The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes

Alexander Giovannitti,*†‡§ Iluliana P. Maria,† David Hanih,§ Mary J. Donahue,‖ Daniel Bryant,⊥ Katrina J. Barth,‡ Beatrice E. Makdah,‡ Achilleas Savva,‖ Davide Moia,§ Matyáš Zetek,‡ Piers R.F. Barnes,‡ Obadiah G. Reid,⁄ Sahika Inal,∥ Garry Rumbles,△ ∥ George G. Malliaras,○ Jenny Nelson,‡ Jonathan Rivnay,*†‡§ and Iain McCulloch

†Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
‡Department of Physics and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, United Kingdom
§Department of Chemistry, Stanford University, Stanford, California 94305, United States
‖Department of Bioelectronics, École Nationale Supérieure des Mines, CMP-EMSE, MOC Gardanne 13541, France
⊥Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), KSC Thuwal 23955-6900, Saudi Arabia
‡Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
○Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
∥Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
△Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, United States
★Renewable and Sustainable Energy Institute, University of Colorado at Boulder, Boulder, Colorado 80309, United States
◆Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
☆Electrical Engineering Division, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom

Supporting Information

ABSTRACT: We report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performance in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.

INTRODUCTION

Over the past few years, conjugated polymers containing ethylene glycol (from here onward, “glycol”) side chains have received increasing attention in the field of organic electronics. Polymers have been specially designed to improve performance of organic photovoltaics (OPV).1,2 Organic field effect transistors (OFET),1,3,4 and organic electrochemical transistors (OECT).1—5 Glycol side chains have been reported to facilitate ion transport in conjugated polymers, allowing ions to penetrate into the bulk during electrochemical redox reactions in aqueous electrolytes. This is an important characteristic of so-called “mixed conductors”, which require optimal transport of both electronic charge carriers (holes and electrons) and ions (cations and anions).6,9,10 When comparing alkyl side chains to glycol side chains, intra- and intermolecular interaction forces stem from different origins. The dominant interactions of alkyl side chains can be described as dispersion forces,10 while the substitution of methylene groups (CH2) for oxygen atoms introduce permanent dipoles within the
side chains, strongly affecting the intra- and interchain interactions of the side chain. The substitution of alkyl by glycol chains on the same backbone can increase the dielectric constant ϵ and decrease the $\pi-\pi$ stacking distance of the backbone, 1,2,6 enabling enhanced swelling in aqueous solutions 6,12,13 and chelation of cations. 14,15 In addition, polar side chains have been shown to improve the doping efficiency of copolymers in thermoelectric devices, mostly because of a higher miscibility of the dopant within the polar side chain. $^{16-19}$

The magnitude of signal amplification of OECTs is reflected in the performance of the material through the transconductance $g_{m} = \partial I_d / \partial V_g$, which may be seen as the figure of merit. 20 To meaningfully compare and benchmark the performances of novel materials for OECTs, devices with comparable physical dimensions and biasing may be fabricated and tested. Mixed conductors have been successfully employed as the active layer in both accumulation 5,6,21 and depletion mode OECTs 20,22,24 where high transconductance values in the mS range were reported. 5,6,24 Depletion mode OECTs based on the conducting polymer blend poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) have successfully been used for recordings of brain activity 22,25 as well as the heart beat (ECG recordings). 26 However, depletion mode devices bear a number of drawbacks. Notably, they are "on" in the resting, zero gate bias state, meaning that they draw significant current, raising concerns for power consumption. In recent years, novel redox-active copolymers have been developed for p-type accumulation mode OECTs, showing high transconductance and stability as well as the advantage of depositing the active layer from low boiling solvent without further crosslinking or annealing steps. 5,6 The latter is important for large scale production of printed biosensors where device-to-device reproducibility is critical. 29,30 Recently, we reported the development of an accumulation mode ambipolar OECT based on naphthalene-1,4,5,8-tetracarboxylic-diimide-alkoxybithiophene p(gNDI-gT2), a copolymer with a low reduction and oxidation potential (vs Ag/AgCl), enabling stable operation of p- and n-type OECTs in aqueous electrolytes. 7 To date, the performance of the n-type OECT is low compared to state of the art p-type OECT materials.

