Payments for pioneers? Revisiting the role of external rewards for sustainable innovation under heterogeneous motivations

Aiora ZABALA1*, Unai PASCUAL1,2,3, Luis GARCÍA-BARRIOS4

* Corresponding author: aiora.zabala@gmail.com

1 Department of Land Economy, University of Cambridge.
 19 Silver Street, Cambridge , CB3 9EP, UK.
2 BC3, Basque Centre for Climate Change.
 Edificio Sede Nº 1, Planta 1ª, Parque Científico de UPV/EHU
 Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
3 Ikerbasque Basque Foundation for Science.
 Maria Díaz de Haro 3, 48013, Bilbao, SPAIN.
4 ECOSUR, El Colegio de la Frontera Sur Unidad San Cristóbal.
 Carretera Panamericana y Periférico Sur s/n , Barrio María Auxiliadora, CP 29290,
 San Cristóbal de Las Casas, Chiapas, MEXICO.

Email addresses:
Aiora ZABALA: aiora.zabala@gmail.com
Unai PASCUAL: unai.pascual@bc3research.org
Luis GARCÍA-BARRIOS: lgarcia@ecosur.mx
Highlights

• Individuals have diverse, complex motivations to adopt pro-environmental behaviour.

• Acknowledging this heterogeneity is key for cost-effective conservation policies.

• We uncover 3 motivational perspectives for silvopasture adoption in a tropical forest context.

• Payments may not be the most appropriate incentives for pioneers regarding adoption.
1 Introduction

When deciding whether to adopt pro-environmental practices, individuals confront trade-offs with multiple other activities in which to invest their resources and effort. In this process of decision-making, the profit maximising rationale is intertwined with other motivational drivers of human behaviour (Calle et al., 2009; Noppers et al., 2014). Even an apparently homogeneous microcosm such as a small rural community in the frontier of a tropical forest is composed of individuals whose behaviour is driven by a high diversity of goals and values (Bathfield et al., 2013). People have diverse ways of interpreting the same phenomena (Bennett, 2016) and, due to heterogeneous motivations, goals and preferences, the response of individuals to the same types of incentives may vary remarkably (Bolderdijk et al., 2012; van der Werff et al., 2013). This motivational diversity can partially explain the unpredictability or ineffectiveness of external interventions for environment and development (Kline and Wichelns, 1998); it can induce highly variable behavioural responses and, plausibly, undesired outcomes of policy instruments.

Among different policy instruments to favour sustainable productive systems, policies based on economic incentives and market transactions are increasingly being promoted. However, the suitability and the superiority of market-based instruments over other types of incentives is heatedly questioned and contested, particularly when they are aimed at encouraging innovative activities (Kemp and Pontoglio, 2011) such as silvopasture (an agroforestry system that integrates cattle farming). In the case of Payments for Ecosystem Services (PES), key debates refer to their political legitimacy (Corbera and Adger, 2004), long-term effectiveness and efficiency (Muradian et al., 2013). Here we understand the notion of external programs as those designed and implemented by organisations outside of the recipient community.
PES AND MOTIVATIONS TO ADOPT SILVOPASTURE

2013; Sierra and Russman, 2006; Wunder, 2006), potential interactions with social norms (Villamor and van Noordwijk, 2011), effects such as crowding intrinsic motivations for conservation (D’Adda, 2011; Midler et al., 2015; Narloch et al., 2012), and interwoven efficiency and equity impacts (Corbera and Pascual, 2012; Narloch et al., 2011; Pascual et al., 2014, 2010).

Remarkably, the theory underlying PES relies on an implicit major assumption of rationality associated with utility-maximising behaviour; it is assumed that agents predominantly act upon a simple cost-benefit rationale (Ferraro, 2001; Ferraro and Kiss, 2002). Such characterisation of human beings may be adequate to predict behaviour in contexts involving innovation that is more profitable financially, decisions driven by self-interest, and/or activities predominantly framed in a market economy (Heyman and Ariely, 2004). However, this model may fall short when additional motivations or goals have a considerable role as drivers of behaviour (Edwards-Jones, 2007; Steg et al., 2014). Some examples of such additional motivations are giving higher importance to long-term benefits or to livelihood security, or having a strong social interest relative to self-interest (Gsottbauer and van Den Bergh, 2011).

Much effort and care are put into designing targeting approaches of PES to maximise environmental additionality under constrained program budgets (Alpizar et al., 2015; Wünscher and Engel, 2012). We argue that such a targeting effort may fail if the heterogeneity of participants' motivations towards pro-environmental behaviour is not adequately considered. This is especially the case if PES are to be adaptable to each stage of the diffusion process (Rogers, 1962), particularly for PES to stimulate what motivates early adopters, or so-called pioneers, innovators or visionaries of pro-environmental behaviour (Baumgart-Getz et al., 2012; Egmond et al., 2006). Yet a balance needs to be kept between the precision and the transaction costs of a policy.

While the importance of heterogeneous motivations has been long recognised in environmental policy (Kline and Wichelns, 1998), few studies use information about heterogeneity of motivations in order to explain behavioural decisions and adoption of sustainable agricultural...
PES AND MOTIVATIONS TO ADOPT SILVOPASTURE

This paper uncovers the diversity of motivations that influence active pro-environmental behaviour (as opposed to passive conservation) of smallholders that participate in a programme for sustainable land use through the adoption of silvopasture. The study is contextualised within a voluntary project for fodder tree cultivation in a community in the buffer area of a Biosphere Reserve in the state of Chiapas, in tropical Mexico.

In order to analyse the heterogeneity of perspectives regarding adoption of silvopasture, we use Q methodology, a systematic approach to understand subjective perspectives. Beyond the Q analysis, we also contrast these perspectives with observed data about livelihood strategies and with individuals' short-term adoption within the silvopastoral project. The results shed light on the potential for different forms of external rewards to effectively incentivise those farmers that are more likely to adopt and continue silvopastoral practices. Our analysis of the diverse motivations for pro-environmental behaviour provides important insights for designing adaptive environmental conservation policy that promotes the adoption and continuation of social-ecological innovations.

2 Case study

2.1 Silvopastoral systems and their adoption in the tropics

Extensive overgrazing, including at small scales, is a threat to soil and forest conservation in the frontier of biodiversity-rich tropical forests (Geist and Lambin, 2001). Deforested land in mountainous areas degrades under strong rainfall in the wet season and compacts under grazing (Valdivieso-Pérez et al., 2012). This degradation affects ecosystem functions (including the system's capability to buffer primary forests) and increases the likelihood of severe perturbations such as floods and landslides (Richter, 2000).

Silvopasture is a type of agroforestry that involves fodder-tree cultivation in pastureland. This approach has a double benefit: it rehabilitates the landscape and provides feed for cattle also during
PES AND MOTIVATIONS TO ADOPT SILVOPASTURE

dry season, when the lack of pasture in some areas is critical. It is considered an adequate compromise between conservation objectives and livelihoods in social-ecological systems characterised by an important livestock component (Broom, 2013; Murgueitio et al., 2011). Its implementation requires preventing cattle from accessing the trees for a period that ranges between half to a few years, until the trees are strong enough to survive animal browsing.

