Appenidix: List of Bogs in the Solway Plain (see Figure 6)

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>GRID REFERENCE (NY)</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200 600 TO 240 600</td>
<td>Bowness</td>
</tr>
<tr>
<td>2</td>
<td>220 530</td>
<td>Wedholme Flow</td>
</tr>
<tr>
<td>3</td>
<td>258 511</td>
<td>Martin Tarn, Oliton</td>
</tr>
<tr>
<td>4</td>
<td>258 538</td>
<td>Biglands Bog</td>
</tr>
<tr>
<td>5</td>
<td>430 835</td>
<td>Scaleby Moss</td>
</tr>
<tr>
<td>6</td>
<td>255 579</td>
<td>Finlady Moss</td>
</tr>
<tr>
<td>7</td>
<td>255 585</td>
<td>Drumburgh Moss</td>
</tr>
<tr>
<td>8</td>
<td>270 570</td>
<td>Little Lampston Moss</td>
</tr>
<tr>
<td>9</td>
<td>258 553</td>
<td>Eastholm Moss</td>
</tr>
<tr>
<td>10</td>
<td>085 450</td>
<td>Salta Moss</td>
</tr>
<tr>
<td>11</td>
<td>103 470</td>
<td>Holme Low</td>
</tr>
<tr>
<td>12</td>
<td>115 462</td>
<td>Hangingshaw Moss</td>
</tr>
<tr>
<td>13</td>
<td>117 452</td>
<td>Chapel Moss</td>
</tr>
<tr>
<td>14</td>
<td>300 552</td>
<td>Thurstonfield Lough</td>
</tr>
<tr>
<td>15</td>
<td>115 474</td>
<td>Tarns Dub</td>
</tr>
<tr>
<td>16</td>
<td>124 478</td>
<td>The Tarns</td>
</tr>
<tr>
<td>17</td>
<td>128 481</td>
<td>High Tarns</td>
</tr>
<tr>
<td>18</td>
<td>135 485</td>
<td>Raisehow</td>
</tr>
<tr>
<td>19</td>
<td>108 465</td>
<td>Goodyhills</td>
</tr>
<tr>
<td>20</td>
<td>124 485</td>
<td>East Hill Tarn</td>
</tr>
<tr>
<td>21</td>
<td>115 470</td>
<td>Hayton</td>
</tr>
<tr>
<td>22</td>
<td>138 404</td>
<td>Highlaws</td>
</tr>
<tr>
<td>23</td>
<td>253 465</td>
<td>Grainger Houses</td>
</tr>
<tr>
<td>24</td>
<td>358 470</td>
<td>Hawskdale Pasture</td>
</tr>
<tr>
<td>25</td>
<td>232 508</td>
<td>Colmire Sough</td>
</tr>
<tr>
<td>26</td>
<td>360 635</td>
<td>Roecliffe Moss</td>
</tr>
<tr>
<td>27</td>
<td>455 500</td>
<td>Wragmire</td>
</tr>
<tr>
<td>28</td>
<td>see Figure 6</td>
<td>Fen Peats</td>
</tr>
</tbody>
</table>

Stonehenge lies at the centre of a prehistoric monumental complex of unparalleled diversity (Bryan 1979) yet little is known of contemporary domestic activity. In this, at least, the area cannot be regarded as atypical. The monuments in their present context, largely one of intensive arable cultivation, provide both cause for concern due to erosion, and the opportunity for extensive investigation of contemporary activity and landuse.

The Stonehenge Environs Project (SEP) was funded in the field between 1980 and 1984 by the Ancient Monuments Branch of the DoE (now the HBMCE) with a brief to locate areas of prehistoric activity and to evaluate the areas for preservation. This, and the examination of specific monuments, would form the basis for the formulation by the HBMCE of overall policies of preservation and management for the area. The HBMCE funding provided a platform on which a number of specific research projects were founded, additional funding for these coming from the Society of Antiquaries, the British Academy and the Prehistoric Society.

