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Abstract

The simplest version of Johansen’s (1988) trace test for cointegration is
based on the squared sample canonical correlations between a random walk
and its own innovations. Onatski and Wang (2017) show that the empiri-
cal distribution of such squared canonical correlations weakly converges to
the Wachter distribution as the sample size and the dimensionality of the
random walk go to infinity proportionally. In this paper we prove that, in
addition, the extreme squared correlations almost surely converge to the up-
per and lower boundaries of the support of the Wachter distribution. This
result yields strong laws of large numbers for the averages of functions of
the squared canonical correlations that may be discontinuous or unbounded
outside the support of the Wachter distribution. In particular, we establish
the a.s. limit of the scaled Johansen’s trace statistic, which has a logarithmic
singularity at unity. We use this limit to derive a previously unknown an-
alytic expression for the Bartlett-type correction coefficient for Johansen’s

test in a high-dimensional environment.

Key worDS: High-dimensional random walk, cointegration, extreme canon-

ical correlations, Wachter distribution, trace statistic.

1 Introduction and the main result

Analysis of cointegration between a large number of time series is a challenging but
useful exercise. Its applications include high-dimensional vector error correction

modelling for forecasting purposes (Engel et al. (2015)), inference in nonstationary



panel data models (Banerjee et al. (2004), Pedroni et al. (2015)), and verifica-
tion of the assumptions under which composite commodity price indexes satisfy
microeconomic laws of demand (Lewbel (1993), Brown (2003)). With increasing
availability of large datasets, the needs for high-dimensional cointegration research
will multiply.

A central role in the likelihood-based cointegration analysis is played by the
squared sample canonical correlation coefficients between a simple transformation
of the levels and the first differences of the data. This paper and its companion
Onatski and Wang (2017) study such canonical correlations under the simulta-
neous asymptotic regime, where the dimensionality of the data goes to infinity
proportionally to the sample size.

Onatski and Wang (2017) (OW17) show that the empirical distribution of the
squared sample canonical correlations weakly converges to the so-called Wachter
distribution. They use this result to explain the severe over-rejection of the no
cointegration hypothesis when the dimensionality of the data is relatively large. In
this paper, we show that the extreme squared canonical correlations almost surely
(a.s.) converge to the upper and lower boundaries of the support of the Wachter
distribution.

Our finding yields strong laws of large numbers for the averages of functions of
the squared canonical correlations that may be discontinuous or unbounded outside
an open interval containing the support of the Wachter distribution. In particular,
we establish the a.s. limit of the scaled Johansen’s (1988) trace statistic, which has
a logarithmic singularity at unity.

We use this limit to derive an explicit expression for the Bartlett-type correction
coefficient for Johansen’s test. Such an expression was previously unknown, and the
value of the coefficient had to be obtained numerically (see Johansen et al. (2005)).

Our setting can be described in the context of the likelihood ratio testing for

no cointegration in the model
AXy =I1(Xp1 = tpy) + 7 + 1y, (1)

where X, t = 1,...,T + 1, are p-dimensional data, AX;, = X; — X, ; with X, =0,
n, are i.i.d. N (0,X) vectors, and p; = Xri1/ (T +1). This model is similar to
Johansen’s (1995, eq. 5.14) model H* :

AXy =TI (X1 — tpy) +y + 1y, (2)



where the deterministic trend is introduced so that there is no quadratic trend
in X;. In (1) p, is replaced by a “preliminary estimate” p,. Such a replacement
yields the simultaneous diagonalizability of matrices used in the computation of
the squared canonical correlations, which makes our theoretical analysis possible.
We explain this in more detail in Section 5.

As is well known, the LR statistic for testing the null hypothesis that IT = 0
against II # 0 equals

p

LR=—(T+1)) In(1-Xy), (3)

j=1

where ),; is the j-th largest squared sample canonical correlation between de-
meaned vectors AX; and X;_; — tp;. In what follows, we will always assume that
the null hypothesis holds so that the true value of II is zero. In addition, we will
assume that the true value of « in the data generating process (1) is zero as well.

Note that demeaning X; 1 — tp, and X; 1 — (t — 1) p; yields the same result.
On the other hand, X; — tp; is a p-dimensional random walk detrended so that
its last values are tied down to zero. Hence, A,; can be interpreted as the squared
sample canonical correlations between a lagged detrended and demeaned random
walk and its demeaned innovations.

Consider the simultaneous asymptotic regime where p, 7" — oo so that p/T —
co. We abbreviate such a regime as p,T" —., co. Without loss of generality, we
assume that p is strictly increasing along the sequence, so that 7' can be viewed as
a function of p.

OW17 shows that as p, T —, oo with ¢y € (0, 1], the empirical distribution of

At > > Ay,

1 p
F,(A) = _Zl{)‘pi <A},
P
a.s. weakly converges' to the Wachter distribution ,, with an atom of size
max {0,2 — 1/co} at unity, and density

Oscr) = et iy = N = ) )

'OW17 establishes the weak convergence F,(\) = W, (\) both for Gaussian and non-
Gaussian 7. When 7 is non-Gaussian and has two finite moments, OW17 establishes the weak
convergence in probability. When 7 is Gaussian, the convergence is a.s.



supported on [by_,bo.] C (0, 1], where

bo+ = o <\/§:F m>2

The main result of this paper strengthens OW17’s finding as follows.
Theorem 1 For cy € (0,1/2), A1 =5 boy and \yp =5 bo— as p, T —, 0.

For ¢q € (0,1/2), Theorem 1 implies that no squared canonical correlations lie
outside any open interval covering [by_, bo+| for sufficiently large p, a.s. Since F,
a.s. weakly converges to W,,, this implies that any function f(-) that is continuous
and bounded on the open interval covering [by_, by |, but may have discontinuities

or other singularities outside that interval, satisfies the strong law of large numbers
12
DIEHE BT
p =

as p, T —., co. In particular, the likelihood ratio statistic (3), although defined in
terms of an unbounded function In (1 — A), a.s. converges to a constant because

its singularity lies outside [by_, bo, ] for ¢y € (0,1/2).

Corollary 2 Suppose that cg € (0,1/2). Then as p,T —., oo, LR/p* % LR,,,

where
1 1- 1-2
LR, = +260 In(1+¢) — 260 In(1—¢o)+ 5 Oy (1 —2c) .

Proof: OW17 shows that the expression on the right hand side of the above dis-
play equals — [In (1 — X) dW,, (A) . Since by Theorem 1, A,; a.s. remains bounded
away from unity, the a.s. weak convergence of F, to W, implies that this integral
is the a.s. limit of LR/p*.00

In the next section we use Corollary 2 to derive a previously unknown explicit
expression for the Bartlett-type correction coefficient for Johansen’s trace test. In
Section 3, we describe the setup for the proof of Theorem 1. Section 4 contains the
proof. In Section 5 we discuss reasons for working with model (1) rather than (2),
and derive some results for (2). Section 6 discusses directions for future work and

concludes. All technical proofs are given in the Supplementary Material (SM).

>For ¢ > 1/2, Ap1 equals 1 with probability 1. Therefore, LR statistic is not well defined. For
co = 1/2, bp+ = 1 so that the singularity of In (1 — \) lies at the upper boundary of the support
of We,.



2 Bartlett-type correction

The standard Johansen’s LR test is based on the asymptotic critical values that
assume that p is fixed whereas T' — oo. As is well known, the test performs poorly
in finite samples where p is moderately large. Even relatively small p’s, such as
five or six, lead to substantial over-rejection of the null hypothesis (see Ho and
Sorensen (1996) and Gonzalo and Pitarakis (1995, 1999)).

One of the partial solutions to the over-rejection problem is the Bartlett cor-
rection of the LR statistic (see Johansen (2002)). The idea is to scale the statistic
so that its finite sample distribution better fits the asymptotic distribution of the
unscaled statistic. Specifically, let £, ., be the mean of the asymptotic distribu-
tion under the fixed-p, large-T" asymptotic regime. Then, if the finite sample mean,
E, 1, satisfies

By = Eypoo (1+ a(p) /T + 0 (1/T)), (5)

the scaled statistic is defined as LR/ (1 + a(p)/T') . By construction, the fit between
the scaled mean and the original asymptotic mean is improved by an order of
magnitude. Although, as shown by Jensen and Wood (1997) in the context of
unit root testing, the fit between higher moments does not improve by an order of
magnitude, it may become substantially better (see Nielsen (1997)).

Theoretical analysis of the adjustment factor 1+ a(p)/7 is difficult. The exact
expression for a(p) is known only for p = 1 (see Larsson (1998)). Therefore,
Johansen (2002) proposes to approximate the Bartlett correction factor BC, r =
E,1/E, ~ numerically. Here, we propose an alternative correction factor, equal to
the ratio of the limits of LR/p* under the simultaneous asymptotics p, T —, oo
and under the sequential asymptotics, where first T" and then p goes to infinity.

Monte Carlo analysis in OW17 suggests that the simultaneous asymptotic limit
LR,,, derived in Corollary 2, provides a very good centering point for LR/p?, for
moderately large p. From a theoretical perspective, this can be explained by the
fact that, in contrast to the standard asymptotics, the simultaneous asymptotics
does not neglect terms (p/ T)j of relatively high order, which results in an improved
approximation quality. The sequential asymptotic limit is derived in the following

Theorem (see SM for a proof).

Theorem 3 Suppose that cq € (0,1/2). Then, as first T and then p go to infinity,
LR/p* — 2 in probability.

This theorem and Corollary 2 yield the following analytic expression for the
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proposed Bartlett-type correction factor

1+¢ 1—c 1—-2¢c

EZ*M: 5.2 m(l+e)——5Im(l-c)+

2 In(1—2c), (6)
where ¢ = p/T.

It is interesting to compare EZ’p,T to the numerical approximation to BC, r =
E,1/E,~, obtained in Johansen et al. (2005). That paper simulates BC), r for
various values of p < 10 and 7" < 3000 and fits a function of the form

BC = exp {aic + azc® + [asc® +b] /T'}

to the obtained results. For relatively large values of T, the term [azc? + ] /T in
the above expression is small. When it is ignored, the fitted function becomes
particularly simple:

BC,1 = exp {0.549¢ + 0.552¢%} .

Figure 1 superimposes the graphs of EE’p,T and Eé’pj as functions of c. For
¢ < 0.3, there is a strikingly good fit between the two curves, with the maximum
distance between them 0.0067. For ¢ > 0.3 the quality of the fit quickly deteri-
orates. This can be explained by the fact that all (p,T")-pairs used in Johansen
et al’s (2005) simulations are such that ¢ < 0.3, so their numerical approximation
does not cover cases with ¢ > 0.3.

To the best of our knowledge, analytical expressions, such as (6), for the
Bartlett-type correction factors were previously unavailable. Although the ex-
pression is not simple, it certainly is elementary, and easy to compute and analyze.
Since the expression is analytic, it does not depend on details of any numerical

experiments, and the range of its applicability covers all ¢ < 1/2.

3 Setup

In this section, we introduce the setup for the proof of Theorem 1. Let AX, X_;
and 7 be p x (T + 1) matrices with columns AXy, X; ; —tp,, and 7,, respectively.
Further, let [ be a (T'+1)-vector of ones, M; = Ir,1—1l'/ (T + 1) be the projection
on the space orthogonal to [, and let U be the (T'+ 1) x (T'+ 1) upper triangular

matrix with ones above the main diagonal and zeros on the diagonal. Then under
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Figure 1: Bartlett correction factors as functions of p/T. Solid line: the factor
based on the ratio of the simultaneous and seqeuntial limits of LR/p*. Dashed
line: numerical approximation from Johansen et al. (2005).

the null hypothesis
AXM[ = T]Ml and XflMl = anUMly (7)

where the second equality is derived as follows. Let 7 = (1,2,...,7 +1)". Note
that 7/ = l'U + 1" and p; = v+ nl/ (T + 1). Therefore,

X 1My = (qU — p;7") My = nUM,; — %Hnll'UMl = nM,UM,.

Equations (7) imply that the squared sample canonical correlations \,;, j =
1,...,p, between demeaned AX; and demeaned X; ; — tp; can be interpreted as
the eigenvalues of the product P, P,, where P; and P, are projections on the col-
umn spaces of M;U'M;n' and M;n', respectively. Clearly, \,;’s are invariant with
respect to right-multiplication of 7’ by any invertible matrix. Hence, without loss
of generality, we will assume that 7, are i.i.d. N (0, ,) vectors.

An equivalent interpretation of A,;, 7 = 1, ..., p, views them as the eigenvalues

of matrix Sp1.57,'S10Sy, , where Sip = S}, and

Sor = MU' My, S11 = nMUMU' My, Soo = nMn'. (8)



As shown in OW17, MU' M,;, MU MU’ M, and M, are circulant matrices, that is,
their (i1, j1)-th and (is, jo)-th elements are equal as long as i; — j; equals i — jo
modulo 7"+ 1.

As is well known (e.g. Golub and Van Loan (1996), ch. 4.7.7), circulant matrices
are simultaneously diagonalizable. Precisely, if V is a (T'+ 1) x (T + 1) circulant
matrix with the first column v, then V' = F*diag (Fv) F/ (T + 1), where F is the

Discrete Fourier Transform matrix with elements
Fa=exp{—2r(s—1)(t—1)/(T+1)},

and the superscript ‘*’ denotes transposition and complex conjugation. This yields

the following lemma.

Lemma 4 Let w, =27s/ (T + 1) and
vV —diag { (¢ = 1), (e - 1) (9)

Further, let ) = nF* be a p x (T + 1) matriz whose rows are the discrete Fourier
transforms at frequencies 0, wy, ...,wr of the rows of n, and let 7)_, be the px T ma-

trix obtained from 1) by removing its first column, corresponding to zero frequency.
Then

Ak A

S = N oVio/(T+1),81 =0_oV Viy'o/ (T +1),
S = 0oV e/ (T+1), and Se =i i o/ (T +1).

The diagonal of V consists of the reciprocals of the values of the transfer func-
tion (see e.g. Brillinger (1981) ch. 2.7) of the “leaded” first-difference filter

X1 — AX,y (10)

at frequencies w,, s # 0. Hence Ap; can also be viewed as the sample squared
canonical correlations between discrete Fourier transforms of 7), and their products
with the inverse of the transfer function of filter (10). This yields a convenient fre-
quency domain interpretation of Johansen’s (1991) trace statistic (3). The strongly
serially dependent time domain series X;_; —tp, are “replaced” by heteroskedastic
frequency domain series (1 — 671“)5)71 7, with 7). independent from 7),, as long as
s1+ 82 #T + 1.



Below we will work with real-valued sin and cos Fourier transforms of 7. In
addition, we will interchange the order of frequencies so that w,, and wg, with
s1+ se = T'+ 1 become adjacent pairs. Specifically, let T be even (the case of odd
T can be analyzed similarly), let P = {ps;} be a T' x T" permutation matrix with

elements
lifs=1,..,T/2and t =25 — 1
pe=14 lifs=T/2+1,...,Tandt=2(T—-s+1) ,
0 otherwise
and let

B 1/vV2 1/4/2
W= im® ( YNNG ) ’

where ® denotes the Kronecker product. Further, let ¢ = 7_(PW*/\/T (T + 1)
and V = diag { V1, ..., V2 } with

1 1 —cot (w;/2)
Vis Ty ( cot (w;/2) 1 ) '

A direct calculation shows that
VV' = V'V = diag {rl_llg, vy r;}ng} with r; = 4sin? (w,/2) .

Lemma 5 The columns of € are i.i.d. N (0,1,/T) vectors. Matrix So;S1;' S10550
equals CD~*C" A=Y where

C=¢eV'e D=eVV'e, and A = e€'.

This lemma yields yet another interpretation of A,;, j = 1,...,p. They can be

thought of as the eigenvalues of matrix
CD'C'A™ = (eV'e) (eVV'e) ! (eVe) (')

The convenience of this interpretation stems from the block-diagonality of V and
the diagonality of VV'.

Let £(j) be a p x 2 matrix that consists of the (2j — 1)-th and the 2j-th columns
of €. In particular, ¢ = [6(1), ...,E(T/Q)] . The key advantage of studying C, D, A

as opposed to Spi, S11, and Spyo is that C, D, A can be represented as sums of



independent components of rank two. Specifically,

C=> eVicy D= r'emey), and A= epe,

OWI17 exploits these representations to derive the limit of the empirical distri-
bution F}, of the eigenvalues of C D™*C’A~!. That paper proves the convergence of
F, to W, by establishing convergence of the Stieltjes transform of F,,, defined as

my(z) = / (A—2)"dE,(\) =tr (CD'C'A™! — z]p)fl /p.

Our proof of Theorem 1 relies on some of the results of OW17. Therefore, to com-
plete the setup of the analysis below, we now briefly outline the relevant findings
of that paper.

The first step in OW17’s derivations is using the Sherman-Morrison-Woodbury

formula for the inverse of a perturbed matrix V
(V+XWY) ' =V v (W yvix) vy

to derive identities

T/2
() = ST s tr ([, V)] 90 [, 97)) (1)
Z+zm,,(z) = — ——TZ/Q — (Lo, 732V ] Q0 [ 1y, 20, V1)) (12)
p 1—-2 (1 z
T/2
14+ zm,(z) = p T— ( IQ,TJZV } Q [IQ,T]V } ) (13)
T/2
0 = (o L)Y [, ;Y] ) (14)
where
L7 @ gt @ -1
Lo Vit () b+ 207 (2)

The 2 x 2 matrices v](.Q) = UJ(-q)(z), W' = ul?(2), and 39 = ﬁﬁq)(z) are defined as

10



follows. Let

Aj = A—eye),Ci=C—eyVieyy, Dj=D — r;ls(j)g’(j),

J)

Mj = Cij 1CJ/ - ZAj, and Mj = C;AJ Cj —zD
Then,

(9 _ -1 (). -1 -1 ~(q) _ r—1
v =M e, w' = e D CiMy ey, and B = e(;) My e ;).
The entries of these matrices are quadratic forms in the columns of ¢(;). In what
follows, we use superscript ‘(¢)’ to denote matrices that involve quadratic forms
in the columns of ;) to distinguish them from similarly defined matrices that do
not involve such quadratic forms.

The next step in OW17 is to replace Qg-q) in equations (11-14) by matrix €2,
ok i . (9) . (9) (9) ~(q) : :
which is obtained from ;" by replacing v;"(2), u;"(2), and 0, (2) in (15) with

vp(2) 12, uy(2)I2, and 0,(2)Is, respectively, where

vp(z) = tr (M) /T, uy(z) =tr (D7'C'"M ") /T, and 0,(z) = tr <J\~4_1> JT.

Here M = CD'C’" — zA and M = C"A"1C — zD. To simplify notation, we will
suppress the dependence of v,(2), u,(2), and 7,(z) on p and z. It is straightforward

to verify that matrix {2; has the following explicit form

0, - 1—2 ;—frjlg + 201, —#rjvg- —uly | (16)
d; —11 Vi —uls L+ vls
where
§j=20(1+v—20)+r;(ut+z20—1)—(1-2)u’ (17)

11



Taking traces in equations (11-14), after replacing Qﬁq) by €, yields equations

T/2
2 20471 (ut+v—1)
my(z) = 1_2—-?53 O] (18)
T/2
1 B 20+ 1z (u+2zv—1)
Samy() = e liaem. )
/
2 2041 (u(l+42)/24+ 20 —1)
14 2my(z) = YR ——TZ ’ —2)0, + €3(2)(20)
=1 j
T/2
2 —u —7rjv/2
0 = — - )= 21
CT e 5] + €4<Z)7 ( )

where e (2), k =1, ..., 4, are the approximation errors due to replacing ng) by ;.

Specifically,
er(z) = -TZ/Q st ([ V] (9= 90 [ V]), (22)
es(z) = m (IQ,TJZV](Q _QyD) [IQ,ZTJv}’), (23)
es(z) = -Tf T tr ([Lyry2 V)] (2 - 99 [y 9)]), (29
ea(z) = m —tr (10, 5] (% = ) [, V1]). (25)

Finally, OW17 shows that the errors ex(z), k = 1,...,4, converge to zero point-
wise over z from a compact subset of the upper half of the complex plane, C*.
This allows OW17 to argue that m,(z) converges to mg(z) uniformly over this
compact subset, where mg(z) satisfies the “limiting version” of system (18-21)
that sets ex(z) to zeros. Solving the limiting system, OW17 shows that mg(z) is
the Stieltjes transform of W, which yields the convergence of F, to Wy,.

Our proof of Theorem 1 starts from the system (18-21). It amounts to estab-
lishing fast convergence of the errors egx(z), k = 1,...,4, to zero as z runs over
a sequence z, with Imz, — 0 and Re z, bounded away from the support of the
Wachter distribution W, .

12



4 Proof of Theorem 1

4.1 Outline of the proof

The general strategy of our proof is similar to that used in Bai and Silverstein’s
(1998) (BS98) study of the asymptotic behavior of the extreme eigenvalues of
sample covariance matrices. The main ideas are as follows. Consider a sequence
{zp} such that (s.t.)

zp, = Rez, € [0,1] and  y,=Imz, = yep (26)

with a > 0 and yo € (0, 1] that are independent from p. We study the behavior of
my (zp) as p, T —, 00.

Let mg () be the Stieltjes transform of W,., where W, is obtained from the
limiting distribution W, by replacing ¢y with ¢ = p/T. Consider an interval [a, b]
outside the supports of W, and W, for all large p. Since F,, consists of masses 1/p

at \,;, and since W,([a,b]) = 0, we have the following decompositon

1 Y Ypd (£, (N) — We (A
I (my ()~ mo(zp) = 3 Sty [ AT L))
Apj€lab] p( Dj .flfp) +yp [a,b] ( o le) +yp

(27)

The existence of \,; € [a,b] puts an upper bound on the speed of convergence

swp [mp(2p) = mo(2p)| = 0 (28)
zp€la,

that is linked to the speed of convergence y, — 0, via the first term on the right
hand side of (27). Proving that convergence (28) is faster than that bound shows
that there are no \,; in [a, b] for all sufficiently large p.

The analysis of the speed of convergence of (28) is done in several steps.

1. We show that the expected number of eigenvalues in [a, b] cannot grow faster

than p°® with 5 < 1 as p — 0.

2. We use 1. to derive an upper bound on the speed of convergence my(z,) —

Em,(z,) — 0 of the “stochastic part” of m,(z,) — mo(2,).

3. We derive an upper bound on the speed of convergence Em,,(z,) —mo(z,) — 0

of the “deterministic part” of m,(z,) — mo(%,), and combine the results.

