P465L ppary mutation confers partial resistance to the hypolipidemic action of fibrates.

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Diabetes, Obesity and Metabolism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>DOM-18-0100-OP.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Rodriguez-Cuenca, Sergio; University of Cambridge, Wellcome Trust MRC Institute of Metabolic Sciences
Carobbio, Stefania; University of Cambridge, Wellcome Trust MRC Institute of Metabolic Sciences; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus,
Barcelo-Coblijn, Gwendolyn; 3 Institut d’Investigació Sanitària Illes Balears (IdISBa, Balearic Islands Health Research Institute),
Prieur, Xavier; Universite de Nantes, L’Institut du Thorax, INSERM, CNRS
Relat, Joana; University of Barcelona, Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Science, Food and Nutrition Torribera Campus; Institute of Biomedicine of the University of Barcelona
Amat, Ramon; Universitat Pompeu Fabra (UPF), Cell Signaling Unit, Departament de Ciències Experimentalis i de la Salut
Campbell, Mark; University of Cambridge, Wellcome Trust MRC Institute of Metabolic Sciences
Dias, Ana Rita; University of Cambridge, Wellcome Trust MRC Institute of Metabolic Sciences
Bahri, Myriam; University of Cambridge, Wellcome Trust MRC Institute of Metabolic Sciences; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus,
Gray, Sarah; University of Northern British Columbia, Northern Medical Program
Vidal-Puig, Antonio; University of Cambridge, Wellcome Trust MRC Institute of Metabolic Sciences |
| Key Words: | mouse model, dyslipidaemia, lipid-lowering therapy, liver, insulin resistance, body composition |
P465L pparγ mutation confers partial resistance to the hypolipidemic action of fibrates.

Sergio Rodriguez-Cuenca1,², Stefania Carobbio1,², Gwendolyn Barceló-Coblijn³, Xavier Prieur⁴, Joana Relat⁵, Ramon Amat⁶, Mark Campbell¹, Ana Rita Dias⁴, Myriam Bahri¹,², Sarah L. Gray⁸, and Antonio Vidal-Puig¹,².

¹University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK.
²Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
³Institut d’Investigació Sanitària Illes Balears (IdISBa, Balearic Islands Health Research Institute), Palma, Balearic Islands, Spain.
⁴L’Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France.
⁵Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Science, Food and Nutrition Torribera Campus. University of Barcelona (UB), Santa Coloma de Gramenet (Spain); INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain.
⁶Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.
⁷Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
⁸University of Northern British Columbia, Northern Medical Program, 3333 University Way, Prince George, BC, V2N 4Z9, Canada.

*These authors contributed equally to this work

CORRESPONDING AUTHORS EMAIL:
sr441@medschl.cam.ac.uk; sc547@medschl.cam.ac.uk; ajv22@medschl.cam.ac.uk

RUNNING TITLE: P465L pparγ mutation impairs pparα function.

Word count:

Number of Figures: 5
Abstract:

Familial partial lipodystrophic syndrome 3 (FPLD3) is associated with mutations in the transcription factor PPARγ. One of these mutations, the P467L, confers a dominant negative effect. We and others have previously investigated the pathophysiology associated to this mutation using a humanised mouse model that recapitulates most of the clinical symptoms observed in patients when phenotyped under different experimental conditions. One of the key clinical manifestations observed both, in humans and mouse models, is the ectopic accumulation of fat in the liver. Here, we dissect the molecular mechanisms that contribute to the excessive accumulation of lipids in the liver and characterise the negative effect of this PPARγ mutation on the activity of PPARα *in vivo* when activated by fibrates. P465L mice have increased levels of insulin and free fatty acids (FFA), exhibit decreased levels of Very Low Density Lipoproteins (VLDL) when fed high fat diet (HFD) and a partial impaired response to the hypolipidemic action of WY14643. This indicates that the deleterious effects of P465L-PPARγ mutation may be magnified by their collateral negative effect on PPARα function.

KEYWORDS: lipodystrophy, fatty liver, P465L ppar-gamma, ppar-alpha, fibrates.
Introduction:

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that regulate energy homeostasis and coordinate biochemical processes involved in anabolic and catabolic processes. This family of transcription factors comprises three members: PPARγ (with two isoforms: PPARγ1 and PPARγ2), PPARα and PPARδ [1].

PPARγ regulates adipose tissue development and expansion, and harmonises the functional balance between lipogenic and lipolytic programmes [2]. Genetic defects in PPARγ cause severe metabolic lipodystrophy phenotypes [3] known as familial partial lipodystrophy syndrome type III (FPLD3) [4]. Amongst patients suffering this syndrome, those carrying the P467L mutation (rs121909244) exhibit a lipodystrophic phenotype, hypertension, hyperglycemia, hepatic steatosis, and severe dyslipidemia, a complex phenotype that is partially recapitulated in the humanised P465L-PPARγ mutant mouse under different nutritional and genetically induced challenges such as HFD feeding and backcrossed into ob/ob, apolipoprotein E knockout (APOEKO) and Akita murine genetic backgrounds [5-7]. The isoform PPARγ2 is, under physiological conditions, preferentially expressed in WAT and BAT. Other organs such as liver, predominantly express the PPARγ1 isoform, but can, under pathological conditions such as overnutrition and obesity, induce *de novo* the expression of the PPARγ2 isoform [8]. This indicates that the types and relative amounts of PPARs coexisting in the same cell/tissue under specific physiological and pathophysiological conditions varies according to specific nutritional status and metabolic adaptations.

