5A is replotted in D-F to show relative rather than absolute change. (A) n ≥ 17. (B) n ≥ 14. (C) n ≥ 11. (D) n ≥ 10. (E) n ≥ 15. (F) n ≥ 11. * = P < 0.05, ** = P < 0.01, *** = P < 0.001, Mann-Whitney U test. Black bars indicate timepoints used for statistical test.
CAMTA activity keeps URX tuned to O$_2$ concentrations approaching 21% in animals acclimated to 21% O$_2$. We found that the shape of the URX dose-response curve in animals grown at 7% O$_2$ was not altered by camt-1 (Fig. 3.7D and F). Therefore, CAMT-1 is required to shift the dynamic range of URX from low to high O$_2$ concentrations during adaptation to 21% O$_2$.

To complement our imaging data, we compared behavioural responses to O$_2$ in animals acclimated to 21% and 7% O$_2$. npr-1 animals reared in 7% O$_2$ exhibited enhanced speed in 21% O$_2$ and increased basal speed when returned to 7% O$_2$. Loss of CAMT-1 dramatically enhanced elevated speed in 7% O$_2$ (Fig. 3.8A). This finding is consistent with a model in which the homeostatic drive of the 21% O$_2$-escape circuit to become more excitable during long-term sensory deprivation is restricted by CAMT-1.

Together, our data suggest that multiple plastic features of the 21% O$_2$-escape circuit are controlled by CAMT-1. As well as tuning the dynamic range of URX close to 21% O$_2$, CAMT-1 counteracts the homeostatic upregulation of the excitability/output of unknown downstream neurons.

Hyperactive URX Ca$^{2+}$ signaling in camt-1 mutants is driven by sensory transduction but not synaptic input

To examine if altered URX function in camt-1 mutants predominantly reflected altered sensory responses or altered synaptic input, I tested the effect of mutations that disrupt these processes. O$_2$ sensation in URX requires a pair of soluble guanylate cyclases, GCY-35 and GCY-36. I made a camt-1; gcy-36 double mutant to test the effect on URX of disrupting camt-1 when O$_2$ sensing is defective. I found that disrupting camt-1 did not enhance the speed of gcy-36 animals, suggesting that the effect of CAMT-1 depends on sensory transduction (Fig. 3.8A and B). Similarly, camt-1 did not affect URX activity in gcy-36 null animals reared at 7% O$_2$, indicating that in the absence of sensory input CAMT-1 does not increase neuronal activity (Fig. 3.8C). We note that in animals
acclimated to 21%, CAMT-1 loss was sufficient to increase Ca\(^{2+}\) signaling in URX. However, we attribute this to residual O\(_2\) sensation after gcy-36 knockout, given that the speed and URX activity of camt-1;gcy-36 animals was altered by previous O\(_2\) experience. A requirement for sensory input supports a model in which CAMT-1 negatively regulates the potentiation of URX responses.

![Figure 3.8](image)

Figure 3.8 camt-1 induced URX hyperactivity is dependent on O\(_2\) sensation but not synaptic communication.

(A) Disrupting camt-1 impairs speed responses to 21% O\(_2\) and induces locomotory hyperactivity at 7% O\(_2\) to an even greater extent in animals reared in 7% O\(_2\). (B-C) camt-1 phenotypes are dependent on GCY-36. All assays were performed in parallel. (B) camt-1 loss does not induce hyperactive locomotion in gcy-36 mutants (n ≥ 40 animals, N ≥ 3 assays). (C) In the absence of sensory input, URX does not signal hyperactively in camt-1 mutants (n ≥ 17). Although camt-1 loss increases Ca\(^{2+}\) levels in gcy-36 mutants reared in 21% O\(_2\), it does not do so in gcy-36 mutants reared at 7% O\(_2\). This difference indicates that gcy-36 mutants retain some O\(_2\)-sensing capacity. (D) unc-64 does not block elevated baseline Ca\(^{2+}\) levels in URX induced by camt-1 loss (n ≥ 37). For speed and YFP/CFP ratios, average (line) and SEM (shaded regions) are plotted. Black bars indicate timepoints used for statistical tests. ** = P < 0.01, **** = P < 0.0001, Mann-Whitney U test.

As camt-1 is expressed in many neurons, URX hyperactivity may be secondary to dysfunction elsewhere. To reduce synaptic and dense core vesicle input to
URX we used an *unc-64* (syntaxin) mutant. We found that *camt-1*-induced hyperactivity in URX was not abolished by *unc-64* mutation (Fig. 3.8D). This finding is consistent with *camt-1* having a cell autonomous function in URX. However, as the *unc-64(e246)* allele is a hypomorph (null mutants are dead) we cannot rule out a role for synaptic transmission (Saifee et al., 1998). In addition, gap junction communication from RMG is not affected by *unc-64* and may drive augmented URX signaling.

Differing requirements for DNA- and CaM-binding domains of CAMT-1

In our aggregation screen we isolated a point mutation in *camt-1* (H190P) that lies in the CG-1 DNA-binding domain. Histidine 190 is absolutely conserved among CAMTA proteins from plant to human (Fig. 3.1G). H190P cDNA did not rescue the *camt-1* phenotype, indicating that this residue is necessary for CAMTA activity (Fig. 3.9A).

The requirement of H190 suggests that the DNA-binding activity of CAMT-1 is important for its function. To test whether CAMT-1 functions in the nucleus, I have generated strains to investigate (i) the sub-cellular localization of CAMT-1 protein (Fig. 3.9D) and (ii) its functionality when restricted to the nucleus (Fig. 3.9E).

In plants and flies, the function of CAMTA proteins depends on its CaM-binding ability (Du et al., 2009; Han et al., 2006). Mapping of the CaM-binding region in *Drosophila* and *Arabidopsis* identified an isoleucine within the first IQ motif (IQ1) necessary for photoreceptor deactivation, and a single lysine residue within the CaM-binding domain necessary for growth and disease resistance respectively. Both residues are conserved in *C. elegans* (Fig. 3.1G). To test the requirement of IQ1 in *C. elegans* I mutated the analogous isoleucine residue in CAMT-1. I found that I962N mutant *camt-1* cDNA rescued behavioural responsiveness at least as well as WT cDNA (Fig. 3.9B). Although I have not yet tested the requirement of the conserved lysine within the CaM-binding domain, I observed that deleting
183 amino acids, encompassing the entire CaM-binding region, did not reduce rescuing capacity (data not shown). One interpretation of this is that CaM-binding is not essential for CAMT-1 function. However overexpressing a functional DNA-binding region may mask any regulatory requirement for CaM-binding. Given that camt-1 overexpression has a strong effect in Ca2+ imaging assays, single-copy experiments will be a more informative test.

I generated lesions in the predicted CaM-binding region of the endogenous camt-1 locus by CRISPR-Cas9. db1214 encodes a premature stop codon close to the C terminus of camt-1 (Fig. 3.1G and H), and reduced responsiveness to 21\% O\textsubscript{2} (Fig. 3.9C). Besides the IQ region, this allele is predicted to remove a putative NLS, which is also missing from the CAMT-1b isoform and therefore seems not to be essential for function (Fig. 3.4D). Any conclusions over the role of CAMTA CaM-binding however, will require more precise disruptions of the endogenous locus.

A candidate approach to elucidate cellular pathways dysregulated by camt-1

Cell-intrinsic disruption of membrane conductance or of endoplasmic reticulum (ER) stores might contribute to perturbations in Ca2+ homeostasis. We searched our collection of non-aggregating strains for mutations that affect ion channels or ER Ca2+ flux. Initially I focused on genes with an enrichment of upstream CGCG motifs, which could plausibly be direct transcriptional targets of CAMTA.

A missense mutation in the RCK domain of the BK channel SLO-1 disrupted behavioural responses to 21\% O\textsubscript{2} (Isabel Beets, personal communication). BK channels provide an important route of repolarizing current in neurons, so we wondered if slo-1 mutants phenocopy camt-1 (Elkins et al., 1986; Salkoff et al., 2006). URX responses to 21\% O\textsubscript{2} in slo-1 mutants were at least as strong as WT, but basal Ca2+ levels at 7\% were unchanged (Fig. 3.10D). Additionally,
although slo-1 reduced speed in 21% O\(_2\), activity at 7% O\(_2\) was normal (Fig. 3.10 C).

![Figure 3.9 Mutational domain analysis and localization of CAMT-1.](image)

(A) cDNA encoding CAMT-1(H190P) does not rescue mutant speed defects in 7% or 21% O\(_2\), n ≥ 44 animals, N = 4 assays. (B) IQ1 disruption using cDNA encoding CAMT-1(I962N) restores behaviour close to WT levels, n ≥ 37 animals, N ≥ 3 assays. (C) Deletion of 117 amino acids from the C terminus of CAMT-1, encoded by db1214, disrupts appropriate control of behavioural state after cultivation in 7% and 21% O\(_2\), n ≥ 34 animals, N = 4 assays. **** = P < 0.0001, Mann-Whitney U test. (D) in vivo co-expression of CAMT-1::GFP and nuclear-localized neuronal RFP. (E) in vivo co-expression of nuclear-localized CAMT-1::GFP and nuclear-localized neuronal RFP.

I also identified a premature stop codon in T06D8.9, an uncharacterized gene homologous to store operated calcium entry regulatory factor (SARAF). SARAF is an ER membrane protein that is enriched in the immune and nervous systems.
and maintains intracellular Ca\(^{2+}\) homeostasis during store operated calcium entry (SOCE) (Palty et al., 2012). The causality of the \textit{T06D8.9} mutation had not been tested, so I generated CRISPR-Cas9 induced breaks in the \textit{T06D8.9} locus. I found that SARAF loss did not have any noticeable effect on behavioural responses to 21% O\(_2\) (Fig. 3.10B). Interestingly, \textit{T06D8.9} upstream sequence drove expression only in two unidentified neurons in the head (Fig. 3.10A).

As SLO-1 or SARAF dyfunction were unlikely to explain hyperactive URX signaling in \textit{camt-1} mutants, direct investigation of the contribution of cell membrane/ER currents will require pharmacological manipulation or localized indicators.

RMG responsiveness to 21% O\(_2\) is promoted by IL-17 signaling (Chen et al., 2017). I explored whether transcriptional changes driven by IL-17 might be dependent on or modulated by CAMT-1. An \(\text{IxB}\zeta\)-like protein, NFKI-1, mediates the effects of IL-17 in RMG: in \textit{nfki-1} mutants, RMG responses to 21% O\(_2\) are reduced compared to control. Unexpectedly, overexpressing CAMT-1 restored aggregation behaviour to \textit{nfki-1} mutants, increased their locomotory activity at 21% O\(_2\) (Fig. 3.10E and F), and also rescued their enhanced escape of CO\(_2\) (Fig. 3.10G). I am now using RNA-seq to compare the transcriptional profiles of \textit{camt-1} and \textit{nfki-1} mutants, to provide more direct insight into the relationship between CAMTA-dependent transcription and neuronal gene expression.

Transcriptome-wide analysis of CAMT-1 function

To explore the relationship between CAMTA activity and gene expression, in collaboration with Alastair Crisp, we transcriptionally profiled \textit{camt-1} mutant and CAMT-1 overexpression strains. We found that a large number of genes were dysregulated in these conditions (Fig. 3.11A). Interestingly, many more genes were positively regulated by CAMT-1 than negatively regulated. We defined genes that were consistently positively regulated by CAMT-1 as those whose expression was both decreased by its absence, and increased by its
overexpression (Fig. 3.11A). Among this group, molecules involved in neurotransmitter and ion transport were significantly over-represented, consistent with a role for CAMT-1 in controlling neuronal activity (Fig. 3.11B).

