Magnetic resonance imaging of cancer metabolism with hyperpolarized 13C-labeled cell metabolites

R. L. Hesketh1 and K. M. Brindle1,2
1. Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE.
2. Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA.

Abstract

Hyperpolarization of 13C-labeled substrates can increase their 13C NMR signal by more than 10,000-fold, which has allowed magnetic resonance imaging (MRI) of metabolic reactions in vivo. This has already provided a unique insight into the dysregulated metabolic pathways and microenvironment of tumors. Perhaps the best known of the cancer-associated metabolic aberrations is the Warburg effect, which has been imaged in patients using hyperpolarized $[1-^{13}$C]pyruvate. In clinical oncology there is a requirement to diagnose tumors earlier, better determine their aggressiveness and prognosis, identify novel treatment targets and detect response to treatment earlier. Here we consider some of the hyperpolarized substrates that have been developed and have the potential to meet these requirements and become the precision imaging tools of the future.

Introduction

For most cancers imaging is important for diagnosis, prognosis, guiding treatment and monitoring subsequent response. Computed tomography (CT) and magnetic resonance imaging (MRI) give anatomical information, but provide limited information about tumor biology. As personalized oncology becomes a reality, the development of functional imaging techniques is required to complement the range of emerging genetic and molecular tests.

Warburg’s observation that tumor cells preferentially metabolize glucose to lactate in normoxia, rather than oxidize it in the TCA cycle, led him to falsely conclude that cancer was a metabolic disease caused by mitochondrial dysfunction [1]. Remarkably it took another 46 years for the first proto-oncogene, SRC, to be discovered, leading to the realization that cancer is a disease resulting from genetic mutation and instability [2]. We now know that some key metabolic pathways are under direct control of the most frequently mutated oncogenes and tumor suppressor
genes and, although the Warburg effect is a characteristic of many tumors, it is just one feature of the metabolic reprogramming that occurs and is required to support tumor growth [3,4].

Functional imaging techniques have been developed that non-invasively probe tissue biochemistry, many of which interrogate the dysregulated metabolic processes that are a hallmark of cancer [5]. A wide range of radiopharmaceuticals have been developed and employed clinically for use with positron emission tomography (PET) [6,7]. Whilst PET offers unrivalled sensitivity (in the femtomolar to picomolar range), the limitation is that the tracer and downstream metabolic products cannot be differentiated. Paradoxically, 1H or 13C magnetic resonance spectroscopy (MRS) are able to differentiate between metabolites but are limited by sensitivity [8].

Dissolution dynamic nuclear polarization (DNP) of 13C labeled substrates can increase the signal-to-noise ratio in 13C magnetic resonance spectra and spectroscopic images by $>10^4$, permitting real-time spectroscopy or spectroscopic imaging of the injected substrate and its conversion to downstream metabolic products (Box 1). Due to its position in the glycolytic pathway, favorable polarization levels and polarization lifetime, hyperpolarized [1-13C]pyruvate has been the most widely used substrate in pre-clinical studies and has also been used in clinical studies [9,10]. It is transported into cells by monocarboxylate transporters (MCTs) and in tumors is reduced predominantly to lactate, in the reaction catalyzed by lactate dehydrogenase (LDH). [1-13C]alanine and 13C-bicarbonate are also detectable in smaller quantities following pyruvate transamination and decarboxylation, respectively [11-13]. Various hyperpolarized substrates have been used to study cancer metabolism (Table 1 and Fig. 1). There are several recent comprehensive reviews of hyperpolarized MRI [14-17]. We focus here on recent applications of hyperpolarized MRI in oncology, which in some cases have the potential for clinical translation.

