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Summary
Genome-wide association studies are transformative in revealing the polygenetic basis of common diseases, with autoimmune diseases leading the charge. Despite the field being just over ten years old, advances in understanding the underlying mechanistic pathways of these conditions, which are the result of a dense multifactorial blend of genetic, developmental and environmental factors, have already been informative, including insights in therapeutic possibilities.  Nevertheless, the challenge to identify the actual causal genes and pathways and their biological effects in altering disease risk for many identified susceptibility regions remains. It is this fundamental knowledge that will underpin a revolution in patient stratification, therapeutic target discovery and clinical trial design in the next 20 years. Here we outline recent advances in analytical and phenotyping approaches and the emergence of large cohorts with standardised gene expression data and other phenotypic data that are fuelling a bounty of discovery and improved understanding of human physiology.  


Introduction 
We are enjoying a transformative era of big data, large consortia and cohorts, landscape-changing phenotyping tools, including single-cell genomics, genome-wide association studies (GWAS) of numerous traits and diseases and a multitude of statistical and computational methods and approaches. Here we consider some aspects of analysis, causal gene discovery and highlight some exceptional recent advances, taken from the perspective of a classic autoimmune disease, type 1 diabetes (T1D). The field of the genetics of common multifactorial diseases is moving rapidly towards causal gene and pathway identification and away from worrying about ‘missing heritability’, which for T1D was a red herring since a polygenic model fits well, explaining most of familial clustering (in terms of sharing of disease diagnosis of siblings, s, which is the ratio of disease risk for an individual who has a sibling with the disease to the risk of the general population for the disease) in terms of hundreds or thousands of associated regions across the genome 1. Explaining s took an exciting leap forward from analyses in families showing that untransmitted parental alleles can significantly impact the characteristics of the children and in determining the sharing of traits between siblings 2. Exome and whole genome sequencing of vast numbers of patients and population cohorts will reveal very rare (< 0.1%) disease-associated variants that will help us pin down which genes are causal.

The importance of adequately large sample size
Increasing sample sizes from large consortia have enabled discovery of hundreds of chromosome regions associated with autoimmune diseases that were previously not possible 3,4 as well as reduced the overestimation of effect sizes, the so called winner’s curse (Box 1) owing to greater statistical power. For example, in the latest rheumatoid arthritis (RA) genetic analysis, over 100,000 individuals were analysed, of which 29,880 were cases, identifying 101 regions associated with RA 2 and for inflammatory bowel disease (IBD), an analysis of 95,000 individuals (42,950 cases) identified 38 novel risk loci 5, bringing the total number of regions associated with IBD to 232. A smaller study in IBD of almost 60,000 individuals (25,042 cases) 6, but with a higher proportion genotyped using a genome-wide platform rather than the custom immune-disease ImmunoChip, identified further associated regions, taking the total number up to 240. GWAS is a triumph of statistical correction for multiple testing where reported regions must pass a p-value threshold of <5x10-8, ensuring that the majority of declared regions are true effects. The same rigor is not yet applied to biology and omics/genome-wide phenotyping studies since we do not understand yet the complexity and extent of gene expression, epigenetic modification including DNA methylation, non-coding RNA expression, gene splicing, or post-translational protein modification, all of which could generate over 50,000 functional DNA elements and over 250,000 proteins. This huge statistical space is amplified even more by the proven but largely unexplored interactions between the human genome, its physiology and variation in microbial metabolism and immune reactivity, which could herald a new era of irreproducibility 7.

Each region might have more than one causal gene and variant, which could be a single nucleotide polymorphism (SNP), a repeat sequence or a structural variant such as an inversion. In T1D, a combination of GWAS 8 and use of ImmunoChip 9 in less than 10,000 cases has identified 58 associated regions (www.immunobase.org). We can see how increasing the number of cases in type 2 diabetes (T2D) from 1,924 (Reference10) to 74,124 (Reference 11) has increased the number of associated regions from 3 to 243, so we can expect to uncover many new regions and explain a higher proportion of T1D genetic variance by genotyping more T1D cases. With GWAS data from population-based cohorts available now, controls are not limiting (although caution is recommended – see below). The index or lead variants in these regions can be combined in a genetic or polygenic risk score (GRS or PRS). The GRS can be used to identify those at highest risk of disease, which can be used to select children from the general population for prevention trials 12, distinguishing T1D diagnosed later in life from T2D 13, or to predict disease severity 14. In the UK Biobank 15 for example, plasma and DNA samples from individuals selected for the very most extreme GRS for the most common diseases but not yet affected by the disease under analysis could identify early precursors of the disorder (or genetically-validated biomarkers).

Even the sizes of the largest disease GWAS are modest compared with population cohort resources such as the UK Biobank and the 23&me cohort. 16 17, which will be crucial in establishing disease causality 18. With hundreds of thousands of individuals in these collections, linking medical records with lifestyle with biomarkers with GWAS data, there is incredible scope to make many new discoveries, resulting in an avalanche of new results and preprints in BioRxiv (https://www.biorxiv.org) and the top journals 19. For some diseases, such as T1D, these research returns will be tempered by a low disease prevalence and/or ascertainment biases exacerbated by disease severity.