Figure 3.10 CAMT-1 overexpression overrides defects in IκBζ signaling. (A) GFP driven by 1.7Kb of T06D8.9 is expressed in the head. (B) Two independent CRISPR-Cas9 induced cuts in the T06D8.9 locus (both encoding frameshifts) respond well to 21% O₂, n ≥ 34 animals, N = 4 assays. Missense (db601) and nonsense (js379) mutations in slo-1 reduce speed responses to 21% O₂, n ≥ 51 animals, N ≥ 4 assays. (D) URX Ca²⁺ responses in slo-1(js379) mutants are at least as large as WT in response to 21% O₂. (E-G) 21% aggregation (E, N ≥ 4), O₂-avoidance (F, n ≥ 105 animals, N = 4 assays), and CO₂-avoidance (G, n ≥ 66 animals, N ≥ 4 assays) phenotypes of nfki-1 mutants are significantly rescued by overexpression of a fosmid encoding CAMT-1. **** = P < 0.0001, Mann-Whitney U test. *** = P < 0.001, ANOVA with Tukey’s HSD.

Discussion

I show that the sole C. elegans ortholog of CAMTA transcription factors is expressed specifically and widely in the nervous system. My data suggest that CAMT-1 regulates the excitability of multiple neurons. By modulating the dynamic range of O₂ sensors and the amplitude of downstream responses, CAMT-1
Figure 3.11 Transcriptional remodeling by CAMT-1. (A) The total number of genes that are dysregulated in \textit{camt-1} mutant or CAMT-1 pan-neuronal overexpression (O.E.) conditions are shown. All changes shown are two-fold or greater. (B) Gene ontology (GO) terms and pathways significantly overrepresented among the 457 genes (underlined in A) that are down regulated in \textit{camt-1} mutants and upregulated in CAMT-1 overexpression.

maintains Ca2+ balance within a neural circuit that governs navigation in O\textsubscript{2} gradients.

CAMT-1 functions broadly in the adult nervous system

What role might a broadly expressed transcription factor play in the nervous system? Our data suggest that CAMT-1 is not required to specify neural cell fate. I did not observe overt defects in \textit{C. elegans} neuroanatomy using dye filling or pan-neuronal fluorescent reporters, and the promoters we used to drive Ca2+ indicators, which also serve as cell fate markers, were expressed appropriately. Moreover, expressing CAMT-1 selectively in adults, using the heat-shock promoter, could rescue at least some \textit{camt-1} mutant defects. These data suggest CAMT-1 is more likely to regulate neuronal function than development.

\textit{camt-1} mutants have defective behavioural responses to O\textsubscript{2}, CO\textsubscript{2}, and gustatory and olfactory cues. Where I have carried out Ca2+ imaging studies, I identified defects at the sensory neuron level: The URX, BAG and AFD O\textsubscript{2} and/or CO\textsubscript{2} sensors signalled hyperactively in \textit{camt-1} mutants. Together our behavioural and
physiological data suggest that CAMT-1 is required broadly in the nervous system.

Drosophila and mouse mutants in CAMTA are viable, suggesting they have a largely intact nervous system (Han et al., 2006; Long et al., 2014). Studies of these mutants have focused on anatomically localized neuronal functions of CAMTAs. *Drosophila* CAMTA is required to terminate the light response in photoreceptors, but may also be important in other neurons (Eddison et al., 2012). Mammalian CAMTAs have been implicated only in the function of cerebellar and hippocampal cells (Bas-Orth et al., 2016; Long et al., 2014), but appear to be expressed widely in the brain (Huentelman et al., 2007). A prediction of our findings in that in *C. elegans* the function of many neurons is modified by CAMT-1. It will be interesting to discover if the same is true in other organisms.

CAMTA maintains balance within the URX-RMG circuit.

At 21% O$_2$, RMG activity is driven by tonic signaling from URX (Busch et al., 2012; Laurent et al., 2015). Surprisingly however, in *camt-1* mutants the larger Ca$^{2+}$ response evoked in URX by 21% O$_2$ is associated with a substantially reduced response in RMG.

URX signals hyperactively in *camt-1* mutants even when synaptic input is disrupted, consistent with a cell-autonomous defect. The *unc-64* hypomorph reduces synaptic and peptidergic transmission but leaves gap-junction communication unaffected. URX forms gap-junctions only with RMG (wormweb.org), suggesting that CAMT-1 functions in either URX or RMG (or a neuron connected by gap-junctions to RMG). This conclusion carries the caveat that some synaptic transmission likely persists in the hypomorphic *unc-64* mutants we studied. My results lead to three models, although I cannot rule out the possibility that URX and RMG abnormalities are secondary to dysfunction elsewhere.
1) CAMT-1 functions cell-autonomously in URX to inhibit its responsiveness to elevated O$_2$ levels; in camt-1 mutants, hyperactive signaling from URX leads to decreased RMG excitability (Fig. 3.12A). On the one hand this might seem surprising, as within physiologic ranges RMG responses are potentiated by sustained activity in URX (Fenk and de Bono, 2017). However, in other systems, overexcitation is known to engage mechanisms that depress synaptic strength (by reducing pre-synaptic release or downregulating post-synaptic receptors) (De Gois et al., 2005; Evers et al., 2010; Hu et al., 2010) or reducing the intrinsic excitability of post-synaptic targets. Above a certain threshold of sensory signaling, inhibition of interneuron responses could be advantageous for preventing runaway potentiation and maintaining behavioural control. The thermotaxis circuit in C. elegans is regulated by a similar principle. Moderate stimulation of thermosensory AFD neurons drives activation of AIY, but strong Ca$^{2+}$ increases in AFD inhibit AIY responses (Kuhara et al., 2011).

2) CAMT-1 functions cell-autonomously in RMG to promote responsiveness to input from URX; the primary result of camt-1 loss is chronic inactivity in RMG, which drives URX hypersensitivity (Fig. 3.12B). RMG signaling promotes URX activity in 21% O$_2$, suggesting the existence of a positive feedback loop (Laurent et al., 2015). To maintain excitation-inhibition balance, it is common for brain circuits to incorporate both positive and negative feedback control mechanisms, the relative influence of which shift depending on activity state (Dehorter et al., 2017; McCormick et al., 2015). During odor adaptation in C. elegans, negative peptidergic feedback from AIA interneurons controls AWC sensory neuron signaling (Chalasani et al., 2010). This model predicts that long-term blockade of RMG activity releases URX from similar inhibitory regulation.

3) CAMT-1 serves different functions in URX and RMG. The finding that CAMTA2 is a coactivator for the homeodomain protein Nkx2-5 during hypertrophic signaling, raises the possibility that it may also cooperate with other
Figure 3.12 Two models for activity-dependent feedback within the URX-RMG circuit. URX communicates with RMG via neuropeptides (NP) and gap-junctions (GJ). In 21% O₂, tonic signaling from URX drives activity in RMG. Release of neuropeptides from RMG influences the activity of downstream neurons and sustains high speed (Laurent et al., 2015). Neurosecretion from RMG is thought to potentiate RMG responsiveness (Fenk and de Bono, 2017), and promote URX excitability (Laurent et al., 2015). Our data suggest that additional negative feedback mechanisms exist within this circuit. (A) Increased Ca²⁺ activity in URX drives depression of transmission from URX to RMG, either by downregulation of synaptic release/gap-junction current from URX or inhibition of Ca²⁺ responses in RMG. (B) In addition to positive feedback, RMG exerts negative feedback control over URX activity. When RMG activity is chronically low, loss of inhibitory signals from RMG cause URX to become hyperexcitable. Two alternative models that are not depicted are (i) signal-dependent functions of CAMT-1 allow it to have qualitatively distinct effects in different neurons or (ii) input from other neurons in which CAMT-1 functions generate the disconnect between URX and RMG activity.

transcription factors in a signal-dependent manner (Song et al., 2006). One possibility is that CAMTA activity is regulated by signal(s) that vary between URX and RMG. A prediction of this model would be that protein-protein interactions of CAMT-1 would be different, or differentially influential, in URX and RMG.

In support of cell-autonomous role in URX, overexpressing CAMT-1 specifically in O₂ sensing neurons (URX, AQR and PQR) reduces Ca²⁺ readout and/or gcy-
37 expression. However, an additional role in RMG or other downstream neurons is suggested by the finding that CAMT-1 overexpression is sufficient to overcome a defect in IkBζ signaling, which specifically promotes the responsiveness of RMG to input from URX (Chen et al., 2017). This observation is intriguing as it raises the possibility that CAMT-1 could promote IL-17 induced transcriptional remodeling in RMG.

CAMT-1 expression in O₂ sensors or RMG alone is insufficient to rescue mutant defects. This suggests it functions in multiple neurons within the circuit that drives O₂ avoidance. To pinpoint these cells, cell-specific disruption of camt-1 will be essential.

It is curious that camt-1 mutants exhibit hyperactive locomotion in 7% O₂ and yet show reduced responsiveness to 21% O₂. Our dose-response analysis indicates that CAMT-1 keeps the dynamic range of URX neurons tuned to near 21% O₂, a function that likely contributes to the control of these behavioural states.

Control of homeostatic plasticity by CAMT-1
A sustained change in activity induces changes in the circuit that governs behavioural responses to 21% O₂. After long-term cultivation at 7% O₂, the Ca²⁺ responses evoked in URX and RMG neurons by 21% O₂ are reduced, but behavioural responses are enhanced. This suggests that homeostatic mechanisms function to compensate for reduced Ca²⁺ levels in URX/RMG, and upregulate responsiveness downstream.

Our analysis of camt-1 mutants reared in 7% O₂ and 21% O₂ raise two hypotheses. The first hypothesis is that CAMT-1 is involved in remodeling the dynamic range of URX in response to sustained stimulation. Our data suggest that CAMT-1 ensures URX excitability is dampened at lower O₂ concentrations. Thus, disrupting CAMT-1 locks URX neurons in a state of hypersensitivity to low
O₂, and reduces its ability to tune its dynamic range to concentrations approaching 21% when they become prevailing.

A second hypothesis is that the homeostatic drive to increase activity/excitability in neurons downstream of RMG after the circuit has been quiescent for some time is limited by CAMT-1. We propose this based on the observation that the camt-1 mutant phenotype at 21% O₂ is exacerbated after acclimation at 7% O₂. To further explore the role of CAMT-1 in controlling homeostatic compensation for reduced URX/RMG activity, it will be important to identify the neurons/processes that drive this phenomenon.

Mechanistic insights into CAMT-1 function

The DNA-binding specificity of CAMTAs in mammals, flies and plants is encoded by their CG-1 domains (da Costa e Silva, 1994; Han et al., 2006; Song et al., 2006). Based on the requirement for a conserved histidine residue within its CG-1 domain (H190), we predict that CAMT-1 also functions as a transcription factor. Our preliminary studies do not provide clear indication of where CAMT-1 localizes subcellularly, but it will be important to discover whether CAMT-1 functions in the nucleus and whether its localization is activity-dependent.

The role of Ca²⁺ signaling and CaM-binding in regulating CAMTA activity remains a matter of debate. Although the CaM-binding domain promotes CAMTA-mediated transcription in flies and plants, it has no noticeable impact on the function of mouse CAMTA2 (Du et al., 2009; Han et al., 2006; Song et al., 2006). We have been unable to detect a requirement for IQ motifs for CAMT-1. However, perturbation of CaM-binding domains when CAMT-1 is expressed at physiological levels will provide a more rigorous insight into their function.

Finally, our RNA profiling has begun to reveal the transcriptional landscapes promoted by CAMT-1. It is clear that CAMT-1 is a regulator of many genes. Our data suggest that it functions in an activity-dependent manner, so identifying
those that link it to the control of neuronal Ca$^{2+}$ signaling will be an important future goal.

Conclusion

CAMTA transcription factors are highly conserved across multicellular organisms (Finkler et al., 2007). A spectrum of neurological phenotypes, including neurodegeneration and reduced memory performance (Bas-Orth et al., 2016; Huentelman et al., 2007), have been attributed to their dysfunction, but their physiological role is not well understood.

