Variation in blood transfusion and coagulation management in Traumatic Brain Injury at the Intensive Care Unit: A survey in 66 neurotrauma centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study.

Transfusion and coagulation management

Variation in transfusion and coagulation management in European neurotrauma centers

Jilske A. Huijben, MD.1, Mathieu van der Jagt, MD, PhD.2, Maryse C. Cnossen, MSc.1, Marieke J.H.A. Kruip, MD, PhD.3, Iain K. Haitsma, MD.4, Nino Stocchetti, MD.5, Andrew I.R. Maas, MD, PhD.6, David K. Menon, MD, PhD.7, Ari Ercole, MD, PhD7, Marc Maegel, MD, PhD.8, Simon J. Stanworth, MD.9, Giuseppe Citerio, MD.10, Suzanne Polinder, PhD.1, Ewout W. Steyerberg, PhD.1,11 and Hester F. Lingsma, PhD.1 on behalf of the CENTER-TBI investigators.

Center for Medical Decision Sciences, Department of Public Health, Erasmus MC – University Medical Center Rotterdam, Rotterdam, the Netherlands

Department of Intensive Care (Office H-611) and Erasmus MC Stroke Center, Erasmus Medical Center Rotterdam, P.O. Box 2040, 3000 CA - University Medical Center Rotterdam, Rotterdam, the Netherlands

Mary Ann Liebert, Inc, 140 Huguenot Street, New Rochelle, NY 10801
<table>
<thead>
<tr>
<th></th>
<th>Department of Hematology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Department of Neurosurgery, Erasmus MC, 's Gravendijkwal 230, Kamer H-703, 3015, CE - University Medical Center Rotterdam, Rotterdam, the Netherlands</td>
</tr>
<tr>
<td>5</td>
<td>Department of Pathophysiology and Transplants, University of Milan, Italy and Fondazione IRCCS Ca' Granda – Ospedale Maggiore Policlinico, Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Milan, Italy</td>
</tr>
<tr>
<td>6</td>
<td>Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium</td>
</tr>
<tr>
<td>7</td>
<td>Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom</td>
</tr>
<tr>
<td>8</td>
<td>Department of Traumatology, Orthopedic Surgery and Sportsmedicine, Cologne-Merheim Medical Center (CMMC) and the Institute for Research in Operative Medicine (IFOM), University of Witten/Herdecke, Cologne, Germany</td>
</tr>
<tr>
<td>9</td>
<td>NHS Blood and Transplant/Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom</td>
</tr>
<tr>
<td>10</td>
<td>School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy; Neurointensive care, San Gerardo Hospital, ASST-Monza, Monza, Italy</td>
</tr>
<tr>
<td>11</td>
<td>Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands</td>
</tr>
</tbody>
</table>
Corresponding author

Jilske Huijben, MD

Full mailing address: P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, internal postal address Na-
223

Contact information: Email: j.a.huijben@erasusmc.nl, Telephone: 0031 10 703 84 53, Fax: 0031

Coauthors

Dr Mathieu van der Jagt

Full mailing address: Department Intensive Care, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The

Netherlands

Contact information (telephone, fax, and e-mail address): Email: m.vanderjagt@erasusmc.nl,

Telephone: +0031 010 703 0478

Maryse C. Cnossen, MSc

Full mailing address: P.O. Box 2040, 3000 CA Rotterdam, The Netherlands, internal postal address Na-
2217

Contact information (telephone, fax, and e-mail address): Email m.c.cnossen@erasusmc.nl, Telephone

+31 10 703 89 94, Fax: 0031 107038475

Dr. Marieke J.H.A. Kruip

Full mailing address: Postbus 2040, 3000 CA Rotterdam, intern postal address Na-823, The Netherlands
104 Contact information (telephone, fax, and e-mail address): Email: giuseppe.citerio@unimib.it, Telephone:

105 +390392334316, Fax +390392334340

106 Dr Suzanne Polinder

107 Full mailing address: P.O. Box 2040, 3000 CA Rotterdam, The Netherlands

108 Contact information (telephone, fax, and e-mail address): Email: s.polinder@erasmusmc.nl, Telephone

109 +31 10 704 42 69 or +31 6 26 46 73 38

110 Prof Ewout W. Steyerberg

111 Full mailing address: Department of Medical Statistics LUMC PO Box 9600 2300 RC Leiden The

112 Netherlands

113 Contact information (telephone, fax, and e-mail address): Email: e.w.steyerberg@lumc.nl or

114 E.Steyerberg@ErasmusMC.nl, Telephone: 31 71 5269700

115 Dr Hester F. Lingsma

116 Full mailing address: P.O. Box 2040, 3000 CA Rotterdam, The Netherlands

117 Contact information (telephone, fax, and e-mail address): Email: h.lingsma@erasmusmc.nl, Telephone

118 +31 10 704 42 69 or +31 6 26 46 73 38
Abstract

Our aim was to describe current approaches and to quantify variability between European intensive care units (ICUs) in patients with TBI. Therefore, we conducted a provider profiling survey as part of the ‘Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury’ (CENTER-TBI) study. The ICU Questionnaire was sent to 68 centers from 20 countries across Europe and Israel. For this study, we used ICU questions focused on 1) hemoglobin target level (Hb-TL), 2) coagulation management, and 3) deep venous thromboembolism (DVT) prophylaxis. Seventy-eight participants, mostly intensivists and neurosurgeons of 66 centers completed the ICU questionnaire. For ICU-patients, half of the centers (N=34; 52%) had a defined Hb-TL in their protocol. For patients with TBI, 26 centers (41%) indicated a Hb-TL between 70 and 90 g/l and 38 centers (59%) above 90 g/l. To treat trauma related hemostatic abnormalities the use of fresh frozen plasma (N=48; 73%) or platelets (N=34; 52%) was most often reported, followed by the supplementation of vitamin K (N=26; 39%). Most centers reported using DVT prophylaxis with anticoagulants frequently or always (N=62; 94%). In the absence of hemorrhagic brain lesions, 14 centers (21%) delayed DVT prophylaxis until 72 hours after trauma. If hemorrhagic brain lesions were present, the number of centers delaying DVT prophylaxis for 72 hours increased to 29 (46%). Overall, a lack of consensus exists between European ICUs on blood transfusion and coagulation management. The results provide a baseline for the CENTER-TBI study and the large between-center variation indicates multiple opportunities for comparative effectiveness research.

Keywords: intensive care unit; traumatic brain injury; coagulopathy; transfusion; Europe
Introduction

The management of hemorrhage and disordered coagulation is a common and critically important challenge in trauma patients. This is particularly the case for patients with severe traumatic brain injury (TBI) where physicians have to balance the risks of progressive hemorrhage in the brain against secondary thrombotic complications including deep venous thrombosis (DVT). Many controversies continue to exist regarding the appropriate management for optimizing blood and coagulation status.