The initial field survey carried out by the SEP, involving extensive surface sampling, developed over the seasons into a tiered method involving extensive and intensive collection, geophysical and geochemical survey and ploughsoil excavation utilising extensive sieving techniques. This paper will examine the changing approach to the ploughsoil as an archaeological resource and will then attempt to outline the development not only of the project's methods, but of our conception of the prehistoric past in the Stonehenge area.

Previous approaches to the ploughsoil

A marked change of attitude in the archaeological approach to the ploughsoil can be noted over the last decade. Previously it was removed as swiftly as possible (usually mechanically), in order to reveal the 'archaeology'. Major debate revolved around sampling strategies but around the type of machine to be employed. Stratigraphy, except in subsoil features, was reserved for urbanists who, wielding their machinery with practised panache knew exactly when they had arrived at the end of the medieval period (whenever that was currently held to be). Life was simpler for the ruralists who stopped when they reached rock or a layer that had no finds in it.
At least there was no discrimination in site stripping: all were treated the same, with the possible exception of barrows, although when these survived merely as ring ditches they were also stripped like the rest. There can be no doubt though that we owe a new awareness of spatial pattern to those excavators who adopted a practice of examining large areas. It is equally certain that many sites would not have repaid a detailed examination of their topsoil component, for reasons of topography and soil movement which were apparent to those that were excavating them.

The archaeology of the stripped site rests in its 'features', subsoil hollows (both natural and artificial), silted or backfilled holes, decayed or rotted posts. The cultural debris we recover from such contexts forms the basis of our chronologies, our independent dating so crucial to the formulation of broader schemes. Yet apart from very deliberate deposits, much material which becomes 'stratified' may be derived from surrounding horizontal deposits. If sealed and undisturbed such deposits would have entered the archaeological record as 'stratigraphy'. It is their disturbed nature and modern use that demotes them to the status of 'ploughsoil', and relegates them to the spoilheap without even a superficial examination.

It has long been realised that ploughsoil is an archaeological resource, if only a sort of open-cast quarry for durable artefacts. Museums are full of artefacts, primarily of flint and stone with proveniences ranging from a county to, at best, a field. Exceptions to this rule do exist in the form of well provenanced collections, some the result of systematic work carried through to publication (Laidler and Young 1938).

A strange dichotomy could be seen emerging in the 1960's and 1970's. On the one hand a growing awareness of the importance of surface collection was linked to the development of a range of methods and analytical approaches. On the other hand the context was still being removed, either through choice or necessity, with minimal or no record. The reasons seemed quite clear: excavations were on the whole site-specific: as earthworks or cropmarks, the sites possessed definable spatial attributes which formed the main and often sole sampling focus. An awareness of potential data loss can be found within the 'method of excavation' section of occasional reports, early hints of a more frequently encountered retrospective awareness that the examination of topsoil is not simply a method for locating new sites.

Field survey in the Stonehenge Environ Project

Recent surveys of surface collection strategies have documented the increased importance of such field methods in archaeology (e.g. Hodder and Malone 1984). This being the case it is not intended to add to the documentation beyond a brief description of the strategies employed by the SEP.
The Trust for Wessex Archaeology employs an approach intended to facilitate broad regional comparability. This framework involves the use of the National Grid and collection within hectare units, following a procedure adopted by Woodward (1978). Individual projects are left to sample hectares, their differing research aims necessitating approaches of varying intensity, and the approaches to extensive surface collection so far employed by various projects are summarised in Figure 2.

Also recorded are the 'variables' such as light, weather, cropping, and individual collector fit is often necessary to point out to new fieldwalkers that brilliant winter sunshine does not constitute 'good' light. A major part of the expanding consciousness of surface collection has been concerned with the potential variables which may, or may not, effect recovery rates. The early lists of Woodward (1978), Richards (1978) and Fasham et al. (1980) have been outstripped by such disconcertingly comprehensive examples as that provided most recently by Hodder and Malone (1984). Is the list complete though, or can we expect surface collection to follow Oriental industrial practice with biorythm charts for the walkers to isolate that 'off day' when collection rates would inexplicably suffer? The awareness of variables is, without question, important both in determining the initial approach and in the assessment of final results. It is also very worrying since surface collection is, by its nature, not susceptible to replication. A fact which denies us the opportunity to test for biases in the record.