PPARα is another important member of the PPAR family, which plays a fundamental role in lipid oxidation and biosynthesis, gluconeogenesis, cholesterol catabolism and ketogenesis [9]. PPARα is detected in tissues characterised by high rates of β-oxidation such as heart, skeletal muscle, and liver [10]. Conversely, genetic ablation of PPARα in mice has confirmed its preferential involvement in fatty acid oxidation and that when PPARα is dysfunctional, it causes hepatic steatosis [11] and severe fasting hypoglycaemia [12]. According to the role of PPARα
controlling fatty acid metabolism, fibrates, a class of synthetic PPARα ligands, exert beneficial metabolic effects in patients with metabolic syndrome and in rodent models of obesity, insulin resistance and diabetes. For instance, a well-established fibrate, WY14643 (pirinixic acid), decreases plasma triglycerides, reduces adiposity, and improves hepatic steatosis and insulin sensitivity in lipoatrophic mice [13].

Given that PPARs share common co-activators, co-repressors and partners as well as DNA responsive elements (PPRE), we hypothesised that the changes in expression patterns or activity of PPARs may affect the transactivation capacity of the members of the family. In vitro evidence indicates that PPARs exhibit promiscuity in their binding to specific coactivators/corepressors known to be involved in complex functional crosstalks. This has been partially addressed in vitro by showing that mutants for PPARα such as a dominant negative [14] or a ligand binding domain lacking mutant [15] exert cross-inhibition of the wild type (WT) form of PPARα, and also of PPARγ and PPARδ, by competition for coactivators [14]. Similarly, several PPARγ dominant negative mutants have been shown to repress the activity of PPARα in vitro [14, 16].

The P467L PPARγ mutation exerts a dominant negative effect on WT PPARγ in vitro by reducing the promoter turnover rate and out-compete the WT receptor for promoter binding sites and also attenuating the release of corepressor and recruitment coactivator [17-20]. The pathophysiological relevance of this crosstalk between PPARs in vivo has not been studied.

Our laboratory has previously shown that the humanised murine model P465L PPARγ developed hepatic steatosis after four months on HFD [5] in the same way that P467L human carriers do [21]. Here, we dissect the mechanisms leading to this phenotype in vivo and propose that the P465L PPARγ mutation increases susceptibility to fatty liver through a mechanism involving a partial deficiency of the transactivation capacity of PPARα. We found that the P465L mice have increased levels of insulin and FFA, both risk factors associated to fatty liver; The P465L mice also display decreased levels of VLDL when fed HFD and partial impaired response to the
hypolipidemic action of WY14643. Moreover, gene expression profiling revealed that P465L PPARγ negatively impacts on the transcriptional activation and repression mediated by PPARα agonists in a variety of metabolic pathways.

Material and Methods:

Animals. P465L/+ PPARγ mice were generated as described previously [5]. All animals used in this study were fed a standard chow or HFD (45%Kcal from fat) ad libitum and housed at 24°C with 12h light cycle. The mice were divided into groups of 7-8 mice. For both genotypes, mice were distributed into the following groups: chow diet/vehicle, chow diet/WY14643; HFD/vehicle and HFD/WY14643. Feeding of HFD started when the mice were 5w old for a period of 28d. Then, mice were injected intraperitoneally with vehicle or WY14643 (25mg/kg/day) for 5d. Additionally, we used WT and P465L fed chow and HFD (45%Kcal from fat) for a period of 12 weeks and cull them in fed and fasting conditions (overnight).

This research was regulated under the Animals (Scientific Procedures) Act 1986 Amendment Regulations 2012 following ethical review by the University of Cambridge, Animal Welfare and Ethical Review Body (AWERB).

Blood biochemistry. Enzymatic assay kits were used for determination of plasma free fatty acids (Roche), triglycerides (Siemens), glucose, and insulin (MesoScale discovery) according to manufacturer’s instructions.

Liver triglycerides content. Hepatic lipid content was measured following Folch method as described previously [22].

Lipoprotein separation by Fast protein liquid chromatography (FPLC). Pooled plasma of each experimental group was used for the isolation of lipoproteins using FPLC according to the following online protocol from the Diabetic Complications Consortium. https://www.diacomp.org/shared/document.aspx?id=14&docType=Protocol.

Glycogen determination. Hepatic glycogen content was measured as described previously [23].
Histology. The livers were dissected and fixed in 10% formalin, then they were cryoprotected (20% sucrose) and frozen in chilled isopentane prior to sectioning using a cryostat. Cryosectioned tissue was stained for lipid with Oil Red O.

Lipid analysis. Liver tissue was homogenized with a tissue blender. Lipids were extracted using n-hexane/2-propanol. Tissue extracts were centrifuged at 1,000g to pellet debris. The lipid-containing organic phase was decanted and stored under nitrogen at −80°C until analysis [24, 25]. Total lipids were subjected to base catalyzed transesterification, converting the acyl chains to fatty acid methyl esters (FAME) [26]. Heptadecanoic acid (17:0) was used as the internal standard. Individual FAMEs were separated by gas liquid chromatography using a SP-2330 column (0.32 mm ID, 30 m length) and a gas chromatograph equipped with dual autosamplers and dual flame ionization detectors. The SCD1 (Stearoyl-CoA desaturase (∆-9-desaturase)) index is the ratio of products (16:1n-7 and 18:1n-9) to precursors (16:0 and 18:0) fatty acids. The ELOVL6 (Fatty Acid Elongase 6) index is the ratio of products (18:0, 18:1n-7 and 18:1n-9) to precursors (16:0 and 16:1n-7) fatty acids; the FADS1 (fatty acid desaturase 1) index was measured as the ratio (20:4n6/20:3n6) and the FADS2 (fatty acid desaturase 2) index was obtained from the (20:3n-6)/(18:2n-6) ratio.

