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Abstract
This paper presents a new CAD-interfaced analytical tool for the nonlinear dynamic analysis of masonry collapse mechanisms. Utilizing rocking dynamics, the tool derives and solves equations of motion for a broad range of collapse mechanisms, for any user-defined structural geometry. Using as a starting point a digital drawing of the structure in Rhino (a typical CAD software), the tool computes the kinematic constants defining these equations of motion, which are then exported to Matlab and solved for either pulse-response to generate overturning spectra, or full time-histories. The use of the tool is demonstrated by comparing its predictions to results from experimental shake-table tests, as well as against field observations from the 2015 Gorkha earthquake, while its predictive abilities are illustrated using as case-studies the Casa Grande Ruins National Monument in the United States, as well as the Church of San Leonardo Limosino in Italy, which sustained some damage during the 2012 Emilia earthquake sequence. 
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1. Introduction
Typical failure of unreinforced masonry structures generally occurs via specific collapse mechanisms, which have been well documented [1]–[3]. These mechanisms can broadly be divided into in-plane and out-of-plane mechanisms, with local or out-of-plane collapse being  particularly common modes of failure, as was observed during the recent earthquakes in Amatrice, Italy (2016) [4] and Nepal (2015) [5].
Analysis of these collapse mechanisms can be conducted using either numerical methods or analytical tools, with the former comprising techniques such as Finite Element Modelling (FEM) and Discrete Element Methods (DEM). Using FEM, the masonry can either be modelled as a continuum (macro-modelling) or with each unit individually represented and the joints between them modelled as interfaces (micro-modelling). As an alternative, DEM can be used to model the masonry as rigid blocks separated by interfaces of a given stiffness, which enables the capture of large displacement response as well as the opening and closing of the joints.  
However such methods are sensitive to input parameters such as damping and joint properties, and can be both time-consuming and computationally expensive [6], particularly when trying to model collapse. As an alternative, both nonlinear static and dynamic analysis tools have been developed to analytically model these local collapse mechanisms, which are based on the assumption of rigid body behaviour of the masonry macro-elements. While such an approach enables faster assessment and depends on fewer variables than FEM and DEM, it also requires explicit definition of the collapse mechanisms, which depends in turn on user experience and engineering judgement [6].  
Typical assessment tools comprise both force-based and displacement-based procedures, and include the method outlined by the Italian Building Code [7], the FaMIVE procedure proposed by D’Ayala & Speranza [2], [8], as well as various commercial software [9]–[11]. The dynamic resistance of the structure, which increases with its scale, is generally factored into these assessment methods by either using a multiple of the static acceleration required to activate the mechanism (e.g. through the use of a behaviour factor, typically equal to 2, as in the Italian Building Code [7]), or by approximating the dynamic response using a single-degree-of-freedom linear-elastic oscillator. Such an approach tends to incorporate certain dynamic effects, but ignores others, and consequently yields results which are generally conservative [12], which can lead to expensive and unnecessary retrofitting solutions. 
Alternatively, nonlinear dynamic analysis, which directly integrates the equations of motion of the collapse mechanisms, could instead be used to capture the response of these masonry structures under seismic action. Such an approach has been found to better-reproduce experimental results, with considerably less scatter being observed with the experimental data - especially when compared to the equivalent nonlinear static predictions [12].       
To this end, Penna et al. [13], [14] modified the macro-element methods originally developed for the analysis of in-plane mechanisms to account for second-order effects, thereby enabling the simulation of local/out-of-plane failure modes. However this modified macro-element model is currently limited to fairly simple (two-dimensional) geometries and mechanisms. As an alternative, equations of motion for more complex collapse mechanisms can instead be derived using rocking dynamics,  following the approach by Housner [15], who derived equations of motion for a single rigid block rocking on a rigid foundation, assuming that bouncing and sliding do not occur.
Building on Housner’s work, the rocking response of rigid blocks to harmonic motion and pulse-type excitations has been quantified [16], [17], with the latter being found to be particularly destructive to rocking structures. Subsequently closed-form solutions were derived for Housner’s equation of motion for the rocking block when subjected to cycloidal pulses, with analytical equations also being provided for non-dimensional overturning plots so that the response of the block to any pulse-type excitation could be easily predicted, needing only to be scaled by the amplitude and frequency of the excitation [18]. 
Equations of motion were also derived for structures with more realistic geometries such as masonry spires [19], as well as for mechanisms involving multiple elements in the kinematic chain such as cracked wall sections (modelled as a two block mechanism) [20], [21], arches [22], symmetric portal frames [23], [24], and asymmetric portal frames [25] . In the case of simpler mechanisms such as the spire and symmetric portal frame, direct dynamic equivalence has been exhibited with the single rocking block, while the dynamic response of the more complicated multi-block mechanisms can be approximated by linearizing the equations of motion about the point of unstable equilibrium [25]. Furthermore, equations of motion have also been derived for structures such as façades, which are often subjected to external loads in the form of additional masses from floors/beams/roofs as well as thrusts from vaults and tie-bar reactions, which were approximated as static forces [21]. 
However, derivation of these equations of motion (EOM) can be fairly cumbersome and time-consuming, especially in the case of structures which have complicated geometries or mechanisms which involve multiple elements in the kinematic chain. To this end, a new tool has been developed which makes use of digital drawings of masonry structures in a typical CAD software (in this case Rhinoceros or Rhino [26]) to directly generate the relevant equations of motion for user-defined, or automatically generated, collapse mechanisms. These equations of motion are then exported to Matlab where they can be solved to predict the response to either pulse-type ground motions (to generate overturning plots and rapidly compare the relative dynamic resilience of different mechanisms) or full time-histories. This paper aims to outline the core essence of this tool, and demonstrate its broad applicability by using it for the analysis of a diverse range of masonry structures such as regular buildings, monuments, and churches.
2. Methodology
A flowchart illustrating the functioning of the tool can be found in Fig. 1. This section will focus on the derivation of the equations of motion for the different mechanisms using Rhinoscript – which is one of the main contributions of the tool, as well as their solution in Matlab. 
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[bookmark: _Ref511301828]Fig. 1: Flowchart illustrating functioning of tool
2.1 Derivation of equation of motion using Rhinoscript
The mechanisms modelled by the tool can be broadly divided into four different typologies – namely a simple single block mechanism, a single block mechanism with added masses and forces, two block and multiple block mechanisms. Following the approach presented in [21], the equation of motion for each of these mechanisms assumes the same following general linearized form, with linearization occurring about the point of unstable equilibrium (ϕ = ϕcr) in order to obtain local dynamic equivalence with the rocking block:   