However, with large sample sizes also comes a risk of detecting false positive associations; if not accounted for, seemingly small confounding effects can make a huge difference. For example, the UK Biobank found that almost 150,000 individuals were related to at least third degree 20. Using linear mixed models employing a genetic relatedness matrix as a random effect can be an effective way of analysing data from related individuals and should be considered in these circumstances 21. Another consideration when using resources of this kind, particularly when attempting to identify disease-associated variants, is the ratio of cases to controls. Even ‘common’ autoimmune diseases are generally quite rare, compared to say, T2D, and there is likely to be a large imbalance in the number of controls to cases, which can lead to high type 1 error (false positive) rates22. Including only those controls that have been very precisely matched to cases based on a number of demographic and clinical characteristics would reduce heterogeneity and ensure a more balanced design. The multiple testing ogre raises its head again and must be accounted for appropriately when testing thousands of phenotypes in a genome-wide fashion. 

Fine mapping candidate causal variants
Identifying the causal variant driving the disease association is complicated by linkage disequilibrium (LD). This correlation between nearby SNPs, which occurs as a result of SNPs being passed down from parent to offspring on the same haplotype, (see 23 for a more detailed explanation and example) makes it difficult to determine which SNP out of an LD block is the causal one. Large sample sizes are critical to reduce the number of DNA variants that could be causal within a region, referred to as the credible set. The more cases and controls analysed, the more rare recombinant chromosomes are analysed and they drive the resolution of the fine mapping. Ethnically diverse populations can be an advantage here because they have different patterns of LD or arrangements of alleles on individual chromosomes or haplotypes.  Nevertheless, considerable care must be taken when meta-analysing diverse populations and several methods have recently been developed 5,24,25.

When access to individual-level genotype data is available, and there is still an urgent need to provide these data to allow the accurate assembly of haplotypes, and the population being studied is homogeneous with respect to ancestry, a reasonable starting point to fine mapping is to use a simple stepwise linear regression approach. This was performed in the T1D ImmunoChip analysis, in which three regions were found to have two independent signals associated with T1D (near INS, PTPN2 and TYK2), whilst two regions were found to have (at least) three independent signals (near IL2RA and IFIH1) 9. However, there are two potential problems with this approach: the first is identifying a p-value threshold at which to stop the procedure, which is not directly comparable between studies as the p-value is heavily influenced by the power of the dataset. Bayesian approaches such as Probabilistic Identification of Causal SNPs (PICS) 26 can help overcome this problem by generating posterior probabilities of association that are comparable across datasets. The second challenge comes from instances where the index SNP could be tagging two disease-associated haplotypes; in such cases, the stepwise regression approach will identify the SNP that tags the two haplotypes as the lead or index variant, while the two risk haplotypes might not be detected, leading to a misleading number of signals detected in the region. For this reason, approaches that search for combinations of SNPs with the most evidence of association rather than assuming the index SNP is associated, are sometimes more appropriate. GUESSFM 27 is one such approach, and has provided evidence of two independent SNP associations at the IL2RA region associated with multiple sclerosis (MS), rs61839660 and rs41295055, whereas stepwise regression only detects one signal, rs2104286, the more commonly reported SNP for this region, which likely tags the two risk haplotypes, and therefore is not a primary candidate for a causal variant. In contrast, rs61839660 almost certainly is a causal variant altering expression of IL2RA, encoding the CD25 subunit of the IL-2 receptor 23,28, and altering the sensitivity of T regulatory cells (Treg cells) to IL-2, which is required for their maintenance and function in preventing autoimmunity. When only summary association statistics and not raw data are available, a number of methods, including CAVIARBF 29, FINEMAP 30 and JAM 31  have been developed to fine map regions although there remain challenges in these approaches 32. 

Pleiotropy: genetic variation can affect multiple diseases
Since autoimmune and other immune diseases share many common variants, referred to as pleiotropy, several studies have combined data from multiple diseases in order to increase power to detect novel loci. GWAS joint meta-analysis of asthma, hay fever and eczema in 180,129 cases and 180,709 controls as allergic diseases that share a common genetic aetiology identified 99 regions (73 were novel, and only 4.4% were specific to one of the three diseases) 17. Notably, the study named six candidate causal genes, including CCR7, that indicated possible repositioning of existing drugs for other diseases for which the effect on gene expression of the allergy-protective allele and existing drug matched. This pleiotropy extends to T1D and several of their candidate genes are shared, including the CLEC16A-DEXI gene region, ERBB3, IL2RA, BACH2, IL7RA, FASLG, SH2B3, TNFAIP3 and PTPRK. The PTPRK-THEMIS region, for example, was recently associated specifically with T1D diagnosed under age 5 years and has a function in the thymus 33, in T cell development early in life during the production of recent thymic emigrants 34. Once again, however, this region shows the now commonly-expected complexity with an association in MS with an index SNP, rs802719 35 that is not in LD with the lead T1D age-at-diagnosis SNP, rs72975913, notwithstanding the results from T1D indicating more than one association signal in the region 33. The functional missense SNP in the IL6R gene was also shared but in the opposite allelic direction, which illustrates yet another valuable outcome of GWAS: the IL6R allele that protects from RA, T1D and cardiovascular disease predisposes to allergic disease 36, indicating a possible contraindication for the use of existing anti-IL-6R antagonist drugs in certain patients (e.g. children with a very high GRS for allergic disease).  Another example of opposite associations can be seen at IL7RA between autoimmune disease and allergic disease, and relevant phenotypes such as eosinophil count, is illustrated in UK Biobank using the GWAS results from https://biobankengine.stanford.edu versus its association with a number of autoimmune diseases, including MS 37: the minor C allele of rs6897932 predisposes to autoimmunity and protects from allergic disease.