Box 1

Dissolution Dynamic Nuclear Polarization (DNP)

Hyperpolarization can be achieved in a number of ways but DNP has been the most widely used. Although it can in principle be used with any NMR-active nucleus the majority of studies have been performed with 13C-labeled molecules because of the relatively long polarization lifetime for this nucleus and the possibility
of measuring metabolic fluxes with 13C-labeled cell metabolites. The 13C labeled substrate to be hyperpolarized is mixed with a stable radical and rapidly frozen to form a glass. At temperatures approaching 1 K, and in the presence of a strong magnetic field (> 3 Tesla), the electron spins on the radical are almost completely polarized. Excitation of the electron spin resonance by microwave irradiation results in transfer of the electron spin polarization to the nuclear spins. The hyperpolarized 13C-labeled metabolite is then brought rapidly to room temperature, with substantial retention of the nuclear spin polarization in a process that involves injection of a super-heated aqueous solvent (~450 K) [16,18]. After dissolution the polarization lasts from seconds to a few minutes, depending on the molecule and the position of the 13C nucleus within the molecule, with its half-life determined by the longitudinal relaxation time constant (T_1).

Screening, diagnosis and disease progression

Hyperpolarized imaging has already shown clinical diagnostic potential in a first-in-man study in prostate cancer [9]. An elevated [1-13C]lactate/[1-13C]pyruvate ratio was observed in tumor regions and in one patient a biopsy-proven tumor was identified by hyperpolarized imaging but not by multi-parametric 1H-MRI [9].

In prostate cancer there is a requirement for new approaches to determine tumor aggressiveness. In men over sixty 30-70% are estimated to have prostate cancer but the vast majority require no treatment [19]. However, 30% of patients defined as being low-risk actually harbor higher-grade tumors that would benefit from early treatment [20]. As nearly 80% of cases present with localized disease [21], imaging with hyperpolarized [1-13C]pyruvate is a potentially useful tool for determining the aggressiveness of these tumors. In a recent study [1-13C]pyruvate was co-polarized with 13C-urea (an agent for imaging perfusion) and injected into a transgenic mouse model of prostate adenocarcinoma (TRAMP). Both agents differentiated high- and low-grade tumors, with high-grade tumors showing increased lactate labeling and reduced perfusion but higher vascular permeability and 13C urea washout [22].

At the other end of the cancer spectrum, pancreatic cancer has >90% mortality within 5 years of diagnosis, with early detection and surgery currently offering the only chance of survival [21]. In genetically engineered mouse models
[23,24] of pancreatic ductal adenocarcinoma the \([1^{-13}C]\)alanine/\([1^{-13}C]lactate\) ratio, following injection of hyperpolarized \([1^{-13}C]pyruvate\), was shown to decrease with disease progression [13]. Similarly, hepatocellular carcinoma has a mortality rate in excess of 95%, making it the second most common cause of cancer-mortality worldwide. However, localized tumors suitable for resection or ablation have a good prognosis [25]. Differentiation of small malignant tumors from benign tumors and cirrhotic liver is challenging but may be aided by metabolic imaging. In hepatoma cells glutamine uptake is 10-30 fold greater than in normal hepatocytes [26-28]. Following injection of hyperpolarized \([5^{-13}C]glutamine\), \([5^{-13}C]glutamate\) could be detected \textit{in vivo} in rat hepatomas but not in normal liver [29,30]. However, \([5^{-13}C]glutamine\) does not polarize well and has a short \(T_1\), and although there are techniques that can improve these characteristics slightly [31], they may ultimately limit clinical translation.

While it is unrealistic to suggest population-based screening with any cross-sectional imaging technique, let alone hyperpolarized MRI, it may be feasible for highly stratified groups, such as patients with hereditary cancer syndromes. The development of more sensitive and specific circulating biomarkers could also facilitate patient stratification prior to confirmation with imaging.

