Establishing Ratiometric Characterisation in *Bacillus Subtilis* for Biosensing Applications

Towards an Arsenic Biosensor

Haydn James King

Department of Pathology
University of Cambridge

This dissertation is submitted for the degree of

Doctor of Philosophy

Pembroke College

December 2017
Yna heb frys na braw
Llithrodd ei flewyn cringoch dros y grib;
Digwyddodd, darfu, megis seren wîb.

To Mum, who did not go gentle.
Declaration

I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other University. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration, except where specifically indicated in the text. This dissertation contains less than 60,000 words including appendices, bibliography, footnotes, tables and equations.

Haydn James King
December 2017
Acknowledgements

Firstly I would like to thank my supervisor, Dr Jim Ajioka, for his advice and guidance during the course of my PhD. His help and support has been invaluable and I am deeply grateful for the opportunity to work on this project.

I would also like to thank members of the Ajioka group, in particular Dr Peter Davenport for his expert help and advice dispensed over innumerable cups of tea, as well as Dr Orr Yarkoni for sharing his wealth of practical experience in working with B. subtilis as well as with flow cytometry. I owe both these gentlemen a debt of gratitude, as I could not have completed my studies without their help and support.

Next, I would like to thank the many friends I have made while at Cambridge, in particular those from the Pembroke Graduate Parlour who have made my time here so much more enjoyable. My particular thanks goes to Marion, and to those others who have helped brighten the last few months.

That Mum did not get to see me complete my studies was undoubtedly a great disappointment to her, and the thanks that I owe both her and Dad cannot be fully expressed here.
Establishing Ratiometric Characterisation in
Bacillus Subtilis for Biosensing Applications

Haydn James King

Abstract

Arsenic contamination of groundwater remains a serious health concern in many areas of the world. Developing countries such as Bangladesh and Nepal are particularly affected because access to high quality water infrastructure is low. Since the 1970s, most water in these countries is sourced from shallow tube wells installed to reduce the spread of diseases associated with poor water hygiene. In this goal they were successful, however by the mid 1990s it became apparent that many of these wells were contaminated by arsenic and that these countries’ rural poor were being slowly poisoned.

No simple, cheap, and reliable test for arsenic exists, and efforts to mitigate arsenic contamination have been severely limited by this over the past two decades. Government backed well-testing efforts using commercially available field kits have many issues with reliability, safety, rigour, and transparency, and have lost their urgency over the past decade, while the expensive field test kits remain out of the reach of most ordinary people in these areas. Synthetic Biology offers the technology to develop a new class of biosensor by exploiting bacteria’s natural ability to sense and respond to levels of arsenic considerably lower than commercially available kits which are based on analytical chemistry.

In order to reach this goal, we must first develop our understanding of the natural response to arsenic in our chosen host, B. subtilis. Although we have a reasonably good qualitative understanding of the operon responsible for arsenic sensing, very little quantitative analysis has been carried out, and a robust system for ratiometric characterisation has not been established in the bacteria.

In this work, a robust platform for rapid ratiometric characterisation is established in B. subtilis. A rigorous mathematical model of the ars operon is developed and analysed before being verified experimentally. This new knowledge is then used to explore synthetic permutations to the natural system aimed at improving the sensor properties of the system. Finally, a biological architecture for an easily tunable biosensor with good characteristics is recommended.
Table of contents

List of figures xiii
List of tables xv

1 Introduction 1
1.1 Arsenic 1
1.1.1 Nature and Abundance 1
1.1.2 Contamination of Groundwater 3
1.1.3 Response to Contamination 5
1.1.4 Arsenic Field Tests 8
1.2 Biosensors 11
1.3 *Bacillus subtilis* 14
1.4 Summary and Aims 15

2 Materials and Methods 17
2.1 Introduction 17
2.2 DNA Manipulation and Assembly 17
2.3 Bacterial Cloning 18
2.3.1 Selectable Marker Excision in *B. subtilis* 19
2.4 Flow Cytometry 20
2.5 List of Materials 20
2.5.1 Plasmids 20
2.5.2 Oligos 22
2.5.3 Fluorescent Reporters 22
2.5.4 Strains 22
2.5.5 Media 22
2.5.6 CCMB80 24
3 Modelling of the native arsenic operon of *B. subtilis*

3.1 The Bacterial Response to Arsenic .. 25
 3.1.1 In *Bacillus subtilis* ... 25

3.2 Developing a Mathematical Model .. 37
 3.2.1 Motivation ... 37
 3.2.2 Modelling Strategy ... 37
 3.2.3 Open-loop production of ArsR$_2$.. 47
 3.2.4 A Simple Model Without Arsenic 47
 3.2.5 De-repression by Arsenic ... 51
 3.2.6 Arsenic and the Cell .. 52

3.3 Conclusions and a Strategy for *in vivo* Characterisation 57

4 Establishing Ratiometric Characterisation in *Bacillus subtilis*

4.1 Introduction .. 59
 4.1.1 Characterisation in Synthetic Biology 59
 4.1.2 Dual-Channel Characterisation ... 61
 4.1.3 A Mathematical Framework for Dual-Channel Characterisation 63
 4.1.4 Dual Channel Reporters in *B. subtilis* 64

4.2 Design ... 65
 4.2.1 Requirements .. 65
 4.2.2 Choice of Assembly Technology .. 66
 4.2.3 Fluorescent Reporter Selection .. 69
 4.2.4 Architecture ... 75
 4.2.5 Quantification and Data Processing 79

4.3 Construction, Verification, and Characterisation 82
 4.3.1 Motivation .. 82
 4.3.2 Choice of Reference System and Construction 83
 4.3.3 Control Strain and Initial Experiments 84
 4.3.4 Choice of Promoters .. 85
 4.3.5 Choice of Ribosome Binding Sites 87
 4.3.6 Choice of Loci .. 89

4.4 Results and Discussion .. 90
 4.4.1 Ratiometric Experiments .. 90
 4.4.2 Promoter and RBS Characterisation 91
 4.4.3 Loci Characterisation .. 94
 4.4.4 RBS variants .. 94
 4.4.5 Growth Condition Comparisons ... 95
Table of contents

4.5 Conclusions ... 98

5 Characterisation of the ars Operon of B. subtilis 99
5.1 Introduction ... 99
5.2 Applying the Dual Reporter to the ars Operon 99
 5.2.1 Deleting the ase Operon ... 99
 5.2.2 Implementing the Reporter .. 100
5.3 Results and Discussion ... 105
 5.3.1 Basal Strength of the Promoter 105
 5.3.2 Relative Strength of RBS .. 106
 5.3.3 Normalised Induction Curve 107
5.4 Conclusions and Further Work .. 111
 5.4.1 Measuring Arsenite Extrusion 111
 5.4.2 Testing Induction by Arsenate 112
 5.4.3 Investigating Other Potential Inducers and Response Modulators .. 113
 5.4.4 Developing an Arsenic Biosensor 115

6 Codon Optimisation for B. subtilis and Other Organisms 117
6.1 Introduction ... 117
6.2 Variations in Codon Preference ... 120
6.3 First Order Codon Preference ... 127
6.4 A Simple Algorithm for first Order Codon Optimisation 133
6.5 Conclusions ... 133

7 Conclusions ... 137

References .. 141

Appendix A Influence of Subsequent Codon on Codon Bias 155

Appendix B Sequence of the Pars promoter 157

Appendix C The pysim model file format 159

Appendix D Plasmid Listings 161
 D.1 pHK025v2 ... 161
 D.2 pHK026 ... 164

Appendix E Primer Sequences 169
List of figures

1.1 Realgar, Orpiment, and Arsenopyrite crystals. 2
3.1 Schematic of arsenic detoxification in wild-type Bacillus subtilis 26
3.2 Genome map of B. subtilis .. 26
3.3 Comparison of the ars operon promoters from E. coli and B. subtilis 29
3.4 Comparison of the B. subtilis ars operon and the ars operon of M. tuberculosis 35
3.5 A simple model of reversible dimerisation 38
3.6 Open-loop production of the ArsR_2 homodimer 46
3.7 A model of the ars operon in the absence of arsenic 48
3.8 Parameter variations of the arsenic-free model 50
3.9 Effect of relative promoter strength on the range of the response 51
3.10 The ars operon in the presence of arsenic 53
3.11 Response to arsenite under various parameter variations for the model shown in Figure 3.10 ... 54
3.12 The interactions of the ars operon, arsenic, and the cell membrane 55
3.13 Example response to arsenic for the cell model shown in Figure 3.12 56

4.1 Model of Fluorescent Reporter Protein (FRP) production adapted from de Jong et al. [32] ... 62
4.2 Impulse response of the fluorescent reporter model described in Equation 4.1 65
4.3 Design and use of of the landing pad assembly system 68
4.4 Optimisation of BsmBI Golden Gate, showing most efficient assembly at the intermediate value of 45 °C ... 70
4.5 Comparison of mCherry and mScarlet-I fluorescence against wild-type auto-fluorescence ... 73
4.6 Brightness of query FRP mVenus with and without comGA leader sequence 74
4.7 Brightness of reference FRP mScarlet-I with and without comGA leader sequence .. 75
4.8 Illustration of the serial assembly architecture 77
4.9 Schematic of transformations for serial assembly 78
4.10 Forward and Side scattering for flow cytometry of an autofluorescing example 81
4.11 Effect of changing reference FRP from mCherry to mScarlet-I 84
4.12 Mean and Variance of Transcriptional Unit concentration from Nicolas et al. [112], annotated to show promoters which were chosen for characterisation 86
4.13 Frequency plots showing length of predicted UTR sequences and gap between core RBS sequence and start codon 88
4.14 Split violin diagram of autofluorescence corrected Query and Reference channels under different query expression systems 91
4.15 Median ratiometric output from the promoter and RBS characterisation screen 92
4.16 Median response of each functional promoter in each of the three loci . . . 95
4.17 Ratiometric output for the gsiB RBS variants, under the Ppen reference promoter. 96
4.18 Effect of Growth Condition on each Promoter using the reference (gsiB) RBS 96
4.19 Effect of Growth Condition on each Locus under Ppen 97

5.1 Mathematical model and SBOL diagrams of the effect of the reporter system on the native system ... 102
5.2 Simulated output of the model from Figure 5.1 103
5.3 Ratiometric strength of the Pars promoter relative to Ppen, showing the median strength of 0.96 ... 106
5.4 Relative ratiometric strength of the four RBSs of the ars transcriptional unit 107
5.5 Induction of the arsenic operon by arsenite from zero to 2 mg l⁻¹ 109
5.6 Induction of the arsenic operon by arsenite from zero to 64 µg l⁻¹ 110
5.7 Distribution of mean mRNA concentration observed for the four ars genes . 114

6.1 Percentage of explained variance of the first five PCA component vectors for a range of values of N ... 123
6.2 Distribution of PCA scores for the first five components and N = 7 124
6.3 GMM clustering of principal component scores of each gene’s codon usage 125
6.4 Principal component scores overlaid with transcriptional data from Nicolas et al. [112] under four different test conditions 128
List of tables

2.1 Key plasmids developed during the project .. 21
2.2 List of relevant strains developed during the project 23
3.1 Summary of members of the SmtB/ArsR family of metal ion sensors and their thermodynamic properties ... 30
4.1 The sigma factors of Bacillus subtilis. See Haldenwang [57] for a review. . 67
4.2 Overhang specifications for each part type in the Dual Reporter library ... 71
4.3 Summary of FRPs considered for the dual reporter 71
4.4 Overview of promoters selected for characterisation 87
4.5 Overview of 5’ UTRs selected for characterisation 89
5.1 P-values below 0.05 for induction of ars operon in each condition 115
6.1 Codon preference table for B. subtilis 168 ... 119
6.2 The first five principal components of B. subtilis codon usage data 126
6.3 Percentage change in codon preference due to previous codon 130
A.1 Percentage change in codon preference due to next codon 156
E.1 All primers sequences used during the project. 185
Chapter 1

Introduction

1.1 Arsenic

1.1.1 Nature and Abundance

The toxic nature of arsenic has been known since ancient times. The industrial revolution saw a great increase in arsenic extraction, as deposits of the metalloid are commonly associated with copper, lead and gold ores. As production increased, uses for arsenic were found - in France it became known as poudre de succession ("inheritance powder"[122]) due to its common use as a poison by the ruling classes. Until the Marsh Test was published in 1836[95], no sensitive test for the tasteless and highly toxic arsenic trioxide [As$_2$O$_3$] existed, making it a popular murder weapon as the symptoms of arsenic poisoning are similar to Cholera to the untrained eye.

Arsenic commonly exists in four oxidation states: -3, 0, 3, and 5. The heavy metal can appear in both organic and inorganic forms, with inorganic forms being highly toxic to life. In aqueous, aerobic environments, arsenic is predominantly found as arsenate [AsV as H$_2$AsO$_4^-$ and HAsO$_4^{2-}$] while in anaerobic environments as arsenite [AsIII as H$_3$AsO$_3^0$ and H$_2$AsO$_3^{-}$][121].

Natural arsenic is typically found as a mineral in combination with sulphur (for example realgar [AsS] and orpiment [As$_2$S$_3$]) or also with iron (as in arsenopyrite [FeAsS])[140], substances which while highly toxic, are insoluble. Due to their bright colouration (see Figure 1.1), both realgar and orpiment were commonly traded as pigments within the Roman Empire, as well as being used for fireworks and to kill plants, insects and rodents. Powdered realgar is even added to cereal wine to make "realgar wine", which is traditionally drunk during the Chinese festival of Duanwu[180].
While realgar is insoluble and thus poorly taken up by the gastrointestinal system, realgar deposits also contain up to 10% arsenate and arsenite[180]. Both oxidation states are readily taken up by the body, and are highly toxic. Arsenate, As^{V}, is a molecular analogue of phosphorus - arsenic belongs to the same periodic group as phosphorus - and inhibits oxidative phosphorylation, the most efficient process used by almost all aerobic organisms to generate energy from nutrients. Arsenite, As^{III} is more broadly toxic and binds to sulfhydryl groups[109], the functional group found in the amino acid Cysteine, preventing the formation of disulphide bonds important in protein folding and thus impairing protein function.

Despite this knowledge, arsenic contamination still risks the health of tens of millions of people worldwide[122]. Human activity contributes significantly to environmental arsenic concentrations, with arsenic being released into the environment through a number of industrial processes such as smelting, combustion of coal, mining, hide tanning, pigment production and glass production. Inorganic arsenic compounds saw heavy use as pesticides between the 1930s and 1980s, contributing almost 10,000 metric tons per year in the U.S[121]. Prior to the introduction of dichlorodiphenyltrichloroethane (DDT) in 1947, lead arsenate [PbHAsO_4] was the primary pesticide used in fruit orchards, but the use of inorganic arsenic based pesticides was not banned until the 1980s and 90s[165]. As well as agricultural uses, arsenic compounds were heavily used as a fungicide for example during Chromated Copper Arsenate (CCA) pressure treatment of wood, a process used to preserve wood exposed to the environment. In the U.S., this process was used for over 60 years and remained the single greatest use of arsenic compounds in the year 2000[165]. In 2003, European Directive 2003/2/EC restricted the marketing and use of arsenic[41], banning CCA treated wood for domestic and residential constructions in favour of safer alternatives such as Alkaline Copper

Fig. 1.1 Realgar, Orpiment, and Arsenopyrite crystals. Images from Rob Lavin-sky/iRocks.com used under CC-BY-SA-3.0
Quaternary (ACQ). In 2004 the U.S. also began mandating the use of non-arsenic based wood treatments such as ACQ.

Despite these changes, arsenic compounds were still commonly used in the U.S. until more recently. Roxarsone, a derivative of phenylarsonic acid, \(\text{C}_6\text{H}_5\text{As(O)(OH)}_2\), was widely used as a food additive in the poultry and pig industry as it improved weight gain and feed efficiency as well as acting as an intestinal palliative and improving pigmentation[121]. In 2006, roughly one million kilogrammes of Roxarsone was produced in the U.S.[63]. Since roxarsone is an organic arsenic compound, it is not itself highly toxic as it is not readily absorbed into the body and is thus not a direct risk. However, arsenic containing roxarsone is released into the environment, where various processes are known to convert organic arsenic compounds into highly toxic inorganic forms, and contributing to arsenic contamination of groundwater[29]. In 2013 roxarsone was voluntarily withdrawn by its manufacturers in the U.S., before having its approval for use in feedstocks withdrawn by the U.S. Food and Drug Administration (FDA) in 2015[42]. Roxarsone was never approved for use in the European Union.

1.1.2 Contamination of Groundwater

Prior to the 1970s, Bangladesh had one of the highest infant mortality rates in the world. This was due, in part, to poor water purification and the spread of diseases such as cholera as most drinking water was sourced above-ground and access to clean water was poor. UNICEF and the World Bank advocated the installation of tube-wells used to tap into deeper groundwater found in permeable aquifer rock. Since this water was free of contaminants, instances of diarrhoeal disease decreased significantly[22].

The first cases of arsenic induced skin lesions were noted in patients from West Bengal, but by 1987 patients from Bangladesh were also identified[137]. Water sources were eventually identified as the cause of the problem, with most contamination due to shallow tube-wells. By 2001, between 8 – 11 million tube wells had been installed in Bangladesh alone[78], with more than 80% of the population having access to water from tube-wells, ring-wells and taps[151]. Despite knowledge of the problem being widespread by the mid 1990s, new tube wells were not routinely tested for arsenic, leading to the problem being described as the "largest mass poisoning of a population in history"[151].

A 2012 study[44] estimated the total number of deaths caused by arsenic contamination of water sources in Bangladesh to be around 43,000 per year, accounting for up to 15% of all deaths in some districts. The same study estimates that between 1 and 5 million of the 90 million children expected to be born between 2000 and 2030 will eventually succumb to arsenic poisoning.
Ironically, despite the many ways in which humans release arsenic into the environment, most of these instances of arsenic poisoning result from natural arsenic deposits. A tube well typically consists of a roughly 5 cm diameter tube which extends into the ground, usually to a depth of less than 200 m[151]. Water is then pumped by hand from the underground aquifer - a layer of porous rock capable of holding water - up to the surface where it is used for drinking, washing and irrigation. At the time when many of the wells were installed, arsenic contamination was not known to be a problem, and thus routine testing of the newly installed wells for arsenic was not considered.

Indeed, much of the microbiology of how arsenic came to be present in water extracted from aquifers was not known until early in the new millennium, reviewed in Oremland and Stolz [121]. Bacterial oxidation of arsenite to arsenate was first reported in 1918, but this was largely unnoticed until 1949 when Turner [157] isolated 15 strains of Heterotrophic Arsenite Oxidizers (HAOs). HAOs oxidise As^{III} encountered on the cell membrane to the less toxic As^{V}. While some HAOs use this as an energy source[159], it is generally considered to be a detoxification mechanism[176], protecting the cell from the more toxic arsenite and making arsenic uptake into the cell less likely as arsenate is strongly adsorbed onto the surface of many common minerals such as ferrihydrite and alumina, reducing its mobility[121].

On the other hand, Chemolithoautotrophic Arsenite Oxidizers (CAOs) are able to translate energy derived from the oxidation of arsenite for cell growth by using As^{III} as an electron donor in the reduction of either Nitrogen or Oxygen, fixing CO_2 in the process[120, 176]. As these bacteria can derive energy from arsenic oxidation, it is hypothesised that they attack insoluble arsenic deposits such as realgar [AsS], orpiment [As$_2$S$_3$], and arsenopyrite [FeAsS] releasing arsenate[121]. However, little of this arsenate is likely to enter aqueous phase due to the aforementioned fact that as As^{V} is strongly adsorbed onto a number of minerals, and thus has low mobility in such environments.

Bacteria are also able to reduce As^{V} to As^{III}. It had long been known that many bacterial arsenic detoxification systems reduce arsenate to arsenite in the cytoplasm before expelling arsenite from the cell (discussed in Section 3.1). It was quite a surprise, however, to discover that certain anaerobic bacteria are capable of using As^{V} as their respiratory oxidant, effectively "breathing" arsenate and producing the highly toxic arsenite[1, 85, 154]. These microbes, collectively referred to as Dissimilatory Arsenate-Reducing Prokaryotes (DARPs), have been isolated from freshwater sediments, estuaries, soda lakes, hot springs, and gold mines[119] as well as the gastrointestinal tracts of animals[61] and, crucially, subsurface aquifer materials from Bangladesh[138]. These bacteria have been shown to reduce adsorbed As^{V}, which, together with microbial reduction of the substrates such as Ferrihydrite, releases As^{III} into the aqueous phase[115].
While microbes are the agents of the release of arsenite, human activity does play a role. The oxidation of arsenite from minerals by CAOs is aerobic, and is thus accelerated by the digging of tube-wells which provides a source of oxidants in the form of dissolved oxygen and nitrates in agricultural regions. CAOs also produce biomass by fixing CO$_2$, while microbial respiration leads to the depletion of oxygen and the onset of anoxia. In these conditions, DARPs are able to oxidise the build up of organic matter, producing CO$_2$, while respiring AsV to produce the more toxic and more mobile AsIII.

1.1.3 Response to Contamination

Contaminated groundwater was identified as the leading cause of arsenic poisoning in the early to mid nineties. Approximately 97% of the rural population of Bangladesh use groundwater for drinking, domestic and agricultural purposes[66], while larger towns and cities are mainly protected as households there are supplied with piped water. In 1997, Bangladesh’s Department of Public Health Engineering (DPHE) began testing rural wells, testing 23,000 tube wells during the year. However, the field tests used were only capable of detecting arsenic at greater than 100 µg l$^{-1}$, twice the Bangladeshi drinking water standard of 50 µg l$^{-1}$. The commercially available tests became more accurate in the following years, and in 1999 the DPHE in collaboration with the British Geological Survey (BGS) found arsenic contamination above 50 µg l$^{-1}$ in 60 out of 64 districts surveyed[78].

Well testing continued into the next decade, with nearly 5 million wells tested between 2000 and 2006 in a joint project between the DPHE and UNICEF[73]. Based on this data, it was estimated that nearly 20% of wells nationally were contaminated with arsenic, exposing 20 million people to drinking water at or above the Bangladeshi limit of 50 µg l$^{-1}$[74]. The results of these tests were stored nationally, but tube wells were also painted red or green to indicate whether they were above or below the national threshold[131]. Testing each well once is not sufficient, however, as arsenic can flow within the subsurface meaning that a well which was previously contaminated may later become safe, and a well which was once safe may become contaminated[43].

While the Bangladeshi threshold for considering a water source contaminated or otherwise stands at 50 µg l$^{-1}$, there is evidence to suggest that ingesting water with a concentration lower than this can have serious health consequences. The World Health Organisation (WHO) has therefore adopted the lower safe threshold of 10 µg l$^{-1}$[44]. By 2010, estimates of the global number of people exposed to unsafe drinking water due to arsenic contamination above this lower threshold had grown to 100 million[43].

In areas of Bangladesh with considerable groundwater arsenic contamination, several mitigation options have been explored. Testing and painting of wells red or green to indicate
arsenic levels above or below the 50 µg l⁻¹ threshold has been the most effective intervention, as this allows villagers to switch their water source to a safer well. An estimated 29% of all those informed that their tube well had elevated arsenic were able to change their source of water by 2006[2], while well-switching in areas where a safe alternative is available has been observed to be as high as 75%[74]. The installation of deep tube wells has had the second largest effect, with around 12% of those told their water source was contaminated having access to a government installed deep tube well. These deeper wells draw water from deeper, older aquifers which are less likely to be contaminated with arsenic, possibly as a result of the lower incidence of organic matter necessary for the release of arsenite into the aqueous phase present at such depths[43]. While these wells are less numerous and are often shared or community wells, they often prove popular when located centrally, and often provide an impetus for privately owned wells to be re-dug to a greater depth[2].

In 2004, the Government of Bangladesh launched the National Policy for Arsenic Mitigation (NPAM)[54], aimed at forming a national strategy for mitigating arsenic contamination of wells. The policy recognised well-switching as a solution in communities where less than 40% of wells are contaminated, however deep tube wells were seen as a low priority option in favour of recommending a return to the use of surface water – where microbial contamination remains an issue[2].

NPAM recommended five other mitigation strategies which were trialled, but none of which have proven successful to date. The first was the use of shallow dug wells, but this is prone to contamination in the same way as the surface water. Filtration to remove arsenic is also an option, though as of yet it has proven challenging to reliably remove enough arsenic for the water to be safe. Removal technologies depend heavily on water quality, especially the pH[101], and so considerable testing, quality assurance and maintenance is needed for a successful filtration device, all of which are hard to deliver in rural areas. Sand filtration of pond and river water was also put forward, but again, ponds often directly receive human waste from latrines[2], making sand filtration insufficient to remove the contamination. Rainwater harvesting does have some promise during the wet season as plentiful arsenic-free water can be collected. Storage of enough of this water, without contamination, for the entirety of Bangladesh’s 8-month dry season is most often not feasible for economic reasons. The installation of piped water systems is NPAM’s final recommendation, which, while an attractive solution technologically, has a high financial cost associated with it. Since arsenic contamination disproportionately affects Bangladesh’s rural poor, it is likely to be some considerable time before any large proportion of the affected population has access to piped water[2].
Even where installation of the new government-backed deep wells has gone ahead, problems exist. A 2005 survey[75] of 1,060 government installed wells failed to locate some 8% of them, while 36% were found to be no longer functional. Normalising for the range of technologies used across the country, the authors estimate that only about 76% of newly installed wells were working, and even the functional wells often broke down, with government policy leaving volunteers from the local community responsible for their repair.

In addition, of the 125,000 deep tube wells installed between 2007 and 2012, approximately 5% are believed to be contaminated with arsenic above Bangladesh’s 50 µg l$^{-1}$ threshold[133]. This work was funded by UNICEF, who later performed remedial work on the affected wells, and noted, in communication with human rights group Human Rights Watch:

An assessment by UNICEF and the Department of Public Health Engineering (DPHE) to determine why some DPHE-UNICEF supported water points were contaminated recognized that a specific clause in the government’s drilling contract stipulates ‘no success, no payment’ which made the contractor liable for arsenic contaminated water points. This clause may have discouraged a transparent and honest process of collection and submission of water samples for testing.

Furthermore, Human Rights Watch’s 2016 report[68] on the response to arsenic contamination in Bangladesh found that the siting of new deep wells has not been conducted on the basis of need. Instead, most new wells were located in areas where access to arsenic-free water was relatively good. The report found that up to 50% of new well locations were influenced by politicians rather than public health professionals, diverting vital funds away from the most needy. In addition, wells sited in areas where hydrological or geological difficulties were encountered were often abandoned, with little to no appetite shown for overcoming these challenges.

The report paints a grim picture of the response to arsenic contamination, which Human Rights Watch describe as “a disaster which humans have caused and perpetuated”. The organisation describes the Bangladeshi Government’s official response to the contamination issue as ‘failing’, and argues that efforts to regularly test rural wells have lost their urgency since 2006.

In conclusion, Human Rights Watch make a number of recommendations to both the Government of Bangladesh and its responsible agency, the DPHE, as well as to the international community. HRW recommends that the DPHE should, amongst other things,
Ensure all district and upazila (sub-district) DPHE offices are provided with sufficient arsenic test kits and are required to regularly use these to monitor and report on arsenic levels in public and private water supplies in the area and that the international donor community should, amongst other things,

- Support improved government infrastructure for testing tube wells for arsenic
- Ensure independent third party assessment of project results, including random sampling and testing of water quality and rehabilitation or replacement when testing reveals water point contamination, is a mandatory component of any current and future rural water supply projects that receive multilateral or bilateral donor support.

Continued testing of drinking water sources in affected areas in Bangladesh and elsewhere is crucial to overcoming this public health disaster.

1.1.4 Arsenic Field Tests

In 1997, the United Nations Children’s Fund (UNICEF) together with the World Health Organisation (WHO) took a joint decision to test every tube well in Bangladesh for arsenic contamination in order to better assess the scale of the problem[40, 66]. Due to the sheer number of tube wells, their remote location, and the lack of reputable laboratories within Bangladesh with the capacity to test arsenic, as well as the constraints of time and budget, field tests were the only practical option for this purpose[73].

The first widely used field kit in service during these initial programmes was that developed by German pharmaceutical and chemical company Merck. By 2002, it was estimated that these kits alone had been used to test one million tube wells across Bangladesh[131], and to classify them as containing above or below 50 \(\mu \text{g} l^{-1} \) of arsenic. These original kits had several issues, not least that their published minimum detection threshold was 100 \(\mu \text{g} l^{-1} \), double the threshold they were being used for.

All of the early test kits were based on the mercuric bromide stain method[131], also known as the Gutzeit test, as are most of the modern kits. The method is similar to the earlier Marsh test. First, any pentavalent arsenate is reduced to arsenite, As\(^{III}\), typically by means of potassium iodide and stannous chloride. Reaction with zinc under acidic conditions then causes the release of arsenic in the form of arsine gas, AsH\(_3\). This gas then reacts with a mercury bromide impregnated paper test strip, forming a variety of arsenic salts with mercury, the exact combination of which depends on the concentration of arsine gas, itself dependent
on the original arsenic concentration. The colour ranges from yellow \([\text{H(HgBr)}_2\text{As}]\), to brown \([\text{HgBr}_3\text{As}]\), and finally to black \([\text{Hg}_3\text{As}_2]\)[123].

Arsine gas is one of the most toxic known substances, and is also highly flammable. The Materials Safety Data Sheet (MSDS) for arsine[127] lists the gas as

- Fatal if inhaled
- Suspected of causing cancer
- May cause damage to organs (liver) through prolonged or repeated exposure
- Very toxic to aquatic life with long lasting effects
- May form explosive mixtures with air

The MSDS states that release of arsine into the environment is to be avoided, and that “protective gloves, protective clothing, eye protection, respiratory protection, and/or face protection” is to be used. Any exposure to inhaled arsine is to be considered a potentially toxic dose, as symptoms may be delayed. As a precaution, the MSDS recommends that “Emergency eye wash fountains and safety showers should be available in the immediate vicinity of any potential exposure”. Although arsine has a garlic-like odor, it has “poor warning properties” at low concentrations.

The original Merck field test kit for arsenic was later found to allow up to 50% of the arsine developed to escape the testing chamber into the environment, with the estimated arsine concentration in close proximity to the test becoming as high as 35 times the Threshold Limiting Value (TLV)\(^1\) for arsine exposure[70]. This exposed those nearby to significant short and long-term danger, particularly for the workers administering the tests. As late as 2007, scientific publications were advocating for conducting the field tests “in the presence of an enthusiastic crowd”[73] in order to raise awareness of arsenic contamination, thus potentially exposing a far wider group to arsine gas.

Modern tests based on arsine quantification have improved their ability to contain the gas[99, 139], however the possibility for human error or malfunction remains and it is doubtful that field testers will ever have access to the emergency eye wash fountains and safety showers which would be a health a safety requirement in the developed world. Safe storage and disposal of the flammable arsine gas and other toxic kit reagents remains an issue, with the environmental contamination caused by millions of used field kits becoming a real concern[131].

\(^1\)the level to which it is believed a worker can be exposed to a chemical substance day after day for a working lifetime without adverse effects, known as Workplace Exposure Limit (WEL) in the UK
Accuracy is another major issue, particularly with the earlier tests. Correct classification of wells depends on the operator correctly determining whether the exact shade of light yellow presented was above or below the threshold value. As is to be expected, accuracy using this visual identification varied from person to person, with accuracy particularly poor when in new hands[131]. Early studies of the classification accuracy – carried out by comparing field results with laboratory controls – recorded false negatives, where contaminated wells are painted green, as high as 68%, and false positives as high as 35%[131]. While the early kits could determine whether a well had very high arsenic or not, it was quickly realised that in the target range of 50 µg l⁻¹, the tests could not reasonably be described as quantitative[131].

This early poor performance spurred on a series of improvements, and soon newer test kits became available. In 2001 the U.S. company Hach released their arsenic field kit, while Merck released a ‘doubling kit’, both with a stated 10 µg l⁻¹ sensitivity[131]. The Hach kit saw considerable use, and in 2003 was shown to have correctly classified 88% of wells in a district of Bangladesh relative to the 50 µg l⁻¹ standard[158]. However, incorrect use appears to have persisted during this time, with reports of field workers feeling pressured into testing as many sample as possible during a day and cutting down the recommended twenty minute incubation time as only one sample can be processed at a time[158].

In 2003, UNICEF began using a new test kit, the Arsenator kit developed by Wagtech. This kit showed good accuracy, with a later version – the Wagtech Digital Arsenator – including a small battery operated colorimeter to decrease the variability of colour measurements from the mercury strips[48, 139, 149]. The Digital Arsenator is still used today[13] as a convenient field test for inorganic arsenic detection.

However, since 2006 government testing regimes have declined[43, 68]. Despite the accuracy of the field tests having increased and their cost having decreased – refills of the Arsenator kit cost around $0.7USD in 2008[139] – the up-front costs of the testing kit and training required for their use make them prohibitive for local communities. In 2009 a joint survey by UNICEF and the Bangladeshi Bureau of Statistics found that 50% of wells in Bangladesh remained untested[48, 125]. In reference to this report, George et al. [48] noted “an urgent need for expanding the availability of well testing at the village level”, to combat the need to both ensure complete testing and repeated testing of wells, something which has proven impossible with the current approach[40]. While classical arsenic tests based on arsine production remain infeasible for roll-out at village level, another sensing technology might provide a solution.

Stocker et al. [153] showed that engineered E. coli strains were able to detect arsenic concentrations of 4 µg l⁻¹, significantly lower than both the Bangladeshi and WHO arsenic thresholds. Some strains were also capable of behaving quantitatively in the range of 8 and
80 µg l\(^{-1}\). A similar study in 2012\cite{149} used lyophilized \textit{E. coli} – thus avoiding the need to maintain a cold chain – which became bioluminescent in response to arsenic. While the accuracy of these first-generation tests remains modest, the technology shows significant promise. An accurate and cheap biological test would generate significantly less hazardous waste than current options, while being comparatively simple to use. And although each individual test may take longer than the \(\sim 20\) minutes taken by current tests, the tests would be highly parallelisable leading to a far greater overall throughput.

A cheap, reliable and easy to use arsenic biosensor would be a vital technology for putting the ability to test water points into the hands of those who use them.

\section*{1.2 Biosensors}

A biosensor is any sensing device which uses a biological element to detect or quantify the presence of a target element. Biosensors are typically employed when it would be technically difficult or not economical to sense the target directly using traditional methods such as those of analytical chemistry. The biological element acts to convert the target modality into one which can be more easily transduced, either electrically or by eye.