Here, we report on the development of donor–acceptor copolymers based on naphthalene-1,4,5,8-tetracarboxylic-diimide-bithiophene (NDI-T2) and study how the properties are affected when a fraction of the alkyl side chains is substituted by glycol side chains. Additionally, the influence of introduced glycol chains on the electron mobility is investigated, taking the high electron mobility alkylated copolymer P(NDI2OD-T2) as a reference. 11 Because several biological processes involve the transfer of electrons (e.g., enzymatic reactions), the development of materials which can accept electrons and stabilize them in aqueous solutions represents an interesting approach for the development of novel sensor technologies, e.g. the detection of biomolecules in biological media.

EXPERIMENTAL SECTION

Synthesis of the Copolymers. The synthesis of the copolymers is reported in the Supporting Information (Section 2).

Electrochemical Measurements. Cyclic voltammograms were recorded using a potentiostat (IVIum Compactstat) with a standard three-electrode setup with ITO coated glass substrates as the working electrode, a platinum mesh as the counter electrode, and a Ag/AgCl reference electrode. The measurements were carried in degassed 0.1 M NaCl aqueous solution at a scan rate of 100 mV/s. Electrochemical impedance spectroscopy was performed with a three electrode configuration using a potentiostat (Metrohm Autolab) with platinum and Ag/AgCl counter and reference electrodes, respectively. The polymer coated gold electrode was the working electrode, and the electrolyte was a 0.1 M NaCl aqueous solution. Effective capacitance was determined from $C \sim 1/(2\pi f I m(Z))$, where f is the frequency and Z is the complex impedance; this capacitance was confirmed for doped spectra from a fit to a R(R)[C] equivalent circuit to extract both capacitance per unit area and C^*. Analysis was performed with Metrohm NOVA software and custom MATLAB tools.

Transistor Fabrication and Characterization. Organic field effect transistors (OFETs) were fabricated with a bottom-contact top-gate architecture. A 40 nm Ag source and drain electrodes with a length of 40 μm and a width of 1000 μm were evaporated onto precleaned borofloat glass (Semiconductor Wafer Inc.) through a shadow mask. Active layer polymer films were deposited by spin coating from a 10 mg/mL chloroform solution while the solution was at 60 °C. After deposition, the films were annealed for 5 min at 70 °C and left for 12 h in a sealed chamber with dessicant to remove any residual moisture. Subsequently, a 40 nm Ag layer was deposited on the surface of the active layer by spin coating at 2100 rpm to obtain a layer with 900 nm thickness. A thin layer of aluminum (60 nm) was evaporated through a shadow mask to obtain a gate electrode. All measurements were performed inside a glovebox at room temperature using a Keysight B2912A SourceMeter and probe station setup.

OECTs were fabricated as previously reported, 22,32 the conjugated polymers were deposited by spin coating (thin films) or drop casting (thick films) from chloroform (5 mg/mL) before sacrificial peel off of Parylene C for the dry patterning processes. The completed samples were not annealed or treated after deposition; the samples were briefly rinsed in deionized water before testing. OECT IV curves (transfer and output) as well as repetitive pulsing were performed with a Keithley 2400 source-measure unit and custom LabView scripts. Analysis was performed with MATLAB.

Time-Resolved Microwave Conductivity (TRMC). TRMC experiments were conducted in a setup that has been previously described in thorough detail. 33 Briefly, the change in microwave (\sim9 GHz) power absorbed by a sample was measured in response to a short (4–5 ns full laser pulse. The fractional microwave power absorption is converted to a photoconductance through numerical calculation of the sensitivity of the apparatus, given by $K = (23,000 S^{-1}$ in this case). In the experiments reported here, all samples were excited with 700 nm light at a fluence between 2×10^{-10} and 2×10^{-9} photons/cm². Samples were sealed inside the cavity and purged with nitrogen for the duration of all microwave measurements. Photoluminescence spectra were measured in the same setup as the microwave conductivity experiments, in air, using 600 nm pulsed laser excitation and a 650 nm long-pass filter. Luminescence is collected from the microwave sample cavity using a 50 mm f/0.95 camera lens. A fiber patch cable is mounted at the focal plane of the lens and coupled to a Princeton Instruments SpectraPro 2500i spectrometer equipped with a silicon CCD camera. The intensity-correction curve for this complete optical detection apparatus was obtained by measuring the spectrum of a standard tungsten–halogen lamp (Ocean Optics DH-2000). Thin-film samples for TRMC and photoluminescence (PL) experiments were prepared by drop-casting 100 μL of polymer solution (10 mg/mL, chloroform) onto fused quartz substrates in a nitrogen glovebox at room temperature.