Tumor phenotyping

Isocitrate dehydrogenase (IDH)

Wild-type IDH catalyzes oxidative decarboxylation of isocitrate to \(\alpha\)-ketoglutarate (\(\alpha\)-KG). The most common mutation of IDH in cancer leads to a neomorphic function and the reduction of \(\alpha\)-KG to D-2-hydroxyglutarate (2-HG), a metabolite present in very low concentrations in normal tissue and which has been termed an oncometabolite because of its effects on epigenetic modifications and gene expression [4]. IDH1 (the cytosolic isoform) is mutated in >70% of low-grade gliomas and non-invasive determination of IDH1 mutational status would change the approach to surgical resection [32]. Hyperpolarized \([2^{-13}C]pyruvate\) allows visualization of TCA cycle metabolites and in IDH1 mutated cells there was reduced \([5^{-13}C]glutamate\) labeling because of down-regulation of pyruvate dehydrogenase activity [33,34]. \([1^{-13}C]2\-HG\) has been observed in tumor models \textit{in vivo} following injection of hyperpolarized \([1^{-13}C]\alpha\-KG\) [35] and \([1^{-13}C]glutamine\) [36].
γ-glutamyl-transpeptidase (GGT)

GGT is bound to the outer aspect of the plasma membrane, where it catalyzes degradation of extracellular glutathione to its constituent amino acids (glutamate, cysteine and glycine), which can then be used for intracellular glutathione synthesis. GGT is over-expressed in a variety of tumors where it may have a role in progression, invasion and drug resistance [37]. Cleavage of hyperpolarized γ-glutamyl-[1-13C]glycine to [1-13C]glycine, catalyzed by GGT, was measured in normal rat organs [38]. The next step will be to determine whether tumor over-expression of GGT can be detected.

Early Detection of Treatment Response

Early detection of treatment response could reduce the duration of ineffective therapies, decreasing costs and unnecessary side effects and facilitating an earlier switch to alternative treatments. Interim 18FDG-PET-CT scans after one or two cycles of chemotherapy is now standard of care for most lymphomas [39-41]. There is also emerging evidence that early response can be detected with 18FDG-PET in melanoma patients treated with the BRAF inhibitor vemurafenib or immune checkpoint inhibitors targeting CTLA-4 or PD1 [42-45]. However, overall there has been a reluctance to utilize 18FDG-PET for this purpose, with some studies reporting lack of efficacy and because of exaggerated fears over repeated ionizing radiation exposure [46] and the poorly understood metabolic “flare effect” [47-49].

Hyperpolarized substrates avoid the use of ionizing radiation and, by using probes more specific than 18FDG for cancer metabolism or the chemotherapeutic being used, may be more sensitive to early therapy induced changes in metabolism. So far [1-13C]pyruvate has been the most thoroughly investigated hyperpolarized substrate for treatment response monitoring. Chemotherapy and radiotherapy have been observed to alter hyperpolarized [1-13C]pyruvate metabolism in numerous animal models, usually leading to a decrease in lactate labelling[11,50-56]. Detection of treatment response in a prostate cancer patient was reported recently. Following six weeks of androgen deprivation therapy [1-13C]lactate was virtually
undetectable. With 1H-MRI, there were only small changes in the apparent diffusion coefficient of tissue water and tumor size [10].

However, a number of studies have failed to detect treatment response with $[1^{-13}$C]pyruvate or shown that it is less sensitive than tumor size measurements [57-59]. In these instances a different approach to response detection is required. Following injection of hyperpolarized $[1,4^{-13}$C$_2]$fumarate the detection of malate is a sensitive indicator of cell death [59,60]. Hydration of hyperpolarized $[1,4^{-13}$C$_2]$fumarate to malate, catalysed by fumarase, is seen in areas of necrosis, where increases in cell membrane permeability improve cell uptake of fumarase and result in leakage of fumarase into the extracellular space [60].

Tumor Microenvironment

pH

The acidic extracellular environment of tumors, which is often associated with tumor hypoxia, contributes to the malignant phenotype by upregulating signaling pathways promoting tumor growth, inflammation, angiogenesis and metastasis, whilst inhibiting immune cell activation, chemotherapeutic delivery to the tumor and radio-sensitivity [61].