Transfusion thresholds for anaemia are a particularly controversial area in TBI. According to the guidelines, transfusion in general critically ill patients is recommended at a restrictive hemoglobin target level (Hb-TL) of 70 g/l rather than a liberal Hb-TL of 90 g/l or 100 g/l. Whether such target levels also apply to patients with TBI is unclear. Inappropriate use of blood products exposes patients to a number of systemic risks and may even lead to progressive hemorrhagic injury following TBI. However, cerebral oxygenation may be improved with higher hemoglobin concentrations whereas restrictive transfusion thresholds may predispose to brain tissue hypoxia and may increase the risk of early mortality. On the other hand, a recent large retrospective cohort study indicated that a restrictive blood transfusion policy was not associated with increased mortality and can be cost-effective in patients with TBI. An additional challenge for the management of both blood- and coagulation status is the presence of coagulopathy. Both pro- and anticoagulatory abnormalities can be observed after TBI in around one out of three patients. Coagulopathy at admission is associated with increased mortality and poor neurological outcome. Coagulopathy may result from defective clot initiation, poor clot formation or hyper fibrinolysis. Acidosis, hypothermia, coagulation factor consumption or dilution, and the more recently described acute coagulopathy of trauma-shock which results from widespread endothelial activation after hypoperfusion may contribute to coagulopathy. Finally, patients with TBI are at increased risk of venous thromboembolism (VTE) (around 20%) compared...
with general ICU patients (around 6-8%). Here, the balance between the prevention of VTE and the risk of (progressive) hemorrhage of the brain depends largely on the timing of thromboprophylaxis with anticoagulants. However, current Brain Trauma Foundation guidelines do not make clear recommendations on coagulation management.

In summary, no definitive evidence exists to guide physicians in determining the transfusion and coagulation management in patients with (severe) TBI. This will likely lead to variations in management. Our aim was to describe and quantify variability in European ICUs for blood transfusion and coagulation management in patients with TBI, using a survey among European neurotrauma centers participating in the Collaborative European Neurotrauma Effectiveness Research in TBI (CENTER-TBI) study.
Material and Methods

Participating centers

This study is part of the prospective, longitudinal ‘Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury’ (CENTER-TBI) study in 68 centers from 20 countries across Europe and Israel. The CENTER-TBI investigators and participants are listed in Supplemental Data 1. In 2014, before the start of inclusion of patients, the principle investigators of each center were asked to complete a set of questionnaires on structure and process of care: ‘the Provider Profiling Questionnaires’. The questionnaires were about TBI management irrespective of systemic injuries. One of these questionnaires concerned ICU management.

Provider Profiling Questionnaire

The provider profiling questionnaire was developed in a systematic manner. The literature (including guidelines and available surveys) was reviewed and experts of various disciplines (neurosurgeons, (neuro)intensivists, neurologists, emergency department physicians, rehabilitation physicians, medical ethicists, health care economists and epidemiologists) were consulted throughout the different phases in the development process. Preliminary questionnaires were pilot-tested in 16 of the participating centers for unexpected or missing values and ambiguity, and received feedback was incorporated. For more information about the development, administration and content of the total set of provider profiling questionnaires, see Cnossen et al., 2016. In this study, we focus on 10 questions (with additional sub questions) on hemoglobin target levels, trauma related coagulation management, and use and timing of thromboprophylaxis (Supplemental Data 2).

Hemoglobin target level and coagulation management
Participants were explicitly asked for their general policy rather than for individual treatment preferences. General policy was defined as ‘the way the large majority of patients (>75%) with a certain indication would be treated’. The ICU questionnaire consisted mostly of multiple-choice questions and one open question; the Hb-TL in the protocol at the ICU for the general ICU population. For the hemoglobin unit conversion from mmol/L towards g/L we multiplied with the factor 1.6 and then rounded up to tens.

Statistical analysis

Descriptive statistics (frequencies and percentages) were used to describe the treatment policies reported by the participating centers. For some questions in which centers had to indicate how often a certain approach was taken by choosing ‘never’ (in 0-10% of cases), ‘rarely’ (in 10-30% of cases), ‘sometimes’ (in 30-70% of cases), ‘frequently’ (in 70-90% of cases) and ‘always’ (90-100% of cases), categories were combined (e.g. combining ‘always’ and ‘frequently’) because of low numbers in these categories.

To gain more insight into characteristics that determine treatment policies we divided centers in relatively high- and middle-income countries versus lower-income countries, and in countries from different geographic locations (North and West Europe versus South and East Europe and Israel). The designation into relatively lower-income countries was based on a 2007 report by the European Commission 21, and the designation into geographic location was based on the classification by the United Nations. Analyses were performed using the Statistical Package for Social Sciences (SPSS) version 21. 22
Results

Participating centers

Sixty-six centers of the 68 centers completed the ICU questionnaire (response rate= 97%). The questionnaire was completed by intensivists (N=33; 50%), neurosurgeons (N=23; 35%), administrative staff (N=11; 17%), neurologists (N=5, 8%), anesthetists (N=5, 8%) and a trauma surgeon (N=1; 2%).

Almost all the centers had an academic affiliation (N=60; 91%) and most centers were designated as a level I trauma center (N=44; 67%). Centers had a median of 33 (interquartile range 22-44) beds for general ICU patients and treated a median of 92 (interquartile range 52-160) patients with TBI, of all severities, annually. An extensive overview of all the center characteristics is described in a previous publication.

For the management of TBI at the ICU, most centers indicated to follow the 2007 Brain Trauma Foundation (BTF) guidelines (N=28; 42%) or institutional guidelines (N=21; 32%), which were broadly based on BTF and/or national guidelines. Some centers indicated they did not have specific guidelines for management of TBI (N=11; 17%) or that they developed a guideline independently from available guidelines (N=2; 3%).