RESULTS AND DISCUSSION

The synthesis of the 2,6-dibromonaphthalene-1,4,5,8-tetracarboxylic-diimide (NDI) monomer with a linear glycol chain (g7-NDI-Br) is presented in Figure 1a. The methyl end-capped heptakis(ethylene glycol) chain with an amine end group was
prevented starting from tetraethylene glycol and triethylene glycol monomethyl ether according to literature procedures.33,34 For the final step of the monomer synthesis (diimide formation), a new procedure was developed to suppress the nucleophilic aromatic substitution (SNAr) reaction of the amine and the NDI core, a side reaction which forms secondary amines and occurs especially in polar solvents.35 To suppress the formation of this side-product, o-xylene was used as the reaction solvent in combination with zinc acetate, acting as a weak Lewis acid to catalyze the ring closure to form the diimides. The effect of the choice of the solvent on the product formation is shown in Figure S14, where it can be observed that using polar solvents such as DMF or carboxylic acids4 significantly increase the formation of diamines. Because the glycol side chains increase the solubility of the polymers in polar chlorinated solvents, a branching point is not necessary for glycol side chains. The 2-octyldodecyl alkyl chain monomer ND12OD-Br₂ was prepared according to the literature.36 Finally, random copolymers were prepared by Stille polymerization in chlorobenzene at 130 °C (Figure 1b); synthetic protocols are described in the Supporting Information.

The copolymers are soluble in chloroform and chlorobenzene, while copolymers containing >75% glycol chain polymers tend to aggregate in chlorobenzene and dissolve only when heated above 80 °C. The solution UV–vis absorbance spectra of the polymers in chlorobenzene are presented in Figure S16a, where an increased aggregation was observed for copolymers with higher glycol percentages. The opposite trend is observed in chloroform where copolymers with larger glycol percentages have a higher solubility and show less aggregation (Figure S16b). The UV–vis absorption spectra in the solid state are shown in Figure 2a. It can be observed that the intensity of the internal charge transfer (ICT) gradually increases, and the ICT absorption maximum shifts from 692 nm for the 0% glycol polymer (P-0) to 718 nm for the 100% glycol polymer (P-100). Photothermal deflection spectroscopy (PDS) in solid state was carried out (Figure S20) where a growing deep tail state was observed when...
the glycol percentage was increased. The thin-film PL spectra of the polymer series are presented in Figure 2b where a decrease in the PL can be observed as well as a red-shift of approximately 75 nm as the glycol side chain fraction increases. The integrated photoluminescence intensity decreases by a factor of 4 as the glycol side chain fraction increases from 0 to 100% (Figure S21), though we note that this may be exaggerated, as the entire spectrum cannot be captured by the silicon CCD employed here.

Molecular weight analysis was carried out by gel permeation chromatography (GPC) in chlorobenzene, and the results are summarized in Table 1. It was observed that copolymers with high glycol chain densities > P-50 formed aggregates in chlorobenzene (Figure S16b), resulting in the formation of bimodal fractions as presented in Figures S17 and S18. To avoid overestimating the molecular weight distribution, the signal observed for short elution times (high molecular weights) was neglected, and additional mass spectrometry (MALDI-ToF) was carried out to analyze the chain length of the copolymers. Copolymers containing glycol side chains were detected with chain lengths >15 kDa (Figure S19). The alkyl chain polymer could not be detected by mass spectrometry, most likely due to the absence of polar side chains, while the addition of more than 10% alkyl side chains decreased gsw, resulting in a drop for P-75 (0.14 S/cm) and P-50 (0.06 S/cm). In addition, an increase of the injection barrier of electrons can be observed as well as hysteresis for forward and backward biasing (see output and transfer curves in Figure S27). P-25 and P-10 showed signs of turn on at gate biases >0.6 V but suffered from low currents and hysteretic operation. P-0 could not be operated as an electrochemical transistor at the biases and dimensions probed here; increased biasing is limited by operation in water due to electrolysis of water or reduction of oxygen. An increase of gsw is expected to be observed when the thickness of the active layer was increased, as this is characteristic of OECTs.

For example, a film of P-90 prepared by drop casting, which is approximately 20 times thicker than the spin-cast device reported here, achieved a transconductance of >40 μS (Figure S28). The expected 20-fold increase was exceeded by a factor of 2, which could be the result of irregular film thickness across the device upon drop casting.