					(1)





where is the moment of inertia of the collapsed portion of the structure about the axis of rotation and is the moment caused by the external static forces (if any). represents the critical rotation, about which the equation of motion is linearized, and corresponds to the unstable equilibrium position of the system in the absence of any external static forces. represents the rotational stiffness of the system, while corresponds to the moment provided by the ground motion applied to the structure. Using the following transformation of variables:

						(2)
Equation (1) can be re-written as:

					(3)
Where peq is the equivalent frequency parameter:

						(4)

And is an approximation of the static load multiplier which activates the mechanism:

					(5)






Thus peq and are the main terms defining the linearized equation of motion of the given mechanism, and depend primarily on the kinematic constants,, and , which can be derived solely based on the geometry of the structure, as well as (where relevant), which depends on the external static force applied. 


Furthermore, in the presence of external static forces (i.e. ≠ 0), the overturning rotation – that is, the rotation at which the restoring moment is zero, no longer corresponds to and is instead defined as:  

						(6)
To this end, as part of the tool, scripts have been developed in Rhino to compute these kinematic constants for the four aforementioned mechanism typologies, for any arbitrary or user-defined structural geometry, and which are described in further detail in the following sub-sections (2.1.1-2.1.4). 


2.1.1 	Single block mechanism
[image: ]
[bookmark: _Ref476330578]Fig. 2 Simple single block mechanism (Statue geometry and mesh from EPFL Computer Graphics and Geometry Laboratory)
The simple single block mechanism can be used to capture the dynamic behaviour of many real-world masonry structures which rock monolithically - such as statues (Fig. 2), columns, pillars, and obelisks, as well as corner mechanisms and overturning of elements such as spires, apses and gables, which are commonly found in churches. The kinematic constants for this mechanism are: 
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Where IO is the moment of inertia of the collapsed portion of the structure about the axis of rotation, M is the mass, R is the distance between the center of mass and the axis of rotation and α is the slenderness.  
In the case of structures with fairly regular geometries such as walls (which can be approximated as blocks) and spires (i.e. cones [19]), these geometric properties, and consequently the kinematic constants they define, can be easily derived analytically. However for structures with more complicated or irregular geometries, such as statues, derivation of these kinematic constants is far less straightforward. Thus a script was written in Rhino which made use of the software’s ability to quickly compute geometric quantities such as volumes, centroids, distances and moments of inertia, to determine the aforementioned geometric properties, and consequently the kinematic constants, for any user-defined structural geometry. For example, the geometry could be a meshed point cloud generated from photogrammetry or laser-scan data, as in Fig. 3. 
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[bookmark: _Ref479677168]Fig. 3: Sample CAD geometry to illustrate functioning of script in Rhino 
As input, upon opening the relevant CAD file (e.g. Fig. 3) and calling the script, the user is first prompted to drag-select with the mouse all the objects involved in the mechanism and input the density of the selected objects. For mechanisms involving objects of different densities (for example, a stone column topped with a bronze statue), the user is prompted to first select objects of the first density, then select objects of the second density and so on. The user then defines (draws) the axis of rotation (indicated by the red line in Fig. 2 and Fig. 3) and any cracks which occur, and based upon this input alone the script computes the resultant kinematic constants for the mechanism. These kinematic constants are then written to a text file for export to Matlab, where they are used to generate and solve the corresponding equation of motion. 


2.1.2 	Single block with added masses and forces
[image: ]
[bookmark: _Ref476662977]Fig. 4 Single block mechanism with added masses and forces, adapted from [21] 
Equations of motion have also been derived for the single block mechanism under the influence of additional masses and external static forces [21]. These equations can be used to model the behaviour of walls bearing loads from floors and roofs, which, depending upon which way they span, can transmit both their self-weight and inertial loads to the wall and can thus be modelled as either load-bearing (designated as Mi in Fig. 4) or non-load bearing (Mj in Fig. 4) concentrated masses [21]. The equations also account for the influence of external static forces in the form of thrusts from vaults and roofs (F1 and F3, Fig. 4), as well as the effect of tie-bars (F2 in Fig. 4) [21]. The kinematic constants defining the linearized equation of motion for this type of mechanism are thus given by: 