13



An implementation of these three steps requires a non-trivial extension of BS98.
The fact that we have to deal with the product of four dependent stochastic matri-
ces, CD71C" A1, presents substantial challenges, relative to the case of a sample
covariance matrix, that we overcome. The key is to establish fast convergence
of the errors e;(z,) defined in (22-25) to zero, which requires detailed analysis of

matrices ), ng), and their difference Q; — Qg»q)-

4.2 Step 1: Speed of convergence of EF) ([a, b])
4.2.1 Rough bounds on the approximation errors

To establish bounds on the approximation errors ex(z,), k = 1, .., 4, we will use the
identity
0, -0 =0 () - 0;1) 0, (29)

J

Definition 6 (Tao and Vu (2011)) Let € be an event depending on p. Then &
holds with overwhelming probability (w.ow.p.) if Pr(€) > 1 — O¢ (p_c) for every
constant C' > 0. Here O¢ (p*C) denotes a quantity that is smaller than Bp~¢ with
constant B that may depend on C.

Lemma 7 Suppose that z = z,. Then for any (C,d,~) € (0,00) % (0,00) x [0,1/2)
and any o € [0, oyq) with a,g = (1/2 —7) / (1 + d) , inequality

max

q))—1
j=1,...,.T/2

Qo — (9

(
J J

< Cpys

holds w.ow.p.

To prove the lemma, we use the convergence of quadratic forms S;Wpfp in
Gaussian vectors §, and the fact that the entries of (ng))_l are such forms whereas
the entries of Q;l are the points of concentration of these forms (see SM). Since
Yp = Yop~*, the upper bound C’p"yy;f on ||Qj_1 — (Q§Q))’1|| converges to zero as
fast as p~*~7. The rate ad + 7 of such a convergence can be made arbitrarily
close to 1/2 by choosing « sufficiently close to a.q, choosing d sufficiently large,
and/or choosing v sufficiently close to 1/2. However, faster convergence rates for
the bound are achieved at the expense of slower convergence of y, to zero. The
reason for such a trade-off is that the convergence of £;Wp§p is slowed down by
large |W,||, and quadratic forms appearing in the entries of (Q§Q))_1 have [|[WW,||

that are proportional to y, U=y 'p.

14



If we set o = 0, y,, does not converge to zero as p — oo. However, since in such a
case v can be chosen arbitrarily close to 1/2, the upper bound on ||Q; ' — (Qg-q))_l I

derived by the lemma still may converge to zero at the rate arbitrarily close to 1/2.

Lemma 8 (i) For any a € [0,1/12) there exists C > 0 such that w.ow.p.

Q9D < Oy and 0.l < Cy=>.
jmax [ < Cy,” and max [[Q]] < Cy,

(ii) For any o € [0,1/6) and any p > 0, there exists C' > 0 such that

(9) -5
E <j:§??.‘,§/2 1€2; ||”> < Cy,™.

The constant C' in Lemma 8 does not need to coincide with that in Lemma 7.
In what follows, C' denotes a constant whose value can change from one appearance
to another. Identity (29), Lemmas 7-8, and the fact that |1 — z,| > < y, > imply
that for any C' € (0,00), d € [5,00), and v € [0,1/2),

(9)
_ Qj

11— 2,)% max ‘ < Cp_”y][‘f_l2 W.OW.]D. (30)
J

as long as 0 < o < a,4. The requirement d > 5 ensures that a4 < 1/12 so that
Lemma 8 applies. Combining (30) with equation (22) yields

le1(zp)] < C’p_”y][‘f_12 W.OW.D.

Similar inequalities hold for ey (z,), ¥ = 2,3,4. Hence, we have the following

lemma.

Lemma 9 For any (C,d,v) € (0,00) x [5,00) X [0,1/2), any o € [0, ovy4), and any
k=1,..4, |ex(z)| < C’]D‘Vy;f_12 w. ow. p.

4.2.2 System reduction

In the SM, we show that system of equations (18-21) can be reduced to the following
simple form
U+ 2u = é,
zv—l—u—irc/(l—c):(ig, (31)
m—uv(l—c)/c=és,
m?cz(1—2)—m(c—z+cz)+1=¢éy
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The transformed errors €, are non-linear functions of the original errors e, and of
the variables o, u, v, and m (we suppress the dependence of all these quantities
on p and z for the brevity of notations). We use bounds on these variables and

Lemma 9 to derive the following result.

Lemma 10 For any (C,d,~) € (0,00) x [30,00) % [0,1/2), any o € [0, ayq), and
any k =1,...,4, |&| < Cyd=* w.ow.p.

4.2.3 Analysis of m —my

Let us define my = mg(z) as the solution of equation
micz (1 —2) —mo(c—2z+cz)+1=0

equal to

c—z+cz~|—\/(c—z+cz)2—4cz(1—z)
mo = ) (32)
2cz (1 —2)

where the branch of the square root, with the cut along the positive real semi-
axis, is chosen so that the square root has positive imaginary part. It follows from
e.g. Theorem 1.6 of Bai et al. (2015) that such my is the Stieltjes transform of the
Wachter distribution W, with density

1+c¢

fNe)= m\/(b+ — AN A=0)

supported on [b_,b.| C (0,1], where by = ¢ (\/§ FVl-— c) 2
Note that the expression under the square root in (32) can be factorized as

(c—z+cz)? —dez(1—2) = (14+¢)* (z—by) (z — b_) (33)

Since the linear factors z — b, and z — b_ cannot be simultaneously small, (33)

implies a useful inequality
|(c — 2z, + czi,,)2 —4ez, (1 — zp)| > Cy, (34)

for some C' > 0 and all sufficiently large p.
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From the last equation of system (31), we have

c—z—l—cz—l—\/(0—2’—1—02)2—402'(1—z)+4é4cz(1—z)
2cz (1 — 2) ’

m =

which differs from (32) only by the term 4é4cz (1 — z) under the square root. By
Lemma 10 and inequality (34), when z = z,, this term can be made negligible
relative to the rest of the expression under the square root by choosing d > 42.°

Then, the difference m — my is of order

é4/\/(c — 2, +czy)” —4ez, (1 — 2,).

In the SM, we use this fact to prove the following lemma.

Lemma 11 For any « € [0,1/90), [ > 0, and p > 1801, there exists a constant C
that may depend on «,l, and p s.t. for any e > 0

zp€[0,1]

Pr (yp_l sup |m (z) — mo(zp)| > €> < Cerp.

The inequality established in Lemma 11 is analogous to inequality (3.23) in
BS98. In the SM, we use BS98’s argument leading from (3.23) to (3.28) to obtain
a bound on EF), ([a, b]) . Let Ey denote the unconditional expectation and Ey, denote

conditional expectation given &y, ..., €@x).

Proposition 12 Let [a,b] be an interval that lies outside the supports of W, and
W, for all sufficiently large p. We have

2 — —
s B (B (0 8))" = 0w () and | e BuF (a,8) = ons. ()

For future reference, we similarly have

)2 —2/91
(ax By (£ ([a', 6])) 0as. (p72°1) and (35)
1ot _ —1/91

where [a/, V'] = [a — €, b+ €] with e such that [a — 2¢, b + 2¢] lies outside the support

3Even the choice d = 42 and v = 0 would lead to the negligibility of &, because the constant
C in Lemma 10 can be chosen at will, that is, arbitrarily small.
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of W,,. Indeed, for all sufficiently large p, [@/, b'] lies outside the supports of both

W, and W, so that the requirement of Proposition 12 is met.

4.3 Step 2: Convergence of m — Em

We now consider behavior of m — Em = m, (2,) — Em, (2,) along the sequence
zp = xp + 1y, with y, = yop~®, a = 1/456, and yo € R™ an arbitrary fixed positive

real number. We will show that, for such a choice of «,

sup pyp |mp (Zp) — Em,, (zp)| = 0.
zp€la,b)

that max, cs, py, |my (2,) — Em,, (2p) %0, where S, is the set of p? points uni-

Since |m,, (2 +iy,) —my, (2@ +1iy,)| < |2 — 2@y, 2, it is sufficient to show
|
formly spaced on [a, b] .
We use the following key representation of m — Em in the form of a sum of the

martingale difference sequence

T/2
m —Em = ZEjm —E;_im.

j=1
As shown in the SM, this representation can be rewritten in the following form
T/2

1
m—Em=-Y (B -E_)tr (Pg.q)Qf)) , (36)

P

where QEQ) is as defined in (15) above and

1 ,.(a) (@) 1, (@) (@)
@ — ( m%& )‘“{) 1:”]'( )TJ‘VS _bjk) >
J 1 jq—bq lu-qer;—cq

1—2z J 1—2 7] J
with
0 = el M7 IAM; e,
bgm = ;D 1C" 1A M £(j), and
Cgf]) _ / lcl 1A M 1CD 5 ()
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Consider the identity
A = a4l (@) - @)) ol (37)
—_ 0o (d) (d) (Dy-1) (@) (d) (d)y—1 @\ -1))* 0@

— QP+l (@) (@) ) o+ (2 (@) - (i) 1)) ol

where

(38)

rj -1
O =9 (z) = (= )L 75V + Buly
" TV + Bul, (”Z —i—zEv) I

In this definition, we use superscript ‘(d)’ to emphasize the fact that Qg-d) is a

deterministic matrix.

Lemma 13 There exists C > 0, such that sup, cj,, max;—=1_ 1/ Q](fjl-)(zp) <C
for all sufficiently large p.
Identity (37) implies the following decomposition
L T2
m—Em = —Z (B — B 1) tr (1{70”)
T/2
d d)\— _ d
- Z (B; — B ) tr (T00 (@)1 = @) ) o) (39)
] 1
L T2

4= Z (B; — Bj_1) tr <r§q) (Qg.d) ((Qg.d>>—1_ (ng))—1>>2Q§Q)>‘

We further expand (39) as follows. Define

and
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where

1 N 1 s~ 1 ~

v; = fter 17uj:Ttr(Cij1Mj 1)’Uj:Tter 1,
1 _ _ 1

a; = ftl"(Mj A M; 1)»bj:f r(DjCIM A MY, and
1

¢ = Ttr( D'CIM A MO D).

Then as shown in the SM, we have

m —Em = Wi + Wy + W5 + Wy, (40)
where
L 12
Wy = —ZE tr <<F(q f‘) di))’
Wy = —TE/EE tr (F Q4 (Q (Q@)—l) Q§-d)> ’
i () - )
T/2

Wi = —Z (B, — Bj_y) tr <F§q) (2 () - (Q§q>)1)>29§q)>.

Terms W}, in the decomposition (40) are small in the sense that their moments
quickly decay as p — oco. A general strategy of proving this uses the fact that
all these terms can be viewed as sums of martingale difference sequences, and
therefore Burkholder’s moment inequalities (see Lemmas 2.1 and 2.2 in BS98) are
applicable. The moments of the corresponding summands can be bounded using
results on quadratic forms in Gaussian vectors, detailed in the SM.

The so-obtained bounds involve quantities such as BEtr(M ~1)/T. These quan-
tities can be split into two parts, corresponding to the eigenvalues A,; that lie
outside and inside the interval [¢’, '] . The “outside” components are bounded for
z, € [a,b] because the distance between [a/, V'] and [a, b] is fixed and positive. The
“inside” components are bounded by products of powers of 3.~ 'and EF, ([d,V]),
the expected proportion of eigenvalues \,; that belong to [a’, '] . Given the choice

of y, made in this section, such products are small by (35). Following this general
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strategy, we prove our next proposition (see SM), which is the main result of this

subsection.
Proposition 14 For any k = 1,...,4, max, egs, pyp |Wi| 2% 0, and hence,

I?gépyp Im — Em| %3 0.

4.4 Step 3: Convergence of Em — my

Taking expectations of both parts of equations (11-14) and replacing Eﬂg-q) by Q§d),
we obtain an analog of the “approximate system” (18-21) for variables Em, Ev,

Eu, and Ev instead of m, v, u, and 0.

T2 .
1 2 2B0+71; (Bu+EBv—1)
Em = ——— — — : = +é1, (41)
c(l—2) T ‘= (1—2)¢;
1 1 2 L2 20 4 rjz (Bu + zEv — 1)
[ S 1 i (Bu+ ve ()
c c(l—2) T ‘= (1—2)6;
1 2 2 Eo+r; (Bu(l+2)/2+ 2Bv—1)
20 + r; (Bu z zBv —
14 zEm = ]_—__T J = +ég,(43)
c(l—2) ¢ p (1—-2)6;
T/2
2 —Eu — r;Bv/2
0 = = 7 G 44
CT; 5J + €4, ( )

where

0; = 2B (1 +Bv — 2Bv) + 7 (Bu + 2Bv — 1) — (1 — 2) (Bu)?,
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and

1 1
5 = L st (1m0 (20 - BOY) [, 77)).
pi= (1-2)
] T/2 1
5 = L st ([fomy2¥)] (940 — BOO) (1,2, 9]
P (1—2)
] T/2 1
e 1 (e (00 ) ),
P (1—-2)
12 1
1 @ _mo@ v
és = » 2 — tr <[0,]2] (QJ EQJ ) []27TJV]] >

The identity di) — Q= Q(d)((Qg.Q))_l — (Qg»d))_l)QE»Q) yields a decomposition

J J
(@) _ (@) _
QY —EQW = Ry + Ry + Rs, (45)
where
R = QUB(Q") " - (@) He)”,
2
Ry, = —E(<Q§d>((9§q>)—1—(Qg.d))—l)) Qg.d)), and

Reo= B ( (2000 - @) a0,

As we show in the SM, for any z, € [a, ], ||E((Q§Q))*1—(Q§-d))*l) || and E| ((ng))*l—

(Q§d))_1) ||? are of order p~!, whereas E| ((Q§q))_1 - (Q§d))_1) [|? is of an even smaller

Q(d) Q(Q)
j j

that & are of order p~*, had there been no (1 — z)~* multipliers in the definition of

are bounded. These facts would have implied

order, and ) ’ as well as [ ‘
€1,...,e3, and (1 — z)~" multiplier in the definition of &,. If [a, b] includes unity, then
these multipliers are not uniformly bounded over Re z € [a,b]. However, it turns
out that the norms of (1 — 2)™ [Is, V5] Qg-d) and of (1 —2)™" [I2,7;2V] Qg»d) are
uniformly bounded over [a,b] (see the proof of Lemma 15 in the SM), which is
sufficient to guarantee that &, are of order p~—! notwithstanding the presence of the

multipliers (1 — z)™ and (1 — z) " in their definitions.

Lemma 15 There exists C > 0, s.t. for any k = 1,...,4, sup, iy €k (2p)] <
Cp1.
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As explained in the proof given in the SM, the inequality for é; can be slightly
strengthened so that
sup [E2 (2) /2| < Cp (46)

zp€la,b]
Such a strengthened version is used in the proof of Lemma 16.
Similarly to the above reduction of the “approximate system” (18-21) to the

simple form (31), we reduce the system of equations (41-44) to

Eﬁ—{—QEU:él,

zBv+EBu+c¢/ (1 —c¢) = é,

Em —Ev(l—c¢)/c=és,
(Em)*cz(1—2) —Bm (c—z+cz)+ 1 =éy,

(47)

where €, k = 1,...,4, are nonlinear functions of é;, k =1, ..., 4, Ev, Eu, and Ev.

Lemma 16 There exists C > 0, s.t. for any k = 1,...,4, sup, cjoy 1€k (2p)] <
Cpt.

Now recall the explicit form (32) of mg. The fourth equation of (47) yields a

similar expression for Em,

c—z—l—cz—l—\/(c—z+cz)2—4cz(1—z)+4é4cz(1—z)

Bm(z) = 2cz (1 —2)

Hence, the difference |Em (z,) — myg (2,)| is of the order of

é4(2p) /\/(c — 2, + c2p)° —dez, (1 — 2,).
On the other hand, identity (33) implies that

inf |(c— 2, + cz,)’ — dez, (1 — z)| > €
zp€la,b]

for all sufficiently large p, where € is the positive number used in the definition of

[d’, b'] . Therefore, the following Proposition follows from Lemma 16.
Proposition 17 There exists C' > 0, s.t. sup, i, [Bm (z,) —mo (2,)| < Cp~.

Propositions 14 and 17 yield

sup [m (zp) —mo (2)| = 0as. (1/ (Pyp)) (48)

-'Epe[(l,b]
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with y, = yop™?,

a = 1/456, and yo an arbitrary fixed positive real number. This

yields Theorem 1 via the following arguments. The main idea of these arguments

is outlined in Section 4.1 above.

Using (48), we obtain

max sup ‘m (a:p + i\/%pfo‘) — my (xp

ke{1,2,...,228} zp€la,b]

Taking imaginary parts, we obtain

max sup
ke{1,2,...,228} 3 cla b

+ i\/Ep*a)

/d(Fp (A) —We ()

(@, — A)Q + kp—2«

. (p71+a) )

= Oas. (p71+2a) .

Taking differences of the integrals corresponding to different values of k yields

“2ad (F, (\) — W, (A
o sup | [ ZEUBO WD | oy
17k2 3, la,b] Hs:1 ((zp — N)? + kgp22)
—dad (F, (\) — W, (A
g s AU R AL Y
Wi |1 (= 2 + kap2)
p~ted (£, () — W (V) 1424
Supb 298 5 - Oas. (p ) )
:BpE[CL, } HSZl ((Z'p — )\) + Sp a)
so that
d(F,(A) —W. (A
p | [—ABOWO) |,
p€la.b] Hs:l ((zp — A)* + sp~22)
Splitting up the integral, we obtain
Lo E,(A) =W, (A
sup / { b212£ d( p(z) () (49)
xp€la,b| xp _ )\) + Sp—Qa)
-1
p
+ Z 298 ) = Oas. (1) )
jela’ b H 1 )2+ sp~29)

where 1z ey (A) is the indicator function equal to unity iff A ¢ [a’, V'].

Now suppose that there exists a subsequence p,, — oo such that for each p,,, at
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least one eigenvalue )\, ; belongs to [a,b] . Setting z,,, equal to such an eigenvalue,
we see that the sum on the left hand side of (49) is no smaller than Hisl s>
for all p,,. Therefore, at such z,,, the integral on the left hand side of (49) must be
uniformly bounded away from zero over all p,,. But the integral must a.s. converge
to zero because the integrand is uniformly bounded, and both F, and W, a.s.
weakly converge to W, that satisfies W, ([, t']) = 0. Therefore, with probability

one, no eigenvalues \,; will appear in [a, b] for all sufficiently large p.

5 Johansen’s H* model

If the data generating process is described by Johansen’s H* model (2) rather than
(1), the LR statistic for testing the null hypothesis that II = 0 still has form (3).
However now, \,;’s equal the eigenvalues of Smgl_llgmgo_ol, where S‘ij are defined
differently from S;; given in (8). Specifically, they correspond to sample covariance
and cross-covariance matrices of the demeaned processes AX, and (Xt’_l, t)/ (see
Johansen (1995, ch. 6.2)). That is, in contrast to (8),

MU'y 7'M

- ~ UMU'yY nUM,
SOI = ( anU/ I7 77Ml7—> and Sll = ( 7 S o >7

while similarly to above, Sio = 5%, and Sgo = nM;n/. Here 7 denotes the time
trend, 7 = (1,2,..., 7T + 1).

In contrast to matrices Soi, S11, and Spg given in (8), matrices So1, 511, and Spo
cannot be simultaneously rotated to the form &'We, where W is a block-diagonal
matrix. Therefore, in the case of H* model, there is no convenient frequency do-
main reformulation of Johansen’s test, and the above analysis will not go through.
It is however possible to show that at most one eigenvalue of So;S5;!S1055, re-
mains above and separated from by, and at most one eigenvalue remains below
and separated from by_, asymptotically. Hence, the second largest and smallest
eigenvalues of 501§1_11§105’&)1 a.s. converge to by, and bg_.

Recall that the eigenvalues of 5015'1’115'105&)1 equal those of PP, where P;
and P, are projections on the column spaces of Y = MU' My’ and Z = My,
respectively. Similarly, the eigenvalues of 501§1_11§105‘0_01 equal those of P, P,, where
P, is the projection on the column space of Y = ( MUY, Mt )

Note that Y has p 4 1 columns whereas Y has p columns. Let us augment Y’

by a zero column to obtain Y = ( MU' M, 0 > . Obviously, projections on the
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columns of Y and Y coincide and equal P;. Further,

Y-V = ( MUY ) (T+1), M7 ) = ( Mt/ (T +1), Mr ) . (50)

and matrix ( MUy ) (T + 1), M ) has rank one.

Lemma 18 Let Y, and Yy be n x m matrices and let Py, and Py, be projections on
the spaces spanned by the columns of Y1 and Ys, respectively. If rank (Y1 — Ys) =7,
then there exist n X r matrices y, and y, such that Py, — Py, = P, — P,,, where
P,

v and Py, are projections on the spaces spanned by the columns of y1 and ys,

respectively. In particular, rank (Py, — Py,) < 2r.

Proof: Assume that Y; — Y5 = ab, where a is n x r and b = ( 0, I, ) . This
assumption does not lead to loss of generality because Py, and Py, are invariant
with respect to multiplication of Y7 and Y5 from the right by arbitrary invertible
m X m matrices. The above form of b can be achieved by such a multiplication.
Let us partition Y; and Y5 as [Yi1, Yio] and [Ya1, Yas], where Y15 and Y, are the

last r columns of Y7 and Y5, respectively. We have
Y51 = Y11 and Yo + a = Y.

Denote [,, — Py,, as M, where Py,, is the projection on the space spanned by the
columns of Y51, and let yo = M;Ys5. Note that

PYz = P[Yzhyz] - PY21 + Py27
where the second equality holds because Y3, is orthogonal to y,. Similarly, we have
Py, :PY11+PZ/1 :PY21+P?J17

where y; = M;Y12. Therefore, Py, — Py, = P, — P,,.1J

Lemma 18 and equality (50) imply that there exist no more than one eigenvalue
of 50151_115105&)1 that is larger than the largest eigenvalue of 50151_1151050_01 and
no more than one eigenvalue of So;5;' S90Sy, that is smaller than the smallest
eigenvalue of 50151_115105’&)1. Indeed, note that the eigenvalues of 5’0151_11510 ~0_01’
which equal those of P, Ps, coincide with the eigenvalues of a symmetric matrix

PP, P,. Similarly, the eigenvalues of 50151’115105&)1 coincide with the eigenvalues
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of a symmetric matrix P, P, P». By Lemma 18,
P,P,P, — P,P,P, = P,P, P, — P,P,,P,,

where P,, and P,, are projections on one-dimensional spaces. Hence, our statement
concerning eigenvalues of Sp157; 510550 and So1.S7; S0 follows from Weyl's
inequalities for eigenvalues of a sum of symmetric matrices (see e.g. Horn and
Johnson (1985, Theorem 4.3.1)).