Many decentralised projects to promote silvopasture have recently been implemented in tropical forest margins to rehabilitate landscapes while promoting sustainable livelihoods. A remarkable initiative has been RISEMP, a multi-site programme carried out by regional research institutions in three Latin American countries, funded by the World Bank and reported in various studies (e.g. Garbach et al., 2012; Montagnini and Finney, 2011; Van Hecken and Bastiaensen, 2010). Pagiola and colleagues (2008, 2007) find that the impact of PES in the adoption of silvopasture is complex, one reason being that the effect of PES in such systems may be different depending on recipients' motivations and interests.

Silvopasture has long been a successful management system in a number of traditional agroecosystems (e.g. Iberian dehesas) and it holds much promise for areas in which cattle farming is a more recent phenomena (such as recently colonised tropical forest frontiers). Nevertheless, its diffusion has been slower than envisaged in economic and environmental performance assessments (Cubbage et al., 2012; Gutiérrez et al., 2008), and this lack of adoption has received little attention in the literature.

The literature about factors affecting agroforestry adoption is mostly focused on explicitly measurable farm, household and personal characteristics, amenable to adoption probability analysis (Pattanayak et al., 2003), but not on stakeholders' perspectives. In addition, the literature is scant with regards to silvopasture adoption beyond observable characteristics (with the exception of Calle et al., 2009; Frey et al., 2012; Hayes, 2012). The relationship between cognitive variables and behavioural intention is abundantly addressed in social-psychology theory, yet its empirical
application to agroforestry adoption and conservation practices in farming is scarce (Lokhorst et al., 2011; McGinty et al., 2008).

2.2 Encouraging silvopasture in Chiapas

Chiapas had the largest total loss of forest per year among Mexican states in the 1990s (Céspedes-Flores and Moreno-Sánchez, 2010) and the second largest in the 2000s (Hansen et al., 2013). There is little evidence of a forest transition leading to forest recovery (García-Barrios et al., 2009; Vaca et al., 2012). The reasons for this permanent deforestation are epitomised in the case study explained below.

In the Pacific side of Chiapas, La Sepultura Biosphere Reserve lies on the mountain range that stems from the Andean spine (Figure 1). In the buffer zone of the reserve (the area within the reserve limits but located outside of the core and the outstanding natural area), lower areas and South-oriented slopes are highly deforested. The landscape surrounding human settlements is highly anthropized and faces an increasing risk of soil erosion (Valdivieso-Pérez et al., 2012) due to unsustainable farming practices. Predominant livelihood activities in the buffer area include the production of the traditional Mexican milpa (based on maize and beans), livestock and shade-grown coffee farming, the latter ecologically restricted to only certain areas.
Among the various small communities (ejidos) in La Sepultura, Los Ángeles is a representative one with a population of over 800 people (Trujillo-Vázquez, 2009) distributed in approximately 200 households. The land property regime is a hybrid between the traditional ejido communal lands and customarily recognised private land. Since the community settled down in the 1960s, the surrounding forest was progressively cleared for maize first, and converted to cattle farming afterwards (Sanfiorenzo-Barnhard et al., 2009; Valdivieso-Pérez et al., 2012). Following the North American Free Trade Agreement, farming activities began to diversify. With the protection of the area in 1995, farming expansion was restricted. Cattle farming became a preferred livelihood option, mostly limited by financial capital and land ownership. Cattle farming is seen as less risky than cash-crop agriculture because the latter is highly dependent on rainfall and on the
price of chemical inputs. However, this preference is also heavily influenced by variations in international market prices (García-Barrios et al., 2009).

As in the rest of Mexico, households in La Sepultura currently have access to a diverse range of external payments for different purposes, as well as to incentives from various sources in order to promote new sustainable livelihood activities. External PES-like schemes are increasingly viewed by authorities as a cost-effective approach to tackle a range of policy issues (Muñoz-Piña et al., 2008). In the case study, many such payment schemes coexist for cattle and agricultural extension, for carbon capture projects, and for hydrological ecosystem services. Distribution and conditionality for such diversity of payments differ across programmes. Farmers are driven by different motivations to participate in these payment schemes (Shapiro-Garza, 2013).

In Los Ángeles, the research institute El Colegio de la Frontera Sur (ECOSUR) implemented a pilot voluntary and participatory project since 2007 (see García-Barrios, 2012) to encourage cattle farmers to plant native fodder trees in small pasture plots of their own. The project provided incentives in the first year in the form of fencing material and training (Trujillo-Vázquez, 2009). In 2008, after a first group of 22 volunteers had planted saplings, the local office of the National Commission of Protected Areas (CONANP) provided additional budget for fencing material for 22 more participants, who became part of the group under joint institutional coordination. In 2009, a total of 68 smallholders participated, and CONANP supported these efforts with additional material and cash payments distributed at the group's own criteria (further details are given in Zabala, 2015).

2 The main payment programmes are 'Oportunidades' from SEDESOL (Mexican national secretariat for social development), Procampo (Mexican national programme for direct support to farms) and Progan (Mexican national programme to encourage cattle productivity) from SAGARPA (Mexican department of agriculture, livestock, rural development, fisheries, and food), PESH (Mexican national programme for payments for hydrological services) and Proarbol from CONAFOR (Mexican national commission on forestry), and carbon capture projects by Ambio (Mexican NGO).
Participants were required to plant the trees in order to receive material and payments, but there was no real conditionality because success in the establishment of fodder trees did not influence the reward received. The actions carried out to cultivate the trees, and the resulting number of trees and their height and quality were monitored for each of the plots (Trujillo-Vázquez, 2009). The reasons behind the highly variable performance are unclear and scarcely related to age or to the caring activities carried out (Trujillo-Vázquez, 2009).

3 Q methodology

Q is a structured methodology (also known as Q technique or Q-sort) to explore complex problems in which distinct human perspectives are involved. This exploration is done by identifying different patterns of thought existing within a group on a topic of interest, and this identification needs not be based on a preliminary hypothesis (Brown, 1980; Watts and Stenner, 2012). Patterns of thought are described through a set of statements that represent the whole set of possible opinions around a topic. The statements are given to a purposely selected sample of respondents. Each respondent sorts them on a grid with several columns that typically represent an ordinal scale from most agree to most disagree.

The analysis reduces the responses down to a few perspectives (the factors) that best represent all the views found in the group. These factors are the weighted average response of respondents grouped by similarity (for details, see Zabala, 2014; Zabala and Pascual, 2016). Factors depict the view of an archetypical respondent who would best represent that factor, although they do not necessarily describe any specific real respondent. The view of each respondent will usually be more closely related to one factor than to the rest.

3 In each plot, a median of 62 trees were grown (including saplings that were found about to die), which had a cumulative median height of 8.2m per plot (Trujillo-Vázquez, 2009; Zabala, 2015).
This methodology is increasingly being used across disciplines, particularly in social-environmental studies and ecological economics, and for different purposes, such as policy evaluation or participatory processes. It is used to identify typologies such as conservationist opinions about market-based instruments (Sandbrook et al., 2013, 2011), farmer environmental perspectives (Davies and Hodge, 2012), opinions about new environmental legislation (Buckley, 2012), stakeholder views on energy from biomass (Cuppen et al., 2010), sustainability discourses (Barry and Proops, 1999), perceptions about the uses of forest (Nijnik et al., 2010; Rodríguez-Piñeros and Mayett-Moreno, 2014) and, more recently, on semi-subsistence farmers’ motivations to conserve agrobiodiversity (Nordhagen et al., 2017).