[bookmark: _GoBack]Typically, only 22/132 (16.7%) of index or sentinel SNPs associated with allergic diseases were coding 17. The importance of epigenetic variation, either associated with a disease-associated variant or independently, was highlighted by their finding that for 36 candidate genes CpG methylation (associated with less promoter activity) was found to influence transcription independently of genetic effects.  We note, however, that methylation may not be the primary event in the altered transcriptional regulation but instead it may be a consequence of transcription factor binding, where methylation has a role in the maintenance of a transcriptional state 38.

Mendelian Randomisation
Mendelian Randomisation (MR) studies make use of information from different GWAS studies and combine them to draw conclusions about causality of one trait on another (Box 2). With so many publically available summary statistics available for a wide range of potential intermediate phenotypes and diseases (https://www.ebi.ac.uk/gwas/, http://www.gwascentral.org) it is possible to perform MR studies for many different intermediate traits on a multitude of different diseases. An example of MR analyses applied to an autoimmune disease is the link between vitamin D and MS, with two separate publications demonstrating that decreased vitamin D levels are causally associated with increased risk of MS 39 40, thus providing evidence to support the epidemiological observation that low vitamin D levels may increase MS susceptibility.  
However, MR uses three central assumptions, which must all be considered carefully before undertaking MR studies 41. Firstly, that the SNP(s) of interest are associated with the exposure variable (e.g. vitamin D levels). This assumption is usually not violated and often a reason to conduct the MR study in the first place. Secondly, that the SNP(s) of interest are not associated with any confounding variables. This assumption has been put under threat by the finding that untransmitted alleles in families can impact characteristics and phenotype of the children, such as educational attainment 2, a point echoed in 42. In addition, we now know that methylation can alter the function of a SNP 43, which is another way in which a SNP under consideration could be associated with a confounding variable and violate the second assumption. Finally, the third assumption is that the SNP(s) of interest impact the outcome (e.g. MS) only through the exposure variable (e.g. vitamin D levels). This is where pleiotropy can become problematic, since the SNP(s) under consideration could be impacting a number of traits that are, in turn, impacting disease risk. There are two types of pleiotropy, vertical and horizontal. Horizontal pleiotropy, when the SNP(s) impact two or more separate traits, is the kind that can violate MR assumptions. Vertical pleiotropy refers to situations when the variant affects one trait and this results in changes to other traits. An additional concern when using MR is it has been shown that if there is measurement error in the phenotype measurement, the effect direction from MR analyses can appear the opposite from what is the truly the case, though methods have been developed to counter this potential problem 44. Caution should therefore be taken in undertaking MR studies 45 46 and there should always be very careful  consideration that the assumptions of MR are not violated when using the approach. 

Decoding the non-coding genome
Since the majority of disease-associated SNPs identified by GWAS are located in non-coding regions (which includes non-coding RNAs), the challenge remains to identify the target gene(s) or non-coding RNA, tissue specificity and mechanisms via which causal variants drive disease susceptibility, even when disease association has been narrowed down to a single variant in a region 28. Technological advances in DNA and RNA sequencing and analytics combined with novel methods have provided the platform for large efforts such as ENCODE 47, BLUEPRINT 48, ROADMAP 49 and FANTOM 50 consortia.  Functional annotation of the genome, including but not limited to, mapping of histone post-translational modifications, transcription factor binding sites, CpG methylation and areas of open chromatin and the use of massively parallel reporter assays has revolutionised our ability to understand the ‘grammar’ of the non-coding genome and the mechanisms underpinning variation in gene expression 51,52. Landmark studies detailing genome-wide screens of open regulatory areas of chromatin, DNaseI hypersensitivity sites (DHS), provided evidence that common variants could alter chromatin accessibility and local gene expression 53 and that autoimmune disease-associated SNPs were enriched in DHS’s 54. Subsequently an enrichment of autoimmune disease-associated SNPs was detailed in enhancers and clusters of enhancer elements, or ‘super-enhancers’, in T cells 55 56. The enrichment of disease-associated SNPs in enhancers, key regulatory elements that govern the lineage and functional state of cells through tissue-specific and temporal control of gene transcription, provided the initial biological framework linking common disease-associated SNPs, enhancers and regulation of gene expression. Methods have been developed to integrate functional annotation data with GWAS summary statistics to prioritise variants that lie in annotations that are enriched for disease hits in disease-relevant cell types 26 57 58 59. The application of this information to understand the genetic etiology and cell specificity of autoimmune disease association have been reviewed elsewhere 60. These methods are effective to guide the most likely variants on average, but also require cautious interpretation since not all disease-associated SNPs will lie in the same type of annotation, the same cell type or the same cellular activation or differentiation state (Fig. 1). 