Retrotranscription and Real-Time PCR analysis. RNA was extracted from 50mg of liver using the Trizol reagent in accordance with manufacturer's instructions. 1µg of RNA was converted to cDNA using M-MLV Reverse Transcriptase, 100ng random hexamers and 1mM dNTPs in a final volume of 20µL. Real-Time PCR was performed using SybrGreen primers (250nmol) or Taqman primers and probes. The reactions were carried out using specific ABI Master Mixes in a 7900HT Fast Real-Time PCR System with 384-Well Block Module. Primers were designed using either Primer Express 2.0 or Primer Blast software (https://www.ncbi.nlm.nih.gov/tools/primer-blast/). Sequences are available at http://tvp.mrl.ims.cam.ac.uk/primer-database-pagemax. The geometrical average of four different genes (β2 microglobulin, β-actin, 18S and 36B4) was used as an internal control following an already described normalization method [27]. HeatMaps were generated with the free software Multiple Experiment Viewer-MeV- (http://mev.tm4.org/).
Western Blotting. Protein lysates from liver (50mg) were run in a NuPAGE™ 4-12% Bis-Tris Protein Gels and electrotransferred to a nitrocellulose membrane using a iBlot Dry Blotting System (Thermofisher Scientific). All antibodies used were from Cell Signaling Technology apart from plin2/adrp, and anti-β-actin that were from abcam.

Statistical analysis. 2-way or 3-way ANOVA was used for the analysis of the interaction between genotype (G), diet (D) and treatment (T) for the fibrates intervention. Genotype (G), fasting (F) and/or diet (D) for the fasting cohort. IBM SPSS14 was used as statistical software.
Results

P465L PPARγ mutant mice are hyperlipidemic and hyperinsulinemic.

P465L mutant mice showed higher levels of FFAs and TGs- and a tendency to increased cholesterol- in serum compared to WT mice (Fig1a), independently of the diet, and recapitulating the hyperlipidemia observed in the human carriers of the P467L mutation. Both, on chow diet or after a short challenge with HFD, P465L mice were normoglycemic in the presence of hyperinsulinemia (Fig1a) suggesting their insulin secretion was able to compensate for their peripheral insulin resistance; moreover, when challenged with HFD for a period of 12w, P465L mice became hyperglycemic (SFig1). The P465L mice also had increased hepatic glycogen levels in the chow fed state (SFig2a).

P465L PPARγ mutant mice are resistant to the pro-lipolytic effect of WY14643 in adipose tissue.

WY14643 treatment increased plasma cholesterol levels in both genotypes as previously reported in other studies [28] and also increased levels of β-hydroxybutyrate (BHB) in both genotypes (Fig1a). The increase in BHB is compatible with fibrate mediated induction of hepatic β-oxidation, a response that was slightly increased (ns) in the P465L mice, particularly when fed HFD for 4w. Interestingly, when fasted o/n, the P465L mice showed significantly higher levels of BHB than WT mice (SFig1), reflecting an increase in hepatic FFA delivery and β-oxidation in P465L livers. At the organismal level, the acute treatment with WY14643 induced hepatomegaly in both genotypes, coupled to a specific decrease in the fat mass of WT mice (especially in gWAT) but not in P465L mice fed on HFD (Fig1b and SFig2). This differences in fat mass suggested that the P465L mutation may confer some degree of resistance against the pro-lipolytic effect of fibrates in adipose tissue [29].

P465L PPARγ mutation promotes fatty liver and alterations in lipoprotein metabolism.
We have previously reported that P465L mice showed increased liver mass and hepatic accumulation of TG content when fed HFD for 16w or when backcrossed with the ob/ob mouse [5]. In this new cohort of mice fed HFD for only 28d, the levels of hepatic TGs in P465L were already marginally higher (ns) than WT mice (Fig2a). Unexpectedly, when mice fed on a HFD were treated with fibrates we observed an increased hepatic fat content in P465L but not in WT mice (Fig2a). The analysis of macrovacules in HFD fed animals revealed a decreased in WT treated with fibrates but not in the P465L mice evidencing a degree of resistance to the hypolipidemic action of fibrates (data not shown). In a similar line of evidence, P465L mice also presented more hepatic fat content after o/n fasting than their WT controls, further indicating that a large amount of the fat accumulated in the liver originated from adipose tissue (transient steatosis) (SFig1). Overall, these data reinforced the hypothesis that PPARα activated mechanisms (e.g. by response to fibrates/fasting) regulating storage, oxidation and/or release of hepatic lipids were defective in P465L mice.

P465L PPARγ increases hepatic MUFA/PUFA ratio.