Injection of hyperpolarized 13C-bicarbonate results in the production of 13CO$_2$ and the extracellular pH and carbonic anhydrase activity can be determined from the H13CO$_3^-$/13CO$_2$ signal ratio [62,63]. Several hyperpolarized probes that exhibit pH-dependent chemical shifts have also been described. 15N$_2$-imidazole and several 15N-pyridine derivatives have been hyperpolarized and tested *in vitro* with chemical shifts of up to 60 ppm per pH unit [64,65]. More recently $[1,5^{-13}$C]zymonic acid has been used *in vivo* to image the pH of multiple tissues [66].

Redox Status

Tumors generally have elevated production of reactive oxygen species (ROS), which promote tumor development and resistance to therapy [67]. To regulate increased ROS production, antioxidant production is also increased and several hyperpolarized probes have been used to probe these regulatory mechanisms. $[1^{-13}$C]alanine has been used to measure lactate/pyruvate ratio as a surrogate for the NAD$^+$/NADH ratio [68]. The pentose phosphate pathway (PPP) produces NADPH,
required by glutathione reductase to maintain levels of reduced glutathione, a key anti-oxidant. Flux through the PPP has been estimated in tumors by measuring \([U-^2\text{H}, U-^{13}\text{C}]\)glucose conversion to 6-phosphogluconate, a PPP intermediate \([69,70]\) and recently the production of \(\text{H}^{13}\text{CO}_3^-\) was detected in mouse liver following injection of \(\delta-[1-^{13}\text{C}]\)gluconolactone \([71]\). Ascorbic acid (AA) combats oxidative stress by reducing ROS and in the process producing dehydroascorbic acid (DHA). DHA can then be reduced back to AA via glutathione or NADPH dependent reactions. Hyperpolarized \([1-^{13}\text{C}]\)dehydroascorbic acid and measurement of its reduction to \([1-^{13}\text{C}]\)ascorbic acid has been used to probe intracellular redox status in a number of animal models of cancer \([72-74]\).

Technical Developments

The transient nature of hyperpolarization limits it use to metabolic events occurring on a timescale of seconds to minutes. Furthermore, each excitation required to produce a spectrum or image results in further depletion of the hyperpolarization. 3D imaging sequences have been described recently that have improved the nominal spatial resolutions in lactate and pyruvate images to \(\leq0.003\) cm\(^3\), with image acquisition times of <2 s \([75,76]\). Improved polarizers and injection protocols could improve the signal available initially \([16,77]\) and rapid removal of the radical, which dramatically prolongs polarization lifetime, has been achieved using a number of different methods \([78,79]\). Provided the sample remains at low temperature and in a relatively high magnetic field \(T_1s > 20~\text{h}\) are possible \([78]\). This would permit centralized substrate hyperpolarization followed by transport to multiple locations for clinical use, in a similar fashion to \(^{18}\text{F}\)-labeled PET tracers, dispensing with the requirement to have a hyperpolarizer in close proximity to the MRI scanner.

Transferring polarization from hyperpolarized \(^{13}\text{C}\) nuclei to spin-coupled \(^1\text{H}\) nuclei can be used to further enhance signal detection. Dynamic \(^1\text{H}\) imaging of lactate methyl protons following injection of \([1-^{13}\text{C}]\)pyruvate was recently demonstrated \textit{in vivo} \([80]\). The resulting signal enhancements are likely to be greater at the lower magnetic field strengths used in the clinic.
PET-MRI

PET-MRI combines improved soft tissue contrast with the functional information provided by both PET and MRI and is likely to be of particular use where MRI is already the anatomical imaging technique of choice e.g. in brain, liver and prostate [81]. Simultaneous hyperpolarized 13C MRI and PET studies permit more extensive metabolic phenotyping of tumors, as already demonstrated in pre-clinical studies (Figure 2) [82-85]. 18FDG can be used to measure the first two steps of glycolysis, cell uptake via the glucose transporters and irreversible trapping after phosphorylation by hexokinase. Therefore the combination of 18FDG and [1-13C]pyruvate may yield a single metric that estimates glucose uptake and its subsequent metabolism. For example, high 18FDG uptake and low [1-13C]lactate production may suggest that mitochondrial oxidation of glucose predominates, whereas high 18FDG uptake and high [1-13C]lactate labeling would be indicative of the Warburg effect. Studies so far have either demonstrated concordance between 18FDG uptake and [1-13C]lactate production [83,85] or that hyperpolarized tracers can have improved tumor specificity when compared to 18FDG [82,84].