Here, I show that disrupting CAMTA in *C. elegans* leads to increased excitability in many neurons. I speculate that similar increased activity may drive the development of ataxia in mice and humans (Long et al., 2014; Thevenon et al., 2012). My study also suggests CAMT-1 controls activity-dependent plasticity. Interestingly, CAMTA gene expression is induced by synaptic activity and during formation of long-term memory formation (Lakhina et al., 2015; Pruunsild et al., 2017), suggesting that CAMTA transcription factors may be employed by many neurons to tune adaptive changes in their dynamic range. Several outstanding questions remain: how is neural gene expression altered by CAMT-1? Is CAMT-1 function modified by changing levels of Ca$^{2+}$?

Materials and methods

C. elegans maintenance, microinjection, heat-shock, light microscopy, protein alignment and RNA-seq were performed as described in Chapter 2.

Strains

RB746 *camt-1(ok515)*, and OH10689 otl355[rab-3p(prom1)::2xNLS::TagRFP] were obtained from the CGC which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440). Strains generated in this study are listed in the Appendix.
Molecular Biology

Fosmid recombineering

We obtained a clone containing the *camt-1* locus from the *C. elegans* fosmid library (Source BioScience). To insert GFP immediately prior to the termination codon of the longest *camt-1* splice variant (*T05C1.4a*) we followed the protocol of (Tursun et al., 2009). The primers used to amplify the recombineering cassette from pBALU1 were:

ATCATCCATGGGACCAAATTGAAACCGCGGTATGGTTGCGGAACACTTGCAA
TGAGTAAAGGAGAAGAACTTTTCAC

and

aaaccaataaaaaaatcggcatctttgatttacgcaccgggcaattatatagtttcagccccggcagtattttgtaagttacagtaatctcctatgtgcttttataatatg

To generate transgenic lines, we injected a mix of 50 ng/µl fosmid DNA and 50 ng/µl co-injection marker (cc::RFP).

Gateway cloning

We amplified gDNA corresponding to the *camt-1* promoter (3.5Kb) with ggggACAACTTTGTATAGAAAGTTG aagttacagtaatctcctatctgtgcttttataatatg and ggggACTGCTTTTTTGTACAAACTTGtagttcatcatcatcatcatcatattgaaaatgtgg, primers, gDNA corresponding to the *T06D8.9* promoter (1.7Kb) with GGGGACAACCTTTGTATAGAAAGTTGTGCTTCTTCAAATCGTCCCAGC and GGGGACTGCTTTTTTGTACAAACTTGCTGAAAAAAGAAACTAACAATTAGGA

ATTGGGAACG primers, and cDNA corresponding to *camt-1* (*T05C1.4b*) with ggggAACAAGTTTGTACAAAAAGCGAGGCTtttcagaaaaATGAATAATTTCAGTCAC

tctgcttttttttctatggtagttcatcatcatcatcatcatattgaaaatgtgg,

and ggggACCACCTTTGTACAAGAAAAAGCGAGGCTtttcagaaaaATGAATAATTTCAGTCAC

ACGGCG primers. We were unable to amplify *camt-1* cDNA corresponding to the longer *T05C1.4a* splice variant so we generated it by site-directed mutagenesis of *T05C1.4b* cDNA (see below).
Site-directed mutagenesis

In all cases we used the Q5 Site-Directed Mutagenesis Kit (NEB).

To convert *T05C1.4b* cDNA to *T05C1.4a* we used primers
gtcatatacattcaATTCGGAAATGACATGC and
catcatataatttataATATTAGATTAGTGCATGAAATTC. To remove the stop
codon from *camt-1* cDNA for C-terminal GFP fusion we used
TACCCAGCTTTCTTGACAAAG and TGCAAGTGGTCGCAACC. To generate
H190P cDNA we used GGACAATGCTTGAGTACAAACGATGG and
GGACAATGCTTGACAAACGATGG, and for I962N cDNA:
GCAATGGCTAACCAGGAGCC and TGCTTCGTAGACGTCTCG. To add an N-
terminal NLS cgcaagtacgtagaaaaaATGAATAATTACGTAACACTCGT and
tttctttggagcggtcatTTTTCTGAAAAAGCCCTGCTTTTTTTG were used. To add a
second NLS, we used cgcaagtacgtagaaaaaATGACCGCTCAAGAGAAG and
tttctttggagcggtcatTTTTCTGAAAAAGCCCTGCTTTTTTG.

Gibson assembly

As in chapter 2, sgRNAs were cloned downstream of the *rpr-1* promoter using
Gibson Assembly (NEB) following the protocol of (Chen et al., 2013).

To target the *camt-1* locus by CRISPR-Cas9 we delivered a gattgtgaaactcgccg guide,
and to target the *T06D8.9* we delivered a GGTGCCTTCACCCCAAAGG guide.

100 ng/µl sgRNA was co-injected with 30ng/µl *eft-3::cas9* and 30ng ng/µl
injection marker (cc::GFP).

Behaviour and Ca²⁺ imaging

Aerotaxis assays and neural imaging were performed as described in Chapter 2.

Unless otherwise indicated Ca²⁺ imaging was performed in immobilized animals.

We used a gas-tight hypoxia chamber to grow animals at 7% O₂. ‘21% O₂-reared
worms’ were grown in parallel outside the chamber. As indicated in the text, to
prevent any exposure to room air before Ca²⁺ imaging, animals were immobilized
on assay plates within a custom-made portable gas-tight container inside the 7%
O₂ chamber. Chemotaxis assays were performed as previously described
(Bargmann et al., 1993) with minor modifications. 9cm assay plates were made with 2% Bacto Agar, 1mM CaCl\textsubscript{2}, 1mM MgSO\textsubscript{4} and 25mM K\textsubscript{2}HPO\textsubscript{4} pH 6. Test and control circles of 3cm diameter were marked on opposite sides of the assay plate, equidistant from a starting point where >50 animals were placed to begin the assay. For olfactory assays, 1\textmu l odorant in ethanol or 1\textmu l ethanol, and 1\textmu l NaN\textsubscript{3}, was added to each circle. For gustatory assays, an agar plug containing 100mM NaCl was added the night before and removed prior to assay. Assays were allowed to proceed for 30-60min, after which point plates were moved to 4°C. Chemotaxis index was calculated as (number of animals in test circle – number of animals in control circle) / total number of animals that have left starting point.

Contributions

EMS mutants were isolated by C Chen, their whole genome sequence characterized by G Nelson. C Chen and Z Soltesz carried preliminary behavioural analysis, as indicated in the text. I Beets mapped \textit{db601}. The CRI prepared RNA libraries and performed sequencing, and Alastair Crisp analyzed RNA-seq data.

References

Translation initiation factors eIF3k and eIF3l specifically regulate the responsiveness of RMG neurons.
Introduction

Global or transcript-specific changes in translation efficiency underlie a range of physiological and stress-induced changes in organismal state (Buffington et al., 2014; Piccirillo et al., 2014; Ron, 2002). As the rate-limiting factors in protein synthesis, the dynamic, multi-subunit complexes that mediate translation initiation are a particularly important regulatory hub during gene expression (Gebauer and Hentze, 2004).

Typically, mechanisms that reconfigure translational profiles in response to environmental change converge on the same key components of the translation machinery. eIF2 and the cap-binding eIF4E govern a reduction in translation during metabolic stress (Baird and Wek, 2012; Pause et al., 1994), and alleviate protein-folding overload in the ER (Ron, 2002; Scheuner et al., 2001). Interestingly, general inhibition of protein synthesis is often accompanied by preferential, non-canonical translation of a small subset of transcripts. During T-cell activation for example, mRNAs encoding pro-inflammatory cytokines are sequestered in stress granules as translation is globally shutdown, before being specifically upregulated following antigen-restimulation (Piccirillo et al, 2014). Once secreted, cytokines themselves control the translation of specific mRNAs. For example, IL-17 stimulates the translation of transcripts encoding Regnase-1 and \(\text{IkB}_\zeta \) (Dhamija et al., 2013). In the nervous system, changes in translation dictate activity levels and drive the formation of long term memory (Buffington et al., 2014). Transcript-specific translational upregulation increases network excitability and lowers the threshold for the late phase of long-lasting synaptic potentiation (L-LTP) (Costa-Mattioli et al., 2007; Zhu et al., 2011).

Recently, the giant (800 kDa) eukaryotic initiation factor 3 (eIF3) complex has emerged as another source of mRNA-specificity during translation initiation (Cate, 2017; Lee et al., 2015). eIF3 is composed of 13 subunits (a-m, Fig. 4.1D), and binds the 40S ribosomal subunit and other initiation factors to serve a broad scaffolding function during initiation (des Georges et al., 2015; Hinnebusch,
2006; Siridechadilok et al., 2005). By binding secondary structure in the 5' UTR of mRNA, it also mediates the preferential translation or degradation of specific endogenous transcripts (Lee et al., 2015). Additionally, eIF3 possesses N⁶-methyladenosine- and 5' cap-binding activity, which allows specialized mRNAs to be translated independent of eIF4E (Lee et al., 2016; Meyer et al., 2015).

Although all 13 subunits are conserved across most eukaryotes, a core eIF3 complex of only 5 subunits (a, b, c, g and i) is defined by its sufficiency in budding yeast (Phan et al., 1998). Interestingly, distinct eIF3 subcomplexes exist (Shah et al., 2016; Zhou et al., 2005). Subcomplexes defined by the presence of eIF3e remodel the metabolic proteome in fission yeast without being required for general translation, suggesting that qualitatively different eIF3 assemblies promote different translatomes (Shah et al., 2016). Additionally, polysome profiling and functional studies have described a role for eIF3h in regulating the translation of developmentally important genes (Choudhuri et al., 2013; Kim, 2004; Ray et al., 2008). Together, these findings support the hypothesis that one important function of non-core subunits is to regulate the translation efficiency of specific sets of mRNAs.

eIF3k and eIF3l sit next to eIF3e on the extremities of the complex, however their role remains uncharacterized (des Georges et al., 2015). The formation of a functional pre-initiation complex on the internal ribosome entry site (IRES) of hepatitis C virus (HCV) RNA requires most eIF3 subunits (Sun et al., 2011). However, eIF3k:eIF3l dimers are dispensable for 40S recruitment (Masutani et al., 2007) and are easily dissociated from the eIF3 complex even when the assembly is stabilized by IRES-binding, suggesting they do not play a critical role in the eIF3-IRES interaction (Zhou et al., 2008). It is likely, therefore, that they have a regulatory role in eIF3 complex stability, perhaps in specific contexts.

The α-helical PCI (proteasome, COP9, Initiation factor 3) domains of eIF3k and eIF3l are conserved in both multicellular and unicellular organisms (Meleppattu et
al., 2015), and have paralogs in two other large intracellular assemblies: the 26S proteasome lid and the COP9 signalosome (CSN). These function in ubiquitylation-mediated protein degradation (Pick et al., 2009). It seems therefore likely that PCI proteins play an evolutionarily ancient role in protein homeostasis by regulating the stability or activity of complexes required for protein synthesis and turnover (Bhattacharyya et al., 2014).

In *C. elegans*, eIF3k and eIF3l are not essential for viability or for general translation (Cattie et al., 2016). However, their absence has been shown to confer resistance to ER stress, extend lifespan and reduce programmed cell death (Cattie et al., 2016; Huang et al., 2012). Here, we show that their function in specific neurons is required for behavioural responses. Our study demonstrates a novel role for non-core eIF3 subunits in regulating neuronal responsiveness to sensory input.

Results

C. elegans eIF3 subunits l and k promote high speed in 21% O₂

I mapped the causal lesion in the non-aggregating mutant *db1015* to a nonsense mutation in eif-3.L (Fig. 4.1A). A WT copy of the eif-3.L genomic locus was sufficient to restore speed responses to the *db1015* animas (Fig. 4.1B), and their defective avoidance of 21% O₂ was recapitulated by an independent nonsense mutation in eif-3.L (Fig. 4.1C). Therefore *C. elegans* eIF3l is required for avoidance of high ambient O₂.