Once regions have been identified as disease-associated, follow-up studies are launched to identify the mechanism through which the variant is altering disease susceptibility. It is common for analyses of expression of quantitative trait loci (eQTL) studies to be carried out, using many fewer individuals than in GWAS, but ideally from purified relevant primary cell populations. The latter is challenging and hence eQTL studies have, to date, been performed on a limited number of purified cell types, most commonly the common blood cells, CD4+ and CD8+ T cells and monocytes 61.  Thus, the chance of identifying a candidate causal gene from a GWAS overlapping with an eQTL depends to varying degrees on: (a) the appropriate cell type and its state of activation being measured, which could be a population of cells in a mixture of cells e.g. B cells in peripheral blood mononuclear cells, and (b) having sufficient individuals in the study to detect the difference (Box 3). Nevertheless, large resources such as the Genotype-Tissue expression (GTEx) project (https://www.gtexportal.org/home/), whole blood analyses [https://molgenis58.target.rug.nl/biosqtlbrowser/] and Immune Variation (ImmVar) 62 have been and will be extremely useful in generating and collating eQTL data for multiple tissues and under multiple conditions, but there are still many different cell types under many different conditions that can be studied. For example, a particular variant associated with an autoimmune disease might increase disease susceptibility in activated CD4+ T cells but not in non-activated CD4+ T cells (Fig. 1). Furthermore, occasionally results may differ between studies in terms of the direction of effect of the eQTL, such as results for the T1D candidate gene UBASH3A, with differences arising from having very low amounts of mRNA in a particular cell type when a complex mixture of cells is analysed (such as T cell-specific gene in whole blood) 63. It is apparent that establishing the causal tissue or cell type is an important step before declaring the candidate causal genes based solely on eQTL or allele-specific expression studies 64; the eQTL must be in the cell type that is altering disease susceptibility in that region. The recent ability to examine gene expression in single cells is also going to significantly boost allele-specific expression analyses as well as help define the heterogeneity and functions of cell types within tissues 65 66.  Recent developments in proteomic technologies now offer the ability to measure the levels of thousands of intracellular and plasma proteins 67,68, providing an emerging wealth of genetic associations with protein-abundance and epitope availability, protein QTLs 67. Another other important aspect of fine-mapping and causal gene/variant identification is the integration of expression data or functional readouts associated with the credible SNPs, an approach to used to help dissect the IL2RA region 27. Underpinning this integration lies the ability to obtain reliable genotype-to-phenotype data from specific cell types and this goal is greatly enhanced by the availability of large bioresource cohorts of genotyped volunteers willing to recalled for further study based on their risk genotypes and haplotypes 69 70.


While the decrease in sample size seen in functional studies is a necessary compromise for feasibility, studies would benefit greatly from carrying out pre-study power calculations for the main outcome of interest based on small pilot studies, thus advancing one step further on the road to tackle the widespread crisis of reproducibility in experimental biology (Box 3).  

Physical linking of credible risk variant candidates to candidate causal genes
The development of chromosome conformation capture (3C) techniques to examine the 3D structure of chromatin structure 71 has allowed the linkage of regulatory elements such as enhancers containing disease-associated SNPs to their target genes. A seminal study investigating obesity-associated variants in the FTO region on chromosome 16q12.2 72 and application of the targeted 3C technique to the T1D region 16p13.13 73 identified the genes IRX3 and DEXI, respectively, as candidate causal genes alongside FTO and CLEC16A, previously considered as the candidate genes simply because they were nearest or contained the most disease-associated SNPs. The application of 3C therefore challenges the practice of nominating candidacy to the closest or most biologically relevant candidate in a disease-associated region. Iterative improvements in genome-wide chromosome conformation map resolution using Hi-C 74 75 have enabled resolution of chromatin interactions to 750 bp 76 and have provided insight into the principles of chromatin organisation and control of gene expression. However, application of Hi-C to link regulatory DNA elements containing disease-associated SNPs to their targets is confounded by the onerous number of cells and billions of sequencing reads per sample to attain the high-resolution maps required for interpretation. Alternative genome-wide methods have therefore been developed and utilised to identify candidate genes using a targeting approach such as capture Hi-C 76, promoter capture Hi-C (PCHi-C) 77 78, capture-C 79 80 ChIA-PET 81 and HiChIP 82.  The network of interactions in each cell type confirmed the role of distal enhancers in transcriptional control of gene promoters in determining hematopoietic cellular identity 77, CD4+ T cell activation 78 and differentiation state 82. Confirming enrichments of disease-associated SNPs in T cell enhancers, T1D-associated SNPs were enriched in promoter-interacting regions in T cells 77, activation-induced interactions in CD4+ T cells 78 and in enhancer interactions in TH17 and Treg cell subsets 82. The complexity of gene regulation was highlighted in each experimental approach where, for example, enhancers can interact with multiple gene promoters, ‘skip’ multiple gene promoters and switch target promoters upon activation or differentiation. Integration of the T1D genome-wide analysis of both the fine mapping ImmunoChip 9  and imputed GWAS 8 datasets with the PCHi-C datasets 77 78 demonstrated the utility of linking promoters with their regulatory partners in extending our understanding of the genes involved in T1D. Novel candidate genes were prioritised using this approach in 29 T1D regions, in addition to those already nominated as candidates (Table 1). Genes in four regions that previously had no named candidate gene (e.g. 22q12.2 and LIF) and multiple genes with good candidacy in regions with an established candidate gene were prioritised (e.g. 1q32.1 78). New plausible candidate genes in regions where the biological relevance of the incumbent gene to the etiology of T1D was not appreciated are also identified 9 (e.g. 10q23.31; new candidate gene PTEN). In-depth exploration of each region and different experimental approaches 78 23 83 84 will be required to dissect regions where multiple genes have been prioritised in different cell subsets, differentiation and/or activation states and different cell types 84.  

One alternative approach, for example, that does not require chromosome conformation information, used a statistical model involving MR and information about open chromatin and gene expression from 100 genotyped individuals. This study identified over 15,000 putatively causal interactions between distal regions of open chromatin and over 60% of these interactions were over distances of less than 20 kb. Because the authors could infer the direction of causal interactions, the model also significantly improved the ability to fine map: when applied to an eQTL data set, the number of variants in the 90% credible set size was reduced by half 85. 