We have conducted a small-scale Monte Carlo study which suggests that, in
fact, the largest eigenvalue of So; 5’1’11 3105'&)1 converges to by similarly to the largest
eigenvalue of 50151_115105&)1. However, the smallest eigenvalue of 5‘015*1_115’10 ~(i)1
is close to zero, whereas in accordance with our theoretical results, the smallest
eigenvalue of Sy1.5;;" S105;, converges to by_.

A more formal analysis of the extreme eigenvalues of 50151_115103&)1 would
amount to studying low-rank perturbations of Sp;1.5;;"S1055 - There exists large
literature on the low rank perturbations of classical random matrix ensembles (see
e.g. Capitaine and Donati-Martin (2016) and references therein). However, this
literature is not directly applicable to So;S;;'S1055, . We leave analysis of small

rank perturbations of such a matrix for future research.

6 Conclusion and discussion

This paper establishes the a.s. convergence of the largest and the smallest eigen-
values of So;57;'S1055," to the upper and lower boundaries of the support of the
Wachter distribution W,,. This complements Onatski and Wang’s (2017) result on
the a.s. weak convergence of the empirical distribution of the eigenvalues to W,,.
The strategy of our proofs is similar to that of the proof of the convergence of the
extreme eigenvalues of the sample covariance matrix in BS98. However, the fact
that we have to deal with the product of four dependent stochastic matrices, Sy,
St Sio, and S&)l, presents non-trivial challenges that we overcome.

Eigenvalues of Sy157;'S105,, can be interpreted as squared canonical corre-
lations between demeaned innovations of high dimensional random walk and de-
trended and demeaned levels of this random walk. Such eigenvalues form the basis
for the LR test of no cointegration in high-dimensional vector autoregression of
order one. The LR statistic has a singularity at unity, hence Onatski and Wang’s

(2017) result cannot be used to establish its a.s. convergence.
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The result of this paper shows that the singularity can be ignored because
none of the eigenvalues of So;57;'S105,, are close to unity asymptotically. Thus,
our Corollary 2 establishes the a.s. limit of the LR statistic. We use this result
to obtain an analytic formula for a Bartlett-type correction coefficient for the LR
test.

We establish Theorem 1 under Gaussianity of the errors 7, of model (1). We
need the Gaussianity for two reasons. First, it allows us to reduce the analysis of
So1511 51055, to that of C'D"*CA~!, where C, D, and A have form £'We with
block-diagonal W, and ¢ has i.i.d. elements. Second, we use it to derive bounds
on the expected value of the inverse of the smallest eigenvalue of A (in SM). In
principle, the first reason can be circumvented by simply assuming that the matrix
e of the discrete Fourier transforms of 1 has i.i.d. (but not necessarily Gaussian)
elements. This still leaves the second reason intact. Unfortunately even a seemingly
innocuous assumption that the elements of € are i.i.d. Bernoulli random variables
leads to non-invertibility of A with small but positive probability, and hence, to
nonexistence of the expected value of the inverse of the smallest eigenvalue of A.
We leave removing the Gaussianity assumption as an important topic for future
research.

Onatski and Wang (2017) establish the a.s. weak convergence of the empirical
distribution of the eigenvalues of 5’0151_11510S&)1 to W, under more general data
generating processes than the one described by (1). Extension of the results of this
paper to such more general processes would require analyzing the effect of small
rank perturbations on the extreme eigenvalues of 50151_115105’&)1. As we discuss
above, such an analysis is not straightforward and needs a substantial further
research effort.

Another important research task is to study the asymptotic fluctuations of the
functionals of F), around their a.s. limits. This would allow one to derive an
asymptotic distribution of the LR statistic under the simultaneous asymptotics.

We are undertaking such a study as a separate project.
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1 Introduction and the main result
1.1 There is no supplementary material for this section.
2 Bartlett-type correction

2.1 Proof of Theorem OW3
Recall that

p
LR=—(T+1)> log(1—\y),
j=1

where )\,; is the j-th largest squared sample canonical correlation between demeaned vectors AX; and
Xi—1—1tp;. As explained in OW’s Section 3, A\,; can be equivalently interpreted as the j-th largest eigenvalue
of 50151_1156150_01, where

So1 = nMU Mn', S11 = nMUMU' Myn', Soo = nMn'.

Therefore, by standard arguments (see e.g. Johansen (1995, Appendix B)), as T' — oo while p is held fixed,
the entries of matrix (T'/p) So1S7;'Sh Sgq- jointly converge in distribution to those of matrix

: /O (4B P ( /O 1 FF'du)

where B is a p-dimensional Brownian bridge and F is its demeaned version. In particular, as T — oo while
p is held fixed, LR/p converges in distribution to the trace of (1).
Let us denote the eigenvalues of (1) as A j, and their empirical distribution function (d.f.) as Fy, (X).
Note that matrix (1) is a low-rank perturbation of matrix
1
/ F(dB)',
0

%/01 (dB) F’ (/OIFF'du)

where B is a p-dimensional Brownian motion and F' is its demeaned version. Therefore, by Theorem 4 of

Onatski and Wang (2017), Fo, (A) 1 Fy(N) as p — oo, that is, Fy, (A) weakly converges in probability to
Fy(A), which corresponds to a distribution supported on [a_,ay] with

4 = (1i\/§>2, 2)

—1

[ Fany, 0

—1

and having density

f()\)zi\/(a-i-*)\)?()‘*a—). (3)

Moreover, by Theorem 5 of Onatski and Wang (2017), [ AdFy(A) = 2.
Since, as T — oo while p is held fixed,

P

1
LR/p* % - > Xy = /AdF@P(A)’
j=1

3

it remains to show that [ AdFy ,(N) 5 J AdFy(A) as p — oc. Unfortunately, such a convergence in probability
does not follow from Fp , (A) =z Fy(A) because f(A\) = A is not a bounded function of A. To circumvent this



caveat, we now prove that Ag; LR ay as p — co. Hence, [ AdF},()\) converges in probability to the same
limit as [ f5(A\)dFp »()), where 6 is a fixed positive number and

0 if A <0
() _{ min (X, ay +0) ifA>0

is a bounded and continuous function. On the other hand, [ f5(A\)dFy,(\) L J fs(\)dFy(X) = 2, where the
latter equality holds because f5(\) coincides with f(A) = A on the support of Fy(A).

2.1.1 Convergence of \o; (the largest eigenvalue of the T-limit of (T/p) So15:;" Sh1So0

Without loss of generality, assume that  and (1) are defined on the common probability space so that the
convergence of (T/p) So157;"S4: S50 to (1) is in probability. Lemma OWS5 implies that (T'/p) So1.S1;" Sh1Soo"
equals (T'/p) CD~'C"A~1, where

C=¢V'e )T, D=¢VV'E T, A=¢)T,

and ¢ is a p x T matrix with i.i.d. N(0,1) entries.
Let v < 1/2 be a small positive number, T, be the smallest integer satisfying p/T, <, and let T be so
large that T" > T’,. Further, let

C, =€, Ve T, Dy =€V, V€ T, and A, = €€ /T,

where &, is the p x T, matrix from the partition { = [57,577] , and V, is defined similarly to V with T'
replaced by T’,. Finally, let A, 1 be the largest eigenvalue of C,, D 10,’YA,? L. Note that, by Theorem OW1,

(T /o) s = (V- T—7) (4)

as p — 00.
We would like to show that for any § > 0 and all sufficiently large p

Pr(|Ao1 —a4] <d)>1-4.
Suppose this is not so. Then, there exists § > 0 such that for any pg, there exists p > pg yielding
Pr(JAo,1 —aq| > 9) > 4. (5)
By the triangle inequality,
[Aog = atl < [Aox = (T/p) Apal + [(T/p) Apa = (T5/P) Apy,1| + (T /D) Apyt — @ | + [agt — ay |

Choosing ~ sufficiently small, we obtain

|yt —ay] < 6/4 (6)
Further, by (4) for all sufficiently large p, we have
Pr (T /) Ayt — | = 6/4) < 3/4. (7)

Next, since (T/p) CD~1C" A~ converges in probability to (1) as T — oo while p is held fixed, for any p, we
can choose T so large that
Pr(|Xo,1 = (T/p) Apa| = 6/4) <d/4. (8)

Finally, by inequality (114) proven in Section 3.1.1 of the Supplementary Material to Onatski and Wang
(2017), for sufficiently small v, all sufficiently large p, and all T' > T', where T may depend on p,

Pr([(T/p) Ap.1x = (Ty/p) Apya| = 6/4) < 6/2. 9)

Combining (6-9) with the triangle inequality, we obtain a contradiction to (5), which completes the proof.



3 Setup

3.1 Proof of Lemma OW4 (diagonalization)

Note that F/+/T1, where Ty = T + 1, is a unitary matrix with the first column and row equal to I/4/T} and
' //Ty. Therefore,
fMl]:*/Tl = IT1 — 616’1 = diag {O, IT} .

Next,
MUM, =U —U'U/Ty —UW' /Ty + WU /T?

and thus, the first column of M;U M; equals

v= i7' — lT1 1
T 2017
where 7 = (1,2,....,Ty)" . We have
1 & Ty +1 2
— —iws—1(t—1) _ 1 . _am
(Fov), = T ;te 1 Og—1 with w, = T s,
which yields (Fv); =0 and
, 1 &
(1—e s 1) (Fo), = ™ Zeﬂ“’sfl(t*l) —1=—-1fors>1
Lo

As is well known (see e.g. Golub and Van Loan (1996, ch. 4.7.7)), any T} x T} circulant matrix V with
the first column v admits the diagonalization V = T%J: * diag (Fv) F. Hence,

MUM, = Tilf* diag {o, @*} F

where . . . . .
v =diag { (¢ —1) ' (o = 1)
and

MUMU' M, = Tilf* diag {0, @*}f%]—'* diag {07 @} F

= Tilf* diag {0, @*@} F.

3.2 Proof of Lemma OW5 (CD'C'A~! form of Sy 51, S1055)
Let Pyy = diag {1, P}, Wy, = diag{1,W}, and ey, = P W3, /v/TTy, where Ty = T' 4 1. Matrix € can
be obtained from € by deleting the first column of £11. By the definition of 7,

e =nF PuWi//TT =nQ/VT.

Since F*/4/Ty and W3, are unitary and P, is orthogonal, matrix @ is unitary. Moreover, it is orthogonal
because it has real-valued entries. This implies that the columns of € are i.i.d. N (0,1,/T). The rest of the
lemma, follows from the easy to verify fact that WP'VPW* = V',



Table 1: Definitions of matrices, quadratic forms and traces that are used in the derivations below. Notations

used in this table suppress the dependence of various quantities, such as M, v, u,w, etc., on z.

p X p matrices 2 x 2 matrices scalars
_ — (@) _ -1 _ 1 -
M =CD7'C" - zA v; " = ehM; e v=gtr {M~1}
M=CATC—2D  ul? =g, D7'CIM; e w=tte{DC'M}

_ (@) _ -1 -1 -1 - _ _ _
C’j—C—s(J—)V;s’(j)7 w! —EE.)D]- C’]‘Mj C]'-Dj £(5) w—%tr{D 'C'M~'CD 1}

D;=D - r;ls(j)s’(j), s](-q) = 5'(j)D;15(j) s = % tr {D*I}
Aj = A—eiel, ﬁ](-q) = szj)]\ij_la(j) b =4 tr {M‘l}
M;=C;D; 0 —24; @0 = €|, AT O ey a=gu{aton}
My = CjATICy = 2Dy = ey AT O AT ey b= g {a-tanrtorat)
§§q) = 5(J)Aj €(j) §= % tr {Ail}
m= % tr { (Ccp~c'A™t — zlp)_l}

3.3 Derivation of equations OW11-OW14

A detailed derivation of equations OW11-OW14 can be found in Section 2.1.4 of the Supplementary Material
to Onatski and Wang (2017). However, since some equations and definitions from that derivation are used
below, we reproduce the derivation here. For the reader’s convenience, Table 1 below lists definitions of

matrices and scalars used in our proofs.
We will need the following lemma, which is proven in the next section of this note.

Lemma 1 The following identities hold

u§q) _ ﬂ;q)/7 Zﬂj(q) _ wj(g) _ S;q)7 and zv§q) _ ~j(fJ) _ §§q)'
Similarly,
u=1u, 20=w-—35, and zv =W — S.

Derivation of identity (OW11) Applying the Sherman-Morrison-Woodbury (SMW) formula
V+XWY) =V vl (W 4 yvix) Ty

to the right hand side of
1
- —1
D™l = (Dj +’I“j 5(j)£2j)) ,

we obtain
— — — —1 —
D' =Dt — Dy e (rila+ ;) gy D;

J

Using this and the identity

C = Cj +€(j)vg€l(j),

we expand CD~'C’ in the following form

—1
-1 -1 —1 (9) -1 -1
C;D;'C) +2(;) Vel D ' Cl — C;D; ey (rj12+sjq) el D7 'Cl + C3D; e () Vel

—1 —1
*E(j)vgséq) (’r‘jIQ + SEQ)) 5/(j)Dj_103/' — Cij_le(j) (’I"jIQ + S§q)) qu)vj'é?/(j) + E(j)V;S§

—1
-V sg(J) (rjfg +S§Q)) SEQ)Vjs/(j).

/.
J

q)

!
Viey)



Simplifying this expression yields

1 —1
CD™'C" = C;D;'C; - CiDj e (ij + S@) e(;yD;Cj + ey Virs (ij2 + qu)) D

J

B 1
+CjD;1€(j) (ij + Sg'q)) Vet T e Vi s(q) (TJIQ + qu)) Vi€

Since M = CD'C" —zAand A=A, + E(j)&‘l(j), it follows that

]\4_1 = (M] + OéjKjOé;-)il,

where
a; = [ej), O3 D e ()]

and

-1 —1

K. — V; §q) (T]IQ + qu)> ) ijj' - ZIQ V;—T'j ('I"jIQ + SEQ)>1
= Z
(T‘][2+S(q)) erj — (Tj]2+854q))
Applying SMW formula to the right hand side of (14), we obtain
_ _ _ _ _ -1 _
M~ =M= M oy (K 4 oM ay) oM
The identity V Vj=r; ', yields

-1

1

. v, 0 (q) (1"]12 n qu)
i < ) (7‘]]2—&—55 )> r; _(Tj12+8§q)>,

—1
rj —zrils (ijz + 55-'1)) T v, 0
0 IQ 1 5

which implies that

Kol— 1 Vit oo ry Iz I vitoo
J 1—=z 0 I I z (TjIQ + S;q)) — 8§q> 0 I ’

and therefore, using A\ V] = 1" 7, again, we obtain

K-l — 12 ﬁzﬁ‘v}
i —-r;V; i '12—35.‘” .

1—=

Further, the definitions of Uj(.q), u§»q) and w yleld

L (@ (q)/
a;M; oy = u]@ (Q) :
i Y

Using (16) and (17) in (15), we obtain

M= M7 - M Wl M

-1
Q) _ lizl2 + UJ(}J) 1 lszV/ + u§q)/ _
J lizrjvj + u;@ 1 Ty — S(q) j(fﬂ

(q) 1 (a)
jq( ) =Y +uj<q>
1—iZTjVj +ujq 1fz7“j]2 +Z1~)jq

and the latter equality holds by Lemma 1.

J

—lot

J

(14)

(15)

(16)



Equation (18) yields

!/
El(j)M_lg(j) = v](-q) - [v](q), Eq)/} Qg 9 {vj(q),ugq)/} . (19)
Note that
_ 1 !
v](Q) = [v§q),UEQ)'] QEQ)(QJ(-(I)) 1,0 = [v](-q),ug-qy} Qj(-q) (—1 — [Iz,er;-]/ + I:v§q)7u§q)/i| ) ;

and thus, (19) can be rewritten as

- L [@ @] q@ '
oMo = 7 o] 9 [ )

1 @ 1 (a)/ 1 (@) '
= 1_ <|:1—ZI +Uq 1_ZTjV;-+qu — 1_ IQ, —ervj qu [IQ,’I"J'VH
—L[IOI«V’LlIlv'QIv’

— 1_ 2 2, ] [ 25T ]:I 1— 25 — Ty [ 2,75 ]:I
A 5 (LY Q9 [,y 05,
1—2 (1 B Z) LRV AR sy V25
To summarize, we have the following identity
M ey = —— T — (1, V] QO [, V] (20)
€0) G) T 7t (1—2) BTGV BTV
Recall that by definition,
1 1 L T2
m= ];tr [(C’D*IC’A*1 - zIp)_l] = ]—gtr [AM ! Ztr [5(] j)]

This equation and representation (20) yield identity (OW11)
T/2

T 11 1 o -
TP pj;(l—Z)Q tr([I”JVJ’] & [INJVJ‘])'

Derivation of identity (OW12) Since the eigenvalues of CD~1C’ A~ coincide with those of C’A=1CD~1,

we have
T/2

m= %tr [(C”A‘lc’D_1 - zlp)fl] = %tr [ } Ztr [ -1 £ Y _15(]-)} ) (21)

Note that matrix M can be obtained from M by swapping A for D and C for C’. Performing such a swap
in the above derivations of (20) yields

2

~ T T ~
syM ey =77 - a _JZ>2 (1, V31947 (1,9, (22)
where .
oo (e )
T2Vt 1fzf

(see Table 1 for the definitions of 6§Q), ﬂgq) , ﬁzj(q), and EEQ)). Lemma 1 implies that

j T -1
@ _ T —1 (wgq) _ sg-Q)) LLV; u(q) (0 ik @ 0 I
g 17“,;' v; +u;‘1)/ (Q) - I 0 J I 0 ’
—Zz




so that (22) yields

2
T zr

-1 — J -1 (@) [,—-1 !
M ey =77 - e 271V, L] O [7'V,, L] (23)

Combining this with (21) gives us

T/2 .
——Ztr[ Y [, B] ol [z—lvj,fg]’l.

pl—z =

Further, since ij_jv;' = I, we have

[V B [V B = s [0,V [T, B] 9 [, 1
(1-2) (1—2
-1
zri _ _ z
- (1_2)2&[@ VYV [V Vi) | = e ([, 2V 97 (1,2 V))

and therefore,
T/2 .

T 1 1 z ’
== =N ([Ly 2V QU [I, 2y V]
pl—z p]z:;(l—z)2 ([QTJZ il [QZTJ 3])

which is equivalent to identity (OW12),

T/2
T T 1 1 1 /
;ﬂm:;l?z—;;(l_z) r([12,72V}) 9 [, 20,95

Derivation of identity (OW13) Multiplying both sides of the identity
MA ' =CD 'C'A™! - 21,

by AM~1, taking trace, dividing by p, and rearranging yields

T/2
1
Lham= 3t Vie(yD71C'M e ). (24)
j=1

Equations (12), (13), and (18) imply that
-1
Dflc/Mfl — <Dj_1 _ Dj_lg(j) (T‘jIQ + S§Q)) 6/(])Dj_l> (CJ/ -|-5(j)VJ€’(])>
-1 -1 (@) -1
x (Mj — My Q00 ) .
Opening up brackets, we obtain
D'C'M?
_ -1 -1 -1 @) " -1 -1 -1 -1
= DFCIM = Diteg (il +57) el DT CIM; + D ey Vel M
-1
—D; Oy M; a0 My — D Yegy (s +5\0) el Dy e Vel M; !
+D7 ;) (rjf2 + s§q>) el D CIM QW o MY — D ey Vel My o Q40 o M

-1 (@) -1 -1 (2) -1
+DJ EI(]) (Tj[2+8jq) el(j)Dj 6(j)vj€/(j)Mj Oéijq O(;MJ .



(@ @ (@ 14
) J ?

Multiplying from the left by /., and from the right by £y, and using the definitions of u;",
€) @) 70

wj(-Q), we obtain
eyDTICM e

-1 !
— 4@ _ s§-q> (rjlg + s](-q)) u;q) + Sg_q)vjvj(Q) _ [ugfﬁ’w@)} Q;q) [U§Q)7u;q)/]

J J

(_q)vjvj(_q) + qu) (ij n S(Q)>71 [u(-q),w(-q)} 0 [v(-q)7u§-q)/]l

J J J

_SS‘Q)VJ' [UJ(Q),UEQ)/} QEq) [U§q)7u;q)/]l + 85}1) (ij + S§q))71 S§q)vj [U(q) u(q)/} QEQ) {U(Q),uQQ)/]/_

J 7

-1
—S;Q) (T]‘IQ + sg-q)) s

Rearranging terms and simplifying gives us

-1 !
DM e = i (il +s”) S0V, (UJ('q) = [ ] @ ol ] ) (25)

—1 /
+7; (rjlg + sgq)> (ug.q) - [u§Q),w§Q)] ng) [vj(»q),ui»qy} ) )

As follows from (19) and (20)

! 1 1
U]<q) - [vj(q),ugq)l} Qg.q) {U](.Q),ug.q)/} =1 ZIQ - 1 [L5,m;V] Q§q) [IQ,TJ-V;-]/. (26)
Further,
u§q) _ [UEQ),uéq)} QE}J) [U§q)7u§qy]/ _ [UEQ)7w§q)} QE}J) (Q§q))—1 [1,,0] — {U?);wj(-q)} Q§q) [U](}J)’ §q)/}/
1
= — {u(Q),wgq)} Q](fl) [IQ,TJV;»]I
Note that
L [,@ ,@] qw '
T [u]q ,qu ] qu I:IQ,T']V;-:I
1 r T T riz
= 1_2({1_3 vV, + ;q),lj_ I +wJ(Q)—s(q)] [1—]zvj’1 12—55.‘1)})9&1) [I2,TJV]]/
1 ‘
- — ([0,12] (2,3 V)] = 25 [TV, L] Q5 (1,7, V5] + (0,507 7 [bmjv;]’)
1 TiZ _ 1
- —nV, (1_12)2 (=715 L] 5 [y, V5] + 7= 0,53 @7 [, V1]
Therefore,
! 1 TiZ _
ug? — [u_gq)’wJ(Q)} o5 [v§q’,u§q)'] = 75"V~ R - ) =71V 1) 5 [V}
1 /
T {o,sg.‘”] QW [, r, V]



Using this and (26) in (25), we obtain

;DI M e

1

1
= (TJIQ +S(tz)) 4q)vj (1 = 212 _

1 iz _
% (1—ervj_ (1_32)2 [z 1vjaI2}

1
1 (rjlg + s(q)>

(1-2)°

Tj Z’I“j

(1—-2)

QEQ) [IQ, er;-]

2 [IQ,TJ‘V ]Q(q [IQ,TJV ] ) +r] (TJIQ +S(q)) B

1
' + 12 [0, SEQ):| Qﬁq) [IQ,TJ'V;':I/>

{s 9 V; —|—7']V],zs D 4 zrjlg] Q;q) [IQ,TjVﬂI

- v, — [V, L] QW L, V)]

1—z 7 (1—2)2

that is,

ZTj

gD TIC'M ey =
This identity together with (24) yield

L 12

Tj
\Y
1—=2

j_(l

—2)? =71V, ] O [I2,m; V5]

1+2m = —Ztr

A _
(1257 i e )

T/2 )
/!
B _ZUK b= Vil o [IQ’TJVJ)]’
which is equivalent to identity (OW13),
T/2
T 1 1 1 /
1+Zm_plfz__ 1_—2) ([I%TJZV]Q [IQ?T]VJ}>'

Derivation of identity (OW14) An obvious identity

1 tr [C”M_
p

T/2
and representations C’' = Z

T/2
Dt Vil M e | =

=1

Using (27) and (20) in this equation, we obtain

1] = —tr

p

[DD™'C'M 1]

T/2

8(])V €(;) and D = Zj T 5(])5(]) yield

L 12

Ztr[ ;W) _1C'M_15<j)}-

1

Bl (o
- —sztrlr (—‘Zvj—

(1-2)

10

Z’/‘j
(1-

[,V 29 [I%TjV}]')

5 [71V5, I2) ()[IQ,TJV;]/>

z)

(27)



Equivalently,

1
G Tl Ty )

142 1
0 = = tr|| ——=IV,;, L] [Io,;V}] —
PiA K(l—ﬁ[ i ol 97 2 V) (1-

LTy
i
_ 5; —tr ([0, ) 2" [, V) ).

which is the same as identity (OW14).