A common example is the home glucose sensor. This cheap inexpensive sensor allows diabetes patients to monitor their glucose levels at home without the need to see a professional. This lowers the pressure on healthcare, and allows patients to more effectively manage their condition, improving the effectiveness of their treatment as well as their quality of life.

Blood glucose sensors are based on a single enzyme – typically a glucose oxidase or glucose dehydrogenase – which specifically catalyses the oxidation of glucose. The progress of this oxidation can be easily measured by measuring changes in resistivity of the sample. This method has many advantages, but chief among them is that the specificity of the enzyme used means that no sample preparation is required, facilitating the development of cheap and simple-to-use in-home devices.

Traditional biosensors of this sort are relatively common – the home pregnancy test is another example – but they may not be easy to apply directly to arsenic detection. The bacterial response to arsenic is controlled by the behaviour of one protein, ArsR, discussed in detail in Section 3.1.1. Briefly, this protein binds to its promoter region, repressing its own expression as well as the downstream genes in the operon. When \(\text{As}^{\text{III}}\) is present, ArsR releases the DNA – probably because of some conformational change brought about by interaction with arsenite – allowing transcription of the downstream genes. The exact combination of downstream genes present depends on the organism and operon, but they typically involve a transmembrane protein which facilitates \(\text{As}^{\text{III}}\) egress from the cell, reducing its toxicity, and
a reductase which converts AsV into AsIII which is then also removed from the cell. These functions are discussed in detail in Section 3.1.

There is no single biological molecule which is specifically sensitive to both tri- and pentavalent arsenic, meaning a traditional style biosensor would require either some initial sample preparation to reduce AsV to AsIII, or for both the regulatory protein (ArsR) and the reductase to be present and functional. Together with the fact that affinity for a specific DNA sequence is not a particularly convenient modality to detect within the requirements of the sensor – particularly that it be cheap and easy to use – this makes a single molecule approach to building an arsenic biosensor unattractive.

These traditional biosensors are not the only option, however, as whole-cell biosensors have also seen commercial success. Examples of such sensors are the MicroTox (Strategic Diagnostics, SDIX) and BioTox (Aboatox) systems, which employ naturally bioluminescent bacteria such as *Vibrio harveyi*, *Vibrio (Photobacterium) fischeri*, and *Photobacterium phosphoreum* as their sensing element\[45\]. These sensors are thus very broad spectrum, and will detect the presence of any analyte which interferes with the metabolism of the bacteria – detected via a reduction in bioluminescence output. While further tests are needed in order to identify the specific contaminant present, the absence of a large number of potentially harmful agents can be confirmed with a single test.

While bacteria are exquisitely sensitive to arsenic\[24, 113, 141\], and are able to activate a very specific set of genes to mitigate the harmful effects of arsenic, there is no visible change in phenotype that is specific to arsenic. However, synthetic biology allows us to engineer a new strain of bacteria that do exhibit a change, which is easy to measure. Previous efforts at creating an arsenic biosensor have used the luciferase system from *Vibrio harveyi*, a bioluminescent marine bacterium, to generate light as the output of the system\[153\]. These efforts were able to demonstrate some level of differentiation between arsenic concentrations, and could be used as a crude sensor, although the accuracy and dynamic range could be improved upon.

A sensor of this kind already has several advantages over a traditional field kit, however. Firstly, the sensor doesn’t produce any harmful agents such as the arsine produced by standard kits. It also doesn’t require the use of any chemical treatments – the water sample is simply added to the growth media – and is thus far simpler to use as well as requiring less equipment. Furthermore, since the sensing technology is based on living cells it should be cheap to fabricate as they are of course self-replicating and suitable growth media are thus the only purified chemicals that are required.

However, several challenges remain before the technologies discussed in Melamed \[99\], Siegfried et al. \[149\], Stocker et al. \[153\] can be used in the field. Firstly, while
these sensors represent a leap forward, they are not yet suitable for use by a completely untrained individual, at least in order to get a highly accurate reading. Secondly, ethical issues exist surrounding the use of biosensors based on Genetically Modified Organisms (GMOs) in developing countries. Countries such as Bangladesh often do not have sophisticated legislation on the use of GMOs, and previous studies have been able to conduct field trials using their synthetic strains[149]. However, due to the possibility for accidental release, significant regulatory oversight would be required in order to use such a device legally in countries such as the U.K. or the U.S. Widespread use of such a technology in a developing country without first receiving regulatory approval of this kind might not be illegal, but would be highly reminiscent of the attitudes that caused the arsenic disaster, when unsafe tube wells were installed without the level of oversight that would be expected in a developed country.

In the longer term, it is possible that a third technology might prove more successful in overcoming some of the regulatory issues encountered by whole-cell biosensors – the cell-free biosensor. Instead of using cells, such a sensor uses cell extract supplemented with sources of energy and amino acids[64, 152] to perform sensing in a manner similar to a whole-cell sensor. Since the extracts do not contain cells, they are not self-reproducing and are thus not GMOs, reducing regulatory overhead. Cell free extracts can also be freeze dried[124], extending their shelf life and removing the need for a cold chain. However, such systems would have other drawbacks, such as the relatively high cost of generating efficient cell extracts in sufficient quantity for the output to be cheaply detected, although this cost may fall as the technology becomes more established. Cell free extracts also lack cell walls, meaning they are less well isolated from their environment than whole-cells. It seems likely therefore that cell extracts will be more sensitive to deleterious effects caused by contaminants present in water samples than whole-cell alternatives. Without proper controls, safe levels of other contaminants could interfere with the detection of arsenic more strongly than whole-cell sensors.

For the time being, roll-out of a cell extract based arsenic biosensor is limited by the technology’s higher cost and sensitivity to non-specific factors. There also remains a significant gap in our knowledge of the natural arsenic systems present in bacteria. While a good qualitative understanding has been gained over the last several decades – reviewed in Section 3.1 – there has been little to no quantitative data or rigorous mathematical modelling of the arsenic cycle in bacteria, and indeed the underlying mechanism behind the sensing of arsenic remains poorly understood. This work represents an attempt to redress this imbalance, by first developing a mathematical understanding of the response to arsenic in our target host, *Bacillus subtilis*, establishing a system for reliable ratiometric characterisation in that system, and then performing a thorough characterisation of the arsenic response in the organism.
It is hoped that this work will help speed the development of an arsenic biosensor – whether whole-cell or cell-free – as well as laying some of the groundwork necessary for bringing rational system design to *B. subtilis*.

1.3 **Bacillus subtilis**

Bacillus subtilis is a Gram-positive, rod shaped bacterium that has been commonly studied in laboratories for the past six decades[179]. The bacteria were first described by Ehrenberg [36] in 1835, and are typically around 4 to 10 µm long and between $\frac{1}{4}$ and 1 µm in diameter. *Bacillus subtilis* is commonly found in many different environments across the globe, both terrestrial and aquatic[35]. By far the most commonly studied strain, as well as the most industrially relevant, is strain 168 which was isolated after two Yale University botanists exposed the wild-type *B. subtilis* Marburg to X-rays in the 1940s[16]. This strain has proven to be highly transformable – easily taking up foreign DNA and inserting it into its single, circular chromosome – a trait which makes the bacteria particularly suited to research and industry[179].

B. subtilis is also capable of forming highly resilient spores, and typically does so when faced with nutrient deprivation or other environmental stresses[86, 179]. The spores are almost completely inactive and contain very few high energy compounds, and are protected from their environment by a number of mechanisms, reviewed by Setlow [144]. A thick spore coat and two membrane barriers protect the spore from many harmful chemical agents, and proteins on the surface reduce the toxicity of several toxins. Spores are protected from heat by their low water content, as well as by Small Acid Soluble Proteins (SASPs) which bind tightly to the spore’s DNA. SASPs also protect against UV radiation damage, and spores also appear more resistant to γ-radiation than vegetative cells, although the mechanism for this is not clear. Upon germination, several DNA repair mechanisms are activated in an attempt to repair DNA damage accrued during potentially millennia of dormancy.

While *B. subtilis* is often referred to as a “soil bacterium”, it is uncertain that this environment is ideal for vegetative growth or simply where spores of the bacterium collect. Early experiments suggest that vegetative growth is more commonly associated with decaying organic material, and the bacterium is also often found in close proximity to plant roots, and is thought to enhance plant growth. The bacterium is commonly ingested by animals and humans – soybeans fermented with *B. subtilis natto* are a popular food in Japan, believed to confer pro-biotic benefits[35].

The behaviour of *B. subtilis* in the gastrointestinal (GI) tract is not fully understood. *B. subtilis* was long believed to be an obligate aerobe, and as such passed through the GI
tract in spore form, however in 1998 it was revealed that the organism is able to respire anaerobically[108], and can in fact complete its entire life-cycle within the GI tract[35].

Bacillus subtilis are a promising chassis for a whole-cell arsenic biosensor. They are non-pathogenic and have a long history of safe use as part of the human diet and within the laboratory, and strains that are commonly studied – such as 168 – are out-competed by wild strains. The bacterium has a natural defence from arsenic in the form of the *ars* and *ase* operons, introduced in detail in Section 3.1.1, which are highly sensitive to low levels of environmental arsenic. Finally, the ability of the bacterium to form highly efficient spores removes the need for a cold chain or an inefficient freeze-drying step required in *Escherichia coli* based sensors, as simply produced spores can be shipped and held indefinitely in almost any conditions until needed.

1.4 Summary and Aims

There is a clear need for technological innovation to help combat arsenic contamination of groundwater in the developing world. Widespread and continuous monitoring of tube-wells has proven to be the single most effective strategy for mitigating the effects of arsenic ingestion, particularly when combined with interventions such as the installation of deeper wells in the worst affected areas. However, blanket testing campaigns funded by international aid organisations in cooperation with local governments have lost their way. A safe, inexpensive, and accurate test for arsenic, distributed to and conducted by those who need it could help millions avoid the debilitating and deadly effects of arsenicosis, as well as help governments and NGOs to better target their resources to those in need.

Despite initial enthusiasm, many technical, regulatory, and social challenges exist before a workable arsenic biosensor can be rolled out. As synthetic biology comes of age, it is hoped that the regulatory process will become more receptive, with the development of a smooth and well defined pathway towards approval together with increased public engagement and understanding. Increased education about the dangers of arsenic contaminated water, as well as proper control of sensitive well contamination data, may also help alleviate some of the social challenges.

Central to this work is the question of how we can build a genetic circuit capable of accurately and reliably detecting very low levels of arsenic. By definition, we are interested in detecting arsenic at levels far lower than those that cause harm – at least to humans and wildstock – making reliable detection by microbes more difficult.

It seems, therefore, that a central challenge will be the faithful amplification of a weak, noisy and stochastic biological signal, however we are also hampered by our poor quantitative
understanding of the mechanisms by which several bacterial species are able to protect themselves from arsenic toxicity. In light of this, the primary goal of this work is to develop a better and more quantitative understanding of the response of our target organism, *Bacillus subtilis*, to arsenic, and to demonstrate how synthetic biology might use this native system to design a more robust sensor.
Chapter 2

Materials and Methods

2.1 Introduction

Standard protocols were used where possible throughout this project, which largely involved straightforward molecular cloning techniques. This chapter gives an overview of the techniques used, referencing more detailed protocols where appropriate and noting any modifications that were made to the standard protocols. Section 2.5 details the various strains, and media which were generated and used during the project and which are referred to during the text.

2.2 DNA Manipulation and Assembly

All PCR reactions were carried out using Q5 High-Fidelity DNA Polymerase[110] from NEB, 1% agarose was used for gel electrophoresis unless otherwise stated and gel extractions and gel slice purifications were performed using the QIAquick Gel Extraction kit from Qiagen[130]. DNA sequence verification was by Sanger sequencing, performed by Source BioScience[117], which was used for both linear PCR products and assembled plasmids.

Plasmids were mostly assembled using Golden Gate assembly, following the standard procedure described in Engler and Marillonnet [39], with the modification that 45 °C was used for restriction when using BsmBI as opposed to the 37 °C recommended for the BsaI restriction enzyme, as discussed in Section 4.2.2.

In some circumstances Gibson assembly was used instead, following standard procedures described in Gibson et al. [49]. Gibson assembly was mainly employed in situations where Golden Gate assemblies were not feasible, such as in introducing silent mutations to remove
the BsmBI restriction sites which were present in the backbone of the original template plasmids used during the development of the reporter system described in Chapter 4.

2.3 Bacterial Cloning

Escherichia coli was used throughout to amplify assembled plasmids. Plasmids were transformed into chemically competent *E. coli* and grown under selection on solid media. Chemically competent *E. coli* were generated in house using the standard ‘E. cloni’ strain and standard methods from OpenWetWare[118]. Briefly, cells are grown to an Optical Density at 600 nm (OD-600) of approximately 0.3, before being centrifuged at 6000 RCF for 10 min and resuspended in ice cold CCMB80 buffer (see Section 2.5.5) and incubated on ice for 20 minutes. The cells are again centrifuged at 4 °C at the same speed and time then resuspended in ice cold CCMB80 such that a mixture of 200 µl of growth media and 50 µl of cells has an OD-600 of between 1.0 and 1.5. This is then divided into 50 µl aliquots into pre-chilled micro-centrifuge tubes and stored at −80 °C.

Transformation was carried out by thawing on ice before adding circular DNA – usually the result of an assembly reaction – pipetting gently to mix thoroughly and then holding on ice for 30 minutes. The cells were then heat shocked at 42 °C for 45 s and then returned to ice for 2 minutes. 250 µl of LB growth media was then added – many protocols recommend glucose supplemented media such as SOC, but it did not appear to be any more effective than plain LB – and grown with shaking at 90 RPM at 37 °C for 1 hour to allow expression of the newly transformed resistance marker. 100 µl was then plated on solid media with antibiotic marker and grown overnight. In the case of low-efficiency assembly reactions, the entire mixture were first centrifuged at low speed before being resuspended in 100 µl of growth media and plated.

Positive colonies were used to inoculate overnight cultures with antibiotic and harvested using the QIAprep Spin Miniprep[129] kit from Qiagen. Harvested plasmids were then sequence verified an linearised by restriction digestion with Scal-HF before being transformed into competent *Bacillus subtilis* 168 trpC2 auxotroph by homologous recombination.

Competent *B. subtilis* were generated also using a standard method[116], where cells are first grown in 10 ml of minimal growth medium for 18 h at 37 °C with shaking at 90 RPM. 1.4 ml are then sub-cultured into a further 10 ml of pre-warmed minimal growth medium and grown with shaking at 90 RPM. After 3 h, 11 ml of starvation medium is added and growth continued for 2 h and 45 min. Sterile glycerol is then added to 10% v/v and then 300 µl aliquots are made and stored at −80 °C.
2.3 Bacterial Cloning

Thawed cells were transformed by the addition of linear DNA, and incubated with shaking at 90 RPM at 37°C for one hour. 700 µl of LB medium were then added, and the cells grown for 1 h to 2 h at 37°C depending on the antibiotic marker present, with a longer incubation given for bactericidal antibiotic markers. The cells were then plated on solid media with antibiotic and grown overnight.

2.3.1 Selectable Marker Excision in *B. subtilis*

As several points during this project, the Xer recombinase system was used to remove an antibiotic marker after successful transformants had been selected for. This allowed for the same antibiotic to be re-used in further transformations, but also meant the gene deletions which were made using this technique were less likely to have a wider, non-specific effect as the antibiotic is no longer produced once it has been excised.

The *cat* gene, which confers resistance to chloramphenicol, a bacteriostatic antibiotic which prevents protein elongation[143], was used as the selectable marker to be removed by Xer recombinase throughout. To this end a variant of the *cat* resistance cassette dubbed *dcat* which is flanked by the 28 bp diff regions defined in Bloor and Cranenburgh [11] was built using primer extension. This linear fragment included ends compatible with Golden Gate using the Bsal enzyme, allowing swift insertion into a plasmid.

Such a plasmid could be transformed as normal, however it was found that a greater efficiency was achieved by reducing the outgrowth period – where cells are grown in antibiotic-free media – to between 30 and 60 min. This is likely due to the possibility of the antibiotic marker being cured out before selection takes place, which increases with a longer outgrowth phase. Furthermore, it was found that reducing the concentration of chloramphenicol to 5 µg l − 1 increased the number of positive colonies. The growth of these colonies was typically far lower than one would normally expect and on occasion is was necessary to incubate transformed cells on solid media for 36 h before visible colonies appeared.

Once colonies we present, they were grown in plain LB media for at least 6 h, but typically overnight, before again being plated but this time onto plain LB agar. These colonies were then verified by colony PCR for deletion of the target gene and excision of the *cat* gene.

Although Bloor and Cranenburgh [11] recommend demonstrating the removal of the *cat* resistance by again plating onto chloramphenicol to demonstrate that the resistance has been lost, colony PCR was preferred as it generates faster results. A wild-type *B. subtilis* strain as well as the plasmid with which the strain was transformed were used as controls, the first to demonstrate transformation and control against potential miss-priming elsewhere in the genome, and the second to demonstrate the excision of the *cat* gene.
2.4 Flow Cytometry

Flow cytometry was carried out using a Cytek FACScan with DXP 8 colour upgrade. mVenus fluorescence – used for the query channel – was collected from the BluFL1 channel, corresponding to an excitation wavelength of 488 nm and an emission wavelength of 530 nm. mScarlet-I, which was used as the reference reporter was collected from the YelFL2 channel, corresponding to an excitation wavelength of 561 nm and collected in the far-red region up to 740 nm.

Logarithmic data collection was enabled for all channels, as is recommended for bacterial samples.

Ratiometric values were calculated on this data after transformation back into the linear domain. Measured autofluorescence was first subtracted separately from each channel before taking the ratio of query to reference signal for each sample. For each experimental run, the analogue gain of each channel was set such that the ratio of the reference strain – which contains both query and reference reporter under strong constitutive expression – was equal to one, and that the signal for each channel was approximately 85% of the saturating value of the device in order to give good resolution.

In order to correct for differences between different sessions, the ratiometric output was normalised against the output from the reference strain, with the output from the reference strain defined to be unity such that small differences in gain were corrected for.

2.5 List of Materials

2.5.1 Plasmids

The key plasmids generated during the project were the query and reference template plasmids, which each allow for easy insertion of a promoter and RBS combination. The original source of the backbones sequences for these plasmids was an in-house plasmid available at the start of the project, however the backbones were modified to remove two BsmBI cut-sites using Golden Gate assembly. The final plasmids were thoroughly verified using Sanger sequencing.

Variants of the template plasmids for which a promoter and RBS sequence has been inserted are labelled in the format <TemplateID> . <PromoterNumber> . <RBSNumber>, where the promoter number and RBS number are as defined in tables 4.4 and 4.5 respectively.

In the case of the ars operon based plasmids, the operon and around 1kb either side was cloned by colony PCR from Bacillus subtilis sp. 168 and inserted into a high copy plasmid backbone and was they verified with Sanger Sequencing.
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Sequence link</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHK025v2</td>
<td>mCherry Reference Template in amyE locus</td>
<td>https://benchling.com/s/YVhf20eG</td>
</tr>
<tr>
<td>pHK026</td>
<td>comGA-mVenus Query Template in amyE' locus</td>
<td>https://benchling.com/s/SDtt5Wgg</td>
</tr>
<tr>
<td>pHK027</td>
<td>comGA-mVenus Query template in amyE' locus, reversed</td>
<td>https://benchling.com/s/seq-AFaO9GR4e02PE7QB3yB9</td>
</tr>
<tr>
<td>pHK028</td>
<td>mCherry Reference Template in amyE' locus</td>
<td>https://benchling.com/s/seq-8YioKG17G1KmcRpoNn6z</td>
</tr>
<tr>
<td>pHK029</td>
<td>comGA-mVenus Query Template in amyE locus</td>
<td>https://benchling.com/s/seq-vKZ4cep1bdbkwQji3HvS</td>
</tr>
<tr>
<td>pHK030</td>
<td>mVenus Query template in amyE' locus</td>
<td>https://benchling.com/s/seq-WTBBECN6IOXnRxnFRGK1</td>
</tr>
<tr>
<td>pHK031</td>
<td>mKate2 Reference Template in amyE locus</td>
<td>https://benchling.com/s/seq-Ca3sCn7xIF1VT9cLoNwR</td>
</tr>
<tr>
<td>pHK032</td>
<td>comGA-mKate2 Reference Template in amyE locus</td>
<td>https://benchling.com/s/seq-xR2itEn5OXJ4avHtNGSt</td>
</tr>
<tr>
<td>pHK033</td>
<td>mScarlet Reference Template in amyE locus</td>
<td>https://benchling.com/s/seq-UuVmm9L9K7SqSAdV660Y</td>
</tr>
<tr>
<td>pHK034</td>
<td>comGA-mScarlet Reference Template in amyE locus</td>
<td>https://benchling.com/s/seq-rfXUv6usEglKdlVWk4NB</td>
</tr>
<tr>
<td>ars Operon</td>
<td>pHK001v2</td>
<td>https://benchling.com/s/NJc2Jzv2</td>
</tr>
<tr>
<td>ars Operon ΔarsR</td>
<td>pHK001_arsR</td>
<td>https://benchling.com/s/Hogwaufh</td>
</tr>
</tbody>
</table>

Table 2.1 Key plasmids developed during the project. Name refers to the name written on the tubes containing plasmid and glycerol stocks in the cold storage boxed labelled ‘plasmids’ and ‘glycerol stocks’, respectively. (a) Sequences also available in Appendix D
2.5.2 Oligos

Single stranded oligos were synthesized externally by either IDT or NEB. Short double stranded sequences such as the promoters and RBSs described in tables 4.4 and 4.5 were synthesized as single stranded oligos and annealed by heating to 98 °C and slow cooling to room temperature.

All oligos synthesized for the project can be found in the cold storage boxes at −20 °C labelled ‘Haydn Oligos’. The mapping between labels and sequence information can be found in appendix E.

2.5.3 Fluorescent Reporters

Some fluorescent reporters were already available in-house (mVenus, mCherry, and mTurquoise) while codon optimised versions of all others were synthesized using IDT. Sequences for each fluorescent reporter used in the project can be found in the plasmids described in table 2.1.

2.5.4 Strains

The strains developed during the project are enumerated in Table 2.2. The strain description use the convention \(P_{\text{promoter}} \cdot \langle RBS1 \rangle \cdot \langle \text{gene1} \rangle \cdot \ldots \) to describe transcription units.

2.5.5 Media

Pre-made powdered Luria Broth (LB) was used throughout.

Minimal Salts Solution

Minimal salts solution was prepared with

- 2 g Ammonium sulphate
- 14.8 g Potassium Hydrogen Phosphate
- 5.4 g Potassium Dihydrogen Phosphate
- 1.9 g Sodium Citrate
- 0.2 g Magnesium Sulphate Heptahydrate

which was dissolved in 150 ml deionized water and adjusted to pH 7.0 with HCl or NaOH. The final volume was adjusted to 200 ml and autoclaved.
2.5 List of Materials

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>P_{pen}-gsiB-mCherry inserted into AmyE' locus</td>
</tr>
<tr>
<td>R*</td>
<td>P_{pen}-gsiB-mScarlet-I inserted into AmyE' locus</td>
</tr>
<tr>
<td>cG-mS cG-mV</td>
<td>P_{pen}-gsiB-comGA-mScarlet-I in AmyE' and P_{pen}-gsiB-comGA-mVenus in AmyE</td>
</tr>
<tr>
<td>mS cG-mV</td>
<td>P_{pen}-gsiB-mScarlet-I in AmyE' and P_{pen}-gsiB-comGA-mVenus in AmyE</td>
</tr>
<tr>
<td>cG-mS mV</td>
<td>P_{pen}-gsiB-comGA-mScarlet-I in AmyE' and P_{pen}-gsiB-mVenus in AmyE</td>
</tr>
<tr>
<td>mS mV</td>
<td>P_{pen}-gsiB-mScarlet-I in AmyE' and P_{pen}-gsiB-mVenus in AmyE</td>
</tr>
<tr>
<td>R* Q(x), (y)</td>
<td>$R^* + P_{(x)}$-comGA-mVenus in AmyE (P(x) and (y) defined by Tables 4.4 and 4.5 respectively)</td>
</tr>
<tr>
<td>R* A(x)</td>
<td>Equivalent to $R^* Q_{(x)}$.1</td>
</tr>
<tr>
<td>R* B(x)</td>
<td>Equivalent to $R^* Q_{(x)}$.1 but with mVenus inserted into LacA locus</td>
</tr>
<tr>
<td>R* C(x)</td>
<td>Equivalent to $R^* Q_{(x)}$.1 but with mVenus inserted into CotVWX locus</td>
</tr>
<tr>
<td>Δase R*</td>
<td>deletion of ase operon using dcat system</td>
</tr>
<tr>
<td>Δase R* Q8.1</td>
<td>Δase R* + P_{ars}-gsiB-comGA-mVenus in AmyE locus</td>
</tr>
<tr>
<td>Δase R* Q9.1</td>
<td>Δase R* + P_{ars}-arsR-arsR-gsiB-comGA-mVenus in AmyE locus</td>
</tr>
<tr>
<td>Δase R* Q8.1 ΔarsR</td>
<td>Δase R* Q8.1 + deletion of native arsR gene</td>
</tr>
</tbody>
</table>

Table 2.2 List of relevant strains developed during the project
Minimal Growth Media

Minimal growth media was made with

- 10 ml Minimal Salts Solution
- 0.5 ml Glucose (50% (w/v))
- 0.5 ml Casamino Acids (2% (w/v))
- 0.1 ml Tryptophan (10 mg ml\(^{-1}\))
- 0.05 ml Iron Ammonium Citrate (2.2 mg ml\(^{-1}\))
- 39 ml Deionised Water

per 50 ml, and filter sterilised.

Starvation Media

Starvation media was made with

- 10 ml Minimal Salts Solution
- 0.5 ml Glucose (50% (w/v))
- 39.5 ml Deionised Water

per 50 ml and filter sterilised.

2.5.6 CCMB80

CCMB80 contains

- 10 mM KOAc pH 7.0
- 80 mM CaCl\(_2\) \cdot 2 H_2O
- 20 mM MnCl\(_2\) \cdot 4 H_2O
- 10 mM MgCl\(_2\) \cdot 6 H_2O
- 10% Glycerol

and was pH adjusted to 6.4 using HCl, filter sterilised and stored at 4 °C.
Chapter 3

Modelling of the native arsenic operon of *B. subtilis*

3.1 The Bacterial Response to Arsenic

All living organisms have mechanisms for mitigating the toxic effects of arsenic. The fundamental mechanism by which bacteria protect themselves appears highly similar, although the implementation details vary across species and are reviewed in Rosen [135]. Several of the proteins involved have homologues in other organisms[106, 175], allowing gene function to be inferred. This chapter focusses on the response in *B. subtilis*, although knowledge of the behaviour in other organisms is often relied upon due to the lack of direct studies in the bacterium.

3.1.1 In *Bacillus subtilis*

Bacillus subtilis contains two arsenic related operons, the *ase* operon[60] and the *ars* operon[141]. While functionally similar, the two operons share little sequence homology and appear to act independently. The *ase* operon is the simpler of the two operons, containing only two genes, and is thus likely to be the older based on theories of the development of the arsenic operon[135].

The *ars* operon is almost exactly at the opposite side of the chromosome from the *ase* operon, some 2 Mb away. This operon is within the sigma-K interrupting (‘skin’) element, a ∼48 kb region which is excised during late stage sporulation. This excision creates a new composite gene, *sigK*, as a fusion of the *spoIIIC* and *spoIVCB* genes which flank the skin element, a sigma-factor associated with late stage sporulation genes.
Modelling of the native arsenic operon of *B. subtilis*

Fig. 3.1 Schematic of arsenic detoxification in wild-type *Bacillus subtilis* showing both operons and the action of all known gene products.

Fig. 3.2 Genome map of *B. subtilis*, showing locations of the *ars* and *ase* operons, the skin element, and two common insertion loci, *amyE* and *lacA*
As well as the four genes of the ars operon - *arsR*, *yqcK*, *arsB*, and *arsC* - several other open reading frames (ORFs) exist in the skin element. Several of these are believed to be of phage origin, suggesting that the skin element may be the relic of an ancient phage integration.

Whatever its true origin, the *ars* operon has been shown to be more sensitive to induction by arsenic than the *ase* operon, as well as conferring a higher tolerance to arsenic[102]. Because of this it has been researched in considerably more detail than the *ase* operon, and although the mode of action of the two operons is similar, this makes the *ars* operon considerably more attractive as the basis of a biosensor.

The *ase* operon should not be ignored altogether though; were the *ars* operon considerably more fit for arsenic detoxification than it in all conditions, then one would expect the *ase* operon to have been lost entirely. The fact that it has been retained suggests that it may play an important role in some as yet unknown function, and it certainly cannot be ignored when building a biosensor.

The remainder of this section introduces what is known about arsenic detoxification in *B. subtilis*, both from direct experimental observation and through inferred homology with other organisms, in the context of the *ars* operon. The simpler known behaviour of the *ase* operon is then discussed, and finally arsenic detoxification in *B. subtilis* is compared to the systems which exist in *E. coli*, the only organism to have been previously targeted for arsenic biosensor development.

Uptake of Arsenate and Arsenite

Arsenate enters the cell via phosphate transporters[8, 58, 136, 167, 168] as the two share a pentavalent state. In *E. coli*, two phosphate uptake systems exists, the phosphate-specific transport (pst) system and the phosphate inorganic transport (pit) system. Arsenate is able to enter via both systems, although the pit system appears to be the dominant method of entry[167]. A homologue of the pst system has been confirmed in *B. subtilis*, and the presence of a pit homologue is strongly inferred[128], making it highly likely that arsenate entry into *B. subtilis* is via a similar mechanism.

The more toxic arsenite on the other hand was relatively recently discovered to enter via glycerol channels[91]. It was first observed that antimonite [Sb(III)] enters through the GlpF membrane protein in *E. coli*. Since antimonite and arsenite share oxidation states it was suspected that arsenite also enters via the same channel, and this was later confirmed in *Saccharomyces cerevisiae*[172]. Similarly to the case with phosphate, a homologous glycerol uptake facilitator, *glpF*, has been identified in *B. subtilis*[6], although arsenite uptake by this channel has not been explicitly tested in *B. subtilis*, and no quantitative data is available.
Despite clear structural differences between the cell structure of the gram-positive *B. subtilis* and gram-negative *E. coli*, or the yeast *S. cerevisiae*, it appears that uptake of arsenite and arsenate is similar in each. Similar behaviour has also been demonstrated in the gram-positive *Corynebacterium glutamicum*, which was demonstrated to be more prone to arsenate uptake when grown in glycerol-rich media[97].

Regulation of the ars Operon

As introduced above, the *ars* operon contains four genes, the first of which, *arsR*, represses transcription of the operon in the absence of arsenite by binding immediately upstream of the promoter region. In the presence of arsenite or antimonite, the strength of the ArsR–DNA interaction is reduced, allowing unbinding of ArsR and transcription of the downstream genes[174]. In this way, expression of the arsenic detoxification machinery is limited to the case where arsenite is present in the cytoplasm. All known arsenic operons are negatively regulated in this way – although in rare cases the regulatory protein is expressed independently such as in *Thiobacillus ferrooxidans*[21] – suggesting that expression of the remaining proteins incur a significant metabolic penalty.

ArsR is unable to bind to DNA as a monomer, and instead forms a homodimer before it is able to bind DNA[173]. Detailed experiments were carried out by Wu and Rosen [169] to identify the ArsR binding site in *E. coli*, summarised in Figure 3.3. First, DNaseI foot-printing experiments found a region protected from degradation which spans the 24 bases between the $−64$ and $−40$ loci relative to the transcription start site. An imperfect dyad symmetry containing 5 bp exists within this region, which are commonly associated with protein-DNA interactions[30, 169]. Although this does not overlap the predicted sigma factor binding sites it is expected to prevent transcription as RNA polymerase occupies promoter regions up until approximately the 50th base upstream of the transcription start site[55]. Following this success, Wu and Rosen [169] continued using hydroxyl radical footprinting in an attempt to gain a higher resolution snapshot of ArsR–DNA interactions. This revealed only two small 4 bp protected regions separated by 10 bp, suggesting that the ArsR$_2$ complex binds from one side of the DNA helix only.

A similar structure exists within the *ars* promoter region in *B. subtilis* where two perfectly symmetrical 8-mer dyads of sequence AAATAAAT are separated by 2 bp, shown in comparison to the *E. coli* promoter in Figure 3.3. This structure is a mere two base pairs upstream of the predicted location of the $−35$ sigma factor binding site, thus any protein bound to the DNA at this location seems almost certain to physically prevent binding of the sigma factor and loading of the DNA polymerase. While there is no direct evidence that this
3.1 The Bacterial Response to Arsenic

The exact mechanism by which AsIII and SbIII trigger the release of DNA by ArsR is not known, though it is likely that some conformational change is caused by the interactions which significantly reduces binding. In \textit{E. coli}, three cysteine residues of ArsR are known ligands of arsenite, Cys – 32, Cys – 34 and Cys – 37, with the presence of any two being enough to bind arsenite\cite{148}. However, while binding of arsenite persists when either Cys – 32 or Cys – 34 are mutated, arsenite binding no longer causes unbinding of DNA, suggesting that the conformational change is triggered by binding to these two residues\cite{148}.

This regulatory mechanism is not uncommon in systems for sensing metal ions, and several other systems in the wider family of genes – called the SmtB/ArsR family – have been better studied. As well as As(III) and Sb(III), other members of this family are able to detect ZnII, CoII, CdII, PbII, BiIII, and NiII\cite{19}, summarised in Table 3.1. All members of this family are homodimers with large association constants, with the presence of metal ions having no significant effect on the strength of the dimer-dimer interaction.

In the absence of the target metal ions, all dimers in the SmtB/ArsR family bind strongly to palindromic or semi-palindromic DNA operators, although the exact mode of binding varies considerably. For example, in the case of SmtB, a zinc regulatory protein from \textit{Synechococcus} PCC 7942, four SmtB\textsubscript{2} dimers bind to a single 40bp region containing one 12bp inverted repeat. Association constants for these interactions vary considerably from around $2.9 \times 10^9 \text{ M}^{-1}$ for the first two homodimers to $3.4 \times 10^8 \text{ M}^{-1}$ and $8.6 \times 10^6 \text{ M}^{-1}$ for the third and fourth respectively. The exact nature of the cooperativity between these four proteins is unknown\cite{160,161}.