The sampling strategy adopted by the SEP needed to strike a balance between intensity and potential coverage. As processing would have to be carried out in tandem with collection, some idea of the potential level of recovery would have helped in the formulation of the strategy. It was uncertain at this stage if the project would allow for the development of an approach which included a second, more intensive but spatially restricted, level of collection. Consequently the overall approach needed to have sufficient resolution to provide an indication of localised patterns. An arbitrary decision was taken to examine within each hectare eight transects, each 50m long and spaced at 25m intervals providing an 8%-10% coverage of the field surface (assuming a scanned corridor of 2.00-2.50m). This may be regarded as over-intensive for a first stage, but in retrospect it has provided a broad locational base with sufficient definition to enable further stages to be embraced with some confidence. The initial application of this sampling approach suggested that, even when slowed by intensive recording and post processing, the project could hope to cover approximately 40% of the available arable in the survey area over the four projected (but by no means certain) seasons of fieldwork.

The selection of areas for collection over the first two seasons was simple. It was decided to employ as sampling blocks existing arable fields, varying between less than 10 hectares to over 100 in size. Fields were selected when well weathered and available for survey. The only preconception carried into the field, on the basis of previous work in Berkshire (Richards 1978), was that lithic debris was likely to form the main component of any recoverable prehistoric assemblage.

This 'suck-it-and-see' approach will no doubt have its critics, those flint fans will see it as unthinking data collection, not approaching the evidence with a series of soundly formulated questions. Yet at the start of the first boot in the field. Models do exist, or can be generated, based on an awareness of the strategies involved in procurement and reduction of flint and on the ethnoarchaeological observation of such aspects as use and curation. The problem with many proposed models is that they are mono-causal and single-phase, the imprint of a group or person engaged in a specific activity at one time and in one place. Such 'signatures', as clear initially may as first footprints in a snowy lawn, quickly become lost when the rest of the family come out and the snowman is built.

The methods employed for the extensive survey remained unchanged over the four seasons of fieldwork. An awareness of the importance of micro-topography led to intensified field recording and the more frequent use of a soil auger and in retrospect both the sampling and collection approach should have been modified slightly if a future more intensive sampling strategy which provides more spatial refinement (if at the expense of additional recording and finds bagging) would be used, such as that employed by the Kennet Valley Survey (see Figure 2). Likewise, the decision not to collect burnt flint but merely to record its presence or absence may be seen as unwise. Fortunately in this case burnt flint was recovered during total collections and in excavation, providing sufficient precisely recorded control data for some evaluation of its potential as a functional or chronological indicator.

Impossible as it is to enter into field survey in any area with a totally open mind, this was attempted with the first stages of the SEP. The first winter's work was carried out with a very small team of field-
workers and examined a large area surrounding the project's first excavation on Coneybury Hill, together with several other widely dispersed areas. The only lapse into subjectivity and a consciousness of the surrounding monuments came with the decision to examine the field nearest to Durrington Walls and adjacent to Woodhenge. It was decided right at the end of the season, the idea was to end on a Neolithic 'high note'. The Neolithic was conspicuously absent and the field was dominated by Romano-British finds (see Wainwright et al. 1971) enlivened only by a fine French postman's badge.

From the first season two broad concepts emerged, that of a distinctly nucleated, definable early Neolithic and of a broad area dominated by tool-dominated later Neolithic. As impressions, these theories have satisfied with environmental models that saw the earlier Neolithic in terms of rather sporadic clearance and settlement and with the evidence from the monuments which showed a zone of intensified activity in the later Neolithic. Moreover, excavation in 1981 of a large early Neolithic pit (the Coneybury 'anomaly') had demonstrated that the 'blade-like' element of an early Neolithic flint assemblage was only a small part of the whole and that scrapers of this date, being seldom made on such flakes, were not immediately recognisable as being of early date.

