S5. Parameter inference

To inform control decisions, it is necessary to estimate the values of the disease transmission parameters in the farm-level SIR model. Any method of parameter estimation can be integrated into the decision-making framework that we develop. In most of our analyses (except S5 Fig) we assume that the infection rate between farms, , is the only unknown disease transmission parameter, and generate a posterior distribution for the basic reproduction number, R0. In practice, there is typically more uncertainty in the value of the infection rate than in that of the removal rate, , since the removal rate can often be estimated from previous epidemics [1] whereas the infection rate depends on the contact rate between individuals, which varies between outbreaks in different settings. We estimate R0 from the disease transmission data up to time T. We assume that the outbreak is observed perfectly - although this is not central to the methodology that we develop - and denote the event times up until time T by t1,t2,…,tn. For notational convenience, we also define t0=0 and tn+1=T. We denote the number of susceptible and infected individuals just before time t by S(t) and I(t), respectively.

The likelihood function for R0, in the case where the infection rate is the only unknown parameter value, is given by
,
where
 
and 
.
This form of the likelihood is used extensively (see e.g. O’Neill and Roberts (1999) and Clancy and O’Neill (2008)). The symbol  is one if the event at time  is an infection event, and is zero otherwise. In the stochastic SIR model, the waiting times between events follow an exponential distribution (S4 Text). The first term of the likelihood function, L1(R0), is therefore the chance of seeing the observed pattern of infection and removal events up to and including the final event before time tn.  The second term, L2(R0), is then the chance of observing the time period between the final infection or removal event and time tn+1 = T, during which there are no events. 

In cases in which there is no informative prior for R0, we renormalise the likelihood function, so that it is a valid probability density function, and use the whole distribution as the posterior estimate for R0.

In cases in which we include a prior on the value of R0 in our estimation procedure (i.e. S4-S9 Figs), to find the posterior estimate of R0 we simply multiply the likelihood function by the prior distribution and renormalise the resulting distribution. This is because the likelihood represents probability of observation the simulation data (D, say) given the parameter value R0 – i.e. L(R0) = Prob(D | R0).  However, the quantity of interest is instead the posterior distribution – i.e. Prob(R0 | D). Denoting the prior by Prob(R0), the posterior for R0 is related to the prior by Bayes’ rule
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where  is the probability of both the basic reproduction number taking the value R0 and the data D being obtained from the simulation. Since the denominator of the final expression, Prob(D), is constant for any given dataset, the posterior distribution is simply proportional to the product of the likelihood function and the prior.
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