3.3.1 Proof of Lemma 1 (links between variables with and without tilde)
The identity ug-‘n = ﬂ§q)' is established by the following sequence of equalities
u§-q> = Ezj)DflC}Mfls(j) = EEj)DIIC;- (CjD;1C§ - zAj)_le(j)
= <l (G- 245 ()™ Da‘)_l &) = (5/@) (¢;—=p;(C)" Aj)_l 6(]‘))/
= (cpAr'Cr (G710 = 2Dy) o) = (sl AT O e ) = "

(9)

The relationship zv;" = w§q) —s; is obtained as follows

J
zfzj(-Q) + qu) = £ (zMj_l + Dj_l) ey =Dy’ (ZIp (C5471CD; — 21'73)71 + Ip) £(j)

= D5t (I + CiA; CD; (GIAT D = 20) T 4+ 1) <y

= Dy (C) = 2D, C Ay ey = e, D Cy (DG = 2651 Ay) T Dy e
= &l D7IC (C;D;1C) — 24;) " C;D; ey = wl?.
The relationship ZUJ(»q) = 1D§q) - §§-q> is obtained as follows
@ 450 = o) (M7 + AT e = e A7 (24, (G D7 CiAT = 2L) T 4+ 1) e
= ey A7t (< + CDF AT (O D AT = 2L) T 1) e
= A 1C; (Cf — 24,0 D) ey = € AT (ATC; — 2 D;) T A e

/
(
_ -1 -1 -1 -1 )]
= 6/(]‘)‘4]‘ Cj (CJ/A] Cj — ZDJ') CJ/»AJ- 5(]‘) = qu .

Identities (11) are established similarly. The only differences are that the matrices involved are not indexed
by j, and instead of the quadratic forms in the columns of £(;) we work with traces.

4 Proof of Theorem OW1

4.1 Outline of the proof

4.1.1 There is no supplementary material for this section of OW.
4.2 Step 1: Speed of convergence of EF), ([a,b])

4.2.1 Rough bounds. Proof of Lemma OW?7 (bound on ||Q;1 - (ng))_lﬂ)

Assume that for all p and T'(p)
c=p/T(p) € lco/2,1/2). (28)

11



There is no loss of generality in this assumption because for any sequence of pairs p, T'(p), such that p, T —.,
oo with ¢g < 1/2, (28) holds for all sufficiently large p and T'(p). Here and below, notation p, T —., oo is an
abbreviation for p, T'(p) — oo so that p/T(p) — co.

Let fiy, be the minimum of the smallest eigenvalues of Aj, j = 1,...,7/2, and let ji,,, ¢ be the maximum

2
eigenvalue of A. Further, let p and i be positive numbers that are strictly less than (1 —+/co/ 2) and strictly

2
larger than (1 ++/1/ 2) , respectively. Consider the event

50 = {E S Hmin and :U’max,O S ,L_L} . (29)

By Theorem I1.13 of Davidson and Szarek (2001), the probability of the complementary event, &5, is expo-
nentially small in p. Hence, event &y holds w.ow.p.
By definition and by Lemma 1,

Therefore,

o~ 09 < ot o~ -+ -

(
J
and it is sufficient to establish bounds on the norms appearing on the right hand side of the above inequality.

Here we establish such a bound only for ij(q) — vIQH . The other bounds can be obtained similarly.
(9)

By definition, the upper left element of the 2 x 2 matrix v;" — vI> equals

ehj1 M eaj1 — %tf M~ = Vi + Vyy,
where 1 L
Vij =gy 1My lesjq — mtr Myt and Voj = tr (M = M71).
The following lemma is a simple consequence of Lemma 2.7 in Bai and Silverstein (1998).
Lemma 2 Let Q be a p x p deterministic complex matriz, and § ~ Ny, (0,1,/T). Then, for any p > 2
E|¢'Q¢ —trQ/T|” < C||Qf p/*T",
where C' depends only on p.

In what follows, we will use C' to denote a constant whose value may change from one appearance to
another. By Lemma 2 and Markov’s inequality, for any p > 2, we have

Pr ([Vi;| > Cp Yyt | [|1M;7Y] <y ') < CePp/? (Cp T pydt™) ™"

P
where Pr (- | -) denotes conditional probability. This inequality and our assumption that y, = yop~® yield
Pr (|V1j\ > Cp*Vyg and ||Mj*1|| < y;lﬁfl) < Cp~P/2=y—ald+1) (30)

where C' on the right hand side of (30) depends on p, d, p, ¢, and o, but not on p.

Lemma 3 Let fiyin js Hmax,j G fiin,0s fmax,0 0€ the smallest and largest eigenvalues of A; and of A,
respectively. Then,

1225
(Rra|

IN

1/ (yplu‘min,j) ’ ||D;1|| S 4//j’min,j’ }|D;10]/||2 S 4:u‘max,j//j’min,j’
1/ (yp:umin,()) ) ||D71|| S 4/:umin,O and ||D716’/H2 S 4:umax70/:u“min,0'

IN

12



Further,

max,0

or (M = M) <8/ (bt )+ Jex (D7 CM;" = DTICMY)| < 3205 of (ptiin )
and
|tr (D7 CIMI D7 = DTIC'M T CD ™) | < 960/ (Uphtimin, ) -

This lemma is equivalent to Lemma 13 from the Supplementary Material to Onatski and Wang (2017).
For the reader’s convenience, we provide its proof in the next section of this note. By Lemma 3,

Pr (11041 > 4 5) < Pr (g < ) < Pr (&) (31)
Combining (30) and (31), we obtain
Pr (‘V1J| > Cp*’sz) < Cpfp(1/2*7*a(d+1)) + Pr (506) )

Since T'= T'(p) is proportional to p, this yields

o ( max Vil > Cp-”y;f) < CpPU2mymeld L 4 Op Pr(£5) .
J=1,...,

Furthermore, since & holds w.ow.p. and since p > 2 can be chosen as large as we would like it to be,
inequality
—v, d
j:{??)%ﬂ [Vij| < Cp~ "y, holds w.ow.p.
as long as 0 < o < g with ag = (1/2 —7) /(1 +d).
Next, by Lemma 3, |V;| < 8y, pui, ;T so that

Pr ([Va;| > Cp~"yf) < Pr (pypin; < 8cp™ ' C'p7y, 7).

The latter probability is no larger than Pr (&) for all p such that 8C~tep~1+7+2(+d) < ;. Hence,

max |Va;| < Cp~7y? holds w.ow.p. and
j:l,...,T/Q‘ 2l = Cp77y, P

1
max eh; M 'egj 1 — Tt M~ < Cp~ 7y holds w.ow.p.

j=1,...,T/2

) _ vly, an inequality similar to that in the above display, can be

established by replacing €31 by €2;. The upper right element of vj(-q) — vl equals

B 1 0 M £2)-
gl2j_1Mj 152j =3 (5/2j—1’€/2j) ( M1 6 > ( ?2]‘1 ) ,
J

and arguments similar to those used in the above analysis of Vi, lead to the conclusion that

For the lower right element of vj(-q

-1 —,d
j_mmax |eb; 1 M tea;] < Cp~yy holds w.ow.p.

)

Since for any C' > 0, the maximums over j = 1,...,7/2 of the absolute values of all elements of vj(-q — vl

are bounded by Cp~7yd w.ow.p.,

j23%§/2 Hv](-Q) — UIQH < C’p_'yyg holds w.ow.p.

13



4.2.2 Rough bounds. Proof of Lemma 3 (bounds on ||]\4_1

K

MJ71|| , etc.)
By definition of Mj, we have

I = [ (4 e e e ) g
< 147 H (A;1/2CjD;10§A;1/2 - zfp)_l
On the other hand, HA;l” = u;iln,j and

—1 1

<

_kg?j?.(,p A (A*l/Qc,D—lclA*1/2> _ ‘
k\ 44 it bid; z

-1/2 -1 —1/2
H(Aj Dy A a1,

where Ay (-) is the k-th largest eigenvalue of a real symmetric matrix. For z = z,, the above inequality
implies that

_ _ _ -1 B
H (47 PoD7 0 o) <y
and therefore,
1M < 1/ (gobtmin.5) - (32)
The required bound for HM -1 || is established similarly.
Further, we have
||D;1|| = 1/)\17 (DJ) S 1/ ()‘P (Vv/) :u‘min,j) S 4/p’min,j‘ (33)

The required bound for HDil H is established similarly. Next,
_ 2 _ _ _ _
|27 G511 = 107 €307 | = [ D7) VLl e sy 057

where V_; is the block-diagonal matrix obtained from V by removing its j-th 2 x 2 block, and e_;) is
obtained from ¢ by removing the 2j — 1-th and 2j-th columns. On the other hand,

HD;ls_(j)VLjeL(j)s_(j)V,jsl,(j)D;lH < fax HD;ls_(j)V/,jV,jE’,(j)Dj*lH
= tmae [0 DD | = amae s [1057 ]
Using (33), we obtain
|’D510§||2 < 4fbnax, i/ Honin, - (34)

The required bound for HD‘lc’ H is established similarly.
Now let us establish the bounds on the differences of traces. As follows from (18), M, ]71 differs from M1
by a matrix of rank no larger than 4. Therefore,

Jor (M7 = M < 4|77 = M7 < 4[]+ (A - (35)

Therefore,
|tr (Mfl - M_1)| <4/ (ypﬂmin,j) +4/ (yp:u’min,o) <8/ (yPMmin,j) ) (36)
where the last inequality holds because A — A; is a positive-semidefinite matrix and hence iy j < fhiin,o-
Similarly, D;lC]{M ;1 differs from D~'C’M~! by a matrix with rank no larger than 8. It is because
Dy'CiM; =D C'MTY = DO (M MY + Dy (Cj -y M
+ (D' =D 'M,
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where the rank of M{l — M~ is no larger than 4, and the ranks of C]'- — C" and D;l — D! are no larger
than 2 each. Therefore,

[tr (D5 515 — D710 <8 (|07 G| 1M |+ 1D 1M ]) < 325/ (i)

max,0

where we used (32) and (34). Finally, DJIC’;MJ-*leDjfl differs from D~'C’"M~1CD~! by a matrix with
rank no larger than 12. Therefore,

itI‘ (DjilC]{Mjilchjil - D7101M710D71)| S 96:U“max,0/ (yplu“?nin,j) .

4.2.3 Rough bounds. Bounds on i, ; and fi,,,. o (Pr of tail events, and moments)

In this section we derive some bounds on f,,,, ; and i, ; that we will refer later in this note. We will need
the following lemma due to BS98.

Lemma 4 (Bai and Silverstein, 1998) If, for all t > 0, Pr (| X| > t)t? < K for some positive q, then, for
any positive g < q,

E|X|? < K91 <L) .
q—9

Now, we are ready to prove the following result.

—q
Lemma 5 (i) For any q > 0, we have Pr (u;ﬁln’j > e) < (e/ (26)2) for all e > 0 and all sufficiently large

p and T along a sequence p,T —, oo with p/T < 1/2.
(i) For any p > 0, there exists C' > 0 that may depend on p, but does not depend on j, p, and T, such that
Ep;ipmj < C for all sufficiently large p and T along a sequence p, T —., oo with p/T < 1/2.

Proof: It follows from Chen and Dongarra (2005, p. 610) that
Pr (fin,y < ) < (T=2)" 777 == /0 (T = p).

Their Apin,n, and m equal (T — 2) i3, 5,7 — 2, and p in our notation, respectively. By Stirling’s formula
(see e.g. 6.1.38 in Abramowitz and Stegun (1970)),

I'(T—p)>V2rm(T—p—1)" P12 T—p1),
Further, for p/T < 1/2, we have (T'—2) /2 < T — p — 1. Therefore, for any € > 0 we have

_TI—p-1

p—1 2

Pr (b > €) < (T =277 e 20 (T = p) < 2 (T = p— 1) (¢/ (2¢)%)

Since Pr (,u;ﬂln’ ;> 6) <1, we have for any g > 0 and sufficiently large p, T

_ —q
Pr (i > ¢) < (¢/(2¢)%)
Part (ii) follows from part (i) and Lemma 4.0]

Lemma 6 (i) For any ¢ > 0 there exists C > 0 that does not depend onp and T s.t. Pr (Mmax,o >€) < Ce 1
for all e > 0 and all sufficiently large p and T along a sequence p, T —, oo with p/T < 1/2.
(i) For any p > 0, there exists C > 0 that may depend on p, but does not depend on p, and T, such that
Eﬂﬁlax,o < C for all sufficiently large p and T along a sequence p, T —., oo with p/T < 1/2.

Proof: By Proposition 2.4 of Rudelson and Vershynin (2010), there exists C' > 0 such that
Pt (o > (14 1)%) < 2¢7CT7

for all sufficiently large p and T along a sequence p,T —., oo with p/T < 1/2. Since for any g > 0, there
exists Cyq > 0 such that, for all ¢ > 0 we have e=CT < C, (14 t)7*?, and since Pr (uma&o > (1+ t)2> <1,

we have Pr (f,0, 0 > €) < Ce 7. This completes the proof of part (i). Part (i) follows from part (i) and
Lemma 4.00

15



4.2.4 Rough bounds. Proof of Lemma OWS8 (bounds on HQEQ)H)

We start our proof from establishing a useful identity (see eq. (42) below). By definition of Q;'J) and by

Lemma 1, we have

1
(1 ¥y + [0 ) = (101 ana
T Tz (@ () (@) (@ _
(|:1_Zvj‘,:[2:|+{uj ,wj *Sj })Q] = [0,[2]
Using the transposed of (37) in (27), we obtain
- “1 | _Ti i @ [,@ @]
E/(j)D 1C/M 15(]’) = |:1 j Zvj, 1 i ZIQ] qu [’qu ,ujq :| .

Using (38) in the above equation yields
li
E’(j)D_lc'M_le(j) _ u;‘]) _ {uyz),w](_rn . S§g)] Q;_q) [U§q)7u§_q)/] .
Further, multiplying equation (23) by z, we get

1
’ ~r—1 _ rjz Tj ] 2T (9) Ty ) rjz
€(j)ZM E(j) = 1_212— |:mvj,—l_212:| Qj |:_]_—ZVJ’_]_—ZI2:| .

Using (38) and its transpose in the latter equation, we obtain

~ !/
€2j)ZM71€(j) _ w§q) _ 55}1) _ {uy),w;w _ S§q)] Q§q) [UEQ)7w§q) _ S(Q):| )

The identity zM ! = D='C'M~'CD~' — D! yields

szj)D_lc’M_lCD_la(j) _ e'(j)D_le(j) — @ _ S§g) _ {U(Q)’wy) _ 55}1)} Q§q) {ugq)’w§q) _ SE}J)} .

J

By (19), we have
!
€l(j)M71€(j) _ vj@ _ {UEq)’u§q)/} QEQ) {UQQ),UEQ)/} _

Combining (39-41), we obtain identity
A0 A; = M,

where @ @
q q)!
A=Y Uj
u§Q) wg_q) - 85}1)

and

./\/lj,n = v§q) — El(j)Mfls(j),

Mo = ;.,12 = u;.Q) — gl(j)D_lC/M_la(j), and

Mo = wJ(Q) - sg.q) - egj)DflC’M*IC’Dfle(j) + s/(j)D*Is(j).

Lemma 7 max;_y 7/ Ml <y 200200 0/ tiin-
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(a) gq), wj(-q), and 55-'1), we have

Proof: By definitions of v;", u
IMianll = [ty M5 = M) ey | < [lewrely | 11457 = M2 < el flagg = a2
Ml < e 107 €200 = Do < el (172l 35| + 027 a1 . and
Mzl < |lewety| 1D M5 005t = DM CD |+ [|eget, || |27 - DY

Therefore, using Lemma 3 and the fact that p,;, = min {umin’m Poamin,j»J = 1, -, T/2}, we obtain

j22é§/2 ||Mj’11|| < yp_12l’brﬂax,0/lu’minv
max  [Mjal < vy, '4(n s )3/2 and
j=1,...,T/2 > - p max,0/ Fmin )
max ||Mj»22|| < Yp '8 (/’Lmax,O//J'min) + 8iumax70/umin < Yp 116 ('u’max,O//’Lmin) .

j=1,..,T/2

Finally, since | M,|| < max {||M 11|, [[M;22]|} + [[M;21], we have

j:{?%}é’/Q ||Mj H S y;1 (2lu‘max,0/umin) (8 (:u‘max,O/Mmin) +2 (:U’max,O/Mmin)l/2) S y;120M1211ax,0/M12nin‘D

If max;—; . 7/2 HA]_1H is bounded, then Lemma 7 and identity (42) yield the boundedness of Qéq).
However, the boundedness of max;_1 7/ HAj_l || is far from being obvious. To deal with the issue, let us

multiply (18) by [E(j),Cij*ls(j)]/ from the left and by [s(j),Cijls(j)] from the right. Rearranging the
result, we obtain

BB =W, (44)
where @ .
Bj = ( v]&; uj<qq> ) :
u]» U}j
and (9) ’ 1 () / 1 v 1
(e, e, )
j () i e@ Wit eGP i e

The following lemma can be proven similarly to Lemma 7.
Lemma 8 max;_1,..7/2 |W;ll <, 1203 ax.0/ Hinin-

Now, it is sufficient to find a uniform over j = 1,...,7/2 bound on min{H.A;lH , HB;1H} Let

A=( )ty ymas=(1 0
Lemma 9 min{”A‘lH , HB‘lH} < IOOyP_Z/Lf’naX)O/ (c3ufnin) for sufficiently large p.
Proof: Note that, by the definition of v and by Lemma 3,
o] < 2 M| < 95 ¢/t (45)

Further, since each of the entries of D™'C’M~! can not be larger than HD‘IC”M_1H by absolute value,
using the definition of v and Lemma 3, we obtain

[ul < 9, 213 0/ 1ot (46)

max,0/ Pmin*
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Similarly,
[w] < Yy detimax .0/ Finin (47)
and
lw — 5| < Yy M 4Chmax 0/ Binin + 46/ tamin < Up ' 8Chmas.0/ Honin- (48)
Therefore
s { |41, | B[} < mase{lol ol o = )+l < 3511000

Note that since A and B are 2 x 2 matrices,

] = a2 o] = ]

Using the latter two displays, we obtain

R R “ R R —1
det B — det A‘ < ‘detB‘ n ’det A) < (45 100/ 1) 2max{HA1H :

N

or equivalently,

q - 20 2
{5} <3 sl "
)detB —det A
On the other hand, ) )
det B — det A = vs. (50)
For v, we have
o= 2 r A2 (a72cD7rCraT 2~ a0 )_1 Az L i WAy
T PP szlApj_Zp’

where \,; and h; are the j-th largest eigenvalue of A=1/2CD~1C’A~1/2 (necessarily belonging to [0, 1]) and
a corresponding eigenvector. We have

1 &,
Imv = TZh;A Yhiup) s — 20l - (51)
j=1
But |\, — 2,|” is bounded from above by 2 (see assumption (OW26)). Therefore,

p
o] > [Tmo| > > R A hyy,/ (2T) =y tr A/ (2T) 2 ypc/ (2htmaxco) - (52)
=1

As to s, let 61 > ... > 0, > 0 be the eigenvalues of D. Then,

1 ¢ 1 Pk,
s= Zlai_ Z_T 0111

el

with k = 2 [p/4], where [p/4] denotes the smallest integer that is no smaller than p/4. Let us now decompose
D into the sum eMWAM M) 4 cRIAR)I ) where ¢V is the p x k matrix that consists of the first & columns

of g, € is the p x (T — k) matrix that consists of last T' — k columns of ¢, A() = diag {rfllg, ey r;/1212} ,
and A = diag {7"12;2“]2, ...,T;}QIQ} . Further, let 8, > ... > 3, > 0 be the eigenvalues of c@AR2) By
Theorem 4.3.6 of Horn and Johnson (1985), ;41 < 8, and therefore,

p—k

>
S=TT

Bl

18



On the other hand,

[|A®)]|| = {2 — 2cos (%jjl))] - < [2—2cos (mc/2)] .

Since 1 — cosz > 22 /4 for x € [0,7/2], we have
1A®)|| < 8/ (c*n2).
Combining this with inequality "5(2)5(2)'}’ < Hpax,0, We obtain
1811 < 8:u‘max,0/ (CQWQ) )
and therefore

. 2.2 3,2
> p—2[p/4] c*r > i 7
T 8:U'max,0 24/'Lmax70

where the latter inequality holds because (p — 2 [p/4]) /T > ¢/3 for sufficiently large p.
Using (52) and (53) in (50), we get

’det B — det fl’ > y,ctr?/ (48ur2nax70) .
Combining this with (49), we obtain

min{H/l_l

B_lH} = yp_2960M§naXa0/ (c37T2M12nin) < y_2100M§nax,0/ (cgl’LrQnin) .0

)

Lemma 10 Suppose that 0 < o < 1/6. Then, for any C > 0, the inequalities max;—i . 7/2 H.Aj —A® IQH <

Cy% and max;_y, . 1/2 HBj -B® IQH < Cyg are satisfied w.ow.p.

The proof of this lemma is very similar to that of Lemma OW?7, and we omit it. Weyl’s inequalities for
singular values of a sum of two matrices (e.g. Horn and Johnson (1985), exerc. 16 on p.423) imply that

%

1™ = 4 - 4 - de ] ana

%

1™ > - - Ben.