Infection, microbiome and genes
Environmental exposures such as infection have been proposed to elicit the development of autoimmune disease in at-risk individuals 55 86 87 88 89 90 and therefore it is of interest to compare GWAS results from infectious disease.  Selective pressure by infectious diseases has driven the development of high inter-individual variability in immune genes, especially in the highly polymorphic human major histocompatibility complex (MHC) region 91. HLA class II and I genes in the MHC region have by far the greatest genetic effect on the risk of developing T1D 92  93 and, as one might expect, the HLA region is associated with susceptibility to common infection 87. In contrast to the GWAS bonanza in autoimmune disease, the GWAS approach until recently has yielded few susceptibility regions in infectious disease.  However, the very large data-rich population cohorts15 94 95 are transforming the ability to gain insight into the overlap between the genetics of common infection and autoimmune disease. For example, a number of variants associated with susceptibility to common infection overlapped with T1D disease candidate causal gene associations (HLA, FUT2, SH2B3) and candidate genes (IKZF1, SBK1) 16. 

Notably, the FUT2 gene encodes the enzyme, galactoside 2-L-fucosyltransferase, which mediates the transfer of fucose to the terminal galactose on glycan chains of cell surface glycoproteins and glycolipids 96. FUT2 creates a soluble precursor oligosaccharide FuC-alpha ((1,2)Galbeta-) called the H antigen which is an essential substrate for the final step in the soluble ABO blood group antigen synthesis pathway 96. The expression of these histo-blood group antigens on mucosal glycans can serve as nutritional sources, receptors and attachment sites for microorganisms, parasites and viruses thereby playing a key role in host-microbe interactions 97,98  and in microbiome composition 99–103.  Twenty per cent of Europeans carry a null allele of a SNP (W134X; rs601338 G>A) in the FUT2 gene, and its presence therefore causes deficiencies in expression of these antigens and microbiota composition and function.  The null allele is associated with increased risk of T1D 104 and IBD 105, mumps and several other autoimmune and infectious diseases 16 106 but is protective against norovirus infection107 and childhood ear infections16. 

The content and function of the microbiota can alter the low molecular weight metabolites present in human blood 108. Some bacterial metabolites, for example short chain fatty acids (SCFAs), have widespread and important effects on many aspects of host biology, including immune function, inflammation and risk of autoimmunity, e.g. increased levels of SCFAs protect from autoimmune diabetes in the NOD mouse model 109 110 111 112 95.  Decreased microbial diversity has been observed in individuals with T1D 113 114 and alterations in the gut microbiota were observed in a small cohort of seropositive children who progressed to overt T1D 115.  In line with this, changes in the gut microbiome composition, known as dysbiosis, accompanied by a decline in blood and fecal SCFAs have been reported to occur before the diagnosis of T1D  116 117 118. Another study has linked the IL-2 pathway, which has a major role in both murine and human autoimmune diabetes, to alterations in murine and human gut microbiota 119. Together with the loss in microbiome diversity caused by lifestyle changes associated with industrialisation, these phenomena are thought to contribute to the continuous rise in T1D incidence 116 117 118 120 121. This area is incredibly complex with environmental factors dominating 7, but one approach will be to identify which genes and their variants, for example, FUT2, alter microbial-derived or -modified circulating and intracellular metabolites in cases, controls and large-scale population cohorts. 

While functional validation of candidate variants and genes has typically been challenging, the toolbox for functional genomics studies has expanded greatly in recent years with the addition of CRISPR/Cas9 methodologies, which now facilitate the study of endogenous gene function in physiological contexts and, even, in vivo. Of note, CRISPR/Cas9 techniques do not only enable fine genome editing, and, thus, introducing a variant of interest in a controlled genetic background or correcting specific mutations in patient-derived cells, but also make possible increasing or downregulating the expression of any gene of interest, within physiological parameters, by targeting a dead Cas9 fused to either a transcriptional activator (CRISPRa) or a repressor (CRISPRi) to the relevant promoters or enhancers. Similar techniques have also been employed to identify and validate which disease-associated SNPs fall within bona fide, rather than predicted, regulatory regions 83. 

Unchartered regions
Even after the chromosome conformation analyses, almost 20% of the 57 T1D regions in ImmunoBase have no named candidate gene, often because the genes in the region do not have known roles in the immune system, owing to the classical view that T1D is caused by the autoimmune destruction of pancreatic islet β cells.  One possibility is that the causal gene(s) in these regions are not acting in the immune system but in the target tissue, the β cells 122 or in both, as might be the case for the gene TYK2 123,124.The discovery that GLIS3 is both a T1D and T2D causal gene, encodes a transcription factor that regulates many β-cell expressed genes, including the insulin gene, and  influences β-cell apoptosis 125,126 support this possibility: that of the target tissue as an active driver of disease 127. 