Several of the members of this protein family contain two metal binding domains per monomer\cite{19}, although in some cases metal binding is exclusive between the two sites, and
Table 3.1 Summary of members of the *SmtB*/*ArsR* family of metal ion sensors and their thermodynamic properties. Shown are (a) the dimers themselves, (b) the dimer-metal complex, and (c) the dimer-DNA complex. (d) shows the fold reduction in dimer-DNA association constant observed when metal is bound to the dimer.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Organism of Study</th>
<th>Metal-induced</th>
<th>K_m Na</th>
<th>K_m Na</th>
<th>K_m Na</th>
<th>K_m Na</th>
<th>Fold reduction in dimer-DNA association constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>[173, 174, 180]</td>
<td>Escherichia coli</td>
<td>AsIII</td>
<td>-</td>
<td>1.1 × 10^6</td>
<td>1.1 × 10^6</td>
<td>1.1 × 10^6</td>
<td>-</td>
</tr>
<tr>
<td>[23, 126]</td>
<td>Mycobacterium tuberculosis</td>
<td>Ni, Co</td>
<td>-</td>
<td>1.6 × 10^9</td>
<td>1.6 × 10^9</td>
<td>1.6 × 10^9</td>
<td>-</td>
</tr>
<tr>
<td>[155]</td>
<td>Staphylococcus aureus</td>
<td>Co, Zn</td>
<td>3 × 10^9</td>
<td>1.7 × 10^9</td>
<td>1.7 × 10^9</td>
<td>1.7 × 10^9</td>
<td>-</td>
</tr>
<tr>
<td>[29, 98, 160, 161]</td>
<td>Synechococcus PCC7942</td>
<td>Zn II, Co II</td>
<td>7.1 × 10^6</td>
<td>7.1 × 10^6</td>
<td>7.1 × 10^6</td>
<td>7.1 × 10^6</td>
<td>-</td>
</tr>
<tr>
<td>[77, 84]</td>
<td>Synechocystis PCC6803</td>
<td>Zn II</td>
<td>-</td>
<td>1.6 × 10^10</td>
<td>1.6 × 10^10</td>
<td>1.6 × 10^10</td>
<td>-</td>
</tr>
<tr>
<td>[37]</td>
<td>Staphylococcus aureus</td>
<td>Co, Zn</td>
<td>-</td>
<td>1.6 × 10^9</td>
<td>1.6 × 10^9</td>
<td>1.6 × 10^9</td>
<td>-</td>
</tr>
<tr>
<td>[17, 18, 20]</td>
<td>Staphylococcus aureus</td>
<td>Co, Zn, Pb, Bi</td>
<td>3.3 × 10^12</td>
<td>1.1 × 10^9</td>
<td>1.1 × 10^9</td>
<td>1.1 × 10^9</td>
<td>-</td>
</tr>
<tr>
<td>[117, 118]</td>
<td>Synechococcus PCC7942</td>
<td>Zn II, Co II</td>
<td>1.4 × 10^7</td>
<td>1.4 × 10^7</td>
<td>1.4 × 10^7</td>
<td>1.4 × 10^7</td>
<td>-</td>
</tr>
</tbody>
</table>

Modelling of the native arsenic operon of B. subtilis

Repressor Organism of Study of Metals

<table>
<thead>
<tr>
<th>Metal</th>
<th>K_m Na</th>
<th>K_m Na</th>
<th>K_m Na</th>
<th>K_m Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>AsIII</td>
<td>-</td>
<td>1.1 × 10^6</td>
<td>1.1 × 10^6</td>
<td>1.1 × 10^6</td>
</tr>
<tr>
<td>SbIII</td>
<td>-</td>
<td>1.1 × 10^6</td>
<td>1.1 × 10^6</td>
<td>1.1 × 10^6</td>
</tr>
<tr>
<td>NiII</td>
<td>-</td>
<td>1.6 × 10^9</td>
<td>1.6 × 10^9</td>
<td>1.6 × 10^9</td>
</tr>
<tr>
<td>CoII</td>
<td>-</td>
<td>1.6 × 10^9</td>
<td>1.6 × 10^9</td>
<td>1.6 × 10^9</td>
</tr>
<tr>
<td>ZnII</td>
<td>-</td>
<td>1.6 × 10^9</td>
<td>1.6 × 10^9</td>
<td>1.6 × 10^9</td>
</tr>
</tbody>
</table>
different metal ions can favour different binding sites[160]. However all known instances of ArsR have only one metal binding site per monomer[19], though it is possible for two arsenite ions to bind to each homodimer.

Reduction of Arsenate

Unlike arsenite, arsenate does not interact with the regulatory protein ArsR and thus is unable to directly de-repress the *ars* operon[141]. Instead, arsenate is reduced to the more toxic arsenite by ArsC, which is present at low levels in the cell due to leaky expression of the *ars* operon. Once arsenite is produced, it then induces expression of the operon, further catalysing the reduction of arsenate to arsenite.

It is rather curious that the less toxic arsenate is converted into its more toxic form before extrusion from the cell, rather than being extruded directly. One hypothesis which would explain this was put forward by Rosen [135] is that this reduction to the more toxic form is an accident of evolution. Since arsenite is more toxic, it stands to reason that primordial cells would have evolved mechanisms to mitigate its effects before a strategy had evolved to deal with the less toxic forms. This hypothesis is upheld by the observation that several arsenic-related operons do not have an arsenate reductase gene and are thus unable to process arsenate – indeed, the *B. subtilis* ase operon is an example of this class. It is believed that at some point a single arsenic reductase developed[72], which then spread across several organisms, and was incorporated into the existing arsenite response. In *Bacillus subtilis*, ArsC is most structurally similar to low molecular weight tyrosine phosphatases[7], suggesting a possible common origin.

A fair amount is known about the mechanism by which arsenate is reduced in *E. coli*, with published structures having been made available in 2001 for *E. coli* ArsC and ArsC in complex with both arsenate and arsenite[96]. In *E. coli*, the reduction of arsenate by ArsC was originally discovered to be linked to glutathione (GSH) by Oden et al. [114]. Further kinematic analysis[50] determined Michaelis-Menten parameters for the reaction with K_m for arsenate of $8mM$ and V_{max} in the range of 0.8 to 1.5 $\frac{\text{umol}}{\text{min\cdot mg}}$. Several inhibitors of arsenate reduction were also investigated, with arsenite, phosphate, and sulphate determined to have k_i values of $\{0.1, 30, 10\}mM$ respectively. It is unsurprising that both phosphate and sulphate are inhibitors of the reduction as both share arsenate’s pentavalent oxidation state, suggesting that they bind competitively to the active site of ArsC. No reduction of either phosphate or sulphate has been observed, however. The fact that arsenite is a stronger inhibitor of the reduction than either phosphate or sulphate is interesting, as it suggests an element of negative regulation in the reduction of arsenate, reducing the rate at which arsenite is produced when levels of the toxic ion are elevated.
A full reaction mechanism for the reduction of arsenate in *E. coli* was suggested by Shi et al. [147], shown below:

\[
\begin{align*}
\text{ArsCS}^- + \text{As}^V & \rightleftharpoons \text{ArsCS}^- \cdot \text{As}^V \quad (3.1) \\
\text{ArsCS}^- \cdot \text{As}^V + \text{GS}^- & \rightleftharpoons \text{ArsCS}^- \cdot \text{SG} + \text{As}^{\text{III}} \quad (3.2) \\
\text{ArsCS}^- \cdot \text{SG} + \text{Grx}^- \cdot \text{S}^- & \rightleftharpoons \text{ArsCS}^- + \text{GS}^- + \text{GSSG} \quad (3.3) \\
\text{GS}^- \cdot \text{SG} + \text{GS}^- & \rightleftharpoons \text{Grx}^- \cdot \text{S}^- + \text{GSSG} \quad (3.4) \\
\text{GSSG} + \text{NADPH} + \text{H}^+ & \rightleftharpoons 2 \text{GSH} + \text{NADP}^+ \quad (3.5)
\end{align*}
\]

where ArsCS represents the active Cys\(^{12}\) residue of ArsC, which first binds with As\(^V\) in Reaction 3.1. The actual reduction of As\(^V\) occurs in Reaction 3.2, with one electron donated from the thiolate bond of Cys\(^{12}\) and one from GSH, represented as GS\(^-\). Functional ArsC is then restored in Reaction 3.3 as the attached GSH is removed by a glutaredoxin (Grx) enzyme. A further GSH is required in Reaction 3.4, freeing the Grx and leaving oxidised glutathione disulphide (GSSG), which is finally reduced by NADPH in Equation 3.5.

E. coli contains three glutaredoxin enzymes, Grx\(_1\), Grx\(_2\), and Grx\(_3\), which share little sequence similarity[163] but show similar activity for reduction of general mixed disulphide bonds such as those found in ArsCS – SG[65]. However, Grx\(_2\) was found to be between 1 and two orders of magnitude more active in reducing ArsCS – SG (shown in Reaction 3.3) than Grx\(_1\) or Grx\(_2\)[147], suggesting that some form of protein-protein interaction may occur between Grx\(_2\) and ArsR increasing the efficiency of the reaction.

No glutaredoxin system has been characterised in *B. subtilis* as of yet, although a thioredoxin system which is also known to be involved in the reduction of disulphide bonds[93] is present. Unlike the thioredoxin gene in *E. coli*, the thioredoxin gene TrxA in *B. subtilis* is essential[142], suggesting that it plays a more central role in cellular processes than the homologous system in *E. coli*. TrxA is thus a likely candidate for reduction of the ArsCS – SG bond in *B. subtilis*.

Extrusion of Arsenite

The underlying mechanism of arsenite resistance in prokaryotes is through the extrusion of arsenite, keeping arsenite levels within the cell to sub-lethal levels[135]. In the *ars* operon of *B. subtilis*, this is mediated by ArsB, a membrane protein which allows for As\(^{\text{III}}\) transport out of the cell.

Again, most major studies of ArsB have focussed on the version found in *E. coli* plasmid R773, which contains 12 membrane spanning regions[171]. In *E. coli* – and commonly
3.1 The Bacterial Response to Arsenic

in other gram-negative species – ArsB is not the only component of the arsenite extrusion system, another ars operon gene product, ArsA is able to couple with membrane bound ArsB to form an anion transporting ATPase and thus drive arsenite export via ATP\[34\]. Remarkably however, E. coli R773 ArsB is also capable of ATP-independent arsenite transport when ArsA is not bound to it, with the transport instead driven by the electrochemical gradient formed by NADH respiration\[84\].

Significant work in characterising the ATP independent, ArsB mediated efflux of arsenite and other metals in E. coli was carried out by Kuroda et al. \[84\] and later by Meng et al. \[100\]. Both of these studies assayed arsenite extrusion by quantifying arsenite uptake by everted membrane vesicles formed from cells expressing ArsB. Metalloid uptake was quantified by first filtering whole vesicles and washing followed by either liquid scintillation counting using radioactive isotopes of each metalloid (as favoured in the earlier paper) or by inductively coupled plasma mass spectrometry (ICP-MS). The total mass of recovered protein was also assayed using a commercial BCA protein assay kit (Pierce), with bovine serum albumin as a standard. Uptake of metalloid by everted vesicles (i.e. efflux from cells) was then reported as moles of metalloid per nano-gramme of total protein.

Kuroda et al. \[84\] demonstrated that arsenite transport into everted vesicles by ArsB in the absence of ArsA is dependent on NADH oxidation, and that ArsB does not catalyse non-specific anion transport by testing a range of sodium and potassium salts. Under these conditions, the K_m for transport with respect to arsenite concentration – i.e. the concentration at which half-maximal transport rate is achieved – was estimated to be approximately 0.14mM, very similar to the 0.1mM observed for ATP-dependent transport\[33\], suggesting that the rate-limiting mechanism for arsenite extrusion by ArsB is independent of the source of energy. Since only total protein present in membrane vesicles was used to normalise metal ion content rather than vesicle volume or ArsB content, no estimate can be made of k_{cat}, the maximal rate at which unit concentration of ArsB can transport As^{III}.

Kuroda et al. \[84\] also made the observation that As^{III} uptake by vesicles was catalysed by Sb^{III} ions, increasing the rate at which arsenite was taken up by up to 5 fold. This effect was found to be an effect of ArsB mediated transport rather than some non-specific effect of antimonite, and was observed to be strongest when arsenite and antimonite are present in equimolar amounts. It is not surprising that antimonite is also transported by ArsB, since it shares oxidation state with arsenite and is also known to de-repress the ars operon. This led Kuroda et al. \[84\] to hypothesise that antimonite might in fact be a more efficient substrate for ArsB mediated transport, causing arsenic to be extruded faster as a mixed salt of arsenic and antimonite than when present on its own. This was confirmed by Meng et al. \[100\] who found that $^{125}\text{Sb}^{III}$ uptake by everted vesicles was approximately 35 times higher than
uptake of 73AsIII, and that uptake of arsenite was up to 10-fold higher in the presence of antimonite. Conversely, antimonite extrusion was found to be inhibited by arsenite, with the rate of uptake of arsenite and antimonite becoming equal at equimolar concentrations.

This behaviour cannot be explained by a co-transport model (where arsenite would be expected to stimulate antimonite transport just as antimonite stimulates arsenite), or by a competitive model (where both arsenite and antimonite would be expected to inhibit transport of the other), leading Meng et al. [100] to further speculate that the true substrate for ArsB is in fact some salt of arsenite, antimonite or a combination, but not the anion itself.

Prior to Meng et al. [100] ArsB was hypothesised to be an anion uniporter[84], due to the fact that export was dependent on ion gradient. However, confirmation that ArsB is capable of antimonite transport challenged this, as the pK_a of antimonite is 11.8, meaning that virtually all antimonite and arsenite present at physiological pH levels are neutral compounds. The dependence on NADH indicates that ArsB clearly performs more than assisted diffusion based transport, and must rely on some mechanism by which extrusion of a neutral compound is driven by the ion gradient. Since ArsB transport was found to be independent of any specific cation[100], it seems likely that exchange with H$^+$ is a likely mechanism for extrusion, making ArsB a possible metalloid-proton antiporter.

YqcK

The functions of ArsR, ArsB, and ArsC of regulation of the operon, extrusion of arsenite and reduction on arsenate have been well established as discussed above. A fourth Open Reading Frame (ORF) exists between the $arsR$ and $arsB$ genes, named $yqcK$, whose function has not been demonstrated and is often not present in other arsenic operons such as the homologous ars operon in *Staphylococcus*[141]. A year after the ars operon was first reported in the skin element of *B. subtilis*, Rosen [134] noted that both the hypothetical gene product YqcK and ArsD protein from *E. coli* R773 contain 3 pairs of vicinal cysteine residues. In ArsD these vicinal pairs have been shown to have a role in metalloid binding[88], suggesting that they may perform a similar function in YqcK.

ArsD is believed to have two functions in *E. coli*. The first is as a secondary regulator of the ars operon, as ArsD binds to the same DNA binding site as ArsR, but with a lower affinity[170]. As with ArsR, the interaction between ArsD and DNA is relieved by arsenite, but more arsenite is required to give the same magnitude of reduction in bound fraction than with ArsR–DNA, implying that ArsD is less sensitive to arsenic[28]. These data suggest that ArsD is responsible for regulating the response of the operon at high levels of arsenite. At low levels of arsenite, ArsR out-competes ArsD for binding to the operator region, and thus control of the operon is dominated by the interactions of ArsR, DNA, and metalloid. At
higher levels of arsenite, ArsR is less able to bind DNA due to allosteric inhibition and so the interaction between ArsD and arsenite becomes important. A possible explanation for this dual level control is that ArsD prevents over-expression of ArsB in high arsenite conditions, as ArsB itself can be toxic at high concentrations[28, 169].

A second function of ArsD was found much later by Lin et al. [89], where the protein was shown to have metallochaperone activity. ArsD binds tightly with arsenite in the cytosol, presumably reducing the toxic effect of the metalloid on the rest of the cell. The ArsD–As\text{III} complex then interacts with the membrane bound ArsAB, transferring arsenite into the ATP driven pump and out of the cell. A follow-up study[90] found that of the three vicinal cysteine pairs (Cys\text{12−13}, Cys\text{112−113}, and Cys\text{119−120}) only the first together with another cysteine residue (Cys\text{18}) were required for metallochaperone activity, and it is these three residues that were conserved across ArsD variants in other organisms.

It is possible that YqcK functions similarly to ArsD as a secondary repressor, however global alignment by Needleman-Wunsch algorithm of the protein sequences of the two show less than 15% amino acid identity, and the three essential cysteine pairs do not align to each other.

Another theory is possible which would explain the presence of Cysteine pairs in YqcK as well as the low sequence identity between YqcK and ArsD. The original paper describing the \textit{B. subtilis ars} operon noted the similarity between the operon and a region of the chromosome of \textit{Mycobacterium tuberculosis}, see Figure 5 of Sato and Kobayashi [141], reproduced in Figure 3.4. This region contains two ORFs with 37% and 51% amino acid similarity to ArsR\textsubscript{BS} and ArsB\textsubscript{BS} respectively, suggesting that the region encodes an operon that confers arsenic resistance in a similar manner to other \textit{ars} operons. No ORF exists between the putative \textit{arsR} and \textit{arsB} homologs in \textit{M. tuberculosis}, however an ORF exists immediately upstream of the putative \textit{arsR} homologue which shows 32% amino acid homology with \textit{B. subtilis} YqcK. This potential \textit{M. tuberculosis} homologue was later characterised in Hotter et al. [67], where it was found that expression of the gene is induced by cadmium, specifically.
CdII, and thus the ORF was renamed \textit{cadI}. While the exact function of this gene remains unknown, it was recently shown\cite{87} that its expression is also regulated by the downstream ArsR variant, although this ArsR variant’s response to arsenic has not been demonstrated.

Further weight is added to the theory that \textit{B. subtilis} YqcK is a homologue of \textit{M. tuberculosis} cadI comes from the observation that while deletion of the \textit{ars} operon in wild type \textit{B. subtilis} strains has no effect on CdII resistance, deletion of \textit{ars} in \textit{\Delta cadA} strains reduces growth in the presence of CdII\cite{102}. A possible explanation for this observation is that YqcK is indeed a homologue for \textit{M. tuberculosis} cadI, which provides some form of secondary protection from CdII which is independent of the previously characterised CadA mediated membrane transport (described in Tsai et al.\cite{156}).

The \textit{ase} operon

As noted above, \textit{B. subtilis} contains two arsenic related operons, the \textit{ars} operon discussed above and the simpler \textit{ase} operon. The \textit{ase} operon contains only two genes, \textit{aseR}, an SmtB/ArsR family regulatory gene responsive to arsenite and \textit{aseA} (previously known as \textit{ydfA}), a putative membrane protein which exports arsenite in a manner similar to ArsB.

The most detailed study of the \textit{ase} operon to date is Moore et al.\cite{102}, which confirmed that \textit{aseR} regulates expression of itself and \textit{AseA} in response to AsIII, and that the operon is capable of conferring some level of arsenite resistance independently of the \textit{ars} operon, but that the lack of a reductase means that the \textit{ase} confers no resistance to arsenate. Moore et al.\cite{102} found allosteric regulation of \textit{AseR} to be more specific for AsIII than ArsR (which is also induced by SbIII), but that overall expression of the operon was weaker than for \textit{ars}.

The existence of the \textit{ase} operon leaves us with a choice when designing a biosensor in \textit{B. subtilis}, as such a sensor could be based on either the \textit{ars} or \textit{ase} operon. While the \textit{ase} operon appears to be more specific for AsIII than the \textit{ars} operon based on available data, it has been the subject of significantly less study. The strength of the \textit{ase} operon when fully induced is also less than that of the \textit{ars} operon, reducing the maximum achievable dynamic range between an high and low signal for an \textit{ase} sensor. While a hybrid promoter system may be possible – where a stronger promoter is combined with the \textit{AseR} operator region is used in place of the natural \textit{ase} promoter – the lack of published data on the \textit{ase} operon makes such an approach more challenging.

Conversely, cross-talk between antimony and arsenic by the \textit{ars} operon may be less problematic for a practical sensor than first thought as antimony is typically present at much lower concentrations in groundwater sources than arsenic\cite{98, 166}. For these reasons, it was decided that preliminary work on a \textit{B. subtilis} based arsenic biosensor should leverage the \textit{ars} operon, with the \textit{ase} operon born in mind should antimonite interference become an issue.
3.2 Developing a Mathematical Model

3.2.1 Motivation

Since the beginning of the arsenic contamination crises, the mechanisms through which prokaryotes interact with arsenic has been the topic of considerable research. Much of this research has focussed on characterising the individual components of this response, such as how arsenic enters the cell, the mechanism by which As^V is reduced to As^{III}, the interactions between the regulatory protein, DNA, and arsenite, and the varying mechanisms by which arsenite is extruded from the cell. From these isolated experiments, a clear qualitative picture has emerged of how many organisms mitigate arsenic toxicity.

This qualitative picture is necessary but not sufficient for engineering purposes. To reliably and intelligently engineer an arsenic biosensor, we need to first understand how the individual processes of the ars operon come together to produce the observed response. Questions that modelling of the ars operon might reasonable seek to answer include

• what properties of the system determine the rate of leaky expression from the ars promoter in the absence of arsenic?

• which properties determine the maximum rate of expression under saturating arsenic conditions?

• what is the predicted form of the response at concentrations between these extrema?

• can the form of the response be changed by making changes to the model parameters alone?

• what are the likely effects of making simple perturbations to the system such as changing the promoter strength or copy number of the genes?

• what type perturbations are most likely to increase desirable sensor properties while keeping undesirable properties to an acceptable level?

It is these questions that this chapter seeks to answer in the hope that those answers and their interpretation will help inform the rational design of a functional sensor.

3.2.2 Modelling Strategy

A three step process was used in this chapter to model the behaviour of a system.

1. Express the system as a series of chemical reactions
2. Convert those reactions into a set of Ordinary Differential Equations (ODEs), one for each species

3. Solve the resultant simultaneous ODEs

For simple systems, it is often possible to arrive at an analytical solution for the steady state of the system, but this rapidly becomes intangible when networks get large with several reversible reactions or exhibit cooperativity. In such cases, we need to arrive at a solution numerically.

A Simple Example

An example system is shown in Figure 3.5. This reaction has only two species and four reactions, which can be represented as chemical equations as

\[\frac{k_1}{k_2} \rightarrow A \]
\[A \xrightarrow{\mu} A \]
\[2A \xrightarrow{k_f}{k_b} A_2 \]
\[A_2 \xrightarrow{\mu} \]

In this exploratory example it is simple enough to write down the equations governing the concentrations of each of the components by summing the edges entering or leaving each node in Figure 3.5. Defining the vector \(\mathbf{x}(t) = [x_1(t), x_2(t)] \) as the concentrations of the species A and A_2 respectively, we get

\[\dot{\mathbf{x}} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} k_1 - \mu x_1 - 2k_f x_1^2 + 2k_b x_2 \\ k_f x_1^2 - k_b x_2 - \mu x_2 \end{bmatrix} \]

The steady state solution for this system can be arrived at analytically by setting \(\dot{\mathbf{x}} = 0 \) and substituting the equation for \(\dot{x}_2 \) into the equation for \(\dot{x}_1 \) such as to eliminate \(x_2 \), then solving
3.2 Developing a Mathematical Model

The resulting quadratic in x_1 to give:

$$x_1 = \frac{-\mu + \sqrt{\mu^2 + 8k_1kf\left(1 - \frac{1}{1 + \frac{\mu}{k_b}}\right)}}{4kf\left(1 - \frac{1}{1 + \frac{\mu}{k_b}}\right)}$$

Even with this simple system, this equation for x_1 is not particularly convenient or informative, although we can tell that since our rate constants $k_1, k_f, k_b, \mu \geq 0$ there is exactly one positive solution for $\mu \neq 0$ and none otherwise. If we assume that A_2 is a relatively stable dimer, i.e. that $\mu \gg k_b$, the ratio $\frac{\mu}{k_b}$ becomes very large allowing us to simplify our expression for x_1:

$$x_1 = -\mu + \sqrt{\mu^2 + 8k_1kf}$$

A Generalised Approach

Having seen a simple example, let us consider a solution for the general case of a system with N species $\{X_1, \ldots, X_N\}$ and M reactions, where the m^{th} reaction is given by

$$s_{m,1}X_1 + s_{m,2}X_2 + \cdots + s_{m,N}X_N \xrightarrow{k_m} p_{m,1}X_1 + p_{m,2}X_2 + \cdots + p_{m,N}X_N$$

where $s_{m,n}$ and $p_{m,n}$ represent the stoichiometry of the n^{th} substrate and product of reaction m, respectively, and k_m is the m^{th} rate constant. Reversible reactions are modelled as the linear combination of the forward and reverse reactions, which are computed separately. Defining the vector $\mathbf{x} = \{x_1, \ldots, x_N\}$ as the concentrations of the species $\{X_1, \ldots, X_N\}$ we can deduce the rate of the m^{th} reaction, r_m, by applying the laws of mass-action as

$$r_m(\mathbf{x}) = k_m \prod_{n=1}^{N} s_{m,n}^{s_{m,n}}$$ \hspace{1cm} (3.6)

To calculate the rate of change in concentration of a component caused by a reaction, we multiply the rate of the reaction by the net change in stoichiometry due to that reaction. This can be accomplished efficiently by matrix multiplication, and by defining the stoichiometry matrix S and rate vector \mathbf{r} we can express the governing equation of a general reaction network in the standard form

$$\mathbf{f}(\mathbf{x}) = \dot{\mathbf{x}} = S\mathbf{r}(\mathbf{x})$$ \hspace{1cm} (3.7)
Modelling of the native arsenic operon of *B. subtilis*

Where

\[S = \begin{bmatrix}
 p_{1,1} - s_{1,1} & p_{2,1} - s_{2,1} & \ldots & p_{m,1} - s_{m,1} \\
 p_{1,2} - s_{1,2} & p_{2,2} - s_{2,2} & \ldots & p_{m,2} - s_{m,2} \\
 \vdots & \vdots & \ddots & \vdots \\
 p_{1,n} - s_{1,n} & p_{2,n} - s_{2,n} & \ldots & p_{m,n} - s_{m,n}
\end{bmatrix} \] \[r = \begin{bmatrix}
 r_1 \\
 \vdots \\
 r_M
\end{bmatrix} \]

This governing equation can now be used to numerically simulate the behaviour of any arbitrary system given a set of initial conditions \(x_0 \) and fixed rate parameters \(k \). Details of how this was implemented in software are given in Section 3.2.2 below.

Extending to Michaelis Menten Kinetics

Enzymatic reactions, where a species catalyses a particular reaction without itself being consumed in that reaction, are a common feature in biology, with the reduction of arsenate to arsenite by *ArsC* or the extrusion of arsenite by *ArsB* being obvious examples in the system we wish to model. A typical reaction of this kind could be represented as

\[E + S \xrightleftharpoons[k_{fw}]{k_{rv}} ES \xrightarrow{k_{cat}} E + P \]

where enzyme E binds reversibly to substrate S producing the complex ES which then produces product P and free enzyme. This interaction is commonly simplified according to the well known Michaelis-Menten relationship, where the rate of the reaction is equal to

\[r_{MM} = \frac{k_{cat}[E][S]}{K_M + [S]} \] \((3.8) \)

where \(k_{cat} \) and \(K_M \) are the maximum catalytic rate and the Michaelis constant, the substrate constant at which a rate of half the catalytic rate is observed, respectively.

We could simulate reactions of this type using three general irreversible reactions (as described in Section 3.2.2), however numerical values for \(k_{fw} \) and \(k_{rv} \) are rarely available, while estimates of \(k_{cat} \) and in particular \(K_M \) are more commonly available as they are easier to quantify experimentally. Simulating Michaelis-Menten dynamics thus reduces the number of unknown variables in the model, at the expense of a few model assumptions, notably that the concentration of the enzyme is much lower than the substrate, that reactions are diffusion limited, and that the formation of the product P is irreversible.
3.2 Developing a Mathematical Model

We thus define the general Michaelis-Menten reaction as

\[s_1X_1 + s_2X_2 + \cdots + s_NX_N \xrightarrow{X_E, k_{cat}, K_M} p_1X_1 + p_2X_2 + \cdots + p_NX_N \]

with all symbols as defined previously and \(X_E \) as the species responsible for enzymatic activity. The rate of equations of this type, \(r_{MM} \) is given by substituting into Equation 3.8 to give

\[r_{MM} = \frac{k_{cat}X_E \prod_{n}^{N} x_n^{s_n}}{K_M + \prod_{n}^{N} x_n^{s_n}} \]
(3.9)

when a Michaelis-Menten reaction is encountered, all that is necessary is to calculate the relevant value in the rate vector \(r \) according to this equation rather than Equation 3.6 and the governing equation can then be found as before.

Finding the Jacobian

Numerical methods exist for finding the solution to the general steady state problem

\[f(x) = 0 \]

with only a set of initial conditions. However, most of these methods involve making many repeated calls to \(f \) in order to estimate the Jacobian matrix at each point. The Jacobian is a matrix of all the first order partial derivatives of the system at a given point, in other words it represents the rate of change of each output with respect to each input at a particular position. The information encoded in this matrix is useful in optimisation problems as it allows the solution to be found using algorithms based on gradient descent, where an initial estimate is refined by travelling down the gradient until a minimum is found.

We can reduce the computational work and increase the numerical accuracy by calculating the Jacobian directly. The Jacobian of \(f \) is given by

\[J_f = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_N}{\partial x_1} & \cdots & \frac{\partial f_N}{\partial x_N} \end{bmatrix} \]

where \(f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_N(x) \end{bmatrix} \)

Applying the Jacobian to Equation 3.7 and making use of linearity as

\[J_f = J_{Sr} = SJ_r \]
Modelling of the native arsenic operon of *B. subtilis* shows that we can find the Jacobian of \(f \) by first calculating the Jacobian of \(r \) and premultiplying by the stoichiometry matrix \(S \).

For a general irreversible reaction, \(m \), we can calculate each element of \(J_r \) by taking partial derivatives of Equation 3.6 leading to

\[
\frac{\partial r_m}{\partial x_p} = s_{m,p} x_p s_{m,p}^{-1} k_m \prod_{n \neq p} x_n^{s_{m,n}}
\]

which is relatively simple to compute. When the \(m^{th} \) reaction is a Michaelis-Menten reaction, however, we instead take partial derivatives of Equation 3.9 which is slightly more involved. Writing Equation 3.9 as

\[
r_m = \frac{k_{cat} x_E \prod_n x_n^{s_{m,n}}}{K_M + \prod_n x_n^{s_{m,n}}} = \frac{g_m}{h_m}
\]

allows us to use the product rule to compute the Jacobian

\[
\frac{\partial r_m}{\partial x_p} = \frac{\frac{\partial g_m}{\partial x_p} h_m - g_m \frac{\partial h_m}{\partial x_p}}{h_m^2}
\]

where

\[
\frac{\partial h_m}{\partial x_p} = s_{m,p} x_p s_{m,p}^{-1} \prod_{n \neq p} x_n^{s_{m,n}}
\]

and, through use of the product rule,

\[
\frac{\partial h_m}{\partial x_p}^{p \neq E} = s_{m,p} x_p s_{m,p}^{-1} x_E k_{cat} \prod_{n \neq p} x_n^{s_{m,n}}
\]

\[
\frac{\partial h_m}{\partial x_p}^{p = E} = (s_{m,p} + 1) k_{cat} \prod_n x_n^{s_{m,n}}
\]

which allows us to find the Jacobian for any general reaction network.

Constraining the Optimisation

The concentration of any physical species must be non-negative. Mathematically, this translates as \(N \) inequality constraints that \(x_i \geq 0 \forall i \) and while one could use the generalised Lagrange multiplier method to apply these constraints, a far easier method exists in this special case. For each \(x_i \) we define \(z_i \) such that \(x_i = z_i^2 \), and find the roots of \(\dot{z} = 0 \). To find
the z_i, we can use the chain rule to show

$$\frac{dz_i}{dt} = \frac{dx_i}{dt} \cdot \frac{dz_i}{dx_i} = f_i(x) \cdot \left[\frac{d}{dz_i} \left(z_i^2 \right) \right]^{-1} = \frac{f_i(z^2)}{2z_i}$$

where $z^2 = [z_1^2, z_2^2, \cdots, z_N^2]$. A similar calculation can be made to update the Jacobian matrix. One negative consequence of this, is that any state where any variable is zero becomes numerically unstable. The simplest solution to this is to numerically estimate the limit at $z_i = 0$ by setting z_i to some very small value.

In some situations, we may need to constrain the solution space of the optimisation to avoid trivial solutions. For example, consider the reaction network

$$p \xrightarrow{k_r} p + r \quad \text{and} \quad r \xrightarrow{\mu}$$

$$p + r \xrightarrow{k_d} q \quad \text{and} \quad q \xrightarrow{\mu} p$$

where promoter p produces the negative regulator r which binds to p to produce q and also decays at rate μ. If we attempt to solve this system in the usual way, we define our state vector $x = [p, r, q]$ and generate the governing equation

$$f(x) = \begin{bmatrix} \dot{p} \\ \dot{r} \\ \dot{q} \end{bmatrix} = \begin{bmatrix} \mu q - k_r pr \\ k_r p - \mu r - k_d pr \\ k_d pr - \mu q \end{bmatrix} = 0$$

which is defective as equations for \dot{p} and \dot{q} are not independent, leading to an infinite number of solutions. Most numerical solvers will in fact converge on the trivial solution $x = 0$, regardless of the initial conditions.

What this system is missing is the constraint that the total bound and unbound promoter is constant, i.e. $p + q = C$ where C is a constant equal to the copy number of the promoter. Since constrained numerical optimisation algorithms are typically more complex than unconstrained ones, it is easier to reform the constrained system as an unconstrained one than numerically solving the constrained problem directly. There are two simple ways of achieving this. One method involves re-arranging the constraint and substituting $q = C - p$ in the governing equation and removing q from the state vector x. This has the benefit of reducing the dimensionality of the problem, but introduces a new inequality constraint, namely that in order to guarantee $q \geq 0$ we must have $p \leq C$, which is harder to apply than the original constraint.

Instead, we can make use of Lagrange multipliers to convert our constrained problem into an unconstrained one by adding one extra dimension. Rearranging our constraint as
Modelling of the native arsenic operon of \textit{B. subtilis}

\[p + q - C = 0 \] we can define the unconstrained state vector \(\mathbf{x}_u \) as

\[
\mathbf{x}_u = \begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_N \\
 \mu_1
\end{bmatrix} = \begin{bmatrix}
 f_1 \\
 f_2 \\
 \vdots \\
 f_N \\
 p + q - C
\end{bmatrix}
\]

such that a solution of \(\mathbf{f}(\mathbf{x}) = \mathbf{0} \) is necessarily a solution to our constraint.