Armed with this new awareness the second season of fieldwalking, notable mainly for its appalling weather, produced the first 'industrial' activity to be defined with confidence. Totally unassociated with the putative flint mines above Durrington, the activity was situated in a shallow dry valley, the flint seam outcropping alongside on both sides and presumably easy to quarry. The identification of this activity appeared to be a major flint source enabled reassessment of the material so far recovered--was there an identifiable drop-off of core/flake size away from source? Were the distributions of tools/produce resulting mutually exclusive patterns? This did seem to be the case on initial examination of two areas walked in 1981-1982. The industrial zone, the chronology of which was uncertain but which appeared subjectively to be later Neolithic, and the King Barrow Ridge where scatter of tools with correspondingly low waste levels suggested a more domestic activity. Here, however, more diagnostic material recovered could suggest with more certainty a date in the later Neolithic. It was clear that these two aspects of contemporary activity required further definition and a more intensive examination was initiated. Within the broadly industrial zone a large and relatively well defined area of flint could be identified on Wilford Down and was selected for examination primarily on this basis (W31). In some ways this introduces the idea of 'sites' as entities which can be isolated within the surface collection record. 'Site' has now become a dirty word, the off-site approach is advocated (Foley 1981) but even this requires sites so that you can know when you are off them. Likewise 'activity area' is really only an euphemism for 'site'. The unfortunate fact is that it is only likely to be definable, and more to the point manageable, scatter which will become the focus for either intensive (total) surface collection, or excavation. It was for this reason that W31 was selected: faced with approximately 15 hectares of industrial activity or a more nucleated scatter of just over a hectare the latter was selected with relief. Given the nature of the scatter (apparently industrial) and the assessed surface component (at least 10,000 pieces of worked flint) it was decided to attempt its definition using non-collection methods. Accordingly, the plot obtained by transect walking was refined by walking on and off the 'edges' until a consensus of opinion was reached as to their location. The defined scatter then formed the basis for a topographically aligned sample transect. In this case 5m X 5m blocks were selected on the basis of geophysical anomalies and random sampling within two zones, the scatter itself and its uphill edge and beyond. This 'contextual' sampling has, whenever possible, been integrated within the excvation strategy (the nearest we can get to 'off site') but, where positive results are sought it is risky, if academically viable, approach.

Fargo Wood I (W32), a 'nucleated' early Neolithic scatter (according to initial impressions), was also sampled in 1982. Transect walking produced large quantities of flintwork corresponding with a slight elongated undulation in the field surface. Total collection in the area, manageable as it was only 60m by 10m, confirmed the nucleation but introduced the chronological problem of unabraded Beaker pottery corresponding with the extent of the flint scatter. This rendered untenable one alternative hypothesis: that we were dealing with the freshly exposed buried soil of a hitherto unrecorded long barrow. A small excavation transect across the long axis of the scatter confirmed the impression gained from the excavation of a latrine pit some 30 metres away in an area devoid of surface finds. The scatter was not nucleated but had appeared as such due to present ploughing which had differentially disturbed a mixed early Neolithic and Beaker sorted horizon along the line of a natural soil boundary. The soil change, between capped and uncapped chalk, had exercised a real effect on prehistoric activity, forming an edge to the artefact scatter (of both phases) and a boundary to later bronze age cultivation (Figure 3).

Figure 3: W31 -- Fargo Wood. Schematic section.
The final area to be sampled in 1982 was Fargo Wood II (W34), a Later Bronze Age pottery scatter also characterised by burnt flint and quern fragments, and associated with a 'Celtic' field system. The extent and intensity of the pottery scatter only became apparent after a combination of a change in tenancy (with a resultant slightly deeper ploughing) and extremely good weathering of the field surface. No colluviation was carried out prior to excavation as a subjective surface definition clearly showed disturbed zones and adjacent 'blank' areas where localised colluviation probably sealed undisturbed horizons.

A two-stage sampling strategy was consequently employed, the first involving an overall systematic sample of one metre square quadrats followed by a series of five metre quadrats. The intact scatter enabled certain spatial and vertical aspects to be examined. Surface pottery was collected from each meter square to be excavated (sample size = 50), and the ploughsoil subsequently sieved through a 4mm mesh. What became obvious from this exercise is that there is no constant relationship between surface and ploughsoil content where the entire material assemblage is contained within one disturbed stratigraphic unit (i.e., the ploughsoil). Suggestions have been made that a quantitative relationship can be inferred but this is not borne out at W34 or in subsequent excavations of its type within the Stonehenge environs.