3.1 Q-set: statements and their structure

A comprehensive sample of statements was built based on expert consultation, in-depth interviews with four farmers, previous literature, and after extensive fieldwork gathering quantitative and qualitative data on livelihoods, as well as questionnaires about stated preferences on silvopastoral practices conducted on 103 heads of households. The selection of statements follows a hybrid approach by including both naturalistic (directly from respondents' communication) and ready-made statements (expert formulated; McKeown and Thomas, 2013). The initial sample contained 66 statements.

The final set of 26 statements (Listed in the Appendices) cover five topics that are most relevant to explain farmers' perspectives with respect to adopting silvopasture, based on literature and on prior fieldwork. These topics are as follows: (A) importance of external payments in livelihoods, (B) environmental and conservation values, (C) personal attitudes towards work and

4 In order to select the statements from the initial sample, the 66 statements were classified into six topics: silvopastoral (14 statements), subsidies/programmes (16), land/forest conservation (33), future generations (5), livelihood (30) and cattle (20). The topics were not mutually exclusive. These statements were given a relevance score of 0-3 by the authors, which aided in the final selection of 26 statements.
livelihoods, (D) beliefs and preferences about cattle farming and land use, and (E) preferences and trade-offs between planting fodder trees and other livelihood activities, including perceptions about potential benefits of fodder trees.\(^5\)

The total number of statements was low in comparison with other Q studies in order to ease the sorting process for respondents, some of whom read slowly due to lack of practice. However, the statements selected covered sufficiently the topics explored in this research and provided sufficient variability in the responses, as explained in the results.

3.2 Respondent selection and administration of Q method surveys

The statements were designed and administered in Spanish (original versions shown in the Appendices). Everyone in the research team were native speakers. The wording was adapted after pilot testing with experts in the local context and with trusted members of the community, in order to ensure that the statements were concise and clear, and that their meanings did not overlap.

The method was individually administered to 32 heads of households, all of them participants in the fodder tree planting project described above and for whom secondary data on involvement and short-term adoption were available (Trujillo-Vázquez, 2009). Respondent selection followed maximum-variability sampling to include a diverse spectrum of smallholders, by using a factorial design based on observed variables. From the 68 individuals who participated in the fodder tree planting project, we shortlisted individuals with highest, lowest and median values of a subset of key variables: cattle specialisation, levels of income, land and livelihood diversity, and level of short-term adoption. All respondents were male, because culturally in this context the male head of household makes and implements decisions over land use. We excluded non participants because

\(^5\) Each statement was also classified in three further vectors: attitudes, preferences, perception or trade-offs; whether they refer to the present or the future; and whether they refer to respondents themselves, their descendants, or non-human life.
we were interested in the motivations affecting the level of adoption (i.e. their interest, compromise and effort), not simply in the motivations to participate (i.e. their initial interest). Respondents were interviewed individually face-to-face in August 2010 and January 2011. From those sampled (36), one decided to stop sorting the statements after the survey had started due to fatigue, and three were not available at the time of the survey.

Each respondent divided the statements into three piles of agreement, disagreement and neutral, based on their own views. Next, respondents sorted the statements in a board with a standard pyramidal shape of seven columns representing an ordinal scale (Figure 2). Respondents sorted the statements according to their own agreement: from most agree to most disagree. Finally, respondents briefly explained the reason for sorting the statements in the most extreme positions.

Figure 2: Q methodology distribution for this study

![Q methodology distribution](image)

Most disagree Most agree

3.3 Analysis of factors

The analysis in Q methodology reduces responses to a few main types of perspectives (named ‘factors’ in Q methodology). This is done by means of multivariate analysis, in which respondents are correlated instead of variables (see details in Brown, 1980; Zabala and Pascual, 2016).
We retained three factors after assessing a number of standard criteria in Q (see e.g. Watts and Stenner, 2012) and as a parsimonious compromise. Together, the three factors explain 54% of the variability in the views of respondents, a percentage that is consistent with other Q studies (e.g. Buckley, 2012; Lansing, 2013). Responses were selected as defining (flagged) for a given factor following the standard criteria in Q: those with higher factor loadings in a given factor and with significantly different factor loadings in comparison to other factors. Four respondents were not flagged because they had relatively high loadings in two or three factors, implying that they shared features from more than one view simultaneously.

In addition, we implemented a novel analytic approach of bootstrap re-sampling in Q in order to obtain more precise levels of confidence of the results and to enhance the accuracy of the interpretation (see details in Zabala and Pascual, 2016). The bootstrap approach produces variability (spread) measures specific to the scores of each statement for each factor (standard errors that show their relative stability) and more accurate point estimates. The bootstrap was run in 3,000 steps using PCA and varimax rotation, and using the package 'qmethod' (Zabala, 2014) for R statistical language (R Core Team, 2016).

6 The first six factors have eigenvalues higher than two and more than one defining respondent, while the first twelve have eigenvalues higher than one. The scree plot indicates that three or four factors would be adequate. The third factor explains 13% of the variance and the fourth and fifth factors explain 12% and 10% respectively. A fourth factor is defined by only three out of the 32 respondents, one of whom defines it in the opposite direction (high negative loading). Importantly, a preliminary interpretation of this fourth factor suggests that the view represented would be very similar to the first factor, with a few traits shared with the second one. We also ran a sensitivity analysis of the final results by selecting from two to eight factors, in order to see whether any of the results changed noticeably in the first few factors. Moderate changes are found in the fourth factor, and significant changes in the fifth and subsequent factors. We also ran a sensitivity analysis to identify highly influential respondents. A single highly influential case is found, but we decided not to exclude it from the subsequent analysis.
4 Results and interpretation

The analysis yields three main results: the respondents' factor loadings (Appendices), the overall factor characteristics, and the statements' factor and z-scores (Figure 3). The overall characteristics (explained variability and number of defining Q sorts) indicate that the first factor is highly representative of over a third of the sample and explains a quarter of the total variability in the responses (25% of the total variability explained, 13 defining Q sorts). The other two factors also explain a substantial amount of the variability (factor 2, 17%; factor 3, 13%), and all factors are represented by a considerable number of defining Q sorts (factor 2, 8 defining Q sorts; factor 3, 7).
Figure 1: Statements selected for Q sorting, bootstrap estimates of their z-scores and distinguishing statements (filled symbols)
1. **Self-sufficient pioneer**
2. **Environmentally-conscious follower**
3. **Payment-dependent conservative**

Statement

15. We need more external payments so that my children do not need to go to live elsewhere.
21. If the government does not give me payments, taking care of the forest does not benefit me.
12. My land is ‘getting tired’.
17. If I had more money, I would plant fodder trees instead of increasing my cattle.
6. I could increase my benefits in cattle farming without degrading the land.
18. In dry season there is no alternative other than releasing my cows free into the mountain.
20. It is convenient to weed my fodder tree plot even if I have other tasks, to produce more fodder.
4. I can maintain my family with my own work, external payments are just an aid.
8. I participate in all external programmes that bring income.
22. I try new things in my job.