Conclusions

For a field still very much in its infancy a remarkable number of substrates have been hyperpolarized and have provided novel, pre-clinical insights into tumor metabolism in vivo. Hyperpolarized [1-13C]pyruvate has already entered clinical trials and other substrates will undoubtedly follow. The major weakness is the transient nature of the signal, limiting studies to fast metabolic reactions in pre-defined body regions. Therefore it is very unlikely that hyperpolarized substrates will replace nuclear medicine techniques for staging metastatic cancers. However, its great strength is the potential for kinetic measurements of multiple enzymatic processes providing functional data. For use as a clinical biomarker, these data must be sufficiently sensitive and specific to inform treatment decisions, prognosis, or monitor treatment response in ways that are not possible by using circulating biomarkers or other imaging modalities. If that proves to be the case then routine functional precision imaging using this technique could become a clinical reality.
Acknowledgements

KMB’s lab is supported by a Cancer Research UK Programme grant (17242) and by the CRUK-EPSRC Imaging Centre in Cambridge and Manchester (16465).

Table 1
<table>
<thead>
<tr>
<th>Metabolite</th>
<th>T_1 (s)</th>
<th>Polarization</th>
<th>Measurable products</th>
<th>Measures</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1-13C]pyruvate</td>
<td>40 (9.4 T)</td>
<td>>60%</td>
<td>[1-13C]lactate, 13C bicarbonate, 1-13C]alanine</td>
<td>MCT expression, LDH, PDH and ALT activity, NADH availability</td>
<td>[11,77]</td>
</tr>
<tr>
<td>[1,4-13C$_2$]fumarate</td>
<td>24 (9.4 T)</td>
<td>26 – 35%</td>
<td>[1,4-13C$_2$]malate</td>
<td>Necrosis – leakage of fumarase from necrotic cells increases conversion of [1,4-13C$_2$]fumarate to [1,4-13C$_2$]malate</td>
<td>[60]</td>
</tr>
<tr>
<td>[1-13C]lactate</td>
<td>45 (3 T)</td>
<td>7%</td>
<td>[1-13C]pyruvate, [1-13C]alanine, 13C bicarbonate</td>
<td>MCT expression, LDH, PDH and ALT activity, NAD$^+$ availability</td>
<td>[86]</td>
</tr>
<tr>
<td>[1-13C]α-ketoglutarate</td>
<td>52 (3 T)</td>
<td>16.3 ± 3%</td>
<td>[1-13C]2-hydroxyglutarate</td>
<td>Mutant IDH expression, NADPH availability</td>
<td>[35]</td>
</tr>
<tr>
<td>[1-13C]glutamine</td>
<td>31 (1 T)</td>
<td>34.7 ±7%</td>
<td>[1-13C]2-hydroxyglutarate</td>
<td>Mutant IDH expression</td>
<td>[36]</td>
</tr>
<tr>
<td>[5-13C]glutamine</td>
<td>16 (9.4 T)</td>
<td>5%</td>
<td>[5-13C]glutamate</td>
<td>Glutaminase activity, glutamine transport</td>
<td>[29]</td>
</tr>
<tr>
<td>[4-13C]glutamate</td>
<td>24 (9.4 T)</td>
<td>28%</td>
<td>[4-13C]glutamate</td>
<td>ALT activity increase</td>
<td>[37]</td>
</tr>
<tr>
<td>Substrate</td>
<td>T<sub>1</sub> (9.4 T)</td>
<td>%</td>
<td>Product</td>
<td>Activity</td>
<td>Reference</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>-----</td>
<td>--</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>γ-glutamyl-[1-<sup>13</sup>C]glycine</td>
<td>30</td>
<td>5.4</td>
<td>[1-<sup>13</sup>C]glycine</td>
<td>GGT activity</td>
<td>[38]</td>
</tr>
<tr>
<td>[1-<sup>13</sup>C]acetate</td>
<td>16.2 (9.4 T)</td>
<td>13%</td>
<td>[1-<sup>13</sup>C]acetylCoA, [1-<sup>13</sup>C]acetylcarnitine</td>
<td>MCT expression, acetylCoA synthetase and carnitine acetyltransferase activity</td>
<td>[88]</td>
</tr>
</tbody>
</table>