Hemoglobin target level

Half of the centers (N=34; 52%) reported to have hemoglobin target levels (Hb-TL) described in their protocol for general/non-TBI ICU patients. The reported Hb-TL varied (open question): 110 g/l (N=1; 3%), 100 g/L (N=8; 28%), 90 g/L (N=4; 14%), 80 g/L (N=9; 31%), 70 g/L (N=5; 18%), 80-100 g/L (N=1; 3%) and 70-80 g/L (N=1, 3%). In non-neurological critically ill patients, 35 of the centers (56%) reported a Hb-TL between 70 g/L and 80 g/L. In patient with TBI, 10 of the centers (16%) indicated to use a Hb-TL between 70 and 80 g/L. The remainder of the centers used higher Hb-TL: between 80 g/L and 90 g/L (N=16; 25%), between 90g/L and 100 g/L (N=20; 31%), and above 100 g/L (N=18; 28%). (Table 1)
Coagulation management

Transfusion with fresh frozen plasma was most often reported for correction of trauma related coagulopathy (N=48; 73%), followed by the use of platelets (N=34; 52%). Coagulopathy was most often managed with vitamin K (N=26; 39%), fibrinogen (N=19; 29%), Prothrombin Complex Concentrate (N=17; 26%), Tranexamic acid (N=7; 11%) or recombinant factor VIIa (N=3; 5%). One center reported to use Desmopressin, in addition to Tranexamic Acid. (Figure 1)

Most centers indicated that they use deep venous thrombosis (DVT) prophylaxis with anticoagulants frequently (N=18; 27%) or always (N=44; 67%) in patients with TBI. Fourteen centers (21%) indicated they generally wait 72 hours after trauma before commencing DVT prophylaxis in the absence of hemorrhagic brain lesions. However, twice that number of centers (N=29; 46%) indicated to wait 72 hours after trauma in the presence of hemorrhagic brain lesions. Low molecular weight heparin was most commonly indicated as the prophylactic drug of choice (N=54; 82%), followed by subcutaneous unfractioned heparin (N=7; 11%) and intravenous heparin (N=1; 2%). (Table 2)

Most centers indicated that they would always test a coagulation panel prior to the insertion of a parenchymal sensor (N=45; 69%) or a ventricular catheter (N=46; 71%). The reported minimum platelet count for the insertion of a ventricular catheter was variable: >100 x10^9/L (N=30; 46%), >80 x10^9/L (N=9; 14%) or >50 x10^9/L (N=9; 14%). In most of the remaining centers the minimum platelet count depended on the surgeon (N=13; 20%). Also, the reported minimum International Normalized Ratio (INR) considered safe for placement of a ventricular catheter was variable: <1.4 (N=21; 33%), <1.3 (N=17; 26%) or <1.2 (N=8; 12%). Again, in most of the remaining centers the minimum INR was indicated...
to depend on surgeon’s individual preferences (N=15; 23%). There were no centers that answered ‘never’ on all questions. (Table 3)

Twenty-nine centers indicated identical policies for coagulation management (always using DVT prophylaxis, and always obtaining a coagulation panel prior to insertion of a parenchymal or ventricular catheter). The majority of these centers are located in South and East Europe and Israel (N=13, 56%) versus (N=16, 37%) in North and West Europe and the majority are located in high income countries (N=26, 47%), versus (N=3, 27%) in lower income countries.
Discussion

This study shows large between-center variation in blood transfusion and coagulation-directed policies in critically ill patients with TBI. More centers indicated a restrictive Hb-TL (between 70 g/l and 80 g/L) in general ICU patients compared to patients with TBI. Reported coagulation management was variable regarding timing of deep venous thrombosis (DVT) prophylaxis with anticoagulants, minimum platelet count and INR values prior to ICP probe insertion, and correction of trauma related coagulopathy.

The large between-center differences are likely in part explained by a lack of evidence on optimal management of patients with TBI. A majority of centers in our study reported to adhere to the 2007 Brain Trauma Foundation (BTF) guidelines for the treatment of patients with TBI, but this guideline does not provide specific recommendations on red blood cell transfusion or coagulopathy management. Equally, some trauma guidelines have stated policies on blood transfusion and coagulation in trauma patients of which some pertain to patients with TBI, but recommendations are still scarce. 1, 2, 23 A recent update of the Cochrane Review of all Red Cell Transfusion trials reported on 12587 patients identified in 31 randomized trials and suggested that a restrictive rather than liberal transfusion practice improves outcomes, but noted the data was very limited for neurocritical care. 24 Regarding patients with TBI, several trials have been conducted on blood transfusion management 25, 26, and the reversal of coagulopathy 27, 28, but these all had a limited power. A recent large retrospective single-center study in TBI patients admitted to the intensive care 8 found that transfusion guided by a restrictive Hb-TL was associated with significantly less time with fever, higher cost-effectiveness and had the same risk of mortality compared with a liberal Hb-TL. Another explanation for the variation in management would be the between-center variation in the content of available protocols. E.g. we found that even between centers that do have a protocol on red blood cell transfusion policy, the reported Hb-TL still varied substantially. Overall in patients with TBI, there is no conclusive evidence or clear guidance in guidelines.
and protocols on blood transfusion and coagulopathy treatment. Still, with an aging TBI demographic with an increased prevalence of comorbidity, coagulation management might even become more complex. Concurrent use of anticoagulant and antiplatelet medication is a growing concern, prior warfarin treatment for example is associated with an increased risk of poor outcome. In addition, coagulation management in TBI is further complicated by the recent introduction of newer anticoagulants, such as direct thrombin inhibitors (dabigatran, argatroban).

For DVT prophylaxis the BTF guidelines do provide a recommendation, which was formulated quite broadly: DVT prophylaxis with anticoagulants can be started if the brain injury is stable and the benefit is considered to outweigh the risk of increased intracranial hemorrhage. Recommendations on the preferred agent, dose, or timing are lacking. In our study only 65% of centers indicated that they always would implement DVT prophylaxis. A review including 15 studies and 4,491 patients on DVT occurrence in TBI published in 2015 showed that DVT incidence is significantly increased (18% versus approximately 2%) when pharmaceutical prophylaxis is not given in the first 8 days. For the timing issue in DVT prophylaxis a novel theoretical prophylaxis protocol, ‘the Parkland Protocol’ has been recently described. The protocol takes into account the likelihood of natural progression of brain hemorrhage and in that way determines the timing of anticoagulation. The risk classification is based on the stability of the brain hemorrhage at a computed tomography (CT) scan, the modified Berne Norwood criteria (subdural hematoma >8 mm, epidural hematoma >8 mm, contusion or intraventricular hemorrhage >2 cm, multiple contusions per lobe, subarachnoid hemorrhage with abnormal CT angiography), and the presence of an ICP monitor or craniectomy. A randomized controlled trial (RCT) including 62 low risk patients showed the safety of this protocol for this group: no progression of brain hemorrhage with the use of low molecular weight heparin at 24 hours post injury and one DVT with the
use of placebo at 24 hours post injury. However, more evidence is needed before this protocol can be widely accepted for the guidelines.