_ - -1 ~
(To see this, note that ||.A;1|| " and HA*I) equal the smallest singular values of A; and A ® I, re-

spectively.) Therefore, Lemmas 9 and 10 and the fact that event & holds w.ow.p. guarantee that, for any
non-negative o < 1/6, there exists C' > 0 such that

. _11—1 _1—1
jzlrflul'r}T/2max{||,4j1;| 1877} = ey weowp.

Hence, as long as 0 < a < 1/6, there exists C' > 0 such that

jomax min {[l47L[|B7} < Oy * w.owp.

This fact taken together with Lemmas 7, 8, and equations (42), (44) imply that

j:{na}}m HQJ@ H < C’yp_5 holds w.ow.p. (54)

as long as 0 < o < 1/6.
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Finally, note that

RS o e e

(55)

-1
By inequality (54) and Lemma OW?7, the term HQ;I - (Q;q))_lH in (55) is dominated by Hng) H as long

as ad + v > b for some d € (0,00), v € [0,1/2) and 0 < @ < min{1/6,(1/2 —v) /(1 +d)}. Inequalities
a<(1/2=7)/(1+d) and ad + v > 5« certainly hold if d = 5 and v = 0 as long as o < 1/12. Therefore,

we conclude that

max ||| < Cy;5 holds w.ow.p.

j=1,...T/2

as long as 0 < aw < 1/12.

To establish part (ii) of Lemma OWS, we need to rewrite identity (42) in a different form. For this, note

that by definition of Q;-q)

(9)
(@ (0 (@[ Y
( vty )Qj < uj(q) >

J
1

(a)
vy

= ([ I 0]-g—[8 nV; ]QE'Q)) ( ) )
J

_ _ RV L 1 qwof| I2
- rn ) ([B ][

I N iV
Similarly,
(a)
(@ (2 (@)
( v Uy )Qj ( w;_q)j §@ )
_ a1 / 0]__1 gl mnVY
= 'LL] 172[12 ijj]<|:]'2:| 172: J |:7‘j2;]2
_ () 1 / o @ | ™V
= u — 7 TV + _22[12 T]Vj}ﬂj [szé:|
and

)
1 (@)
= ([0 B]-7=[nV mzl]Q

@ @ _ @ )o@ ul?’
(“j Wi T )Qj wj(,q)l%q

1 0
_ @ (@ 1
= Wl 50— el + s [ 75V,

Therefore, (42) can be written as

oM leg

K&k = Kj - el DM e
J

where

J
ijj' T'jZIQ

1 |: IQ T3 V‘

20

J)

u;q)/
wj@ _ 85}1)
IR ENON Y
1—2 7 rjzla
er;- :|

T]‘ZIQ

TjZIQ ]ng) |:

M710D716(j)
Zsl(j)Mfl&Z(j) ’

E



The inverse of KC; equals
_ —ZIQ V’-
| ) )
J Vj —T. 112 ]
By triangle inequality,
1/2 1 2
-1 —1 _ —1 -
[T < Tzl +r7t + 20V, = [ol + 7t 2077 < 2] = 1+ <1+W) :
Thus, for z with Rez € [0,1] and Im z € [0,1],
2
1
<CT?
2sin (w/ (T + 1))) -

for some absolute constant C'. On the other hand, similarly to Lemma 7, we can show that

Hence, from (56) and the above two displays,

I <+ (1+

€l(j)M71€(j) El(j)Michilg(j)

~ < -1 2 2
[El(j)chlMl%) (M e ) ] < Yy 10tmao/ .o

HQSQ) H S CT2 + CT4y;1H$nax,O/ﬂilin,O'

Finally, let £o be event max;_;  7/2 Hng)H < C’yp_f’. According to (54) £q holds w.ow.p. as long as
0 <a<1/6. We have

E max HQ(q)
j=1,...,T/2

< Cy—Sp + E1 {EQ} (CT2 + CT4 :u’mdx O/I’I’mm 0) S Cyp—Sp
for sufficiently large p, T

4.2.5 System reduction. Derivation of system (OW31) and proof of Lemma OW10

To simplify reference, let us reproduce here the original system of equations

B 20471 (u+v—1)

o= c(l—z) CTZ (1-2)6; e (57)
1 B 1 20+rjz(u+zv—1)
PR c(l—z) T Z (1-2)4; +ez (58)

1 2 zz?—i—r»(u(l—&-z)/?—i—zv—l)

1 - = J 59
em c(l—2) cTZ (1—-2)4; +ea, (59)

0 — Z—u—r]v/Q ‘e (60)

T 4'

We will assume that z = z,, where z, satisfies (OW26), that is,
zp, = Rez, €0,1] and yp =Imz, = yop @ (61)

with a > 0 and yo € (0, 1] that are independent from p.
We begin from establishing some bounds on u, v, ¥, and on

T/2

0= TZﬁ_
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Note that, by definition, [o] < £ HM *IH. Using a similar argument to the one that yielded inequality
|M | <1/ (ypbinin,o) in Lemma 3, we obtain HM‘lH <4/ (Ypbnin,o) - Hence,

4c

0] < ———.
prmimO

(62)
Collecting inequalities (62), (45), (46), (52), and recalling the definition (29) of event &), we obtain the
following result.
Lemma 11 There exists C > 0 such that each of the following events

[ul < Cy, ", vl < Cy,*, and [3] < Cy, ™ (63)
holds w.ow.p. Furthermore, there exists C > 0 such that

[v| > Cy, holds w.ow.p. (64)
Subtracting (58) from (59) and then adding (60) multiplied by u/v yields

T/2 9
1 2 (—u— 2wt 1) —
12—5;1”( u-tl) U/U+U€4/’U+€3*€2.

9;
Adding 1/c to both sides of this equation and recalling that
S;=20(14+v—2v)+7rj(utzv—1)— (1 —2)u?

we obtain
1= (20(1+v—2v)— (1 —2)u* —u?/v) 0+ (ues/v+e3 —€2). (65)

By Lemma OW9 and Lemma 11, for any C' € (0,00), d € (0,00), and v € [0,1/2) s.t. ayq < 1/12
lues/v + €3 — ea] < C'p*”ygf14 holds w.ow.p.

as long as 0 < a < a,q. Choosing d = 14, v = 0, (so that a,q = (1/2—7) /(1 +d) = 1/30) and setting
C = 1/2, we obtain
|1 — (ueq/v + €3 — e2)| > 1/2 holds w.ow.p.

Hence, equation (65) and Lemma 11 imply that there exists C' > 0 such that

6 > Cyp holds w.ow.p. (66)
as long as 0 < o < 1/30.
Derivation of the first equation of system (OW31). Subtracting 1/c¢ from both sides of equation (58)

and dividing it by z, then subtracting the resulting equation from equation (57), and, finally, subtracting
equation (60) multiplied by two yields

0= (0+42u)0+ e —ea/z — 2ey4.

Equivalently,
U+ 2u = e, (67)

where
é1 = (—e1+ea/z+2e4) oL, (68)

Lemma 12 For any (C,d,v) € (0,00) x [14,00) x [0,1/2) and any o € [0,a4q), inequality |é1(zp)| <
C’p’”yz‘j*16 holds w.ow.p.

Proof: The lemma follows from Lemma OW9 and equations (66) and (68).00
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An intermediate version of the second equation of system (OW31). Replacing ¢ by é; — 2u in
(65), rearranging terms, and using (68) yields

u

1= (2zv+u) (1 +v—2v)0 4+ (—ze1 + e2 + 2zeq) (1 + v — 2v) + (ues/v + €3 — €2) . (69)

(%

Further, multiplying equation (60) by 2¢ (u + zv — 1) /v gives us

2 TZ/Q—2u(u+zv—l)/v—rj(u+zv—1)

0=7 5

+2e4c(u+ 2zv — 1) Jv.
j=1

Since the numerator of the summands can be written in the form
—2u(u+zv—1)/v+20(1+v—20) — (1 —2)u* -6,

we have
l=c(-2u(u+20—-1) /v+20(1+v—20) — (1—2)u*) 0+ 2e4c(u+ 20— 1) Jv.

Using v = —2u + €; in this equation and rearranging terms yields
1= Ec(2 —(24+v—20)(2zv+u)) 0+ c(—ze1 + ea+2ze4) (1 + v — 20) + 2e4c(u+2zv—1) Jvo.  (70)
v
Subtracting equation (70) from (69), we obtain

O:—%((221}+u)((l+v—zv)(l—c)—c)—|—2c)9—|—§1.

with
&= —c)(—ze1 +ex+2zeq) (1+v—20) + (ueg /v +e3 —e3) —2eqc(u+ 20 — 1) /v. (71)
Equivalently,
2zv+u)(1+v—2v)(1—c)—c)+2c=¢&,, (72)
where v
&= 2o, (73)

Note that the right hand side of (72) is linear in u. We will call equation (72) the intermediate version
of the second equation of system (OW31). At the end of our derivations of (OW31), we show how one can
obtain the final version of the second equation from the intermediate version. To bound the right hand side,

&5, of equation (72), we need to establish a bound on u~1.

Lemma 13 For any (d,vy) € [17,00) X [0,1/2) and any o € [0,04q), there exists C > 0 s.t. inequality
lu| > Cy, holds w.ow.p.

Proof: Recall that

1 -, 1 .
b=t = 2w D7V (D-'2c’aieD 12— zyL,) DTV

This definition and the fact that the eigenvalues \,; of D™1/2C’A=1CD~/2 belong to [0,1], so that
Ao = 2|~ 2 yp/ (14 |2])°, imply that

Yp 1 -1 Yp

v > —Q—trD 5 S.
I+ z)" T (14 |2p])

As follows from inequality (53), |s| is bounded away from zero w.ow.p. Therefore, there exists C > 0 such
that
|| > Cy, w.ow.p.
But by (67), u = —9/2 + &;1/2. On the other hand, Lemma 12 implies that, as long as d > 17, |—0/2]
dominates |é; /2| w.ow.p. We conclude that there exists C' > 0 such that |u| > Cy, w.ow.p.0
Using inequality (66) as well as results of Lemma 13, Lemma 11, and Lemma OW9, we obtain the
following bounds on |v€;| and |&,] .
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Lemma 14 (i) For any (C,d,v) € (0,00) x [5,00) x [0,1/2) and any o € [0,yq), [v&;| < Cp~ryd—14
w. ow.p.
(it) For any (C,d,~) € (0,00) x [17,00) x [0,1/2) and any a € [0, aya), [§o] < Cp~7yd~*® w.ow.p.

Derivation of the third equation of system (OW31). Subtracting 1/c from both sides of equation
(58) and dividing it by z yields

T/2 .
1 2 047 (u+z2v—1)
- = . 74
m =2 CT]»ZI 1-2)9, +e/z (74)
On the other hand,
1 _ETZ/Z d; _ETZ/Qzf)(l—l—v—zv)—l—rj(u—&—zv—l)—(l—z)u2
c(l—z)_chzl(l—z)éj_ch:1 (1-2)4; '
Using this in (74), we obtain
m=— (0 — 200+ u?) 6 + e2/ .
Replacing © by —2u + €; and using (68) yields
m=u(2—2zv—u)ld+vey + (e1 — 2e4) (1 — 2v). (75)
But from (72) and (73),
_ -1
dovtu— ——2ef et G (76)

c—(1+v—2v)(1—¢) c—(1+v—2v)(1—c)

Using this in (75), we get
2(14+v—2v)(1—¢)
= 9 B
mn (1+U—zv)(1—c)—cu i (77)

where
vy
(I+v—2v)(1—¢c)—c¢’

&3 =vea + (1 — 2e4) (1 — 2v) —
In the above identity, replacing &; by the right hand side of (71) and simplifying, we get

czve; — esv + eqv (1 — ¢) — ueq + 2e4¢ (u — 1)

n = —2
Ss =1 —2eat (I+v—2z2v)(1—c)—c

Lemma 15 (i) For any (d,y) € [17,00) x [0,1/2) and any o € [0,04q), there exists C > 0 such that
[(1+v—2v)(1—¢c)—c| > Cy, w.ow.p.
(it) For any (C,d,~) € (0,00) x [17,00) x [0,1/2) and any a € [0, ayq), [£3] < Cp~7yd=* w.ow.p.

Proof: According to (72) and Lemma 14, for any d > 17, there exists C' > 0 such that
|(2zv4+u) (14+v—2v) (1 —¢c) —¢)| = [€5 — 2¢| > C w.ow.p.
On the other hand, by Lemma 11, |2zv + u| < Cy;l w.ow.p. Hence, there must exist C' > 0 such that
[(1+v—2v)(1—¢c)—c > Cy, w.ow.p.

Part (ii) follows from part (i), Lemma 11 and Lemma OW9.0J
Further, using (76) in (69), we obtain
u 2¢(1+v—2zv)

1 = _Zc—(1+v—zv)(l—c)6+(_Zel+€2+2264)(1+v_zv) (78)

& (1+v—2v)
c—(1+v—2v)(1—¢)’

+ (ueq/v + e3 —e3) —
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or equivalently,
v(l+v—2z2v)(1—¢c)—¢c) =

uf) = 2¢(1+v—2v) +s (79)
i (L +v—=)(1-c)—¢) (uea + N
53 = v 21}26 9=¢ (v (ze1 — eq — 2zey4) — ue(41 +1;63_ 25)62 ) — UQ—CI

Lemma 16 (i) There exists C > 0 such that |1 +v — zv| > Cy2 holds w.ow.p.

i) For any C,d,’}/ S 0,00 X 5,00 X 0,1 2) and any o € 0,0[ d)s inequality g < Cpi’yyd 16 holds
8l 3 = D
w.ow.p.

Proof: Obviously, |1 +v — zv| = |1 — Z| ‘(1 —2) 7t v’ . On the other hand, both (1 —z)~! and v have
positive imaginary parts (to see this for v, recall (51)). Now using z = z, and equation (52), we obtain
|1+ v — zv| > Cy? w.ow.p. Part (i) follows from part (i), Lemmas 11 and 14 and Lemma OW9.J

Using (79) in (77) yields

m= (¢ —1)v+és, (80)
where
2c ~

63:£3+2£3+(1+v—zv)(1—c)—c£3'

Lemma 17 For any (C,d,y) € (0,00) x [17,00) x [0,1/2) and any o € [0,aq), inequality |€3(zp)| <
C’p‘”yff_17 holds w.ow.p.

Proof: The lemma is a direct consequence of the definition of €3, Lemma 15, and Lemma 16.C]

Derivation of the fourth equation of system (OW31). Define

§(p)=20(1+v—2v) — (1 —2)u® +4sin? p (u+ 20 — 1)

and let y
T/2
2 2 71‘/2 1
== P—— 1
Q=730 = [ i (31)
and
g - 2 2 —u—1;v/2 2/”/2 —u7281n2gpvd (82)
! Tj:1 5] ™ Jo 6(90) &

Lemma 18 For any o € [0,1/12), there exists C > 0 s.t. (i) minj_y _ 7/216;] > CyS w.ow.p., (ii)
mingeo 2+ [0 (@) > Cys w.ow.p., (iii) [£4] < Cp~ly, ' w.ow.p., (iv) )54’ < Cp~ 'y, M w.ow.p.

Proof: Using the definition of Q;, it is straightforward to verify that (6;/ (1 — 2))? = det (Qj_l) . This

implies that
(R - _
e ] =
i=1

where o; (M) denotes the i-th largest singular value of matrix M.
By the inclusion principle (see Theorem 4.3.15 of Horn and Johnson (1985)), the first and second largest
eigenvalues of Qj_l (Qj_l)* are no smaller than the first and the second largest eigenvalues of the upper left

2 x 2 block of Qj_l (Qj_l)*, respectively. Such a block equals

r T 1
I J g utl) > | ——
2+<1_ )(1_Z*vj+u 2>_]1_Z+v
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Therefore,

>1 p

min gl(Q.l)> min Ug(le)Z‘l_erv_ml_z—HZ|2a

j=1,....T/2 7T j=1,..T)2

where the latter inequality follows from the fact that both the imaginary part of v and that of 1/ (1 — z) are
positive (for v, this follows from (51)).
On the other hand, by Lemma OWS, for any « € [0,1/12), there exists C > 0 such that

. -1 . -1 5
min o03(Q:")> min o4 (Q.7) > Cy? w.ow.p.
j=1,...,T/2 3 (& )_jzl,m,T/2 1(7) = Cy, P

Combining the latter two displays with (83), we obtain |4,/ (1 — 2)> > Cyp?/ 11— z|* . Therefore,

in_|8;] > Cyp/|1 - 2| > Cyf w.ow.p.
j:f.l‘l‘I,IT/2|J|— Yp/ 11— 2| = Cy, w.ow.p.,

which establishes part (i).
Now, recall that 7; = 4sin® (7 / (T + 1)) . Therefore, for any ¢ € [0, 27], there exists j € {1,...,T/2} s.t.

’481112 Y — rj’ <A4rn/T = 4mc/p.

For such j,
. 2 4me
16 (9) = 6] = [4sin® o —rj| ju+ 20 = 1] < — |u+zv - 1],
p

so that, by Lemma 11, there exists C' > 0 s.t. [0 (p) — 6, < C/(py,) w.ow.p. For y, = yop~* with
a €[0,1/12) and yo € (0,1], quantity 1/ (py,) is clearly dominated by yg. Therefore, using the result of part
(1) of the lemma, we conclude that there exists C' > 0 s.t.

min [ > CyS w.ow.p.,
_min_ 154 > € wowp

which establishes part (ii).
To see that part (iii) holds, note that £, can be interpreted as the error due to replacing 6 (¢) in the

integral 2 Oﬂ/Q § (¢)~ " de by a step function
0 (p) = 0; for p € [(j = 1) 7/T, jm/T).

We have - - -
56 =8 = [3(0) =5/ 15(2)8 ()]

On the other hand, similar arguments to those used in the proof of part (ii) show that for o € [0,1/12),
there exists C' > 0 such that

Hence, [£,] < C’p‘lyg13 W.OW.D.
Similarly for part (iv), £, can be interpreted as the error due to replacing (—u— 2sin? ©v) /6 (¢) in the

integral 2 Oﬂ/2 (—u— 2 sin? ©v) 6~ (¢) dp by a step function
—u —1rv/2 . .
Flg) = T o e (G 1) 7/ T/ T).
J
For o € [(j — 1) /T, jw/T), we have
—u — 4sin® pv/2 —u—2sin®pv —u—rjv/2
3 (¢) 5 (¢) 0;
(4sin® o —rj)v/2| |—u—2sin® pv|[§; — & ()]

0; 16 () &
Cply, "+p 'y, ™) < Cply, M wowp.

IN
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Hence,

54} < Cpty,* w.ow.p.O

In (78), replacing cf by % fOW/Q ) (4,0)71 dp+£€,, and then dividing the resulting equation by % fOW/Q 0 (gp)*l dy
yields

2 [7/? 1 - u 2(1+v—2v)
(E/o 2 dgp) _;(1+U—zv)(1—c)—c+§5’ (84)
where

(25 T 21 tv— ) .
65 - ;/O ((P) ¥ (;(1-}-’[}—21})(1—0)—064 ( )

&1 (1+v—2v)

(1+;ZU)(1C)C-l-(—zel—|—eg—|—2ze4)(1—|—v—zv)—|—(ue4/v—|—e3—62)),
Since

20 (14+v —2v) — (1 —2)u?
2(u+zv—1)

d(p)=2(u+2zv—-1) (x+2sin2ap) with = ) (86)

equation (84) and the fact that
2
2 [T/ 1 1
—_— —. 2 d(p = -
T Jo x42sin“¢ z(z+2)

u 2(14v—2v) )2 u 4(14+v— zv)
v(l4+v—2zv)(l—c)—c v(l+v—2zv)(1—c)—

for any € C\ [—2,0] imply that

Au+zv—1)Yz(x+2) = ( cfs‘*‘f?- (87)

Note that € C\[-2,0] is satisfied because otherwise § () = 0 for some ¢ € [0,2n], which contradicts
Lemma 18. Also, we show below (see the proof of Lemma 19) that v + zv — 1 is bounded away from zero
w.ow.p. so that x is well defined by (86).

Using the definition of z in (87) and multiplying both sides of the equation by v2/ (1 + v — zv)* yields

# (25 (o ) < ()

" 4uvés 11252
(o) +v-2)(1-0 -0  (1tv—z0)°

Next, using (67) in the above equation and rearranging, we obtain

v (224 (220 +u)(1—2) (u—uz—2) (220 +u—2) 9 2
(1+1}—ZU)2 _u<(1+v_21})(1_c)_c> + &6 (88)
where
4vgs v2ER

(1+U_ZU)((1+U_ZU)(1_C)_C)+u(l+vizfu)2 (89)

_z2v2é%_ 227)2é1 Couz+ —(1=2)u*+2(u+z2v—1) -
u u (1+v—2v)

€6

Now our goal is to use (76) to eliminate u from equation (88). We have

224+ 2zv4+u)(1—2) = - (?1(1—:; U_zjf()l(l_c)C)_c & + (14w (lz_v)z()f2 c)—c (90)
a (1—2)&
T
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(I+v—z0)(=2(1-¢) )

2 -2 =
2t (I+v—2z2v)(1-¢)—c (14+v—20)(1—-¢c)—c
(I+v—2v)as &
= b T
w9 — (1—|—v—zv)(—2(zv(1—z)(l—c)+1—c—zc))+ (1-2)&,
(1+v—zv)(1-¢)—c (I+v—2z2v)(1—c)—c
_ (1+v—zv)a3+(1—z).§2
o b b
and
S —2(,21;2(1—z)(l—c)—i—zv(l—Qc)—&—c)Jr & (91)
(I+v—2z2v)(1-c)—c (14+v—2zv)(1—¢)—c
_ W&
= + b
Using these identities in (88), and simplifying, we obtain
: N _may
viaiazaz + &9 (( z) az 1+v—zv+a3 Jrl—&—v—zv
2 2 2
5 v (1—2) B ay 3 v¥(1—2) _ 3
+£21+v* (a3+(1 z)a2+1+vz’u)+ 2(1+v—zv)2 = (o),

or more explicitly,

8 (zv(l1—2)(1—c)+z—c—zc)(1—¢)(z2v(1—2)(1—¢)+1—c— zc)
= 8(z20°(1—2)(1—¢)+2v(1—2¢)+c)

ax a1a3
v 4—(1- —_— -
+ £6+§2( ( z)a2(1+vzv+a?’> 1+vzv)

2 2 2

s v* (1 —2) ax 3 v2(1—2)
> G2 1— @ ) s e
§21—}—7}—21} <a3—|—( Z)a2+1+v—zv) §2(1+U—ZU)2

It turns out that the difference between the left hand side of the latter equation and the first term on its
right hand side can be factorized. Specifically, it is straightforward although laborious to verify that
8 (zv(l—2)(1—¢c)+z—c—zc)(1—c)(zv(1—2)(1 —¢)+1—c— zc)
+8 (20* (1 —2) (1 —¢) + 20 (1 — 2¢) +¢)

= 81-¢)(2(1—c)(1-2)v*+(1—zc—c)v+1) (z(l—c)(l—z)vQ—(—z+c+zc)v+lic).