We next analysed the chemical characteristics of hepatic fatty acid (Fig2b). On a HFD, the liver of P465L mice showed increased levels of monounsaturated fatty acids (MUFA). This was associated with an increased SCD1 index (SFig2b) and active conversion of saturated (SFA) into MUFA, the preferred FA substrate for triglyceride storage. Despite the increase in the SCD1 index, the scd1 and scd2 mRNA levels were downregulated, revealing a mismatch between enzymatic flux and gene regulation. The lower content of polyunsaturated fatty acids (PUFA) percentage in the livers of HFD fed P465L mice was accounted for by reduced levels of 20:5 n-3, 22:5 n-3, 22:6 n-3 and 20:3 n-6 and 20:4 n-6 but not of 18:2 n-6 whose levels were increased in P465L, indicating an impairment in the biosynthesis of PUFAs. Of relevance Gene expression profiles did not reveal changes in the expression of elongases and fatty acid desaturases between genotypes (Fig2c); however, the FADS1 index was downregulated in P465L livers. Interestingly, the FADS2 index was significantly increased in WT mice treated with WY14643 but to a lesser extend in P465L mice.
Interestingly, the expression of *fads3*, a putative desaturase associated with changes in PUFA levels [30], was downregulated in P465L livers (Fig2c), suggesting that FADS3 may be a new fatty acid desaturase under the transcriptional regulation of PPARγ. Gene expression profiling of genes and analysis of proteins involved in de novo lipogenesis evidenced an increase in their expression/levels in response to fibrates (Fig2c and SFig4a) consistent with the concept that fibrates promote not only catabolic but also anabolic lipid pathways.

P465L PPARγ reduces serum VLDL levels in HFD fed mice.

We next investigated whether changes in the lipoprotein lipid composition in P465L mice mirrored their increased fat accumulation in liver as well as the identified blunted functional effect of fibrates (Fig3ab). It has been previously reported that the hypolipidaemic effects of fibrates are mostly due to enhanced catabolism of TG rich particles (increase lipoprotein lipase, LPL and decrease Apolipoprotein CIII, apoCIII) and decreased in Apolipoprotein B (ApoB) and VLDL production. Analysis of *VLDL* in chow fed conditions revealed that plasma levels of VLDL-TG in P465L mice were greater than in WT mice. *A priori*, this increased levels of VLDL may has been justified by the hyperinsulinemia of the P465L, leading to increased hepatic influx of FFA, accumulation of TG and increased VLDL-TG secretion. However, what it was not expected was that when fed HFD, the P465L mice showed a paradoxical decrease in VLDL-TG levels in plasma compared to WT controls. Administration of WY14643 did not change VLDL-TG levels in mice fed on chow of any genotype, but administration of WY14643 to WT mice fed HFD slightly decreased VLDL-TG in line with the effects of fibrates in VLDL secretion (Fig3a). *ApocIII* expression showed no genotype dependent differences and- as previously mentioned, the-P465L mice showed a reduction in the plasma VLDL-TG levels, despite high fatty acid levels in serum. Of potential pathogenic relevance fatty liver development, P465L livers had increased expression of lipid droplet proteins such as Adipophilin/Perilipin2 (*adrp/plin2*) (Fig3c and SFig4a), Fat specific protein 27/ Cell death inducing DFFA like effector C (*fsp27/cidec*) and s3-12/Perilipin 4 (*s3-
12/lin4) as well as Fatty acid binding protein 4 (fabp4/ap2) (Fig3c and SFig4a).

Gene expression analysis in chow fed conditions of genes involved in transport of lipids confirmed that mRNA levels of hepatic (Fig3b) and adipose LPL (SFig3a), and of fatty acid transporters cd36 and fatp1 in skeletal muscle (SFig3b) were decreased in P465L mice, in agreement with the impaired peripheral metabolism of VLDL-TG in P465L mutants. Of note, apoIV gene expression, which has been previously associated to hepatic steatosis and associated with increased secretion of larger TG-enriched apoB-containing VLDL [31], was increased in P465L livers, independently of the nutritional and pharmacological challenge. We also observed a genotype dependent decrease in the levels of apob and minor differences in mttp (microsomal triglyceride transfer protein).

We subsequently analysed the effect of P465L on HDL lipoproteins. Unlike in humans where fibrates increase HDL-C levels and apoa1 expression [32], fibrates have been reported not to have any effect or even decrease the levels of HDL and apoa1 expression in non-transgenic wild-type mice [33, 34]. Surprisingly, in the P465L mice fed both chow and HFD, fibrates increased HDL levels in comparison to WT mice. This finding indicates that P465L Pparγ mutation interferes (directly or indirectly) with the normal response to fibrates on HDL metabolism.

Moreover, we also observed an increased apoa2/apoa1 mRNA ratio in P465L mice (Fig3b). Of note, increased levels of apoa2 have been associated to increased pro-oxidative and pro-inflammatory responses, alterations in the rate of HDL metabolization and increased atherogenic risk [35]. Thus, this evidence indicates that the changes observed in P465L mutants result in a deleterious effect on HDL metabolism.

WY14643 also increased cholesterol enriched IDL/LDL-C levels in both genotypes. A similar effect has been previously reported for fenofibrate in mice fed high fat/high sucrose diets [36] and in patients with severe dyslipidaemia [37]. We observed that in mice fed HFD, treatment with WY14643 reduced the triglyceride enriched IDL/LDL-TG in WT but not in P465L mice
(Fig 2B). This is in agreement with a decrease in the metabolism of TG from the IDL/LDL fraction, likely mediated by hepatic or peripheral lipases in P465L mice (where both levels of hepatic lipase (HL) and Low density lipoprotein receptor (LDLR) are reduced) vs WT mice.