1. My children and grandchildren will work the same land that I cultivate now.
11. I analyse my costs and benefits and thereafter I work on the most beneficial activity.
2. I prefer two hectares of pasture than one hectare of fodder trees.
13. Benefits from cattle production are larger than loses from its related land degradation.
23. I would rather live by external payments than by working my land.
16. It is more convenient for me to invest money in improving my pastures than in buying cows.
26. In order to dedicate one hectare to fodder trees during two years, I would need more land.
19. With more training I could improve very much my work in cattle farming.
24. I need to improve my pasture, otherwise cattle feed will run out in a few years.
9. It is more convenient for me to cultivate my own food than buying it.
7. Cultivating fodder trees involves a lot of effort and little benefit.
10. Conserving the forest is responsibility of the landowner.
3. The knowledge to earn more is what is of most interest to me from external programmes.
5. With tree planting programmes I receive more money in return for my work.
14. It takes too long for fodder trees to grow.
25. I can earn more as a cattle-farmer if I allow wild animals to live in the forest.
The statement scores are the main results used for interpretation. The z-scores are the “weighted average of the values that the respondents most closely related to the factor give to a statement” (Zabala & Pascual 2016). Statement z-scores suggest how the archetypical respondent for each factor would sort the statements. The z-scores are presented here in a novel, synthetic dot-chart format (Figure 3). For example, this figure shows that factor 3 disagrees with statement 15 in a distinctive manner in comparison to factors 1 and 2, while it agrees with statement 21 much more than the other factors do.

The interpretation of factors is based on the statement results: their salience within each factor and their distinctive position comparing to that of other factors. Statements that have significantly different scores across factors are distinguishing statements (in Figure 3, statements in which the horizontal distance between markers is large) and they represent an issue of clear disagreement among factors (e.g. statement S12). Statements with the lowest differences in scores across factors are of consensus (markers which are very close to each other; e.g. S25) and indicate common ground and shared understandings of the issue, or otherwise taboos. As standard in Q, factors are named based on their qualitative interpretation. The justification for these names is given in the last paragraphs of each factor interpretation below.

4.1 Comparison of factors with observed characteristics

We also analysed the results of statements according to their topic (letters A-D in table of statements in Appendices): calculating the means and standard deviation of z-scores for each topic, in order to see if any one topic was predominant (high absolute averages) or controversial (high deviations) within a given factor, and to compare the responses across factors. This did not yield remarkable insights for this study.
In addition to the standard Q analysis, the factors are compared with observed characteristics of individuals: key livelihood and socio-economic variables and short-term level of adoption as monitored in the fodder tree planting programme (data from Zabala, 2015 and Trujillo-Vázquez, 2009). This comparison has the purpose of describing how these characteristics relate to the factors within the given sample and has descriptive merit rather than inferential, due to the size and purposive nature of the sampling.

The comparison was done by means of correlation coefficient tests between the factor loadings —that quantify the similarity of each participant with each factor— and the additional variables. Table 1 shows the correlation test results for these livelihood variables, including specialisation in cattle farming, in other livelihood activities, dependence on external payments, and endowments.

8 In addition, we run ANOVA test for differences among groups according to the level of income (measured in four categories). These tests give no significant results, suggesting that there are no differences in terms of income among the perspectives.
Table 1: Comparison of factors and key observed variables

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefits from cattle farming (%)</td>
<td>–0.33*</td>
<td>–0.38*</td>
<td>0.37*</td>
</tr>
<tr>
<td>Benefits from wage labour (%)</td>
<td>–0.05</td>
<td>0.40*</td>
<td>–0.24</td>
</tr>
<tr>
<td>Benefits from commerce (%)</td>
<td>0.08</td>
<td>0.08</td>
<td>–0.34*</td>
</tr>
<tr>
<td>Benefits from external payments (%)</td>
<td>0.06</td>
<td>–0.06</td>
<td>0.09</td>
</tr>
<tr>
<td>Livelihood diversity (number of activities)</td>
<td>–0.13</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>Total land owned (Ha)</td>
<td>–0.17</td>
<td>–0.39*</td>
<td>0.26</td>
</tr>
<tr>
<td>Experience with cattle farming (years)</td>
<td>–0.43*</td>
<td>–0.23</td>
<td>0.46*</td>
</tr>
<tr>
<td>Age</td>
<td>–0.12</td>
<td>–0.16</td>
<td>0.21</td>
</tr>
<tr>
<td>Number of youth in the household</td>
<td>0.38*</td>
<td>–0.12</td>
<td>–0.08</td>
</tr>
<tr>
<td>Adoption</td>
<td>0.24</td>
<td>0.23</td>
<td>–0.18</td>
</tr>
</tbody>
</table>

Number of defining Q-sorts by level of adoption:

<table>
<thead>
<tr>
<th>Level of adoption</th>
<th>No plants</th>
<th>Some plants</th>
<th>Many plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>No plants</td>
<td>6</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Some plants</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Many plants</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: Values correspond to Spearman correlation coefficients between variables and factor loadings for each factor, except for the number of defining Q-sorts by level of adoption. Significance: * p < 0.1. Sample N = 32. For the last variable (level of adoption), counts of individuals defining the factor (flagged) are given.

The level of short-term adoption is defined for this study as the outcomes of growing fodder trees, measured as cumulative height of tree per plot. Adoption was measured one year after the planting of the saplings (Trujillo-Vázquez, 2009) and in the case study is a satisfactory approximation for biomass. This measure was used to categorise farmers into three groups: those with many plants, with some plants, and with none. Table 1 (last three rows) shows the contingency table of defining Q-sorts by the category of short-term adoption in which they fall.

More specialisation in cattle farming distinguishes factor 3 from the rest (in both years of experience and percentage of benefits from cattle). Respondents related to factor 3 appear to have more land, although this is not significant. Dependence on subsidies (external payments) does not significantly distinguish factors, neither does the diversity in livelihood strategies. The comparison
of defining Q-sorts with categories of adoption suggests a pattern: most of those who had many
plants are definers of the first factor, and most of those who define the third factor had no plants.

4.2 Interpretation of results

There is a general consensus that food self-sufficiency is desirable (S9), that conserving the
forest is the responsibility of the landowner (S10), and that fodder trees do not take much time and
effort to grow (S14). By contrast, major disagreements refer to the importance given to external
payments, preferences on cattle farming, and perception about land. Factors 1 and 3 are opposite in
their view of external payment schemes (S15, S21). Cattle farming is a topic of remarkable
disagreement (topic D in Appendices); there is no consensus with regards to any of the seven
statements. The overall perception about land degradation is salient in opposite ways for the second
and the third factors (S12). Each factor show distinct preferences towards planting fodder trees
(S17, S2, S16): high preference (factor 2), disengagement (factor 1) and low preference (factor 3).
Attitudes towards innovation and self-sufficiency are rather distinct for the three factors too (S22).

The following interpretation of the different types of smallholders’ perspectives (factors) is
structured around three main themes: (i) preferences about investing in increasing the cattle herd,
improving pasture, and planting fodder trees; (ii) the reasons why silvopastoral practices are
adopted; and (iii) whether such practice would be continued beyond the experimental period.

4.2.1 The self-sufficient pioneer

The first factor represents an individual who is pragmatic, self-sufficient, and an innovator.
He is confident about his capability to maintain his family in an autonomous way and without
depending on external financial help (S15, S4, S23). He gives the lowest importance to external

9 The description uses male nouns throughout because all the interviewees were men, as explained in Section 3.2, and
it refers to perspectives held by individuals, rather than by a collective (they).
payments in comparison to the other two factors, and clearly rejects them as being necessary for the
family; PES may not be motivational. He is proactive about learning by experimenting with new
practices in order to improve his livelihood (S22), and he considers that he could improve very
much his work in cattle farming with further training (S19). He has no clear preference between
investing in more cattle or in planting fodder trees, but he would much prefer to invest in better
pasture (S2). He thinks it is convenient to take care of the fodder tree plot even though he has other
work to do, and does not perceive land availability as a constraint (S20, S26).