\textbf{Limitations of ODE Modelling}

The most obvious limitation of ODE modelling is that ODE models are inherently deterministic. For any given state vector \(\mathbf{x} \) and set of model parameters \(\mathbf{K} \), the full evolution of the system can be calculated. Because cellular processes such as transcription and translation rely on molecular interactions between small number of particles, these processes are essentially randomised. Real cells therefore exhibit random stochastic behaviour which is not captured by ODE models.

In many cases the random variability of individual cells is “averaged out” when bulk average behaviour is observed, and the average behaviour of a large population of cells closely follows the predicted ODE model behaviour. In other cases, nature has exploited this inherent noise in order to confer an evolutionary benefit. A classic example of this in \textit{B. subtilis} is the induction of competence, when cells in stress conditions attempt to uptake DNA from their environment in the hope that this DNA will improve the cells’ resistance to the stress.

When a single \textit{B. subtilis} cell enters the competence pathway, its ability to grow and divide is reduced. If every cell in a population were to simultaneously become competent until DNA had been taken up, the growth of the overall population would be significantly diminished, potentially allowing another species of non-competent bacteria to come to dominate. Instead, members of the population become competent stochastically, and for varying amounts of time.

This behaviour maximises the possibility of taking up beneficial DNA while keeping the impact on growth rate to acceptable levels. Since the rate of uptake of DNA depends on the external DNA concentration, there is for any given DNA concentration an optimal duration of competence which achieves this. Individual bacteria are unable to rapidly sense external DNA, and so instead of attempting to calculate this optimal window, the transition from competence to normal growth is also stochastic, leading to a broad range of competence.
duration. The population as a whole benefits from this “bet hedging” behaviour as some individuals will successfully take up DNA with minimal detriment to their growth rate, allowing the species to overcome the stress conditions in the shortest possible time. In this instance, the stochastic behaviour exhibited by individuals is not completely “averaged out”, and while a deterministic model may accurately reproduce the average behaviour, it fails to fully capture the complex behaviour of the system.

It seems quite possible that this bet hedging behaviour is applied to arsenic contamination as well. While population averages confirm that expression of the \textit{ars} operon is very low under anarsenic condidions, it seems possible that some memebers of this population may express arsenic responsive genes at high levels. While the energy expended expressing the extra genes would be an impediment to the individual cells, the population overall would be better protected against a sudden increase in arsenic contamination as some of its members would already have the machinery in place for dealing with the threat and thus be minimally affected by the sudden condition change.

While bet-hedging behaviour has been observed in some antibiotic resistance strategies, it has not been observed in the case of arsenic, and it is unclear what the regulatory mechanism for such behaviour would be. However, the possibility cannot be discounted out of hand until this behaviour has been confirmed or otherwise by experimental evidence.

Software Implementation

Commercial packages exist which are able to perform some of the calculations above, such as MATLAB’s SimBiology. However, they are not very efficient in finding steady state equilibria, and have poor programmatic interfaces, as well as being highly proprietary. Instead, the above code was implemented as a python package called \textit{pysim} which is available from github at https://github.com/haydnKing/pysim.

A model file is used to specify all the parameters, species, constraints and reactions of the model. From this file, \textit{pysim} is able to automatically generate the governing equation and Jacobian of the system, and supports changes being made to parameters at run-time. The syntax for this file is introduced in appendix C. The governing equation and Jacobian are ‘compiled’ as closures to run as efficiently as possible, and the steady state is then solved using the \textit{fsolve} function from the \textit{scipy.optimize} optimisation toolkit, which leverages the MINPACK library.
Modelling of the native arsenic operon of B. subtilis

(a) Visual representation of the mathematical model. Species are shown in rectangles, circles represent reactions and a double headed arrow represents a reversible reaction. A dotted line indicates that a species is not consumed by the reaction, numbers next to reactions indicate the stoichiometry of the reaction. The electrical earth symbol represents a dilution/degradation reaction with no products.

(b) SBOL representation of the system

Fig. 3.6 Open-loop production of the ArsR$_2$ homodimer in the absence of arsenic and with interaction between ArsR$_2$ and P$_{ars}$ removed.
3.2 Developing a Mathematical Model

3.2.3 Open-loop production of ArsR$_2$

Figure 3.6 shows a model of the open-loop production of the homodimer ArsR$_2$ – referred to as open-loop because the regulatory interaction between ArsR$_2$ and the promoter P$_{ars}$ has been ignored for the time being. The promoter P$_{ars}$ produces mRNA which in turn produces protein ArsR, which binds reversibly with itself to form the homodimer. Neither the promoter nor mRNA are consumed by these reactions, but the mRNA is diluted and degraded at rate μ_m while both proteins are diluted at rate μ. Protein degradation is ignored, as it is assumed to be considerably slower than growth dilution at high growth rates such as during exponential growth. mRNA degradation is not ignored, with the term μ_m corresponding to $\mu + \phi$, growth dilution plus degradation. The concentration of the promoter P$_{ars}$ is not diluted, as DNA replication holds this approximately constant as cell mass increases.

In this simple case, we can quite easily find an expression for the total ArsR in the steady state, which can be found by solving a quadratic in s. However, we can use our knowledge of the real-world system to simplify this model. Firstly, we know that ArsR$_2$ is a very stable dimer, with very little monomeric ArsR being found in cell extracts even in conditions with high arsenic. This implies that the rate of the dissociation reaction is small compared with the rate of the association reaction, leading to a large association constant K_a. This has been confirmed as values for K_a for other members of the SmtB/ArsR family (shown in Table 3.1) are in the range of 3×10^5 M$^{-1}$ to 3×10^6 M$^{-1}$. Therefore, if we assume that K_a is large, specifically such that the forwards rate of the reaction is much larger than μ, we can neglect the steady state concentration of monomeric ArsR or r, we can write the approximate steady state solution for s as

$$s \approx \frac{k_r}{2\mu} p$$

where $k_r := \frac{k_{mRNA} k_{ArsR}}{\mu_m}$.

Such a simplification allows us to greatly reduce the dimensionality of our models, as this is equivalent to the promoter P$_{ars}$ producing ArsR$_2$ directly with rate constant $\frac{k_r}{2}$ diluted at rate μ. This assumption was tested on all later models described in this chapter, and found to have minimal effect on the outcome of the model for all physiologically plausible values of $K_a > 10^2$ M$^{-1}$.

3.2.4 A Simple Model Without Arsenic

A simple model showing repression of the system in the absence of arsenic is shown in Figure 3.7. In this simple model, unbound promoter P_{ars} directly produces the dimer ArsR$_2$ using the assumptions outlined above. The control loop is now closed, with the dimer binding...
Modelling of the native arsenic operon of *B. subtilis*

(a) Visual representation of the mathematical model with three species, unbound promoter p, homodimeric ArsR_2 s, and bound promoter q. See figure 3.6 for key.

(b) SBOL representation of the system

Fig. 3.7 A model of the ars operon in the absence of arsenic. Here, ArsR_2 is produced directly and inhibits the promoter P_{ars}, leading to a reduction in the rate at which ArsR_2 is produced due to negative feedback.
with the promoter at rate k_{DNA}, preventing its own expression. Using similar logic as in Section 3.2.3 when treating the dimerisation reaction, this model only considers the binding of ArsR$_2$ with DNA and neglects the dissociation rate. Since DNA replication does not also replicate the bound ArsR$_2$ repressor, bound promoter is also diluted at rate μ, producing unbound promoter.

After such simplification, experiment showed that the behaviour of the system depends on two non-dimensionalised model parameters – $\frac{k_r}{2\mu}$ and $\frac{k_{\text{DNA}}}{\mu}$. If we normalise our unit of concentration such that the total promoter concentration is $p+q=1$, then the first parameter relates to the basal, unrepressed strength of the promoter and is equal to the total number of copies of ArsR$_2$ per cell under the open-loop system. While this has not been quantified, we can place upper and lower bounds on this value by observing that Maass et al. [94] found the range of protein copy number in *B. subtilis* to range from around 10^1 to around 10^5 with a mean of 4.5×10^3 copies.

Figure 3.8 shows a heat-map of the unbound promoter fraction, p, over this range of $\frac{k_r}{2\mu}$ and for a chosen range of $\frac{k_{\text{DNA}}}{\mu}$. Proper interpretation of this plot can tell us about two interesting states of the operon – leaky expression without arsenite, and the fully induced state under saturating arsenite conditions.

In the case where arsenite is absent, we can investigate the model parameters which determine the level of leaky expression. Furthermore, we can see that for a fixed growth rate, μ, and DNA binding rate, k_{DNA}, increasing the basal strength of the promoter will decrease the level of leaky expression, equivalent to moving to the right in Figure 3.8.

We can also predict an upper limit of the behaviour at very high arsenic concentrations by considering the system’s behaviour in saturating arsenic conditions. When the concentration of As$^{\text{III}}$ is very large, the rate at which arsenite binds with ArsR$_2$ is much greater than the rate at which ArsR$_2$ is produced, leaving very little ArsR$_2$ which has not formed a complex with arsenite. Thus we can estimate an upper bound for maximal induction of the system by simply replacing ArsR$_2$ for ArsR$_2$–As$^{\text{III}}$, and thus K_{DNA}^{+} for $\frac{k_{\text{DNA}}}{\alpha}$, where α is the fold decrease in DNA binding rate of ArsR$_2$ caused by interaction with As$^{\text{III}}$.

Interestingly, Figure 3.8 shows that a fold reduction in α of between 100 and 1,000 in k_{DNA}^{+} is enough to transition from the operon being tightly repressed to the promoter being almost completely unbound. This is closely matched by the change in K_{DNA} that has been observed for other members of the SmtB/ArsR family of between 300 and 1,000, see Table 3.1. While we would expect this change in K_{DNA} to be caused by both a combination of a reduction in binding rate, k_{DNA}^{+}, and an increase in unbinding rate, k_{DNA}^{-}, modelling suggests that a decrease in k_{DNA}^{+} alone is enough to trigger induction, at least in growth phases where μ is large.
Fig. 3.8 Parameter variations of the arsenic-free model from Figure 3.7 for variations in the non-dimensional quantities k_r/μ and k_{DNA}/μ.

The range between a high and low signal is critical for biosensor function, and since we can now estimate the maximum possible range of the system, we can say something about the effect of variations in promoter strength on that range. From the observed behaviour of the system, it is reasonable to assume that the value of k_{DNA}^+ places the uninduced system somewhere above the transition shown in Figure 3.8, while induction by arsenite moves the stable point somewhere below it. Since increasing the strength of the promoter is equivalent to moving to the right in figure, leaky expression is expected to decrease, but as we move further to the right, the upper bound of maximal expression will also begin to decrease. This implies that for a given k_{DNA}^+, α, and μ, there is a particular basal promoter strength, k_r^*, which maximises the range of the response, as is demonstrated Figure 3.9.

This model has shown that a physiologically plausible value of α is enough to cause complete de-repression under saturating arsenic conditions. Further models will therefore neglect the binding of ArsR$_2$–As$^{\text{III}}$ complexes with DNA, essentially taking the limit of $\alpha \to \infty$. This is likely to be valid for physiological model parameters, however, care should be taken when varying k_r, the strength of the promoter, without varying k_{DNA}^+, as the true values of k_{DNA}^+ and k_{DNA}^+/α may no longer straddle the transition shown in Figure 3.8, causing a reduction in dynamic range.
Fig. 3.9 Effect of relative promoter strength on the range of the response. K^+_{DNA}, α, and μ were held constant at 3.46×10^{-4}, 500, and 3.46×10^{-2} respectively. The value for μ was chosen to correspond to a doubling time of approximately 20 minutes and α was chosen based on literature values from Table 3.1. K_{DNA}^+ was set arbitrarily such that K^+_r would fall within the expected range for K_r.

3.2.5 De-repression by Arsenic

The model shown in Figure 3.10 represents a stepping stone on the way to developing a full model of the system in which the internal concentration of unbound AsIII is held constant. Again, it is assumed that the values of K_{DNA}^- are much less than the growth rate μ, and α is assumed to be large enough that the rate at which ArsR$_2$–AsIII binds with DNA, $\frac{K_{DNA}^+}{\alpha}$ is much less than growth dilution, μ, and is thus ignored.

In this model, only one AsIII ion binds to ArsR, with association constant K_{As}. In reality, two AsIII can bind, one to each member of the dimer, but this model assumes that the second binding event has no further effect on DNA-ArsR$_2$ interactions. To justify this assumption, let us consider the case where an arsenite ion has bound to the α domain of one member of the homodimer, but that the other remains unbound. Since the presence of arsenite has no observable effect on the stability of the dimer, it seems unlikely that an arsenite induced conformational change in one member of the complex is transmitted to the second, as this would change the nature of the bound surfaces between the proteins, which would be expected to have some effect on the stability of the complex. If we assume this to be true, then one member of the homodimer remains able to bind DNA with high affinity, while the other cannot. Experiments have shown that mutant ArsR proteins which were unable to form homodimers were unable to bind DNA, implying that either the homodimeric interaction itself causes some other conformational change to enable DNA binding, or, more
Modelling of the native arsenic operon of *B. subtilis*

probably, the combined and cooperative interactions between both members of the dimer and DNA are required for the complex to bind. On balance, it therefore seems unlikely that the binding of a second AsIII ion has a large effect on the DNA binding of ArsR\textsubscript{2}, certainly when compared with the effect of the first ion.

Figure 3.11 shows the effect of parameter variations on the response curve of this model from low to high arsenite concentration. In each case, the response increases monotonically from a basal, leaky response to a higher maximal response, while the gradient of the curve decreases smoothly towards zero. The form of this function is very similar to exponential decay such as \(a(1 - e^{-b \cdot t}) + c \), ratios such as \(\frac{a}{(b+x)} \) or sigmoidal functions such as the Gompertz function as well as hyperbolic functions such as \(\text{tanh} \). Unfortunately, while such functions tend to fit well for certain model parameter values, each one fits particularly poorly at other parameter values. As such, there appears to no convenient general form for the response of the model.

Nevertheless, we can learn several things from the parameter variations shown in Figure 3.11 beyond the basic shape of the curve. The leftmost figure confirms that increasing the strength of the promoter decreases the response both at zero and saturating arsenic levels, but has little effect on the shape of the response. The central plot shows that changes in \(K_{DNA}^+ \) have a similar effect, with tighter binding of the promoter reducing expression of the operon at all arsenite concentrations, under the assumption that \(\alpha \) is large enough to effectively completely relieve DNA binding.

Increasing the rate at which arsenite binds with the dimer, \(k_{As}^+ \), relative to the rate at which ArsR\textsubscript{2} binds with DNA, \(K_{DNA}^+ \), has no effect on the leaky expression of the system, but significantly increases the response at high arsenite concentrations, as well as reducing the amount of arsenite required to attain close to the saturated response.

3.2.6 Arsenic and the Cell

Having modelled the response of the system to internal arsenite, we now turn our attention to the effect of the cell membrane. The entire purpose of the *ars* operon is to protect the cell from the harmful effects of arsenite by reducing the concentration in intracellular arsenic by pumping arsenite out of the cell. Thus, for a given external arsenite concentration, we expect the steady-state internal arsenite concentration as experienced by the operon to be significantly lower.

The model shown in Figure 3.12 models the uptake of arsenite as a Michaelis-Menten reaction with maximum velocity \(k_{uptake}^{\text{max}} \) and concentration required for half-maximal velocity \(K_{M}^{uptake} \). The catalyst for this reaction is assumed to be the GlpF transmembrane protein.
3.2 Developing a Mathematical Model

(a) Visual representation of the mathematical model, now showing arsenite interacting with both ArsR$_2$ and P$_{pen}$-ArsR$_2$ to prevent binding of the promoter

(b) SBOL representation of the system

Fig. 3.10 The ars operon in the presence of arsenic. AsIII binds to the α-binding domains of the homodimeric ArsR$_2$ at rate K_{As}, which induces a conformational change in ArsR$_2$ completely removing the dimer’s ability to bind DNA. In this preliminary model, the concentration of unbound AsIII is fixed. Other species are as described in Figure 3.7
Modelling of the native arsenic operon of *B. subtilis*

Fig. 3.11 Response to arsenite under variations of the dimensionless parameters shown above each plot for the model shown in Figure 3.10. The red curves are the same for each plot while the blue and brown curves show a ten-fold increase or decrease in the value respectively. In each case the denominator was held fixed while the numerator was varied.

as discussed in Section 3.1.1, the concentration of which is taken to be constant in these experiments. No reliable estimates of $k_{\text{uptake}}^{\text{max}}$ and K_M^{uptake} are available in literature.

Extrusion of As$^{\text{III}}$ is catalysed by ArsB, as discussed in Section 3.1.1, which is also modelled as a Michaelis-Menten reaction with maximal velocity $k_{\text{extrude}}^{\text{cat}} \cdot \text{[ArsB]}$ and half maximal internal arsenic concentration of $k_{\text{extrude}}^{\text{cat}}$. In the absence of antimonite, $k_{\text{cat}}^{\text{extrude}}$ has been measured as 0.14mM by Kuroda et al. [84], while $k_{\text{cat}}^{\text{extrude}}$ has not been measured.

One further data point is available to us from literature. Singh et al. [150] found that the internal arsenite concentration caused by an external arsenite concentration of 10mM was 0.2mM in *E. coli*. This factor of 50 difference is quite remarkable given that 10mM is the WHO’s threshold for safe arsenic levels, and thus represents the lower end of what the cells can tolerate.

We are left with a model with ten parameters, of which we have good direct empirical data for just one, $k_{\text{cat}}^{\text{extrude}}$. We can, however make a reasonable estimate of μ, the dilution rate, and have derived ballpark estimates for the likely ranges of K_r and K_{DNA}^{+}, which are compatible with the expected system behaviour and within the realms of biological plausibility. While there is no reason to believe that these values correspond closely to the real-world values, qualitative interpretations of the model behaviour should still be possible.

As expected, variations in k_b and $k_{\text{cat}}^{\text{extrude}}$ have exactly the same effect on the model behaviour – doubling k_b while halving K_{cat} will double the steady state concentration of ArsB, but won’t affect anything else in the model. Increasing (or reducing) the value of the product of the two increases (decreases) the rate at which arsenite is expelled from the
3.2 Developing a Mathematical Model

Fig. 3.12 The interactions of the *ars* operon, arsenic, and the cell membrane. Arsenite is taken up into the cell with Michaelis-Menten parameters k_{uptake} and K_{M}^{uptake} with the concentration of the membrane proteins through which arsenite enters assumed to be constant. In addition to ArsR, the promoter P_{ars} produces ArsB which catalyses the extrusion of cellular arsenite with Michaelis-Menten parameters $k_{\text{cat}}^{\text{extrude}}$ and K_{M}^{extrude}. The extracellular space is assumed to be much larger than intracellular volume, and so the extracellular arsenite concentration is held constant. Other species are as described in Figure 3.10.
Fig. 3.13 Example response to arsenic for the cell model shown in Figure 3.12. Parameters were chosen for the model such that 10mM of external arsenite leads to 0.2mM of internal arsenite, as observed by Singh et al. [150].

cell, thus reducing (increasing) the induction of the operon for any given non-zero arsenite concentration. The inverse is true for $k_{\text{max}}^{\text{uptake}}$, where increasing (or reducing) $k_{\text{max}}^{\text{uptake}}$ increases (reduces) the amount of arsenite entering the cell, increasing (reducing) the induction of the operon for a given non-zero arsenite concentration.

This is as expected, however the value of K_{M}^{uptake}, the external arsenite concentration required for half-maximal uptake of arsenite, becomes highly important in determining the steepness of the induction curve of the operon. As noted in Section 3.2.5 above, K_{As}^{+} has some effect on the amount of internal arsenite required to reach half-full induction of the system, but this full model shows that the value of K_{M}^{uptake} has a much greater effect in determining this point than any other model parameter.

We can reduce the number of unknown parameters by considering meaningful combinations of them, such as the maximum steady state amount of ArsR$_{2}$, K_{r}^{max}, as discussed previously. Another is $\frac{k_{\text{extrudecat}}^{\text{rate}}}{\mu k_{\text{max}}^{\text{uptake}}}$, which corresponds to the ratio maximum rate at which arsenite can possibly be extruded from the cell when the promoter is fully unbound to the maximum rate at which arsenite can be taken into the cell. For an effective operon, this ratio must be greater than one, otherwise there exists a threshold external arsenic concentration above which internal arsenic will begin to increase dramatically, possibly becoming larger than the external arsenic concentration if $k_{\text{max}}^{\text{uptake}}$ is greater than μ. It may seem reasonable to assume, then, that this ratio must be greater than one in the real system, however there are legitimate reasons why a ratio of less than one might lead to optimal performance, particularly if K_{M}^{uptake} is large, requiring a large amount of external arsenite to cause rapid entry of arsenite into the cell. Since ArsB is toxic at high concentrations, and as a membrane protein likely to
have other negative effects, it is likely that optimal behaviour minimises the production of ArsB – indeed if this were not the case, ArsB would be produced constitutively, as no arsenite responsive control would be needed. Reducing this ratio below one might be a way to further reduce unnecessary expression of ArsB without compromising the operon for naturally occurring arsenite concentrations, at the expense of poor performance at exceptionally high arsenite concentrations.

3.3 Conclusions and a Strategy for in vivo Characterisation

This modelling effort has taught us several important things about the behaviour of the ars operon with regards induction by arsenite.

Firstly, Section 3.2.4 investigated the asymptotic behaviour of the system at extremes of zero and large concentrations of arsenite. It was found that increasing the strength of the promoter (for example, by constructing a hybrid promoter including the ArsR2 binding domain, or by including an extra copy of the gene) would reduce the level of expression at both low and high arsenite concentrations. The model also predicted that, while holding all other parameters constant, there would be an optimal promoter strength, \(K^r_r \), which maximises the difference between the upper limit of induction and the level of leaky induction – equivalent to maximising the difference between a high and low sensor response. Increasing the strength of the promoter beyond this point would begin to decrease the maximal induction level faster than the leaky induction level, reducing the performance of the sensor.

This section also found that for any given promoter, there was only a band of around 3 orders of magnitude for which values of \(K^+_{DNA} \), the rate at which ArsR2 binds to DNA, had a significant effect on the leaky expression, see Figure 3.8. From knowledge of system behaviour, it was therefore assumed that the true value of \(K^+_{DNA} \) is somewhere above this transition in the absence of arsenite, but a conformational change causes this value to drop below this transition once arsenite has bound to the dimer.

Section 3.2.5 began to look at how induction levels varied as arsenite concentrations varied between these extrema. A new parameter, \(K^+_{As} \), the rate at which arsenite binds to ArsR2 plays a significant role in the level of induction caused by arsenite, as the level of induction depends on the proportion of ArsR2 which has bound to arsenite. In this cell-free model, if \(K^+_{As} \cdot [\text{As}^{\text{III}}] \) is very small compared with the rate at which ArsR2 is produced, \(K^r_r \), very little induction is observed. Increasing \(K^+_{As} \) therefore increases induction for all non-zero
concentrations of arsenite, and also reduces the concentration of arsenite required for half-full induction.

Finally, this model was placed in a cellular context in Section 3.2.6. Here it was shown that the rate at which arsenite is able to cross the cell membrane is crucial to operon behaviour, and that in particular the ratio of the maximal rate of arsenite extrusion, $k_{\text{extrude}} \cdot k_{\text{cat}}$, to the maximum rate at which arsenite can enter the cell, $k_{\text{uptake max}}$. This ratio essentially controls the tolerable concentration of internal arsenite – increasing it reduces the internal concentration of arsenite. Modelling shows that if this ratio were to fall below one – for example by weakening the promoter or ribosome binding site associated with ArsB – the operon will fail to protect the cell from arsenite above a certain threshold concentration, above which point the internal arsenite concentration will grow quickly with the addition of more external arsenite. Furthermore, the value of $K_{\text{uptake M}}$, the external arsenite concentration which causes half maximal rate of arsenite entry into the cell, is crucial to the shape of the operon’s response, having a far greater effect than K_{Aa}^+ in the cellular context, assuming the latter is not very small.

This work has aided the understanding of the ars operon in $B. subtilis$ – although the results could easily be generalised to other members of the SmtB/ArsR family – and clarified the roles of the various components within that system. The likely effect of parameter variations has also been studied, and in some cases, ranges of likely parameters have been arrived at. However, many parameters remain unknown, and considerably more robust empirical characterisation of the operon is required in order to validate this model.
Chapter 4

Establishing Ratiometric Characterisation in *Bacillus subtilis*

4.1 Introduction

4.1.1 Characterisation in Synthetic Biology

Robust part characterisation is central to the core mission of synthetic biology – to be able to reliably engineer novel and useful biological machines from synthetic parts. This goal cannot be achieved without a secure understanding of the function of each part, what its operating limits are, and how the part will interact with other biological parts within the synthetic context and the wider synthetic organism.

As synthetic biology becomes more established as an engineering discipline, evermore projects will be organised on the basis of a rationalised design-build-test cycle. Thorough, systematic part characterisation allows us to build libraries of synthetic parts with a range of biological properties. We can leverage this knowledge at design-time, when, given an abstract system design we can select from our library the various biological components – promoters, RBSs, genes and so forth – to give rise to the desired behaviour. We cannot guarantee that our design-time prediction will be accurate due to the very high interaction-space within any biological system, but with a large enough library of parts and the rise of automated methods for the compilation of concrete DNA sequences from abstract system designs, as well as the increase in lab automation and high-throughput DNA assembly, transformation, and testing techniques, we can test several such designs, and perform several iterations through the design-build-test cycle before arriving at a final, well characterised machine.

In this chapter, we focus on the characterisation of *expression systems*, i.e. the combination of promoter region and Ribosome Binding Site (RBS) which controls the expression
of a protein from a gene. Clearly, these factors are not the only ones which determine final protein concentration, or even the rate of production of a protein, as factors such as RNA turnover rate, RNA secondary structure, RNA-RNA and RNA-protein interactions, and gene codon bias all have an effect on protein production rate. In some cases – such as in the case of Fluorescent Reporter Proteins (FRPs) – post-translational modifications might be required for the production of mature protein, the rate of which may further modulate production of mature protein.

Each of these regulatory processes make for interesting potential control inputs for future synthetic systems, however synthetic biology has tended to focus mainly on implementing control at promoter and sometimes RBS level. Primarily, this is due to the relative simplicity of the physical interactions behind their behaviour. The (basal) strength of a promoter is determined by how tightly the relevant σ-factor binds to it, with tighter, faster binding causing the loading of more RNA polymerase per unit time and thus the production of more mRNA. In an inducible promoter, the σ-factor binding rates are modulated by other DNA binding transcription factors, which bind or unbind in response to the target modality. While these behaviours can become quite complex, they largely rely on simple association and dissociation reactions, which can be characterised and well modelled as seen in Chapter 3.

Interactions at the RBS can be more complex, as the rate at which ribosomes bind and successfully begin translating protein depends not only on how strongly the ribosome binds with the RBS sequence, but also on the secondary structure of the mRNA and the proximity of the RBS to the start codon of the gene. Since we can easily manipulate the sequence of the mRNA, we can to some extent control how tightly the ribosome will bind, as well as the distance between the RBS and start codon. However, reliably controlling mRNA structure is significantly more challenging. While algorithms exist for predicting mRNA structure, their accuracy is far from perfect, and those with reasonable algorithmic complexity specifically ignore more complex structures such as pseudo-knots. Even when armed with perfect RNA structure prediction, each mRNA is free to interact with every other RNA in the cell and binding of other RNAs can stabilise structures that weren’t predicted or destabilise structures which were strongly predicted, leading to unreliable behaviour.

This problem becomes even more extreme when considering some of the other potential control mechanisms mentioned above, and so promoter and RBS level control remain most important in synthetic biology. We need, therefore, to develop characterisation methods which are aware of other causes of variation and either predict and account for them directly or find some other way of mitigating their effects.
4.1.2 Dual-Channel Characterisation

Biological measurements are inherently noisy, as cells do not behave in a deterministic way but are instead made up of a vast number of highly stochastic processes. In characterising a biological element such as a promoter, we would really like to dial down the effects of this wider stochastic context and access the promoter’s underlying ability to promote RNA polymerase activity, independent of its specific cellular context. Dual channel or ratiometric reporter systems are a method of doing just this, by measuring the ratio between two expression systems rather than the absolute output, individual stochastic variation can be rejected while the true value is recorded.

Noise in expression systems can be classed as intrinsic or extrinsic[38, 132], each of which are generated by different mechanisms. Consider a population of genetically identical cells growing in identical media. We would expect some natural variation in the concentrations of cellular machinery within each cell – subtle differences in the concentrations of each σ-factor, RNA polymerase, and others. Some individuals within the population are likely to stochastically enter radically different phenotypes as a result of bet-hedging, introduced briefly in Section 3.2.2 in the context of the *B. subtilis* competence pathway. These sources of variation will necessarily have an effect on the apparent strength of a promoter being characterised, and this variation is known as extrinsic noise, as it is external to the system under test.

Intrinsic noise on the other hand refers to the variation one would expect if the population were not only genetically identical but if the copy number of every cellular component was exactly equal. In such a (hypothetical) scenario, the apparent strength of the promoter under test would also vary between individuals, as the processes by which genes are expressed are inherently randomised by the fact that cellular components essentially move around at random, bouncing off each other until a stable conformation with low free energy is reached such as a RNA polymerase binding with a σ-factor.

These two mechanisms by which noise is introduced require two different tactics to solve them. Intrinsic noise can be defeated simply through scale. Since each of the many stochastic molecular level interactions involved in expression are not heavily correlated, it is reasonable to expect the central limit theorem to apply to the observed rate of any given cellular process, and thus that the distribution of individual samples from this system are normally distributed. From the properties of the normal distribution, as the number of observations grows, the mean of those observations tends towards the true value. Often this is achieved using a bulk assay such as with a plate reader, where the fluorescent output of a large population of cells is assayed simultaneously and normalised using the optical density (OD).
Extrinsic noise does not behave quite so well however. Consider an expression system with parameters ϕ in a population containing two sub-populations, for example competent and non-competent from our earlier example. Let the average output from the first system equal $A(\phi)$ and the second equal $B(\phi)$, with population sizes of N_a and N_b respectively. The normalised observed value is

$$\frac{N_a \cdot A(\phi) + N_b \cdot B(\phi)}{N_a + N_b}$$

which is highly dependent on the functions A and B, as well as the proportion of cells in each, which is likely to be highly dependent on the particular conditions in which the population was grown, and thus not a very useful characterisation.

In ratiometric characterisation, the ratio of the system’s output is taken as a ratio of the output of a reference system [69] with parameters ϕ_r. In the simple two-state example the output becomes

$$\frac{N_a \cdot \frac{A(\phi)}{A(\phi_r)} + N_b \cdot \frac{B(\phi)}{B(\phi_r)}}{N_a + N_b}$$

If the two functions A and B are linear or approximately linear in ϕ, then both ratios become some function, say r, of ϕ and ϕ_r, such that the observed value simplifies to $r(\phi, \phi_r)$ and no longer depends on the conditions A and B or the proportion of the population in each state. This value is therefore more robust to changes in these extrinsic parameters, and represents a more specific characterisation of the particular system under test, which should be more context independent than a single channel measurement.
4.1.3 A Mathematical Framework for Dual-Channel Characterisation

A straightforward ODE model of the production of a Fluorescent Reporter Protein (FRP) was established and verified by de Jong et al. [32], outlined in Figure 4.1. In this model, mRNA \(m(t) \) is produced at rate \(k_m p(t) \), where \(k_m \) represents the rate at which mRNA is produced by the promoter under basal conditions, while \(p(t) \) represents the level of induction (\(p > 1 \)) or repression (\(p < 1 \)) of the promoter. The mRNA catalyses the production of inactive protein with concentration \(q(t) \) at rate \(k_q \), which then matures spontaneously at rate \(k_r \) to produce mature, observable protein \(r(t) \).

Crucially, this model assumes that all steps in producing mature protein are linear – doubling \(p(t) \) doubles the rate of production of mRNA, doubling the concentration of immature protein doubles the rate at which mature protein is produced, and so on. de Jong et al. [32] successfully validated these assumptions from empirical data, but it is important to understand the limitations that these assumptions create, as no real physical system is truly linear in all conditions. In the case of transcription and translation, a very strong promoter or RBS might begin to saturate the cell’s capacity for expression such that a proportional increase in promoter or RBS strength causes a sub-proportional increase in transcription or translation. This effect is likely to be more pronounced under stress conditions such as nutrient starvation when fewer metabolic resources are available.

The protein maturation step does not directly place a burden on the cell’s expression machinery, but rather FRP maturation is known to require oxygen[4, 32, 145]. Thus, if a very large amount of immature protein is produced, or if cells are grown in sufficiently anoxic conditions, the lack of oxygen is likely to cause a non-linearity in this final step, and the real system output will deviate from model behaviour.

Making these assumptions, we can write down the governing differential equations for \(m \), \(q \), and \(r \) as

\[
\begin{align*}
\dot{m} &= k_m p - (\gamma_m + \mu)m \\
\dot{q} &= k_q m - (\gamma_q + \mu + k_r)q \\
\dot{r} &= k_r q - (\gamma_q + \mu)r
\end{align*}
\] \hspace{1cm} (4.1)

In the case where the promoter is constitutive (i.e. \(p(t) = 1 \)), we can find the steady state of \(r(t) \) this system of equations by setting \(\dot{m} = \dot{q} = \dot{r} = 0 \) and solving for \(r \), which gives

\[
\lim_{t \to \infty} r(t) = \frac{k_r k_q k_m}{(\gamma_m + \mu)(\gamma_q + \mu + k_r)(\gamma_q + \mu)} \] \hspace{1cm} (4.2)
which is clearly linear in k_m and k_q. This linearity justifies the assumption of linearity made at the end of Section 4.1.2, that the functions A and B are linear functions of the intrinsic properties of the expression system (previously denoted as ϕ), in this case the promoter strength k_m and translation rate k_q. This result proves the efficacy of the dual channel method in reducing the effect of extrinsic variation of the system under test.