Therefore, we have
v22(1—c)(1—z)—v(c—z—l—zc)—i—%_c257, (92)
where

B1—c)(z(1—c)(1—2)0*+(1—2zc—c)v+1))"" (93)
X <b3§6+§2 <4—(1—z)a2 (1-&-3—1—2’11_‘_(13) —%)

€2M<a3+(1z)a2+ ai >§3 ’112(172,’) 2>'

N4ov—2v 14+v—2v 2(1+Ufzfu)

3
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Finally, using (80) in (92), we obtain the fourth equation of system (OW31):
m?z(1—z)c—m(c—z+zc)+1=¢é, (94)

where 1
€4 = . C§7+é3 (2mz(1—2)c— (c—z+zc)) —é3z(1 —2)c. (95)

Lemma 19 For any (C,d,~) € (0,00) x [30,00) x [0,1/2) and any o € [0, 1q), |4 (zp)] < Cpryd—
w. ow.p.

Proof: Recall that by (66), 0 > Cyg holds w.ow.p. By definition of &,,

2 [T/? _
2 [ ie =g
0

s

On the other hand, by Lemma 18, |¢,| < Cp~'y, '3 w.ow.p. Quantity cf dominates |¢,| as long as py,® =
p' 1% — oo, which is certainly true for @ < 1/16. Of course, for (d,7) € [30,00) x [0,1/2), ayq < 1/62 <
1/16. Hence, there exists C > 0 s.t.

2 [m/2 _
—/O 3 (o) Hdy

3
- > Cy, w.ow.p. (96)

Using inequality (96) and Lemmas 11, 14(i), 15(i), and 18(iii) in the definition (85) of &5, we obtain
[€5 < Op~ 7y~ w.ow.p. (97)

Next, using inequality (97) and Lemmas 11, 15(i), and 16(i) we conclude that the first term on the
right hand side of equation (89) defining &g is bounded by Cp~7yd~2* w.ow.p. The last term is bounded
by C’p_'yyg_23 w.ow.p. This follows from Lemmas 11, 12, 13, and 16(i). The second term has form

2
(m) . Inequality (97) and Lemmas 11, 13, and 16(i) yield

v€s
ul/2 (1 + v — 2v)

< C’p"yy;‘f_%'5 W.OW.D.

For d > 30 and sufficiently small C this implies that

2

vés
ul/2 (14 v — 2v)

< v¢s
“ut/2 (1 + v — 2v)

W.OW.D.

Therefore, the second term on the right hand side of (89) is bounded by C’p_'yy;f_%'5 w.ow.p. By a similar
argument, the third term is bounded by Cp‘”yg_"'f’ w.ow.p. Summing up, since the bound C’p‘"*yﬁ‘24 on

the first term on the right hand side of (89) is the largest, we conclude that
€6l < C’p*Vyg’24 W.OW.D. (98)

Now consider definition (93) of &;. Let us show that 2 (1 —¢) (1 — 2) v? + (1 — z¢c — ¢) v + 1 is bounded
away from zero w.ow.p. From (91), we have

 —v?2z(l-¢)(1—2)+v(c+ze—1)—1 &
utev—l= l+v—2zv)(1—c)—c +(1—|—v—zv)(1—c)—c'
Hence,
vz(1-2)1—¢)—v(ctez—1)+1=—(ut+zv—-1)(1+v—20)(1—c)—c)+& (99)
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By Lemma 15(i),
[(1+v—2v)(1—¢c)—c| > Cy, w.ow.p.

Furthermore, by Lemma 14(ii), |&5] < C’p*'Vyg*18 w.ow.p. The latter bound can be made arbitrarily small
by choosing d and ~ sufficiently large. Therefore, it remains to bound u + zv — 1 away from zero.
Consider event
lu+ 20— 1| < Cy? (100)

for some C > 0. Recall that
§(p) =20(14v—20) — (1 — 2)u? + 4sin® p (u+ zv — 1).

Our plan is to show that 2@ (1 + v — zv) — (1 — 2) u? is bounded away from zero so that if (100) holds, then
d () is nearly constant for ¢ € [0, 27]. This will lead to a contradiction.
Using (67), rewrite § (¢) as

§(p) = —u 2z + (2zv4+u) (1 — 2)) +4sin? p (u+2v — 1) + 261 (1 +v — 2v) . (101)

Focus on the first term of this expression. Slightly rearranging terms on the right hand side of (90) yields

22+ (2zv+u) (1 —2) = : ((?1—:—211(1—_23 Ejl) (—10_)?0_ 2 (14w (—lz;)z()l&— c)—c (102)
Let us show that
et 2(-2)0)(1—c) —e > (1 -y, (103)

For this, it is sufficient to prove that Im{z (1 — z)v} > 0. Note that v is a weighted sum of the form
Zil Wi (Api —2)~", where \,; are eigenvalues of CD~1C’A~', and thus, belong to [0,1], and W; are
non-negative weights. Therefore, for z = Zp = Tp + iyp, we have

P . . :
(1= 2)v= Z W, (zp +iyp) (1 —xp — 1yp)2()‘pi —Tpt+ 1yp>.
i=1 [Api — 2|
Hence, it is sufficient to show that Im {(z, +iyp) (1 — zp, — iyp) (A\pi — xp +1iy,)} > 0 for all i. We have
Im {(2p +iyp) (1 — 2 — iyp) (Api — 2 +iyp)}
= yi +yp (1 =) Api — p) — 2p (Api — 3p) + 2 (1 — 7))
= yg + Yp ()\pi —2xpA\pi + mf,)

= yfi + Yp ()‘pi (1= Xpi) + (zp — Api)Q) >0
Since (103) holds, equation (102) and Lemma 11 imply that for some C > 0
22 4+ (2z2v 4+ u) (1 — 2)| > Cy, (104)
w.ow.p. It is because by Lemmas 14(ii) and 15(i)

‘ (1-2)&
(I+v—2v)(1—¢)—c

< Cp Ty <y

w.ow.p. for d > 30 and sufficiently small C. Inequality (104) and Lemma 13 imply that
|—u (22 + (220 +u) (1 — 2))| > Cy} (105)

W.OW.D.
Now let us again consider equation (101). By Lemmas 11 and 12, the last term in that equation satisfies

zé1 (14+v—2v)| < C’p7734'1717 W.OW.D.
p
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for any C' > 0. Since, by assumption, d > 30, we have
281 (1+v — zv)| < Cp~y)? (106)

W.OW.D.
Now, if inequalities (100), (105) and (106) hold, we have

1 1
_ + k() (107)
0(p)  —u(2z+ (2zv+u) (1 —2))
with
<Cyl’ 108
Jnax Is(e)] < Cy, (108)
for some C > 0.
On the other hand, equations (60) and (82) yield
2 (™2 —y —2sin® v ~
0=— ——"d .
cw/o 5 (9) P+&s/ctes
Using (107) in this equation, we obtain
2 [T/? (—u —2sin® pv) (1 + K(p)) -
0 = = d
er Jo —u(2z+ (2zv+u) (1 —2)) pHlafete
U+ v 2 [/ (—u—2 sin? ov) K(p) -
= — d .
cu (22 + (2zv +u) (1 — 2)) + em /0 —u (22 + (2zv + u) (1 — 2)) pHlafetes
By inequalities (105), (108) and
—u—2sin? v| < Oy, 109
Wg[l(%(ﬂ | u — 2sin cpv‘ <Cy, (109)
which holds w.ow.p. according to Lemma 11, we have
2 /7T/2 (—u — 2sin? cpv) k() do| < Oy
T Jo —u(2z4+ (2zv+u)(1—2)) P
for some C > 0. Furthermore, by Lemmas OW9 and 18(iv), we have, for some C > 0,
‘54/c+e4‘ <Oy (110)

w.ow.p. Hence, as long as inequalities (100), (105), (106), (109), and (110) hold, we have
lu+v| < Cy
for some C > 0. Taken together with (100), this means that
lv—zv+ 1] < |—u—zv+ 1]+ |u+v| < Cyp.
But by Lemma 16(i), there exists C' > 0 such that
|[v—2zv 41| > C’yg W.OW.D.

Besides, inequalities (105), (106), (109), and (110) hold w.ow.p. This implies that the complementary event
to (100) holds w.ow.p. That is, for some C > 0,

|lu+zv—1| > Cyzl)?’ W.OW.D. (111)
Using this in (99), we obtain

lz(1-c)(1—2)v*+(1—zc—c)v+1| > C’y}f W.OW.D. (112)
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for some C > 0.
Return now to definition (93) of ¢,. By Lemma 11 and inequality (98), we have, for any C' > 0,

|b3§6| < C’pfvygf27 W.OW.D.

By Lemmas 11, 14(ii), and 16(i), for any C' > 0,

ai aias —y, d—22
4—(1-—  E—— 3] ——— )| <Cp™”? .OW.D.
£2< ( 2)a2<1+v_w+aa) 1+U_ZU)‘_ p Y, T W.ow.p

Note that by Lemma 14(ii),

5%’ < |€,| w.ow.p. as long as d > 18. Hence, for any C > 0,

ar-2 <a3+(1 ~2)as + L)

< Cp "y 2 w.ow.p.
N4+v—2v 1+v—2v /|~ Py WAOW-p

and similarly,
2

d—24

. 02 (l—z _
5 ( ) 5| <Cp "y,” " w.ow.p.

2(1—|—v—zv)

Combining these inequalities with (112) we obtain, for any C' > 0,
|&7] < C’p‘"*yﬁ‘41 W.OW.p. (113)

Finally, using definition (95) of &4, Lemma 17, equation (80) and Lemma 11, we conclude that, for any
(C,d,v) € (0,00) x [30,00) x [0,1/2) and any « € [0, aya),

|é4| < Cp‘”yg_zll w.ow.p.[]

Derivation of the second equation of system (OW31) and conclusion. Subtracting equation (92)
from (72) and factorizing the left hand side of the result, we obtain

(I4+v—20)(1—¢c)—c)(ut+vz+c/(1—c) =& — &,
Dividing both sides of this equation by ((1 4 v — zv) (1 — ¢) — ¢) yields
utvz+c/(l—c)=2é (114)

with
€2 = (& &)/ (I+v—20)(1-¢)—¢).
Inequality (113) together with Lemmas 14(ii) and 15(i) imply the following result.

Lemma 20 For any (C,d,~) € (0,00) x [30,00) x [0,1/2) and any a € [0, 4q), |€2(2p)| < Cyt=** w.ow.p.

To conclude, equations (67), (114), (80), and (94) derived above are the equations of system (OW31).
Lemma OW10 is a direct consequence of Lemmas 12, 20, 17, and 19.
4.2.6 Analysis of m — mg. Proof of Lemma OW11

As explained in OW, by choosing d > 42 we can make 4é4¢z, (1 — z,) negligible relative to (¢ — z, + czp)2 —
4cz, (1 — zp) so that the difference m (z,) — mo(2,) is of order

64/\/(6 — zp+czy) —dezy (1— 2).
Then by Lemma OW10 and by inequality (OW34), event

& = {Im (z) —mo(z)| < Cp~yy "%} (115)
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holds w.ow.p. for any (C,d,v) € (0,00) x [42,00) x [0,1/2) and any « € [0, ayq). We use index z in the
notation &, to emphasize the dependence of the event on {z,}. We will set C'= 1 to shorten notation.
Since m (z,) and mg(zp) are both Stieltjes transforms, their absolute values are always bounded by y, !,
and hence the inequality
[m (2p) —mol(zp)| < 2y,

is always valid. Therefore, we always have
Yy Im (2p) = mo(zp)| < p~yp 0 + 2y, e

where 1¢. is the indicator of the event £ complementary to &, .
Let S, be a subset of [0, 1] containing at most p elements. Then,

y;l max |m(zp) —mo(zp)| < p77y5743‘5 + 23;;2 max lge (116)
pE€Sp TpESp
and
~1 _ —,,d—43.5 -2
Pr (yp max Im (zp) — mo(zp)| > e) < Pr(p 7y, >¢/2) + Pr (2yp max lee > e/2> . (117)
zp€Sp zp€Sp F

Let us choose d = 43.5 and v = 1/180 so that a,q = (1/2 — ) / (1 + d) = 1/90. Note that for any [ > 0
and p > 180[, and any € > 0, the following inequalities trivially hold

Pr (Pfl/lso > e/2> < (2p*1/180671)p < 2vePpl. (118)

Similarly,

- —2 _1\P
Pr <2yp2m1§1€a§§ 15§ > 6/2> < Pr <mI§l€3§{p 155 = 1> (4yp 26 1) .

Since £, holds w.ow.p., we must have
Pr(le. =1) < Cp 2ot
for any p > 0 and [ > 0, where constant C' may depend on p, [, and a but not on p. Therefore,
Pr <2y;2 max 1lge > e/2> < Z Pr(1lec =1) (4yp_2e_1)p <CePp . (119)
rp€Sp 7 S #
Using (118) and (119) in (117) we conclude that for any I > 0 and p > 180/, and any € > 0,
Pr (35" may m(2) ~ male)| > ¢) < Cetp (120)

where C' may depend on [, p, and «.
Let the p elements of S, be equally spaced between 0 and 1. Then, for any z(), 32 € [0,1] s.t.
(4 ) 1) 20— <
and similarly,
’mo (a:(l) + iyp> —mg (x(2) + iyp>’ < y;zp_l.

Therefore,

zp€[0,1]

Pr (ypl sup |m(zp) —mo (zp)]| > e)

< Pr (ypl max |m (zp) —mo (2p)| + 2y;3p*1 > 6)
Tp €Sy
-1 -3, 1
< Pr (yp zI;leaé(p Im (zp) —mo (2p)] > e/2> +Pr(2y,°p~! > ¢/2)
< Cerpt+ C4pefpp7(173a)p < Cerpt.
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To summarize, for any o < ayq = 1/90, any [ > 0 and p > 180l, and any € > 0, we have
Pr yp_l sup |m(zp) —mo (zp)] > €| < CePp~,
zp€[0,1]

where C' is a constant that may depend on [, p, and a.

4.2.7 Analysis of m —my. Proof of Proposition OW12 (bound on EF}, ([a,b]))

First, we prove the following lemma.

Lemma 21 For any o € [0,1/90), | mas 3B (sub,, cpoa Im () = mo (2,)|*) 5 0.

" k=0,...,T/2

Proof: The arguments used in the proof of this lemma closely follow the arguments of BS98 that lead
from their inequality (3.23) to equation (3.24). Let I,l; > 0 be arbitrary and let Iy > [ be s.t.

Pr (ypl sup ]Im(zp) —mo(2p)| > 6) < CePplo (121)
z,€[0,1

for a p > 1801y s.t. » =1p/ (lpl1) > 1. Constant C' in (121) may depend on «, p, and ly. Inequality (121) and
Lemma 4 imply that

y, OB sup [m (z,) = mo(z)|"" < CVlopli [ (1o — 1) (122)
zp€[0,1]

Further, for any ¢ > 0, we have by Jensen’s inequality

Pr max By [y, sup |m—mg|" | >e| <Pr max By (4™ sup |m—mg|™ | > €.
<k_07“')T/2 ( P zp€[0,1] k=0,....,T/2 P zp€[0,1]

Note that Ey, (y;”ll SUp, cfoa] M — mo|Tl1 , k=0,1,...,T/2 forms a martingale. By Kolmogorov’s inequal-

ity for sub-martingales (Lemma 2.5 of BS98), we have

T‘l1

A

Pr max [ y;”l sup |m—mo|rl1 > €" < eny;TllE sup |m — mg|
k=0,...,T/2 zp€[0,1] zp€[0,1]

= e"’yp_lp/lUE sup |m — mg|
zp€[0,1]

lp/lo

Hence,

Pr max [y y;ll sup |m—mo|l1 > € Se_ry;l”/loE sup |m—m0|lp/l°.
k=0,...,T/2 zp€[0,1] 2p€[0,1]

Using (122) in the above inequality yields

k=0,....T/2 z,€[0,1]

Pr ( max By <ypll sup |m — m0|l1> > e) < e Tptetoly ) (1p —1).

Setting I; = 2, and noting that the right hand side is summable in p for [ > 1, by Borel-Cantelli lemma, we
have

_9 2 a.s.
max y, "By | sup [m—mg|" | = 0.0
k=0,...T/2°P (Ipe[o,u
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Now let us turn to the proof of Proposition OW12. It will follow arguments on pp. 330-331 of BS98. Let
Gpk (z1,22), k=0, ...,T(p)/2 be the following functions on R?

Gy (w1, 2) = By Fp (1) F)p (72)

where F), () denotes the cumulative distribution function corresponding to F,. Any integer ¢ > 1 can be
represented in the form

p—1
g=) (T()/2+1)+k
j=1

with 0 < k < T'(p)/2. Using this representation, define a sequence of probability distribution functions
{Gy}2, on R? as
Gq (.’El,xz) = ka (ml,xg) .

The two-dimensional Stieltjes transform of Gy, méG) (x1 4 iy1, z2 +iy2) , equals Bymy, (21 +iy1) my, (22 +1y2) .
When o = 0, Lemma OW11 implies that, with probability 1,

sup  [m{%) (z1 + iy, 2 +iy2) — mo (w1 +iy1) mo (22 +iy2)| — 0
(1}1,:62)6[0,1]2

as ¢ — oo for countably many (y1,y2) forming a dense subset of an open set in [0, 1]%, uniformly bounded
away from the axes. Therefore, with probability 1, G4 (1, z2) weakly converges to We, (x1) We, (22) .

Let [a',V'] = [a — €,b + €] with € such that [a — 2¢,b + 2¢] lies outside the support of W,,. Clearly, [a, V]
will lie outside the support of W,,, and it will lie outside the support of W, for sufficiently large p. Let

Rem = m$™ +m" and Imm = m3"* + mi,
where

1 T — Ap; 1 Y
out 3 Y4 out :
ms™ (z +iy) = = I andmgt @iy = Y — L
p ApjEla’ ,b'] (.’13 - Apz) + y2 p Apj€lab] (av — /\Zn) + y2

(]

Now let mg (z) be the Stieltjes transform of W,,. We have

2

By [mif (2 + 1) Jy — —mp (2)| < (123)

= By, (mi (z +1iy) /y)° — (%mo (96))2

i . d _
Bymy' (x +1y) Jy — ——mo (x)

d _
+2 )amo (x) o

Since G (z1,x2) a.s. weakly converges to We, (1) W, (z2) and function
2 2 -1 2 2 -1
((x,m +y ) ((wfxz) +y )
of (z1,x2) € [@/, V] x [@/,]° is uniformly bounded and equicontinuous for (z,y) € [a,b] x [0, 1], we have
max swp [ (md (o) ) — (oo (o -+ ) f5)7] 0. (124)
k=0,...T/2 (z,)€[a,b] x[0,1]
On the other hand,

sup — 0

z€[a,b]

_ . d _
g (2 +ip) /9 — =0 (¢)

for any y, — 0. Therefore, (124) yields

max  sup
k=0,....,T/2 z€la,b]

Er (m3 (z + iyp) /yp)2 - (amo (33))2 =
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for any y, — 0. Similarly, we have

~ . d _
B (2 + i) [ — 2170 (7)

a.s.
max sup — 0.

k=0,...,T/2 z€[a,b]

Combining the latter two displays with (123) and noting that sup,c(, | sLimg (2)| is bounded, we obtain

2
25 (125)

max  sup Eg |mg' (z+1iy,) /yp — AL (x)

k=0,...,T/2 z€[a,b]

for any y, — 0. On the other hand, by Lemma 21,

E _ 2| a.s. 0
k:(g???‘:T/Q * (zpseu[g),ll Im (2p) fyp =m0 (2) /i > — 0,

which implies that

d %\ as
max [y su Imm (z — —myg (2 = 0. 126
P (zpe[g),l] (2p) /Yp dz, 0 (2p) > (126)
Since _
Imm (z,) /yp = my' (x +1yp) /yp + M3 (x +iyp) /Yy,
convergences (125) and (126) yield
2 a.s.
max  sup By |mS™ (x +iy,) /y,|” =5 0. 127
LIS S B i) (127
Finally, for any = € [a,b], we have
2
max By |m3™ (z + iyp) /yp|2 > % max By ;22
k=0,...,T/2 D° k=0,...,T/2 My ElablA ety a-tun] (3; — )\pj) ‘HJp

Since pF), ([a,b] N [z — yp, © + yp]) equals the number of A,; that belong to [a,b] N [z — yp,  + yp| , and since
(2 — Mpj)” + y2 < 2y2 for any such \y;, the above inequality yields

2
t : 2 (F ([mb]ﬂ[m—y,x—l—y]))
(e B [m3" (2 + iyp) [yp|” > pmax ( £ i . £ : (128)

Let J be the smallest integer larger than (b —a)/ (2y,), and let x1, ..., z; be such that
[a,b] C U}‘Izl [ — Yp, 5 + Yp) -

Then,

2

(Fp ([a,0]))* < ZFp ([a,0] N [zj = yp, 2y +wpl) | < JZ(Fp (la,B] N [z = ypo 25 +3))

and equations (127) and (128) yield

2
k:(I)I,l.?J?(T/Q Ey (Fp ([@,0])” = 0as. (y?)) and k:(r)naxT/Q ErF, ([a,b]) = 0as. (yp) -

yeeey

Recall that y, = yop~*, where a € [0,1/90). Choosing oo = 1/91, we obtain

2 _ —2/91 — —-1/91
o By (F ([a,8])° = ons (»72/") and o BeF ([o,b]) = ons (r1).
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4.3 Step 2: Convergence of m — Em
4.3.1 Proof of equation (OW36) (initial representation of m — Em)
By definition, m = tr (AM ') /p. On the other hand, by (18),

AM™?