Globally considered, these findings indicate that the increase in triglyceride enriched VLDL-TG plasma levels in chow fed P465L mice was the result of the increased flux of FFA into the liver coupled with increased VLDL secretion and reduced peripheral/hepatic catabolism. Our data also show a dietary related differential response characterised by increased VLDL levels linked to increased flux of lipids into the liver under chow fed conditions in P465L mutant mice. This contrasted with HFD phenotype defined by lower VLDL levels and increased hepatic steatosis. These paradoxical responses suggest that the P465L mutant exhibits decreased metabolic flexibility related to hepatic lipid handling, which becomes evident in the context of specific lipid related nutritional and pharmacological challenges.

Hepatic mitochondrial and peroxisomal FAO genes are downregulated in HFD fed P465L mice.

Fibrates promote a metabolic switch that favours the use of fatty acid as energetic substrates. Fibrates are known to activate the pyruvate dehydrogenase kinases (PDK2 and PDK4), which inactivate pyruvate dehydrogenase and enhance the utilization of serum fatty acids and triglycerides [38]. The P465L livers showed reduced hepatic expression of pdk4 in comparison to WT livers and a blunted response to WY14643 in comparison to WT (Fig 4a). Thus the P465L mutation prevents the induction of fatty acid oxidation (FAO) by WY14643. The question was whether P465L PPARγ induced dysfunction in the mitochondrial and/or peroxisomal FAO programmes that could contribute to the development of fatty liver and liver damage in P465L mice, as shown for other models [39, 40].

P465L mutant mice showed reduced expression of mFAO and pFAO genes in chow fed non-fibrate treated vs WT counterparts (Fig 4b). These data may be interpreted as either P465L PPARγ preventing basal expression of genes regulated by PPARα, and/or alternatively that
physiological expression PPAR\(\gamma\) itself may directly impair the expression of these genes. The latter is unlikely given that the hepatic expression of PPAR\(\gamma\) under normal physiological conditions (i.e. chow fed), is limited.

There is substantial literature showing a pro-oxidative role for PPAR\(\alpha\) [41, 42]. In line with this, WY14643 increased the expression of most of the genes associated to mFAO and pFAO programmes in both genotypes. However, we identified a set of genes for mFAO and pFAO programmes that failed to be upregulated in P465L livers in response to WY14643. Specifically ATP-binding cassette subfamily D member 1 (abcd1), Phytanoyl-CoA 2 Hydroxylase (phyh), Isocitrate Dehydrogenase (idh), Enoyl-CoA Hydratase 1 (ech1), 2,4-Dienoyl-CoA Reductase 2 (decr2), failed to be induced by fibrates in P465L liver, providing evidence of selective resistance to the transcriptional response to fibrates (Fig4b). We also identified genes that responded differently in P465L vs WT livers when fed chow or HFD diets (Long chain Acyl-CoA Dehydrogenase, lcad; Medium chain Acyl-CoA Dehydrogenase mcad; Very Long chain Acyl-CoA synthase vlcas; Alpha methyl-acyl-CoA Racemase amacr; Malonyl-CoA Decarboxylase, mylc). This suggested an interaction effect of the genotype with both, fibrate treatment and dietary challenges.

When assessing the expression FAO genes in mice fasted overnight we did not observe strong changes associated to P465L mutation apart from abcd1, scp2 (GxF interactive effect) (SFig4).

Finally, we also evaluated the expression of other transcription factors apart from ppar\(\alpha\) and ppar\(\gamma\), involved in the transcriptional activation of multiple lipid related genes (Fig4c) and whose expression could also be dysregulated by the activation of ppar\(\alpha\) (fibrates) and the P465L mutation.

In this regard, fibrates and P465L affected the expression of srebp1, hnf4, rxr (Fig4c). Interestingly, the expression of ppar\(\gamma\) at gene and protein level (Fig4c and SFig4a) was upregulated in P465L mutant livers, increasing the pool of the WT and also the mutant P465L- ppar\(\gamma\) and thus competing with ppar\(\alpha\) in response to fibrates when both transcription factors are upregulated (Fig4c and SFig4a).
P465L PPARγ interferes with the transrepression capacity of PPARα.

Fibrates also exert anti-fibrotic and anti-inflammatory effects through transrepressive mechanisms [43]. We observed that in HFD fed WT mice, administration of WY14643 reduces the expression of target genes such as serum amyloid A (saa1 and saa2) and fibrinogen (Fig 5). Interestingly, this effect was not observed in P465L mice suggesting that this mutation also prevented the transrepression activity of PPARα.

Discussion

This work follows previous research from us and others on the P465L mouse, a humanized model for the dominant negative mutant P467L PPARγ that resembles the phenotype observed in patients and characterised by a partial lipodystrophy, insulin resistance, hypertension and fatty liver.

Here, we provide evidence that the fatty liver observed in the P465L PPARγ knock-in mouse involves a selective impairment in the transcriptional activation of PPARα. This is supported by in vivo data showing that P465L mice developed fatty liver on a HFD and were resistant to treatment with WY14643, a fibrate that acts as a PPARα activator, determining a phenotype highly reminiscent of the resistance to fibrates previously observed in PPARα KO mice [44]. We have shown that in response to WY14643, the size of the fat depots is decreased in WT mice whereas P465L adipose tissues remain unaffected. Similarly, whereas WY14643 treated HFD WT mice showed a reduction in hepatic TG content, the P465L did not and additionally, we observed exacerbated hepatic accumulation of TG during the fed/fasting transition in P465L mice fed chow or HFD. These responses are supportive of a partial resistance to the effects of PPARα activation in P465L mice.