					(11)
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where IO is the moment of inertia of the collapsed portion of the structure about the axis of rotation and is the sum of the moments of inertia of the load-bearing masses. Mc is the combined mass of the collapsed portion of the structure and the load-bearing masses, whose resulting center of mass is defined by Rc and αc, and Mc* is the combined mass of the collapsed portion of the structure as well as the load-bearing and non-load bearing masses, the position of the center of mass of which is denoted by Rc* and αc*. Similarly, F is the resultant force obtained by adding up all the external forces acting on the wall, which acts at a point defined by Rf and αf so as to preserve the total moment about O [21].
The script written in Rhino in this case is more complex. It first prompts the user to select the main wall (i.e. the wall to which the additional masses will be transmitted) as well as any adjacent walls involved in the mechanism, and define the density, axis of rotation (red line in Fig. 4), and any cracks which occur. The user is then provided with a checkbox and asked to indicate which additional elements are acting on the structure, with the options including floors, the roof, vaults and tie-bars. 
If floors are selected, the user is then prompted to select all the floor elements transmitting loads to the wall in the CAD file and enter their density. The script then cycles through each of the floors and determines how they intersect with the wall – based on the type of intersection, the corresponding concentrated mass is then classified as either load bearing or non-load bearing and is stored in the appropriate mass array. The resultant point of action of the mass, which is determined by finding the centroid of the area of intersection between the floor and the wall, is also stored in an analogous location array. 
Similarly, if the roof option is selected, the user is asked to select the roof element and enter its density. The script then finds the intersection between the roof and the wall, and uses that to determine the orientation of the former relative to the latter. A bounding box is then created and used to calculate the span and height of the roof, which in turn is used to compute the corresponding thrust. This thrust is stored in the array of forces, with the point of application being stored in a separate location array. The mass of the roof is also calculated and, depending on the type of intersection with the walls, is classified as load or non-load bearing, with the corresponding point(s) of application being stored in the appropriate location array. 
If the vault option has been selected, the user is prompted to select the relevant macro-element and, as in the case of the roof element, a bounding box is then used to calculate the height, span and length of the vault, as well as the height to span ratio, with the latter being used to determine the vertical and horizontal thrusts using Ungewitter’s tables (assuming quadripartite vaults) [27]. Since thrusts from the table also depend on the thickness of the vault and material used in its construction, the user is asked to select an option from a set of five cases, which are:
a. ½ lightweight brick (125 mm)
b. ½ strong brick (125 mm) or ¾ lightweight brick (190 mm)
c. ¾ strong brick (190 mm) or 1 lightweight brick (250 mm)
d. 1 strong brick (250 mm) or 200 mm sandstone
e. 300 mm rubble vault
Based on this input, the script then automatically determines the vertical thrust, which is converted into a load-bearing mass, and the horizontal thrust, which is treated as a static force, and which are stored in the appropriate arrays. The corresponding points of application of both the mass and force are also determined based on the intersection of the vault with the walls and are stored in their respective point cloud arrays. 
Finally if the tie bar option is selected, the user is prompted to enter the number of tie bars and for each one is made to select the element and enter the magnitude of the force in the bar, which is stored in the force array. The point of application of each tie bar force is then determined based on the intersection of the bar element with the façade wall, and is stored in the location array. 
The script then cycles through each of the mass, force and point cloud arrays to determine Mc, Rc, αc, Mc*, Rc*, αc*, F, Rf and αf. These terms are used to calculate the corresponding kinematic constants as defined by Equations 11-16, which are then written to a text file for export to Matlab.   
2.1.3	Two block mechanism
[image: ]
[bookmark: _Ref477439307]Fig. 5 Two block mechanism, image on right adapted from  [21]
The two block mechanism is used to capture the dynamic behaviour of structures such as façades which are well-restrained at both the top and bottom, resulting in the formation of a vertical arching mechanism, with two additional hinges forming – one at the top and another at an arbitrary location along the wall height (as indicated in Fig. 5). The height hc at which the intermediate hinge occurs depends on the self-weight of the wall W, the external vertical force acting on it N, the base area (l x b) and full height of the wall h, as well as the tensile strength of the mortar fmt. Following the approach presented by Sorrentino et al. [28], hc can be determined analytically using the following equation:  

		(17)
Once hc has been determined, the wall can be divided into two blocks and the kinematic constants for the linearized equation of motion computed using Eqns. (18) – (23): 
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[bookmark: _GoBack]where IO1 and IO2 are the moments of inertia of the bottom and top blocks about their respective axes of rotation, while α1 and α2 are the respective block slenderness values. R2 is the distance between the center of mass of the top block and its axis of rotation, while m1 and m2 are the masses of the bottom and top blocks, and ξ  represents the distance from the edge support at which the external vertical force N acts, normalized by the thickness of the wall b, as illustrated by Fig. 5c.
In this case, the script written in Rhino first prompts the user to select the main wall involved in the mechanism, and to draw the axis of rotation at its base (O in Fig. 5d). The user is then asked to select the structural component(s) transmitting external vertical forces N to the wall. Based on this input, the script determines the exact position at which this force acts, by finding the centroid of the area of intersection between the wall and the selected structural component(s). The user is then prompted to enter the relevant material properties – such as the densities of the wall ρw and the structural components ρsc, as well as the tensile strength of the mortar fmt. The script then computes the volumes of the main wall and selected structural components, multiplying them by the input densities to get W and N respectively. Using a bounding box, the full height h and base area (l x b) of the main wall are determined, and Eq. (17) is used to calculate the height hc at which the intermediate hinge develops. A cutting plane is then generated at hc and is used to split the wall into two blocks/segments, as well as create an additional axis of rotation at H (Fig. 5d). The relevant geometric properties and consequently kinematic constants are then computed, before being written to a text file for export to Matlab. 
2.1.4 	Multiple block mechanism 
[image: ]
[bookmark: _Ref477446113]Fig. 6: Multiple block mechanism: (a) Location of side-aisle vault within church, (b) collapse mechanism of macroelement, (c) geometric properties of the multiple blocks, as adapted from [25]
Equations have also been derived for the multiple block mechanism (e.g. Fig. 6) [25], which can be used to model the dynamic response of structures such as arches, vaults, portal frames and belfries, which are commonly found in churches. This mechanism comprises three blocks with four hinges (labelled A-D as indicated in Fig. 6c), and it is assumed that once rocking motion initiates, the location of these hinges does not change – only reflecting to the opposite face of the block upon impact – thereby leading to one set of hinges for positive rotations (ABCD), and another for negative rotations (A’B’C’D’) [25]. The linearized equation of motion for this type of mechanism is fairly complex and the expressions defining the corresponding kinematic constants can be found in [25] as well as in Fig. 7. 
The script written in Rhino for this mechanism is far more complicated than those written for the other three mechanisms. As input, the user is first prompted to select the three sets of objects (segments AB, BC and CD in Fig. 6c) and define two sets of four hinges (one set for positive, and one reflected set for negative rotations), as well as one axis of rotation (represented by the red line in Fig. 6a), which the script translates to the other hinges to create the other three/seven rotation axes. Based upon this input, the script then automatically determines the geometric properties such as mass, moment of inertia, distance between hinges etc. as well as φ, ψ and r for each of the three blocks. Moreover, φcr, the critical rotation of the system, is also obtained by iteratively solving (within the script in Rhino) the following equation for the first derivative of the potential energy of the system, for both the original and reflected hinge locations:

	(24)