The large between center-variation we found is in line with previous studies. For critically ill trauma patients, several surveys have been conducted to study the management of trauma related hemorrhage and coagulopathy. These studies also found large differences in clinical practices, even among level 1 trauma centers, for example in the use of viscoelastic testing. In the survey of Hamada et al. the reported Hb-TLs in critically ill trauma patients were compared with patients with TBI, and were significantly higher in patients with TBI, like in our study. In addition, two previous surveys were conducted that report the percentage respondents that chose specific Hb-TLs and the rationale for blood transfusion in patients with TBI (coagulation management was not assessed). In the study of Sena et al. a newly developed multiple-choice survey was completed by 312 physicians of the trauma surgery, neurosurgery, and ICU department of level I trauma centers in the United States. In the study of Badenes et al. a newly developed multiple-choice survey was used as well, but was completed by 868 respondents, mostly specialists in anesthesiology and intensive care, worldwide. In the study of Sena et al. 55% of respondents chose a restrictive policy of 70 g/l or less. Likewise, in the study of Badenes et al. 50% of respondents chose a low Hb-TL of 70 or 80 g/l, while in our study 16% chose a Hb-TL between 70 and 80 g/l. The difference could either be explained by a difference in patient population (severely injured patients with TBI in the study of Sena et al.), by a difference in answer options (we did not have an answer option below 70 g/l), or by a difference in policy between Europe and other continents.

Strengths of our study include the comprehensive development process of the questionnaires and the high response rate of 97%. Limitations include the survey-design, resulting in perceived practices rather than actual practices. Although we explicitly asked for general policy and data were anonymously collected, we cannot exclude differences between current findings and actual treatment in the participating centers. In addition, questions were aimed to assess general policy and contained no...
specific details on patient characteristics. This is not representative for clinical practice (possibly making the questions more difficult to answer). In addition, we could not make a distinction between pharmaceutical versus mechanical DVT prophylaxis. A further limitation comprises the representativeness of our sample. The majority of centers were Academic level I trauma centers with a special interest in neurotrauma. Findings are therefore not generalizable to non-specialized centers. In addition, differences between centers could represent differences in case-mix instead of true practice. The practice variability we report supports that evidence on optimal treatment approaches is needed. Such evidence can potentially be obtained in a non-randomized design by comparing outcomes between centers with different treatment policies. Such a Comparative Effectiveness Research approach exploits the existing between-center variation. Data on real time patient management and clinically relevant outcomes in the CENTER-TBI study are now being collected. Future research on blood transfusion and coagulation management in patients with TBI could lead to prevention of progressive brain hemorrhage and secondary problems like coagulopathy and VTE. For now, the optimal transfusion strategies to correct coagulopathy in terms of the ratio of packed blood cells, fresh frozen plasma (or similar products) and platelets are still being debated. This debate pertains both to optimal strategies with regard to reversal of trauma related coagulopathy and management of coagulopathy induced by conventional agents (such as vitamin K antagonists) and newer ones such as direct thrombin inhibitors. Still, others warn for the use of transfusion considering the possibility of complications of transfusion and unknown effects on (functional) outcome. Also for coagulation (enhancing) products larger studies are needed to prove a positive balance between the beneficial effects in terms of patient outcome and adverse effects on (thromboembolic) complications. New evidence is clearly needed on these topics, since control of blood and coagulation status could have a large impact on patient outcome, especially in patients with TBI.
Conclusions

In conclusion, we showed substantial variation in blood and coagulation management of patients with TBI at the ICUs in 66 centers in Europe and Israel participating in the CENTER-TBI study. This variation may be largely attributable to the lack of guidelines and high quality evidence on these topics. The large practice variation provides an opportunity to study the effectiveness of different policies in comparative effectiveness research.
Acknowledgements: The authors would like to thank all clinical and research staff at the CENTER-TBI sites for completing the provider profiling questionnaires.

Author disclosure statement

No competing financial interests exist

Funding: European Commission FP7 Framework Program 602150. Data used in preparation of this manuscript were obtained in the context of CENTER-TBI, a large collaborative project with the support of the European Commission 7th Framework program (602150). The funder had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.
References

Table 1. Red blood cell transfusion policy

<table>
<thead>
<tr>
<th>Items</th>
<th>Number</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>questionnaire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol at the ICU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>- Presence of a protocol with a Hb-TL</td>
<td>34</td>
<td>(52%)</td>
</tr>
<tr>
<td>- Absence of a protocol with a Hb-TL</td>
<td>31</td>
<td>(48%)</td>
</tr>
<tr>
<td>Transfusion at Hb-TL in protocol (open question)</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>- 110 g/L</td>
<td>1</td>
<td>(3%)</td>
</tr>
<tr>
<td>- 100 g/L</td>
<td>8</td>
<td>(28%)</td>
</tr>
<tr>
<td>- 90 g/L</td>
<td>4</td>
<td>(14%)</td>
</tr>
<tr>
<td>- 80 g/L</td>
<td>9</td>
<td>(31%)</td>
</tr>
<tr>
<td>- 70 g/L</td>
<td>5</td>
<td>(18%)</td>
</tr>
<tr>
<td>- 80-100 g/L</td>
<td>1</td>
<td>(3%)</td>
</tr>
<tr>
<td>- 70-80 g/L</td>
<td>1</td>
<td>(3%)</td>
</tr>
<tr>
<td>In non-neurological critically ill patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfusion at Hb-TL</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>- > 100 g/L</td>
<td>1</td>
<td>(2%)</td>
</tr>
<tr>
<td>- Between 90 g/l and 100g/L</td>
<td>6</td>
<td>(9%)</td>
</tr>
<tr>
<td>- Between 80 g/l and 90 g/l</td>
<td>21</td>
<td>(33%)</td>
</tr>
<tr>
<td>- Between 70 g/l and 80 g/l</td>
<td>35</td>
<td>(56%)</td>
</tr>
<tr>
<td>In patients with TBI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfusion at Hb-TL</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>- > 100 g/L</td>
<td>18</td>
<td>(28%)</td>
</tr>
<tr>
<td>- Between 90 g/l and 100g/L</td>
<td>20</td>
<td>(31%)</td>
</tr>
<tr>
<td>- Between 80 g/l and 90 g/l</td>
<td>16</td>
<td>(25%)</td>
</tr>
<tr>
<td>- Between 70 g/l and 80 g/l</td>
<td>10</td>
<td>(16%)</td>
</tr>
</tbody>
</table>

Frequencies and percentage of centers with corresponding answers, ICU: Intensive Care Unit, Hb-TL: hemoglobin
target levels, TBI: traumatic brain injury, g/L: grams per liter

a) General policy: the way the large majority of patients (>75%) with a certain indication would be treated at the intensive care

b) Policy in the acute phase
Table 2. Coagulation policies, deep venous thrombosis