Table 1. The properties of some hyperpolarized substrates that have been used in cancer studies. The T₁ is the spin lattice relaxation time and is a measure of the polarization lifetime. The numbers in parentheses are the field strengths at which these relaxation times were measured. Abbreviations: MCT, monocarboxylate transporter; LDH, lactate dehydrogenase; PDH, pyruvate dehydrogenase; ALT, alanine transaminase; IDH, isocitrate dehydrogenase; GGT, γ-glutamyltransferase.
Figure 1. Metabolic processes targeted with hyperpolarized 13C-labeled metabolites. Color coding: pink – enzymes; yellow – hyperpolarized 13C-substrates; green – measurable hyperpolarized 13C-labeled products; cyan hyperpolarized 13C-labeled substrates and measurable products (depend on substrate injected). Abbreviations: ALT – alanine transaminase; ASCTs – alanine, serine, cysteine transporters (there are also several other transporters that transport glutamine into cells); BCAT – branched chain amino acid aminotransferase; CAIX – carbonic anhydrase 9; DCTs – dicarboxylate transporters; DHAR – dihydroascorbate reductase; GGT – γ-glutamyltransferase; GLDH – glutamate dehydrogenase; GLS – glutaminase; GLUTs – glucose transporters; GR – glutathione reductase; GSH – glutathione; GSSR – glutathione disulfide; IDH – isocitrate dehydrogenase; LDH – lactate dehydrogenase; MCTs – monocarboxylate transporters; PC – pyruvate carboxylase; PDH – pyruvate dehydrogenase; PPP – pentose phosphate pathway; SVCTs – sodium-ascorbate co-transporters.
Figure 2. Combined 18FDG-PET/CT and hyperpolarized $[^{1-13}]$Cpyruvate MRI. (a-c) 3D CT bone reconstructions of a representative Colo205 tumor-bearing mouse with co-registered overlays of (a) 18FDG, (b) $[^{1-13}]$Cpyruvate and (c) $[^{1-13}]$C lactate. (d–g) images from a single 2.5 mm thick axial slice. (d) T_2-weighted fast spin echo image with overlaid with (e) 18FDG, (f) $[^{1-13}]$Cpyruvate and (g) $[^{1-13}]$C lactate images.

References

13C-labeled glucose infusions in patients showed that non-small cell lung tumors have enhanced rates of both aerobic glycolysis and glucose oxidation compared to normal lung.

The first clinical hyperpolarized MRI study, using hyperpolarized [1-13C]pyruvate in prostate cancer.

A case report showing that hyperpolarized [1-13C]pyruvate can detect response to androgen ablation therapy in a patient with prostate cancer.

This paper demonstrated that by measuring the alanine/lactate ratio, hyperpolarized [1,13C]pyruvate could be used to differentiate between the stages of development of pancreatic adenocarcinoma in a genetically engineered mouse model of the disease.

Using the TRAMP model of prostate cancer in mice, the authors demonstrated dual agent hyperpolarization of [1-13C]pyruvate and 13C urea and found that high-grade tumors had higher rates of lactate production and poorer perfusion than low-grade tumors.

Cancer Res 2015, 75:2999-3009.

The authors used hyperpolarized [2-13C]pyruvate to show that [5-13C]glutamate production was decreased in IDH1 mutant cells, which was attributed to decreased pyruvate dehydrogenase activity.

This study showed that hyperpolarized [1-13C]α-ketoglutarate could be used to detect 2-hydroxyglutarate in glioma and thus reports on the tumor IDH1 mutational status.

Cell Metab 2017.