One T1D-associated region, 17q21.31, also associated with liver autoimmune disease, primary biliary cirrhosis (PBC), is an example of a region with no immediately obvious candidate causal gene, at least in the context of the immune destruction model, and illustrates the challenges facing researchers aiming to identify the causal genes 9 128. The T1D index SNP (rs1052553 A>G) lies within exon 9 of the MAPT gene – which encodes the tau protein – and is a perfect tag of the two main haplotypes in the region 129 130  131, H1 and H2, the latter of which is protective for Parkinson’s disease and other tauopathies 107. H2 is also protective for T1D and PBC. There are eight protein-coding genes in this region, which comprises of a megabase-long ancient inversion polymorphism and several copy number variants, and with over 3,100 SNPs in near perfect LD.  Any one or more of the eight genes (or non-coding RNAs or transcripts) could be causal for T1D and PBC.  However, in tauopathies, owing to the fact that rare, highly disease-penetrant mutations of MAPT have been identified, it is certain that MAPT is a causal disease gene in the region. The identities of the common causal variants in neurodegenerative disease remain uncertain not least due to the high LD and the huge number of differences in the sequences of the two haplotypes 132. eQTL analysis is also not very informative: not only are several of the genes in the wider MAPT region expressed in islets, but recent analyses of human islets revealed that several SNPs in the rs1052553 LD block act as islet eQTLs to increase expression of MAPT, MAPT-AS1, NSF, CRHR1 and KANSL1, and decrease expression of PLEKHM1 and ARL17A 133 134. Some of these lie in putative enhancer regions (rs55649944, rs111794853, rs2732650) or predicted active transcription start sites (rs58879558) in islets. Of note, the activation of CRHR1 (also known as CRFR1) has been proposed to promote β-cell proliferation, potentiate glucose-stimulated insulin secretion and protect against cytokine-induced β-cell death 135 136 137. 

[bookmark: _rfw6mp9l7qh5]Nevertheless, MAPT could be causal, and therefore, then as a first step, one asks if the protein it encodes, Tau, and its pathogenic form, hyperphosphorylated Tau, are expressed in pancreatic β cells. Two reports in 2010 suggest it is expressed in human islets and in a rat -cell line 138,139, supported by evidence in the Human Protein Atlas (https://www.proteinatlas.org/), results from a recent transgenic mouse model 140 and we have obtained evidence for detectable Tau protein expression in human  cells and not islet  cells  (unpublished results). Despite originating from different germ layers, many similarities exist between the cell biology and developmental programs of pancreatic β cells and neurons 141, including the GLIS3 protein 142. In addition, both cell types are considered post-mitotic cells with a very limited to no regenerative capacity, which renders them both vulnerable to the effects of misfolded, aggregated proteins and ER stress 143,144. We propose that common cellular mechanisms underlie the fragility of β cells in T1D and in T2D and of dopaminergic neurons in Parkinson’s disease. 

High-density interaction maps for the 17q21.31 region and its neighbourhood used in conjunction with information on chromatin states specifically derived from pancreatic islets, if not pure β-cell populations, will greatly assist efforts of pinpointing the causal variants and genes driving the T1D associations. However, caution should be exercised in excluding variants or genes on the basis of information derived from non-diabetic islets or from islets carrying the benign allele. Stresses, similar to those encountered in the pre-diabetic and diabetic pancreas can alter chromatin states dramatically, such that SNPs located within quiescent regions in the absence of disease might map to active regions in tissues from diseased individuals. 

Concluding remarks
Understanding the genetic basis of the biological pathways and processes underlying the etiology of autoimmune diseases has the potential to improve the success rate and safety of drugs 145 and has raised the possibility of repositioning and repurposing of approved drugs 146 for example, recombinant IL-2 (aldesleukin) 147 148 149 150. As data from an increasing number of sources becomes widely available, so the opportunity to integrate these data together becomes possible. We are now able to examine each autoimmune disease related region in the genome and fine map the region to obtain a small number of SNPs most likely causing the increase in disease susceptibility; to identify the most likely cell type driving this association by examining which of these SNPs lie in functional regions of which cell type; and to highlight the most likely genes the SNPs are regulating through eQTL and chromatin contact experiments. This will not only help our understanding of autoimmune diseases but can point to potential therapeutic pathways for drug development. In parallel very significant efforts in defining the functions of the human immune system 151,152 and pancreatic islets 153 in health and disease will converge and greatly accelerate our understanding not only of the primary causes of common diseases but also our ability to stratify patients recruited into drug trials and explain why some patients respond and others do not or relapse 154,155. 
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Box 1: Winner’s Curse
There have been many examples of genetic associations that have failed to replicate in subsequent studies. The reason for this is usually due to a lack of statistical power, which leads to inflated estimated effect sizes of truly associated SNPs as well as false positive associations. Inflation in effect sizes in underpowered analyses of SNPs occurs since studies will typically report SNPs associated below a particular p-value threshold. If the analysis is underpowered then the effect size at the declared associated SNP will need to be higher by chance than its true value in order to compensate for the lack of power. This distortion in effect sizes is termed the winners curse 156, since the first time an association is detected it is likely to have a larger estimated effect than the actual value. However, if replicated in an appropriately powered study, the estimated effect size is likely to better reflect the real effect of the variant.

Box 2: Mendelian Randomisation 
Mendelian randomisation (MR) aims to deduce the causality of an intermediate phenotype (e.g. vitamin D levels) on an outcome (e.g. MS) 39,40 by using the SNPs associated with the intermediate phenotype, referred to as instrumental variables, to obtain predicted levels by genotype. These predicted levels of the intermediate phenotype should be independent of any confounding factors, since confounding effects should, by chance, be evenly distributed between the genotype groups, given the random allocation of genotypes from parents to offspring. These predicted levels of the intermediate phenotype are then regressed against the outcome of interest in order to assess the association between the genetically controlled variation in the intermediate phenotype and the outcome. The procedure is analogous to a randomised control trial: for example, if two groups were randomised to either high doses of vitamin D or placebo. In a simple MR setting this could be the major and minor homozygotes at a SNP that is known to affect vitamin D levels. In the clinical trial setting, randomisation would occur in order to minimise the chances of observing spurious associations due to confounding factors; in the MR setting, this randomisation has already occurred at birth. Outlined in the main text are the fundamental assumptions in MR that are required and need to be considered carefully. Another example of a successful MR study is linking branched chain amino acids to T2D 157.