The initial effect of the 1982 excavations was to demonstrate quite clearly some of the limitations of surface collection, both extensive and intensive. As a tool of broad definition it could work, but only in areas where topography had not produced varying soil depth and varying post-disturbance visibility. Examination of dry valleys within the project area had by this time demonstrated a total lack of the substantial colluvial deposits characteristic of, for example, the Sussex chalk. Bell's work on these deposits (1981), while providing an exceptional palaeoenvironmental framework, suggests little evidence of potential in the upland areas. The converse appears to be true for the Stonehenge area where a relatively immobile land surface has resulted in only localised colluvial deposits, that are shallow and vulnerable.

It was also demonstrated in 1982 that data recovered from the ploughsoil were often of limited value unless they could be set against more securely stratified 'controls'. The absence of constructed subsoil features at W31 was compensated by the recovery of 'in situ' knapping clusters in the upper fills of periglacial features. The spatial aspects of the broader industrial activity could be examined against an established set of attributes. Likewise, at W34, where a major problem of variable survival within the prehistoric pottery assemblage had to be considered, the sealed, sorted horizons provided a control over potential sherd size and fabric variation. It is clear from preliminary analysis that certain fabrics are represented solely within the sealed deposits, possibly indicating a variation in survival rather than an aspect of spatial distribution.

The validity of the concept of nucleated early Neolithic activity now seemed to be in question, and the fieldwork of 1982-83 did little to reinstate it. The broader later Neolithic period was extended and an extensive later Bronze Age landscape of fields, with surface material, further possible occupation sites and a cremation cemetery, was found north of the Cursus and east of Fargo Wood. In addition, a large scale total collection was undertaken on the King Barrow Ridge. This was the first stage of an intensification of surface examination which was to culminate in excavations in August 1983 (W59). An area of just over 1.5 hectares was selected from within an area initially characterised by flint tools; the high tool:waste ratio suggested a more domestic, possibly domestic, activity. The area lay adjacent to that examined by Laidler and Young (1938) and previous records (Wiltshire SMR) confirmed the density of recovered tools. Large quantities of flint scrapers were generally undiagnostic but associated transverse arrowheads and reworked ground stone suggested a late Neolithic date. The pre-excavation assessment of this area, as one of late Neolithic domestic activity carried out within a zone dominated by ritual features (e.g., henges, 'special pits' (cf Richards 1984)), made its examination crucial for any assessment of the entire late Neolithic landscape, of which one aspet (W31) had already been sampled.

'Total' collection here consisted of a 5m grid, within which all surface material, including burnt flint and stone, was recovered. In addition, recognised flint tools and all pottery sherds were spot located and individually recorded. It could be suggested that this introduces an unnecessary precision into an area ploughed for at least two centuries. However, as the subsequent excavations were designed to examine in some detail the internal spatial arrangement of the 'site', it was considered an appropriate approach.

Figure 4 illustrates the approach applied to W59, as being the most fully developed example of the project's surface scatter methodology. It can be seen that each stage of intensification results in a more restricted sampling strategy, culminating in the excavation itself (see Figure 5). The excavation must inevitably be carried out within strict limits of time and finance yet there must be an acceptable minimum sample, below which the validity of the results would be questionable. Three major sampling considerations were defined for W59:

1. Surface material: defined clusters or zones examined as part of the spatial assessment of the area and in order to evaluate preservation potential and information loss in a continuing agricultural regime;

2. Geophysical anomalies (fluxgate survey): examined as being the potential source of both chronological, economic and environmental indicators;