The authors showed that glutamine was the predominant carbon source for 2-hydroxyglutarate in IDH mutant tumors and then went on to demonstrate that hyperpolarized [1-13C]glutamine could be used to measure 2-hydroxyglutarate production.

Anticancer Res 2010, 30:1169-1181.

Here hyperpolarized γ-Glu-[1-13C]Gly was used to measure γGT activity in several different normal rat organs. γGT is over-expressed in a several tumors and therefore this tracer has potential for use in oncology.

\(13\)C-MR Spectroscopic Imaging with Hyperpolarized [1-13C]pyruvate Detects
Early Response to Radiotherapy in SCC Tumors and HT-29 Tumors. Clin

54. Delgado-Goni T, Miniottis MF, Wantuch S, Parkes HG, Marais R, Workman P,
Leach MO, Beloueche-Babari M: The BRAF Inhibitor Vemurafenib
Activates Mitochondrial Metabolism and Inhibits Hyperpolarized
Pyruvate-Lactate Exchange in BRAF-Mutant Human Melanoma Cells. Mol
Cancer Ther 2016, 15:2987-2999.

J, Vigneron DB, Goga A: 13C-pyruvate imaging reveals alterations in
glycolysis that precede c-Myc-induced tumor formation and regression.
Cell Metab 2011, 14:131-142.

56. Park I, Mukherjee J, Ito M, Chaumeil MM, Jalbert LE, Gaensler K, Ronen SM,
Nelson SJ, Pieper RO: Changes in pyruvate metabolism
detected by
magnetic resonance imaging are linked to DNA damage and serve as a
sensor of temozolomide response in glioblastoma cells. Cancer Res

57. Ravoori MK, Singh SP, Lee J, Bankson JA, Kundra V: In Vivo Assessment of
Ovarian Tumor Response to Tyrosine Kinase Inhibitor Pazopanib by
Using Hyperpolarized 13C-Pyruvate MR Spectroscopy and 18F-FDG

Gregoire V, Jordan BF, Krishna MC, et al.: Multi-modality imaging to
assess metabolic response to dichloroacetate treatment in tumor

hepatocellular carcinoma characterization and therapy response

In an orthotopic model of hepatocellular carcinoma the authors demonstrated the
use of [1-13C]pyruvate, [1, 4-13C2]fumarate and [13C, \(1\)5N2]urea to detect
response to trans-arterial embolization.

60. Gallagher FA, Kettunen MI, Hu DE, Jensen PR, Zandt RI, Karlsson M,
Gisselsson A, Nelson SK, Witney TH, Bohndiek SE, et al.: Production of
hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of
cell necrosis and treatment response in tumors. Proc Natl Acad Sci U S A
2009, 106:19801-19806.

AB, McGuire S, Booth TC, Boren J, et al.: Carbonic Anhydrase Activity
Monitored In Vivo by Hyperpolarized 13C-Magnetic Resonance
Spectroscopy Demonstrates Its Importance for pH Regulation in Tumors.
Cancer Res 2015, 75:4109-4118.

imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate.

The pH dependent chemical shift of [1, 5-13C2]zymonic acid was demonstrated to be an accurate in vivo extracellular pH probe in normal rat organs.

This study showed that hyperpolarized [1-13C]dehydroascorbic acid could be used to assess oxidative stress in tumors, and the rate of DHA reduction was dependent on the rate of NADPH production.

One of the practical challenges in translation of hyperpolarized MRI is the siting of the hyperpolarizer. Here the authors demonstrate that separation of the hyperpolarized substrate from the radical significantly prolongs the half-lives, permitting transport or storage of the hyperpolarized material.

Here the authors use a photo-induced radical to polarize [1-13C]pyruvate and then use thermal annihilation to remove the radical, producing a pure substrate with significantly prolonged hyperpolarization.

In this canine study, the feasibility of simultaneous 18FDG-PET and hyperpolarized [1-13C]pyruvate studies was demonstrated, with most tumors demonstrating a correlation between [1-13C]lactate production and 18FDG uptake.