The system of governing equations (4.1) can also be solved in the case of a spike of promoter activity – also known as the impulse response of the system – by setting $p(t) = \delta(t)$ where δ is the Dirac delta function. The impulse response is a convenient property of a linear system, as it enables us to calculate the response of the system for any input by simply convolving the input with the impulse response. We can therefore think of the impulse response as a filter which is applied to the parameter we wish to measure. Using Laplace transforms, the impulse response can be found as

$$r(t) = \begin{cases} 0 & t < 0 \\ k_qk_m \left(\frac{e^{-(\gamma_q + \mu)t}}{(\gamma_m - \gamma_q)} - \frac{e^{-(\gamma_q + \mu + k_r)t}}{(\gamma_m - \gamma_q - k_r)} \right) + k_re^{-(\gamma_m + \mu)t} \left(\frac{1}{(\gamma_m - \gamma_q - k_r)} - \frac{1}{(\gamma_m - \gamma_q)} \right) & \text{otherwise} \end{cases}$$

and is shown plotted using values derived for GFP from de Jong et al. [32] in Figure 4.2. As expected for a physical system which obeys causality, the instantaneous response at $t = 0$ is zero, but this quickly grows to a maximum after around twenty minutes, before decaying away exponentially to zero. Figure 4.2 shows that as t becomes large, the first term comes to dominate, and so the limiting decay rate has a half-life of $\gamma_q + \mu$ due to degradation and dilution of the protein. A FRP system therefore ‘smears out’ the fine detail of the promoter activity $f(t)$, with a slower degradation and dilution rate causing greater smearing of the output reading.

It is therefore advisable that in cases where good resolution in the time domain is important, such as the characterisation of the response to a step change in inducer molecule, the dilution and degradation rate $(\gamma_q + \mu)$ should be large, which can be achieved either by making sure cells are growing quickly during the assay or by using a FRP with low stability.

4.1.4 Dual Channel Reporters in B. subtilis

Dual channel reporters similar to this have been commonly used in *E. coli* (e.g. Yordanov et al. [177]), but not so in *B. subtilis*. Partly this is due to the fact that recombinant genes are commonly introduced via a plasmid vector in *E. coli* as this is simpler and more efficient than chromosomal integration. However, measurements of the activity of plasmid-borne expression systems must contend with an extra source of variation, the plasmid copy number, which can vary quite considerably from cell-to-cell.
4.2 Design

4.2.1 Requirements

The most basic requirement of the dual reporter system is that the chosen fluorescent reporters have good properties for a ratiometric application. The chosen reporters must be easily expressed by the host and have good brightness such that they can be easily detected by whichever sensing technology is applied and must be easily distinguishable from wild-type auto-fluorescence even at low expression rates. The two reporters must also be orthogonal.
meaning that overlap in the absorption or emission spectra between the two reporters must be minimal to prevent cross talk between the two signals.

For a characterisation platform to be useful, it must also be possible to insert different test systems quickly and reliably, ideally in a way suitable for automation for high-throughput methods. Such a system should also remain as flexible as possible, placing only the minimum of requirements on the sequences which can be inserted reliably. In particular, such a system must be able to deal with very short inserts well, as 5’ UnTranslated Regions (UTRs) are often fewer than 10bp in length.

B. subtilis has ten native sigma factors, reviewed in Haldenwang [57] and enumerated in Table 4.1. Each sigma factor controls the expression of a large number of genes responsible for a particular cellular function. For example \(\sigma^A \) is responsible for the expression of most genes under normal growth conditions, while \(\sigma^B \) is expressed in response to a wide range of stress conditions and in turn induces the expression of a wide range of stress response proteins which help shield the cell from a range of potential hazards, known collectively as the general stress response. Locke et al. [92] found that the level of stress is not encoded by level of \(\sigma^B \) expression, but that actually expression of \(\sigma^A \) and \(\sigma^B \) is exclusive with one or other being fully expressed at all times. Expression of \(\sigma^A \) and \(\sigma^B \) is therefore pulsatile with the level of stress encoded by the number and duration of pulses of \(\sigma^B \) expression.

Correct ratiometric characterisation of an expression system requires that both the query and reference promoter interact with the same sigma factor, as otherwise the output would be dependent on the proportion of each sigma factor present, and thus on cell state. This could be useful when characterising the behaviour of sigma factors under different conditions, but this falls outside the scope of this work. It is therefore a design requirement that the reference expression system should be reasonably easy to change, although it need not be as simple as changing the query system which is expected to change more often.

4.2.2 Choice of Assembly Technology

Two categories of assembly technology were considered for the characterisation platform, the PCR/exonuclease based Gibson Assembly and the Type-IIS restriction enzyme based Golden Gate. Both were used at various stages of the project, and simple protocols and references are introduced in Section 2.2. Each technology has its own advantages and limitations for use in this context.

Gibson assembly is a scarless assembly technique which relies on each fragment having a region of overlap between them. So long as successive fragments agree, the sequence of this overlap is free to vary so long as the melting temperature of the overlap remains within an acceptable range (although sequences with long repeats or strong secondary structure should
Table 4.1 The sigma factors of *Bacillus subtilis*. See Haldenwang [57] for a review.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ^A</td>
<td>Housekeeping/early sporulation</td>
</tr>
<tr>
<td>σ^B</td>
<td>General stress response</td>
</tr>
<tr>
<td>σ^C</td>
<td>Postexponential gene expression</td>
</tr>
<tr>
<td>σ^D</td>
<td>Chemotaxis/autolysin/flagellar gene expression</td>
</tr>
<tr>
<td>σ^H</td>
<td>Postexponential gene expression; competence and early sporulation genes</td>
</tr>
<tr>
<td>σ^L</td>
<td>Degradative enzyme gene expression</td>
</tr>
<tr>
<td>σ^E</td>
<td>Early mother cell gene expression</td>
</tr>
<tr>
<td>σ^F</td>
<td>Early forespore gene expression</td>
</tr>
<tr>
<td>σ^G</td>
<td>Late forespore gene expression</td>
</tr>
<tr>
<td>σ^K</td>
<td>Late mother cell gene expression</td>
</tr>
</tbody>
</table>

be avoided). However, Gibson assembly is considerably less reliable with short sequences, as the assembly relies on the action of a 5′-exonuclease to expose the overlapping regions as single stranded sticky ends. Control of exactly how much DNA the exonuclease degrades is limited, as this reaction happens quickly as the reaction mixture is heated directly from 4 °C to 50 °C, at which temperature the enzyme will have a short half life. If the fragment is too short, it is entirely destroyed before this denaturation temperature can be reached, and so Gibson assembly is limited to fragment sizes of the order of 100 bases or more.

Golden Gate, on the other hand has far more permissive limitations on fragment size, with \sim 5bp fragments having been successfully integrated. However, as a restriction enzyme based technology Golden Gate does place limits on the specific sequences being used, with sequences that include the chosen enzyme’s recognition site being at best significantly less efficient to insert, and sometimes impossible. Furthermore, Golden Gate is not truly scarless as a 3-4bp overlap is required between fragments. Unlike traditional restriction enzymes, the overlap sequence is not specific to the enzyme used but can be any non-palindromic, non-repetitive sequence. Overlap regions in successive fragments must be equal, however, meaning that Golden Gate based technologies are often referred to as *quasi-scarless*, since the sequence of the scar can be specified within well defined limitations. We can turn this apparent limitation to our advantage, however, by standardising the overlaps used in our test expression systems. By specifying that promoters and RBSs within the testing library must be flanked by specific, well chosen overlaps, we can easily generate a library of promoter and RBSs which can be used interchangeable with the characterisation platform.

In order to test this, the type-IIS restriction enzyme BsmBI was selected, as none of the candidate FRPs contained the BsmBI cut site and the enzyme would not conflict with
Establishing Ratiometric Characterisation in *Bacillus subtilis*

(a) The landing pad sequence. Two outward-facing BsmBI cut-sites allow the landing pad region to be excised and replaced with any sequence with compatible overhangs. The right-hand overhang in the figure, ATGG, includes the start codon of the reporter protein plus one base pair, which means that the 5' UTR can be fully specified. The final ‘G’ potentially places a limitation on chosen reporter protein, see Section 4.2.3

(b) Assembly schematic showing the use of the landing pad to insert an arbitrary promoter and RBS combination into a reporter plasmid. The assembly contains three fragments, a promoter, an RBS and a plasmid template, shown in step A, each with appropriate BsmBI cut sites and overhangs listed in table 4.2. Digestion then removes the recognition sites and exposes the matching sticky ends in step B, before the fragments are ligated together shown in C.

Fig. 4.3 Design and use of the landing pad assembly system, showing the sequence of the landing pad region and the process by which a promoter and RBS can be inserted into a template plasmid.
enzymes being used elsewhere in the assembly process. A short ‘landing pad’ region which would accept a promoter and RBS was designed and inserted immediately upstream of both the reference and query FRP, as shown in Figure 4.3. The landing pad design was tested by inserting a strong promoter and RBS which were previously known to be highly functional in *E. coli* and *B. subtilis* to make colony selection as simple as possible. The result of the Golden Gate assembly was transformed into chemically competent *E. coli* and plated on chloramphenicol plates. No false positives were observed, although the number of transformants was quite low, with only a handful of colonies present after plating all cells.

A control experiment demonstrated that the competent cells were not at fault, and so suspicion fell on the efficiency of the assembly reaction. The most likely cause of low efficiency was suspected to be the restriction enzyme – most type-IIS enzymes have an operating temperature of 37 °C, however BsmBI cuts most efficiently at 55 °C. Golden Gate assembly is typically carried out by cycling between two temperatures, a digestion temperature during which the fragments are cleaved (typically 37 °C) and a restriction temperature during which matching fragments are ligated, usually 16 °C. It was hypothesised that increasing the digestion temperature from the 37 °C specified by standard Golden Gate protocols while keeping the ligation temperature constant would improve the efficiency of digestion and therefore increase the efficiency of the overall reaction. The test assembly was a four-part assembly, including backbone, promoter −35 region, promoter −10 region, and RBS. The two promoter regions and RBS were roughly 50 bp each, with the total promoter and RBS insert measuring 101 bp in length. These lengths can be resolved on a 4% agarose gel, as shown in Figure 4.4, which shows the result of assembly at 37, 45, and 55 °C. Image analysis shows that the most efficient assembly occurs at the medium temperature of 45 °C, with no visible assembly taking place at the higher temperature of 55 °C, although more restriction has taken place at this temperature than at 37 °C. The most likely explanation is that exposure to temperatures as high as 55 °C causes significant denaturation of the T4 ligase which is required to assemble the fragments, whose published denaturation temperature is 65 °C. All further assemblies involving BsmBI were therefore carried out with a 45 °C digestion step, which tended to produce around two orders of magnitude more colonies than at 37 °C.

The specification of the Type IIS overhangs used throughout the characterisation effort is shown in Figure 4.2.

4.2.3 Fluorescent Reporter Selection

Two fluorescent proteins are required for the dual reporter system, one to report the output of the query system and one to report the output of the reference system. The chosen reporters
Fig. 4.4 Optimisation of BsmBI Golden Gate, showing most efficient assembly at the intermediate value of 45 °C. Orange overlays show average pixel intensity across each lane of the 4% agarose gel. Three fragments were assembled, with lengths of 58, 45, and 51 bp, seen combined without enzyme in lane one. Each fragment contains two inward facing BsmBI cut-sites; the effect of cleavage at these sites is shown in lane two where no ligase was present. Lanes 3-5 show the result of a full Golden Gate reaction after 50 cycles with an annealing temperature of 16 °C and digestion temperature of 37, 45 and 55 °C, respectively. Full assembly results in a fragment size of 101 bp, as can be seen most clearly in lane 4.
4.2 Design

Table 4.2 Overhang specifications for each part type in the Dual Reporter library. Promoters were originally split into two parts to allow the -35 and -10 regions to be varied independently, and also to allow promoters to be synthesised by short oligo synthesis, however this design was not used in the final characterisation effort except in the case of the reference promoter, \(P_{\text{pen}} \). Parts are required to end with the sequence 5'-NNNGTGTCN-3' at each end in order for restriction by BsmBI to reveal the expected sticky ends. The values of the Ns was chosen to minimise predicted secondary structure around the end of the sequence.

<table>
<thead>
<tr>
<th>Part Type</th>
<th>5’ Overhang</th>
<th>3’ Overhang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promoter (-35 region)</td>
<td>CGTA</td>
<td>TAAC</td>
</tr>
<tr>
<td>Promoter (-10 region)</td>
<td>TAAC</td>
<td>AGAC</td>
</tr>
<tr>
<td>Promoter (whole)</td>
<td>CGTA</td>
<td>AGAC</td>
</tr>
<tr>
<td>5' UTR</td>
<td>AGAC</td>
<td>ATGG</td>
</tr>
</tbody>
</table>

Table 4.3 Summary of FRPs considered for the dual reporter. (a) extinction coefficient (b) quantum yield (c) theoretical brightness (d) maturation half-life

<table>
<thead>
<tr>
<th>Reporter</th>
<th>(\lambda_{\text{abs}}) (nm)</th>
<th>(\lambda_{\text{em}}) (nm)</th>
<th>(\epsilon \times 10^3) ((M^{-1} \cdot \text{cm}^{-1}))</th>
<th>(QY^b)</th>
<th>(\epsilon \cdot QY^c)</th>
<th>(t_{\text{mat}}^{1/2}) (h)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>mVenus</td>
<td>515</td>
<td>528</td>
<td>92.2</td>
<td>0.57</td>
<td>52.6</td>
<td>(\sim 0.28)</td>
<td>[107]</td>
</tr>
<tr>
<td>mTurquoise2</td>
<td>434</td>
<td>474</td>
<td>30</td>
<td>0.93</td>
<td>27.9</td>
<td>–</td>
<td>[51, 52]</td>
</tr>
<tr>
<td>eForRed</td>
<td>589</td>
<td>609</td>
<td>111.3</td>
<td>0.16</td>
<td>17.8</td>
<td>–</td>
<td>[4]</td>
</tr>
<tr>
<td>mRuby</td>
<td>558</td>
<td>605</td>
<td>112</td>
<td>0.35</td>
<td>39.2</td>
<td>2.8</td>
<td>[82]</td>
</tr>
<tr>
<td>mKate2</td>
<td>588</td>
<td>633</td>
<td>62.5</td>
<td>0.4</td>
<td>25.0</td>
<td>0.33</td>
<td>[146]</td>
</tr>
<tr>
<td>mCherry</td>
<td>587</td>
<td>610</td>
<td>72</td>
<td>0.22</td>
<td>15.8</td>
<td>0.25</td>
<td>[145]</td>
</tr>
<tr>
<td>mScarlet</td>
<td>569</td>
<td>593</td>
<td>100</td>
<td>0.7</td>
<td>70</td>
<td>(\sim 2.9)</td>
<td>[10]</td>
</tr>
<tr>
<td>mScarlet-I</td>
<td>569</td>
<td>593</td>
<td>104</td>
<td>0.54</td>
<td>56.2</td>
<td>(\sim 0.6)</td>
<td>[10]</td>
</tr>
</tbody>
</table>
must be bright enough to be easily detected over the relevant range of system outputs, and should be easy to isolate from background autofluorescence. It must also be possible to distinguish the two reporters from each other, meaning their absorption and emission wavelengths must be sufficiently far apart for the output of the query system to be rejected by the filters recording the reference system and vice versa. Although steady state output of the reporter system is linear in maturation rate (see Equation 4.2), and so differences in maturation rate can be corrected by normalisation, it is wise to choose reporters which mature at approximately the same rate such that the effect of any non-linearities which do occur is minimised. In addition, choosing a reporter with a faster maturation rate will lead to a brighter strain as more of the expressed reporter will be fluorescent at any one time which will in turn reduce measurement error.

Initial rounds of experiments were conducted using mVenus as a query reporter and mTurquoise2 as the reference. mVenus is a bright, fast maturing and stable Yellow Fluorescent Protein (YFP) variant[107], which had been previously used successfully in both *E. coli* and *B. subtilis*. mVenus has a relatively high extinction coefficient of $92.2 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$ and a quantum yield of 57%, meaning it absorbs a large proportion of photons with appropriate energy and emits 57 photons for every 100 absorbed. Fittingly, these properties place mVenus among the brightest FRPs, as its namesake Venus is among the brightest object in the night sky.

The Cyan Fluorescence Protein (CFP) variant mTurquoise2 has an even higher quantum yield than mVenus, but its extinction coefficient is only a third of mVenus’ and so its overall theoretical brightness is equal to around half that of mVenus. mTurquoise2 was initially chosen as a reference reporter as its absorption/emission spectra do not overlap with mVenus, and it had previously been used in bacteria. The lower brightness was not too problematic in itself, as the reference system does not vary as much as the query system, and so by fixing the reference system as a relatively strong promoter and RBS, the output is easily monitored.

After some effort described in Section 4.2.4, a test strain was constructed consisting of mVenus and mTurquoise2 both under identical strong promoters and RBSs. This strain was assessed by a plate reader growth assay, and while the mVenus signal was easily detectable, no signal could be detected from mTurquoise2. After some experimentation, it was discovered that replacing the standard Lysogeny broth (LB) growth medium for a minimal growth medium such as M9 led to some detected mTurquoise2 activity. The most likely explanation is that some component of the LB medium displays strong autofluorescence in the cyan range, making detection of the relatively weak signal due to mTurquoise2 difficult.

Since requiring the system to be assayed in only minimal media seems somewhat limiting, it seemed more sensible to search for a reference reporter protein in a different area of
Fig. 4.5 Comparison of mCherry and mScarlet-I fluorescence against wild-type autofluorescence. The vertical line shows the 95th percentile of autofluorescence samples, with 45% and 77% of mCherry and mScarlet-I samples being above this threshold (and thus confidently not caused by autofluorescence), respectively. Cells were grown overnight in LB at 37 °C with shaking and used to inoculate preheated fresh LB medium. The fresh inoculates were grown for 6 hours, before being assayed with flow cytometry. 100,000 events were captured for each sample and no gating was applied to any channel.

The spectrum, and so a range of red fluorescent proteins were investigated, see Table 4.3. Of those shown in the table, three were investigated, namely eForRed, mCherry, and the recently reported mScarlet-I, while mRuby and mScarlet were discarded due to their long maturation times. In order to compare the suitability of these reporters, it is useful to define some threshold brightness below which samples are considered undetectable. Ratiometric measurements whose reference brightness is below this threshold are then discarded.

The 95th percentile of autofluorescence measurements is a simple choice of threshold value which has a simple statistical interpretation – samples which pass this threshold are at least 95% confident of belonging to a distribution with mean brightness larger than autofluorescence. Figure 4.5 shows the distribution of 100,000 far-red channel events captured using flow cytometry for mCherry and mScarlet-I reporters as well as the autofluorescence measurements. mScarlet-I is clearly the better reporter, with 77% of recorded events appearing above the 95% confidence interval threshold, while only 45% of mCherry events passed this threshold.

The comGA leader sequence is a short sequence taken from the first 8 aa of the \textit{B. subtilis} comGA gene, equal to MDSIEKVS, with DNA sequence 5’-ATGGATTCAATAGAAAAGGTAAGC. When placed at the start of the FRP, the sequence causes an increase in brightness of the resulting reporter, as shown in Figures 4.6 and 4.7. The exact mechanism behind this increase in brightness is not known, however since ComGA is a membrane targeted protein[14, 15],
one possibility is that the leader sequence causes the expressed reporter protein to also be membrane targeted. If a significant proportion of the tagged reporter is embedded in the membrane in this way, one would expect it to be less subject to targeting by the cell’s degradation machinery than when freely moving in the cytoplasm. In this way, the comGA tag may reduce the rate of protein turnover, increasing the amount of reporter protein present in the cell.

Figure 4.6 shows the effect of this leader sequence on the observed brightness of mVenus, which is already a very bright reporter. Here the increase is only a moderate 1.7 fold, however the effect on the weaker mScarlet-I reporter, shown in Figure 4.7, is only slightly larger at 2.9 fold. In the case of mScarlet-I, this increases the strength such that 99% of observed events are above the 95% percentile of autofluorescent events.

Since the mechanism by which comGA increases the observed brightness of the reporters isn’t known, it’s possible that the effect is influenced by any number of mechanisms outside our control. If the comGA sequence were present on one reporter but not the other, changes in these hypothetical factors would affect the effect of comGA on that reporter’s output, changing the ratiometric output. However, if comGA is present on both reporters then fluctuations in the level of comGA-based induction should affect each reporter approximately equally and thus have little effect on the ratiometric output.

Given the obvious advantage of comGA in increasing the observed brightness of the reference reporter, it was decided to include the comGA leader sequence upstream of both query and reference reporter.
Fig. 4.7 Brightness of reference FRP mScarlet-I with and without comGA leader sequence. Vertical lines shown the median brightness, with a modest increase of around 2.9 fold for mScarlet-I. However, the proportion of samples above the 95th percentile of the autofluorescence samples increased from 77% without comGA to 99% with comGA, increasing the number of useable samples.

4.2.4 Architecture

Two construction architectures were considered for the dual reporter system, a parallel and a serial one. In the parallel, one template plasmid is constructed which contains the full reporter system (including promoter and RBS), the query reporter downstream of the landing pad region (introduced in Section 4.2.2), an antibiotic resistance marker, and appropriate homology regions for insertion into the commonly used AmyE region of the *B. subtilis* chromosome. The query promoter/RBS combination are then inserted using the BsmBI based reaction optimised in Section 4.2.2, and the entire region is transformed into competent *B. subtilis* 168.

Several variants of this plasmid were attempted, including versions with divergent and convergent reporters – though always insulated by terminators – and various choices for locating the antibiotic resistance. Both Gibson assembly and Golden Gate assembly methods were also attempted, but no assembly strategy yielded reliable results. In the case of Gibson assembly, all screened plasmids contained missing sections due to incorrect annealing of the overlapping ends. Golden Gate also yielded very low assembly efficiency and often gave no correct colonies at all.

Returning to the drawing board, the idea of a serial assembly architecture was explored, described in figures 4.8 and 4.9. In this design, two template plasmids are built, one containing the reference reporter and the other containing the query reporter. In the templates, the landing pad system described in figure 4.3 is upstream of each reporter, meaning that
Establishing Ratiometric Characterisation in Bacillus subtilis

the reference can be changed more easily in this system, however the homology regions of the query template plasmid are modified such that the chromosomal insert happens just upstream of the AmyE locus (dubbed AmyE’). The antibiotic resistance markers were also changed to chloramphenicol and spectinomycin resistance for the reference and query systems respectively.

Once the landing pad has been replaced by the reference system, see figure 4.3, the reference plasmid is transformed into competent B. subtilis 168, to create a strain referred to as B. subtilis R⟨X⟩·⟨Y⟩, where ⟨X⟩ and ⟨Y⟩ identify the promoter and RBS present respectively. The chosen query system is then inserted into the query template plasmid, and this plasmid is transformed into the reference strain, to create a strain called B. subtilis R⟨X⟩·⟨Y⟩-Q⟨U⟩·⟨V⟩ where ⟨U⟩ and ⟨V⟩ identify the promoter and RBS used in the query system. Since the reference system was kept constant during this work, ⟨X⟩ and ⟨Y⟩ were typically omitted from strain descriptions.

However, this ‘serial’ insertion re-design has two downsides as compared with the initial ‘parallel’ design. The first is one of turnaround time – two transformations are required, with the second dependent on the first meaning that building a full reporter system from scratch takes longer with the second system. However, since the stages of inserting the reference and query system are independent, a large batch of the reference strain can be made ahead of time and so only the actual query system need be inserted to generate the final strain. A new reference strain will still be needed in some cases – for example when characterising a promoter which interacts with a sigma factor for which no reference strain has been generated – but in most cases using the same reference system is rather the point of dual channel characterisation.

The second disadvantage is that the second transformation introduces a second antibiotic resistance into the organism. While this approach works, each extra gene that is added has the potential to change the way the cell behaves, at the very least expression of the antibiotic resistance genes uses cell resources, increasing the chance of some form of starvation response being triggered (see the discussion about pulsatile expression of σB in Section 4.2.1). At worse, the antibiotic resistance gene might directly affect cell behaviour in some way – for example in changing the way a sugar is metabolised – which might, if we are unlucky, directly affect the system we’re trying to interrogate.

A convenient mechanism for removing antibiotic markers in B. subtilis is Xer recombination, as described by Bloor and Cranenburgh [11]. In this system, two 28bp ‘dif’ sites are placed either side of the region to be removed. Once selective pressure is removed (by growing the cells on normal media), the two dif sites are resolved due to the action of the native ripX and codV genes. The chloramphenicol antibiotic resistance marker employed in
Fig. 4.8 Illustration of the serial assembly architecture. Two template plasmids are constructed, each containing the easily variable ‘landing pad’ region described in the text and illustrated in figure 4.3. The chosen promoter and RBS sequences are inserted then into the landing pad regions for each template. Typically only one reference plasmid is generated while an entire library of query plasmids can be constructed. The reference and query plasmids are then linearised and transformed into *B. subtilis* in serial into loci defined by the homologous sequences included in the template plasmid backbones. In this way, a library of query strains can be swiftly and reliably generated.
Fig. 4.9 Schematic of the serial transformations carried out during the serial assembly shown in figure 4.8. Having generated the query and reference plasmids separately as described in figure 4.3, the reference plasmid is inserted into the genome using homologous recombination as shown in the first step. The antibiotic marker is the removed by Xer recombination, prior to the query system being inserted again via homologous recombination. The final system includes both query and reference system, separated by the remaining spectinomycin resistance cassette and insulated by terminators.
the reference plasmid was cured out in this way, with dif regions placed either side of the cat resistance cassette. Growth on antibiotic media was slowed, but once a positive colony was selected, growing for a couple of hours in plain media and replating onto plain media was typically enough for the resistance marker to be removed, the protocol used is described more fully in Section 2.3.1.

Removing the second antibiotic selection marker would prove more cumbersome, however. One practical consideration is that the resolution of the dif regions leaves one dif site as a scar, which would then be resolved with the scar remaining from any other nearby antibiotic resolution. Careful design would be needed to make sure that no such excisions cause any of the reporters to be excised, and that sufficient space remains between them.

The main difficulty in removing the other resistance marker was the choice of resistance marker – spectinomycin – which was undoubtedly a mistake. Even when using relatively high levels of the antibiotic, it appears to act more as a bacterio-suppressant than a bacteriostatic antibiotic in *B. subtilis*, with resistant ‘colonies’ appearing as small bulges of faster growing bacteria amid a lawn of negative growth. In most cases, it was necessary to streak out cells from these regions onto fresh antibiotic plates in order to isolate individual cells. Since including the dif sites decreases the efficacy of the resistance markers due to a lower proportion of the cells containing the marker, it seemed as though including the dif regions was unlikely to work. One improvement to this system would be to replace the spectinomycin resistance marker with something more effective, such as the chloramphenicol marker used in the other plasmid.

4.2.5 Quantification and Data Processing

Previous dual reporter systems have used bulk assay methods such as plate reader assays, and a particularly thorough method for doing so is described in Yordanov et al. [177]. A plate reader records the evolution of fluorescence and OD for a culture growing in a small (~150 µL) volume of media. The ratiometric output is calculated by extracting samples taken during exponential growth (estimated from blank corrected OD values), removing OD-related auto-fluorescence and taking the ratio of query to reference output.

This method has several advantages, most notably the simplicity of running experiments, although the experimental set-up can be somewhat convoluted due to limitations of the proprietary control software provided by plate reader vendors. In some cases (e.g. BMG Labtech), the control software is unable to natively collect OD and fluorescence data in a single run, even though there is no hardware impediment to doing so. The solution is a script which repeatedly runs three separate programs - one collecting fluorescence data, one collecting OD data, and the third controlling the heating and shaking between data-collection.
Establishing Ratiometric Characterisation in *Bacillus subtilis*

An external executable is then called to merge the data output by these programs, however the data stream will become corrupted if the plate layouts specified separately to each of the three programs do not match exactly. This convoluted set-up means that what should be a simple and reliable experimental protocol is actually rather tedious and error prone, as plate reader vendors don’t expect their hardware to be used in this way.

Another downside of the technology is that no per-cell information is gathered. The plate reader simply measures the average fluorescence observed in the media, and can say nothing about the variance of that output. Furthermore, small volume exponential growth is the only condition which can be reliably investigated, and once stationary phase is reached cells will often begin to clump together at the bottom of the small wells, causing drastic variations in sensor output.

A technology which would allow for single cell measurements is quantitative fluorescence time-lapse microscopy (QFTM)[178], in which a single cell is seeded onto an agar pad in a climate controlled environment. The growth of this cell is then recorded with motion stabilised fluorescent microscopy, producing a time-lapse video of the formation of a colony which can then be analysed. QFTM has proven highly effective in studying the dynamics of systems as cells grow and divide, but the complexity of the experimental set-up as well as the limited conditions that can be studied – in particular the need for solid media which also makes accurate dosing more complex – make it unsuitable as a standard for ratiometric characterisation.

Flow cytometry offers a compromise between the simplicity of plate-reader methods and the single-cell resolution of QFTM. A sample of cells are suspended in media which passes through a microfluidic setup which ensures a very narrow stream of media, approximately one cell in diameter. Laser light is shone at this narrow stream, and deflected by objects in the stream. Each event is recorded with a time-stamp, as well as a range of other information about the event depending on the specific machine employed. This information is most often saved directly in one of a small number of commonly used formats, which can later be analysed using either a commercial suite or with some relatively straightforward scripting.

Unlike plate readers, flow cytometers capture per-cell information, but unlike plate readers and QFTM they cannot capture time-lapse information (at least, not while tracking individual cells). In most cases this is not a serious limitation unless the temporal dynamics of the output are of particular importance, which is unlikely to be the case when characterising constitutive expression systems or inducible expression systems under a constant level of induction.

Most flow cytometers are able to simultaneously record fluorescence data for a range of excitation and emission wavelengths as well as Forward SCatter (FSC) and Side SCatter.
Fig. 4.10 Forward and Side scattering for flow cytometry of an autofluorescing example. The blue polygon shows the gate used throughout the analysis to select cells, in this example 71.3\% of events pass the gate, which is lower than most samples collected. The concentration of events to the left of the gate are most likely spores or small debris from lysed cells, and so these events are removed. In some cases, another concentration of events is seen above and to the right of the main grouping, and these are most likely doublet events where multiple cells pass the sensor at once. These doublet events are also rejected by the gate.

(FSC) information. FSC refers to the brightness observed directly in the path of the laser beam once it has passed through the flow of media. When there is no deflection of the beam, a small bar prevents the laser beam from directly entering the sensor, however when a large object such as a cell is between the laser source and sensor, it causes scattering of the light around the bar which then enters the sensor. The amount of forward scattering depends on the size of the object, as the larger the object the more of it protrudes around the bar and can be seen from the FSC sensor. SSC refers to the brightness detected at a sensor placed perpendicular to both the stream and laser beam. Differences in index of refraction within the particle cause light to be internally scattered and emitted in all directions, and the degree to which light is scattered perpendicularly depends on the internal complexity of the object.

Analysis of this data was carried out using the cytoflow package in python. The first step is to screen the input data based on the FSC and SSC values, such that only particles which correspond to whole cells are passed on for further analysis. This process is often referred to as ‘gating’ within the flow cytometry community, and a representative example of the gating applied to B. subtilis is shown in Figure 4.10.

Once the samples have been gated by FSC and SSC, samples whose reference signal is below the 95th percentile of the auto-fluorescence measurements are discarded. Ratiometric values from these samples would likely be very noisy as the denominator would be close to
zero, and so removing them increases the stability of the ratiometric output. In the case of a sufficiently bright reference signal, very few samples should be removed during this step.

Next, the average auto-fluorescent contribution to the output of each of the reference and query channels is calculated subtracted from those outputs. This can be done on either an experiment-wide basis, or individual autofluorescent controls can be used to independently control each growth condition. Having experimented with using both techniques, it was found that at least when using our particular flow-cytometry setup (described in detail in Section 2.4), autofluorescence from both channels was minimal, and its removal had very little effect on the ratiometric output.

Finally, the ratio of the query to the reference channel is taken to give the final ratiometric output which can be further analysed. Care should be taken when doing so as assuming that both query and reference channels are normally distributed, the ratiometric output will be distributed according to a Cauchy distribution. While the Cauchy distribution looks not dissimilar to a normal distribution, it can be rather inconvenient and is what mathematicians refer to as a ‘pathological’ distribution, as it has no mean or variance. Estimates of the mean made from samples of the distribution do not converge, and in fact such estimates themselves will be distributed identically to the Cauchy distribution. This issue can be avoided by instead calculating the median of the samples, as this is well defined and will converge with a large enough number of samples.

4.3 Construction, Verification, and Characterisation

The remainder of this section describes the construction of a dual reporter system in the manner described above and its use during an initial characterisation effort in *B. subtilis*.

4.3.1 Motivation

In addition to demonstrating the use of the dual reporter technology, the goal of this section is to establish a small set of well characterised expression systems for future use in *B. subtilis*. As discussed previously, this will simplify future engineering efforts in the organism as an expression system with the desired properties can simply be selected from the library at design time.

The main question when planning this characterisation effort was one of scale – since transcription and translation are coupled in bacteria, it is reasonable to suspect that the choice of promoter and the choice of RBS are not fully independent, and that the promoter sequence may in fact effect the effective strength of the RBS and vice-versa. Testing whether this is the
case requires testing all promoter-RBS combinations in the library, and drastically increases the number of strains required.

In order to keep this potential combinatorial explosion under control, it was decided to select only a handful of promoters and RBS for inclusion in the library. In order to construct a library which encompasses the full range of expression strength in \textit{B. subtilis}, the choice of promoter and RBS are important, and must also represent the full range of expression potential in the organism.

Gene locus also effects expression strength in most organisms, with factors such as genome availability significantly affecting expression. This is important for engineered systems; if a part which has been characterised in one locus is inserted into an un-characterised locus, it is possible that the locus itself will affect the behaviour of the part in an unpredictable manner. To combat this, a method for ratiometric characterisation of different loci is introduced and tested for three different loci in \textit{B. subtilis}.

4.3.2 Choice of Reference System and Construction

Since σ^A is the major sigma factor in \textit{B. subtilis} it was decided that this initial characterisation would focus only on σ^A promoters. It was necessary therefore to select one well-behaved constitutive σ^A promoter as a reference promoter. The promoter chosen for this task is the promoter of the \textit{penP} gene, a precursor of beta-lactamase. This promoter, known as \textit{P}_{\text{pen}} (see sequence in Table 4.4), was chosen as it has been used previously in literature and in our lab and known to be is a strong, constitutive promoter active in both \textit{B. subtilis} and \textit{E. coli}. Despite its common use in \textit{B. subtilis}, the version of \textit{P}_{\text{pen}} commonly used is from \textit{B. lichenformis}, although the activity of the native \textit{P}_{\text{pen}} is shown in Figure 4.12 for completeness’ sake.

The RBS chosen was that of \textit{gsiB}, a glucose starvation-inducible protein, which was found to be highly active in both \textit{B. subtilis} and \textit{E. coli}, see Table 4.5 for the sequence information. Stress response proteins seemed to be a fertile place to search for highly active RBSs, as transcription only begins after the onset of stress and so it seems logical for the translational efficiency of stress genes to be quite high in order to produce stress response proteins as quickly as possible and maximise the potential for survival.