The characteristics that would make this person successfully adopt and continue silvopasture
are his pro-activeness to experiment with innovative practices, his willingness to learn in order to
improve his performance, and his remarkable preference to remain self-sufficient and independent
from external payments.

This type is identified as a pioneer within a diffusion process, that is, an initial adopter or
innovator. This identification is based on his distinctive response to statement S22 and to
indications of better performance in the pilot project. Despite not being significantly associated with
age, he typically has a young family and fewer years of experience with cattle farming (Table 1).
This is a sign of youth and of needing to secure an income in the medium term, and therefore of
potentially more receptiveness to innovations.

4.2.2 The environmentally-conscious follower

This factor represents an individual that is conservationist, other-regarding, concerned about
the future, and a follower in the context of adoption of livelihood innovations. He has the highest
degree of environmental awareness and shows concern about soil degradation (S12, S6). He also
has a higher preference for fodder trees than the other two factors (S17, S2). He prefers to invest in
fodder trees more than in pasture, and remarkably more than in stocking more cattle. For such an
individual, the awareness of environmental problems may be an important driver of pro-
environmental behaviour.
His perception about the importance of external payments is ambiguous. While he shares the
self-sufficient pioneer's views on payments (S21), he expresses a clear need for external payments
in order for his descendants to eke out a livelihood (S15). This might be due to pessimism about the
future, founded on his perception about land being degraded, and presumably about the lack of
employment elsewhere.

While this type of farmer is more receptive to PES-like incentives, his actions may be
strongly motivated by a higher awareness about the need for environmental conservation (S12).
Thus we define this factor as environmentally-conscious. His environmentalist views are supported
by the engagement with two further assertions: that the payments provided are not the only reason
for participating in external programmes and that, during the dry season, releasing cattle into the
forest is not the only alternative (S8, S18). Therefore, this type of farmer may be genuinely more
environmentally concerned than the other two, either intrinsically (subsequent to his experience) or
because he has internalised the discourse externally introduced by conservation institutions.

The environmentally-conscious factor is characterised by having a relatively higher level of
income from off-farm activities, possessing less land and deriving a lower share of benefits from
external payment schemes (Table 1). He is motivated to conserve land but he does not feel as self-
sufficient and capable as the pioneer. He is also not as proactive in trying new livelihood activities
(S22). Thus we interpret this factor also as a follower regarding the adoption of silvopasture.

4.2.3 The payment-dependent conservative

The third factor represents an individual that is conservative, payment-dependent, rent-
seeking, and late adopter or laggard with respect to innovations. He believes that his livelihood is
highly dependent on external payments, emphasising most strongly the need for payments in order
to live, both for his current livelihood and for his children's future (S15, S4). He emphasises that he
may not be able to sustain his family without these payments and would also require PES to take
care of the forest (S21).
He believes that his descendants will work on the same land (S1), and that he will probably not produce enough animal feed if he sticks to current practices (S24). Yet, he does not perceive that his land is currently degrading (S12). He asserts that he can get more benefits from cattle without damaging the land, and that during the dry season he cannot do anything other than release his cattle into the forest (S6, S18). He also has the lowest preference toward fodder trees; his investment preference between pasture and fodder trees is ambiguous (S2), but he clearly prefers direct purchase of cattle than investment in fodder trees (S17). He considers that it is not convenient for him to weed the fodder tree plot (S20), although he acknowledges that planting fodder trees does not involve much effort (S7).

Because he is not keen on trying new practices (S22), this individual is likely to be a late adopter of innovative practices. Because he states high dependence on external payments (which are a form of immediate, easy income) he can be described as rent-seeking, therefore PES may encourage his participation in conservation programmes. However if the payment stops before the practice yields further benefits, he may possibly abandon it (Pagiola et al., 2007).

Smallholders with this perspective have a significant positive correlation with cattle specialisation and with more years of experience in cattle farming (Table 1). They are also associated with a lower share of benefits from off-farm activities.

5 Discussion: reconsidering the role of external rewards in the context of heterogeneous motivations

5.1 The diversity of motivations for adoption of silvopasture

The three main perspectives uncovered in the case study are largely consistent with the roles predicted in the theory of diffusion of innovations, according to their general attitude: pioneers, followers and late adopters (Läpple and van Rensburg, 2011; Rogers, 1962). The perspectives are also relatively consistent with other typologies found in the literature on adoption of sustainable
agricultural practices. Most studies that investigate typologies of potential adopters identify at least one perspective of environmentalists (Brodt et al., 2006; Valdivia et al., 2012), active adopters moved by environmental awareness (Morris and Potter, 1995), or ecosophists (Vartdal 1993 in Padel, 2001). These types are substantially similar to the environmentally-conscious follower identified here. The payment-dependent conservative may be related to previous types such as those characterised by their resistance to adopt (Barnes et al., 2011; Morris and Potter, 1995), production maximisers (Brodt et al., 2006), and passive adopters (Morris and Potter, 1995), who are not moved by conservation concerns.

The first perspective in this study (self-sufficient pioneer) is the most novel one in the social-environmental literature, because this type of farmer is a likely adopter of sustainable innovation but is motivated by the potential livelihood benefits that the practice might bring, rather than strictly by environmental reasons. In previous literature, counterparts closest to this perspective are found in categories such as networking entrepreneurs (Brodt et al., 2006) and, roughly, pragmatic organic (Darnhofer et al., 2005).

In addition to the distinction of roles based on diffusion, the Q results provide a rich description of perspectives in terms of topics relevant to silvopasture adoption and to interventions, particularly the perceptions on incentives and towards conservation. The data suggest that none of the three perspectives has a clearly favourable predisposition to adopt silvopasture. Yet each perspective also has distinct reasons why they might potentially adopt silvopastoral systems. These reasons are the latent motivations that can be stimulated to increase adoption. Finding specific incentives to stimulate these motivations may be instrumental for policy design.

The self-sufficient pioneer may adopt only if the practice is believed to be novel and connected with potential broader livelihood improvements, despite the perceived risks. He sees no need for external economic incentives in order to experiment. In contrast, the motivation of the environmentally-conscious follower could be associated with normative or moral concerns driven
by a long-term notion of human-land interactions. The *payment-dependent conservative* may adopt
in a first phase if there is a clear external monetary support involved, or otherwise at a later stage
when realising that the early adopters corroborate the economic benefits of the practice. In the case
study, it is important to note that the *payment-dependent conservative* is linked to cattle
specialisation; thus those who have arguably a stronger impact over the land are also those less
likely to change.

The main characteristics of the *self-sufficient pioneers* and *payment-dependent conservatives*
are generally consistent with two types of potential adopters identified by Pagiola et al. (2007).
These authors indicate that PES are not needed by farmers for whom silvopasture is profitable
enough to justify adoption, while for those for whom silvopasture is not profitable at all, adoption
happens only while the payment lasts.