The other kinematic constants (,,) are then computed by plugging the value of the critical rotation into the expressions found in [25], before being written to a text file for export to Matlab. A more detailed explanation about the functioning of this script can be found in Fig. 7.
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[bookmark: _Ref508791765]Fig. 7: Flowchart illustrating functioning of the Rhinoscript for the multiple block mechanisms 
2.2 Solution of equation of motion in Matlab 

The kinematic constants, upon being exported to Matlab, are used to determine peq (Eq. 4) and  (Eq. 5), which in turn are used to generate the linearized equation of motion as defined by Equation 3. However, it should be noted that this equation assumes rigid blocks rocking on rigid foundations/interfaces. In the case of elastic interfaces and/or interfaces with a finite compressive strength, the equation of motion needs to be modified, and these modifications will be addressed in future work. 
The equation of motion as it currently stands can then be solved either for the pulse response or the full time-history, depending on the type of analysis being conducted. The pulse response in particular can be useful for comparing the relative dynamic resilience of different mechanisms [21], and prioritizing retrofit solutions, as well as modelling known near-fault seismic scenarios. 
One additional parameter to consider when solving the equation of motion for both the pulse response and full time-history is the coefficient of restitution η, which measures the energy dissipated by the block(s) during impact. For the simple single block mechanism undergoing two-sided rocking, the following coefficient of restitution proposed by Housner [15] is used: 

					(25)
For one-sided rocking (commonly observed in façades), the following coefficient of restitution proposed by Sorrentino et al. [29] is used instead:

			(26)
As both of these coefficients depend entirely on the geometry of the structure, they are also calculated as part of the script in Rhino for the simple single block mechanism. However, it should be noted that these derivations assume inelastic impact between the blocks and the ground, providing the minimum amount of energy dissipated at impact – thus yielding a conservative estimate for this parameter. Alternatively, a suitable coefficient of restitution can also be provided by the user based on the results of experimental tests (e.g. [29], [30]). 
In the case of the other mechanisms, derivation of the coefficient of restitution is not as straightforward. Similar to the single block mechanism, analytical expressions/models can be used for the coefficient of restitution for the two [28] and multi-block [22] mechanisms – however these tend to be quite complex. As an alternative, in keeping with the assumptions of [21], the coefficient of restitution can instead treated as a parameter that is independently specified by the user, calibrated based on the results of either experimental campaigns [30], [31] and/or numerical simulations [22]. 

2.2.1	Pulse response (overturning plots) 
[image: ]
[bookmark: _Ref477866382]Fig. 8: Sample dimensionless overturning plot for both one and two-sided rocking 

The equations of motion exported to Matlab can be used to generate overturning plots, which predict the response of the structure to single sinusoidal acceleration pulses of varying frequency (fp) and amplitude (ap), and depend primarily on peq,, and the coefficient of restitution η. As the general linearized equations of motion derived for the different mechanisms have local dynamic equivalence with the single rocking block, the closed-form solutions for overturning plots obtained by Dimitrakopoulos & DeJong [18] can be used. However, to avoid regenerating these plots for every prediction, a library of dimensionless plots (Fig. 8) for different coefficients of restitution was instead pre-generated and stored in the Matlab directory. In the case of one-sided rocking, it was assumed that collapse of the structure is governed by positive pulse overturning without impact, which is true for the vast majority of practical one-sided mechanisms [21], and is therefore independent of the coefficient of restitution. This assumption results in only a single dimensionless plot being needed. 

Thus for each mechanism, depending on the coefficient of restitution either calculated or assumed, as well as the type of rocking (i.e. one or two-sided), the appropriate dimensionless plot is then selected by the tool and scaled by peq and in order to get the actual overturning envelope for that particular mechanism. 
Furthermore, as a number of collapse mechanisms tend to take place above ground level, a methodology was also developed to scale the overturning envelopes to account for dynamic amplification of the ground motion up the structure. Extending the approach originally proposed by Priestley [32] and outlined in [33], elastic modal analysis is used to generate response spectra by solving the equation of motion for an equivalent single-degree-of-freedom system with 5% damping and a natural frequency fn corresponding to that of the structure under consideration, under the influence of single acceleration sine pulses of varying frequency fp [33]. Only first-mode response is considered, without taking higher mode effects into account. The resulting pulse response spectrum (Fig. 9a) is obtained by plotting the variation of the maximum recorded response acceleration ar (normalized by the input ground acceleration ag) against the normalized pulse frequency fp/fn. 
This response acceleration is assumed to act at the effective center (modal height) of seismic force he, and assuming a linear first-mode shape (Fig. 9b, [32]), the response acceleration at heights h above and below he can then be determined through linear extrapolation. However, ar is only the acceleration relative to the ground, and thus must be combined with the ground acceleration ag in order to obtain the total acceleration of the structure asc. In order to do this, the conservative square-root-sum-of-squares (SRSS) approach is used [32], whereby:

					(27)
Leading to the scaled acceleration profile as depicted in Fig. 9c. 
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[bookmark: _Ref508974665]Fig. 9: Methodology for scaling the overturning plots: (a) Pulse response spectrum; (b) Linear mode shape assumed; (c) Scaled acceleration profile; (d)  Scaled pulse response spectra and (e) Scaled overturning plots. 
This acceleration profile is then used to scale the pulse response spectrum (Fig. 9a) for different heights within the structure – as illustrated by Fig. 9d. These modified linear-elastic pulse response spectra are then used to scale the corresponding overturning plots in Matlab (Fig. 9e). 
Moreover, as the overturning plots enable rapid comparison of the relative dynamic resilience of the different collapse mechanisms, a script was also written in Matlab-portion of the tool to automatically detect the most vulnerable or critical mechanism for each pulse frequency.
2.2.2	Full time-history analysis 
As an alternative to the overturning plots, full time-history analyses can also be conducted for the considered structures/mechanisms. The results in this case are presented in terms of the maximum rotation θ of the structure over time, with the rotation being expressed as a fraction of the overturning rotation ϕov (as defined in Section 2.1 and equal to α, i.e. the slenderness of the block, in the case of the simple single block mechanisms in the absence of any external static forces). Overturning is herein assumed to occur when this ratio exceeds 1, though an appropriate safety factor such as that in the Italian Building Code [7], could also be applied. 
Furthermore, in order to account for amplification of the ground motion, an approach similar to that proposed in Section 2.2.1 can be employed - but by replacing the pulse response spectrum with the acceleration response spectrum generated for the recorded signal (assuming 5% damping). Using the acceleration response spectrum, the spectral acceleration Sa at the natural period of the structure Tn can then be determined, which is substituted into Eq. (27) (in place of ar) to get the scaled acceleration asc. The level of scaling to be applied to the ground motion is then found by dividing asc by the input ground acceleration ag, leading to the following expression for the scale factor SF:

					(28)
Alternatively, simple code-based equations to account for amplification up the structure (such as those defined in the Eurocode [34] or the New Zealand Standard, NZS 1170.5 [35]) could be used instead. 
In addition to the scale factor determined either using Eq. (28) or code-based methods, other levels of scaling can also be applied to the earthquake ground motion in order to gauge their influence on the dynamic response of the structure. 
3. Case studies
In order to demonstrate proof-of-concept of the tool and illustrate its different possible applications, a range of case studies are presented here, comprising masonry structures of varying scales and typologies such as regular buildings, monuments, and churches. Furthermore, depending on the type and purpose of the analysis, either overturning plots or full time-histories (or both) are generated for each of these different structures/mechanisms. 
3.1 LNEC 3-D Shaking Table Tests, Portugal
The tool’s ability to provide realistic predictions was first demonstrated by using it to simulate the experimental tests conducted on two masonry mock-ups in the LNEC-3D shaking table as part of a workshop on the out-of-plane assessment of existing masonry buildings [36]. The mock-ups used for the tests were U-shaped and comprised a façade with a central opening and a gable, as well as two transverse walls – one blind, and one with a window. While the first mock-up was constructed using slightly perforated clay bricks in an English bond arrangement (Brick House, with density ρbr = 1890 kg/m3, Fig. 10a), the other was made up of irregular stones arranged in multiple leaves (Stone House, with density ρst = 2360 kg/m3, Fig. 10b) [36]. The Rhino models generated for each of these structures can also be found in Fig. 10. 
[image: ]
[bookmark: _Ref479685850]Fig. 10: Shake table test mock-ups: (a) Brick House and (b) Stone House [36]
Both mock-ups were subjected to unidirectional seismic loading of increasing intensity applied in a direction perpendicular to the façade. The accelerogram used for the testing was taken from the N64E strong ground motion component of the 2011 Christchurch (New Zealand) earthquake, and was filtered and cropped in such a manner so that only the most intense part of the motion remained [36]. The resulting seismic reference signal used as input in the tests is shown in Fig. 11.  
[image: ]
[bookmark: _Ref479688406]Fig. 11: Input ground motion (filtered and cropped) as used in the shake-table tests 
A range of different collapse mechanisms were evaluated for both structures, as illustrated by Fig. 12, with the collapsed portion of the structure being highlighted in blue and the respective axes of rotation being indicated by the black lines. All the considered mechanisms are variations of the simple single block mechanism undergoing two-sided rocking, with the exception of Mechanisms 3 and 4 of the Stone House (SH_M3 and SH_M4), which undergo one-sided rocking. Note that Mechanisms 1 and 2 are identical for both structures, while Mechanisms 3 and 4 for the Stone House were selected based on the pattern of stonework within the structure, with a limit being imposed on the angle of the diagonal cracks. These mechanisms were not imposed for the brickwork due to the bonding pattern. The resulting kinematic constants derived by the script in Rhino for these mechanisms can be found in Table 1. Note that the coefficients of restitution η derived for the one-sided rocking cases are negative due to the rebounding effect against the transverse walls [29]. 
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[bookmark: _Ref479689613]Fig. 12: Different mechanisms evaluated for the Brick House (BH) and Stone House (SH) mock-ups
[bookmark: _Ref479690102]Table 1: Kinematic constants computed by Rhinoscript for the different mechanisms 
	Mechanism
	peq (s-1)
	λ (rad)
	η

	BH_M1
	5.77
	0.61
	0.54

	BH_M2
	4.16
	0.26
	0.89

	SH_M1
	4.77
	0.94
	0.07

	SH_M2
	3.84
	0.49
	0.65

	SH_M3
	2.24
	0.14
	-0.70

	SH_M4
	2.28
	0.17
	-0.63


These kinematic constants were then exported to Matlab where the corresponding equations of motion were solved for the full time-history for different levels of scaling of the input ground motion. While most of the considered mechanisms were found to be fairly resistant to collapse, experiencing very small rotations with magnitudes in the order of 10-3 radians, Mechanism 2 of the Brick House (BH_M2, Fig. 13a) and Mechanism 3 of the Stone House (SH_M3, Fig. 13b) were observed to overturn for higher levels of scaling of the earthquake ground motion. To facilitate comparison with the results of the real tests [37], the rotations predicted by the analytical model for both structures were converted into the corresponding displacements at the peak of the gable and are listed in Table 2 and Table 3 for the Brick House and Stone House respectively. 
[image: ]
[bookmark: _Ref479755355]Fig. 13: Time-history responses for different levels of scaling (different PGAs) of the input ground motion for (a) Brick House Mechanism 2 (BH_M2) and (b) Stone House Mechanism 3 (SH_M3)
For the Brick House, the simulations of Mechanism 2 predicted relatively small response for smaller ground motions and then collapse for the 0.84g and 1.27g tests. Table 2 shows that for lower levels of scaling, the predictions and experimental results both indicate small displacements; the experimental results may be slightly higher due to elastic (non-rocking) displacements. For the 0.41g test, rocking amplification [38] resulted in a significant over-prediction of a maximum displacement. This type of behaviour demonstrates the chaotic nature of the rocking response. For the 0.84g test, the analytical model predicted collapse while a maximum displacement of 5.44 mm was recorded during the experiment, while the 1.27g test resulted in collapse of both the analytical model and the experimental test. 
[bookmark: _Ref511222328]Table 2: Analytical and experimental displacements obtained for the Brick House 
	
	
	Maximum relative displacement (mm)