The reporter strains were then constructed in the manner as described in Section 4.2.4 and Figure 4.8. The reference strain – which contains only the reference reporter system – was verified thoroughly by Sanger sequencing before competence was induced as this strain affects all subsequent characterisation strains.
Establishing Ratiometric Characterisation in *Bacillus subtilis*

Fig. 4.11 Effect of changing reference FRP from mCherry to mScarlet-I shown on a logistic plot. Median value of reference increased by a fold change of 2.3 from 95 to 318, while the median of the query decreased by a fold change of about 0.3 from 3262 to 2660. The reference expression system was used in all cases, and so the uncorrected ratiometric output for the system changed from $\frac{3262}{95} = 64.3$ to $\frac{2660}{318} = 8.36$.

4.3.3 Control Strain and Initial Experiments

Initial experiments with the dual reporter focused on demonstrating a working strain with both reporters under control of the reference expression system. Since both reporters are expressed by equivalent expression systems with the same copy number, any differences in brightness are due to other factors such as the intrinsic brightness of the individual reporters or how closely the fluorescent outputs match the filter set in use. The ratiometric output of this strain therefore gives the correction factor by which other strains should be divided to give the true ratiometric output. In an ideal ratiometric system, this ratio would be equal to unity, signifying that the two reporter systems have identical gains from expression system output to fluorescent output.

The ratiometric output of two variants of this system were investigated, both used mVenus as the query FRP while one used mCherry as the reference and the second used mScarlet-I. The uncorrected output of both systems is shown in Figure 4.11, showing that this correction factor is closer to unity when mScarlet-I is used as the reference system. In this case, the flow-cytometer’s gain for each channel were set to be equal to each other, however better resolution is possible by setting the gains such that the brightness observed for these strains is closer to unity.
4.3 Construction, Verification, and Characterisation

4.3.4 Choice of Promoters

Approximately 3,242 transcriptional units are believed to exist in *B. subtilis*, with transcription of approximately 1,868 (58%) of those initiated by σ^A dependent promoters[112]. There is therefore a vast library of native promoters from which to choose from when selecting a handful of promoters for characterisation, even after limiting ourselves to σ^A promoters.

From this library, we wish to select a set of promoters which have:

- a range or transcriptional activity from the lowest to highest
- no known inducers or repressors such that their activity is constitutive

This selection can be made simpler by making use of the dataset provided by Nicolas et al. [112], in which tiling array data was used to detect transcriptional units, predict sigma factor binding sites and quantify the transcriptional strength of native promoters in *B. subtilis*.

The experimental method is described in detail in Nicolas et al. [111], however it is described briefly here. Firstly a tiling array is created, this is simply a chip containing an array of DNA probes which bind to cDNA samples derived from harvested RNA. The genome of many bacteria is small enough that chips can be designed which cover the entire genome, such that a single experiment can determine the concentration of cellular RNA present for all parts of the genome. By developing a model of RNA-probe interactions with overlapping probes, Nicolas et al. [111] were able to process the raw chip data (using the concentration of genomic DNA as a control), and produce traces of predicted RNA concentration for every base in the genome. Data was collected for 104 different conditions, including different growth phases, competence, sporulation, and germination, as well as a range of different stresses, carbon sources, and inducers (arsenite was, unfortunately, not one of them). Transcriptional Start Sites (TSS) and terminators can then be identified by looking for up and downshifts in this data. For each predicted transcriptional unit, the region from -60 to +40 surrounding the predicted TSS was extracted and used to construct a a Hidden Markov Model (HMM) of the sigma factor binding site. By creating several such models, and combining sequence information with the information on transcriptional correlation between conditions, the sigma factor responsible for initiating transcription was also predicted.

Needless to say, this dataset is a valuable resource for synthetic biology in *B. subtilis*, however, as we shall see, the native characterisation of promoter regions carried out in this paper is not a full replacement of proper characterisation as promoter sequences will often not behave as they appear to naturally when placed in a synthetic context. However, this data is highly useful in helping narrow down the search for promoters, and in particular to give a good chance of selecting promoters with a range of activity.
Establishing Ratiometric Characterisation in *Bacillus subtilis*

Fig. 4.12 Mean and Variance of Transcriptional Unit (TU) concentration across conditions from Nicolas et al. [112], annotations show promoters which were chosen for characterisation. The reference promoters, *penP*, is also included for completeness, although the *penP* promoter from *B. lichenformis* was actually used as a reference. The units are arbitrary, but are proportional to the average of the log₂ of the corrected brightness observed for the TU.

Figure 4.12 shows the mean and variance of the normalised concentration of each σ^A related transcriptional unit from the Nicolas dataset. The distribution forms a trapezoid with a greater variation in mean for promoters which exhibit lower variance. While the variance ranges from close to zero to the full range of expression strength, 50% of promoters exhibit a variance of around 10% or less of the full range.

Shown annotated on Figure 4.12 are the locations of the six native promoters chosen for inclusion in the study, plus the location of P_{pen}, the native homologue of the reference promoter. P_{veg} was chosen for inclusion because it is commonly used in literature [46, 103], while other promoters were selected due to their low variance (implying they are constitutive) and broad range of activity. A literature search was also performed for each promoter to confirm that no information exists to suggest that any are in fact inducible promoters.

In order to extract the exact promoter sequence, the estimate of the exact TSS was taken from the Nicolas dataset, which predicts the start of transcription from a combination of probe upshift data and the location of the predicted sigma factor binding site. The sequence from 54 bases upstream to the TSS was then extracted for use as the promoter region. This relatively short sequence length was chosen such that promoter DNA fragments would be relatively short (80bp including BsmBI insertion sites and compatible overlaps) and appropriate for synthesis from complementary primers. The selection of only a short sequence also reduced the chance that the inducer binding domain was included in the synthetic promoter should

![Graph showing mean and variance of transcriptional unit concentration](image-url)
it later transpire that any of the selected promoters are inducible. Were we attempting to characterise the native promoter this would of course be unacceptable, but since we are instead generating a library of promoter which are characterised and easy to work with, it seems sensible to minimise the length of the promoter sequence. Information about each promoter and its sequence is displayed in Table 4.4.

4.4.3 Choice of Ribosome Binding Sites

The latest version of the *B. subtilis* 168 genome\[5\] has 4,457 annotated genes, each of which would be expected to have an RBS immediately upstream. Unlike the case with promoters above, no data on whole-genome translation rate exists for *B. subtilis*, and so this wide array of possible RBSs cannot be condensed into a handful of candidates in the same way as with promoter regions.

We can reduce the number of candidates by only considering those RBSs which are included within 5’ UnTranslated Regions (UTRs), as our reporter gene will be the first (and only) within its transcriptional unit. The Nicolas dataset can help us here, as it predicts the location of the start site of 3,242 transcriptional units. For predicted transcriptional start site, the 5’ UTR sequence was estimated by extracting the bases between the start site and the start of the next annotated gene on that strand. The length of these predicted UTRs is shown in the left-hand plot of Figure 4.13. This data is likely to be somewhat noisy due to the fact that the TSS estimation has not been confirmed experimentally, and thus could be inaccurate in many cases, and similarly it is likely that some gene annotations are missing and some are incorrect. Despite these problems, there is a clear preference for UTRs in the range of 30 to 50bp in length, although the median length is 64bp, due to the spurious prediction of several excessively long RNAs.
Fig. 4.13 (Left) Length of predicted UTR sequences, predicted by distance between predicted Transcriptional Start Site (TSS) from Nicolas et al. [112] and the next start codon; (Right) Shortest gap between predicted RBS sequence and start codon. ‘Core’ RBS refers to the sequence AGGAGG, while ‘mut’ and ‘ins’ refer to single base mutations and insertions of that sequence respectively.

Multiple sequence alignment of all of the extracted UTRs aligned strongly to the core RBS sequence in \textit{B. subtilis}, AGGAGG, as expected. A simple algorithm was then used to predict the location of the RBS within the UTR. Each sequence was first searched for exact matches to the core sequence. Each sequence which did not contain this sequence was then searched for sequences with a single base mutation from the core sequence, and finally the remaining sequences were searched for sequences with a single base insertion from the core sequence. In cases were multiple matches were found, the one closest to the start codon was preferred.

Using this method, RBSs were identified in 2,571 of the 3,242 original sequences, with the majority of those found (1,719) being single base mutations from the core sequence, while 802 exact matches to the core sequence were found. Only 51 insertion matches were found, which was to be expected as binding to these domains requires the ribosome’s binding domain to accommodate an extra base.

The right-hand side of Figure 4.13 shows a histogram of these predicted RBSs against the gap between the RBS and the start codon of the downstream gene. This distance is defined by the size of the ribosome as most efficient translation initiation occurs when the p-site is able to contact a start codon when the ribosome is bound to a RBS, and the distance of 6-8bp agrees with previous data[162].

Having understood more about the natural variations present in native UTRs and RBSs present in \textit{B. subtilis}, we are better prepared to select a handful of native UTRs for use in the
Table 4.5 Overview of 5’ UTRs selected for characterisation. (a) separation between core RBS sequence and start codon

<table>
<thead>
<tr>
<th>#</th>
<th>Gene</th>
<th>Core Sequence</th>
<th>Length</th>
<th>Gap</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>gsiB</td>
<td>AGGAGG</td>
<td>23</td>
<td>8</td>
<td>AAACGTCTCAAGACACCAATTAAAGGAGGAATTGGATGGTGAGACGAAA</td>
</tr>
<tr>
<td>2</td>
<td>yjzC</td>
<td>AGGAGG</td>
<td>15</td>
<td>7</td>
<td>AAACGTCTCAAGACACCAATTAAAGGAGGAATTCAATGGTGAGACGAAA</td>
</tr>
<tr>
<td>3</td>
<td>metA</td>
<td>TGGAGG</td>
<td>28</td>
<td>7</td>
<td>AAACGTCTCAAGACACCAATTAAAGGAGGAATTCAATGGTGAGACGAAA</td>
</tr>
<tr>
<td>4</td>
<td>tgl</td>
<td>AGGGGG</td>
<td>29</td>
<td>7</td>
<td>AAACGTCTCAAGACACCAATTAAAGGAGGAATTCAATGGTGAGACGAAA</td>
</tr>
<tr>
<td>5</td>
<td>comFA</td>
<td>AGGGGG</td>
<td>29</td>
<td>8</td>
<td>AAACGTCTCAAGACACCAATTAAAGGAGGAATTCAATGGTGAGACGAAA</td>
</tr>
<tr>
<td>6</td>
<td>gsiB7</td>
<td>AGGAGG</td>
<td>22</td>
<td>7</td>
<td>AAACGTCTCAAGACACCAATTAAAGGAGGAATTCAATGGTGAGACGAAA</td>
</tr>
<tr>
<td>7</td>
<td>gisB6</td>
<td>AGGAGG</td>
<td>21</td>
<td>6</td>
<td>AAACGTCTCAAGACACCAATTAAAGGAGGAATTCAATGGTGAGACGAAA</td>
</tr>
<tr>
<td>8</td>
<td>gisB5</td>
<td>AGGAGG</td>
<td>20</td>
<td>5</td>
<td>AAACGTCTCAAGACACCAATTAAAGGAGGAATTCAATGGTGAGACGAAA</td>
</tr>
</tbody>
</table>

Table 4.5 shows details of the four UTRs which were selected to complement the reference UTR, that of gsiB. *yjzC* was selected because of its extreme compactness at only 15 bp in total, while *metA* and *tgl* were selected as two examples of single base mutations from the core sequence, and *comFA* was selected as its core sequence is 8 bases away from the start codon.

In addition, three variants of the *gsiB* UTR were constructed, *gsiB7-5*, which contain deletions between the core sequence and start codon such that the gap becomes 7, 6, and 5 bp respectively. The relative strength of these four UTRs together will tell us something about the preference of the *B. subtilis* ribosome for gaps of different length – although we should not completely disregard the possibility that the deletions change the secondary structure and affect the translation initiation rate in that way.

4.3.6 Choice of Loci

As in Eukaryotic cells, the chromosome of bacterial cells is very long when compared with the size of the cell and therefore must be tightly packed in order to fit. Prokaryotic cells lack a nucleus, but DNA is instead organised into a region called the nucleoid and the level of compaction is controlled by various Nucleoid Associated Proteins[164]. Areas of the genome which are more tightly coiled are less accessible to DNA binding proteins such as sigma factors, and so genes in these regions are effectively down regulated. Thus, an expression
system which has been characterised in one locus may behave differently when inserted into another region of the genome due to differences in genome availability.

Two commonly used loci in *B. subtilis* research are the *amyE* locus and the *lacA* locus. The *amyE* locus first established as a convenient locus for homologous recombination due to the ease of screening for AmyE\(^-\) mutants as these mutants are unable to metabolise starch[62]. *lacA*, which encodes beta-galactosidase, was later developed as an alternative insertion locus to *amyE* which allowed two regions of recombinant DNA to be inserted sequentially into the same organism[59].

Given how commonly these loci are used, it seems sensible that they should be included in any effort to characterise different genome regions, however we have no particular reason *a priori* to suspect that either of these locations should be particularly repressed. One such region is the *cotVWX* region, which contains three late stage sporulation genes which are involved in the formation of the spore coat, see Section 1.3. Since these genes are only required during the latter stages of sporulation, shortly before the mother cell lyses, it seems likely that these genes will be tightly repressed at other points in the cell cycle, and since these genes are three of several sporulation specific genes clustered together in the genome it seems feasible that a change in nucleoid compaction may be partly responsible for this. For this reason, the *cotVWX* locus was also chosen as a third locus for comparison.

4.4 Results and Discussion

4.4.1 Ratiometric Experiments

Ratiometric experiments were carried out by growing strains overnight in LB media at 37°C with shaking and then inoculating 1 ml of pre-warmed fresh media from those overnights. These were then grown again at 37°C with shaking for a further 3-4 hours until the optical density (OD) had visibly increased. Samples where the OD had increased above around 0.5 were diluted and then all samples were transferred to appropriate plasticware for analysis by flow cytometry which was carried out immediately.

Figure 4.14 shows the dual channel output of the system under a range of different query systems. While the query reporter channel varies significantly, the output of the reference system is stable, only increasing very slightly as the query system is lower. This implies that, under these conditions, the two reporters are not causing saturation of the cells’ expression system or the need for molecular oxygen for proper fluorescent reporter maturation. In other conditions, however, more significant changes in reference channel output have been observed, but these changes are corrected by the dual reporter system. No difference in
4.4 Results and Discussion

![Diagram](image)

Fig. 4.14 Split violin diagram of autofluorescence corrected Query and Reference channels under different query expression systems. Cultures were grown in LB overnight, then used to inoculate fresh pre-warmed LB and grown for 3 hours. Gain of the two channels was adjusted such that the ratiometric output for the reference strain Q1.1 was approximately unity. The strength of the query reporter varies significantly with the different expression systems, but there is also a slight increase in reference output as the reporter decreases. Strains are named in the form Q<Promoter ID>_<RBS ID>, where ‘Promoter ID’ and ‘RBS ID’ refer to values in tables 4.4 and 4.5 respectively.

growth rate was observed between the query strains and the original strain, implying that the production of fluorescent reporter does not having a large effect on cells’ metabolic behaviour.

Since the saturation observed in some conditions is a cell-wide effect, there is no reason to believe that it would favour the production of any one type of fluorescent reporter protein more than another. This was the reason for choosing fluorescent reporters with similar maturation rates in Section 4.2.3. Since the observed levels of both the query and reference system should therefore be affected equally, taking the ratio of the query to the reference will remove the effect of the saturation, resulting in a more accurate characterisation of the specific system being tested.

4.4.2 Promoter and RBS Characterisation

Query strains were assembled for each combination of promoter (see Table 4.4) and RBS (see Table 4.5), as described in Section 4.2.4. Initial experiments showed that fluorescence could only be detected for promoters P_{pen}, P_{veg}, P_{ssrA}, and P_{yrrK}, which correspond to promoter numbers 1, 2, 3, and 5. However, the activity of promoter 5, P_{yrrK}, was so low as to be indistinguishable from autofluorescence. The three promoters which produced no fluorescence were P_{yhdI}, P_{yneK}, and P_{ycgJ}, which happen to be the weaker three promoters
selected on the basis of the Nicolas dataset. Whether the lack of observable fluorescence is due to the low strength of the native promoters or due to the constrictive way in which the promoters were extracted is unknown.

Fluorescence was observed for all RBSs except numbers 5 and 8 (Table 4.5), which correspond to the \(\text{comFA} \) RBS and the \(\text{gisB}^5 \) variant, which will be discussed in Section 4.4.4.

A complete screen of each of the three functional promoters and four functional RBSs was made, using the assembly strategy described above in Section 4.2.4. Each strain was sequence verified before being quantified ratiometrically as described in the previous section. The median results of this analysis are shown in Figure 4.15.

Let us first consider the results shown in the left hand half of Figure 4.15, those involving the RBSs associated with \(\text{gisB} \) and \(\text{metA} \). These six results show a clear pattern in the strength of the promoters, particularly that \(P_{\text{pen}} > P_{\text{ssrA}} > P_{\text{veg}} \). This is somewhat of a surprise, as \(P_{\text{ssrA}} \) was chosen specifically because of \(\text{ssrA} \)’s exceptionally high expression as measured in the Nicolas dataset[112], but the associated promoter appears to be of only intermediate strength. It is possible that there is some other transcription initiation element upstream of \(\text{ssrA} \) which increases mRNA content in the studied strain, or that there is some other technical reason which caused a spuriously high reading for \(\text{ssrA} \) in the Nicolas dataset such as non-specific probe binding.

Secondly these results show consistently that the RBS associated with \(\text{gisB} \) is stronger than that associated with \(\text{metA} \), though we rapidly encounter problems when attempting to quantify the scale of this difference. Starting with the strongest expression system, \(P_{\text{pen}}-\text{gisB} \),
we can see that replacing the promoter with P_{ssrA} or the RBS with $metA$ causes the ratiometric output to one tenth of its previous value. One might logically expect replacing both, such that we are left with $P_{ssrA}-metA$, would reduce the output to $\frac{1}{100}$ of the original, but the observed value is actually around $\frac{1}{12}$ of the original. The effect of the RBS is further reduced in the case of P_{veg}, which has a strength of around 4.5×10^{-2} times that of P_{pen} when the $gsiB$ RBS is used. While in the case of P_{pen}, changing the RBS from $gsiB$ to $metA$ reduces the output to $\frac{1}{10}$ of its original value, the same change under P_{veg} has almost no effect.

Let us consider a simple model of a cell’s expression machinery, where there are N different mRNA molecules, each present at copy number M_n for $1 \leq n < N$. Assuming that each mRNA molecule is equally likely to encounter a ribosome, let us define R_n as the probability that translation is initiated when a ribosome encounters the nth mRNA, or, put otherwise, the strength of the nth mRNA. The rate at which translation of the nth mRNA occurs is therefore proportional to the fraction of that mRNA present in the cell multiplied by the probability that the encounter will result in translation initiation, or

$$\frac{M_n}{\sum_{i=1}^{N} M_i} \cdot R_n.$$

This model predicts that the number of copies of the mRNA – which is proportional to the strength of the promoter – is independent from the strength of the RBS. As we have discussed, data presented in the left hand side of Figure 4.15 do not support this conclusion, and indicate that there is indeed some connection between the translation of an mRNA and its transcription.

The picture becomes more complicated when we consider the results with the two other RBSs, tgl and $yjzC$. When used in conjunction with either of the previous RBSs, P_{veg} is approximately half as strong as P_{ssrA}, however when the tgl RBS is used the two promoters result in the same level of output, while the $yjzC$ RBS reduces the relative strength of P_{veg} to about $\frac{1}{6}$th that of P_{ssrA}. In fact, when both using the $yjzC$ RBS, the output of P_{ssrA} is just over twice that of P_{pen}, the complete opposite of when the $gsiB$ RBS is used.

It is clear that the overall strength of the expression system is not a linear function of the strength of the promoter and the RBS, as the two factors clearly interact in some surprising ways. This is not wholly a surprise, as transcription and translation are known to be linked in prokaryotes, but the fact that the stronger of two promoters can be made the weaker simply by changing the RBS is a surprise. There are of course other effects which could be at work here, especially given the small sample size. Each promoter was selected such that, based on predictions of the location of the transcriptional start site, none of the promoter sequence should appear in the mRNA and thus changing the promoter should not affect the resulting
mRNA. However, transcriptional start site estimation is not necessarily wholly accurate – and the exact start site may of course vary randomly – such that differences in mRNA structure may in fact arise depending on the promoter, which could account for some of the variation present in the dataset. Performing RNA sequencing of these transcripts would confirm or deny whether or not this is in fact the case.

4.4.3 Loci Characterisation

The response of each of the three functional promoters inserted into each of the three loci introduced above in Section 4.3.6 is shown in Figure 4.16. The median ratiometric output for promoters inserted into the \textit{cotVWX} locus are between $\frac{1}{4}$ and $\frac{2}{5}$ of the output of the same promoter inserted into the \textit{amyE} locus. Surprisingly, the two promoters which were successfully inserted into the \textit{lacA} locus were also around a half and a third as active as when inserted into the \textit{amyE} locus.

While these factors do not seem enormous – the Nicolas dataset shows that transcriptional activity varies by a factor of roughly 2^9 – the fact that the choice of locus can affect the overall rate of expression by a factor of at least 2^2 is noteworthy. For example, consider the task of efficiently expressing a recombinant heterodimer consisting of two different large protein subunits in \textit{B. subtilis}. If the two subunits cannot be easily inserted in a single recombination event – for example if they are too large – then one might consider inserting each subunit at separate loci, with \textit{amyE} and \textit{lacA} being by far the most likely candidates as well established recombination loci in the organism. However, if the same expression system was used for each, the subunit inserted into the \textit{amyE} locus would be produced in higher quantities than the other. This over-production would reduce the efficiency of the system, as metabolic flux would be wasted in producing an excess of one of the components.

4.4.4 RBS variants

Three variants of the \textit{gsiB} RBS were created by deleting bases from between the core binding site (\textit{AGGAGG}) and start codon. The original has eight bases between these two, while the others have 7, 6, and 5, respectively. Initial experiments did not detect any fluorescence from the \textit{gsiB-5} variant, and so the others were tested as per the procedure described above.

Figure 4.13 shows the distribution of this distance found in native RBSs, showing that 6, 7, and 8 are the most commonly observed distances. The most commonly observed distance is 7 bp, while the native \textit{gsiB} RBS has a distance of 8. The results of this experiment, shown in Figure 4.17, demonstrate that reducing this gap to 7 bp slightly increases the strength of the RBS, while reducing it further to 6 bp dramatically reduces the strength of the RBS.
Fig. 4.16 Median response of each functional promoter in each of the three loci. All cultures were grown in plain LB media, and RBS 1 (gsiB) was used in the query system throughout. Hatched boxes show strains for which query system integration failed.

Bases were removed from adjacent to the start codon to minimise the possibility of disrupting some non-core binding interaction with the ribosome, however there is still the possibility that the removal of bases has some other effect such as disrupting or introducing some form of secondary structure which could have an effect on ribosome recruitment. However, the addition or removal of single bases between the RBS and the start codon appears to be a simple way to make small modifications to the ability of an RBS to recruit ribosomes.

4.4.5 Growth Condition Comparisons

In order to test the robustness of the dual reporter system, characterisations of four different growth conditions were made. ‘LB’ refers to growth in LB media, which was conducted as before, while ‘MG’ and ‘SV’ refer to growth in Minimal Growth and Starvation media as defined in Section 2.5.5 respectively. ‘S’ refers to growth on LB agar solid media. Colonies were incubated at 37 °C for 24 h, before being scraped using an inoculation loop and gently resuspended in LB media by pipetting up and down. The resuspended cells were then immediately analysed using flow cytometry, within 2 to 3 min of resuspension such that fluorescent output was not affected by the change in conditions.

Figure 4.18 shows how the condition affects the output from each of the three promoters in combination with the reference (gsiB) RBS. P_{pen} is used as a positive reference in each condition, and the results normalised such that the output from that promoter is 1.0 in each
Fig. 4.17 Ratiometric output for the gsiB RBS variants, under the P\textsubscript{pen} reference promoter.

Fig. 4.18 Effect of Growth Condition on each Promoter using the reference (gsiB) RBS
condition. This is to account for effects of the condition on the reporter system. For example, the ratiometric output for the reference system (P_{pen}-*gsiB*) is around 1.1 times that of the same system when grown in Minimal Growth media as opposed with LB media. As possible explanation for this is the difference in the availability of tryptophan in each media, since the strains we are working with are tryptophan auxotrophs. The reference reporter, mScarlet-I, contains three tryptophan residues compared with one in the query reporter, mVenus. It is therefore feasible that tryptophan starvation may affect the reference reporter more severely than the reference, causing the apparent ratiometric reading to increase. By using a reference strain, effects such as this can be minimised in order to focus on effects which are real and specific to the system under test.

The results shown in Figure 4.18 show the effects of growth condition on the ratiometric output from P_{ssrA} and P_{veg}. In minimal growth media and on solid media, the relative output of both promoters increases by a similar proportion, while in starvation media the relative strength of P_{ssrA} increases to around four times the value observed in LB, while P_{veg} returns to close to the value observed in LB. The fact that the two promoters appear to behave differently suggests that there may in fact be some regulatory reason for this rather than simply differences in reporter protein expression and maturation.

Figure 4.19 shows the effect of growth condition on the different loci that were investigated previously. The expression system is kept constant in this experiment (the P_{pen}-*gsiB* reference is used throughout), and the $AmyE$ locus is used as a reference for each condition. Again, this should minimise the effect that changing the growth condition has on fluorescent reporter expression an maturation has on the output, which should be specific to the locus in question.
The behaviour of each locus appears similar when grown in minimal growth media as when grown in LB, however growth in solid media and in particular starvation media appears to increase the activity observed in the \textit{cotVWX} locus to over twice the original value, and three times the original for \textit{lacA}. The case of \textit{cotVWX} is particularly interesting as under LB the system inserted there is observed to be about half as active as \textit{amyE}, while in starvation media the genes in the \textit{cotVWX} locus are more highly expressed than those in the \textit{amyE} locus. A possible explanation for this is that during normal growth the \textit{cotVWX} locus is tightly packed to prevent leaky expression of these sporulation related genes, but that during nutrient limitation such as during growth in starvation media this region is less tightly packed allowing greater access to transcription factors and a higher level of transcription overall.

4.5 Conclusions

The goal of this chapter was the establishment of a dual channel reporter system in \textit{B. subtilis} appropriate for use in the characterisation of the \textit{ars} operon’s response to environmental arsenic. Secondary goals included an exploratory characterisation of a small set of expression systems using the dual reporter system as well as investigating the effects of locus and growth conditions on the behaviour of those expression systems.

These goals have been achieved, although some weaknesses in the approach have been exposed. The output of the expression systems shown in Figure 4.15 varies by almost three orders of magnitude, although the measured RNA concentrations due to Nicolas et al. [112] vary by five orders of magnitude. While it is possible that this difference is due to the difference in approach between the two studies, it is clear that the dynamic range offered by fluorescent reporters – in particularly the sensitivity at low range – is not as great as the chip technology used in Nicolas et al. [112]. Selecting a wider range of promoters and RBSs for characterisation may help to improve this, particularly by studying promoters and RBSs with lower activities. The data processing in such a study would need to take into account the greater stochasticity expected at low expression levels as proteins are produced in short bursts when mRNA is transcribed.

The use of flow cytometry in combination with dual channel reporters is a departure from how characterisation studies have been traditionally carried out in synthetic biology. The greater level of detail provided by this technology will prove invaluable in characterising the underlying behaviour of stochastic biological systems as compared with more traditional bulk assays such as plate reader assays.
Chapter 5

Characterisation of the \textit{ars} Operon of \textit{B. subtilis}

5.1 Introduction

The native \textit{ars} operon in \textit{B. subtilis} is induced by arsenite through the interaction between arsenite and the autorepressive protein ArsR, which unbinds from the \textit{ars} promoter in response to arsenite allowing transcription of the operon. This system was introduced in detail in Section 3.1.1, and a thorough mathematical model of the operon in a cellular context was developed throughout the rest of Chapter 3.

In this chapter, the dual channel characterisation technology developed in Chapter 4 is applied to the \textit{ars} operon in order to improve the practical understanding of the operon.

Due to the complexity and number of parameters of the full model, fluorescent reporter based characterisation alone will not be sufficient to fully parametrise it. However, characterising the arsenite response of the system will first help to validate the modelling work done in Chapter 3, and will help us to gain valuable insights into the functioning of the operon and its suitability for use in a biosensor.

5.2 Applying the Dual Reporter to the \textit{ars} Operon

5.2.1 Deleting the \textit{ase} Operon

An important decision when designing characterisation strains for the \textit{ars} operon is what to do about \textit{B. subtilis}'s second arsenite mediating operon, the \textit{ase} operon. While the overall effect of the \textit{ase} operon is reported to be relatively weak when compared with the more
complex *ars* operon, it also hasn’t been rigorously characterised, and so it was decided to delete the *ase* operon in its entirety and base all further characterisation on the Δase strain.

A Δase strain was initially sourced from a collaborator, but a colony PCR of this strain showed that the *ase* locus had not in fact been removed from the organism. Instead, the entire transcriptional unit was removed using the Xer recombinase system discussed in Section 2.3.1. A plasmid was constricted which contained ∼1 kb homologous regions from upstream and downstream of the *ase* operon, with the operon itself replaced with the *cat* antibiotic marker which encodes for chloramphenicol resistance. This marker was in turn flanked by diff sites – 28 base sequences which are recognised by the Xer recombinase system. The plasmid was then linearised and transformed into competent wildtype *B. subtilis*, which were grown on chloramphenicol media overnight. Positive colonies were then suspended in plain LB media and grown at 37 °C for around 6 hours to allow for resolution of the dif regions and excision of the resistance cassette, before being re-plated on plain media this time and grown overnight. Excision of the cassette was confirmed by a lack of growth on chloramphenicol media, and the deletion of the *ase* operon was then confirmed by colony PCR.

This deletion leaves one dif site in the location where the *ase* operon was previously present. This would be problematic if the *ase* and *amyE* loci were nearby as the remaining dif site would be resolved with the one left behind after insertion of the reference reporter system. While these loci are actually not too far apart at a whole genome level, the quarter of a mega-base of sequence which separates them should prove enough to prevent excision[11].

5.2.2 Implementing the Reporter

Extracting the Promoter

The mScarlet-I based reference reporter system described in Section 4.2.4 was the inserted into the *amyE* locus as before. The choice of reference system – P_{pen} with gsiB UTR – was unchanged. The insertion was again verified with PCR and Sanger sequencing as before.

While the reference system is unchanged, the query system is different from the previously characterised systems in this work in one key respect in that the promoter region associated with the *ars* operon, P_{ars}, is not constitutive. The first important thing to take into account because of this is that it is important that the extracted promoter sequence includes as much of its natural context as possible, and in particular the DNA binding domain of the ArsR₂ dimer must be included. To ensure this, the 341bp upstream of the TSS predicted by the Nicolas dataset were included, up to the stop codon of the final gene of the adjacent transcription unit. The full sequence of the promoter which was used in the study is shown in appendix B.
5.2 Applying the Dual Reporter to the *ars* Operon

Controlling for the Extra Copy of the Promoter

The second consideration is of how the extra copy of the promoter influences the native system, which we can determine by referring to our knowledge of the operon. For any given arsenite concentration, there exists a specific balance between the concentration of the repressor ArsR$_2$, the induction level of the promoter, and the proportion of the repressor bound to arsenite which cannot interact with the promoter. This balance then sets the rate at which arsenite is extruded from the cell, finally determining the concentration of arsenite within the cell. Increasing the concentration of arsenite changes this balance, increasing the level of induction and therefore concentration of ArsR$_2$ but reducing the proportion of it which is free to bind to the promoter, such that the rate of extrusion of arsenite increases to keep internal arsenite concentrations stable.

Doubling the number of copies of the promoter doubles the number of ArsR$_2$ binding sites present in the cell, which one expects to affect this balance. If the total number of copies of ArsR$_2$ which are not associated with arsenite and are thus free to interact with the promoter is much higher than the number of copies of the binding site, then the addition of the extra binding domain will have little effect on the level of induction.

The level of perturbation caused by this extra copy can be investigated by constructing a different strain in which an extra copy of the *arsR* gene is also included with the P$_{ars}$ promoter, which we shall refer to as the P$_{ars}+$ promoter. Assuming that the query promoter drives expression at the same rate as the native copy – a core assumption of our characterisation effort – then the addition of the second copy of *arsR* downstream of the query promoter will double the rate of *arsR* production, which as we will show provides a lower bound on the behaviour of the native system.

Figure 5.1 shows a model diagram of this system, based on the arsenic free model derived in Section 3.2.4. In addition to the interactions with the native system, ArsR$_2$ also represses the query promoter, reducing expression of the reporter. By including or excluding the reaction shown in orange, the model can predict the behaviour of the system with or without the extra copy of *arsR*.

This model has three important parameters, the rate of production of ArsR$_2$, k_r, the rate of binding of ArsR$_2$ with DNA, k^+, and the rate of growth dilution, μ. As in Chapter 3, the rate of growth dilution is assumed to be far greater than the rate at which ArsR$_2$ unbinds from DNA, and so the latter is ignored. Similarly, the rate at which monomeric ArsR forms the homodimer ArsR$_2$ is assumed to be very fast when compared with the rate at which the monomer is diluted, and so that step is ignored in the model.

Understanding the physical interpretation of these parameters is crucial to understanding whether or not the effect of the extra copy is significant. Let $[\text{ArsR}_2]_{\text{max}}$ be the maximum
Characterisation of the ars Operon of *B. subtilis*

(a) Model diagram of the effect of the reporter system on the native system in the absence of arsenite

(b) SBOL diagram of the two reporter systems along side the native ars operon, showing the interaction between the two

Fig. 5.1 Model diagram of the effect of the reporter system on the native system in the absence of arsenite. Figure 3.7 describes the native system; this model also incorporates the query promoter which drives expression of the reporter protein mVenus, as well as the native promoter which drives expression of the repressor, ArsR2. Shown in orange in both diagrams is the effect of including an extra copy of *arsR*, by which the query promoter also contributes to ArsR2 production. Including or excluding this reaction in simulations will help up to understand the effect of the extra copy of the gene. $k_F RP$ and mVenus are shown for completeness; their effects will be normalised out by the dual reporter system.
5.2 Applying the Dual Reporter to the \textit{ars} Operon

possible concentration of the repressor ArsR$_2$, which is equal to the ratio of the maximum rate of production over the rate of growth dilution, $\frac{k_r}{2\mu}$. Now, imagine a system in which the concentration of ArsR$_2$ is maintained at its maximum possible value independently to the unbound fraction of the promoter. This corresponds to an upper bound on the level of repression of the system, in which the fraction of the promoter available to initiate transcription is equal to

$$[P_{\text{ars}}]_{\text{min}} = \frac{\mu}{\mu + k^+_{\text{DNA}} \cdot [\text{ArsR}_2]_{\text{max}}} \quad (5.1)$$

Since we know from basic observation of the system that tight repression of the system is possible, $[P_{\text{ars}}]_{\text{min}}$ must be close to zero and so $k^+_{\text{DNA}} \cdot [\text{ArsR}_2]_{\text{max}} >> \mu$.