All 13 eIF3 subunits are conserved from nematode to human (des Georges et al., 2015; Smith et al., 2016). KO of any but the -k and -l subunits induces lethality or sterility in *C. elegans* (Cattie et al., 2016). I identified a splice site mutation in eif-3.K among the collection of EMS-derived non-aggregating mutants (Fig. 4.1E-G). Moreover, two independent CRISPR/Cas9-induced frameshift mutations in eif-3.K disrupted avoidance of 21% O₂ (Fig. 4.1H). To confirm that loss of EIF-
Figure 4.1 EIF-3.K and EIF-3.L promote avoidance of 21% O₂. (A) WGS-based CloudMap Hawaiian Variant Mapping of a non-aggregating strain (AX3777) isolated by EMS-based mutagenesis. The genomic region surrounding a nonsense mutation in eif-3.L (W74*) is associated with loss of aggregation. The aerotaxis defect of db1015 mutants is rescued by a fosmid including the eif-3.L locus (B) and recapitulated by an independent nonsense mutation in eif-3.L (C), n ≥ 30 animals, N ≥ 3 assays. (D) EIF3k and l reside at the periphery of the 13-subunit eIF3 complex (Zhou et al., 2008; des Georges et al., 2015). (E) Among a collection of EMS-derived non-aggregating mutants, five encode protein-coding changes in the EIF3 complex, two of which are predicted to be high impact. (F) Iterative clustering by similarity using affinity propagation shows that three of these mutants exhibit similar behavioural fingerprints (Zhou et al., 2008; des Georges et al., 2015). (G-I) EIF-3.K promotes aerotaxis. Mutations in eif-3.K generated by EMS (F, n ≥ 32 animals, N ≥ 2 assays) or CRISPR/Cas9 (G - showing two independent frameshift deletions, n ≥ 50 animals, N = 4 assays) reduce speed in 21% O₂. A fosmid including the eif-3.K locus restores behaviour to an eif-3.K mutant (H, n ≥ 34 animals, N = 4 assays). (J) The aerotaxis phenotypes of eif-3.K and eif-3.L mutants are not additive, n ≥ 43 animals, N ≥ 3 assays. Average speed (line) and SEM (shaded regions) are plotted. *** = P < 0.001 **** = P < 0.0001, Mann-Whitney U test.
3.K was responsible, I rescued the defect by providing a WT version of EIF-3.K to the mutant (Fig. 4.1I).

To extend my analysis I also looked for hypomorphic in essential eif-3 subunits. Although multiple mutations in eif-3.E were isolated in the aggregation screen, I have so far been unable to demonstrate that any are causal (Fig. 4.1E). Interestingly, the behavioural fingerprint of one eif-3.E mutant, AX3897, clustered with that of eif-3.K and eif-3.L mutants (Fig. 4.1F), although it must be noted that the strains used for behavioural clustering were not outcrossed, and therefore contained many EMS-induced background mutations. We mapped the region associated with loss of aggregation in AX3897 to a lesion in osm-9, which encodes a well-studied TRPV channel (data not shown). Therefore, whether the mutation of eif-3.E in this strain has any effect on aggregation awaits further investigation.

eIF3k and I are mutually dependent on one another for insertion into the eIF3 complex (Smith et al., 2016; 2013). Consistent with loss of either subunit being sufficient to abolish the function of the other, I found that the aerotaxis phenotypes of eif-3.L and eif-3.K were not additive (Fig. 4.1J).

eIF3 subunits function in RMG hub neurons

To test whether EIF-3 subunits impinge upon the URX-RMG circuit, I compared Ca^{2+} responses in URX and RMG neurons during exposure to 21% O_{2} in npr-1 and npr-1; eif-3.K/L animals. I found that non-essential eif-3 mutants displayed reduced activity in RMG, whereas Ca^{2+} levels in URX O_{2} sensory neurons were not reduced (Fig. 4.2A and B). To confirm that defective Ca^{2+} signaling was associated with reduced RMG output, I used a flp-5 transcriptional reporter as a readout of neurosecretion. It has previously been shown that transcription of flp-5 in RMG is coupled to its release (Laurent et al., 2015). Consistent with reduced neuropeptide secretion from RMG, expression of flp-5::gfp was reduced in eif-3.L mutants (Fig. 4.2C).
To test whether EIF-3.L functions in RMG to promote responsiveness to 21% O₂, I expressed cDNA encoding EIF-3.L in RMG (and ASG, PVT, L4 and M4, which are not known to affect aerotaxis) using the flp-5 promoter (Kim and Li, 2004; 2017). This transgene fully rescued the speed defect of eif-3.L mutants in 21%

Figure 4.2 EIF-3.L functions in RMG neurons. Ca²⁺ levels are reduced in RMG (YC2.60) in eif-3.L mutants (B, n ≥ 22, immobilized animals) but not in URX (A, n ≥ 9, freely moving animals). (C) Loss of EIF-3.L reduces the expression of a flp-5p::gfp transgene in RMG, n ≥ 40. (D) Directing EIF-3.L expression to RMG using the flp-5p promoter rescues the 21% O₂ avoidance defect of eif-3.L mutants, n ≥ 23 animals, N ≥ 4 assays. (E and F) ChR2-mediated activation of RMG is sufficient to induce npr-1-like high speed in eif-3.L mutants (F), dependent on the presence of all-trans retinal (E), n ≥ 17 animals, N ≥ 3 assays. (G) Intestine-specific expression of EIF-3.L is not sufficient to rescue the reduced speed of eif-3.L mutants in 21% O₂, n ≥ 25 animals, N ≥ 3 assays. Average speed/ratio (line) and SEM (shaded regions) are plotted. * = P < 0.05, ** = P < 0.01, Mann-Whitney U test (A, B, D-H), or unpaired t-test (C).
O₂ (Fig. 4.2D). Consistent with there being no defects in the ability of downstream neurons to respond to RMG in the absence of EIF-3.L, artificial activation of RMG using channelrhodopsin (ChR2) was sufficient to evoke high speed in eif-3.L mutants (Fig. 4.2F).

A recent study showed that the enhanced lifespan and resistance to ER stress of eif-3.K mutants could be rescued by tissue-specific expression of EIF-3.K either in the nervous system or in the intestine (Cattie et al., 2016). I restricted EIF-3.L to the intestine to test whether its expression there is also able to promote behavioural responses. I found however that gut-specific expression of EIF-3.L had no effect on the reduced speed of eif-3.L mutants in 21% O₂ (Fig. 4.2G). Together, my data show that EIF-3.L is required specifically in RMG to mediate avoidance of 21% O₂. I expect the same to be true for EIF-3.K, although this awaits confirmation.

eIF3k and L regulate a range of physiological features

To map the expression pattern of EIF-3.K and .L I generated C-terminally tagged fosmid reporters. Consistent with previous reports (Cattie et al., 2016; Huang et al., 2012), EIF-3.K::GFP and EIF-3.L::GFP were constitutively expressed in all tissues (Fig. 4.3A and B). Previous studies have implicated non-essential EIF-3 subunits in programmed cell death and ER homeostasis, suggesting that they regulate diverse aspects of physiology (Cattie et al., 2016; Huang et al., 2012). I found that chemotaxis towards the attractive odorant diacetyl was dependant on both EIF-3.K and EIF-3.L, indicating that they control behaviours unrelated to O₂ sensing (Fig. 4.3C). Unexpectedly, the defective chemotaxis of an eif-3.K ; eif-3.L double mutant was stronger than that of either single mutant, suggesting that the two subunits may in fact fulfill partially distinct roles (Fig. 4.3C).

Additionally, I found that body fat levels were modulated by EIF-3.L; intestinal lipid levels were increased in npr-1; eif-3.L animals compared to npr-1 controls.
(Fig. 4.3E). It is interesting to note that a role for O₂-sensing neurons in stimulating fat loss has recently been described (Witham et al., 2016), although many explanations could account for altered lipid stores.

I observed that eif-3.K and .L mutants have a flat body posture when quiescent (Fig. 4.3D), a phenotype associated with lethargus (Iwanir et al., 2013; Schwarz et al., 2012). If this preliminary observation can be confirmed, it may indicate that eif-3.K/L mutants have globally decreased levels of neural activity.

![Figure 4.3 Broad expression and function of EIF-3.K and EIF-3.L. (A and B) Fosmid reporters expressing C-terminally tagged EIF-3.K::GFP (A) and EIF-3.L::GFP (B) are constitutively expressed throughout the animal. (C) eif-3.K and eif-3.L mutants display decreased chemotaxis towards diacetyl, N ≥ 4. These phenotypes are additive. (D) eif-3.L mutants appear to have unusually flat body posture when quiescent. (E) Fixative-based Nile Red staining is reduced in the intestine of eif-3.L mutants, n ≥ 12. * = P < 0.05, *** = P < 0.001, ANOVA with Tukey’s post hoc HSD.](image)

Decreased bulk translation does not recapitulate the loss of EIF-3.K and EIF-3.L

I considered the possibility that a general reduction in translation might account for the reduced behavioural responsiveness of eif-3.K and eif-3.L mutants. To test this, I used mutants that are known to reduce translational rates in *C. elegans*: ife-2 and ife-4, which disrupt eIF4E function, and gcn-2, an eIF2α kinase mutant (Dinkova et al., 2004; Hansen et al., 2007; Kim and Strange, 2013).
These mutations did not disrupt the 21% O$_2$ avoidance of npr-1 animals, nor did they modify the phenotype of npr-1; eif-3.L; eif-3.K (Fig. 4.4A and B, and data not shown). This suggests that if EIF-3.L controls behaviour by regulating translation, it has a specific role that is not shared by other well-characterized translational regulators. It is also consistent with the findings of Cattie et al. (2016) who showed that the enhanced resistance to ER stress of eif-3.K and eif-3.L mutants was not recapitulated by mutants that generally reduce translation.

The relationship between IL-17 and eIF3k/l signaling

Interestingly, like ilc-17.1 and nfki-1 mutants, animals lacking EIF-3.L become completely unresponsive to 21% O$_2$ after 2h without mechanical stimulation (Fig. 4.5B). Given the phenotypic similarity of eif-3.K/eif-3.L and ilc-17.1 mutants, we considered whether eIF3k and eIF3L promote or mediate IL-17 signaling in RMG. Consistent with this, I found that the aggregation and speed phenotypes of eif-3.L mutants in 21% O$_2$ were suppressed by IkBζ/NFKI-1 overexpression (Fig. 4.5A and B).

To explore whether IL-17 and EIF-3.K/L promote the same global transcriptional state, I used RNA-sequencing to compare gene expression in ilc-17.1, nfki-1, and eif-3.L; eif-3.K mutants. Compared to WT (npr-1), the expression of 70 genes...
was reduced two-fold by loss of EIF-3.K and EIF-3.L, while 204 genes were overexpressed (Fig. 4.6A and B). In collaboration with Alastair Crisp I compared this geneset to that perturbed by loss of ILC-17.1 or NFKI-1. We defined genes consistently regulated by IL-17 signaling as those whose expression was significantly altered in both *ilc*-17.1 and *nfki*-1 mutants. Of these, ~1/3 (44/129) were also dysregulated in *eif*-3.L; *eif*-3.K mutants.

We also identified a large number of genes (200) whose expression was modulated by EIF-3.K or EIF-3.L, but not significantly altered by loss of IL-17 signaling (Fig. 4.6A and B). Unsurprisingly therefore, the large range of phenotypes induced by loss of eIF3k and eIF3l in *C. elegans* is associated with widespread perturbation of the transcriptome. Together, these data define a set of transcripts regulated specifically by EIF-3.K and EIF-3.L, and a set modulated by both IL-17 signaling and non-accessory EIF-3 subunits. Whereas mainly immune system pathways were over-represented in genes down-regulated by both *eif*-3.L;*eif*-3.K and IL-17 signaling mutations, EIF-3.K and EIF-3.L also regulated many additional genes involved in metabolism (Fig. 4.6C and D). It will be interesting to discover which group is functionally relevant to non-core eIF3 subunit function in RMG.
Figure 4.6 Overlapping transcriptional changes in *eif-3.L;eif-3.K* and IL-17 signaling mutants. The total number of genes downregulated (A) and upregulated (B) in *npr-1;eif-3.L;eif-3.K, npr-1;ilc-17.1*, and *npr-1;nfki-1* animals compared to *npr-1*. Only genes that exhibit a two-fold, or greater, change are included. Gene ontology (GO) terms (C) and pathways (D) significantly overrepresented among genes regulated by *eif-3.K,eif-3.L* (red) and by all three mutants (blue) are shown.