	Test
	PGA (g)
	BH_M1 
	BH_M2 
	Experimental 

	1
	0.18
	0.00
	0.00
	0.16

	2
	0.29
	0.00
	0.06
	0.19

	3
	0.36
	0.00
	0.10
	0.33

	4
	0.41
	0.00
	189.20
	0.44

	5
	0.52
	0.00
	0.04
	0.89

	6
	0.78
	1.50
	0.01
	1.95

	7
	0.84
	2.25
	collapse
	5.44

	8
	1.27
	2.50
	collapse
	collapse


For the Stone House, the simulation predicted Mechanism 3, but this was prevented from occurring in reality due to the good interlocking of the stones at the corner. Instead, interlocking of stones forced Mechanism 4 to occur. After the shaking table tests, the Stone House was found to have cracked in a pattern corresponding to this mechanism, though overturning did not occur. In fact, a comparison of the analytical predictions for SH_M4 and the experimental results (Table 3) reveals a reasonably good correlation between the two sets of displacements for the tests up to 0.66g. Qualitatively, for higher levels of scaling of the ground motion, it can also be observed that neither the analytical model nor the experimental test resulted in overturning of the structure. 
[bookmark: _Ref511226343]Table 3: Analytical and experimental displacements obtained for the Stone House 
	
	
	Maximum relative displacement (mm)

	Test
	PGA (g)
	SH_M1
	SH_M2
	SH_M3
	SH_M4
	Experimental

	0
	0.38
	0.00
	0.00
	3.03
	0.85
	1.66

	1
	0.40
	0.00
	0.00
	4.41
	0.01
	2.07

	2
	0.41
	0.00
	0.00
	0.20
	3.58
	3.47

	3
	0.66
	0.00
	0.33
	60.88
	6.34
	7.79

	4
	1.02
	0.09
	1.30
	7.16
	0.61
	25.39

	5
	1.07
	0.27
	0.19
	collapse
	21.21
	218.49


This case study exemplifies the potential of this simplified method of analysis. However, it should be pointed out that the effectiveness of these predictions depend on realistic, feasible, collapse mechanisms, which currently relies on  engineering judgement and proper consideration of factors such as masonry texture, presence of openings, quality of connections at corners etc.
3.2 Basantapur Column, Nepal 
The tool was also used to model a monumental column topped with a statue of the Hindu god Garuda, found in the Basantapur Durbar Square in Nepal (referred to from here on out simply as the Basantapur Column). This structure was badly damaged during the 2015 Gorkha earthquake, with the top portion of the column, comprising stone segments (ρst = 2300 kg/m3) and the bronze statue (ρbr = 8700 kg/m3), completely overturning (Fig. 14, left). Only the collapsed portion of the column was modelled in Rhino, and while the geometry of the stone segments was recreated using survey data taken by hand, the geometry of the statue, which had been removed soon after the earthquake, had to be estimated using pre-existing photographs and reconstructed using simple geometries, as illustrated by Fig. 14, right. 
[image: ]
[bookmark: _Ref477876939]Fig. 14: Basantapur Column (Nepal) – before and after the 2015 Gorkha earthquake (Source: Alamy/AP) (L) 
Rhino model of collapsed portion of column (R)
The collapse of this structure was assumed to take the form of a simple single block mechanism undergoing two-sided rocking, with the axis of rotation defined by the dashed black line in Fig. 14. The kinematic constants generated by the script in Rhino for this mechanism can be found in Table 4. These constants were then used to define the corresponding equation of motion, with which a full time-history analysis was conducted using the East-West component of the Gorkha earthquake ground motion, as recorded at the USGS KANTP station and shown in Fig. 15a. 
[bookmark: _Ref509491864]Table 4: Kinematic constants computed by Rhinoscript for Basantapur Column
	Mechanism 
	peq (s-1)
	λ (rad)
	η