(Aj + s(j)e’(]—)) (Mj*1 - M]flajﬂj‘.q)a;MJfl)
= M7 el My = A M g My — eyl My g QP ol M

so that

tr (AM_l) —tr (Aij’l) =tr v](-q) —tr {v](-Q), ugq)/] Q§q> [v§q)7 u;q)'}/ —tr l(

This can be written in a more compact form by noting that

! 1
U](-Q) - [v§q)7u§-q)/] Q§q> [v](-q),ug-qy} =T (15,7 V] Q@ [vj,u’,}/.
Using this identity and (129), we conclude that
tr (AMY) = tr (A4;M71) = tr (T

where

—

r<q>:< Loy —ap? 1—12w§q’v9—b§-q)'>_

: f]
J Zugq) . b§q) ﬁrjug-q)vg- . C;_q)

—

On the other hand, since (E; — E;_;) tr (Aij_l) =0,

T/2 T/2

m—Em = ]—1)2 (E; —Ej_1)tr (AM ') = %Z (E; —Ej_1) (tr (AM ™) —tr (Aij*l)) .
j=1 j=1
Hence,
L T2
m—Em = EZ (Bj —Ej_1)tr (I‘;‘J)ng)) _
j=1

4.3.2 Proof of Lemma OW13 (boundedness of HQEd)H)

Recall that mg(z) was defined as a solution to the fourth equation of system (31) after é4 is replaced by 0.
Let vg (2) ,u0 (2), and @y (2) be the corresponding solutions to the first three equations after é;, €s, and €3

are replaced by zeros. That is,

c
w(z) = Tmos),
uo(z) = ——(emo(2)+1), and
—c
. 2c
o (2) = T (zmg (2) +1).
—c
Following a similar strategy to that used in the above proofs of Lemma OW11 and Lemma 21, we can show
that
sup [BEv (zp) —vo(zp)l = oas. (Yp)
z,€[0,1]
sup |Eu(zp) —uo (2p)] = 0as. (yp), and
zp€[0,1]
sup |E? (2p) — Do (2p)] = 0Oas. (Yp)-
zp€[0,1]
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We give most important details of the derivation of the first of the above three equations in the next section
of this note. The other two equations can be derived similarly.

Equations (130-132) imply that the boundedness of max;_; . 7/2 SUP,, €[a,b] HQg-d) H would follow from

the boundedness of max;_1 _ 7/25Up, c(q.0) €20 (2p)[| , Where

-1

( 1 +U0) 12 TT_LZV; +UOIQ

11—z

5 Vi +uol (fj_zz + 2170) I
o 1 ( 2:7“]'12—1—2:(1—22)170]2 —er;—(l—z) UOIQ >

% —erj - (1 - Z) UQIQ IQ + (1 - Z) ’U()IQ

Qjo (2)

with
§j0 = 5o (z) = (1 — 2) (2Tovo — ug) + 280 + 7 (o + 2vo — 1).

Since SUD;, €[a.b) [vol SUD;, € [a,b] luo|, and sup, ca4|00| are bounded, it is sufficient to show that
inf, clq,p) miny [050 (2,)] is bounded away from zero.

Lemma 22 For any ¢ < 1/2, there exists a positive € such that inf ,cc+ min; |00 (2)] > €.

Proof: Denote ¢/(1 — ¢) as C. Then by (OW31) we have
(1+é)é+(z—é)v0+z(1—z)v§=0. (133)

Let us define Vo = zvg. Then, by (133), for any z € C*, we have

(1+é)éz+(z—é)vo+(1—z)vo2=o (134)
and thus,
o)
. (O Vo + 1) ((5 + V0> 155
and o
i ) fo)
If Vp is a zero of 850 for some 7; € [0,4], then we must have —C=")" ¢ [0,4], or, equivalently,

C—Vo+1

b+ b € (—o0,—1/4],
. —1
where b = (C’ - VO) . This implies that Reb = —1/2. On the other hand, (135) yields

Ch—1
(1+0) (2¢v-1)

Z =

For such a z to belong to CT, we must have Imb < 0, and therefore, ImVp < 0. But Vo = 2zvy = C’zmo,
where

VO = ZVgy = / )\C;zdep ()\) 5

Let z =z + iy with y > 0. Then,

[ Cx+iy) (N—x+iy)
Vi —/ w4
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so that N
Im Vp = C‘/indWc()\) >0
A — 2]

and therefore, dg; # 0 for any z € C* and r; € [0,4].
It remains a possibility that there is a sequence {z;} € C* such that the corresponding d¢; (z;) converge
to zero. Let us show that this is not the case. Indeed, by (OW32) and since vg = C'myg,

—(z—c—cz)—l—\/(z—c—cz)2—4c(1—z)z
where we choose the branch of the square root, with the cut along the positive real semi-axis, which has
positive imaginary part. This implies that V;(z), and do;(z), can be extended to a continuous function over
2z € CT UR. Note that z =1 is not causing problems for ¢ < 1/2 because the support of W, (\) is bounded
away from 1 for such c. It is, thus, sufficient to show that dp;(z) # 0 for z € R. Note that, by continuity,
Vo(z) still satisfies (134) for z € R. Hence, the only possible way to have dg;(z) = 0 for z € R is to have

A -1 N N A
(C’— VO) = —1/2, that is, Vo = C + 2. Using (135), we find that z = (C+2) /(C+1)=2—c. But

then, (136) implies that Vj = -C (l + C’) # C+ 2, that is, Vy = C +2 s the “wrong” root of the quadratic
equation (134). Therefore, dg;(z) # 0 for z € R.O

4.3.3 Details of a proof of (130) (about the a.s. convergence of y, ' (Ev(z,) — vo (2)))

Our proof closely follows the logic of the proofs of Lemma OW10 and Lemma 21 above. We skip most of
the details, and emphasize the differences. First, note that

c c
l—c(m_mo)_ 1-c
Recall that (see equation (115) above) [m —mq| < Cp~7yd=*25 w.ow.p. for any (C,d,~) € (0, 00) x [42, 00) X

[0,1/2) and any « € [0, cyq). Combining this with Lemma OW10, we conclude that event

€3.

V—7Yy =

Ev ={lv—wp| < p_’yyg_“'s} holds w.ow.p.

Since v (z,) = Ftr (A‘l (C’'D7tCcA™t - zplp)_l) and H(C"D_lc'A_1 - zplp)_lu < 1/y,, we always
have c
0=l < Jo + ool = ol + = bl < 1/ (o) + L/t

where fi,,;, o is the smallest eigenvalue of A. Therefore, always,

Y, v —wo| S p Tyl 4 (1 + u;iln,o) Y, *lee,

and

-1 —v, d—43.5 ~1 -2
Pr <yp mTeaécp |v — vo| > e> <Pr(py, >€/2) + Pr ((1 + Mmin,o) Y, ff?é(p lee, > e/2> .
In contrast to the upper bound on Pr (yp’l maxg,es, |m — mo| > 6) derived in (117), the above upper bound
on Pr (y, ! max,, es, |[v — vo| > €) depend on fi, o-

Let us choose d = 43.5 and v = 1/180 so that a,q = (1/2 —7) / (1 +d) = 1/90. Then, for any [ > 0 and
p > 1801, and any € > 0,

Pr (p*%yg743'5 > 6/2) <20 Ppt

and we have

Pr y;l max [v—vg| >e)] < 2P Ppl4Pr (1 + ur;ilmo) y;Q max lge > ¢€/2 (137)
T, E€Sp TpESp

= 2°%¢Pp~l 4 Pr <(1 +N;111n,0) yp_2 >e€/2 and max lg. = 1> .

T, €Sy
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Following the logic of the proofs of Lemma OW11 and Lemma 21, we would like to use (137) to show
that

Pr y;l sup |v—wvg| >e| <CePp!
zp€[0,1]

and then ‘convert’ this into a bound on the expectation by applying Lemma 4. For such a strategy to work,
the latter probability bound must be established for all € > 0. This necessitates an analysis of the lower tail
of the distribution of fi,,;, o (note how pi,,;, o enters the right hand side of (137)).

By Lemma 5(i)

Pr (fhnino < 1) < Pr (fhnin; < 1) < p* (2¢)"
for all i > 0 and all sufficiently large p, T. Therefore, when eyg /4> 1,

. w2/2-1\ " [\ ”
-1 -2 2 - P P
Pr ((1 + ﬂmin,o) yp > 6/2) S Pr (Mmin,(] S (Eyp/2 — ]_) ) < (T) < (1662>

When eyz /4 <1, we obviously have

Pr (14 o) v 2 > €/2) < (e2/4) ™

Hence, in any case,
Pr((1+ pho) 5% > €/2) < (166%) (ey?) ™™

Using this, we obtain

Pr ((1 + :U“r_niln,[)) y;Q > ¢/2 and Ir?eaé(p lee. = 1>

) , 172 1/2
< (Pr ((1 + umin,[)) Y, >¢€/2 )) (Pr (Jf??,) lee, = 1))
1/2
2\ —p
< C (eyp) <Pr <£1€a§<p lge, = 1)) ,

and similarly to (119),

Pr <(1 + p;liln’()) y;Q > ¢/2 and max lee, = 1> < Cerp

TpEop

for any [ > 0, p > 0, and all sufficiently large p, T, where C' may depend on «,!, and p.
Recalling inequality (137), we conclude that for any [ > 0 and p > 180l, and any € > 0,

Pr (yp1 max |[v — vg| > e) < CePp!

TpESp

for all sufficiently large p, T, where C' may depend on «, [, and p. This inequality is an equivalent of inequality
(120) in the proof of Lemma OW11. Using similar ideas and following the logic of the proofs of Lemma
OW11 and Lemma 21, we arrive at

sup |Bv (2,) — vo (2p)| = 0as. (Yp) -
zp€(0,1]
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4.3.4 Proof of the decomposition (OW40) (m —Em = Wy + Wy + W5 + Wy)
From equation (OW39), we have

L 12

m—Bm = —Z (B; —Bj_1)tr (F(Q)Q(d)) (138)
1T/2
5 2 (B = By or (15700 (@) - @) ) 2l Wi
j 1

Focus on the first term on the right hand side of (138). Observe that
(B; —B;-1)T; =0 (139)
because f‘j does not depend on ;). Let E_; be the expectation conditional on €(;y,% # 7,4 = 1,...,T/2. Then
Bjr (0f — vl ) = By 1By (vl — vl ) =0,
and similarly B; 1 (u” — u;ly) = 0, By (57 = ;1) = 0, B; 1 (al? — a;15) = 0, ete. These equalities

together with (139) yield

T/2

;Z(E B tr (r(q Q(d)) ZE o ((Fm) Aj) ngn) _—

j=1
Next, the second term on the right hand side of (138) can be decomposed into the following sum
T/2
D (B By or (5057 (@)~ — (@) ) o) + 75
j=1
Since fjﬂ§d) ((di))_l - (Qj)_l) Q§-d) does not depend on ¢;), we have

(B; —Bj_1)tr (r ol (<di>) (Qj)—l) Qj(.d)) ~0

and

(B — Bt (B,00 (%) = @) 1) o) = 8 - By e (15000 (@) - @) ).

On the other hand, since fj does not depend on €(;) and QEd) is deterministic, we have

By tr (15007 ()7 = @) ) ) = BB e (1,00 ()7 — @) 7) of)
= Bt (VB ()7 - @) ) ol = o.
Hence,
1Lz S @ (1o@r-1 @1 o
_FI(EJ Ej,l)tr(m] ((Qj) ) )QJ)
1T/2
= =3B (000 (@) - (@) ) o) = w
j=1
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4.3.5 Proof of Proposition OW14 (a.s. convergence of py, |m — Em|)

We split the proof in four parts corresponding to the terms Wi, ..., Wy in the decomposition (OW40) of
m — Em.

Analysis of W;. Recall the definition of Q;d)

—1

(f+Bv) b {5V +Bub

z

ol —
7 TV Buly (1 4+ 2B0) I

A more explicit form of this matrix is

N U 1 ( zrily+2(1—2)Boly  —r;Vi — (1 — z) Buly ) (140)

J @ —;V;i—(1=2)EBuly I+ (1 - 2)Bol,
with
5§d) =(1-2) (zEf)Ev - (Eu)Q) + 2E0 +rj (Bu+ zEBv — 1).

Equation (140) and the definitions of I‘§q) and T'; yield

(q)

(2) (@)
(q) i (d) v — UjIQ (d) a: " — CLjIQ b — b]IQ (d)
(Fj _Fj) Qj - ( %Q) )qu o ( b%‘l) — b j(‘l) Qj
J 342

uj —UjIQ Cj _CjI2

where

\Ilg,d) = (5§.d))*1 ( (2B — 1) I — TjEuV; TjEUV; — EBuls ) .

Both \Ilg-d) and Qg-d) are deterministic matrices. Furthermore, as follows from the proof of Lemma OW13, their

entries are bounded by absolute value. Hence, the elements of (ng) — f]> di) are linear combinations with

bounded weights of random variables M that may be equal to any entry of any of the matrices p\?

ugq) _
sufficient to prove that

i —v;la,

u;lo, a§-q> —a;ls, b](-q) — bjIs, or c](-q) — ¢;I5. Therefore, to show that max, cg, [py, W1 25800, it is
T/2

max |y, Y B;M;| =3 0. (141)
j=1

Tp €Sy

Note that all M; have form EWE — % tr W, where £ is a high-dimensional Gaussian vector, independent
from W and having i.i.d. entries with variance 1/T. For example, the first row and first column entry of

ng) — ¢jl> has form

et — ¢ = ey 1 D CR M A MO D; ey — %tr Dy MG A My C Dy (142)
and its first row and second column entry has form
cﬁqu = (e5;-1:5%) ( 1D*10’M*1?4 M;tC;D;? %DjlcéMjfléijflchgl ) ( o ) '
’ 2Dy My A MO D, ©2
By Lemma 2.7 from BS98, we have for any p > 0

p

By |€WE — %trW < C(teWWH)P2 17, (143)

where Eyy denotes expectation conditional on W, ¢ is independent from W and distributed as N (0,1,/T),
and constant C' may depend on p.
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Let us prove (141) for M equal to the expression in (142). Proofs for other possible M are very similar
and we omit them. Let F}; be the empirical distribution of the eigenvalues of CjDIICéAj. Then, by the
so-called rank inequality (see e.g. Lemma 2.12 of BS98) and by equations (OW35), we have

Il W2 — —2/91>: 10
pommar max By (Fpj ([, b)) = ons. (p Oas. (Up) (144)

where the last equality holds because we assume in this section that y, = yop~!/4°¢. Define functions

2 2
B, = 1B,y (B (W) < o} =1 {8, (B, (W.0)* <90}
where 1 {-} is the indicator function. Note that E;_8; = E;B; = B,.
T/2
Let i.o. abbreviate “infinitely often”. Equation (144) implies that Pr (U_/ (B; = 0] i.o.) = 0 and

j=1
therefore, for any € > 0,

T2
Pr wr;leag( ypZE (311 cj) > € l.o.
T/2 T/2 T/2
< Pr max ypZEj (05?1)1 - cj) >el N ﬂ B;=1] | U U [B; = 0] i.o.
T, E€Sp = i1 i1
T/2
< Pr meag( ypZE iB; (311 Cj) > € i.o0.
Tp

Note that, for each z, € R, E;B; ( Cii1— ) forms a martingale difference sequence. Therefore, by Burk-

holder’s lemma (e.g. Lemma 2.1 in BS98), for any z, € [a,b] and p > 2

T/2 P T/2 ) r/2
EypZEB (% -e)| < c|E ZEJ o[ (4%, - cj)‘ (145)
T/2 )
+CE Z ypl&; B (311 q)‘

Jj=1

Using (143) and Lemma 3, we then have

ypB;B; (%, — ¢;) ‘2 < Cy2p 2By 1 { By sty 0 (40571 (M3714,)°) |

Denote the eigenvalues of C'ij_le'-Aj_l as A\j,—j > ... > Ap ;. Then, we have

E;_q

T/2
—1\2 x—1 2
ZEJ 1 { Jl’bmanlummj ((Aij ) (Mj AJ) )}
T/2 —92 -2
— 2 2
= > BBt by | D ((Akvﬂ' —ap)” + yﬁ) + > ((Afw’ —ap)” yﬁ)
Jj=1 Ak, —j¢la’ V'] Ak, —j €la’,b']
I/ 1/2 1/2
_ _ _ 2
< 2 (Ej—w?nax,jum?n,jpz By (Bt tntng) vt (Bier 0By (0 6))7) )
j=1
& 2 —4 —4 8 1/2 &S 4 8 1/2
S Z (Ej—Lumax,j:urnin,jpg + (E] Lumax,j:umm,]) pyp) S sz (EJ LumaXJ'umHLJ) )
Jj=1 j=1
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On the other hand, by Holder’s inequality, for any 7 > 2 and non-negative x;,

T/2 R

S| <Y @y (146)
j=1 j=1

so that
p/2
& s \'/? p/2—1 & 4 NG p/2—1 & —2p
> (Eﬂ 1max J“mm,]) <Cp > (Eﬂ'*lﬂmax,jﬂmin,ﬁ <Cp D B 1l i
j=1 j=1 j=1

for any p > 4. Therefore, for the first term on the right hand side of (145), we have

p/2 T/2
2 -1
ypE B ( j 11 cj)’ < Cy p ZEMmax _]umln,j

ZEJ :

I/2 1/2 1/2
< Cyp IZ(Eumax,J) (Brmi;) " <y

where, as always, the value of C' may be different from one appearance to another, and here C' may depend
on p. The last inequality follows from the boundedness of ]Euifax7 ; and Eu;ﬁi ;» which is implied by Lemmas
5 and 6.

For the second term on the right hand side of (145), using (143) and Lemma 3, we obtain

T/2 ) T/2 o2
Z ’ypEij (C§?1)1 - Cj)} < Cy p o ZEN’max j'LLHllnj |: r ((AJ'Mjil)z (MjilAj)2>:|
j=1 j=1
T/2
< Cypp P B it < Cy, Ppt P2,
Jj=1

1/456

Combining this with the previous display and recalling that y, = yop~ , we have for any p > 4

T/2 P
E ypZE iBj ( i1 —cj) < C’yg.
By Markov’s inequality,
T/2

—p, 2 —p.2—p/456

which is summable for sufficiently large p. Therefore, max, es, [Py, Wi| 20.

Analysis of Ws. Analysis of Ws is similar to that of W;. Using the definition of fj and equation (140),

we obtain
bo@ _ (vl \ g@  (aila bily \ @)
£,0 = ( e )qu ( bl bl o,
Thus, the entries of fj Q§»d) can be viewed as linear combinations with bounded weights of random variables

7, that may be equal to any of the quantities vj, uj, a;, b;, and ¢;. Further, the component Q;l — (QEQ))*1 of
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W depend only on random variables M, that may be equal to any entry of any of the matrices v§q) —v;ls,

u§q) (a)

—ujl, 0; — U;1>. Hence, to show that max,, es, |y, Wa 250, it is sufficient to prove that

T/2

max yPZEj ('yj/\/lj) 0.
j=1

T, E€Sp

Take, for example, v; = v; and M; = 05»?1)1 — ¢;. Similarly to the above analysis of W1, it is sufficient to
prove that

T/2
Pr zlfgi ypjélEijvj (05‘?1)1 — Cj) >eio. | =0.
Again, by Burkholder’s lemma, for any p > 2
T/2 P T/2 ) r/2
E (yp > E;Bjv; (ngl)l - Cj) < CE|Y Bia ’ypEij”j (ngl)l - Cj)‘ (147)
j=1 j=1
T/2

4B [ 3w By, (40 <)
j=1

Using (143) and the definition of v;, we have

T/2

2
> Ej ‘ypEijUj (05-?1)1 - Cj)‘
j=1
T/2
/ 2 —4 —112 2 —4 —1)2 w—1 2
< chpp Ej—l {BJ }tI‘M] ’ Mmaxjumin,j tr ((AJMJ ) (Mj A]) )}
j=1
T/2 . Y
< > Oy BB i it D ((/\k,—j — )’ + yﬁ) > ((Ak,—j —ap)’ + yﬁ)
j=1 k k
T/2
< Y Oy BB i it (PE 2+ Y, 2pF ([0, 0))) (pe* +y, *pFy; ([0, 1))
j=1
T/2 T/2
2 -1 2 -6 2 —1p. —8 2 -6 2
< D Cup Byt tming + D CUpp ™ Bitty B sitmin, s (Fps ([, 6])”
j=1 j=1
For the last inequality, we used the fact that
_ _ _ _ _ 2
(pe™ 4y, *pFp; ([0, V) (pe™ +y, *pFy; ([a', V])) < Cp* + CpPy,® (Fyj ([, b))
Let 6 = 1/3. By Holder’s inequality,
_ 2 _ ™7 7/3) /7
Byt tntng (B (VD < (B (anatiths) ) (Bma (s ('8
2 —6 T 11y 2 6/7
< (B (aintis) ) (B (B @0)?)

where the last inequality follows from the fact that Fj,; ([a/,b']) < 1. Therefore
) o~ /7 o~ /7
Yp BBy 1 i iHmin.; (Fog ([a/,6)” <y, <Ej—1 (Mﬁlax,ju;?n,j) ) Yo7 < <Ej—1 (:u'l?nax,jur:l?n,j) ) :
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Hence,
17
ZEJ 1w va(m—c])‘ ZCypp 1< (Bt ) :

Using inequahty (146) and the proportionality of pand T, we get

T/2 o~ 1/7 o/2 T/2 /14
—6 — —42
Z <Ej1 (M?‘ﬂax,jumimj) ) < Cpp/2 ' Z ( j— 1Mmax ]l’l’mln,j)
=1 j
T/2
2—-1 3
< CPPPTY By i i
j=1

for any p > 14. Therefore, for the first term on the right hand side of (147), we have for p > 14

p/2

T/2 5 T/2
B\ DB B (e —er)| | | < Cupp Y Bty < Cuf
j=1 j=1

where the last inequality is implied by Lemmas 5 and 6.
For the second term on the right hand side of (147),

T/2 ,
E Z ypl Bv; | ¢ ( 31)1 q)‘
j=1
T/2 ) o\ 10/
< YN Bttt | (M) e (450471 (057 45)°)]
j=1
T/2
< Cy 2p Rk ZEumax jlu‘mln Jj = Cy;2pp1_p/2'
j=1
Combining this with the previous display and recalling that y, = yop~ /*56 we have for any p > 14,
T/2 P
E ypZEijvj (C§?1)1 — cj> < Cyp.
j=1
By Markov’s inequality,
T/2
Pr max ypZ]E iBjv; ( ¢, 1)1 cj) >el| < Ce*pryg = Ce Pp?>=r/456,
Tp€Sp
j=1

which is clearly summable for sufficiently large p. Therefore, max, cs, [py,Wa| = 0.
Analysis of W3. We need the following lemma, which is proven in the next section of this note.