Discussion

Translational control mechanisms are important regulators of neural circuit activity and cognition (Buffington et al., 2014). Their disruption is associated with memory defects, neurodegeneration and autism spectrum disorders (Chang et al., 2002; Kang and Schuman, 1996; O’Roak et al., 2012). Here I establish that
two accessory components of the translation initiation factor eIF3 are novel regulators of circuit state. Loss of eIF3k or eIF3l homologs reduces the responsiveness of RMG hub neurons to input from O₂ sensors, and attenuates escape of a repulsive environment. The sufficiency of EIF-3.L restricted to RMG suggests that they act cell-autonomously in neurons to control behaviour.

The major remaining question is whether eIF3k and eIF3l act analogously to other non-core eIF3 subunits to regulate the translational efficiency of specific neural mRNAs. eIF3d and eIF3e act cooperatively to remodel metabolism in *Schizosaccharomyces pombe* (Shah et al., 2016), and loss of eIF3h decreases the translation of a crystallin transcript that regulates zebrafish brain development (Choudhuri et al., 2013). However, k and l subunits are dispensable for the formation of active eIF3 complexes *in vitro* (Masutani et al., 2007), and have so far not been assigned any translational function. Like *eif3h* zebrafish morphants, eIF3.K and eIF3.L mutant nematodes exhibit WT polysome profiles (Cattie et al., 2016; Choudhuri et al., 2013). Our finding that general reduced bulk translation does not modify 21% O₂-avoidance is consistent with a model in which eIF3k and l subunits alter the translational rate of a specific subset of transcripts. Future work will aim to identify mRNAs that are (i) bound by k:l-containing eIF3 complexes and (ii) whose rate of translation is modulated by eIF3k and eIF3l.

An alternative possibility is that the neuronal function of eIF3k and eIF3l we have observed is independent of their role in translation initiation. Examples of complex promiscuity among PCI proteins have been described. For example, Rpn5 associates with both the CSN and the proteasome in *Saccharomyces cerevisiae* (Yu et al., 2011), and CIF-1 appears to fulfil the role of both Csn7 and eIF3m in *C. elegans* (Luke-Glaser et al., 2007). Additionally, the interaction of eIF3e with all three PCI complexes is conserved from plants to mammals (Alves et al., 2002; Yahalom et al., 2000; Yen et al., 2003). The structural counterparts of eIF3k:eIF3l in the CSN and 26S proteasome lid are CSN8:CSN3, and RPN12:RPN3 respectively (des Georges et al., 2015). No homolog for CSN8 has
been found in *C. elegans*, raising the possibility that it might be compensated for by EIF-3.K (Liu et al., 2013). However, EIF-3.K and EIF-3.L co-purify with EIF-3 complexes, not with the CSN (Luke-Glaser et al., 2007), and *C. elegans* homologs for all components of the 26S proteasome have been identified (Davy et al., 2013). Another relevant observation is that eIF3e was found to directly bind the L-type Ca$^{2+}$ channel Ca$_{v}$1.2 and mediate its activity-dependent internalization in cortical neurons (Green et al., 2007). Therefore, although modulation of the efficiency of eIF3-mediated translation initiation remains the most plausible role for EIF-3.K and EIF-3.L in neurons, there is precedent for other scenarios.

Although EIF-3.K and EIF-3.L are broadly expressed, their effect on O_{2}^{-} avoidance is associated specifically with their function in RMG neurons. It is interesting therefore, that their loss induces behavioural phenotypes reminiscent of IL-17 pathway mutants, which are also required in RMG (Chen et al., 2017). We identified a partially shared transcriptional signature of *eif-3.K;eif-3.L* and *ilc-17.1/infki-1* mutants, which may contribute to their phenotypic overlap. Together, these observations raise the hypothesis that IL-17 signaling and non-essential eIF3 subunits cooperate to promote RMG activity. Interestingly, one way by which mammalian IL-17 achieves changes in gene expression is through the translational activation of latent inflammatory mRNAs (Dhamija et al., 2013). It is tempting to wonder, therefore, whether eIF3 subunits might mediate such a role in neurons and/or other tissues.

Materials and Methods

C. elegans maintenance, microinjection, WGS-based Hawaiian Variant Mapping, behavioural assays, Ca$^{2+}$ imaging and RNA-seq analysis were performed as described in Chapters 2 and 3.

Strains

VC40148 *eif-3.L*(gk485491), KX15 *ife-2*(ok306), KX17 *ife-4*(ok320), and RB967 *gcn-2*(ok871) were obtained from the CGC which is funded by NIH Office of
Research Infrastructure Programs (P40 OD010440). Strains generated in this study are listed in the Appendix.

Molecular Biology

Fosmid recombineering

Clones covering the *eif-3.K* and *eif-3.L* locus were obtained from the *C. elegans* fosmid library (Source BioScience). As in Chapter 3, we followed the protocol of (Tursun et al., 2009) for C-terminal protein tagging. Clones covering the *eif-3.K* and *eif-3.L* locus were obtained from the *C. elegans* fosmid library (Source BioScience) and the GFP cassette from pBALU1 was amplified using

\[
\text{tttcagATGTCCGCGATCTTCTGACCAGCATTTCAACCCCGTGGACTCTTTATGA}
\]

GTAAAGGAGAAGAACTTTTCAC with

caacagaalacaaggtattataattttgaagcagtgataattgataTTATTTGTATAGTTCCATCCA TGCCATG for *eif-3.K*, and

\[
\text{AGTTGCAAGAGGTTTCCAGGATGTGCTCAAACGACTCGATATCCAGAAACCAA}
\]

TGAGTAAAGGAGAAGAACTTTTCAC with

ggaatcaaccagctctttctgtagctaaataccttttaaggaTCATTTGTATAGTTCCATCCATG

CCATG for *eif-3.L*.

Gateway cloning

We amplified cDNA corresponding to *eif-3.K* using

\[
\text{ggggACAAGTTTGTACAAAAAAGCAGGCT tttcagaaaa atgtctcgttgagacgcgtggaattcgattt}
\]

atcc and \(g\ggg\ggg\ggg\AACTTTTGTTACAAGAAAGCTGGGTA\)

attaaaggatcaacggggtttgaatg, and to *eif-3.L* using

\[
\text{ggggACAAGTTTGTACAAAAAAGCAGGCTtttcagaaaaatgtctcgttgagacgcgtggaattcgattt}
\]

atcc and \(g\ggg\ggg\AACTTTTGTTACAAGAAAGCTGGGTA\)

atctgagacgtatttctggttatgacatcag. Although not used in this study, we also cloned the *eif-3.K* promoter region (1.3Kb upstream of the ATG) using \(g\ggg\ggg\AAACTTTTGTTATAAGAAAGCTGGGTA\)

AAGTTGaataattaaccgttagttttaaatematcataatcagtttaggttc and

\(g\ggg\AACTGCTTTTTTGTACAAGAAAGCTGGGTA\)

ctttaaaatatcgctttcctattgaagaaaagaactctgc, and the *eif-3.L* promoter (3.7Kb) using \(g\ggg\AAACTTTTGTTATAAGAAAGCTGGGTA\)
Gibson Assembly
To target the eif-3.K locus for CRISPR/Cas9-mediated mutagenesis we expressed TTCTGGAAATTGGTGAAGG from the rpr-1 promoter (Chen et al., 2013). This sequence was amplified for insertion into Eco RI-cut expression plasmids using gcgcgtcaagtgtGTTCGGAAATTGGTGAAGGGTTTTAGAGCTAGAA and TTCTAGCTCTAAAAACCCTTCACCAATTTCAGAAACacaacttgacgcgc.

Optogenetics
L4 animals expressing ChR2 in RMG, were picked to OP50 lawns supplemented with 100µl ChR2 cofactor (5mM all-trans retinal). Control animals were picked to OP50 lawns treated with 100µl ethanol. Test and controls sets were kept in the dark for 24h before being transferred to assay plates seeded with 20 µl OP50 14-18h beforehand. As described in Chapter 2, 7% O₂ was continuously delivered at 1.4ml/min using a PDMS chamber connected to a PHD 2000 Infusion syringe pump. Excitation light (11.6 mW/cm²) was delivered from a Leica EL6000 mercury lamp and filtered using 480/40nm excitation filters fitted on a Leica M165FC microscope. Movies were recorded with a Point Grey Grasshopper camera, using FlyCapture software (2fps). Speed was measured using Zenttracker software.

Nile Red staining
Fixative-based Nile Red (Sigma, N3013) staining was performed following the protocol of (Pino et al., 2013). Well-fed young adults were washed twice in M9 buffer, and once in PBS with 0.01% Triton X-100. They were then incubated in 40% isopropanol for 3 min at room temperature, and pelleted by centrifugation.
After removing the supernatant, we stained animals in dark conditions for 3h using 6µl Nile Red solution (0.5 mg/ml in acetone) per 1ml 40% isopropanol.

Light microscopy and fluorescence quantification

As in Chapter 2, animals were immobilized on 2% agarose pads using 25 mM sodium azide for spinning disk confocal laser microscopy. Z stacks were acquired using an Andor Ixon EMCCD on a Nikon Eclipse Ti inverted microscope, and converted to maximum intensity projections in Image J. Only planes containing the cell (RMG for *flp-5p::gfp* quantification) or tissue (anterior intestinal region for Nile Red quantification) were included in projections. Corrected fluorescence was calculated by: Integrated Density – (area of selected cell/region x average background intensity).

Contributions

EMS mutants were isolated by C Chen, their whole genome sequence characterized by G Nelson. C Chen and Z Soltesz carried preliminary behavioural analysis, as indicated in the text. The CRI prepared DNA/RNA libraries and performed sequencing, and Alastair Crisp analyzed RNA-seq data.

References

Witham, E., Comunian, C., Ratanpal, H., Skora, S., Zimmer, M., and Srinivasan,

Using Induced mutants and natural variation to study nematode aggregation behaviour
Introduction

Dramatic behavioural differences are often seen between recently diverged species, while homologous adaptations can be observed in distantly related ones (Jovelin et al., 2003; Sturmbauer et al., 1996; Weber and Hoekstra, 2009). That behaviours can evolve quickly, and on multiple occasions, suggests that there is a rich pool of natural variation within wild populations. Indeed, behaviours are quantitative traits that are often continuously distributed among individuals of the same species (Mackay, 2001). Such variation is typically underpinned by a complex genetic architecture, with a polygenic basis and a prominent contribution from pleiotropic genes and epistatic interactions (Huang et al., 2012; SWARUP et al., 2012).

In humans, large-scale genome-wide association studies (GWAS) have been applied to complex traits with limited success (Visscher et al., 2012). Mapping behavioural quantitative trait loci (QTLs) in genetic model organisms offers significantly greater power for linking natural polymorphisms to behaviour because every locus can be tested many times in controlled genetic backgrounds (Bendesky and Bargmann, 2011). Moreover, QTL mapping can be complemented by the study of induced mutants, which remain the most powerful tool for studying the contribution of a gene to behaviour. Illustrating this point, a large cohort of loci associated with variation in aggression among wild *Drosophila* isolates have been validated by loss-of-function analysis (Shorter et al., 2015).