To understand the differences in performance of the polymers in OECTs, we investigated the influence of the side chain substitution on (i) the interaction with aqueous electrolytes, (ii) the electrochemical properties (cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements), (iii) the charge carrier mobility, and (iv) the change in morphology. The interactions between copolymers and aqueous electrolytes were studied by contact angle measurements as well as quartz crystal microbalance with dissipation monitoring (QCM-D). The results are shown in Figure 3a, where it can be observed that the contact angle with DI water gradually decreases from 102° (P-0) to 88° (P-100), showing that the polarity of the copolymers increases significantly. The swelling experiments performed in 0.1 M NaCl aqueous solution showed significant differences in the hydration behavior. Copolymers from P-0 to P-50 showed a low degree of swelling (<10%) which increased dramatically for P-75 (12%), P-90 (42%) and P-100 (102%). This demonstrates that the addition of alkyl side chains has a significant influence on the swelling in aqueous electrolytes, which can influence the properties of the copolymers when they are in contact with an aqueous electrolyte or even under ambient conditions. It is interesting to note that the heptakis(ethylene glycol) chains on the NDI repeat unit increase the swelling significantly, while only 10% swelling was observed for a thiophene-based copolymer functionalized with tris(ethylene glycol) side chains. This suggests that extending the length of the glycol side chains has a significant effect on the swelling behavior of the copolymer in aqueous solutions.

CV measurements of copolymer thin films on fluorine doped tin oxide (FTO) coated glass substrates were carried out in 0.1 M NaCl aqueous solution to investigate the effect of the side chain...
The copolymers P-0 and P-10 show a reduction peak whose potential most likely originates from the diol substitutions. As the copolymers have identical backbones, the shift in the positive electrode potential can be observed which decreases in intensity for P-75 to P-100. When the glycol percentage is increased to 25 or 50%, a second peak at lower voltage can be observed, and this trend continues for P-75 to P-100, a lower reduction potential as well as lower hysteresis during the electrochemical redox reactions can be observed.

Increasing the measured currents during repeated charging and discharging cycles is presented in Table 2 and Figure 4a (a detailed summary of the measurements is presented in Figure S26). The copolymers P-75, P-90, and P-100 show comparable capacitance of ~0.8 mF/cm², while lowering the percentages of glycol side chains decreased the capacitance significantly. P-0 and P-10 showed more than an order of magnitude lower capacitance compared to those of P-75, P-90, and P-100. The observed trend in the EIS results is in agreement with the finding that a gradual transition occurs from charge accumulation at or near the semiconductor–electrolyte interface to volumetric charging where ions are able to penetrate into the bulk of the copolymer for P-75 to P-100. Because volumetric charging is observed for glycol chain densities >75%, a volumetric capacitance Cª can be reported for P-75 (188.0 F/cm³), P-90 (198.2 F/cm³), and P-100 (192.4 F/cm³). This is also valid for thick films where, for example, Cª for P-90 is nearly constant (195 F/cm³) when the thickness was increased by a factor of 20.

While quantifying the capacity and volumetric charging of the semiconductor film is critical for understanding transistor characteristics such as OECT transconductance, the electronic charge transport (mobility) must also be investigated. Charge carrier mobility of the copolymers was analyzed by both OFET and OECT measurements. The results are presented in Table 2 and Figure 4a where, to extract the electron mobility, each technique was only applicable for the regimes where the polymers perform reasonably well for the specific device types (OFET for P-0 to P-25, OECT for P-75 to P-100). Because both measurements were carried out in degassed 0.1 M NaCl aqueous solution vs Ag/AgCl, observation of an additional reduction peak at >1.1 V.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Reduction Onset (V)</th>
<th>C/A (F/cm²)</th>
<th>Thickness (mm)</th>
<th>Cª (F/cm²)</th>
<th>μª OFET (cm²/(V s))</th>
<th>μª OECT (cm²/(V s))</th>
<th>Normalized gº (S/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-0</td>
<td>-1.1</td>
<td>5.46 x 10⁻⁵</td>
<td>35</td>
<td>-</td>
<td>0.132</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-10</td>
<td>-1.1</td>
<td>5.17 x 10⁻⁵</td>
<td>41</td>
<td>-</td>
<td>0.0514</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-25</td>
<td>-0.45</td>
<td>2.10 x 10⁻⁴</td>
<td>39</td>
<td>-</td>
<td>0.000184</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P-50</td>
<td>-0.33</td>
<td>5.46 x 10⁻⁴</td>
<td>31</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0067 (31 nm)</td>
</tr>
<tr>
<td>P-75</td>
<td>-0.26</td>
<td>8.62 x 10⁻⁴</td>
<td>39</td>
<td>188.0</td>
<td>-</td>
<td>1.46 x 10⁻⁴</td>
<td>0.141 (39 nm)</td>
</tr>
<tr>
<td>P-90</td>
<td>-0.25</td>
<td>8.30 x 10⁻⁴</td>
<td>40</td>
<td>198.2</td>
<td>-</td>
<td>2.38 x 10⁻⁴</td>
<td>0.210 (52 nm)</td>
</tr>
<tr>
<td>P-100</td>
<td>-0.24</td>
<td>8.62 x 10⁻⁴</td>
<td>41</td>
<td>192.4</td>
<td>-</td>
<td>1.96 x 10⁻⁴</td>
<td>0.204 (28 nm)</td>
</tr>
</tbody>
</table>