We have learned that the PPARγ P465L mutant interferes with the lipoprotein profile and its regulation by fibrates. We observed a shift in the lipoprotein fingerprint between chow and HFD fed P465L mice. When fed a chow diet, P465L mice had increased levels of VLDL compared to WT
mice, an observation consistent with an increased flux of fatty acids originated in the leak from a
dysfunctional adipose tissue and associated hyperinsulinemia. However, when fed HFD for 28d, the
pattern of VLDLs was reversed, showing decreased levels of VLDL coupled with increased
expression of hepatic lipid droplet proteins in the P465L PPARγ mutant livers. Whether this
increase in lipid droplet protein expression in mutant livers is directly mediated by a disordered
transcriptional programme of PPARγ or merely a secondary perturbation is unclear. It is well
known that PPARγ and PPARα are both transcriptional regulators of adrp/plin2 and fsp27/cidec
[45] and that the overexpression of fsp27/cidec and adrp/plin2 prevents the access of lipases to the
core of the lipid droplet thus impairing the hydrolysis of TG [46, 47]. Thus, the increased
expression of lipid droplet proteins may be a relevant pathogenic factor for hepatic steatosis [48]
contributing to the accumulation of lipids in the in P465L mice. Of note, fsp27/cidec expression is
further increased in P465L livers with fibrates, which may contribute to the increase in hepatic TG
levels in HFD fed P465L in comparison to WT mice. This apparent paradox of PPARα
simultaneously promoting the expression of lipid droplet proteins that limit the mobilization of lipid
from the liver, together with PPARα promoting lipid oxidation, suggest the relevance of PPARα for
the activation of genetic programmes aimed to reduce the accumulation of potential toxic lipid
species by a double strategy that involves either diverting lipids either to a safe storage and/or
metabolising them. This duality of functions may explain the apparent controversial disparate
results observed with the use of fibrates to treat fatty liver in several rodent models [49, 50],
particularly when one of these two programmes may prevail over the other.

It is assumed that the association between lipodystrophy and NAFLD is direct consequence
of the failure of the adipose tissue to expand and the consequent spillage of excessive lipids into the
liver. Here, we provide evidence that the fatty liver of the P465L lipodystrophic mice exhibit not
only quantitative but also qualitative changes (increased MUFA/PUFA ratio) in the accumulate
lipids. These data are thus consistent with changes in hepatic lipid biosynthetic pathways
characteristic of “classical models” of NAFLD, and indicate that these qualitative changes in the
fatty acid pool of P465L livers may reflect a common pathogenic signature of NAFLD, rather than a specific fingerprint driven by the presence of the PPARγ mutation.

Our expression profiling revealed selective impairment of PPARα preferentially regulated genes in P465L mice on a chow diet, treated only with vehicle. This indicates that even when PPARα ligands are present at low physiological levels, the presence of the P465L mutation is enough to dysregulate the expression of those PPARα genes at a transcriptional level. The P465L mice fed a chow diet showed also impaired expression of genes controlling mFAO and pFAO - well-known targets of PPARα in mice. These effects were partially masked after treatment with WY14643 and/or HFD. Additionally, we also identified genes in the P465L livers that remained pathologically unresponsive to treatment with fibrates in comparison to WT providing compelling evidence of resistance to the ligand-dependent activation of PPARα when P465L PPARγ is present. Interestingly, genotype driven differences were reduced when mice were fasted overnight (GxF interactive effect), indicating that the effect of the P465L mutation on PPARα function may only become pathophysiologically relevant at basal levels, when the expression/activity of PPARα is below a particular threshold or alternatively that it may become overcome by the hormonal adaptation taking place in response to starvation.

Despite the fact that our experimental model of treatment with HFD/WY14643 was not specifically designed to induce severe liver damage, we found that the expression of genes involved in fibrosis- and known to be downregulated by PPARα activation- were altered in P465L livers, suggesting that transrepression activity of PPARα was also impaired by the presence of the P465L PPARγ mutant.

Globally considered, our data indicate that the pathogenesis of the fatty liver observed in P465L mice is more complex than simply the result of the failure of the adipose, and that it involves the combination of several pathogenic factors at hepatic level including uncoupling the lipid storage
in lipid droplets from the assembly, transport and secretion of VLDL, associated to impaired hepatic FAO in a pathological context where peripheral uptake of lipids is likely to be compromised.

In summary, we have shown that P465L mice develop hepatic steatosis associated to increased lipid trapping and impaired VLDL secretion with HFD, resulting in qualitative changes in the hepatic fatty acids that recapitulates the fingerprint of common NAFLD models. We also provide biochemical data, hepatic lipid content and evidence of impaired expression of a number of well-established PPARα target genes in P465L livers that supports the conclusion that P465L confers partial resistance to the hypolipidemic action of fibrates. Moreover, our results also show that the fatty liver phenotype observed in P465L mutant mice is not only the consequence of dysfunctional adipose tissue, but also involves defective liver metabolism. Despite the current lack of trials addressing the efficacy of fibrates in patients with partial lipodystrophy, our results raise concerns regarding the potential value of fibrates for the management of hypertriglyceridemia/NAFLD in carriers of the dominant negative P467L-PPARγ mutation. Whether our findings are transferable to the overall FPLD3 spectrum of diseases is currently unknown. However, there are reports of FPLD3 patients, characterised by recurrent hypertriglyceridemia despite treatment with fibrates [20-23]. Finally, our data also indicate that the specific repertoire of PPARs present under specific metabolic conditions is important as it may modulate the fine balance between transcription factors with metabolically opposed functions.