C. elegans has by now been isolated from all continents except Antarctica (Dolgin et al., 2008). In general, wild isolates exhibit very low levels of polymorphism - estimated to be 20-fold lower than among wild-caught *Drosophila melanogaster* (Barriere and Félix, 2005a), High levels of linkage-disequilibrium indicate that self-fertilization is the predominant mode of reproduction in the wild (Barriere and Félix, 2005b). Phenotypic variation, on the other hand, is widespread (Barriere and Félix, 2005a). Whether this points towards a greater contribution from individual loci than has been observed in other organisms is not
yet clear, although recent work that identified a QTL explaining ~40% of the variation in foraging strategy among wild strains suggests that this might be the case (Greene et al., 2016a; 2016b).

The sequenced genomes of nematodes both closely and distantly related to \textit{C. elegans} have opened the door for cross-species comparative analyses to investigate mechanisms of behavioural evolution (Kumar et al., 2012; McGrath et al., 2012). To date, 23 \textit{Caenorhabditis} species have been described (Kiontke and Sudhaus, 2006). Many of these are outcrossing species that exhibit greater levels of polymorphism that \textit{C. elegans} (Jovelin et al., 2003). Importantly, they exhibit both divergence from and similarities to behaviours that are understood at a molecular and circuit level in \textit{C. elegans} (Jovelin et al., 2003; Srinivasan et al., 2008). Therefore, nematodes may prove an informative model for studying behavioural evolution.

Here we combine the study of traditional genetic screens with analysis of wild \textit{Caenorhabditis} isolates, with a view towards gaining a global picture of the molecular mechanisms that drive aggregation and contribute to natural variation. First, we summarize our study of forward genetic behavioural mutants. From these we establish a novel function for an uncharacterized but remarkably conserved gene, homologous to human suppressor of tumourigenicity 7 (ST7). We then describe intra- and inter- species diversity in avoidance of ambient O\textsubscript{2} and CO\textsubscript{2} among nematodes.

\textbf{Results}

\textbf{Mutations in egl-2, unc-22, unc-42 and plc-1 disrupt aggregation}

We localized the loci associated with loss of aggregation in five more EMS-induced mutants. Three mapped to well-characterized genes, \textit{egl-2, unc-22,} and \textit{unc-42} (Fig. 5.1A-C). These are known to be required in the nervous system (\textit{egl-2} and \textit{unc-42}) or in muscle (\textit{unc-22}) for normal locomotion (Baran et al., 1999; Moerman et al., 1986; Weinshenker et al., 1999). Another localized to \textit{plc-1}
(Fig. 5.1D), which encodes one of six *C. elegans* phospholipase C (PLC) enzymes that catalyze the breakdown of PIP$_2$ to IP$_3$ and diacyl glycerol (DAG). EGL-8 (PLCβ), an important producer of synaptic DAG (Lackner et al., 1999), is also required for aggregation (de Bono lab, unpublished). This suggests therefore that two PLCs, EGL-8 and PLC-1, function in parallel to promote avoidance of 21% O$_2$ – although the necessity of PLC-1 still requires confirmation.

Figure 5.1 Mutations in unc-22, egl-2, unc-42, plc-1 and F11A10.5 are associated with loss of aggregation. (A-E)

WGS-based CloudMap Hawaiian Variant

Mapping of five EMS-induced mutants that fail to aggregate. Genomic regions surrounding mutations in unc-22 (A), egl-2 (B), unc-42 (C), plc-1 (D), and F11A10.5 (E) are linked to the causative locus. The large peak on the left arm of Chr X in (D) corresponds to npr-1 (ad609), which was present in both mutant and mapping strains. (F)

Among the entire collection of non-aggregating mutants, 7 strains contain mutations in the protein-coding region of F11A10.5, four of which are predicted to encode premature termination codons (*).
C. elegans ST7 promotes aggregation

db692 was linked to chromosome IV, where we found a nonsense mutation in *F11A10.5* (Fig. 51E). Despite the fact that it is not an especially large gene, six additional mutations in *F11A10.5* were present within our collection, and several of these introduce premature termination codons (Fig. 51F). *F11A10.5* encodes a predicted membrane protein, with 2-3 transmembrane helices, that shows strong homology to mammalian ST7. ST7 was initially proposed to be a tumour suppressor, since it was deleted in several forms of human cancer (Zenklusen et al., 2001), although subsequent studies have suggested this is not the case (Fig. 51H and I) (Dong and Sidransky, 2002). Studies in cultured human cells provide experimental support for a membrane-localization of ST7 (Charong et al., 2010; Hooi et al., 2006). Nothing, however, is known about its function.

cDNA corresponding to WT *F11A10.5* rescued the defective 21% O$_2$ avoidance of *db640* mutants (Fig. 52A). Furthermore, an independent frameshift mutation in the *F11A10.5* locus induced hyper-avoidance of CO$_2$ and defective aerotaxis, consistent with reduced activity in the circuit that drives aggregation and escape of 21% O$_2$ (Fig. 52B). We expressed YC2.60 in URX and RMG to monitor Ca$^{2+}$ response to 21% O$_2$, but did not detect any difference between *npr-1* and *npr-1;F11A10.5* animals (Fig. 52C and D). This suggests that *F11A10.5* functions either downstream of RMG Ca$^{2+}$ signaling, or elsewhere in the animal.

We generated several reporters to map the expression pattern of *F11A10.5*. In all cases we observed expression in a small number of neurons in the head, which have not been identified (Fig. 52E-G). Future work will address whether *F11A10.5* functions in neurons to modulate behaviour.

Natural variation in O$_2$- and CO$_2$- avoidance

Unlike the laboratory strain N2, the Hawaiian wild isolate CB4856 aggregates and strongly avoids high ambient O$_2$ (de Bono and Bargmann, 1998; Persson et al., 2009). Interestingly, these differences are only partially explained by variation
Figure 5.2 *C. elegans* ST7 promotes O$_2$-related behaviours. (A) The reduced speed of db640 in 21% O$_2$ is rescued by F11A10.5 cDNA expressed from its endogenous promoter (2.6 Kb), n ≥ 52 animals, N = 4 assays. (B) An 8bp deletion in the coding region of F11A10.5, generated by CRISPR/Cas9, shows reduced/delayed slowing in response to 7% O$_2$ and enhanced speed in 3% CO$_2$, n ≥ 77 animals, N = 7 assays. (C, D) Ca$^{2+}$ transients, as reported by YC2.60, are comparable in URX (C, N ≥ 6) and RMG (D, N ≥ 13) in npr-1 and npr-1; F11A10.5 animals. (E) A fosmid-based reported expressing trans-spliced F11A10.5 and GFP is expressed in a small number of neurons in the head. (F) An F11A10.5(gDNA)::GFP fusion cloned downstream of F11A10.5 upstream sequence (2.6 Kb) is also expressed in a limited number of neurons, and appears to be excluded from the nucleus. (G) The F11A10.5p::F11A10.5::SL2::mCherry expression construct that restores behaviour to db640 mutants (A) is expressed in a pair of cells posterior to diO-filled amphid sensory neurons (G). (H) Domain organization of F11A10.5. Transmembrane helices are predicted by the TMHMM 2.0, and the signal peptide by SignalP 4.1. (I) Sequence alignment of ST7 orthologs across species. Mammalian genomes encode two paralogous ST7 genes, ST7 and ST7L-like (ST7L). Residue colouring indicates % identity. The first N-terminal transmembrane domain (cyan) is conserved between mammals and nematodes, but absent in fish and fly. The second (cyan) is almost universally conserved across all species. Only *C. elegans* is predicted to contain a signal peptide sequence (green). The C-terminal regions, which are predicted to be extracellular, are also highly conserved. Black bars indicate timepoints used for statistics. White arrows point to F11A10.5-expressing neurons. Average speed (line) and SEM (shaded regions) are plotted. ** = P < 0.01, **** = P < 0.0001, Mann-Whitney U test.
at the npr-1 locus, indicating that other genetic factors contribute (Persson et al., 2009). As a resource with which to map these additional loci, ~1000 recombinant inbred advanced intercross lines (RIAILs) were previously generated by serial interbreeding between recombinant progeny of N2 and CB4856 (Weber et al., 2010). These strains should exhibit low levels of linkage disequilibrium, allowing small genomic intervals to segregate independently, which would confer high resolution to association studies.

I subjected a subset of RIAILs to a panel of environmental stimuli to obtain a picture of the behavioural diversity within the collection (Fig. 5.3A). This preliminary analysis showed that most RIAILS behaved either like N2 (small response to 21% O₂, large response to CO₂) or like CB4856 (large response to 21% O₂, small response to CO₂). A small number however, exhibited an intermediate phenotype that may be interesting to explore. Genome sequencing will be required to determine how well behaviour correlates with npr-1 allele, and importantly to identify lines that do not behave as predicted based on the NPR-1 variant they encode.

Because the N2 genome has been sculpted by domestication, it is not a good model for exploring adaptation to conditions relevant in the wild. We found that a strain isolated in Madagascar, LKC34, exhibits reduced response to 21% O₂ and increased avoidance of CO₂ compared to CB4856 (Fig. 5.3B). As LKC34 has not been propagated in the laboratory, QTL mapping of loci linked to behavioural differences between LKC34 and CB4856 may identify more ecologically relevant behavioural polymorphisms.
Figure 5.3 Natural variation in O₂- and CO₂- avoidance. (A) Most RIAILs generated from CB4856 (Hawaii) and the domesticated N2 (Bristol) strains exhibit behavioural fingerprints characteristic of one or the other of their parent strains (i.e. low speed in 21% O₂ coupled with high speed in 3% CO₂, or vice versa). Some, however, appear to show intermediate phenotypes (e.g. RIAIL 3 and RIAIL 5), N = 2 assays. (B) Wild-caught strains from Madagascar (LKC34) and Hawaii (CB4856) vary in their response to 21% O₂ and 3% CO₂, n ≥ 93 animals, N = 10 assays. Average speed (line) and SEM (shaded regions) are plotted. **** = P < 0.0001, Mann-Whitney U test.

Variation in aggregation within the Caenorhabditis genus

Although aggregation has been described in diverse nematodes, many species most closely related to C. elegans are solitary feeders - despite the fact that they encode the 215F version of NPR-1 associated with aggregation (Mario de Bono, unpublished). The genetic mechanisms that underlie inter-species differences in aggregation have not been explored. Additionally, it is not known whether aggregation has arisen multiple times in parallel, or once in an ancient ancestor before being widely lost.

I performed comparative behavioural analysis of species closely related to C. elegans (Fig. 5.4A-E). None of the species I assayed exhibited responses to 21% O₂ comparable to C. elegans. Interestingly, although C. nigoni showed dramatic avoidance of 3% CO₂ (Fig. 5.4C), most other species did not respond strongly to this cue. This suggests that different genetic changes underlie solitary behaviour in C. nigoni and other Caenorhabditis species. Additionally, as gain of NPR-1 function increases responsiveness to CO₂, this might mean that loci other than
\textit{npr-1} are responsible for absence/loss of aggregation in many species. The remarkable diversity among the six species we assayed indicates that O$_2$ and CO$_2$ avoidance behaviours are rapidly and continuously evolving in nematodes.

Discussion

One significant challenge faced by GWAS analyses in general is determining the functional relevance of loci linked to complex traits (Pickrell, 2014). A complete understanding of the molecular underpinnings of specific behaviours will be an important resource for dissecting natural variation. Building on previous knowledge, I describe induced mutations in five genes that are associated with loss of aggregation. \textit{egl-2, unc-22, unc-44} and \textit{plc-1} have all been previously implicated in neuronal processes or behavioural regulation, so that they are associated with aggregation is unsurprising (Baran et al., 1999; Kunitomo et al., 2013; Moerman et al., 1986; Weinshenker et al., 1999). The discovery that an ST7 ortholog promotes avoidance of 21% O$_2$, on the other hand, identifies an entirely novel role for a protein that is highly conserved across multicellular organisms.