Table 2. Analysis of the Electrochemical and Electronic Properties of the Copolymers

*Measurements were carried out in degassed 0.1 M NaCl aqueous solution vs Ag/AgCl, observation of an additional reduction peak at >1.1 V. The detailed EIS analysis is presented in Figure S26; the electrode area is 3.48 cm² with an offset voltage of ~0.6 V vs Ag/AgCl. The capacitance values here represent the effective capacitance at 1 Hz. The capacitance values used to extract Cª are from fits of EIS data to a Randles circuit (R∥(R∥C)). Electron mobility extracted from OFET (output and transfer curves are presented in the Figure S29). Device dimensions were fabricated and characterized as previously reported.40,42

The capacitance of the copolymers was investigated by EIS measurements on gold electrodes and 0.1 M NaCl aqueous solution as the supportive electrolyte. The results are summarized in Table 2 and Figure 4a (a detailed summary of the measurements is presented in Figure S26). The copolymers P-75, P-90, and P-100 show comparable capacitance of ~0.8 mF/cm², while lowering the percentages of glycol side chains decreased the capacitance significantly. P-0 and P-10 showed more than an order of magnitude lower capacitance compared to those of P-75, P-90, and P-100. The observed trend in the EIS results is in agreement with the finding that a gradual transition occurs from charge accumulation at or near the semiconductor–electrolyte interface to volumetric charging where ions are able to penetrate into the bulk of the copolymer for P-75 to P-100. Because volumetric charging is observed for glycol chain densities >75%, a volumetric capacitance Cª can be reported for P-75 (188.0 F/cm³), P-90 (198.2 F/cm³), and P-100 (192.4 F/cm³). This is also valid for thick films where, for example, Cª for P-90 is nearly constant (195 F/cm³) when the thickness was increased by a factor of 20.

While quantifying the capacity and volumetric charging of the semiconductor film is critical for understanding transistor characteristics such as OECT transconductance, the electronic charge transport (mobility) must also be investigated. Charge carrier mobility of the copolymers was analyzed by both OFET and OECT measurements. The results are presented in Table 2 and Figure 4a where, to extract the electron mobility, each technique was only applicable for the regimes where the polymers perform reasonably well for the specific device types (OFET for P-0 to P-25, OECT for P-75 to P-100). Because both measurements were carried out in degassed 0.1 M NaCl aqueous solution vs Ag/AgCl, observation of an additional reduction peak at >1.1 V.

The detailed EIS analysis is presented in Figure S26; the electrode area is 3.48 cm² with an offset voltage of ~0.6 V vs Ag/AgCl. The capacitance values here represent the effective capacitance at 1 Hz. The capacitance values used to extract Cª are from fits of EIS data to a Randles circuit (R∥(R∥C)). Electron mobility extracted from OFET (output and transfer curves are presented in the Figure S29). Device dimensions were fabricated and characterized as previously reported.40,42