The question of whether the extra copy of the binding domain significantly perturbs the system boils down to which of k^+_{DNA} or $[\text{ArsR}_2]_{\text{max}}$ dominate in the above inequality. If the former is small enough and the latter is large enough, then the large pool of ArsR$_2$ will not be significantly perturbed by the extra binding domain, however if k^+_{DNA} is larger and the pool of ArsR$_2$ is smaller, then the effect of the extra binding domain will be significant. This is demonstrated in the left hand side of Figure 5.2.
This simplified model does not include the effect of arsenite on the system, which is clearly important as it will affect the amount of free ArsR$_2$ which is available to bind the promoters. However, since we are not particularly concerned with modelling the interactions with arsenic in detail, we can think of the addition of arsenite as ‘siphoning off’ a proportion of the ArsR$_2$ which is produced, as arsenite bound ArsR$_2$ is assumed not to interact with DNA in this model. This siphoning effect causes a reduction in the concentration of active ArsR$_2$, which we can think of as a reduction in the rate of ArsR$_2$ production, which corresponds with a weakening of the promoter. Thus, the introduction of arsenite into the system is equivalent to a reduction in the value of k_r, which increases the possibility of the upper and lower bounds of the wild type system separating, depending on the value of $k_{\text{DNA}}^\text{+}$ and the amount of arsenite introduced.

Influences on the Extracellular Environment

B. subtilis takes up arsenite from the environment, most likely through glycerol transporter channels, and extrudes it through the ArsB membrane protein, see Section 3.1.1. The purpose of the extrusion is to maintain an internal arsenite concentration that is below toxic levels, however the relationship between the internal and external arsenite concentrations is not clear. At high external arsenite concentrations – in particular concentrations greater than the toxic threshold – the internal arsenite concentration must be lower than the external arsenite concentration in order for the cells to survive.

It is theoretically possible that at lower external arsenite concentrations the internal arsenite concentration could be higher than the external concentration if the glycerol transport system is an efficient arsenite transporter at concentrations too low to trigger much activity from the arsenite detoxification system. This seems unlikely, based on the model derived in Chapter 3, and seems particularly unlikely in cases where the arsenite concentration is high enough to have any real relevance.

Assuming that the former is true and internal arsenite is always lower than external arsenite, then as a population of cells grows in a fixed volume of media, the concentration of arsenite in that media will increase as the total intra-cellular volume increases, due to the lower concentration within the intracellular volume. The higher external concentration means more arsenite entering into the cell, and thus the level of induction of the operon is expected to grow as the cell count increases.

This is a problem for our characterisation circuit, which assumes that a dynamic equilibrium has been reached at the time of data acquisition. We can avoid violating this equilibrium provided we perform our measurements while the cell count is small, as the total intracellular volume will then be negligible compared with the extracellular volume of the media, and thus
the external concentration of arsenite will not have changed appreciably. There is therefore
a limited window in which measurements can take place – long enough after inoculation
that an equilibrium has formed and enough cells have grown, but soon enough that the cell
volume hasn’t become an appreciable fraction of the total volume of the media.

5.3 Results and Discussion

5.3.1 Basal Strength of the Promoter

Before characterising the response of the system to arsenite, it is informative to characterise
the unregulated, or basal, strength of the promoter. To do this, a strain lacking any copies of
the regulator, \(\text{arsR} \), has to be generated.

Two methods for doing this were attempted, both using the Xer recombinase system
described in Section 2.3.1, which allows an antibiotic to be cured out after selection. First, the
entire sequence of the \(\text{ars} \) operon including 1 kB homology regions either side was extracted
by PCR and circularised using a high copy plasmid backbone with ampicillin resistance. This
plasmid, designated pHK001 was then thoroughly sequence verified by Sanger sequencing.

Five variants of this \(\text{ars} \) plasmid were created by using PCR and Golden Gate assembly
to replace first the entire operon and then each of the four genes individually with the ‘dcat’
sequence – a chloramphenicol resistance cassette flanked by \(\text{dif} \) sites which are resolved by
the Xer recombinase system. Each of these plasmids was again sequence verified before
being transformed into a competent \(\text{B. subtilis} \) which already included the reference and
query systems.

The aim was to generate five separate deletions, \(\Delta \text{ars}, \Delta \text{arsR}, \Delta \text{yqcK}, \Delta \text{arsB}, \) and \(\Delta \text{arsC} \),
to be used in further characterisation. Since the \(\Delta \text{ase} \) strain was used as a starting point
for all \(\text{ars} \) characterisation strains, the \(\Delta \text{ars} \) strain is expected to remove any arsenite or
arsenate responsiveness from the cells. The deletion of \(\text{arsR} \) removes the regulation of the
operon, such that the remaining genes are expressed constitutively[141]. The \(\Delta \text{arsB} \) and
\(\Delta \text{arsC} \) strains remove the ability to export arsenite or reduce arsenate to arsenite, and result
in a strain which is sensitive to both arsenite and arsenate or just arsenate, as observed
previously[141]. Since the role of \(\text{yqcK} \) is not confirmed, it is hard to predict what the effect
of a deletion would be, and previous attempts have been inconclusive.

Unfortunately, after several attempts, only the \(\Delta \text{arsR} \) deletion proved successful, with no
colonies forming from any of the other transformations. Each of the plasmids was thoroughly
sequence verified and found to be correct, but despite this only the \(\Delta \text{arsR} \) variant gave rise to
colonies. This transformation was used as a positive control in further attempts at generating
Characterisation of the ars Operon of B. subtilis

5.3.2 Relative Strength of RBS

The strengths of each of the four RBSs associated with each gene of the operon were also characterised relative to the gsiB control. RBS sequences were extracted taking the entire sequence from one base after the stop codon of the previous gene until the base before the start codon of the gene in question, in the case of arsR, the first gene of the operon, the entire 5’UTR was taken using the transcriptional start site predicted by Nicolas et al. [112].
Fig. 5.4 The relative ratiometric strength of the four RBSs of the *ars* transcriptional unit, measured relative to the *gisB* RBS and each under P_{pen}. The RBS associated with the repressor, *arsR* is the strongest by almost ten-fold, with the other two genes whose function has been determined showing similar activities.

The results of this characterisation are shown in Figure 5.4. The RBS associated with $arsR$ is the strongest, and is slightly stronger than *gisB*. The RBSs associated with the two other genes with known function, *arsB* and *arsC* are of similar strength to each other, roughly $\frac{1}{10}$ that of $arsR$ when under P_{pen}. The fourth RBS, that of *yqcK*, is weaker, about 100 fold less strong than $arsR$ under the reference promoter.

As was seen in Section 4.4.2, the scale of these differences in terms of fold change between the RBSs will be reduced when they in a less transcriptionally active context.

5.3.3 Normalised Induction Curve

Induction curves were generated by growing strains in plain LB media overnight and using these to inoculate media with a range of sodium arsenite concentrations. Growth was then continued at 37 °C with shaking for around 2.5 h, until growth was just beginning to become visible to the naked eye in the wildtype control strain. The cultures were then transferred into appropriate plasticware and analysed using flow cytometry as described previously in Section 2.4.
Based on the form of the response predicted by the modelling effort from Chapter 3, a logarithmically distributed set of characterisation points seemed most appropriate as the response changes most rapidly at low arsenite concentrations and changes much more slowly as the concentration grows. This simplified the preparation of the arsenite media considerably, as an accurate stock of the highest chosen concentration could first be made, and all others could be made by serial dilution. After some initial experiments, a concentration of 2.048 mg l\(^{-1}\) was chosen as the maximum concentration as this appeared to be above the quasi-linear response range and as a power of 2 makes for simple two-fold dilutions. In all, twelve arsenite concentrations were investigated, 0 µg l\(^{-1}\) and 2\(^n\) µg l\(^{-1}\) for \(n \in \{1 - 11\}\).

Two different strains were tested, \(P_{ars}\), which includes only the promoter in the query position, and \(P_{ars-arsR}\), also known as \(P_{ars}^+\), which also includes an extra copy of the \(arsR\) gene in the query locus as discussed in Section 5.2.2.

The results of these experiments are shown in Figures 5.5 and 5.6, shown relative to the basal strength of the \(P_{pen}\) promoter, measured as described in Section 5.3.1. The form of the response closely matches that predicted by the mathematical modelling from Chapter 3, as shown in Figure 3.13. In particular, the response increases monotonically from an initial value, while the gradient decreases monotonically towards zero from an initial maximum.

The error bars shown in the figures refer to the 95% confidence interval in the ratiometric output of cells which passed gating and reference thresholding, and represent a large amount of noise in the observed value. Individuals within the population display a wide range of fluorescent output around the median, which is shown marked. The population behaves much more predictably when taken together, as evidenced by the fact that the median values are in such close alignment with one another.

The introduction of the second copy of \(arsR\) has a considerable effect on the output of the system, reducing the relative level of induction in the absence of arsenite by almost 3 orders of magnitude from around 10\(^{-1}\) to around 2 \(\times\) 10\(^{-4}\). The introduction of the extra copy of the \(arsR\) binding domain, which doubles the number of binding domains present, has therefore had a significant effect on the dynamic equilibrium between bound and unbound \(P_{pen}\), suggesting that the number of copies of free \(ArsR_2\) is typically very low. We can now answer the question posed by Equation 5.1, as to whether \(k_{DNA}^+\) or \([ArsR_2]_{max}\) dominates — clearly a very small amount of \(ArsR_2\) is able to have a very strong repressive effect on the promoter, implying that the association constant between it and DNA, \(k_{DNA}^+\) must indeed be very large.

At the highest concentration of arsenite investigated, the fold difference between the two versions has decreased to under 10, suggesting that the magnitude of the effect caused by the extra copy decreases as arsenite concentration increases, as predicted in Figure 5.2. The point
Fig. 5.5 Induction of the arsenic operon by a range of arsenite concentrations, showing both the P_{ars} and $P_{ars-arsR}$ versions of the system from no induction to near full induction (2 mg l$^{-1}$ AsIII). Each query system was inserted into the ratiometric system developed in chapter 4, using the Δase strain as a starting point. As predicted, the rate of induction grows quickest at low levels of induction, and there is a considerable difference in the level of the response between the two systems, implying that the addition of the extra copy of $arsR$ has a significant effect on the output of the system. An SBOL diagram of the two systems is available in figure 5.1.

at which the two converge is unknown – and possibly occurs at an arsenite concentration too high for normal growth – but the fact that this convergence is slow is consistent with a high value of k_D^2.

As discussed before, the two curves shown in Figure 5.5 represent the upper and lower bounds for the wildtype system, and although the high strength of the promoter suggests that the wildtype system will tend towards the upper bound, it is impossible to say this with certainty. However, the ultimate purpose of this research is to understand the behaviour of a biosensor based on the ars operon. Figure 5.6 shows the behaviour of the system under lower arsenite concentrations, including those relevant to the Bangladeshi and WHO limits.
Encouragingly, both the P_{ars} and P_{ars}-arsR variants show measurable differences between arsenite free media and media containing 10 mg l$^{-1}$ and 50 mg l$^{-1}$, which signifies that the ars operon is able to distinguish between these conditions, however neither of these systems are suitable to drive a biosensor circuit in the wild. In the case of P_{ars}-arsR, the problem is clear – the magnitude of the increase caused by even 50 mg l$^{-1}$ is simply not enough to be read reliably. This is also the case for the P_{ars} system, where 10 mg l$^{-1}$ causes an increase in expression of between 4 and 5% of the de-repressed strength, which rises to almost 10% for 50 mg l$^{-1}$. This can be observed easily using precise equipment such as a flow cytometer, but is harder to determine in the field for example when observing only the colour of a colony of cells.

The question of how to build an effective arsenite sensor which is sensitive enough for use in the field is thus how to amplify this change such that the difference in output between the 0 and 10 mg l$^{-1}$ is easily observable.
5.4 Conclusions and Further Work

The goal of this characterisation work was to improve our understanding of the native operon, as well as to validate the mathematical modelling that was done previously in Chapter 3. The predictions made by the mathematical modelling as to the form of the response have been borne out by experiment as the form shown in Figures 5.5 and 5.6 closely corresponds to that predicted by modelling.

We have also learnt something about the parameters of the model. The *ars* operon promoter, P_{ars}, is a very strongly active promoter which is very tightly repressed by even a small number of ArsR$_2$ repressor proteins. This tight repression is somewhat relieved by AsIII, but does not reach more than around 50% of the maximum possible level of induction – when ArsR$_2$ no longer represses P_{ars} – for arsenite concentrations below $2\,\text{mg}\ell^{-1}$. This contrasts with the observations made in Sato and Kobayashi [141] who originally reported on the *ars* operon in *B. subtilis*, and believed that maximal induction occurs with between 1 and 10 mmolℓ^{-1} (between 75 and 750 mgℓ^{-1}). Here we have shown that the level of induction actually continues to grow with arsenite concentration, albeit very slowly at higher concentrations, this is likely due to the higher precision offered by ratiometric flow cytometry as compared with the β-galactosidase method employed by Sato and Kobayashi [141].

5.4.1 Measuring Arsenite Extrusion

While this characterisation work has been informative in validating the previous modelling effort and in learning something of the scale of the response and the internal workings of the system, we have not learnt a great deal about the central balance affecting the *ars* operon – that between the internal and external arsenite concentrations. As was seen during Chapter 3, this balance is key to setting the scale and sensitivity of the response, since although we wish to measure the external arsenic concentration, it is the internal concentration which is visible to the operon.

The internal arsenite concentration is set by a balance of forces, on one side the entry of arsenite into the cell, either through the glycerol uptake mechanism as in *E. coli* (see Section 3.1.1) or otherwise, and on the other the joint forces of growth dilution and extrusion through the ArsB membrane protein.

Considerable time and effort was invested into generating single gene deletions from the *ars* operon which were so far unsuccessful, as discussed in Section 5.3.1. Of particular interest in this context would be an *arsB* deletion, which would remove extrusion from the balance of forces acting on internal arsenite. If the rate of extrusion is large compared with the rate of growth dilution, then this deletion will shift the balance and increase the internal
arsenite concentration, in turn increasing the level of induction observed. However, if the rate of extrusion is small (as would possibly be the case if extrusion is mainly relevant in stationary phase), then the deletion of \textit{arsB} would have little effect on the relative induction level until stationary phase is reached.

Careful modelling of this effect may allow us to say something as to the relative scales of dilution and extrusion as a means of arsenite mitigation, and this would also tell us something about the rate at which arsenite enters the cell. Returning to the parameters introduced in Chapter 3 (see Figure 3.12), the steady state internal arsenite concentration for the \textit{\Delta}arsB mutant is given by

\[
[A_{si}] = \frac{1}{\mu} \cdot \frac{U_{\text{max}} \cdot [A_{se}]}{U_m + [A_{se}]}
\]

where \(\mu\) is the growth rate, \(U_{\text{max}}\) and \(U_m\) are the Michaelis-Menten parameters for arsenite uptake, and \([A_{si}]\) and \([A_{se}]\) are the internal and external arsenite concentrations. For growth dilution to be a significant cause of a reduced internal arsenite concentration, as would be evidenced by only a modest increase in induction following an \textit{arsB} deletion, the rate at which arsenite enters the cell must be small compared with the rate of growth dilution.

A further experiment would be to reintroduce ArsB under a constitutive promoter – for example using a selection from the promoter and RBS combinations characterised in Chapter 4. The internal arsenite concentration is then given by the solution to

\[
\frac{U_{\text{max}} \cdot [A_{se}]}{U_m + [A_{se}]} = \mu \cdot [A_{si}] + \frac{E_{\text{cat}} \cdot [\text{ArsB}] \cdot [A_{si}]}{E_m + [A_{si}]}
\]

where \([\text{ArsB}]\) is the concentration of ArsB and \(E_{\text{cat}}\) and \(E_m\) are the catalytic Michaelis-Menten parameters for ArsB mediated extrusion. By gathering data from a range of \([A_{se}]\) and \([\text{ArsB}]\), estimates of the value of the parameters \(U_{\text{max}}, U_m, E_{\text{cat}}, E_m\) could be made.

5.4.2 Testing Induction by Arsenate

In the original paper on the \textit{ars} operon in \textit{B. subtilis}, Sato and Kobayashi [141] found that around 10-fold more arsenate was required to produce a similar level of induction as with arsenite. This is not a great surprise as arsenate is removed from the cell by first being reduced to arsenite by \textit{arsC} and expelled from the cell as normal (see Section 3.1.1). The lower level of induction is likely caused by the fact that it takes time for the level of arsenite to build up once arsenate has entered the cell – eventually one would expect the induction to reach the same level once all the in the sample arsenate has been converted to arsenite.

The detection of arsenate is an important problem which must be solved in order for the biosensor to be reliably used in the field as both forms of arsenic are harmful. The most
reliable field tests currently available reduce the AsV to AsIII chemically before continuing with the test, however this is not particularly attractive as the added complexity of operation is one of the key things the biosensor design seeks to avoid.

Two other options are available – somehow tune the sensor such that arsenate sensitivity is the same as arsenite sensitivity, either by over-expressing the reductase or by increasing the rate at which arsenate enters the cell by characterising and up-regulating whichever membrane proteins are responsible for its entry, currently believed to be related to the phosphate transport system.

The other solution is to develop two sensors, one responsive to both AsIII and AsV and the other only responsive to AsIII due to deletion of the arsC reductase. Having quantified the concentration of arsenite using the second version, this output can be used to calculate the amount of output from the first sensor which is due to AsIII, and use the remainder to calculate the AsV concentration. While this system could be used to specifically distinguish between the two oxidation states, the non-linear nature of the reporter would make it complex to characterise and use, and must necessarily be used to quantify the exact arsenic concentration, rather than directly answering the question “is this sample above or below the permissible threshold for arsenic contamination?”

It seems likely that in the short term at least, a more reliable first generation biosensor would be better off by converting all the available arsenate into arsenite before testing.

5.4.3 Investigating Other Potential Inducers and Response Modulators

Arsenite and arsenate are not the only two factors capable of causing de-repression of Pars, leading to the possibility of false positive readings. For example, antimonite is also known to interact with ArsR2, causing some degree of de-repression[141]. This leads to the possibility of antimonite being incorrectly recorded as arsnite. Antimonite also affects the rate at which ArsB-mediated extrusion of AsIII occurs[84, 100], which causes a change in the balance between internal and external arsenite. Therefore, the presence of a small amount of antimonite in a sample has the potential to significantly affect the output of an arsenic biosensor. This effect needs to be studied in detail before a reliable sensor can be constructed, and more data on the prevalence of antimonite in water samples from affected tube wells needs to be collected.

Glycerol is another factor which may modulate the system’s response to arsenite. Since arsenite is believed to enter into the cell through the glycerol uptake pathway, it is possible that growth on glycerol media may affect the rate at which arsenite enters the cell, and again
change the balance between internal and external arsenite. However, initial experiments did not indicate a significant difference between arsenite sensitivity of cells grown in LB media and minimal growth media with glucose replaced with glycerol.

We can again turn to the mRNA concentration data collected by Nicolas et al. [112] to find other potential inducers of the *ars* operon. Figure 5.7 shows the distribution of recorded mRNA concentrations for *arsR*, *yqcK*, *arsB*, and *arsC* for each of the 104 conditions investigated in the study. In the majority of conditions, the operon is very tightly repressed and shows concentrations at the very low end of reported concentrations from the study. However, the distribution appears to have an appreciable shoulder on the right hand side, and a few conditions appear very highly active, implying that they do indeed cause induction of the operon.

Table 5.1 shows the most significant p-values for t-tests conducted for each condition tested by Nicolas et al. [112]. The top three conditions involve incubation with diamide, a reagent which causes the oxidation of thiols[80, 81]. The p-value of each of the 9 diamide related conditions taken together is 2.5×10^{-52}, indicating that diamide does indeed cause the de-repression of the P_{ars} promoter. This could be due to diamide induced oxidation of the cysteine thiol residues of ArsR$_2$, which normally bind with AsIII and trigger the release of DNA[175]. Although this effect appears to be very strong, causing what appears to be complete de-repression of the operon, the chances of encountering diamide in a natural water sample are very small and none of the other oxidative reagents tested caused de-repression of the operon. This reaction is therefore unlikely to be of concern in the context of a biosensor, but could prove useful in further research as a way of causing full de-repression of the operon.

Other conditions which appear to demonstrate induction of the *ars* operon include phosphate limitation, sporulation, and ethanol stress. These conditions are again unlikely to be brought about unexpectedly during testing of a water sample, however further study of the mechanism or mechanisms by which they appear to induce the operon would perhaps shed light on other potential sources of false positives.
5.4 Conclusions and Further Work

<table>
<thead>
<tr>
<th>Condition</th>
<th>Repeats</th>
<th>p-value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dia5</td>
<td>3</td>
<td>5.2×10^{-19}</td>
<td>0.5 mM Diamine for 5 minutes</td>
</tr>
<tr>
<td>Diami</td>
<td>3</td>
<td>7.3×10^{-17}</td>
<td>0.6 mM Diamide for 10 minutes</td>
</tr>
<tr>
<td>dia15</td>
<td>3</td>
<td>3.4×10^{-10}</td>
<td>0.5 mM Diamide for 15 minutes</td>
</tr>
<tr>
<td>LPhT</td>
<td>3</td>
<td>4.9×10^{-3}</td>
<td>3 h after onset of the phosphate-limitation induced stationary phase</td>
</tr>
<tr>
<td>S4</td>
<td>3</td>
<td>1.4×10^{-2}</td>
<td>4 h after resuspension in sporulation media</td>
</tr>
<tr>
<td>S5</td>
<td>3</td>
<td>1.4×10^{-2}</td>
<td>5 h after resuspension in sporulation media</td>
</tr>
<tr>
<td>S6</td>
<td>3</td>
<td>1.8×10^{-2}</td>
<td>6 h after resuspension in sporulation media</td>
</tr>
<tr>
<td>S3</td>
<td>3</td>
<td>2.1×10^{-2}</td>
<td>3 h after resuspension in sporulation media</td>
</tr>
<tr>
<td>Etha</td>
<td>3</td>
<td>3.8×10^{-2}</td>
<td>10 min after 4% (v/v) Ethanol stress</td>
</tr>
</tbody>
</table>

Table 5.1 P-values below 0.05 for induction of ars operon in each condition

5.4.4 Developing an Arsenic Biosensor

This work has demonstrated that there is a small but detectable difference in the output of the ars detoxification system between zero arsenite and the WHO and Bangladeshi standards of 10 and 50 mg1$^{-1}$ respectively. While the small size of the difference shown by the natural system is unlikely to be large enough to be useful in the field on its own, it demonstrates the potential of the technology in the detection of arsenic.

The initial characterisation of the ars operon discussed in this chapter is consistent with the modelling predictions made in Chapter 3, which allows for some confidence in the model.

The question of how best to increase the dynamic range of the naturally occurring system in order to accurately detect whether arsenic concentration is above or below a given tolerable threshold remains to be answered. In addition, there are several other technical, regulatory, and social issues which must be overcome in order for a viable arsenic biosensor to be successful. While progress has been made on the shipping and containment of the $B. subtilis$ spores, further evidence is required to understand the effects of other potential contaminates in the water samples, and regulatory approval is required for the use of a GMO in the field. Furthermore, education initiatives are required on the ground in areas such as Bangladesh and Nepall, and local communities will need to be supported in taking control of the regular testing of their water sources.
Chapter 6

Codon Optimisation for *B. subtilis* and Other Organisms

6.1 Introduction

There are 64 possible permutations of the nucleotide triplets which make up the genetic code, but these 64 codons encode for only 20 natural amino acids and three stop codons which terminate translation. The mapping between the sequence of codons making up a coding sequence and the sequence of amino acids present in the encoded protein is therefore necessarily degenerate, meaning information is lost in the process of translation as many possible sequences of codons encode the same amino acid. For most encoded amino acids there are between two and six possible codons, each of which will cause the insertion of that particular residue into the polypeptide chain.

As has long been known, the choice of which codon to use for each amino acid is not uniform, with certain codons occurring significantly more frequently than others. Which particular codons are popular or unpopular within a genome varies with different organisms, but are generally similar within genes from a particular genome. This observation led rapidly to the genome hypothesis of codon bias\[56\], that codon preference is specified at the genome level rather than the level of individual genes.

The ‘mutationist’ explanation of codon bias is highly consistent with this viewpoint, as it posits that codon bias is driven by the fact that the probability of the introduction of a mutation during genome duplication is not uniform and depends on the sequence being duplicated. In particular, certain codons appear to be more mutable than others, and so codon usage tends to drift towards the less mutable sequences. Multiples studies\[27, 79\] have shown that the GC content of the entire genome has the biggest effect on changes in
codon bias between different genomes. This confirms that whole genome processes do affect the choice of codons within coding sequences, and do not act solely on intergenic space.

This hypothesis does not help explain the observations that codon bias is correlated with both the tRNA content within the organism[71] and the translation rate of the resulting messenger RNA[53]. Both of these observations suggest that selective pressure is also involved in codon choice, with genes which are highly transcribed having been better optimised for the tRNA context experienced in their host organism. In addition, the choice of codon affects the accuracy of the included amino acid[3, 105], with the pattern of codon choice varying when the resultant amino acid is essential for protein function.

Inserting recombinant genes from one organism into another is a common activity in synthetic biology. In this project, the fluorescent reporter proteins used to develop the reporter systems in Chapter 4 were taken from a variety of contexts and inserted into B. subtilis after optimisation.

It is therefore important to understand the specific codon bias present in B. subtilis in order to reliably insert recombinant or synthetic genes into the organism and have them be translated efficiently. While there is much commercial interest in codon optimisation strategies which can optimise the translational efficiency and thus yield of an arbitrary gene product, these techniques are often proprietary and rely on large numbers of comparative experiments in which the possible sequence space of the amino acid is explored.

While such methods do well in finding an optimal codon strategy, the large amount of synthesis required makes them expensive and time consuming. In many cases, particularly within academia, it is not vital that the recombinant gene is translated optimally, but merely that it is expressed reasonably well and consistently. It is therefore useful to study codon optimisation with a view to building simple in silico methods for optimising codon selection to generate gene sequences which are likely to be well expressed.

Such a method would not have access to the wealth of statistical information that is generated by a high-throughput empirical screening method such as those used commercially. Without such information, it is currently impossible to accurately account for the broader effects of codon choice such as secondary structure, interactions with other cellular RNAs, or the complex interactions at translation initiation and termination. Despite this limitations, it is still useful for synthetic biology as a whole to develop a better understanding of how codon choice influences gene expression in native genes in order to apply that knowledge when designing synthetic systems such as the fluorescent reporter proteins used in Chapter 4.
<table>
<thead>
<tr>
<th>1st Base</th>
<th>T</th>
<th>C</th>
<th>A</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δc Codon</td>
<td>%b</td>
<td>∆</td>
<td>Codon</td>
<td>%</td>
</tr>
<tr>
<td>TTT 68.50 F</td>
<td>TCT 20.50 S</td>
<td>TAT 65.41 Y</td>
<td>TGT 45.33 C</td>
<td>T</td>
</tr>
<tr>
<td>TTC 31.50 F</td>
<td>TCC 12.70 S</td>
<td>TAC 34.59 Y</td>
<td>TGC 54.67 C</td>
<td>C</td>
</tr>
<tr>
<td>TTA 19.83 L</td>
<td>TCA 23.62 S</td>
<td>TAA 63.19 *</td>
<td>TGA 22.73 *</td>
<td>A</td>
</tr>
<tr>
<td>TTG 15.90 L</td>
<td>TCG 10.03 S</td>
<td>TAG 14.08 *</td>
<td>TGG 100.00 W</td>
<td>G</td>
</tr>
<tr>
<td>CTT 23.93 L</td>
<td>CCT 28.64 P</td>
<td>CAT 67.35 H</td>
<td>CGT 18.19 R</td>
<td>T</td>
</tr>
<tr>
<td>CTC 11.23 L</td>
<td>CCC 8.89 P</td>
<td>CAC 32.65 H</td>
<td>CGC 20.68 R</td>
<td>C</td>
</tr>
<tr>
<td>CTA 5.09 L</td>
<td>CCA 19.06 P</td>
<td>CAA 51.28 Q</td>
<td>CGA 9.86 R</td>
<td>A</td>
</tr>
<tr>
<td>CTG 24.01 L</td>
<td>CCG 43.41 P</td>
<td>CAG 48.72 Q</td>
<td>CGG 15.61 R</td>
<td>G</td>
</tr>
<tr>
<td>ATT 50.47 I</td>
<td>ACT 16.10 T</td>
<td>AAT 56.52 N</td>
<td>AGT 10.59 S</td>
<td>T</td>
</tr>
<tr>
<td>ATC 36.72 I</td>
<td>ACC 15.89 T</td>
<td>AAC 43.48 N</td>
<td>AGC 22.55 S</td>
<td>C</td>
</tr>
<tr>
<td>ATA 12.81 I</td>
<td>ACA 41.20 T</td>
<td>AAA 70.17 K</td>
<td>AGA 26.28 R</td>
<td>A</td>
</tr>
<tr>
<td>ATG 100.00 M</td>
<td>ACG 26.81 T</td>
<td>AAG 29.83 K</td>
<td>AGG 9.38 R</td>
<td>G</td>
</tr>
<tr>
<td>GTT 28.41 V</td>
<td>GCT 24.73 A</td>
<td>GAT 64.00 D</td>
<td>GGT 18.38 G</td>
<td>T</td>
</tr>
<tr>
<td>GTG 25.63 V</td>
<td>GCC 20.72 A</td>
<td>GAC 36.00 D</td>
<td>GGC 33.94 G</td>
<td>C</td>
</tr>
<tr>
<td>GTC 19.75 V</td>
<td>GCA 28.25 A</td>
<td>GAA 67.99 E</td>
<td>GGA 31.46 G</td>
<td>A</td>
</tr>
<tr>
<td>GTG 26.22 V</td>
<td>GCG 26.30 A</td>
<td>GAG 32.01 E</td>
<td>GGG 16.22 G</td>
<td>G</td>
</tr>
</tbody>
</table>

Table 6.1 Codon preference table for *B. subtilis* 168. (a) The Amino Acid (AA) encoded by the codon, (b) percentage of amino acid residues encoded by the given codon, (c) deviation from expected percentage given uniform codon preferences.
6.2 Variations in Codon Preference

The codon preference of an entire genome can be easily calculated by extracting the DNA sequence of each annotated gene and recording the number of occurrences of each codon. This is then normalised by dividing by the total number of occurrences of the amino acid for which each codon encodes to give the fraction of instances in which each codon is chosen over the other homologous codons to encode the amino acid. Assuming uniform codon preference, the value for the i^{th} codon would be expected to be $\frac{1}{M(i)}$ where $M(i)$ is the box number (i.e. the number of codons which encode the same amino acid) of the codon.

The codon preference table for \textit{B. subtilis} is presented in Table 6.1, which shows the percentage of times each codon is selected and indicates via the coloured boxes whether each codon is more or less frequently observed than expected given the amino acid content. From the table, one can easily see that some amino acids are very close to the expected distribution, for example glutamine (Q) is encoded by CAA and CAG with very close to 50% frequency for each. However, other amino acids demonstrate a strong skew in favour of particular codons, for example both lysine (K) and glutamic acid (E) are significantly more likely – by a ratio of almost 7:3 – to include an A in the third base wobble position as opposed to a G. This is interesting because if codon preference were driven solely by whole-genome effects such as GC content, one would expect the apparent pressure to prefer AAA over AAG in the case of lysine or GAA over GAG in the case of glutamic acid to be mirrored by a similar pressure in favour of CAA over CAG in the case of glutamine, but this is not observed.

In fact, codon preference is not the same for every gene in a genome, and codon preference varies appreciably between different genes. This was first observed in \textit{B. subtilis} by Kanaya et al. [76] and reviewed in Moszer et al. [105], who represented the codon preference of each gene as a vector \mathbf{x} in 61-dimensional space, encoding the normalised usage probability for each codon. Since 61-dimensional space is not particularly useful, dimensional reduction was carried out using Principal Component Analysis (PCA). PCA reduces the number of dimensions by finding the 61-dimensional vector \mathbf{b} along which the maximum amount of variance in the data can be explained, equivalent to finding the ‘line of best fit’ for two dimensional data. This explained variance is subtracted from the sample and the process is repeated until the desired number of dimensions have been found, resulting in a list of PCA components, \{\mathbf{b}_0, \mathbf{b}_1, \ldots \}, which provide our new basis. Taking the dot product of these vectors with the original data gives the PCA scores, \{z_0, z_1, \ldots \}, for each gene. Since the dimensions of the input dataset are not wholly independent – increasing the probability of choosing one codon necessarily decreases the probability of choosing another – we can be certain that our input data is not truly 61-dimensional, but can actually be represented accurately in far fewer dimensions.
PCA is very sensitive to normalisation, and input data must be well normalised for PCA to be effective. The normalisation scheme proposed by Kanaya et al. [76] is

\[x_i = \frac{f_i}{\sum_{j \in m(i)} f_j} \]

where \(f_i \) is the number of occurrences of the \(i^{th} \) codon and \(m(i) \) is the set of all codons which encode the same amino acid as the \(i^{th} \) codon, which is of size \(M(i) \). This normalisation removes effects of gene length, amino acid content, and codon box number (where codons encoding for amino acids that are encoded by several codons are more rare than ones which are encoded by fewer codons), such that the expected value for each dimension of the resulting vector, \(\mathbf{x} \), is 1 under uniform codon preference.