<table>
<thead>
<tr>
<th>Items</th>
<th>Number</th>
<th>N</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>questionnaire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVT prophylaxis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency of DVT prophylaxis</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Never (0-10%)</td>
<td>1</td>
<td></td>
<td>(2%)</td>
</tr>
<tr>
<td>- Rarely (10-30%)</td>
<td>0</td>
<td></td>
<td>(0%)</td>
</tr>
<tr>
<td>- Sometimes (30-70%)</td>
<td>3</td>
<td></td>
<td>(4%)</td>
</tr>
<tr>
<td>- Frequently (70-90%)</td>
<td>18</td>
<td></td>
<td>(27%)</td>
</tr>
<tr>
<td>- Always (90-100%)</td>
<td>44</td>
<td></td>
<td>(67%)</td>
</tr>
<tr>
<td>Start in the absence of hemorrhagic lesions</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- < 24 hours</td>
<td>26</td>
<td></td>
<td>(40%)</td>
</tr>
<tr>
<td>- 24-72 hours</td>
<td>24</td>
<td></td>
<td>(37%)</td>
</tr>
<tr>
<td>- > 72 hours</td>
<td>14</td>
<td></td>
<td>(21%)</td>
</tr>
<tr>
<td>- Never</td>
<td>1</td>
<td></td>
<td>(2%)</td>
</tr>
<tr>
<td>Start in the presence of hemorrhagic lesions</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- < 24 hours</td>
<td>5</td>
<td></td>
<td>(8%)</td>
</tr>
<tr>
<td>- 24-72 hours</td>
<td>25</td>
<td></td>
<td>(40%)</td>
</tr>
<tr>
<td>- > 72 hours</td>
<td>29</td>
<td></td>
<td>(46%)</td>
</tr>
<tr>
<td>- Never</td>
<td>4</td>
<td></td>
<td>(6%)</td>
</tr>
<tr>
<td>Start after intracranial surgery</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- < 24 hours</td>
<td>10</td>
<td></td>
<td>(16%)</td>
</tr>
<tr>
<td>- 24-72 hours</td>
<td>31</td>
<td></td>
<td>(48%)</td>
</tr>
<tr>
<td>- > 72 hours</td>
<td>21</td>
<td></td>
<td>(33%)</td>
</tr>
<tr>
<td>- Never</td>
<td>2</td>
<td></td>
<td>(3%)</td>
</tr>
<tr>
<td>Pharmacological DVT prophylaxis</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Subcutaneous unfractioned heparin</td>
<td>7</td>
<td></td>
<td>(11%)</td>
</tr>
<tr>
<td>- Intravenous heparin</td>
<td>1</td>
<td></td>
<td>(2%)</td>
</tr>
</tbody>
</table>
Frequencies and percentage of centers with corresponding answers

DVT: deep venous thrombosis

a) General policy: the way the large majority of patients >75% with a certain indication would be treated at the intensive care
Table 3. Coagulation policies, ICP monitoring

<table>
<thead>
<tr>
<th>Items</th>
<th>Number</th>
<th>N</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checks prior to insertion of parenchymal sensor for ICP monitoring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coagulation panel</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Never (0-10%)</td>
<td>4</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>- Rarely (10-30%)</td>
<td>2</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>- Sometimes (30-70%)</td>
<td>5</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>- Frequently (70-90%)</td>
<td>5</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>- Always (90-100%)</td>
<td>45</td>
<td>69%</td>
<td></td>
</tr>
<tr>
<td>- Not available</td>
<td>4</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>Checks prior to insertion ventricular catheter for ICP monitoring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coagulation panel</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Never (0-10%)</td>
<td>3</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>- Rarely (10-30%)</td>
<td>2</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>- Sometimes (30-70%)</td>
<td>5</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>- Frequently (70-90%)</td>
<td>4</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>- Always (90-100%)</td>
<td>46</td>
<td>71%</td>
<td></td>
</tr>
<tr>
<td>- Not available</td>
<td>5</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>Minimum platelet count</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- >150 x10^9/L</td>
<td>1</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>- >100 x10^9/L</td>
<td>30</td>
<td>46%</td>
<td></td>
</tr>
<tr>
<td>- > 80 x10^9/L</td>
<td>9</td>
<td>14%</td>
<td></td>
</tr>
<tr>
<td>- > 50 x10^9/L</td>
<td>9</td>
<td>14%</td>
<td></td>
</tr>
<tr>
<td>- Depending on the surgeon</td>
<td>13</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>- No minimum</td>
<td>0</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>- Other</td>
<td>3</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>Minimum INR</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Answer</td>
<td>Frequency</td>
<td>Percentage</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td><1.4</td>
<td>21</td>
<td>(33%)</td>
<td></td>
</tr>
<tr>
<td><1.3</td>
<td>17</td>
<td>(26%)</td>
<td></td>
</tr>
<tr>
<td><1.2</td>
<td>8</td>
<td>(12%)</td>
<td></td>
</tr>
<tr>
<td>Depending on the surgeon</td>
<td>15</td>
<td>(23%)</td>
<td></td>
</tr>
<tr>
<td>No minimum</td>
<td>0</td>
<td>(0%)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>4</td>
<td>(6%)</td>
<td></td>
</tr>
</tbody>
</table>

Frequencies and percentage of centers with corresponding answers

DVT: deep venous thrombosis, ICP: intracranial pressure, INR: International Normalized Ratio, L: Liter

a) General policy: the way the large majority of patients >75% with a certain indication would be treated at the intensive care
b) Centers that did not have this technique
Figure 1. Trauma related coagulopathy treatment

297x420mm (300 x 300 DPI)
Figure 1. Trauma related coagulopathy treatment

Bars represent the percentage of centers that indicated to use this treatment as general policy (the way the large majority of patients >75% with a certain indication would be treated). In order of always and frequently summed. Always: in 90-100% of cases; Frequently: in 70-90% of cases; Sometimes: in 30-70% of cases; Rarely: in 10-30% of cases; Never: in 0-10% of cases
Supplemental data 1. Center-TBI investigators and participants