. , (dyv—1 _ ro@y=1]|” —p/2,—p
Lemma 23 For any p > 2 there exists C > 0, s.t. max;sup, <o E([|(2;) (©;") < Cp= Py P,

Similarly to the cases of W7 and W, to establish convergence max, es, |py, W) 220, it is sufficient to
prove that

T/2
xmeagc Yp Z (B; —Ej-1) (v;M;) %0, (148)
P =
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where 7, may be equal to any entry of any of the matrices v](-q)

;o)

— Uj]z, u§q) — Ujlg, agq) - CLJ'IQ, b;q) — bj]g,
— ¢;I5, and M, may be equal to any entry of (Qéd))*1 - (Qéq))*l. Take for example

v = vj(-ql)l —v; and M; = Ev — ](ql)l

s

Since (B; —Ej_1) (v;M,) is a martingale difference sequence, for any p > 2 and z, € S,, we have by
Burkholder inequality (see Lemma 2.2 in BS98), Holder inequality, (143), and Lemmas 23 and 5

T/2 P T/2 P/
2
Blyy Y (B; —Bj1) (yM;)| < CypE Z| (v;M;)]
j=1
T/2 , 172 1/2
< oY (Bl ) (B1M, ) <cplz(E\mvj\)
Jj=1
T/2 T/2

< Cp TP Z (E (tr Mj*lM]’.**l)py/2 < Cp 'TrpPPy P Z (Eﬂmm]> < Cp PPy, *,
which implies (148).

Analysis of W,. Let us define an event Erq as follows

Erq = max "F(q) 2and max HQ(.q) <Oy’
j=1,..T/2 "7 j=1,..., 7217 p
for some C' > 0. As follows from Lemma OWS, the definition of F§-q) and Lemma 3, &rg holds w.ow.p.
Therefore, to establish convergence max,, e, [py, Wil 230, it is sufficient to prove that maxgy,es, W4‘ 5
0, where
L T2 )
i d d)y— _
W, = EZ (B; —B;_1) tr <1 {Er) TV (Qg. ) ((Qg. )t (@l) 1)) Qg.q)) :
j=1
By Burkholder inequality (see Lemma 2.2 in BS98) for any p > 2
, /2 , ) p/2
7 d d)y— _
E ‘pprz;‘ < ypE Z (B; —Ej—1)tr ( {5FQ}F ( ol ((Q§ DI (QS‘Q)) 1)) QEQ))
j=1
Recall that HQg.d) is bounded. Therefore, by Lemma 23 and Holder’s inequality
) T/2
E ‘ppr4‘ < Cyb(T/2)PP 7y Tepm Py < Cp P2y
j=1
which yields maxg s, ’pypVV;‘ 220.
a (-1 _ ro@y—1]|”
4.3.6 Proof of Lemma 23 (bound on max; sup, c(, E|/(©2;") Q") )
Consider the decomposition
d)\— - ~_ _ d)\— ~_
(Qg )) 1 (QE}J)) 1_ (Qj 1 (ng)) 1) + ((Qg )) 1 Qj 1) , (149)
where
01— (1iz ) I TT—LZV; + Bu; I
j - ’I"J' T]Z ~
75V + Byl (1—z ) I,
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~ p
Lemma 24 For any p > 2 there exists C > 0, s.t. max; sup, cpo,1] B HQJ_l - (ng))*lH < Cp*P/Qy;P.

Proof: Split QJ_I - (Q;q))_1 into the following sum

-1 (Dy-1 _ (-1 _ H-1 A—1 (@y—
7 — (@) = (97 = 071) + (97 - @)
Let us show that ,
max sup ]EHQ ! Qj_lH SC’p_p/Qy;p. (150)
J €[0,1]

It is sufficient to establish analogous bounds for each entry of Q;l — Q;l Consider, for example, the upper
left entry, Ev; — v;. We have

Elo; —Bv;|” =B| Y (B —Ei_1)v;| =E - > (B —Ei)tr (M= MY
T i 1#£]

where Mji = CMD;leJIZ - ZAji and
Aji = Aj — ey, Cji = Cj — e Vig(yy, and Dj; = Dj — 17 'e(p)e(y)-

Since (B; —E;_1) tr (M;l — Mﬁl) is a martingale difference sequence, by Burkholder inequality (see

Lemma 2.2 in BS98) for any p > 2,
p p/2

E %Z (B; — Bi—y) tr (M; ' = M:Y)| <CT'E Z [(Bi — Bioy) tr (M — M];l)|2

i i#]
Further, similarly to inequality (36), we have
—1 —1
[t (M7 = M) | < 8/ (Yphmin,ji)

where fi,;, ;; is the smallest eigenvalue of Aj;. Hence, by the Holder inequality

p p/2
1 -1 -1
E fZ(Ei —Bia)tr (M; ' = M) | SCT Py, PE (> poi i
i#] i#J
< CT° —ppp/2 1ZEMmm]z Scp—ﬂ/Q ’,

i#j

where the boundedness of By, £ ;; can be established similarly to the boundedness of By, 7, ; (see Lemma
5). Hence, for any p > 2,
E|v; — Buy|” < Cp~*/?y, ", (151

where C' does not depend on j or x,,. Similar inequalities hold for the other corresponding entries of Q;l —Q;l
and therefore, (150) holds.
Now, let us consider Q;l — (ng))_l. All entries of this matrix are “small”. Take, for example its upper
left entry v; — vj(ql)l By (143), Holder’s inequality, and Lemmas 5 and 6, for any x, € [0,1],
P
Bloy—o|" = BE o —of| <EOp (0ag; a1 (152)

—p/2

IA

ECp_er_nipn,jpp/Q_l Z ((Ak,—j - xp)2 + yf;)
k

< Cp*p/Qy;pEu;lfnJ < C’pfp/Qyp*p
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Similar inequalities hold for the other entries of QJ_I - (Q;q)) . Hence,

P
max  sup EHQ— Qg.q))*lH < Op Pl (153)
I z,el0,1]

Combining (150) and (153) finishes the proof.[]
Now, let us turn to the second term on the right hand side of (149).

Lemma 25 max; sup, ¢4 H(QJ(-d)f1 - Q;lH <Cph

Proof: We have
(«

(d))_l _0-1— ( (Bv —Bv;) I (Bu —Buy) I )
) .

J (E’UJfE’UJ])IQ Z(Eﬁ*Eﬁ])[Q

All entries of this matrix are of order p~!. Indeed, consider for example Ev — Ev;. We have
1 _ _
Bv — Bu; = — =B tr(M; oM. (154)
Further, from (18)

Etr(M; ' — M)

Etr {@jﬂ§q>} (155)

= Etr (®jﬁj> +Etr (e)jfzj((zjfl _ (Q;_q))—l)Q;q))

with

0. — %)f” £6) %)f” °Cy 2,D $of

J "M ' M :
siPi CiM ey ey Dy CM 0D e

Note that

R tr { M, %} tr {M;>C;D; '}

T tr{D 1C'/ 2} tr{D 1C" 2C' D; 1}
Now, using Lemma 3 and the definition of M}, we obtain
— K X,J — —
sup [EO,|| < CT'B—==* (pe? + pFy; ([a',0]) y,*) < C. (156)
TpEla, min,j

This inequality and the fact that the entries of Qj are bounded (which is proved similarly to the boundedness
of the entries of QJ(-d)) imply that

max sup Etr (Gjﬂj> <C. (157)
J mp€la,b]

Further, for any § € (0,1) by Lemma OWS8 and Lemma 24,

Etr (@jfzj((zgl (@ ,q>)—1)9<q>)

(
J J

< < <|@ ||1+5HQ_ Q@) H1+5>>1/(1+6) <EH )H (1+6) /5) §/(1+9)
< o (5 (1o o - o] )"

< Oy (E|@jll2)m( 1—(Q§q>)1H2<1+6>/<1—«s>)<16>/2<1+a)

< Cy;fqu/z (EH@”'Q)UQ
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From (143) and C-inequality, for any p > 0,
Ew [€We|” < CT (e Www)"2 + [e W), (158)

where E)y denotes expectation conditional on W, ¢ is independent from W and distributed as N (0,1,/T).
This implies that the second absolute moment of any of the elements of ©; is of order y,, 4, Indeed, take for

example the upper left element, E'Qj_le*ngj,l. Using (158), we obtain

su[opl]E}st 1M E9j— 1} < CT’E (pummjyp + p? ummjyp ) < C’y;‘l. (159)
€

Inequality (159) and Lemma 24 yield

max sup Etr (9 Q; ( (QEQ))_l)QJ(-q)) < Cy;gp_1/2 <C. (160)

J zp€la,b]

Using (157) and (160) in (155), we obtain

1
max sup —I[-Etr(M;1 -MhH<Cp?
J mp€la,b]
as required. Hence,
max sup |Ev—Ev;| <Cp'. (161)
J xp€la,b]
One can similarly prove that
max sup |Bu—Eu;| < Cp ', (162)
J mp€la,b]
max sup |Eo—Eo;] < Cp ! (163)

7 zp€la,d]

The above three displays yield the lemma.[]
To finish the proof of Lemma 23, it remains to use Lemmas 24 and 25 in the decomposition (149).

4.4 Step 3: Convergence of Em — my
4.4.1 Proof of Lemma OW15 (bounds on errors &)

o (g - o))

p
Lemma 26 For any p > 0, there exists C' > 0, s.t. max; sup, cs.p) E HQEq)H <C.

Two auxiliary lemmas (bounds on E HQE(Z)

Proof: We have, for any 7 > p

i ] A R R i
= CB|jaf® (@) - @) 1) ol |+ cjal?|”
< ol B (el - @ < 19 ie) + o s
< ol (B (e - @) (8 (e e)) T ol

Using Lemmas OW13, OWS, and 23, we obtain

max sup ]EHQS(J)H < C'max sup HQ(d)H ( p/2y56p+1) <Cc.nO

J mp€la,b] J zp€la,b]
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2
Lemma 27 There exists C' > 0, s.t. max; sup, cq.s) (H di — (QEQ))—lH > < Cp~1L.
Proof: As follows from Lemma 25, it is sufficient to prove that

max sup E <HQJ_1 — (QEQ))1H2> <Cp

J zp€la,b]
As in the proof of Lemma 24, split Qj_l — (Q§»q))71 into two parts
O-1_ (ng))—l _ (Q;l _ Q;l) n (9;1 _ (ng))—1> )

Consider the upper left entry of Q;l — Q;l, that is Ev; — v;. We have

2 2

1 _ _
Elo; —Ev;|* =B | Y (B —Bi_1)v;| =B T > (B —Bia) tr (M= M)

it 1#£j it 1F£j

Since (E; — E;_1) tr (M ]71 - M ﬂl) is a martingale difference sequence, by Burkholder inequality (see Lemma
2.2 in BS98),

2
1 -1 -1 —2 -1 S AE:
|z (B —Eia)tr (M1 = M5Y)| <CTEY (B — By tr (M = Mz")["
i#£j i#£]
Similarly to (18), we have
Mjil = Mj;l a]ZQ(q a Mﬂl,

with a;; and Q(q) being obvious analogues of a; and Qj . Therefore,

tr (Mjil — sz ) =1tr (@]lQ ) =tr (@]lﬁﬂ> +tr (9ﬂ§~2ﬂ<(~2;1 — (QEZ))_I)QE(Z)) (164)
with )

Q. — 6/( )1Mﬂ 5(1) ( )1M C QDJZ 8(1)
Jr / / — / .
(Z)D C (i) E(z) C CND ( )

Consider the second absolute moment of any of the entries of ©;. Take, for example the upper left element,
gh,_ 1M €2;—1, we have by (158)

sup E|521 le €2i— 1| <CT™? sup ]E(tr (MJ;QMJTQ)—&-her;Q}Z)
zp€la,b] zp€la,b]

_ _ _ _ _ _ _o\2
S CT 2E (pum?n,ji (g * + FPJi ([a/’ b ]) yp ) + p2pdm;1n,ji (§ 2 + Fp,ji ([CL,, b/]) yp 2) )
Using this, an analogue of equation (OW35), Holder’s inequality and Lemma 5, we get

sup E|eh; M %ey 1| < C+Cy,'E (Mmln]zFQ ([a’,b’])).

Elab] Pt
Further, by the Cauchy-Schwarz inequality,

B (1t (06D < (Bt ) (B ([a/.0)

Therefore,

V<o ®F2 (0, 0))? < oyl

p,Jji p

sup E|€27, 1M €94 1| <C.
xzp€la,b]
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Similar inequalities holds for the other entries of ©;;. This and the boundedness of HQ]Z

imply that

2
<C.

E |tr (6_]20]1)
The absolute second moment of the second term on the right hand side of (164) converges to zero as

p — oo. Indeed, note that by Lemmas 24 and 26, and by the boundedness of HQ]Z

, for any p > 2,

P

maJLX supb]E HQJZ (QS,‘Z?))*I)QE‘Z%)H < Cp*ﬁ/2y;P_ (165)
Jozp€la

On the other hand, for any p > 2, the absolute moment of order p of any of the entries of ©;; is bounded by
Cy, 27 Indeed, take for example the upper left element of ©;;. We have by (158)

sup E|5’2i_1M]§262i_1|p < CT*” sup E((tr (MlQM* 2))p/2+|ter§2|p)
zp€Ela,b] zp€la,b]

< CT” sup E (Mmmmyp—m)( p/2 +pp>) < Cy52p.
Pe[avb]

Similar inequalities hold for the other entries of © ;. Therefore,

sup B [0,)” < Oy, (166)

zp€la,b]
)

Now, by Holder’s inequality

Eir (€,:0:(05 — (@) < o <|@jz~||2 | (95 - (@) 1)
6>1/3

~ ~ 2
o B or (0:54(9571 — (@) Hel?) | < oply, ¢ — 0.

< c(slor’)” (8o (@5 - @)

Using (165) and (166), we obtain

To summarize, the absolute second moment of the right hand side of (164) is bounded, and hence,
E|v; — Evj|* < Cp~t.

Similar inequalities hold for the other entries of Q;l — Q;l, so that

E Hﬁj—l - Q;1H2 <op . (167)

N([)W, ]let us consider Q;l — (ng)) 1. Take, for example its upper left entry v; — v](ql)l By (143), for any
zp € [a,b],

2 2
Bloy— ol = BB |v— ol | <ECy M tag

Cp Bt (P +pFp; ([a', b))y, %) < Cp~".

IN

Similar inequalities hold for the other entries of Qj_l — (QEQ))*I. Hence,
2
max sup E HQ - Q(-q))_lH <Cp L. (168)

j J

Combining (167) and (168) concludes our proof.(]
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The rest of the proof of Lemma OW15. Recall equation (OW45)

O —EQY = Ry + Ry + Rs (169)
where
Ry = QUB(@Q) —@")ha”,
B = B ((ﬂ§d><<ﬁ§-q>>1 —@®)™)” 95‘”) , and

Ry = E((Qy”((sz;q))—l—(Q;d>)—1))3§z§q>>.

The decomposition (169) yields corresponding decompositions for €. Specifically, we have

3 s 12 /
e, = e =Y =Y ——tr([I,7; V| R [I2,7; V',
0= Ya=Y g o u(Envl k)
3 S 12 ,
gy = 3 =N =N — v ([, 72V Ry [In, 27,V |
& ;e%(z) ;p;(lﬁf v (L2732} R (12, 21595)])
3 3 1T2
€3 = e3s(2) = - tr ([Io,7:2V"] Ry [I,7;V"]'),
2 252 =y ([ 2V5] Ry [Iz,7; ]])
3 512 /
€4 = é45<Z)E—ZE 1,Ztr([0’IQ]RS [IQJ”jv;-]).
s=1 s=1" j=1

Lemmas OW13, 23 and 26 applied together with Holder’s inequality yield, for &k =1, ..., 4,

sup |exs (7p)| < C’p73/2yp*5 <Cp !
zp€Ela,b]
Clearly, we also have sup, c(q.5 k3 (2p) /2p| < C’p‘3/2y;6 <Cp~L.
] To establish similar bounds for € (z,) , note that E(QEQ))*1 = Qj_l, and hence, E((Q§q))’1 — (Q§d))’1) =
Qj_l - (Q;d))*l. Therefore, by Lemma 25,

sup |é11(2,)] < Cpl'si, sup |é21(z,)| < COp's3,

zp€la,b] zp€la,b]

sup |és1 (zp)] < Cp~'s1sy, and  sup |€41 (zp)\§C’p*151.

xp€la,b] zp€la,b]
where 1
§1 = sup — [IQ,TJ‘V;] di) and S9 = sup _1 . [IQ,Tij;] di) .
zp€[a,b] zp€la,b]

Using the fact that

Q) — 1-2z 11l + 2E0ly —lerjv; — Euls
i 5@\ =5V —Bul; L+ Boly
J

and the identity V;-Vj = 1,13, we obtain

1 o1o@ _ 1 o 2Eol, —Eul, .
—1 e [IQ,ijj] Qj = W [IQ,ijj] —E’LLIQ ]EH}IQ — W [T]IQ,O] , and
J J
1 (d) 1 ZE@IQ —E’LLIQ 1
ITZ [IQ,T’]'ZV;-] Qj = W [IQ,T']'ZV;-] ( —E’LLIQ E’UIQ - W [07TJV;'] .
J J
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On the other hand, as follows from the proof of Lemma OW13, min; inpre[a’b] 5§-d) is bounded away from
zero for all sufficiently large p. Further, by inspection max; Her;H is bounded. Finally, the bounded-
ness of sup, crap [Bul, sup, crqp [Ev|, and sup, ¢,y [E0| follows, for example, from equations (130-132).
Therefore, s; and sy are bounded, and
sup |ér1 (zp)| < Cp~t
zp€la,b]

fork=1,...,4.

We can slightly improve the latter inequality for € (z,). Indeed, note that 12 [I5,7;2V}] Q;d) can be
represented in the form

1 (d) 2z, 0
m [I2,szv;:| Q] = KJ < 0 _[2 s
where K; = 6%@ [Eoly — rjBuV, 7 (zBv — 1) V) — Buly| , so that max; SUP, e[a,b) | 5| is bounded. There-
fore ’
1 3 L 0 L 0
& - = S F12 (-1 _ (ody-1y  #i2 ’
) = 1tr(KJ( 2o )E@ @ () )
]:
T/2
o 1 t K. ZIQ 0 (E’Uj — E’U) I2 (E’U.j — Eu) .[2 ZIQ 0 K,
e ASEAN A (Buj — Bu) I, z(Ed; — Ed) I 0 I, )™
o ETZ/QU o ((#(Ev;—E0) I, (Bu;—Bu)L \
a P “ 1 J (EU,J - Eu) 12 (Eﬁj - Ef}) IQ il
=

This implies that
sup |€21(%p)/2p| < Cp~ L.
zp€la,b]

For éka (z,) , we use Lemma 27 and the boundedness of s1, s2 and Hﬂ;d) H , to obtain inequalities

sup |eke (zp)| < Ccpt.
zp€la,b]

Finally, for €22 (2p), we have

T/2

. 1 zly 0 (@)y—1 @y-1y0 @ (@)1 (dy-1y ( 22 0
622(2)2—2—9;'&“(E(Kj< 2o )@ @) el @) - @ (D) K))
On the other hand,

() (@)
S N N T (o4 ~Bvk) W ~Bul \ (L 0
0 I ! ! u§q) — Buls 17§q) — Eol, 0 2zl

and
Ir 0 @ _a@ ( 2zl 0
(0 ZIQ)QJ =50 n
with ,
O _ 1 rilo+ (1= 2)Boly -1V — (1 — 2) Buly .
J 5;4) —r;V; — (1 —2)Bul, zI+2z(1—2)Evl,
Hence,
T/2 (q) (a)! (9) (a)!
_ 1 z v — Evly uy — Buly ~(d z (v — Evly w; — Buls
En(z) = —2x= Y tr | B | K; (é) ) S R (é) ) K P AP
P4 u; — Eul, v — Evls u; — Eul, 05— Evls
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Note that max; sup, cfq.) Hdi) H is bounded and

( z (’L]J(»q) — EUIQ) ugq)/ — Eul, )

ul —Bul; o\ — Bl

max sup [E Cp,

I zp€lad)

which can be established similarly to Lemma 27. So, finally,

sup |€a22 (2p) /2] < Cp~ L.

zp€lab

4.4.2 Proof of Lemma OW16 (bounds on sup, c(qs ¢k (2p))

Note that the system of equations (OW41-44) can be obtained from the system of equations (OW18-21) by
replacing m, v, u, v by their expected values and replacing e, ...,e4 by €1, ..., é4. Therefore, the reduction of
(OW41-44) to the simple system (OW47) parallels the reduction of (OW18-21) to (OW31).

In particular, proceeding as in Section 4.2.5, we obtain an equation analogous to (68)

é1:(—él+é2/z—|—2é4)9 s

-1
(5§-d)> . Since, as follows from the proof of Lemma OW13, max; SUP, €[ab] 5]- ) is

where 6 = (2/cT) Z

bounded, we have

sup ‘9_1‘ <C. (170)

zp€la,b]

Therefore, Lemma OW15 and equation (OW46) yield

sup [é1(zp)| < Cp~.
zp€la,b]

Further, arguments that parallel those of Section 4.2.5 lead to equation
(22Bv + Bu) ((1 + Ev — 2Ev) (1 —¢) — ¢) + 2¢ = &,,

where

_ Ev-_
&y = _H-TZO ! [(1—c)(—zé1 + &2 + 2z¢4) (1 + Ev — zEv) + (Buéy/Bv + €3 — &3) — 2é4¢ (Bu + zEv — 1) /B .

On the other hand, as follows from equations (130-132), there exists C' > 0 s.t.

inf |Bu|] > C, inf |Ev|> C, whereas (171)
zp€la,b] zp€la,b]

sup |Bv|] < C, sup |Bu|<C, and sup |E9| < C.
zp€la,b] zp€la,b] zp€la,b]

Therefore,

sup ‘52(31,)’ <Cp L.
zp€Ela,b]

Next, similarly to equation (80), we have
Em = ((:71 — 1) Ev + é3,
where
2c z
l+v—20)(1—c)—c>?

é3253+2§3+(

with
czBve; — esBu + &8 (1 — ¢) — Buéy + 2e4¢ (Bu — 1)

(14+Bv—2Bv)(1—c)—c

{3 =€ —2e5 +
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and

23 _ (1 +Ev—zEv)(1—c¢)—c) (Ev (281 — & — 2264) —

(Bueéy + Eves — Evés) Eudé,
2c +

(14 Ev — 2Ev) 2¢c

Since Ev converges to vg, |(1 + Ev — zEv) (1 — ¢) — ¢| and |1 + Ev — zEuv| are bounded away from zero, and
we have
sup |és(z,)| < Cp~t.
zp€la,b]

So continuing, now in parallel to Sections 4.2.5 and 4.2.5, we obtain

sup |é4(zp)| < Cp~'and sup |€2(2p)] < Cp~t.

zp€la,b] zp€la,b]

The details of such a derivation are tedious but straightforward and we omit them.
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