The capacitance of the copolymers was investigated by EIS measurements on gold electrodes and 0.1 M NaCl aqueous solution as the supportive electrolyte. The results are summarized in Table 2 and Figure 4a (a detailed summary of the measurements is presented in Figure S26). The copolymers P-75, P-90, and P-100 show comparable capacitance of ~0.8 mF/cm², while lowering the percentages of glycol side chains decreased the capacitance significantly. P-0 and P-10 showed more than an order of magnitude lower capacitance compared to those of P-75, P-90, and P-100. The observed trend in the EIS results is in agreement with the finding that a gradual transition occurs from charge accumulation at or near the semiconductor–electrolyte interface to volumetric charging where ions are able to penetrate into the bulk of the copolymer for P-75 to P-100. Because volumetric charging is observed for glycol chain densities >75%, a volumetric capacitance Cª can be reported for P-75 (188.0 F/cm³), P-90 (198.2 F/cm³), and P-100 (192.4 F/cm³). This is also valid for thick films where, for example, Cª for P-90 is nearly constant (195 F/cm³) when the thickness was increased by a factor of 20.

While quantifying the capacity and volumetric charging of the semiconductor film is critical for understanding transistor characteristics such as OECT transconductance, the electronic charge transport (mobility) must also be investigated. Charge carrier mobility of the copolymers was analyzed by both OFET and OECT measurements. The results are presented in Table 2 and Figure 4a where, to extract the electron mobility, each technique was only applicable for the regimes where the polymers perform reasonably well for the specific device types (OFET for P-0 to P-25, OECT for P-75 to P-100). Because both measurements were carried out in degassed 0.1 M NaCl aqueous solution vs Ag/AgCl, observation of an additional reduction peak at >1.1 V.

The detailed EIS analysis is presented in Figure S26; the electrode area is 3.48 cm² with an offset voltage of ~0.6 V vs Ag/AgCl. The capacitance values here represent the effective capacitance at 1 Hz. The capacitance values used to extract Cª are from fits of EIS data to a Randles circuit (R∥(R∥C)). Electron mobility extracted from OFET (output and transfer curves are presented in the Figure S29). Device dimensions were fabricated and characterized as previously reported.40,42
of the polymers (OECTs) (devices below 50% could not be operated as OECTs) and OECT (P-75 to P-100) and (b) normalized transconductance measurements of the same polymer in OFETs (0.06 cm²/(V s))

Figure 4. (a) EIS spectroscopy of the polymers at offset voltages of −0.6 V vs Ag/AgCl and electron mobility measurements [OFET (P-0 to P-25) and OECT (P-75 to P-100)] and (b) normalized transconductance of the polymers (OECTs) (devices below 50% could not be operated as OECTs; output and transfer curves of the copolymers are presented in Figure S27).

Given the OFET device operation for the low glycol percentage copolymers in dry, ion-free conditions, the energetic contributions and morphological/ microstructural changes due to the side chains are believed to be the primary contributors to deficiencies in electron mobility. The morphology of the copolymers was analyzed by GIWAXS measurements on silicon substrates, and the results are summarized in Figure S33. The texture of the copolymers is reminiscent of classic P(NDI2OD-T2), predominantly face-on with clear mixed polymorphs (Form I and II). As reported by Brinkmann et al., the polymorph Form I shows a stronger overlap of the NDI repeat units, while Form II shows a strong overlap of the NDI and T2 repeat units when considering the π-stacking of the backbones. Over the P-0 to P-100 series, there is a general increase of the lamellar spacing (from in-plane scattering) as well as a concerted decrease in the (010) π–π stacking distance with incremental incorporation of glycol side chains (Figure S32). The backbone associated scattering with both Form II (noted as (001)) and Form I (noted as (001)') polymorphs appears across all samples, with relatively unchanged spacings. The ratio of the (001)' to (001) peak areas provides a relative comparison of the content of Form I vs Form II crystals. The addition of linear glycol side chains leads to a decrease in the fraction of mixed stacks (Form II) crystallites from >90% to near 60%. This provides further evidence that the incorporation of linear glycol side chains aids in the preference for Form I to aggregate in solution. All films exhibit a large paracrystalline disorder (γ ≥ 10%) (Table S1) in the intermolecular π–π stacking direction, with tendency toward higher disorder with higher glycol content. This is accompanied by a qualitative increase in disorder in the lamellar packing supported by broadening (and thus lowering of peak scattered intensity) of higher order peaks. The increase in Urbach disorder energy estimated from PDS measurements ranging from 26.4 meV (P-0) to 40.1 meV (P-100) clearly shows a growing deep tail state upon a higher glycol content (Figure S20). This gradual change in microstructure, including both relative fraction of polymorph and variations in paracrystallinity (of polymers with comparable molecular weight) would noticeably affect the interface mobility as seen in OFETs and charge modulation spectroscopy. The trend toward polymorphism with increasing tendency toward Form I may adversely affect the charge carrier transport. The combination of these findings supports the hypothesis that glycol side chain induced structural changes contribute to disruption in electron mobility.