3. A random component: the contextual aspect, defined above.

The geochemical (soil phosphate) and magnetic susceptibility survey results were not employed as sampling determinates, but analysis of the by now extensive database may suggest the future potential for sampling employing these methods.
The problems of the variable survival of prehistoric cultural material, particularly ceramics, have been well documented and there is no need to re-emphasise them here. Prior to 1983 the extensive SEP survey had produced a clear, mutually exclusive, relationship between pre-Roman pottery and tile fragments, the latter corresponding with the documented medieval and later open fields in the east of the study area, adjacent to the River Avon. Isolated Neolithic and early Bronze Age sherds in other areas produced problems of interpretation: genuinely isolated (and if so by what definable human activity) or differential/chance survival? Their relationship with the more durable, but less immediately datable, lithic assemblages offers one avenue of exploration. Later prehistoric (primarily later Bronze Age) pottery was found more frequently and in greater concentrations than earlier material. The use of flint in this phase was probably considerable, a point only recently acknowledged by some prehistorians. The late 'Group 4' industry (Richards 1978, 19) may now seem over simplified, but some...
of its more basic attributes still find currency (Ford et al. 1980). The problem of isolating discrete and individually recognisable knapping activity from a broader and more mixed overall context has already been noted, and a similar problem applies to the later flint assemblages. They are mostly characterised by the common use of an unsystematic core technique and a restricted range of functionally attributable forms. The nature of such assemblages, which are often small in size, makes their retrieval from within any more extensive assemblage difficult without detailed examination of knapping technique.

The whole problem of material survival, and of the nature of the total later Bronze Age assemblage was thrown into sharp focus in early 1983 with the unploughed ploughing of an area of ancient grassland adjacent to the causewayed enclosure of Robin Hood's Ball. The single ploughing inverted the entire profile of the then established downland soil over an area of approximately two hectares. All further agricultural activity was then halted. A preliminary examination of the surface revealed considerable quantities of prehistoric pottery much, on exposure, rapidly disintegrating. The entire ploughed area was consequently scanned, restricted time and available labour necessitating the use of a 10m grid for bulk finds with again all sherd, flint tools, bone, metal, and worked stone spot located and individually recorded. The precision of this approach can be regarded as more appropriate in this case since agricultural soil movement of no more than one metre, the throw of a modern plough, is likely to have taken place. On this occasion, an additional and as yet undocumented variable was introduced into the collection procedure: to wit, would recovery rates suffer if fieldworkers came under sporadic intensive artillery fire? Despite this, the surface collection produced over 3,000 sherd of pottery, the majority prehistoric and with no medieval or post-medieval pottery (still the range of pottery (still the range of pottery). The nearness to the causewayed enclosure and here associated with a dense nucleated scatter of flint tools and waste (subsequently sampled by excavation at W83). Later Neolithic material appears to be absent but there is a dense broad zone of Beaker pottery, both decorated and plain, associated with a wide scatter of flint. This, it is interesting to note, includes scrapers traditionally regarded as Beaker types, small 'thumbnail' examples and those with shallow, invasive retouch. However, other Beaker 'indicators', such as plano-convex knives and barbed-and-tanged arrowheads were totally absent and only appeared during subsequent sample excavation (W84). The final definable zone is of later Bronze Age pottery. Here again, it is associated with large quantities of burnt flint, quern fragments and sarsen, the latter presumably the remains of broken and dismembered sarsens. The value of this opportunity for total collection lies in its potential for an extensive and intensive surface sample of three spatially and chronologically distinct assemblages which, from their composition, can be suggested as being relatively intact. Analysis of their durable components will greatly facilitate the interpretation of similar but more depleted assemblages from areas subject to recent agricultural pressures.

The two sample excavations carried out in 1984 examined two of the three defined phases of activity. The tightly nucleated nature of the early Neolithic scatter was confirmed by excavation (W83), reworking this previously discarded concept. Subsoil features, unlocated by geophysical survey owing to a high topsoil shrapnel content, defined zones of activity characterised by exclusive areas of tools and enhanced soil phosphate values. Examination of the pit stratigraphy also demonstrated that true artefact horizons, often associated with higher phosphate levels. Such organic horizons, which are clearly post-depositional, but allow for the formation of extremely localised but essentially colluvial deposits.

Sampling within the broader Beaker zone was constrained by the still sensitive nature of the disturbed area (a site of Special Scientific interest) and available funds. Preliminary (but intensive) fieldwalking indicated a zone of activity covering more than 0.5 hectare and sample excavation should ideally have been spatially extensive. However, one 10m square was selected corresponding with the junction of internal zones of dense pottery and scattered flint tools. In the absence of subsoil features and from such a restricted sample the exercise must be regarded as having restricted interpretative value. It did however, confirm the density and integrity of the Beaker pottery, which may be suggestive of occupations gained from a preliminary assessment of the associated flintwork.