In sum, the *self-sufficient pioneers* and the *environmentally-conscious followers*—who are
more receptive to adopt silvopastoral practices—are less motivated by immediate external
economic incentives. Likely, they may be highly responsive to other interventions such as sharing
information, purporting the benefits of the practice transparently, or facilitating experimentation.
These interventions can, for example, raise the *self-sufficient pioneers*’ expectations of benefits,
understood in a broad sense, or reduce the perceived risk involved in experimentation.

5.2 Incentives for social-ecological innovation and potential policy strategies

Designing PES in a manner that disregards the multiple motivations that drive participants' livelihoood decisions may have an unexpected impact on policy performance. For example, the *payment-dependent conservative* may try the innovative activity attracted by the expectation of income gains in the short term. After the pilot stage, if the viability and the benefits of the sustainable practice are realised, payments may not be necessary for any of these types of individuals; continuation and diffusion of the practice would occur normally. In this case, initial payments would possibly not imply an increase in overall adoption rates but instead a more
uniform, accelerated adoption process, because more *payment-dependent conservatives* would participate at earlier stages of the scheme. Instead, if the budget of the external programme is exhausted before the activity is perceived as viable and beneficial, then it is expected that the *payment-dependent conservative* will discontinue because his main motivation to adopt the practice would disappear (Pagiola et al., 2007). In such a situation, the programme may fail to induce a sustained adoption of the sustainable innovation, probably eroding the permanence of the policy impacts.

Contrary to what much of the literature on PES suggests, voluntary participation in conservation programmes may occur regardless of the uncertain balance between investment and return or of net financial opportunity costs (Kosoy et al., 2007). Payments that cover the opportunity cost might be more correlated with adoption rates in contexts of commoditised market relationships; in these contexts, farmers' profit-maximising rationale translates into their effort being proportional to the economic incentive (Heyman and Ariely, 2004). However, in contexts of wider social exchange and longer term perceptions of human-land interactions, additional motivations may underlie the voluntary adoption of conservation activities, meaning that uptake may not be related to payment levels alone (Heyman and Ariely, 2004; Muradian et al., 2010). More general behavioural motivations include moral or internal motivations and values (Bowles, 2008; Lokhorst et al., 2011; Mzoughi, 2011), such as exploration, looking for innovations, curiosity for experimentation, personal fulfilment, or avoiding becoming an outcast. These are motivational drivers that might go a long way compared to immediate pecuniary returns.

Conservation programmes designed to fit an assumed short-term market-transaction mindset and self-interested behaviour can generate a misfit (Brown, 2003) between the design and the recipients' behavioural motivations at the implementation stage (Bowles, 2008). This can potentially result in the erosion of the longer term permanence of the sustainable activity (Muradian et al., 2013). It is argued that this misalignment might be due to decisions and behaviour being context-
dependent (Clot et al., 2015). However, environmental psychology also indicates that such behavioural motivations have certain patterns that are not context-dependent and are more complex than those envisaged by rational assumptions (e.g. Osbaldiston and Schott, 2012), as suggested by our empirical data.

A plausible policy strategy could be to target the distribution of incentives, not necessarily payments, to so-called pioneers, who are intrinsically more motivated towards experimentation and for whom a short-term payment is a secondary interest. The type of external incentive to catalyse the pioneers' motivations could be, for example, providing a transparent and convincing informational strategy (Calatrava and Franco, 2011; Egmond et al., 2006) that emphasises the innovative aspect of the new technique and its potential to benefit adopters in social, economic and ecological ways. In turn, this requires providing adequate, clear and comprehensive information about the advantages and disadvantages of the new practice. Reinforcing it through multiple authoritative and trusted sources may reduce the uncertainty involved (Garbach et al., 2012).

Further, pioneers may arguably see their motivation spurred if their leading action is socially rewarded (Heyman and Ariely, 2004), for instance by acknowledging their service to the community, or by promoting them as educators or demonstrators in a process of constructive communication with other potential adopters (Atwell and Schulte, 2009; Egmond et al., 2006).

Targeting pioneers specifically may be challenging not only due to the difficulty of identifying these individuals but also for equity and fairness perception concerns. A selective distribution of an incentive could be perceived as unfair by the rest and negatively affect the effectiveness of the program as a result (Pascual et al., 2014). Both hurdles may be overcome by designing the intervention with characteristics that implicitly attract mostly the so-called pioneers and with conditions that are not appealing to the payment-dependent, so that pioneers self-select themselves. This design could be realised by providing incentives that specifically tackle needs that are important for the early innovators but do not directly provide rent, such as information, capacity...
building or approaches to reduce uncertainty. Later interventions could be based, for example, on catalysing trust between pioneers and followers by enhancing social networks or social influence (Abrahamse and Steg, 2013), or facilitating interaction to encourage the flow of knowledge from early adopters (Baumgart-Getz et al., 2012; Morris et al., 2000). Alternatively, unfairness perceptions might be reduced if the recipients of incentives are selected through applications to demonstrate suitability, as if it were a selection for a job position (Knight et al., 2010).

Targeting may also be achieved by designing a dynamic and adaptive program. For example, in a first phase, no information would be provided about prospective payments or other similar incentives, but rather about proven potential benefits of the practice, so that mostly pioneers would volunteer to participate. In a second phase, small payments might be introduced to attract new participants among those who are potentially followers but are undecided. In a third phase, when the benefits of the activity begin to realise and both pioneers and followers have already adopted the new practice, further payments might be necessary to accelerate the participation of late adopters. This dynamic approach that adapts incentives in stages in order to match diffusion roles complements the recognised need for adaptability and flexibility of PES (Pascual et al., 2014).

6 Conclusions

In order to be flexible and adaptive, incentive-based policy instruments such as PES require a priori understanding of the key underlying behavioural motivations of individuals who participate in conservation initiatives. However, to date there is a paucity of empirical research that can serve as a model for cost-effective identification of the heterogeneity of such motivations.

In this paper we uncover the heterogeneity of motivations among participants in a PES-like project to encourage sustainable silvopastoral practices in a tropical forest frontier in Mexico. We cited.

10 The idea of calls for applications was put forward by Knight in a presentation of the fieldwork used for the study cited.
have connected the theory of incentive-based conservation programmes to promote the diffusion of pro-environmental behaviour, with a case of a scheme to encourage silvopastoral adoption in a small community in Chiapas. We provide empirical evidence about the importance of understanding the attitudinal fabric of a small and otherwise seemingly homogeneous community. Our study provides further evidence to support that applying Q methodology facilitates the exploration of diverse viewpoints and motivations for the adoption of sustainable practices in a wide range of socio-cultural contexts (e.g. Nordhagen et al., 2017). Ascertaining such motivations can help identify pioneers in a diffusion process, who can play a key role as catalysts for the adoption of innovative practices.

Our findings contribute to acknowledging the importance of careful design of PES schemes where people’s motivations are likely to be heterogeneous. We find evidence to support that PES design needs to discourage rent-seeking strategies driven by short-term financial benefits (Kronenberg and Hubacek, 2013). We argue that uncovering the latent diversity of motivations for adoption of sustainable practices is key for the cost-effective design of PES schemes and to avoid rent-seeking strategies that could undermine their effectiveness in the medium to long term. Analysing the motivations of non-participants and of individuals in other locations with potential for implementing silvopastoral systems may inform further how to best encourage adoption of such practices.