Funding

This work was funded by Wellcome Trust, MRC MDU (MC_UU_12012/2), FP7-MITIN (Integration of the System Models of Mitochondrial Function and Insulin Signalling and its Application in the Study of Complex Diseases (Grant Agreement 223450) and H2020 EPoS Elucidating Pathways of Steatohepatitis. (Grant Agreement 634413). Disease Model Core, Biochemistry Assay Lab and the Histology Core are funded by [MRC_MC_UU_12012/5] and Wellcome Trust Strategic Award [100574/Z/12/Z].
Author Contributions. SRC and SC conceived the original hypothesis, designed and performed experiments in vivo/ex vivo and wrote the manuscript. GBC performed the fatty acid composition analysis, discussed and edited the manuscript. XP performed the lipoprotein profiling, discussed and edited the manuscript, RA, JR, MC, RD and MB contributed to ex vivo profiling, discussed and edited the manuscript. SG conceived the original hypothesis, designed experiments and wrote the manuscript. AVP conceived the original hypothesis, designed experiments and wrote the manuscript. AVP is the guarantor of this work. All authors approved its publication.

Conflict of interest. The authors declare that they have no conflict of interest.
FIGURE LEGENDS

FIGURE 1. (a) Blood biochemistry and body composition (b) from P465L pparγ mutant mice vs. WT mice fed chow or HFD, with or without WY14643 (ip: 25mg/kg). Graphs represent the average of 7-8 mice per group ± SEM analysed by ANOVA (p<0.05). Different colour circles denote genotype effect (blue), treatment (red), diet (green), interactive effect genotype x treatment (black), genotype x diet (white), diet x treatment (grey) and genotype x treatment x diet (orange).

FIGURE 2. (a) Oil Red O –stained sections (10×) and triglyceride composition of liver from P465L pparγ mutant mice vs. WT mice fed chow or HFD, with or without WY14643 (ip: 25mg/kg). Graphs represent the average of 7-8 mice per group ± SEM. (b) Fatty acid composition in molar percentage of hepatic fatty acids from P465L pparγ mutant mice vs. WT mice fed chow or HFD, with or without WY14643 (ip: 25mg/kg). (c) Hepatic gene expression of candidate genes relevant in de novo lipogenesis and PUFA biosynthesis and analysed by ANOVA (p<0.05). Different colour circles denote Genotype effect (blue), treatment (red), diet (green), interactive effect genotype x treatment (black), genotype x diet (white), diet x treatment (grey) and genotype x treatment x diet (orange).

FIGURE 3. (a) Lipoprotein cholesterol and TG distribution were determined in plasma from non-fasted P465L pparγ mutant mice vs. WT mice fed chow or HFD, with or without WY14643 (ip: 25mg/kg). Approximate elution volumes for particles in the size ranges of VLDL, LDL, and HDL are indicated (b) Hepatic gene expression of candidate genes relevant in lipoprotein metabolism and (c) lipid droplet proteins is shown as log2 conversions of average gene expression data relative to controls (log2 100 = 6.6). Magnitude > 6.6 and < 6.6 denotes up- and downregulation, respectively, compared with WT, chow fed controls and analysed by ANOVA (p<0.05). Different colour circles denote Genotype effect (blue), treatment (red), diet (green), interactive effect genotype x treatment (black), genotype x diet (white), diet x treatment (grey) and genotype x treatment x diet (orange).

FIGURE 4. (a) Hepatic gene expression of candidate genes relevant in (a) glucose metabolism (b) fatty acid uptake and mitochondrial/peroxisomal fatty acid oxidation programmes and (c) nuclear transcription factors is shown as log2 conversions of average gene expression data relative to controls (log2 100 = 6.6). Magnitude > 6.6 and < 6.6 denotes up- and downregulation, respectively, compared with WT, chow fed controls and analysed by ANOVA (p<0.05). Different colour circles denote Genotype effect (blue), treatment (red), diet (green), interactive effect genotype x treatment (black), genotype x diet (white), diet x treatment (grey) and genotype x treatment x diet (orange).

FIGURE 5. (a) Hepatic gene expression of candidate genes relevant in inflammation and fibrosis is shown as log2 conversions of average gene expression data relative to controls (log2 100 = 6.6). Magnitude > 6.6 and < 6.6 denotes up- and downregulation, respectively, compared with WT, chow fed controls and analysed by ANOVA (p<0.05). Different colour circles denote Genotype effect (blue), treatment (red), diet (green), interactive effect genotype x treatment (black), genotype x diet (white), diet x treatment (grey) and genotype x treatment x diet (orange).
REFERENCES

FIG 2

Hepatic Fatty Acid Composition (%)

<table>
<thead>
<tr>
<th></th>
<th>CHOW Diet</th>
<th>HFD Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT VEHICLE</td>
<td>WT VEHICLE</td>
</tr>
<tr>
<td></td>
<td>WT WY14643</td>
<td>WT WY14643</td>
</tr>
<tr>
<td></td>
<td>P465L VEHICLE</td>
<td>P465L VEHICLE</td>
</tr>
<tr>
<td></td>
<td>P465L WY14643</td>
<td>P465L WY14643</td>
</tr>
</tbody>
</table>