These excavations brought to a close the four seasons of fieldwork and marked the beginning of an intensive phase of post-excavation analysis. While some of the basic approaches remained unchanged since their initiation in 1986, other aspects of fieldwork, in particular the approach to surface scatters, developed considerably and even now only offer hints of the potential yet to be explored. Finally, a fully explored site, the fieldwork was characterised by a developing awareness of, and respect for, the complexity of the archaeological record, parts of which are now being read for the first time. I am glad that we could end our fieldwork on a more optimistic note than that expressed by Colonel Hawley after his long seasons at Stonehenge earlier this century: The more we dig, the more the mystery appears to deepen (The Times, August 5th 1927).

Afterthoughts

In general there appears to be a need for a return to common sense in the matter of surveys and survey procedures. (Hope-Simpson 1983, 47)

Whether or not the Stonehenge Environs Project was carried out with any degree of common sense we must leave to others to judge. The winter weather on Salisbury Plain, however, has been known to make visiting Norwegian troops long for home, and we must be one of the few teams to fieldwalk under artillery fire, with a military guard who, as far as he was concerned, was there to "stop us nicking anything".
In conducting the SEP we were very fortunate to be able to proceed through the time-consuming, and consequently costly stages of survey and excavation outlined above. More intensive recovery inevitably provide a number of benefits, from finer spatial definition to the control assemblages against which to examine more broadly recovered and mixed material. It is essential that in future an intensive approach must be widely applied. This is not to reduce the value of rapidly executed survey, either utilising previously recovered data (cf Gardiner 1984) or involving new fieldwork. Such approaches may provide the framework of wider systems within which to set the results of work carried out at a micro-level. In future, surveys should ideally state their aims and methods, and hopefully alleviate the necessity for further debates on the exact meaning of 'intensive'. Undefined subjectivities should also be avoided, the elusive 'Middle Neolithic', when defined in terms of flint scatters, being a case in point. Popping up now and again, most recently in a paper on the Avebury area (Smith 1984), it fades away before it can be grasped.

Some aspects of the discussion may be construed as rather negative, a concern about over-reaction to variables in field recovery and a now cautious approach to confident interpretation on the basis of an initial surface sample. Optimistically though, it is increasingly apparent that surface collection, fieldwork unconstrained by pre-existing site boundaries, is introducing a new element into prehistory, which is often overlooked. In addition it is a fresh and novel approach to more recent and theoretically well explored areas (cf Crowther 1983). The location of domestic and industrial activity enables us to move beyond the ideological and funerary framework within which we have been obliged to view the organisation of Neolithic and Bronze Age society. The monuments have far too long been a convenience, even the enormous impact of aerial photography continues to legitimate the pre-existing pattern. Surface collection is far less convenient and slower, producing results which are not so instantly open to interpretation. It is also unfortunate that results of survey are still too often seen in terms of sites located, particularly if the survey has been conducted in order to provide data for policy decision making. In such cases qualified subjective decisions have to be made, and made quite quickly, in order to suggest such basies as population potential. The concept that the defined study area is one large complex multi-period site may have more academic acceptability but does not help with the formulation of management strategies.

The initial post-exavation task for the SEP was the production of a management policy document for the study area (Richards n.d.). This considered all the archaeology including surface scatters, and offered hints, based on the limited evaluation work carried out so far, of possible management approaches. Earthworks erosion and their erosion can be quantified, but surface scatters can, by definition, only be located in disturbed circumstances and erosion or information loss is not readily assessed. The definition and management of areas of prehistoric activity will pose major challenges in the future and will almost certainly involve stricter controls over such activities as surface collection which, if unsanctioned, can destroy the unique characteristics of 'defined' site or area.