Box 3: Sample size calculations and statistical power
[image: ]
Sample size calculations are essential in answering almost all scientific questions in a robust manner. We illustrate this with an example for a microarray sample size calculation method 158, using data from ArrayExpress (access number E-MTAB-4852). The figure left hand panel shows the median proportion of false discoveries after 1,000 simulations at each sample size and each p-value threshold for significance. The method assigns groups randomly to each individual and sets the effect size for the truly associated transcripts; from here we can work out the proportion of truly associated transcripts called significant and the proportion of false positives since we know which are the true associations. It can be observed that choosing a significance threshold of p=0.001 will result in >60% of ‘significantly’ associated transcripts being false positives as a result of there being a large number of transcripts analysed (>30,000). Decreasing the p value threshold to 1^10-4 is more stringent and the proportion of false positive associations decreases. Having a more stringent p-value threshold increases the probability of missing truly associated transcripts, so sample size calculations should be based around minimizing the probability of both detecting false positives and also not missing true associations. The importance of sample size calculations comes from the question you are trying to answer: attempting to detect 10-fold differences in transcript expression will require fewer individuals than attempting to detect 2-fold differences since the effect size is much larger and thus less likely to be observed by chance. The figure right hand panel illustrates this point. It is also true that the false negative rate is higher if the effect size is 2-fold compared to 10-fold if the study is underpowered. It is therefore critical when designing your experiment to have an estimate of the effect size you are expecting to observe. It is then possible to include enough individuals/samples in the experiment to detect this difference in a robust and reproducible manner, as illustrated in a transcriptome profiling study to distinguish different subsets of human naive T cells 34. For a detailed exploration of sample size in eQTL studies, see 156.














Figure 1.  Refining complex disease associations in different cellular activation states using chromatin annotation and chromatin conformation capture.  Disease-associated regions with low recombination rate often harbour hundreds of credible SNPs, any one of which could be causal. Here we show the IL2-IL21 region as an exemplar to highlight the utility of integrating regRNA (non-coding RNA associated with transcription as defined in Burren et al. 78) annotations with ATAC-seq (open, potentially transcriptionally active chromatin) and PCHi-C (chromosome conformation anlaysis using promoter capture Hi-C) profiles to reduce the number of credible SNPs and refine disease associations. T1D and celiac disease credible SNP sets extend over a 522 kb region on chromosome 4q27.  Integrating the credible SNPs with regRNA (grey blocks), with areas of open chromatin using ATAC-seq (non-activated CD4+ T cells; dark blue bars, activated CD4+ T cells; light green bars, unpublished data) and with the published chromatin conformation capture PCHi-C data 78 [green  (activated CD4+ T cells) and blue blocks (non-activated CD4+ T cells) representing promoter interacting regions (PIRs)] reduces the number of SNPs (n=208) to numbers that can be explored experimentally (n=14). The importance of investigating different CD4+ T cell activation states is highlighted by the ATAC-seq and PCHi-C datasets. No PIRs were detected above threshold for the protein-coding genes KIAA1109, IL21 and ADAD1 in CD4+ T cells in the region, the latter not being expressed, therefore they are not considered as candidate causal genes in this cell type. CD4+ T cells were chosen for this analysis because we observed the greatest enrichment of T1D SNPs in enhancers in these cells, along with B cells, CD8+ T cells and CD34+ stem cells in a previous analysis 9, indicating that these cells are major T1D-associated cell types in blood. Two activation-induced interactions extend from the IL21-ASI (anti-sense non-coding transcript) promoter into the gene body of KIAA1109 and overlap disease-associated SNPs but not open chromatin that is dynamically changed following CD4+ T cell activation. The intergenic region between the IL-2 and IL-21 genes is enriched in activation-dependent PIR contacts (thicker and darker lines represent higher CHICAGO scores and therefore more frequent interactions 77) that intersect with activation-induced open chromatin and link to the IL2 promoter. IL2 is therefore considered as the strongest candidate causal gene in this region, in this cell type under these conditions. These results justify further detailed investigations of chromosome conformation using higher resolution methods e.g. Capture-C 159, gene and regulatory region transcript expression 78 and mutagenesis of specific variants coupled to detailed haplotype mapping 23.  



	Region
	GRCh37 coordinates
	Candidate Genes
	PCHi-C prioritised protein coding genes
	PCHi-C prioritised non-protein coding transcripts

	1p13.2
	chr1:113830745-114551845
	PTPN22 PHTF1
	ST7L  DCLRE1B  AP4B1
	-

	1q32.1
	chr1:206882358-207040938
	IL10
	FCAMR  IL20 FAIM3  PIGR CD55  IL24  IL19  
	-

	2q24.2
	chr2:162960873-163360803
	IFIH1
	FAP PSMD14 GCG
	-

	2q33.2
	chr2:204613986-204816575
	CTLA4
	CYP20A1
	-

	5p13.2
	chr5:35798682-36036182
	IL7R
	SPEF2 
DNAJC21                                  
	CTD-2113L7.1
RNU7-130P    

	6q15
	chr6:90806835-91030155
	BACH2
	MDN1                         
	AL391559.1
ENSG00000238747 
RP11-63K6.7 RP3-512E2.2  

	7p15.2
	chr7:26657962-27202289
	-
	HOXA3 HOXA1                        
	HOXA-AS2  HOTAIRM1  HOXA-AS3

	7p12.1
	chr7:50900900-51134029
	COBL
	GRB10
	-

	7p12.2
	chr7:50366637-50691711
	IKZF1
	FIGNL1 HUS1 ZPBP C7orf72                         
	RNU6-1091P 
AC020743.2  