My analysis of \textit{F11A10.5} mutants represents the first \textit{in vivo} KO of ST7 in any species. In humans, ST7 is expressed in many tissues – including the brain (Zenklusen et al., 2001). Its function in the nervous system, or in any cell type, however, remains obscure. We show that worm ST7 is also expressed in neurons. Establishing the identities of these cells will help elucidate the function of \textit{F11A10.5}, as it will allow targeted physiological analysis of loss-of-function mutants. It seems likely, based on domain annotation and a small number of studies from mammalian cell culture, that ST7 proteins function at the membrane, where they may interact with extracellular factors (Charong et al., 2010; Hooi et al., 2006). Future work should definitively address whether this is the case.
Figure 5.4 Interspecies variation in O$_2$- and CO$_2$- avoidance. The locomotory responses of six *Caenorhabditis* species to 21% O$_2$ and 3% CO$_2$ are shown. n ≥ 34 animals, N ≥ 3 assays. Average speed (line) and SEM (shaded regions) are plotted. **** = P < 0.0001, Mann-Whitney U test.

High-throughput screens that continue to extend the catalog of genes known to be required for avoidance of 21% O$_2$ will inform studies of natural variation. The LKC34 wild *C. elegans* isolate from Madagascar harbors a 3bp deletion in the F11A10.5 locus. Whether this is linked to its slower speed in 21% O$_2$ is unknown, but there is no doubt that the more complete our molecular characterization of induced behavioural mutants, the more likely it is that we will be able to identify functional natural polymorphisms.

Similarly, several of the wild species analysed here have complete or draft genome assemblies (Kumar et al., 2012). To explore the genetic basis of their behavioural differences, genes known to regulate O$_2$ and CO$_2$ avoidance can be subject to comparative analyses, and tested for evidence of selection. Importantly, the recent development of genome-editing techniques such as CRISPR/Cas9 (Sugi, 2016) means that loss-of-function and transgenesis
experiments can now be used to test the functional relevance of natural polymorphisms.

Materials and methods

C. elegans maintenance, WGS-based Hawaiian Variant Mapping of EMS mutants, Ca$^{2+}$ imaging, light microscopy and protein alignment were performed as described in Chapter 2.

Strains

The following strains were obtained from the CGC which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440): LKC34 (*C. elegans*, Madagascar), HK105 (*C. briggsae*, Japan), JU1373 (*C. tropicalis*, La Réunion), JU1422 (*C. nigoni*, India), JU800 (*C. n. sp. 5*, China) and VX80 (*C. latens*, China). Additional strains used in this study are listed in the Appendix.

Behavioural assays

In most cases (Fig. 5.2A, 3, and 4) 15-25 young adult hemaphrodites/females were picked onto low-peptone NGM plates seeded with 20 µl OP50 48h previously. [O$_2$] and [CO$_2$] were controlled using a Precision Pressure Regulator (Norgren, 11-818-999) and LabView software (National Instruments). Gas mixes were delivered to air-tight plastic chambers at 5ml/min using a Mass Flow Controller FMA5400/5500 (Omega Engineering). Video recordings were taken at 5fps with DinoCapture 2.0 software, using a Dino-Lite camera. In Fig. 5.2B aerotaxis was performed using the microfluidic system described in Chapter 2. Speed and reversals were measured using Zentracker (https://github.com/wormtracker/zentracker).

Molecular Biology

Gateway

Most expression constructs were generated using MultiSite Gateway Recombination (Invitrogen). To amplify the *F11A10.5* promoter from *C. elegans*
cDNA we used

```
ggggACAACTTTGTATAGAAAAAGTTTGTacaccatctcggcacaaaaattcg
```
and

```
ggggACTGCTTTTTGTACAAACTTGgacccctaaaacactcaatattaggaatataaaac.
```

We cloned the *F11A10.5* protein-coding region (gDNA) using

```
ggggACAAGTTTGTACAAAAAAGCAGGCTttcagaaaaatggcctgttcatggaccttcc
```
and

```
ggggACCACCTTGTACAAAGAAAGCTGGGTAgagctctggaacaggcaccttg.
```

To amplify cDNA corresponding to *F11A10.5* we used

```
ggggACCACTTTGTACAAAAAAGCAGGCTttcagaaaaatggcctgttcatggaccttcc
```
and

```
ggggACCACCTTGTACAAAGAAAGCTGGGTAtttagcttggaacaggcaccttgg.
```

Fosmid recombineering

The SL2::GFP cassette from pBALU9 was amplified using

```
GAAATATCATTCGTTTATGAGATCCAAACAGGTCCTGCTCAGCAGCTCAG
```

```
Agctgtctcatcactttcactacagggtaac
```
and

```
aagagtacaagattggaatgattggatag
```
```
attgaaaaaatatcacactattgtatagttcatccatgccatg,
```
for *F11A10.5* fosmid recombineering (Tursun et al., 2009).

Gibson Assembly

To generate a lesion in the *F11A10.5* locus we co-expressed Cas9 and

```
atccataggagccacagga.
```
The guide sequence was amplified for insertion into Eco RI-cut expression plasmids using

```
TTCTAGCTCTAAAACtcctgttgctcttatgatCacaacttgacgcgc
```
```
gcggtcaagtgtGatccataggagccacaggaGTTTTAGAGCTAGAA.
```

Contributions

C Chen isolated EMS mutants and helped with mapping. G Nelson helped adapt the CloudMap procedure to our WGS data.

References

Development 126, 2241–2251.

Conclusions and future directions
Mechanism and conservation of MALT1-mediated neuromodulation

The type 1 paracaspase MALT1 is a well-characterized signal transduction hub during B and T cell activation (Jaworski and Thome, 2015). In Chapter 2 we show that, in C. elegans, it is required for neuronal activation as well. In RMG hub neurons, MALT-1 functions together with other classical immune signaling molecules, ACTL-1, IRAK and IκBζ to mediate IL-17-driven neuromodulation. Our data suggest that, reminiscent of its role in immunity, MALT-1 functions as both a scaffolding site and a protease to activate downstream transcriptional effectors in neurons.

It is not surprising that MALT1 and IL-17 orthologs have related functions, as mammalian MALT1 is critical for the activation of Tₜ₁₇ cells (a major source of IL-17) (Jeltsch et al., 2014). That MALT1 participates directly in IL-17 signaling, however, has not been described before. Our findings suggest a model in which MALT-1/ACTIL-1/IRAK complexes signal from IL-17 receptors to mediate activation of IκBζ in RMG and other neurons. Several questions arise from this discovery. Most importantly, are IL-17 signaling and/or neuromodulation conserved functions of paracaspases? All known mammalian immune receptors known to activate MALT1 contain phosphorylated immunoreceptor signaling motifs (ITAMs) (Jaworski and Thome, 2015). These drive phosphorylation of CARD-containing proteins, such as CARMA1 and CARMA3, which stimulate the assembly of CBM (CARD-Bcl10-MALT1) complexes. However, ITAM motifs and CARMA proteins appear to be unique to chordates (Finn et al., 2017; Staal et al., 2016). CARD-coiled-coil domains and Bcl10 homologs have been found in some invertebrates, but other than MALT1, CBM orthologs are not present in C. elegans (Staal et al., 2016; Sullivan et al., 2009). Similarly the primary downstream target of CBM signaling, NF-κB, has not been found in nematodes (Sullivan et al., 2009). IL-17 cytokines, on the other hand, are present in many invertebrates; like MALT1 they have been identified in mollusks, annelids, arthropods and nematodes (Huang et al., 2015; Hulpiau et al., 2015). Therefore, it may be that type 1 paracaspases have an ancient role in IL-17 signaling. To explore this
possibility, IL-17 and MALT1 signal transduction pathways must be defined in more organisms, including invertebrates.

Additionally, it will be interesting to discover whether MALT1 mediates IL-17 signaling in any human cell types. A major hypothesis raised by our study is that mammalian MALT1 has a neuromodulatory role analogous to its C. elegans ortholog, perhaps explaining its expression in the brain (Gewies et al., 2014). To date however, no studies have assessed the impact of MALT1 disruption in mammalian neurons. Future work should aim to do so.

Several questions still remain regarding the role of MALT-1 in C. elegans neurons. First, how is MALT-1 activated by IL-17 receptor stimulation? It will be informative to test whether the association of MALT-1 with ACTL-1 and/or IRAK is dependent on IL-17 receptor activation. It is also possible that pre-formed complexes are post-translationally modified during IL-17 signaling. How MALT1 signals to IκBζ, and what role its protease activity plays in this pathway must also be addressed.

Finally, a major goal will be to identify the mechanisms by which MALT1/IκBζ activity promotes neuronal activity. Our transcriptomic analysis provides a global picture of how this pathway remodels animal physiology. Future efforts should be targeted to specific neurons to explore specifically how neuronal transcriptomes are affected.

How non-core elf3 translation initiation factors regulate behavioural state

We show in Chapter 4 that EIF-3.K and EIF-3.L maintain the behavioural state associated with aggregation behaviour by enhancing the responsiveness of RMG neurons. The mechanism by which they do so is not clear, but the most obvious scenario, based on previous functional characterization of other elf3 subunits, is that they regulate the translation of a specific subset of mRNAs (Choudhuri et al., 2013; Lee et al., 2015; Shah et al., 2016). Several recent technological advances
may help to test this possibility. Ribosome profiling, which isolates monosome-protected transcripts that are then reverse-transcribed and sequenced, can be used to purify and quantify mRNA that is in the process of being translated (Ingolia et al., 2009). PAR-CLIP (photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation) is a method for directly identifying mRNAs that are physically bound to a protein of interest (Hafner et al., 2010), as illustrated by its elucidation of the mRNA-specificity of eIF3 in human 293T cells (Lee et al., 2015). Both techniques have been adapted to C. elegans (Aeschimann et al., 2015; Jungkamp et al., 2011), so provide feasible approaches to identify (i) transcripts whose translation is dependent on EIF.3-K/EIF.3.L, or (ii) EIF-3-mRNA interactions that are stabilized by these accessory subunits. To select for putative targets that regulate behaviour, these experiments should be specifically targeted to the nervous system, ideally to RMG interneurons.

The structure of eIF3 bound to the 43S pre-initiation complex suggests that eIF3e mediates the attachment of eIF3k and eIF3l to the assembly (des Georges et al., 2015). It would be informative to disrupt the conserved residues that lie at this interface to test whether the regulation of neuronal responsiveness by EIF-3.K and EIF-3.L depends on their insertion into the eIF3 complex. If their function turns out to be eIF3-independent, proteomic approaches might be helpful to identify other factors with which they interact.

Finally, we note that mutations in eif-3.K and eif-3.L induce a transcriptional state that partially overlaps with that induced by loss of IL-17 signaling. We do not know the significance of this relationship, so it will be important to determine whether the two phenotypes are additive. Additionally, once the downstream mechanisms of IL-17 signaling are established, it will be possible to ask whether eIF3 subunits modulate the expression of IL-17 targets.
The role of CAMTA transcription factors in activity homeostasis

Ca\(^{2+}\)-regulated transcription factors are an important link between neuronal activity and long-term change in the nervous system (West et al., 2002). In Chapter 3 we show that mutations in *C. elegans* CAMTA, a putative CaM-binding transcription factor, have complex effects on activity and adaptation in the URX-RMG circuit. Our analyses of multiple sensory neurons raise the hypothesis that one important function of CAMTAs is to limit the excitability of neurons. Given the link between deranged Ca\(^{2+}\) signaling and neurotoxicity (Berridge, 2010; Kasumu and Bezprozvanny, 2010), it may be that this function underlies the loss of cerebellar Purkinje cells in rodents lacking neuronal CAMTA1 (Long et al., 2014). Cell-specific loss-of-function experiments must be used to test directly whether CAMT-1 limits the excitability of neurons. It will also be important to extend this question to other cell types and other organisms to test whether preventing hyperactivity is a general function of CAMTAs.

We propose that CAMTA may be particularly important during homeostatic drives. Our data indicates that CAMT-1 limits the degree to which circuit activity is upregulated in response to sensory deprivation, suggesting that CAMTAs may be negative regulators of homeostatic plasticity. This model can be tested in mammalian systems, in which homeostatic phenomena have been well-characterized but are not completely understood at a molecular level (Turrigiano, 2011; Turrigiano and Nelson, 2004).