Perhaps an even greater challenge though is the presentation to a wider audience of what should, after all, be one of the easier aspects of prehistory to comprehend; people, alive rather than buried or engaged in manifesting their ideologies. Artefacts can help and are widely used in static displays in museums, at times, the unfortunately restricted range of prehistoric material culture is all too obvious. With the exception of funerary accompaniments, pots are rarely more than small fragments, many, to the casual observer resembling lumps of drab mud (effectively what they are). Lithic artefacts are generally more numerous and intact but include only a small proportion, the functional characteristics or aesthetic qualities of which provide an instant and obvious appeal to the Public's awareness. The greatest problem lies with the integration of site and finds, a broader and more developed picture of the activity under scrutiny. Once again though, the problem of extent and definition occurs, as it has been shown, to both sampling and management. When people live within enclosures or houses (e.g. Butser or the 'Iron Age Family'), the structures add a third dimension to the spatial aspects with which most of us are now largely content. Francis Pryor has criticised what he calls the 'flat earth approach' to archaeology (Pryor 1980, 490), a failing of archaeologists to see their sites in more than two dimensions. But as our (relatively) new found spatial awareness must not blind us to the systematic processes which operate on our sites, we must become far more multi-dimensional and open in our presentation of archaeology. A willingness to embrace the most far-flung, and sometimes far-fetched concepts of theoretical archaeology is often accompanied by a reticence towards subjectivity and a more popular and presentable approach. If the latter is seen as trivial then we may be in for a shock. It seems likely that leisure time will increase in future and suggestions have been made that the leisure time will be increasingly directed at 'the heritage' in its widest sense. If this is so then those who study the past must be prepared for the exciting potential of, for example, surface scatters not to be so blindingly obvious to others. If we are to carry on sifting the sands of time we must be careful that our heads do not become buried in the process.

Acknowledgements

The project has benefited from the interest and comment of many friends and colleagues, to all of whom a debt is acknowledged. The original manuscript was typed by Pat Coulison and the illustrations are by Jo Mills and Rob Head of the Trust for Wessex Archaeology.

References


REREVERS OF THE SOLITARY WALKER

Richard C. Barcham

This is a time when the number of state-funded excavations in England has been deliberately and severely reduced in order to unjam the post-exavation backlog (English Heritage 1984, 7), and when the concurrent emphasis is upon the definition of landscape projects (ibid, 13-15). It is also a time when there is a more compelling need than ever for archaeological workers not to remain aloof in order that their social product can be justified, and when there is at last an understanding of the aims which archaeologists share with naturalists and the will to blend that understanding into collective action. It is therefore obvious that the archaeological fieldwalker's skills be tuned harmoniously in response to each of the notes I have sounded. The emphasis which I will place on the importance of fieldwalking is not new. No novel theoretical perspective will be engaged here. Those who are on active service in the fields will probably hold these truths to be self-evident. If that is so, it will be good to have this declaration in print. If my comments excite controversy, that will be a useful contribution to the debate.

I write from my experience as a staff member of the Northamptonshire County Council Archaeology Unit (NCCAU). The county has a long tradition of single or paired fieldwalking (e.g. Foard 1978; Martin and Hall 1980). Much of the raw data from this work has been incorporated (though not necessarily in fine detail) in the RCHW's national archive of sites and the county SMR. Fieldwalking in the county has generally been done for its own sake, that is, in order to identify areas of high and low artefact density rather than as a prelude to development or as an integral component of a landscape investigation programme (but see Hall 1980).

The desire of successive governments to improve road communications between the Midlands and the East Coast ports has been focussed on the construction of a major new road between the M1 and the A1. The Department of Transport (DTP) has adopted a preferred route which runs from Catthorpe (Leics.) to Brampton (Cambs.). Several strategic alternative routes have been proposed by objectors. The preferred and alternative routes are currently (February 1985) the subject of a Public Inquiry. In 1982 NCCAU asked DTP to provide funds for the preliminary investigation of those parts of the county which would be at risk if the road were to be constructed. The explicit emphasis of the investigation was to be on field survey with subsidiary inputs from aerial photography and documentary research. A grant was approved which was designed to fund one post for 18 months. I was transferred from my existing commitments in Northamptonshire in September 1983 and since then have, apart from

(Archaeological Review from Cambridge 4:1 [1985])