Adams Hadie, Alessandro Masala, Allison Judith, Amrein Krisztina, Andaluz Norberto, Andelic Nada,
Andrea Nanni, Andreassen Lasse, Anke Audny, Antoni Anna, Ardon Hilko, Audibert Gérard,
Auslands Kaspars, Azouvi Philippe, Baciu Camelia, Bacon Andrew, Badenes Rafael, Baglin Trevor,
Bartels Ronald, Barzó Pál, Bauerfeind Ursula, Beer Ronny, Belda Francisco Javier,
Bellander Bo-Michael, Belli Antonio, Bellier Rémy, Benali Habib, Benard Thierry, Berardino Maurizio,
Beretta Luigi, Beynon Christopher, Bilotta Federico, Binder Harald, Biqiri Erta, Blaabjerg Morten,
Borgen Lund Stine, Bouzat Pierre, Bragge Peter, Brazinova Alexandra, Brehar Felix, Brorsen Camilla,
Buki Andras, Bullinger Monika, Bucková Veronika, Calapli Emiliana, Cameron Peter,
Carbayo Lozano Guillermo, Carise Elsa, Carpenter K., Castaño-León Ana M., Causin Francesco,
Chevallard Giorgio, Chieregato Arturo, Citerio Giuseppe, Cnossen Maryse, Coburn Mark Coburn,
Coles Jonathan, Cooper Jamie D., Correia Marta, Covic Amra, Curry Nicola, Czeiter Endre,
Czovsky Marek, Dahyot-Fizelier Claire, Damas François, Damas Pierre, Dawes Helen,
De Keyser Véronique, Della Corte Francesco, Depreitere Bart, Ding Shenghao, Dippel Diederik,
Dizdarevic Kemal, Dulière Guy-Loup, Dzeko Adelaida, Eapen George, Engemann Heiko, Ercole Ari,
Esser Patrick, Ezer Erzsébet, Fabricius Martin, Feigin Valery L., Feng Junfeng, Foks Kelly,
Fossi Francesca, Franchy Gilles, Frantžén Janek, Freo Ulderico, Frisvold Shirin, Furmanov Alex,
Gagliardo Pablo, Galanaud Damien, Gao Guoyi, Geleijns Karin, Ghysens Alexandre, Giraud Benoit,
Glocker Ben, Gomez Pedro A., Grossi Francesca, Gruen Russell L., Gupta Deepak, Haagsma Juanita A.,
Hadzic Ermin, Haitsma Iain, Hartings Jed A., Helbok Raimund, Helseth Eirik, Hertle Daniel, Hill Sean,
Hoedemaekers Astrid, Hoefer Stefan, Hutchinson Peter J., Håberg Asta Kristine, Jacobs Bram,
Janciak Ivan, Janssens Koen, Ji-yao 74, Jones Kelly, Kalala Jean-Pierre, Kamnitasas Konstantinos,
Karan Mladen, Karau Jana, Katila Ari, Kaukonen Maija, Keeling David, Kerforne Thomas,
Ketharanathan Naomi, Kettunen Johannes, Kivisaari Riku, Kolas Angelos, Kolumbán Bálint,
Kompanje Erwin, Kondziella Daniel, Koskinen Lars-Owe, Kovács Noémi, Kálovits Ferenc,
Lagares Alfonso, Lanyon Linda, Laureys Steven, Lauritzen Martin, Lecky Fiona, Ledig Christian,
Mary Ann Liebert, Inc, 140 Huguenot Street, New Rochelle, NY 10801
1 Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital & University of Cambridge, Cambridge, UK

2 Department of Anesthesia & Intensive Care, M. Bufalini Hospital, Cesena, Italy

3 Department of Clinical Neurosciences, Addenbrooke’s Hospital & University of Cambridge, Cambridge, UK

4 János Szentágothai Research Centre, University of Pécs, Pécs, Hungary

5 University of Cincinnati, Cincinnati, Ohio, United States

6 Division of Surgery and Clinical Neuroscience, Department of Physical Medicine and Rehabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway

7 Department of Neurosurgery, University Hospital Northern Norway, Tromso, Norway

8 Department of Physical Medicine and Rehabilitation, University Hospital Northern Norway

9 Trauma Surgery, Medical University Vienna, Vienna, Austria

10 Department of Neurosurgery, Elisabeth-Tweesteden Ziekenhuis, Tilburg, the Netherlands

11 Department of Anesthesiology & Intensive Care, University Hospital Nancy, Nancy, France

12 Riga Eastern Clinical University Hospital, Riga, Latvia

13 Raymond Poincare hospital, Assistance Publique – Hopitaux de Paris, Paris, France

14 NeuroIntensive Care, Niguarda Hospital

15 Neurointensive Care, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK

16 Department Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de Valencia, Spain

17 Cambridge University Hospitals, Cambridge, UK

18 Department of Neurosurgery, Radboud University Medical Center

19 Department of Neurosurgery, University of Szeged, Szeged, Hungary

20 Institute for Transfusion Medicine (ITM), Witten/Herdecke University, Cologne, Germany

21 Department of Neurocritical care, Innsbruck Medical University, Innsbruck, Austria

22 Department of Neurosurgery & Anesthesia & intensive care medicine, Karolinska University Hospital, Stockholm, Sweden

23 NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK

Mary Ann Liebert, Inc, 140 Huguenot Street, New Rochelle, NY 10801
24 Intensive Care Unit, CHU Poitiers, Poitiers, France
25 Anesthesie-Réanimation, Assistance Publique – Hopitaux de Paris, Paris, France
26 Department of Anesthesia & ICU, AOU Città della Salute e della Scienza di Torino - Orthopedic and Trauma Center, Torino, Italy
27 Department of Anesthesiology & Intensive Care, S Raffaele University Hospital, Milan, Italy
28 Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
29 Department of Neurology, Odense University Hospital, Odense, Denmark
30 Departments of Neuroscience and Nursing Science, Norwegian University of Science and Technology, Trondheim, Norway
31 Department of Anesthesiology & Intensive Care, University Hospital of Grenoble, Grenoble, France
32 BehaviourWorks Australia, Monash Sustainability Institute, Monash University, Victoria, Australia
33 Department of Public Health, Faculty of Health Sciences and Social Work, Trnava University, Trnava, Slovakia
34 Department of Neurosurgery, Bagdasar-Arso Emergency Clinical Hospital, Bucharest, Romania
35 Department of Neurosurgery, Umea University Hospital, Umea, Sweden
36 Department of Neurosurgery, University of Pecs and MTA-PTE Clinical Neuroscience MR Research Group and Janos Szentagothai Research Centre, University of Pecs, Hungarian Brain Research Program, Pecs, Hungary
37 Department of Medical Psychology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
38 Neuro ICU, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
39 Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
40 Department of Neurosurgery, Hospital of Cruces, Bilbao, Spain
41 Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, The Netherlands
42 Department of Neurosurgery, Hospital Universitario 12 de Octubre, Madrid, Spain
43 Department of Neuroscience, Azienda Ospedaliera Università di Padova, Padova, Italy
44 NeuroIntensive Care, Azienda Ospedaliera San Gerardo di Monza, Monza, Italy
45 School of Medicine and Surgery, Università Milano Bicocca, Milano, Italy
46 Department of Public Health, Erasmus Medical Center-University Medical Center, Rotterdam, The Netherlands
Department of Anaesthesiology, University Hospital of Aachen, Aachen, Germany

Department of Anesthesia & Neurointensive Care, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK

School of Public Health & PM, Monash University and The Alfred Hospital, Melbourne, Victoria, Australia

Radiology/MRI department, MRC Cognition and Brain Sciences Unit, Cambridge, UK

Institute of Medical Psychology and Medical Sociology, Universitätsmedizin Göttingen, Göttingen, Germany

Oxford University Hospitals NHS Trust, Oxford, UK

Department of Neurosurgery, University of Pecs and MTA-PTE Clinical Neuroscience MR Research Group and Janos Szentagothai Research Centre, University of Pecs, Hungarian Brain Research Program (Grant No. KTIA 13 NAP-A-II/8), Pecs, Hungary

Brain Physics Lab, Division of Neurosurgery, Dept of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK

Intensive Care Unit, CHR Citadelle, Liège, Belgium

Intensive Care Unit, CHU, Liège, Belgium

Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK

Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium

Department of Anesthesia & Intensive Care, Maggiore Della Carità Hospital, Novara, Italy

Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium

Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China

Department of Neurology, Erasmus MC, Rotterdam, the Netherlands

Department of Neurosurgery, Medical Faculty and clinical center University of Sarajevo, Sarajevo, Bosnia Herzegovina

Department of Neurosurgery, Regional Medical Center dr Safet Mujić, Mostar, Bosnia Herzegovina

Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK

Department of Anaesthesiology and Intensive Therapy, University of Pécs, Pécs, Hungary

Departments of Neurology, Clinical Neurophysiology and Neuroanesthesiology, Region Hovedstaden Rigshospitalet, Copenhagen, Denmark
68 National Institute for Stroke and Applied Neurosciences, Faculty of Health and Environmental Studies, Auckland University of Technology, Auckland, New Zealand

69 Rehabilitation and Brain Trauma, Turku University Central Hospital and University of Turku, Turku, Finland

70 Department of Medicine, Azienda Ospedaliera Università di Padova, Padova, Italy

71 Department of Anesthesiology and Intensive care, University Hospital Northern Norway, Tromso, Norway

72 Department of Neurosurgery, Hadassah-hebrew University Medical center, Jerusalem, Israel

73 Fundación Instituto Valenciano de Neurorehabilitación (FIVAN), Valencia, Spain

74 Department of Neurosurgery, Shanghai Renji hospital, Shanghai Jiaotong University/school of medicine, Shanghai, China

75 Emergency Department, CHU , Liège, Belgium

76 Department of Computing, Imperial College London, London, UK

77 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; and Monash University, Australia

78 Department of Neurosurgery, Neurosciences Centre & JPN Apex trauma centre, All India Institute of Medical Sciences, New Delhi-110029, India

79 Department of Neurosurgery, Erasmus MC, Rotterdam, the Netherlands

80 Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, USA

81 Department of Neurosurgery, Oslo University Hospital, Oslo, Norway

82 Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden

83 Department of Intensive Care Medicine, Radboud University Medical Center

84 Department of Medical Imaging, St. Olavs Hospital and Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway

85 Department of Neurology, University Medical Center Groningen, Groningen, Netherlands

86 International Neurotrauma Research Organisation, Vienna, Austria

87 National Institute for Stroke & Applied Neurosciences of the AUT University, Auckland, New Zealand

88 Department of Neurosurgery, UZ Gent, Gent, Belgium
<table>
<thead>
<tr>
<th>No.</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>Department of Neurosurgery, Clinical centre of Vojvodina, Novi Sad, Serbia</td>
</tr>
<tr>
<td>90</td>
<td>Helsinki University Central Hospital</td>
</tr>
<tr>
<td>91</td>
<td>Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland</td>
</tr>
<tr>
<td>92</td>
<td>Hungarian Brain Research Program - Grant No. KTIA 13 NAP-A-II/8, University of Pécs, Pécs, Hungary</td>
</tr>
<tr>
<td>93</td>
<td>Department of Intensive Care and Department of Ethics and Philosophy of Medicine, Erasmus Medical Center,</td>
</tr>
<tr>
<td></td>
<td>Rotterdam, The Netherlands</td>
</tr>
<tr>
<td>94</td>
<td>Department of Neurological & Spinal Surgery, Markusovszky University Teaching Hospital, Szombathely, Hungary</td>
</tr>
<tr>
<td>95</td>
<td>Cyclotron Research Center, University of Liège, Liège, Belgium</td>
</tr>
<tr>
<td>96</td>
<td>Emergency Medicine Research in Sheffield, Health Services Research Section, School of Health and Related</td>
</tr>
<tr>
<td></td>
<td>Research (ScHARR), University of Sheffield, Sheffield, UK</td>
</tr>
<tr>
<td>97</td>
<td>Institute of Research in Operative Medicine (IFOM), Witten/Herdecke University, Cologne, Germany</td>
</tr>
<tr>
<td>98</td>
<td>VP Global Project Management CNS, ICON, Paris, France</td>
</tr>
<tr>
<td>99</td>
<td>Department of Neurosurgery, Rambam Medical Center, Haifa, Israel</td>
</tr>
<tr>
<td>100</td>
<td>Department of Anesthesiology & Intensive Care, University Hospitals Southampton NHS Trust, Southampton,</td>
</tr>
<tr>
<td></td>
<td>UK</td>
</tr>
<tr>
<td>101</td>
<td>icoMetrix NV, Leuven, Belgium</td>
</tr>
<tr>
<td>102</td>
<td>Cologne-Merheim Medical Center (CMMC), Department of Traumatology, Orthopedic Surgery and Sportmedicine,</td>
</tr>
<tr>
<td></td>
<td>Witten/Herdecke University, Cologne, Germany</td>
</tr>
<tr>
<td>103</td>
<td>Centrum für Schlaganfallforschung, Charité – Universitätsmedizin Berlin, Berlin, Germany</td>
</tr>
<tr>
<td>104</td>
<td>Intensive Care Unit, Southmead Hospital, Bristol, Bristol, UK</td>
</tr>
<tr>
<td>105</td>
<td>Department of Neurological Surgery, University of California, San Francisco, California, USA</td>
</tr>
<tr>
<td>106</td>
<td>Department of Neurosurgery, CHU, Liège, Belgium</td>
</tr>
<tr>
<td>107</td>
<td>Department of Neurosurgery, The Walton centre NHS Foundation Trust, Liverpool, UK</td>
</tr>
<tr>
<td>108</td>
<td>Department of Medical Genetics, University of Pécs, Pécs, Hungary</td>
</tr>
<tr>
<td>109</td>
<td>National Trauma Research Institute, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia</td>
</tr>
<tr>
<td>110</td>
<td>Department Health and Prevention, University Greifswald, Greifswald, Germany</td>
</tr>
<tr>
<td>111</td>
<td>Department of Neurosurgery, Emergency County Hospital Timisoara, Timisoara, Romania</td>
</tr>
</tbody>
</table>
Centre Hospitalier Universitaire Vaudois

Department of Intensive Care, Elisabeth-Tweesteden Ziekenhuis, Tilburg, the Netherlands

Department of Systems Medicine, Steno Diabetes Center, Gentofte, Denmark

Analytic and Translational Genetics Unit, Department of Medicine; Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA

Program in Medical and Population Genetics; The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA

Department of Radiology, Antwerp University Hospital and University of Antwerp, Edegem, Belgium

NeuroIntensive Care Unit, Department of Anesthesia & Intensive Care Azienda Ospedaliera San Gerardo di Monza, Monza, Italy