Based on our findings from Chiapas in the context of the silvopastoral adoption program, we derive two general implications for the design of voluntary payment schemes such as PES. First, a higher cost-effectiveness and a more permanent behavioural change toward adoption of the environmental innovation can be achieved by designing conservation programmes in a way that they deactivate or minimise rent-seeking strategies, which are the ones most likely to discontinue
the activity once the budget supporting the programme ceases.11 Second, a stronger emphasis on engaging so-called \textit{self-sufficient pioneers} from the outset may also enhance cost-effectiveness.

Accordingly, PES-like schemes may be designed in a way that they implicitly attract individuals genuinely interested in the conservation activity first (which may also include so-called \textit{environmentally-conscious followers}). These individuals are more likely to strive for successful environmental performance and may have a boosting effect in getting the rest to adopt, when the demonstration of the private benefits from the activity is sufficient to motivate others. The \textit{self-sufficient pioneers} may be encouraged by catalysing their latent motivations to adopt the pro-environmental practice. It has to be taken into account though, that for this type of individual financial stimuli may not be the most appropriate incentive and can be insufficient (Läpple and Kelley, 2013) or even counterproductive to foster adoption and continuation in the longer term, due to the potential to crowd-out intrinsic motivations (Bowles, 2008; Midler et al., 2015).

Complexity in social-ecological systems is due to many factors, not least to the heterogeneity of preferences and motivations of key actors that manage land. Assuming that the behavioural drivers of these actors are homogeneous (due to their similar socio-cultural and economic background) blinds us from the richness of their motivations. Any policy intervention in such contexts must account for the diversity of behavioural motivations, otherwise it is likely that its effects may be minimal if not counterproductive to the original goals.

11 The continuation of pro-environmental behaviour after a payment-based intervention has been questioned in the literature, and some evidence has been provided (Reutemann et al., 2016). However, further empirical research is needed to understand the long-term impact.
Acknowledgments

AZ is grateful to the Basque Government for funding this research (AK2009). Fieldwork was partially funded by Consejo Nacional de Ciencia y Tecnología, CONACYT project 51293 (Studies on SocioEnvironmental Complexity) and FORDECYT project 116306 (Social-Environmental Innovation in the Southern Frontier, Mexico). The authors are grateful to Romeo Trujillo-Vázquez for his invaluable support, and to Amayrani Meza-Jiménez for helping with Q administration.
References

CONANP, 2006. Zonificación de la Reserva de la Biosfera La Sepultura de acuerdo a su Programa de Manejo.

doi:10.1016/j.ecolecon.2012.08.013

Anim. Sci. 82, 783–790. doi:10.1017/ASC2006112

Egmond, C., Jonkers, R., Kok, G., 2006. One size fits all? Policy instruments should fit the
segments of target groups. Energy Policy 34, 3464–3474. doi:10.1016/j.enpol.2005.07.017

Ferraro, P.J., 2001. Global Habitat Protection: Limitations of Development Interventions and a Role

1719.

positive incentives and information sharing in stimulating adoption of silvopastoral

García-Barrios, L.E., 2012. Innovación socioambiental en la cuenca alta del río El Tablón (CART),
Sierra de Villaflorres, Chiapas. Objetivo, estrategia y métodos de investigación-acción
participativa, in: Bello-Baltazar, E., Naranjo-Piñera, E., Vandame, R. (Eds.), La Otra
Innovación Para El Ambiente Y La Sociedad En La Frontera Sur de México. Red de Espacios
de Innovación Socioambiental, REDISA, pp. 145–170.

Sierra Springs: A generic table-top game addressing conflict and cooperation between
stakeholders involved in managing land, forest and water in a subhumid tropical mountain
watershed, in: International Simulation and Gaming Conference.

Louvain-la-Neuve.

doi:10.1007/s10640-010-9433-y

Hansen, M.C., Potapov, P. V, Moore, R., Hancher, M., Turubanova, S. a, Tyukavina, A., Thau, D.,
Stehman, S. V, Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice,

doi:10.1080/14728028.2010.9752677

innovations: Driven by symbolic and environmental motives. Glob. Environ. Chang. 25, 52–
62. doi:10.1016/j.gloenvcha.2014.01.012

Nordhagen, S., Pascual, U., Drucker, A.G., 2017. Feeding the household, growing the business, or
just showing off? Farmers’ motivations for crop diversity choices in Papua New Guineas.
Ecol. Econ.

Osbaldiston, R., Schott, J.P., 2012. Environmental Sustainability and Behavioral Science: Meta-
doi:10.1177/0013916511402673

Padel, S., 2001. Conversion to organic farming: a typical example of the diffusion of an innovation?
Sociol. Ruralis 41, 40–61. doi:10.1111/1467-9523.00169

for the environmental services of silvopastoral practices in Nicaragua. Ecol. Econ. 64, 374–
385. doi:10.1016/j.ecolecon.2007.04.014

services? Lessons from the Silvopastoral Project in Nicaragua. Environ. Dev. Econ. 13, 299–
325. doi:10.1017/S1355770X08004270

equity and efficiency in payments for environmental services: A conceptual approach. Ecol.
Econ. 69, 1237–1244. doi:10.1016/j.ecolecon.2009.11.004

Pascual, U., Phelps, J., Garmendia, E., Brown, K., Corbera, E., Martin, A., Gómez-Baggethun, E.,
64, 1027–1036. doi:10.1093/biosci/biu146

QGIS Development Team, 2016. QGIS Geographic Information System.

Reutemann, T., Engel, S., Pareja, E., 2016. How (not) to pay: Field experimental evidence on the
design of REDD+ payments. Ecol. Econ. 129, 220–229. doi:10.1016/j.ecolecon.2016.05.020

Dev. 20, 332–339.

Table A1: Original statements in Spanish. Key for topics: (A) importance of external payments in livelihoods; (B) environmental and conservation values; (C) personal attitudes towards work and livelihoods; (D) beliefs and preferences about cattle farming and land use; and (E) preferences and trade-offs between planting fodder trees and other livelihood activities, including perceptions about potential benefits of fodder trees.