We observed large-scale disruption of the transcriptome when CAMT-1 levels were perturbed. It will be useful to complement this analysis with identification of CAMT-1 genomic binding sites using ChIP-seq, to establish which targets are likely to be direct. As our work suggests that CAMT-1 functions in an activity-dependent manner, it will be important to address whether the transcriptional activity of CAMT-1 is modulated by activity and by Ca\(^{2+}\) signaling. Like MALT-1 and EIF-3 subunits, CAMT-1 is broadly expressed in the nervous system. An
important goal for future studies of all three molecules will be to perform gene expression studies with single-neuron resolution.

Perspective
A theme throughout this thesis is that many, if not all, of the molecules that I find to be regulators of neural circuit activity, also play important roles in other physiological contexts. In light of this, it is interesting to consider the general surprise that greeted the assembly of the human genome - which revealed, in the words of Craig Venter, that “there are far fewer genes than anyone imagined” (The Observer, 11 Feb 2001). Current estimates suggest we have in the region of 20,000 protein-coding genes, not many more than nematodes, and substantially less than the water flea (Colbourne and et al, 2011; Consortium, 1998; Consortium et al., 2013; Ezkurdia et al., 2014). It may turn out to be the case that an important reason for this is that many, or most, genes perform more than one function. Probing the mechanism by which MALT1, CAMTAs and non-core eIF3 subunits control neural circuit activity will provide an interesting parallel for studies of their roles in other contexts, and inform attempts to manipulate their activity during disease.

References

targets to promote TH17 differentiation. Nat Immunol 15, 1079–1089.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>AX204</td>
<td>npr-1(ad609)</td>
</tr>
<tr>
<td>AX5876</td>
<td>npr-1(ad609); malt-1(db1193)</td>
</tr>
<tr>
<td>AX5877</td>
<td>npr-1(ad609); malt-1(db1194)</td>
</tr>
<tr>
<td>AX5978</td>
<td>npr-1(ad609); malt-1(db1195)</td>
</tr>
<tr>
<td>AX5989</td>
<td>npr-1(ad609); malt-1(db1194); dbEx614[gcY-37p::YC2.60::unc-54 3'utr; ccRFP]</td>
</tr>
<tr>
<td>AX5797</td>
<td>npr-1(ad609); ilc-17.1(tm5218); dbEx614[gcY-37p::YC2.60::unc-54 3'utr; ccRFP]</td>
</tr>
<tr>
<td>AX5993</td>
<td>npr-1(ad609); malt-1(db1195); dbEx637[RMGp::YC2.60; ccRFP]</td>
</tr>
<tr>
<td>AX5995</td>
<td>npr-1(ad609); malt-1(db1194); dbEx637[RMGp::YC2.60; ccRFP]</td>
</tr>
<tr>
<td>AX6250</td>
<td>npr-1(ad609); malt-1(db1194); dbls[pnfki-1::nfki-1::GFP; ccRFP]</td>
</tr>
<tr>
<td>AX6133</td>
<td>npr-1(ad609); malt-1(db1194); pik-1(tm2167); [RMGp::YC2.60; ccRFP]</td>
</tr>
<tr>
<td>AX6392</td>
<td>npr-1(ad609); malt-1(db1194); dbEx925[rab-3p::malt-1::GFP; ccRFP]</td>
</tr>
<tr>
<td>AX6745</td>
<td>npr-1(ad609); edls6[unc-119p::gfp; rol-6(su1006)]</td>
</tr>
<tr>
<td>AX6415</td>
<td>npr-1(ad609); malt-1(db1194); dbEx930[rab-3p::malt-1 (C374A) ::SL2mCherry; ccRFP]</td>
</tr>
<tr>
<td>AX6742</td>
<td>npr-1(ad609); malt-1(db1194); dbEx930[rab-3p::malt-1::SL2mCherry.; ccRFP]</td>
</tr>
<tr>
<td>AX6706</td>
<td>npr-1(ad609); malt-1(db1194); dbEx888[plfp-5::malt-1::SL2mCherry; ccGFP]</td>
</tr>
<tr>
<td>AX6739</td>
<td>npr-1(ad609); malt-1(db1194); dbEx982[gcY-32p::malt-1::SL2mCherry; ccGFP]</td>
</tr>
<tr>
<td>AX6727</td>
<td>npr-1(ad609); malt-1(db1194); dbEx978[hsp-16.41p::malt-1::SL2mCherry; ccRFP]</td>
</tr>
<tr>
<td>AX6733</td>
<td>npr-1(ad609); malt-1(db1194); dbEx979[malt-1p::malt-1::mCherry; ccRFP]</td>
</tr>
</tbody>
</table>
AX6762 npr-1(ad609); rege-1(db1226)
AX6793 npr-1(ad609); rege-1(db1227)
AX6836 npr-1(ad609); malt-1(db1194); dbEx637[RMGp::YC2.60; ccRFP];
dbEx996[npr-1p::malt-1::SL2mCherry; ccRFP]
AX6859 npr-1(ad609); malt-1(db1194); dbEx996[npr-1p::malt-
1::SL2mCherry; ccRFP]
AX2073 dbEx[flp-17p::YC3.60]
AX6823 malt-1(db1194); dbEx[flp-17p::YC3.60]
AX5689 npr-1(ad609); ilc-1.1(tm5218)
AX6010 npr-1(ad609); nfki-1(db1197)
AX6186 npr-1(ad609); dbIs[pilc-1.1::ilc-1.1::mCherry]
AX6130 npr-1(ad609); dbIs[pnfki-1::nfki-1::GFP]

Chapter III
AX6236 npr-1(ad609); camt-1(ok515)
AX3727 npr-1(ky13); camt-1(db973)
AX6592 npr-1(ad609); camt-1(db1214)
AX6314 npr-1; camt-1(db973); dbEx614[gcy-37p::YC2.60::unc-54 3’utr;
ccRFP]
AX6340 npr-1; camt-1(ok515); dbEx614[gcy-37p::YC2.60::unc-54 3’utr;
ccRFP]
AX6298 npr-1; camt-1(db973); dbEx637[RMGp::YC2.60; ccRFP]
AX6342 npr-1; camt-1(db973); dbEx902[rab-3p::camt-1a::SL2mCherry;
ccRFP]
AX6344 npr-1; camt-1(db973); dbEx908[npr-1p::camt-1a::SL2mCherry;
ccRFP]
AX6346 npr-1; camt-1(db973); dbEx910[npr-1p::camt-1b::SL2mCherry;
ccRFP]
AX6348 npr-1; camt-1(db973); dbEx911[flp-5p::camt-1a::SL2mCherry;
ccRFP]
AX6350 npr-1; camt-1(db973); dbEx912[gcy-32p::camt-1a::SL2mCherry; ccRFP]
AX6460 npr-1; gcy-36(db66); dbEx614[gcy-37p::YC2.60::unc-54 3'utr; ccRFP]
AX6386 npr-1; camt-1(db973); gcy-36(db66); dbEx614[gcy-37p::YC2.60::unc-54 3'utr; ccRFP]
AX6460 npr-1; gcy-36(db66); dbEx614[gcy-37p::YC2.60::unc-54 3'utr; ccRFP]
AX6461 npr-1; unc-64(e246); dbEx614[gcy-37p::YC2.60::unc-54 3'utr; ccRFP]
AX6462 npr-1; unc-64(e246); camt-1(db973); dbEx614[gcy-37p::YC2.60::unc-54 3'utr; ccRFP]
AX6387 camt-1(db973); dbEx[flip-17p::YC3.60]
AX6388 camt-1(ok515); dbEx[flip-17p::YC3.60]
AX6398 camt-1(ok515); dbEx[flip-17p::YC3.60]; dbEx924[flip-17p::camt-1a::SL2mCherry; ccRFP]
AX6412 npr-1; camt-1(db973); dbEx929[rap-3p::camt-1a(I962N)::SL2mCherry; ccRFP]
AX6414 npr-1; camt-1(db973); dbEx614[gcy-37p::YC2.60::unc-54 3'utr; ccRFP]; dbEx912[gcy-32p::camt-1a::SL2mCherry; ccRFP]
AX1888 npr-1; ials25[gcy-37p::GFP]
AX6463 npr-1; camt-1(db973); ials25[gcy-37p::GFP]
AX6464 npr-1; ials25[gcy-37p::GFP]; dbEx912[gcy-32p::camt-1::SL2mCherry; ccRFP]
AX6509 camt-1(db973); dbEX[gcy-8p::YC3.60; ccRFP]
AX2047 dbEX[gcy-8p::YC3.60; ccRFP]
AX6597 npr-1; dbIs14[camt-1(fosmid)::GFP; ccRFP]
AX6631 npr-1; camt-1(ok515); dbEx965[hsp-16.41p::camt-1::SL2mCherry; ccRFP]
AX6697 npr-1; dbEx971[rab-3p::NLS-camt-1a::GFP; ccRFP]
AX6701 npr-1; camt-1(db973); dbEx972[rab-3p::camt-1a(H190P)::
SL2mCherry; ccRFP

AX6804
npr-1; nfki-1(db1197); dbls14[camt-1(fosmid)::GFP; ccRFP]

AX6815
npr-1; camt-1(ok515); dbls12[RMGp::YC2.60; ccRFP]

AX6827
ottls355[rab-3p::NLS::RFP]; dbls14[camt-1(fosmid)::GFP; ccRFP]

AX6830
npr-1; T06D8.9(db1230)

AX6831
npr-1; T06D8.9(db1230)

Chapter IV

AX3777
npr-1(ky13); eif-3.L(db1015)

AX6057
npr-1(ad609); eif-3.L(485491)

AX6071
npr-1(ad609); eif-3.K(db1205)

AX6072
npr-1(ad609); eif-3.K(db1206)

AX6195
npr-1; eif-3.K(db817)

AX6103
npr-1; eif-3.L(db1015); eif-3.K(db1205)

AX6293
npr-1; eif-3.L(db1015); dbls[nfki-1::nfki-1::GFP; ccRFP]

AX6234
npr-1; ife-2(ok306)

AX6294
npr-1; eif-3.L(db1015); eif-3.K(db1205); gcn-2(ok871)

AX6296
npr-1; eif-3.L(db1015); eif-3.K(db1205); ife-4(ok320)

AX6297
npr-1; eif-3.L(db1015); eif-3.K(db1205); dbEx637[RMGp::YC2.60; ccRFP]

AX6569
npr-1; eif-3.K(db1205); dbEx959[eif-3.K(fosmid)::GFP; ccRFP]

AX6622
npr-1; eif-3.L(db1205); dbEx959[eif-3.L(fosmid)::GFP; ccRFP]

AX6297
npr-1; eif-3.L(db1015); eif-3.K(db1205); dbEx637[RMGp::YC2.60; ccRFP]

Chapter V

AX3381
npr-1(ky13); egl-2(db756)

AX3391
npr-1(ky13); plc-1(db766)

AX3575
npr-1(ky13); unc-42(db821)

AX3637
npr-1(ky13); unc-22(db883)

AX3246
npr-1(ad609); F11A10.5(db640)
AX5859
\textit{npr-1(ad609); F11A10.5(db1192)}

AX6061
\textit{npr-1(ad609); F11A10.5(db640); dbEx614[gcyc-37p::YC2.60::unc-54 3'utr; ccRFP]}

AX6063
\textit{npr-1(ad609); F11A10.5(db640); dbEx637[RMGp::YC2.60; ccRFP] unc-54 3'utr; ccRFP]}

AX6212
\textit{npr-1(ad609); F11A10.5(db640); dbEx890[F11A10.5p::F11A10.5::SL2mCherry; ccGFP]}

AX6465
\textit{npr-1(ad609); F11A10.5(db640); dbEx940[F11A10.5(fosmid)::SL2GFP; ccRFP]}

\textit{cc = unc-22p (drives expression in coelomocytes)}

\textit{RMGp = ncs-1::nCre fli-21p>Stop>GFP}