International Projects Management, ARTTIC, Munchen, Germany

Department of Anesthesia & Intensive Care, Azienda Ospedaliera Università di Padova, Padova, Italy

Dept. of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands and Dept. of Neurosurgery, Medical Center Haaglanden, The Hague, The Netherlands

Intensive Care Unit, CHU Dupuytren, Limoges, France

Intensive Care Unit, CHRU de Besançon, Besançon, France

Department of Anesthesiology and Critical Care, Pitié-Salpêtrière Teaching Hospital, Assistance Publique, Hôpitaux de Paris and University Pierre et Marie Curie, Paris, France

Department of Neurosurgery, Kaunas University of technology and Vilnius University, Vilnius, Lithuania

Rezekne Hospital, Latvia

Department of Anaesthesia, Critical Care & Pain MedicineNHS Lothian & University of Edinburg, Edinburgh, UK

Director, MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK

Department of Physical Medicine and Rehabilitation, Oslo University Hospital/University of Oslo, Oslo, Norway

Division of Surgery and Clinical Neuroscience, Oslo University Hospital, Oslo, Norway

Department of Neurology, Elisabeth-TweeSteden Ziekenhuis, Tilburg, the Netherlands

Broad Institute, Cambridge MA Harvard Medical School, Boston MA, Massachusetts General Hospital, Boston MA, USA

Mary Ann Liebert, Inc, 140 Huguenot Street, New Rochelle, NY 10801
133 Department of Neurosurgery, Odense University Hospital, Odense, Denmark
134 Department of Neurosurgery, Vall d’Hebron University Hospital, Barcelona, Spain
135 Klinik für Neurochirurgie, Klinikum Ludwigsburg, Ludwigsburg, Germany
136 University Hospital Heidelberg, Heidelberg, Germany
137 Division of Biostatistics and Epidemiology, Department of Preventive Medicine, University of Debrecen, Debrecen, Hungary
138 Department of Traumasurgery, Leiden University Medical Center, Leiden, The Netherlands
139 Department of Anaesthesiology and Intensive Care, AUVA Trauma Hospital, Salzburg, Austria
140 Department of Neuroanesthesia and Neurointensive Care, Odense University Hospital, Odense, Denmark
141 Department of Emergency Care Medicine, Radboud University Medical Center
142 Department of Physical Medicine and Rehabilitation, St.Olavs Hospital and and Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
143 Neurosurgical Cooperative Holland, Department of Neurosurgery, Leiden University Medical Center and Medical Center Haaglanden, Leiden and The Hague, The Netherlands
144 Department of Neurosurgery, University of Pécs, Pécs, Hungary
145 Universitätsmedizin Göttingen, Göttingen, Germany
146 Division of Neuroscience Critical Care, John Hopkins University School of Medicine, Baltimore, USA
147 Department of Neuropathology, Queen Elizabeth University Hospital and University of Glasgow, Glasgow, UK
148 Department of Pathophysiology and Transplantation, Milan University, and Neuroscience ICU, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
149 Australian & New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
150 Cochrane Consumers and Communication Review Group, Centre for Health Communication and Participation, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
151 Department of Rehabilitation, M. Bufalini Hospital, Cesena, Italy
152 Department of Neurosurgery, Kings college London, London, UK
153 Radiology/MRI Department, CHU , Liège, Belgium

Mary Ann Liebert, Inc, 140 Huguenot Street, New Rochelle, NY 10801
Supplemental data 2. Provider Profiling Questionnaire (ICU part)

The following questions about ICU policies are included in the manuscript

Information about the completer of the questionnaire

Other than the CENTER-TBI investigator, which of the following individuals was involved in completion of this questionnaire?

Select all that apply

Neurologist
Neurosurgeon
Trauma Surgeon
ED physician
Administrative staff member / data manager / financial department
Other, please specify……………..
NA. The questionnaire is solely completed by the CENTER TBI local investigator

The Local investigator is the senior clinician(s) at your hospital involved in supervision of CENTER TBI

General patient statistics

What is the number of patients treated in your Intensive Care Unit (ICU) annually?

1. 2012: ..
2. 2013: ..
What is the number of Traumatic Brain Injury (TBI) patients treated in your Intensive Care Unit (ICU) annually?

3. 2012: ..
4. 2013: ..

With reference to guidelines for Intensive Care Unit (ICU) management of Traumatic Brain Injury (TBI), does your ICU:

- Not have specific guidelines for management
- Follow the Brain Trauma Foundation Guidelines
- Follow National Guidelines (Please specify: ..)
- Have institutional guidelines which are broadly based on BTF and/or National Guidelines
- Have separate guidelines which you have developed independently
Intensive Care Unit (ICU) practice around ICP monitoring

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Never (0%)</th>
<th>Rarely (10%)</th>
<th>Sometimes (30-70%)</th>
<th>Frequently (70-90%)</th>
<th>Always (90-100%)</th>
<th>N/A, we do not have this technique</th>
</tr>
</thead>
</table>

23. Is a coagulation panel assessed prior to insertion of an ICP monitoring device?

- Ventricular catheter: 〇 〇 〇 〇 〇 〇
- Parenchymal sensor 〇 〇 〇 〇 〇 〇

24. What is considered a minimum platelet count for insertion of a ventricular catheter in your Intensive Care Unit (ICU)?

- >150K 〇
- >100K 〇
- >80 K 〇 〇
- >50K 〇 〇
- Variable, depends on surgeon 〇
- No minimum 〇
25. What is considered the minimum INR for safe placement of a ventricular catheter in your Intensive Care Unit (ICU)?

- <1.4
- <1.3
- <1.2
- Variable, depending on surgeon
- No minimum
- Other, please specify
Deep venous thrombosis (DVT) prophylaxis

The responses to the following questions should represent, as best as practicable, a general consensus on treatment at your centre, rather than individual management preferences.

<table>
<thead>
<tr>
<th>Never (0-10%)</th>
<th>Rarely (10-30%)</th>
<th>Sometimes (30-70%)</th>
<th>Frequently (70-90%)</th>
<th>Always (90-100%)</th>
</tr>
</thead>
</table>

53. How often is DVT prophylaxis used?

54. If you use DVT prophylaxis, when is DVT prophylaxis initiated?

- < 24 hrs
- 24-72 hrs
- < 72 hrs
- Never

In the absence of hemorrhagic lesions

In the presence of hemorrhagic lesion

After intracranial surgery

55. In patients who receive DVT prophylaxis, what medication is given?

Subcutaneous unfractioned heparin
56. Coagulopathy related to the trauma is treated with:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Never (0-10%)</th>
<th>Rarely (10-30%)</th>
<th>Sometimes (30-70%)</th>
<th>Frequently (70-90%)</th>
<th>Always (90-100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Frozen plasma (FFP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platelets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibrinogen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novo 7 (recombinant factor VII)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCC (Prothrombin Complex)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>