<table>
<thead>
<tr>
<th>ID</th>
<th>Topic</th>
<th>Statement</th>
<th>Original statement in Spanish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>My children and grandchildren will work the same land that I cultivate now.</td>
<td>En las tierras que trabajo, trabajarán también mis hijos y nietos.</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>I prefer two hectares of pasture than one hectare of fodder trees.</td>
<td>Prefiero 2 hectáreas de pasto de corte que 1 hectárea de mataratón o guash.</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>The knowledge to earn more is what is of most interest to me from external programmes.</td>
<td>Lo que más me interesa de los programas es lo que aprendo para ganar más dinero.</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>I can maintain my family with my own work, external payments are just an aid.</td>
<td>Puedo mantener a mi familia con mi propio trabajo. Los subsidios sólo ayudan.</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>With tree planting programmes I receive more money in return for my work.</td>
<td>Con los programas de plantar árboles recibo más dinero por mi trabajo.</td>
</tr>
<tr>
<td>6</td>
<td>D</td>
<td>I could increase my benefits in cattle farming without degrading the land.</td>
<td>Podría obtener más ganancias de criar ganado sin por ello estropear la tierra.</td>
</tr>
<tr>
<td>7</td>
<td>E</td>
<td>Cultivating fodder trees involves a lot of effort and little benefit.</td>
<td>Sembrar bastante mataratón o guash significa mucho esfuerzo y poco beneficio.</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>I participate in all external programmes that bring income</td>
<td>Participo en todos los programas que traen recurso</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>It is more convenient for me to cultivate my own food than buying it.</td>
<td>Me conviene más producir mi propia comida que comprarla.</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>Conserving the forest is responsibility of the landowner.</td>
<td>Conservar el bosque es responsabilidad del dueño del terreno.</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>I analyse my costs and benefits and thereafter I work on the most beneficial activity.</td>
<td>Hago las cuentas de lo que mejor me sale y me dedico a ello.</td>
</tr>
<tr>
<td>12</td>
<td>D</td>
<td>My land is ‘getting tired’.</td>
<td>Mis terrenos se están cansando.</td>
</tr>
<tr>
<td>13</td>
<td>D</td>
<td>Benefits from cattle production are larger than loses from its related land degradation.</td>
<td>Lo que da el ganado es mucho más de lo que pierde la tierra.</td>
</tr>
<tr>
<td>14</td>
<td>E</td>
<td>It takes too long for fodder trees to grow.</td>
<td>El mataratón y el guash para forraje tardan demasiado en crecer.</td>
</tr>
<tr>
<td>15</td>
<td>A</td>
<td>We need more external payments so that my children do not need to go to live elsewhere.</td>
<td>Es necesario que me den más subsidios para que mis hijos no tengan que ir a vivir a otro sitio</td>
</tr>
<tr>
<td>16</td>
<td>D</td>
<td>It is more convenient for me to invest money in improving my pastures than in buying cows.</td>
<td>Me conviene más invertir dinero en tener mejores pasturas que en tener más vacas.</td>
</tr>
<tr>
<td>17</td>
<td>E</td>
<td>If I had more money, I would plant fodder trees instead of increasing my cattle.</td>
<td>Si tuviera más terreno, le sembraría mataratón o guash en lugar de aumentar mis vacas.</td>
</tr>
<tr>
<td>18</td>
<td>D</td>
<td>In dry season there is no alternative other than releasing my cows free into the mountain.</td>
<td>En secas no hay otro remedio que soltar las vacas al monte.</td>
</tr>
<tr>
<td>19</td>
<td>D</td>
<td>With more training I could improve very much my work in cattle farming.</td>
<td>Con más capacitación, podría mejorar mucho mi trabajo con el ganado.</td>
</tr>
<tr>
<td>20</td>
<td>E</td>
<td>It is convenient to weed my fodder tree plot even if I have other tasks, to produce more fodder.</td>
<td>Me conviene deshierbar mi parcela de mataratón o guash aunque tenga mucho trabajo, para tener más forraje</td>
</tr>
<tr>
<td>21</td>
<td>A</td>
<td>If the government does not give me external payments, taking care of the forest does not benefit me.</td>
<td>Si el gobierno no me da subsidios, no me beneficia cuidar el bosque.</td>
</tr>
<tr>
<td>22</td>
<td>C</td>
<td>I try new things in my job</td>
<td>Pruebo cosas nuevas en mi trabajo</td>
</tr>
<tr>
<td>23</td>
<td>A</td>
<td>I would rather live by external payments than by working my land.</td>
<td>Prefiero vivir de los subsidios que del trabajo en mis tierras</td>
</tr>
<tr>
<td>No.</td>
<td>Language</td>
<td>Sentence</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>D</td>
<td>I need to improve my pasture, otherwise cattle feed will run out in a few years.</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>B</td>
<td>I can earn more as a cattle farmer if I let other wild animals live.</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>E</td>
<td>In order to dedicate one hectare to fodder trees during two years, I would need more land.</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>1</td>
<td>-.16</td>
<td>-.12</td>
<td>.45 *</td>
</tr>
<tr>
<td>2</td>
<td>-.11</td>
<td>.32</td>
<td>.39 *</td>
</tr>
<tr>
<td>3</td>
<td>.10</td>
<td>.08</td>
<td>.58 *</td>
</tr>
<tr>
<td>4</td>
<td>.23</td>
<td>.54 *</td>
<td>.36</td>
</tr>
<tr>
<td>5</td>
<td>.64 *</td>
<td>.20</td>
<td>.18</td>
</tr>
<tr>
<td>6</td>
<td>.12</td>
<td>.02</td>
<td>.70 *</td>
</tr>
<tr>
<td>7</td>
<td>.50 *</td>
<td>-.04</td>
<td>.35</td>
</tr>
<tr>
<td>8</td>
<td>.66 *</td>
<td>.19</td>
<td>.35</td>
</tr>
<tr>
<td>9</td>
<td>.22</td>
<td>.52 *</td>
<td>.35</td>
</tr>
<tr>
<td>10</td>
<td>.41</td>
<td>.30</td>
<td>.36</td>
</tr>
<tr>
<td>11</td>
<td>.70 *</td>
<td>.28</td>
<td>.34</td>
</tr>
<tr>
<td>12</td>
<td>.29</td>
<td>.29</td>
<td>.42 *</td>
</tr>
<tr>
<td>13</td>
<td>.32</td>
<td>.14</td>
<td>.63 *</td>
</tr>
<tr>
<td>14</td>
<td>.69 *</td>
<td>.08</td>
<td>-.02</td>
</tr>
<tr>
<td>15</td>
<td>.60 *</td>
<td>.20</td>
<td>-.02</td>
</tr>
<tr>
<td>16</td>
<td>.54 *</td>
<td>.25</td>
<td>.11</td>
</tr>
<tr>
<td>17</td>
<td>.08</td>
<td>.24</td>
<td>.47 *</td>
</tr>
<tr>
<td>18</td>
<td>.29</td>
<td>.60 *</td>
<td>-.03</td>
</tr>
<tr>
<td>19</td>
<td>.52</td>
<td>.47</td>
<td>.24</td>
</tr>
<tr>
<td>20</td>
<td>.15</td>
<td>.62 *</td>
<td>.13</td>
</tr>
<tr>
<td>21</td>
<td>.43</td>
<td>.50 *</td>
<td>.25</td>
</tr>
<tr>
<td>22</td>
<td>.30</td>
<td>.57 *</td>
<td>.07</td>
</tr>
<tr>
<td>23</td>
<td>.59 *</td>
<td>.22</td>
<td>.06</td>
</tr>
<tr>
<td>24</td>
<td>.35</td>
<td>.37</td>
<td>.37</td>
</tr>
<tr>
<td>25</td>
<td>.49 *</td>
<td>.25</td>
<td>-.06</td>
</tr>
<tr>
<td>26</td>
<td>.61 *</td>
<td>.44</td>
<td>.00</td>
</tr>
<tr>
<td>27</td>
<td>.43</td>
<td>.45</td>
<td>.21</td>
</tr>
<tr>
<td>28</td>
<td>.73 *</td>
<td>.23</td>
<td>.08</td>
</tr>
<tr>
<td>29</td>
<td>.38</td>
<td>.67 *</td>
<td>.04</td>
</tr>
<tr>
<td>30</td>
<td>.39 *</td>
<td>.14</td>
<td>.05</td>
</tr>
<tr>
<td>31</td>
<td>.00</td>
<td>.60 *</td>
<td>.01</td>
</tr>
<tr>
<td>32</td>
<td>.42 *</td>
<td>.34</td>
<td>.20</td>
</tr>
</tbody>
</table>