Additional microwave conductivity photocurrent transient measurements were carried out to get further insight into the charge carrier mobility of the copolymers (Figure S30). In contrast to the OFET and OECT measurements, both the magnitude and lifetime of the photocurrent increases with increasing glycol chain fraction. The increase in photocurrent, expressed as the product of charge carrier yield and microwave-frequency mobility, increases by a factor of ∼5, similar in magnitude to the decrease in photoluminescence quantum yield noted in Figure 2b. The carrier lifetime appears to increase initially and then saturate for high glycol fraction samples. Interpretation of microwave conductivity data is complicated because the product of carrier yield and mobility (the measured quantity) cannot be easily decoupled. Here, we tentatively assign the observed increase in photocurrent to an increase in yield. This is justified by two observations. First, the OFET measurements indicate a significant decrease in the charge carrier mobility as the glycol side chain fraction increases, opposite to the trend observed here. Second, previous studies have indicated that the local
microwave-frequency mobility is remarkably insensitive to the microstructure of conjugated polymers.52 Thus, it seems most likely that the local mobility has remained roughly constant across this homologous series of polymers, while the yield of charges has increased. This conclusion is consistent with the expected increase in dielectric constant that occurs when alkyl side chains are replaced with glycol chains on a conjugated polymer.1,3,5 An increase in dielectric constant would be expected to increase the photoinduced charge yield34,35 and increase the charge carrier lifetime while simultaneously quenching the photoluminescence: precisely the trends we observe.

To conclude, the observed relationship between transconductance and the percentage of glycol side chain on the NDI-T2 copolymers can be explained by an increased swelling of the copolymers in aqueous electrolytes, enabling the charging of the copolymers at lower potentials. This enhances the uptake up ions and results in an increase of the capacitance of the copolymers by more than one order of magnitude. Analysis of the electron mobility reveals that the drop of the electron mobility for NDI-T2 copolymers with increasing glycol percentage is the reason for the lower transconductance found for the n-type OECTs presented here, compared to state of the art p-type accumulation mode OECTs. NDI-T2 copolymers with alkyl chains show high electron mobilities, while the electron mobility drops by more than 2 orders of magnitude when more than 25% of the alkyl chains are replaced by polar glycol chains. This shows the importance of chemical design strategies for the development of novel n-type OECT materials.

\section{ASSOCIATED CONTENT}

\section{Supporting Information}

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.8b00321.

Synthesis and characterizations of the materials: NMR spectroscopy, UV–vis spectroscopy, PL measurements, GPC, mass spectrometry (MALDI), DSC, TGA, PDS, CV, EIS, and GIWAXS measurements (PDF)

\section{AUTHOR INFORMATION}

Corresponding Author

*E-mail: (A.G.) ag8013@ic.ac.uk.
*E-mail: (J.R.) jrivnay@northwestern.edu.

ORCID

Alexander Giovannitti: 0000-0003-4778-3615
Piers R.F. Barnes: 0000-0002-7537-8759
Garry Rumbles: 0000-0003-0776-1462
George G. Malliaras: 0000-0002-4582-8501
Iain McCulloch: 0000-0002-6340-7217

Notes

The authors declare no competing financial interest.

\section{ACKNOWLEDGMENTS}

We thank Iain Hamilton for assistance in measuring contact angle data and Nathan Cheetham for recording solid state absorption spectra. We acknowledge funding from KAUST and BASF, as well as EPSRC Projects EP/P02484X/1, EP/G037515/1, EP/M005143/1, EP/N509486/1; EC FP7 Project SC2 (610115); and EC H2020 Project SOLEIDLIGHT (643791) In addition, this project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 742708). O.G.R. and G.R. acknowledge support for the microwave conductivity and photoluminescence measurements from the Solar Photochemistry Program, Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy under Contract DE-AC36-08-G028308 with the National Renewable Energy Laboratory. D.H. gratefully acknowledges support from NSF-GFRP.