	10p15.1
	chr10:6030243-6188338
	RBM17 
IL2RA
	GDI2   PRKCQ  ANKRD16 FAM208B
FBX018                                                     
	RP11-536K7.3  
PRKCQ-AS1 

	10q23.31
	chr10:90005048-90271019
	RNLS
	PTEN  KLLN
	-

	11p15.5
	chr11:2113931-2281231
	INS
	TRPM5  TSSC4
	AC124057.5

	12q13.2
	chr12:56351346-56798435
	ERBB3 DGKA IKZF4
	SMARCC2 TSPAN31 AGAP2 ZC3H10 SLC26A10 DTX3  PIP4K2C ARHGEF25 SUOX RPS26  CTDSP2 ESYT1
	AC025165.8  
RP11-603J24.9

	12q24.13
	chr12:111716376 -113030487
	SH2B3  NAA25
	CUX2  MYL2
	AC002978.1

	12p13.31
	chr12:9519172-9972763
	CD69
	CLEC7A  CLEC9A
TMEM52B GABARAPL1 
CLEC12B CLEC12A CLEC1B
	RP11-656E20.5                                RP11-133L14.5  
RNU6-700P

	13q32.3
	chr13:99892888-100186578
	GPR183
	GPR18  UBAC2
	MIR623

	14q32.2
	chr14:98361346-98604701
	-
	ZFYVEL6
	-

	14q24.1
	chr14:69163455-69318062
	-
	RAD51B
	-

	14q32.2
	chr14:101283661 -101328739
	DLK1
	DIO3
	MIR770  MEG3  

	15q25.1
	chr15:79001699-79261136
	CTSH
	BCL2A1
	-

	15q14
	chr15:38814377-38994113
	RASGRP1
	FAM98B C15orf53                       
	-

	16p11.2
	chr16:28295306-29025978
	IL27
	SBK1  GSG1L
	-

	16p13.13
	chr16:11017058-11466511
	DEXI 
CLEC16A
	RMI2  SOCS1  HNRNPCP4  GSPT1
	RP11-485G7.6 
RP11-485G7.5  AC007216.1 AC009121.1

	16q23.1
	chr16:75216240-75521030
	BCAR1
	CTRB1 CTRB2  CHST6 GABARAPL2 SYCE1L  WWOX WDR59  ZNRF1 MON1B  
	ENSG00000252122
RNU6-758P

	17q12
	chr17:37382674-38240761
	ORMDL3   GSDMB
	ZPBP2
	-

	19p13.2
	chr19:10390709-10628548
	TYK2
	ICAM3  ICAM4 ICAM1 OLFM2 MRPL4 ICAM5 PPAN EIF3G ANGPTL6  S1PR5  ZGLP1 PPAN-P2RY11 P2RY11 DNMT1 RAVER1 FDX1L 
	CTD-2369P2.4 
CTD-2369P2.12 
CTD-2369P2.8 
SNORD105B  
SNORD105    

	21q22.3
	chr21:43809176-43878660
	UBASH3A ICOSLG
	-
	RNU6-1149P   AP001057.1

	22q12.2
	chr22:30066344-30669187
	
	LIF                    
	RP1-102K2.8

	22q12.3
	chr22:37567843-37658804
	C1QTNF6 
RAC2
	TMPRSS6 
IL2RB                    
	RP5-1170K4.7  
RP1-151B14.6



Table 1. Promoter capture Hi-C (PCHi-C) increases the number of candidate genes and non-coding RNAs for T1D. 
Integration of PCHi-C data from 17 different blood cell types 77 with ImmunoChip 9 and imputed GWAS data 8, using COGS 73 prioritised 97 novel T1D candidate protein-coding genes and 39 non-coding transcripts. We limit, for clarity, the regions in the table to 29 T1D-associated regions where new or previously nominated candidates (in bold text) were prioritised by PCHi-C and to gene biotypes that were captured with sufficient coverage (90% of protein-coding transcripts down to 50% of microRNAs but excludes non-coding biotypes such as lincRNAs with only 14% coverage) in the PCHi-C experimental design. We used a COGS gene score threshold of 0.5 for the prioritising of genes based on an integrative analysis of genetic association data and promoter-promoter interacting region (PIR) contacts.  However, if a region has strong LD and many SNPs associated with the disease, the posterior probability for each SNP to be causal is lowered, therefore attenuating the overall COGS gene score. For this reason, genes in such regions, for example the IL2-IL-21 region on 4q27, do not appear in this table, even though there are clear PIRs that overlap GWAS significant associations (Fig. 1). Currently, in total there are 57 T1D regions including the MHC listed in ImmunoBase (https://www.immunobase.org/disease/T1D/) plus one from an age-at-diagnosis analysis 33 making 58 regions in total as of February 2018. Gene annotations were derived from the Ensembl 75 (GRCh37) gene build 160. We divided the table into separate columns denoting T1D-associated regions, GRCh37 coordinates, genes previously assigned candidacy for T1D, novel protein-coding genes and novel non-coding RNAs prioritised by PCHi-C.
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