	Basantapur Column
	2.06
	0.16
	0.96


In order to account for amplification of the ground motion, the natural frequency fn and modal height he of the column were first determined by treating the surviving 4.60 m of the structure as a cantilever, and the collapsed portion as a point load on top. Using Lord Rayleigh’s principle as in [19] (and assuming Young’s modulus Est = 45 GPa), fn was estimated to be 7.7 Hz (leading to a natural period Tn of 0.13 s), and he 4.54 m. As the input ground motion is to be applied to the base of the collapsed portion of the structure (and consequently the top surface of the surviving portion of the column), h is therefore 4.60 m. Using the acceleration response spectrum generated for the recorded signal (Fig. 15b), the spectral acceleration Sa at Tn is determined to be 0.19 g – as indicated by the red dot. Using Eq. (28), the required scaling factor is then calculated, and is found to be 1.6 - which is slightly lower than the scale factor of 1.8 calculated using the New Zealand Standard, and considerably lower than the scale factor of 2.9 determined using the Eurocode. Furthermore, a number of lower levels of scaling (as well as one higher one) were also considered, and the results of these analyses can be found in Fig. 16a.
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[bookmark: _Ref479755399]Fig. 15: (a) East-West component of Gorkha earthquake ground motion as recorded at USGS KANTP station; (b) corresponding acceleration response spectrum (5% damping)
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[bookmark: _Ref509407019]Fig. 16: Basantapur Column: (a) Time-history responses for ground motion scaling values shown; (b) Scaled overturning envelope (right figure is zoomed view of left) for same ground motion scaling values
In addition to the full time-history analyses, using the method outlined in Section 2.2.1 and fn, he and h as determined earlier, the equation of motion was also solved for the pulse-response in order to generate the scaled overturning plot, as illustrated by Fig. 16b. To facilitate comparison between the predictions of the overturning plot and those of the time-history analyses, the maximum single sinusoidal pulse that could be extracted from the ground motion was plotted on the overturning envelope for different levels of scaling of the pulse amplitude, with filled circles (•) being used to represent cases where the column overturned in the time-history simulation and crosses (x) being used to represent cases where it did not. This pulse, indicated in red in Fig. 15a, has an unscaled amplitude ap of 0.158 g, and a frequency fp of 0.196 Hz. In general, a fairly good correlation was observed between both sets of results, with the overturning plot yielding slightly less conservative predictions than its time-history counterpart – thus demonstrating that for near-source records pulse envelope prediction can also be a useful method for gauging the response of the structure. 
3.3 Casa Grande Ruins National Monument, USA 
[image: \\MJD97NAS\Anjali\Casa Grande\images\IMG_6104.JPG]
[bookmark: _Ref477954259]Fig. 17: Great House of the Casa Grande Ruins National Monument (USA)
The case studies used to illustrate potential applications of the tool so far have comprised fairly simple/regular structural geometries. Thus in order to demonstrate the tool’s ability to analyse structures with complex geometries (such as those which have been reconstructed using point cloud data from a laser scanner), it was also used for the safety assessment of the walls of the Great House of the Casa Grande Ruins National Monument in Arizona, USA (Fig. 17). Made of caliche (ρc = 2240 kg/m3, Ec = 6.89 GPa) the structure is the largest surviving prehistoric earthen building in the United States, and is the only surviving example of Classic Period Hohokam “Great House” architecture [39]. A seismic analysis of 7 different wall sections (comprising both exterior and interior walls) of the house was conducted, resulting in a total of 8 different mechanisms (as two mechanisms were considered for Wall 0), as illustrated by Fig. 18. 
Models of each of the walls were created in Rhino using point cloud data obtained from the laser scan of the site. As the walls have fairly irregular geometries, the point cloud data was used to construct a mesh which in turn was used to generate a closed solid. Each wall was assumed to behave like single rocking block, with the axis of rotation being defined at the base of the wall section, while two-sided rocking was assumed in all cases. Table 5 lists the kinematic constants calculated by the script in Rhino for each of these different mechanisms. 
The corresponding equations of motion, upon being exported to Matlab, were solved for the pulse response in order to generate overturning plots, as illustrated by Fig. 19. As a number of the mechanisms (namely W0b, W1, W4 and W6) take place above ground level, their overturning plots needed to be scaled using the method outlined in Section 2.2.1. To do this, fn, he and h for each of these walls were determined using Lord Rayleigh’s principle, and are listed in Table 6 (alternatively, if desired, a FEM analysis could be conducted to estimate the natural frequency.) As multiple mechanisms were being compared, the tool automatically determined the critical mechanism for each pulse frequency. From this comparison it was found that Wall 0a was most likely to overturn for lower pulse frequencies (< 0.6 Hz), while Wall 6 was most vulnerable for pulses in the range of 0.6 – 3.0 Hz. For higher frequency pulses Wall 0b would collapse first, although at a completely unfeasible ground acceleration, which is not of interest in practice. 
[image: ]
[bookmark: _Ref477955578]Fig. 18: Casa Grande Ruins (USA) - laser scan geometry and considered mechanisms (all dimensions in m)
[bookmark: _Ref477958130]Table 5: Kinematic constants computed by Rhinoscript for different wall mechanisms 
	Mechanism
	peq (s-1)
	λ (rad)
	η

	Wall 0a (W0a)
	1.60
	0.14
	0.97

	Wall 0b (W0b)
	3.36
	0.54
	0.62

	Wall 1 (W1)
	2.15
	0.25
	0.90

	Wall 2 (W2)
	1.62
	0.24
	0.91

	Wall 3 (W3)
	1.62
	0.21
	0.94

	Wall 4 (W4)
	2.67
	0.35
	0.82

	Wall 5 (W5)
	1.63
	0.25
	0.91

	Wall 6 (W6)
	2.26
	0.21
	0.94


[bookmark: _Ref510002713]
[bookmark: _Ref511209043]Table 6: Parameters used for scaling the overturning plots for the Casa Grande Ruins National Monument 
	Mechanism
	fn (Hz)
	he (m)
	h (m)

	Wall 0b (W0b)
	7.72
	4.73
	4.98

	Wall 1 (W1)
	6.22
	4.66
	3.11

	Wall 4 (W4)
	6.16
	4.20
	3.76

	Wall 6 (W6)
	2.50
	6.01
	4.77



[image: ]
[bookmark: _Ref477960329]Fig. 19: Comparison of the overturning envelopes for the different mechanisms 
3.4 Church of San Leonardo Limosino, Italy  
[image: ]
[bookmark: _Ref478633130]Fig. 20: Church of San Leonardo Limosino after the (a) 20th May 2012 shock; (b) 29th May 2012 shock (L)
Rhino model of church (R)
The mechanisms modelled by the tool thus far have been, for the most part, variations of the simple single block mechanism. Thus, to demonstrate the tool’s ability to predict collapse of more complex mechanisms, the church of San Leonardo Limosino in Italy was chosen as a case-study. Constructed in the 15th century, the structure comprises a central nave with side aisles which are covered by cross-vaults, as well as a roof supported by king-post trusses, a rounded apse, and a bell tower [40]. The church was badly damaged during the 2012 Emilia earthquake – during the first shock on May 20th, the spire of the bell tower sustained some damage and a portion of the façade above the window overturned out of plane (Fig. 20a). Following the second shock on May 29th, the façade sustained further damage, while the bell tower was partially destroyed (Fig. 20b). 
The Rhino model of this structure (Fig. 20, right) was generated based on the dimensions and drawings presented in Decanini et al. [40]. While the actual observed failure mechanisms – namely the overturning of the spire and façade, and collapse of the bell tower (Fig. 21a) - were all modelled by the tool, given that all three are simply variations of the simple single block mechanism, a number of other potential mechanisms were evaluated as well, which were selected based on the presence of certain macro-elements within the church (Fig. 21b). These included more complex mechanisms such as other possible overturning mechanisms for the façade, which accounted for the weight of the roof (ρ = 750 kg/m3, with  density of 1800 kg/m3 assumed for the masonry), thrust of the vault (Fv = 41 kN, from Ungewitter’s table [27], assuming Case B, Section 2.1.2), and the restraining influence of tie-bars (Ft = 40 kN), and which were modelled as a single block mechanism with added masses and forces (Fig. 22a), as well as the collapse of the side-aisle vault, which was modelled as a multiple-block mechanism undergoing one-sided rocking (Fig. 22b). The kinematic constants derived by the scripts in Rhino for each of these different mechanisms can be found in Table 7. 
[image: facade2]
[bookmark: _Ref479763028]Fig. 21: Collapse mechanisms evaluated for Church of San Leonardo Limosino: (a) actual mechanisms and (b) potential mechanisms 
[bookmark: _Ref479763145]Table 7: Kinematic constants computed by Rhinoscript for the different mechanisms
	Mechanism
	peq (s-1)
	λ (rad)
	η