Liver TG

- **WT**: (p=0.07)
- **WT-WY**: (p=0.06)
- **P465L**: (p=0.1)

Hepatic Fatty Acid Composition (%)

- **CHOW**
 - WT: 16.1%
 - P465L: 45.3%

- **HFD**
 - WT: 21.5%
 - P465L: 30.2%

Molar %

- **16:00**: 16.8%
- **16:01**: 46%
- **18:00**: 37.2%
- **18:1 n-7**: 36.3%
- **18:1 n-9**: 37.1%
- **18:2 n-6**: 45.1%
- **20:3 n-6**: 27.5%
- **20:4 n-6**: 40.4%
- **20:5 n-3**: 32.1%
- **22:5 n-3**: 31.4%
- **22:6 n-3**: 34.3%

Genes Expression

- **dgal1**
- **dgal2**
- **accl**
- **fah**
- **acyl**
- **scdl**
- **scal**
- **fads2**
- **fads3**
- **fads6**
- **eolv1**
- **eolv2**
- **eolv3**
- **eolv4**
- **eolv5**
- **eolv6**
- **eolv7**

WT VEHICLE

P465L VEHICLE

WT WY14643

P465L WY14643
FIG 4
<table>
<thead>
<tr>
<th></th>
<th>CHOW DIET</th>
<th></th>
<th>HFD DIET</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT</td>
<td>P465L</td>
<td>WT</td>
<td>P465L</td>
</tr>
<tr>
<td>VEH</td>
<td></td>
<td></td>
<td>VEH</td>
<td></td>
</tr>
<tr>
<td>WY</td>
<td></td>
<td></td>
<td>WY</td>
<td></td>
</tr>
</tbody>
</table>

Gene Expressions

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>f400</td>
<td></td>
</tr>
<tr>
<td>tnfa</td>
<td></td>
</tr>
<tr>
<td>il1b</td>
<td></td>
</tr>
<tr>
<td>ikba</td>
<td></td>
</tr>
<tr>
<td>saal</td>
<td></td>
</tr>
<tr>
<td>saac</td>
<td></td>
</tr>
<tr>
<td>colala</td>
<td></td>
</tr>
<tr>
<td>fibrinogen</td>
<td></td>
</tr>
<tr>
<td>timp1</td>
<td></td>
</tr>
<tr>
<td>timp3</td>
<td></td>
</tr>
<tr>
<td>mmp9</td>
<td></td>
</tr>
<tr>
<td>mmp19</td>
<td></td>
</tr>
<tr>
<td>casp1</td>
<td></td>
</tr>
<tr>
<td>casp2</td>
<td></td>
</tr>
</tbody>
</table>
Gonadal WAT

Skeletal Muscle

SFIG 3
SFIG 4
SUPPLEMENTAL FIGURE LEGENDS

SUPPLEMENTAL FIGURE 1. Blood biochemistry from P465L pparγ mutant mice vs. WT mice fed chow or HFD for 3M in the fed and fasted state. Graphs represent the average of 5-8 mice per group ± SEM analysed by ANOVA (p<0.05). Different colour circles denote Genotype effect (blue), fasting (red), diet (green), interactive effect genotype x fasting (black), genotype x diet (white), diet x fasting (grey) and genotype x fasting x diet (orange).

SUPPLEMENTAL FIGURE 2. (a) Fat percentage, lean mass, bone mineral density (BMD) and Hepatic glycogen levels in P465L pparγ mutant mice vs. WT mice fed chow or HFD with or without WY14643 (ip:25mg/kg). (b) Calculated SCD1, ELOVL6 and FADS1-2 ratio from data shown in Fig2b. Graphs represent the average of 5-8 (b) mice per group ± SEM and analysed by ANOVA (p<0.05). Different colour circles denote Genotype effect (blue), treatment (red), diet (green), interactive effect genotype x treatment (black), genotype x diet (white), diet x treatment (grey) and genotype x treatment x diet (orange).

SUPPLEMENTAL FIGURE 3. (a) Gene expression in gonadal adipose tissue (a) and skeletal muscle (b) is shown as log2 conversions of average gene expression data relative to control (log2 100 = 6.6). Magnitude > 6.6 and < 6.6 denotes up- and downregulation, respectively, compared with WT, chow fed controls. (b) Hepatic levels of glycogen. Graphs represent the average of 7-8 mice per group ± SEM and analysed by ANOVA (p<0.05). Different colour circles denote Genotype effect (blue), treatment (red), diet (green), interactive effect genotype x treatment (black), genotype x diet (white), diet x treatment (grey) and genotype x treatment x diet (orange).

SUPPLEMENTAL FIGURE 4. (a) Expression of proteins involved in lipid droplet scaffolding, de novo lipogenesis and the transcription factors pparγ and pparα. (b) Expression of genes relevant for liver metabolism from P465L pparγ mutant mice vs. WT mice fed HFD for 12w in the fed and fasted state is shown as log2 conversions of average gene expression data relative to control (log2 100 = 6.6). Magnitude > 6.6 and < 6.6 denotes up- and downregulation, respectively, compared with WT, HFD fed controls. Graphs represent the average of 6-8 mice per group ± SEM and analysed by ANOVA (p<0.05). Different colour circles denote Genotype effect (blue), fasting (red), and interactive effect genotype x fasting (black).