	1. Spire
	2.75
	0.23
	0.91

	2. Bell tower (corner)
	1.04
	0.15
	0.98

	3. Façade (cracked at window)
	2.19
	0.12
	N/A

	4. Bell tower (frame)
	2.21
	0.21
	0.92

	5. Apse
	1.96
	0.13
	N/A

	6. Façade 
	1.39
	0.05
	N/A

	7. Side aisle
	1.64
	0.83
	N/A



[image: ]
[bookmark: _Ref478634020]Fig. 22: Complex mechanisms considered: (a) Overturning of the façade and (b) Side aisle vault collapse 
As the objective in this case was to compare the relative dynamic resilience of the different collapse mechanisms and identify the most vulnerable one(s), the corresponding equations of motion generated for each of the considered mechanisms in Matlab were solved for the pulse response in order to produce overturning plots as illustrated by Fig. 23, with the tool automatically determining the critical mechanism for each pulse frequency. However as a number of these mechanisms (namely 1 – 6) take place at a height above ground level, potential amplification of the ground motion up the structure was also accounted for through an extension of the method described by Priestley [32] and outlined in Section 2.2.1. As in the case of the walls of the Casa Grande Ruins, fn, he and h needed to be determined for each of the mechanisms and are listed in Table 8. For mechanisms involving the bell tower (i.e. 1, 2 and 4), the structure was assumed to be free-standing (independent of the church) and its natural frequency was calculated using Lord Rayleigh’s principle as in [19] (assuming E = 2.4 GPa). For mechanisms involving the main church body (i.e. 3, 5 and 6) the natural frequency of the structure was estimated based on finite element analyses conducted on churches of similar size ([41]–[46]). 
From a comparison of the scaled overturning plots, it was found that the façade mechanism was the most vulnerable to overturning for frequencies less than 0.5 Hz and greater than 2.0 Hz, while the spire was most susceptible to collapse for pulse frequencies in the range of 0.5 – 2.0 Hz. Note that the façade mechanism plotted here was the one that was actually observed (M3), even though M6 was found to be more vulnerable to collapse. Nevertheless, these predictions correspond well with what was observed in reality – as both the façade and spire were the first to fail during the earthquake in 2012 [40], [47]. 
[bookmark: _Ref510618828]Table 8: Parameters used for scaling the overturning plots for the Church of San Leonardo Limosino
	Mechanism
	fn (Hz)
	he (m)
	h (m)

	1. Spire 
	1.82
	14.05
	20.25

	2. Bell tower (corner)
	1.82
	14.05
	9.00

	3. Façade (cracked at window)
	2.89
	6.64
	7.75

	4. Bell tower (frame)
	1.82
	14.05
	13.00

	5. Apse
	2.89
	6.64
	3.00

	6. Façade 
	2.89
	6.64
	3.00


[image: ]
[bookmark: _Ref478634025]Fig. 23: Comparison of the overturning envelopes generated for the different mechanisms 
4. Conclusions
In this paper, a new tool is presented for the nonlinear dynamic analysis of masonry collapse mechanisms. The tool makes use of rocking dynamics to derive and solve equations of motion for a range of different failure mechanisms, for any user-defined structural geometry, using as a starting point a digital drawing of the structure in a typical CAD software (in this case Rhino). Scripts have been written in Rhino which make use of the program’s ability to quickly compute geometric properties for any arbitrary structural geometry, to derive the kinematic constants defining the equations of motion for the different mechanisms, which can broadly be classified as single block, single block with added masses and forces, two block and multiple block mechanisms. These kinematic constants are then exported to Matlab, where they are used to generate the relevant equations of motion which can be solved for either the pulse response (for known near-fault seismic scenarios or to generate overturning plots to rapidly compare different mechanisms) or full time-history response. 
The use of the tool was first demonstrated by using as a case-study experimental tests conducted on two masonry mock-ups in the LNEC 3-D shaking table in Portugal. A range of different mechanisms were evaluated, with full time-history analyses being conducted for each of them, for different levels of scaling of the input ground motion and in general a reasonably good correlation was observed between the results of the tool and the outcomes of the lab tests. However, this correlation is influenced by the selection of appropriate mechanisms for analysis, which depends in turn upon user experience and engineering judgement. 
Further illustration of potential uses of the tool was also carried out by analysing the Basantapur Column in Nepal, which partially collapsed during the 2015 Gorkha earthquake. In this case, the equation of motion was solved for both pulse and full time-history ground motion, thus illustrating for a fairly simple geometry two possible ways to use the tool, with the results of both sets of analyses comparing well with the field observations. 
Finally, the tool’s predictive capabilities were illustrated by using as case studies the Casa Grande Ruins National Monument in the United States, as well as the Church of San Leonardo Limosino in Italy, which sustained some damage during the 2012 Emilia earthquakes. The objective of the former was to illustrate the ability of the tool to model the response of irregular (laser-scanned) structural geometries, while the purpose of the latter was to highlight its capacity for modelling more complex mechanisms. As multiple mechanisms were being compared in both case studies, overturning plots were generated, thus also demonstrating the tool’s ability to identify the most vulnerable mechanism(s). 
The tool provides a faster and less computationally-expensive alternative to typical numerical analysis procedures such as finite element analysis and discrete element methods, thereby allowing for rapid comparison of different mechanisms, prioritization of retrofit solutions, as well as determination of the most vulnerable mechanism(s). At the same time by making use of rocking dynamics, it accounts for the dynamic resistance of the structure in a more accurate manner than many current code-based assessment procedures. Furthermore, its implementation in Rhino enables the equations of motion to be derived for any arbitrary geometry, and thus in contrast to most contemporary nonlinear dynamic analytical methods it is not limited to simple structural geometries. Finally, the use of a pre-existing CAD file as input eliminates the need to generate a new model of the structure for analysis.
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