This normalisation is re-used here, with one important improvement. 42% of all known \(B. subtilis \) genes contain no incidences of at least one amino acid, and all 4,255 of them contain 1 or fewer instances of at least one amino acid. When a gene contains only one instance of an amino acid, the frequentist approach outlined by Kanaya et al. [76] will assign a probability of 1 to the codon used on that occasion, and zero to all other codons which could encode that amino acid. Since effects of amino acid content are removed through normalisation, this gene will then appear to have a very extreme codon bias in the case of that amino acid, despite that estimate being based on only one single observation. This is not just a problem for amino acids which are only encoded by one or two codons as 32% of genes contain six or fewer instances of one of the three amino acids which are encoded by six codons, arginine, leucine and serine. This is clearly not enough samples to give a confident estimate of the true codon preference of the gene, and is likely to lead to extreme estimates of codon bias based on little evidence.

This problem can be avoided by taking a Bayesian approach to estimating the codon usage probabilities for each gene. In Bayesian statistics, a prior probability is assigned for each outcome, based on our experience or knowledge of the system we are modelling. When observations are made, the prior probability is updated to reflect the new information, to give the posterior probability distribution which represents all our knowledge to date. When the number of observations is small, the posterior closely resembles the prior distribution as the observations don’t have enough statistical power to change our belief about the underlying system. However, with more and more observations the posterior begins to resemble the frequentist solution as our belief about the system changes.

To model codon bias using a Bayesian approach, two decisions must be made

1. what should the prior distribution be?
2. how many observations are required before we change our initial belief about the underlying codon distribution?

For simplicity, rather than considering the entire distribution at once, let us consider the case of a single amino acid, for example lysine (K), which is encoded by the codons \{AAA, AAG\}. Without making any observations of the particular gene in question, our prior expectation of the distribution of lysine codons in that gene is equal to the distribution found throughout the whole genome, approximately \{0.7, 0.3\} as shown in Table 6.1. This is a categorical Dirichlet distribution, which can very conveniently be used as a Bayesian prior using pseudocounts. First set the number of pseudocounts, for example \(N = 5\), and initialise the counts for each codon with this value multiplied by the prior probability, in this case \{3.5, 1.5\}. Now add to this the observed number of each codon in the gene and divide by the total to give the posterior distribution, or apply the normalisation given in Equation 6.1 to proceed with PCA analysis. Supposing the gene contains only a single lysine and that it happens to be encoded by the rarer AAG codon, our Bayesian model predicts an underlying distribution of \{0.58, 0.42\}, which is quite close to the prior and much more reasonable than the extreme \{0, 1\} estimate which would be made by the frequentist approach. However suppose five lysines are present, and every one of them is encoded by the rarer codon. Our model now predicts a distribution of \{0.35, 0.65\}, which is quite different to the prior, representing the fact that we now have more evidence that the true distribution of lysine codons for this gene is significantly different from the prior than in the previous example.

This question remains as to what value should be set for \(N\), the number of pseudocounts. If \(N\) is too small, then we return to the previous problem where a small number of observations completely change the estimated distribution, while if \(N\) is too large our estimate of per-gene codon bias will never stray far from the codon bias of the whole genome, no matter how many observations we make. Ultimately, the choice for \(N\) is an arbitrary trade off between these extremes, but we can use the idea of explained variance to help guide the choice. The explained variance of a PCA component vector is the percentage of the total variance which occurs along that vector. Since PCA sequentially finds the vectors which explain the maximum amount of variance – hence the term principal component – the variance explained by successive components must be less than or equal to the previous vector.

Figure 6.1 shows the percentage of explained variance for the first five principal components for \(B. subtilis\) codon usage data for a range of pseudocounts, \(N\), normalised using Equation 6.1. As the value of \(N\) increases, the amount of random variation in the dataset caused by sampling noise reduces, and so we expect the proportion of variation due to real changes in codon bias to increase. Thus, the percentage of variance explained by principal components which represent true underlying variation in the data should increase, while the
6.2 Variations in Codon Preference

Fig. 6.1 Percentage of explained variance of the first five PCA component vectors for a range of values of N

Percentage variance explained by principal components which only represent noise in the data should decrease towards some minimal value. This is reflected in Figure 6.1, where the first two principal components progressively explain a greater fraction of the total variance as N increases, while the variance explained by the third component decreases slightly. The proportion explained by the fourth and fifth components does not appear to vary significantly with N.

This suggests that only the first two principal components are relevant to the underlying variation in per-gene codon usage, a theory which is borne out by looking at the distribution of the z-scores (dot products) for each principal component, shown in figure 6.2. The distribution of the z-scores for the first two principal components clearly contain some form of bimodal structure, while the z-scores of principal components of higher order than 2 are distributed normally implying that they are the result of noise alone.

A scatter plot of the z-scores of the first two principal components is shown in Figure 6.3, which closely resembles the ‘rabbit head’ structure found in Figure 1 of Moszer et al. [105]. The data has been clustered according to a Gaussian Mixture Model (GMM) with 3 groups and optimised using the standard Expectation Maximisation (EM). After some experimentation, it was found that a value of $N = 7$ provided a good trade off between increasing the proportion of explained variance (Figure 6.1) and stable clustering properties, and so this value was used throughout the rest of this section.

Moszer et al. [105] posited that these three categories related to three different classes of genes present in the B. subtilis genome. The majority of genes belong, predictably, to a ‘general’ category whose codon preference is closely aligned to that of the genome as a whole. This category, according to Moszer et al. [105], mostly contains genes of ‘intermediary
Fig. 6.2 Distribution of PCA scores for the first five components and 7 pseudocounts (i.e. \(N = 7 \)). Both \(z_1 \) and \(z_2 \) have larger variance than the following distributions, as well as having a positive skew, that is, a larger tail on the right hand side. These observations support the hypothesis that only \(b_1 \) and \(b_2 \) capture true shifts in the underlying codon distribution while \(b_3 \) and above represent noise.

metabolism’, as well as genes involved in core carbon assimilation. The second category contains genes which are highly active under exponential growth, while the third category contains genes which are less actively expressed and appear to cluster together in the genome, leading to the hypothesis that these genes are of foreign origin, labelled as phage in figure 6.3.

The first five principal components are shown in Table 6.2. While no component is completely characterised by a single shift in codon usage, we can see that the largest values in \(b_1 \) correspond to a shift away from \(CTG \) and towards \(TTA \) when encoding leucine (L), and thus genes with a large \(Z_1 \) will be more likely to use \(TTA \) than the background genetic content. The biggest shift shown in \(b_2 \) is away from \(CGG, AGG \) and particularly \(AGA \) and towards \(CGC \) and \(CGT \) when encoding arginine. Genes with a large \(Z_2 \) – which are likely to be classified in the ‘active’ category of genes – thus favour \(CGC \) and \(CGT \) to encode arginine when compared to other genes.

Interestingly, both of these shifts represent not just changes in codon usage, but also changes in which tRNA recognises the preferred codon. One possible explanation is that this difference in tRNA preference between the different classes of genes serves to somewhat isolate genes of each class from each other. For example, tRNA depletion caused by high expression of a gene in the ‘general’ class will have less of an effect on a gene from the ‘active’ class, as the tRNAs that genes of these classes tend to use are different. A possible
Fig. 6.3 GMM clustering of principal component scores of each gene’s codon usage. The model was fitted using expectation maximisation (EM), and the number of components was set to 3 based on literature. Slightly over 3,000 genes are classified as belonging to the “general” category, while \(\sim 860 \) and \(\sim 360 \) are categorised as “phage” and “active” respectively.
Table 6.2 The first five principal components of B. subtilis codon usage data. (*) Amino Acid (†) Genome copy number of each tRNA, underlining indicates recognized codons, data from Kanaya et al. [76].
counterhypothesis is that the higher dependence of genes in the ‘active’ class on particular tRNAs mean that modulating the availability of those tRNAs particularly affects expression of genes within that class. While the former does seem more probable since the tRNAs preferred by ‘active’ group genes are not used exclusively by those genes, the data as currently available do not confirm any particular explanation, and it is possible that the truth is in fact some combination of them.

The hypothesis that genes within the ‘active’ group are highly expressed was made by Moszer et al. [105] based on the relatively little knowledge of gene function or of expression data available at the time. Since then, however, Nicolas et al. [112] has provided a wealth of information on the transcriptional landscape across the whole of the *B. subtilis* genome under a variety of conditions by using a tiling array technique to measure RNA concentrations across the genome, as introduced briefly in Section 4.3.4.

Figure 6.4 combines the new transcriptional data with gene codon usage information, by showing transcriptional activity in a variety of conditions overlaid onto the Z_1 and Z_2 scores presented in Figure 6.3. While some genes within the ‘active’ group are not highly transcribed, many of the genes from that class are very transcriptionally active, to levels which are quite rare among genes in the general group, which supports the hypothesis that codon bias found in members of the group bears some relation to their being highly expressed.

It is noteworthy, though perhaps not surprising, that this correspondence between codon bias and transcription activity exists in the first place, since codon bias is typically thought to affect the translational efficiency of genes rather than their transcription. The relationship between translational efficiency and transcription activity is expected because it would be metabolically inefficient to spend energy generating large numbers of transcripts of a gene which has poor translational efficiency. While this may happen occasionally in individual cases, in general the translational efficiency of highly transcribed genes is expected to increase over time.

6.3 First Order Codon Preference

Codon choice is not only influenced by large-scale factors such as whole genome codon bias or even the codon bias of individual genes, but also on the context in which a codon is used[9]. Codon preference is known to be different towards the start of genes than elsewhere, where typically codons with lower GC content are preferred[105], possibly to reduce secondary structure around the start codon leading to easier translation initiation.

In addition, the distribution of codons depends on the codons surrounding it. Codon bias is typically presented as the probability of choosing a particular codon given the amino
Fig. 6.4 Principal component scores overlaid with transcriptional data from Nicolas et al. [112] under four different test conditions. “LBexp” and “M9exp” refer to exponential growth in LB and M9 minimal media, respectively, while “Ox” refers to cells exposed to oxidative stresses for 10 minutes (induced independently with diamide, paraquat, and \(\text{H}_2\text{O}_2 \)) and “Heat” refers to cells after undergoing rapid temperature up-shift to 48 °C. In each of the plots, the genes predicted to be members of the ‘active’ group in figure 6.3 generally recorded higher levels of activity than those belonging to either of the other two groups. The fact that there are no significant differences in this broad trend across a range of conditions is consistent with the hypothesis that genes in this group are highly expressed under wide range of conditions.
acid that it is known to encode, or mathematically as $p(CDN_i|AA_i)$, where CDN_i and AA_i are the codon and amino acid in the i^{th} position within a gene, respectively. We can also calculate $p(CDN_i|CDN_{i-1})$, the probability of choosing a particular codon given the previous codon encountered. Table 6.3 shows the percentage difference between these values for each possible previous codon, or

$$
\frac{p(CDN_i|CDN_{i-1}) - p(CDN_i)}{p(CDN_i)}
$$

which shows the amount by which the appearance of a particular codon influences the next codon. This pattern, whereby each position depends on the previous position is similar to a first order Markov chain, where the probability of entering to each state depends only on the previous state, hence the choice of the name first order codon bias to refer to this model. Note that this data is no longer normalised by amino-acid content, as doing so can lead to misinterpretation of the data, which will be discussed later.

The previous codons in Table 6.3 are ordered in inverse, first by last, then middle, then first base. This ordering reveals the largest pattern present in the table, which is that the final base of the previous codon has the most impact over the subsequent codon.

For example, all codons ending with T significantly reduce the chance that any of the AGN codons will be encountered next. Most codons ending in T also repress GGN and CGN codons, and a subset of them (those ending in GT) also repress TGN codons, such that codons ending with a T repress most codons of the form NGN. This pattern is seen in reverse for codons that end with a C, which tend to increase the probability of observing an NGN immediately afterwards.

Similarly, codons beginning with a C are less commonly observed after codons ending with an A, although this effect is strongest when the previous codon is of the form CNA. A comparable though slightly weaker phenomenon is observed after codons ending in G, where codons beginning in T or G are less commonly observed.

No single consistent biological explanation of these effects is forthcoming, though several have been suggested. Before discussing each in turn, however, let us return to the question of amino-acid content normalisation. Typically when constructing a codon table such as in Table 6.1, the codon frequency is calculated by dividing the number of occurrences of the codon by the number of occurrences of the amino acid it encodes. This makes sense in the case of a codon table because normally when consulting such a table we are not interested in the frequency of the amino acid itself, just the relative frequencies of the codons which encode it.
Table 6.3 Percentage change in codon preference due to previous codon. Separate counts of codon usage were made for each possible previous codon for the entire *B. subtilis* genome, and normalised to give the probability of observing a codon, given the previous codon observed. Percentage change was calculated by subtracting then dividing by the background probability of observing each codon. (∗ & †) See Table 6.2
Let us consider the effect of applying that normalisation to the data presented in Table 6.3. As an example, let us consider the observation that codons beginning with C are consistently less likely to be observed when the preceding codon is of the form CNA. Of the 16 codons beginning with a C, four encode leucine (L), four encode proline (P), four encode arginine (R), two encode histidine (H), and the remaining two encode glutamine (G). Of these five amino acids, glutamine, histidine, and proline are exclusively encoded by codons beginning with C, such that a preceding CNA codon reduces the overall probability of encountering any codon which encodes these amino acids. If this data were normalised by amino acid, the change in probability would be hidden for these three amino acids, as the relative change in codon bias remains unchanged. The only effect of a preceding CNA which would not be normalised away would be in the case of leucine and arginine, which both have alternate codons which do not begin with C. Under amino-acid normalisation these codons appear to be greatly more likely following a CNA codon because their relative frequency has increased, even though the actual frequency of these codons does not increase drastically after a CNA codon.

One hypothesis to explain why codon preference varies depending on the surrounding content is that there is a preference for codons which maintain the local GC content within a certain range. Since G-C Watson-Crick base pairing is stronger than A-T pairing, the strands in regions of double stranded DNA with a higher GC content are more stably bonded together than regions which are AT rich. Since many cellular processes involve separating the DNA strands – such as DNA replication or RNA transcription – these processes will be affected by how tightly the strands are bound, and there may be some advantage to keeping local GC content within certain parameters. If this effect were significant, one would expect codons which are particularly GC rich to be less common after codons which are also GC rich, and vice versa. Consistent with this is the observation that codons beginning with A are rarer when the preceding codon ends with a T, increasing the chance that the selected codon begins with a G or C. However, codons beginning with a T are not similarly affected by codons ending with a T, and codons ending with an A do not cause the same effect, which is not consistent with the hypothesis that local GC content is the major underlying cause of these effects.

Similarly to the GC content hypothesis, local codon bias could be affected by the secondary structure of the resulting mRNA message. Secondary structure is known to have a significant effect on the translational efficiency of genes, particularly in the region of the Ribosome Binding Site (RBS), although the effect is less pronounced elsewhere as the ribosome seems able to ‘iron out’ secondary structure once it has bound[31, 83]. Furthermore, the effects shown in Table 6.3 are quite short-range, as the final base of one codon affects
the first base and sometimes the second base of the next, and secondary structure forming interactions typically occur over longer ranges due to the high free energy associated with the small hairpin required for nearby bases to interact.

Interaction between successive tRNAs has also been suggested as a possible cause of some of the codon context effects[9, 105]. Since successive tRNAs come into very close proximity while bound with the ribosome, making is feasible for some form of interaction to occur between them. Such an interaction could aid with translation – for example if it increased recruitment of the next tRNA – or hinder it if for example the interaction were to cause some kind of jamming which required energy to unblock. If this were the case, we would expect the interaction to be dependent on the identities of the two tRNAs involved in codon recognition and amino acid transport for successive codons. This prediction is not consistent with our previous observation that it is in fact the final base of the previous codon which has most weight in determining the effect on the codon bias. Many tRNAs recognise several different codons, typically because they are able to accept several different bases in the third position (hence the term wobble base) and so no clear pattern is seen which could be explained directly by tRNA-tRNA interactions.

The behaviour of rare codons may be important for some of the interactive effects seen in Table 6.3. In E. coli, AGG is a rare codon which encodes around 3% of arginine residues and is known to be very slowly translated[12]. In fact, it has also been shown that the presence of two or more AGG codons immediately after each other increases the probability of frame shift errors during the translation process[26], which result in a non-functional protein. In E. coli, nearly 80% of arginine is encoded by only two of the six possible codons, CGT and CGC, while in B. subtilis the same two codons only encode just under 40% of arginine. This greater codon diversity causes the relative frequency of AGG to increase from 3% in E. coli to 9% in B. subtilis – a small increase compared to AGA which increases from 4% to 26%. Table 6.3 confirms that, unlike in E. coli, AGG is in fact slightly more likely to appear when the previous codon was also AGG than elsewhere in the B. subtilis genome, suggesting that multiple AGG codons do not have the same adverse effect in the latter bacteria. While it is perfectly possible that codon abundance has an effect on the frequency of other codon pairs, it does not seem to be a satisfying explanation of the broader patterns seen in Table 6.3.

Other explanations are of course possible – for example, we have not discussed the possibility that some of the effects are driven by some form of grammar at the amino acid level – but there appears to be no single model based on our observations to explain all of the effects noted in Table 6.3. It is possible that these effects are due to a combination of factors rather than one single explanation, or that these effects are due to some higher level process which is as yet hidden from us.
6.4 A Simple Algorithm for first Order Codon Optimisation

Despite not being fully able to explain the mechanisms underlying this first order codon bias, we can still use the measured codon distributions in order to generate coding sequences for a given amino acid which closely match the distributions found in native genes. In this work, the following process was used to generate coding sequences given a desired amino acid sequence:

1. Calculate $p(CDN_i|CDN_{i-1}, AA_i)$, the probability of each codon given the previous codon and the amino acid encoded

2. Count the number of incidences of each amino acid

3. For each amino acid, decide how many of each codon should be used in order to given the desired first order codon bias

4. Start with ATG and assign codons with probability proportional to $p(CDN_i|CDN_{i-1}, AA_i)$ multiplied by the number of codons remaining to be used

5. Always use the most common stop codon, TAA

6. Generate several variants, and score them according to $\sum_{i=2}^{N} \log p(CDN_i|CDN_{i-1}, AA_i)$, the log likelyhood of that ordering

This method does not find the maximum likelyhood ordering of the codon, but instead generates several variants each of which will closely fit the native distribution. The first advantage of this is computational – testing all possible codon orderings for a long gene would be computationally infeasible – but also practical, as most services offering gene synthesis have specific limitation on what sequences can be made, such as repeats or areas of high or low GC content. Generating several permissible variants increases the chances that at least one of them will be synthesisable while it seems unlikely that the slight reduction in fitness from the optimal ordering will have a large impact on the expressibility of the gene.

6.5 Conclusions

The goal of this chapter was to investigate codon bias in *B. subtilis* in order to optimise Fluorescent Reporter Proteins (FRPs) for expression in the organism in the dual reporter
system introduced in Chapter 4. In this it was successful, the algorithm described in Section 6.4 above was used to generate optimised coding sequences for published amino acids for a number of FRPs, including eForRed, mCherry, and mScarlet-I. All of these appeared to express well in the organism, with fluorescent output proportional to published brightness levels.

Of course, we cannot conclude that this proposed method is ideal for codon optimisation, and we have not directly demonstrated that this method of codon optimisation is better or worse than any other. To demonstrate this, one would have to generate several variants of genes under various codon selection strategies – of particular interest would be variants with exactly the same codons, but ordered either according to the idea of first order codon bias as introduced above or completely at odds with it. Whether such variants showed any significant difference in translational efficiency would be particularly interesting.

However, such experiments are not trivial to complete. Codon choice or codon ordering cannot be studied in isolation, as both affect several other factors such as GC content and mRNA secondary structure, which can have a significant impact on translation initiation. Secondary structure prediction can help with this – for example by adding a constraint that only sequences with no predicted secondary structure around the RBS are permissible – but secondary structure prediction is not wholly reliable and so such a study should focus on many different proteins and coding sequences to avoid discovering effects specific to the coding sequence of a particular gene.

Furthermore, such a study should not focus solely on the optimisation of FRP proteins, which, while being simple to assay are broadly related and thus likely do not represent a wide selection of sequence space. An optimisation technique which works well for FRPs may not work well for another gene.

What is clear from the data presented in this work is that codon optimisation is not simply a case of selecting the most common codons found in an organism. In *B. subtilis*, codon preference varies depending on the expression context of the gene, with genes which are consistently expressed at high levels having a different codon preference to other more general genes. Native sequences also contain some form of grammar which dictates which codons are more or less likely to follow each other, in the same way as in English where the letter ‘Q’ is highly likely to be followed by a ‘U’, particular codons significantly change the distribution of codons which are likely to succeed them.

Ultimately, it may be that we must move away from the idea of codon ‘optimisation’ altogether, and think instead of codon translation. While it is a remarkable fact that the genetic code which maps codons to amino acids is almost ubiquitous, it is clear that different organisms do speak different dialects of the same language. As we have noted above, AGG
is slowly translated in *E. coli*. In some cases, this slight delay in translation may allow the binding of some cofactor, or allow time for the growing poly-peptide chain to fold into some configuration which would be lost if translation continued rapidly. In *B. subtilis*, it appears that AGG does not have the same meaning. In the latter the sequence AGGAGG, which is rarely seen in *E. coli* due to causing translation errors, actually occurs more frequently than would be expected by random chance. Similarly, the probability of mis-translation – where an incorrect amino acid is inserted into the sequence – varies with different codons[12, 26], such that regions where correct translation is critical for protein function are likely to use more reliable codons than regions where occasional mis-translation is more acceptable.

The subject of codon optimisation clearly has several important applications within synthetic biology, both from a research and an industrial perspective, and there is undoubtedly more to learn about this important topic.
Chapter 7

Conclusions

There is a clear need for better detection and management of arsenic contamination, particularly in the developing world. Estimates of the number of people affected by arsenic contaminated drinking water reached 100 million in 2010[43], but efforts to improve testing procedures and the supply of clean water have stagnated over the last decade[43, 68]. Improving access to reliable testing technology has been found to be the most effective solution to tackling the crisis in rural regions where practical limitations prevent the supply of clean water directly[2], however commercially available field testing kits remain outside the reach of local communities without the efforts of government, non-governmental organisations, or the international community.

Furthermore, contemporary kits remain complex and potentially hazardous to use, even with proper training. Early kits were known to emit significant quantities of highly toxic arsine gas[70], presenting a serious health hazard to the user and anyone in the vicinity. While later kits have become better at containing the deadly gas, their function relies on the same chemistry and so the possibility of release due to misuse remains. In addition, the chemicals required for the tests are also hazardous and require correct disposal. The shallow tube wells at the heart of this mass poisoning, the largest to effect an entire population in history[151], were installed in order to reduce deaths due to cholera and other surface-borne diseases. In this they were successful[22], but the lack of research and monitoring of the programme has lead to a situation where arsenic contamination is responsible for up to 15% of deaths in some areas[44]. Careless disposal of millions of traditional arsenic sensors has the potential to also become a serious public health issue[131].

Previous research has indicated that biology may be able to provide a radically different approach to arsenic detection[149, 153], however a quantitative understanding of the mechanisms by which biological systems defend themselves from the deleterious effects of arsenic was lacking. In addition to the practical issues of distributing engineered biological material.
to end-users in remote locations in a device which is simple and easy to use and as cheap as possible is a challenge that has yet to be solved.

In **Chapter 4**, a method for ratiometric characterisation of biological parts was established in the spore-forming gram-negative bacterium *B. subtilis*. While the arsenic mitigation system of this bacterium is slightly different to the better studied version that is found in *E. coli*, the ability to form highly resistant spores which are able to remain dormant for many years makes them an ideal vector for distribution. However, as *B. subtilis* is less commonly used in synthetic biology than *E. coli*, much of the progress in characterisation techniques which have been made in *E. coli* have yet to be applied to it. Further work investigating gene expression in *B. subtilis* was carried out in **Chapter 6**, in which the nature of codon optimisation found in the bacteria was investigated. The application of ratiometric characterisation to the bacteria will hopefully serve as a useful platform for further synthetic biology in the organism.

Early work on a biological biosensor established the possibility that bacteria are capable of sensing arsenic at concentrations relevant for sensing applications, but failed to approach the question from an analytical or engineering standpoint. **Chapter 3** attempts to rectify this by developing a mathematical model of the mechanism through which *B. subtilis* protect themselves from arsenic. While much work has previously been done to identify the mechanism by which *B. subtilis* are able to detect arsenic, the precise details of the mechanism are not fully understood. However, parameter variations have shown that the native regulatory architecture is such that the form of the response to arsenic is invariant to these changes. Key topics for further research are the mechanisms by and rate at which difference forms of arsenic enter the cell, as well as studying the rate at which arsenite efflux occurs do the the arsenite transporter, ArsB.

Having developed a mathematical understanding of the response of *B. subtilis* to arsenic in Chapter 3, the rigorous characterisation methodology developed in Chapter 4 was applied to improving the practical knowledge of the arsenic response in **Chapter 5**. The form of the observed response matched that which was previously predicted very closely, confirming the validity of the model which was developed. The system was found to respond detectably at arsenite concentrations as low as 2 µg l$^{-1}$, and modelling suggests that there is no fundamental lower detection threshold other than that set by the sensitivity of the instruments used and the limitations of the stochastic nature of gene expression.

The response to arsenic which was predicted and observed previously is not ideal for a sensor, as differentiating between a reading which is just above or just below a given threshold is not straightforward to do by eye. This very problem is also an issue with current arsenic sensors, where the user must distinguish between similar shades of yellow to determine whether the sample is above or below the permissible threshold. One possible solution to
this issue could be the use of a synthetic toggle switch similar to the one first published by Gardner et al. [47]. Under the right conditions, such a switch has two stable points and can be toggled between these points based on the concentration of an inducer.

While this work has demonstrated that an arsenic biosensor is within our technical grasp, considerable further work is required in order to make this project a reality. A better understanding of the relationship between how the arsenic in the environment affects the concentration within the cell is necessary in order to build a well functioning whole-cell biosensor. In particular, the mechanism through which arsenite and arsenate enter the cell is not fully understood, and little to no quantitative data is available on this. By better understanding these mechanisms, we may be able to re-engineer the systems responsible for uptake in order to harmonise the effects of arsenite and arsenate such that the sensor can be used for both. The new knowledge would also give greater control over the internal arsenic concentration in relation to the external arsenic concentration, drastically increasing the range of concentrations which can be detected.

There is also an increasing interest in cell-free systems as an alternative to whole-cell systems, as these systems avoid the regulation associated with the use of GMOs. Cell-free systems have many benefits over whole-cell systems, such as the speed of design and testing and by using freeze-drying technology can also be shipped in a manner not unlike bacterial spores. However, cell-free systems necessarily lack a cell membrane and are thus more exposed to their environment, making them more susceptible to contamination from other chemicals present in the samples. Thorough controls would be required to ensure false negatives were not generated by deleterious contaminants, as well as a wide range of experiments to test for other potential inducers of the system.

Ultimately, the success or failure of any such device, irrespective of the technology behind it, depends upon successful engagement with local communities in affected areas. While education on mitigating the risks of diseases such cholera is widespread, understanding of the risks of arsenic contamination and the steps which can be taken to manage that risk have yet to catch up.
References

References

[110] NEB (2015). PCR Using Q5® High-Fidelity DNA Polymerase (M0491) | NEB.

[116] OpenWetWare (2015a). *Bacillus Subtilis Transformation*.

[130] Qiagen (2015b). QIAquick Gel Extraction Kit - QIAGEN.

References

Appendix A

Influence of Subsequent Codon on Codon Bias
Table A.1 Percentage change in codon preference due to next codon. See Table 6.3 and surrounding text in Section 6.3. (∗ & †) See Table 6.2
Appendix B

Sequence of the P_{ars} promoter

The full sequence of the ars operon promoter which was extracted from the genome by PCR was as follows.

```
TTTCGTCTCTCGTAATTGTTTAAAACCTTATGTGGAAGGA
TGGATTGAATGGCTTATATCTTCACATAAGGTTTTAATTG
ATGATAAAATCTGTGTGCTCTGACTAAATACGTATTATCTC
GAATTATTATCGATTCTACATATTCACAAAAATTATTTAA
TGTTTTTTTCTTGAAATTAGAAATTAGCGTTTATGATCTC
CGTTGCTGTAGTAGCAAAAGTAGCGATGGAGGAAATAATAA
AAATGGAAAACCTCTATCTGGTTACACAAGCTTTTAGCGG
GTTTTACAATTAATCAAAATAATTTGATTTATTTGCTTGC
ATTAATTTAAAAATCATGAGTATAATAAATACATCAGACA
GAGACGAAA
```
Appendix C

The *pysim* model file format

The pysim model file defines the mathematical model to be simulated. Examples can be found in the folder pysim/tests/data, which are also used to unit test the implementation.

For example, the file pysim/tests/data/solvetest3.model contains the following

```
#model without arsenic
#p = free promoter
#r = arsR
#s = arsR2
#t = bound promoter

species p=1.0,q,r,s
constraint q + p = 1.0
param kp=4.4721359549995796, mu=0.22360679774997896
param kd_f=640.31242374328485, kd_r=0.0015617376188860608
param kr_f=8246.2112512353215, kr_r=0.00012126781251816648

p --[kp]> p + r
r --[mu]> 2r <[kd_r]--[kd_f]> s
s --[mu]> s + p <[kr_r]--[kr_f]> q
q --[mu]> p
```

Lines beginning with ‘#’ are comments and are ignored. The first line defines the species present, with optional initial conditions in arbitrary units. If no initial condition is given, it is assumed to be zero. Species can be specified all on one line separated by commas or
on separate lines. The second line defines a constraint, in this case that the sum of \(p \) and \(q \) must be 1 at all times. Multiple constraints can be specified, but must be on different lines. The next three lines define the parameters to the model in a manner similar to the species, however all parameters must be given values.

The remaining lines define the reactions present in the network. The values in the square brackets show the rates of each reaction, and can potentially include simple mathematical statements. A Michaelis Menten reaction is shown by providing two comma separated parameters in the brackets, the first being the limiting rate, \(V_{\text{max}} \), and the second the Menten constant, \(K_M \).
Appendix D

Plasmid Listings

Sequences for the two template plasmids developed during the project are shown below.

D.1 pHK025v2

<table>
<thead>
<tr>
<th>LOCUS</th>
<th>pHK025v2</th>
<th>5545 bp ds-DNA</th>
<th>circular</th>
<th>15–FEB–2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFINITION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEATURES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>deleted_base</td>
<td>complement(1060..1060)</td>
<td>/label="Deleted Base"</td>
<td>/ApEinfo_revcolor=#f58a5e</td>
<td>/ApEinfo_fwdcolor=#f58a5e</td>
</tr>
<tr>
<td>RBS</td>
<td>complement(2710..2715)</td>
<td>/label="cat RBS"</td>
<td>/ApEinfo_revcolor=#f8d3a9</td>
<td>/ApEinfo_fwdcolor=#f8d3a9</td>
</tr>
<tr>
<td>terminator</td>
<td>complement(2007..2038)</td>
<td>/label="cat term?"</td>
<td>/ApEinfo_revcolor=#ff9ccd</td>
<td>/ApEinfo_fwdcolor=#ff9ccd</td>
</tr>
<tr>
<td>terminator</td>
<td>2901..2935</td>
<td>/label="t0 terminator of phage lambda"</td>
<td>/ApEinfo_revcolor=#ff9ccd</td>
<td>/ApEinfo_fwdcolor=#ff9ccd</td>
</tr>
<tr>
<td>CDS</td>
<td>complement(2051..2701)</td>
<td>/label="cat"</td>
<td>/ApEinfo_revcolor=#84b0dc</td>
<td>/ApEinfo_fwdcolor=#84b0dc</td>
</tr>
<tr>
<td>deleted_base</td>
<td>complement(1064..1064)</td>
<td>/label="Deleted Base"</td>
<td>/ApEinfo_revcolor=#f58a5e</td>
<td>/ApEinfo_fwdcolor=#f58a5e</td>
</tr>
<tr>
<td>CDS</td>
<td>complement(3854..4374)</td>
<td>/label="amyE (front)"</td>
<td>/ApEinfo_revcolor=#84b0dc</td>
<td>/ApEinfo_fwdcolor=#84b0dc</td>
</tr>
</tbody>
</table>
Plasmid Listings

misc_difference 3361..3361
- **label**: "Mut: C→T (removing PsstI site)"
- **ApEinfo_revcolor**: #faac61
- **ApEinfo_fwdcolor**: #faac61

modified_base complement(5243..5243)
- **label**: "modified_base"
- **ApEinfo_revcolor**: #ffe866
- **ApEinfo_fwdcolor**: #ffe866

misc_feature 3732..3811
- **label**: "BBa_B0010"
- **ApEinfo_revcolor**: #b4abac
- **ApEinfo_fwdcolor**: #b4abac

misc_feature complement(1980..2866)
- **label**: "cat cassette"
- **ApEinfo_revcolor**: #84b0dc
- **ApEinfo_fwdcolor**: #84b0dc

misc_feature 4524..5384
- **label**: "bla"
- **ApEinfo_revcolor**: #b7e6d7
- **ApEinfo_fwdcolor**: #b7e6d7

BSub dif complement(2867..2894)
- **label**: "dif"
- **ApEinfo_revcolor**: #f58a5e
- **ApEinfo_fwdcolor**: #f58a5e

BSub dif complement(1952..1979)
- **label**: "dif"
- **ApEinfo_revcolor**: #c7b0e3
- **ApEinfo_fwdcolor**: #c7b0e3

rep_origin 1..600
- **label**: "Col El ori"
- **ApEinfo_revcolor**: #75c6a9
- **ApEinfo_fwdcolor**: #75c6a9

deleted_base complement(1014..1014)
- **label**: "Deleted Base"
- **ApEinfo_revcolor**: #f58a5e
- **ApEinfo_fwdcolor**: #f58a5e

stem_loop 3743..3786
- **label**: "stem_loop"
- **ApEinfo_revcolor**: #b1ff67
- **ApEinfo_fwdcolor**: #b1ff67

misc_feature 3010..3720
- **label**: "mCherry"
- **ApEinfo_revcolor**: #d59687
- **ApEinfo_fwdcolor**: #d59687

misc_feature 4395..4523
- **label**: "bla_promoter&UTR"
- **ApEinfo_revcolor**: #c6c9d1
- **ApEinfo_fwdcolor**: #c6c9d1

CDS complement(620..1648)
- **label**: "amyE (back)"
- **ApEinfo_revcolor**: #84b0dc
- **ApEinfo_fwdcolor**: #84b0dc

ORIGIN

```
1 AGGATCTTCT TGAGATCCTT TTTTCTGCG CGFAATCTGC TGCTTGCAAA CAAAAAAACC
61 ACCCTACCA GCCGTGGTTT GTTTGGCACA TCAAGAGCTA TCAACTCTTIT TCCGAAGGT
```
D.2 pHK026

LOCUS pHK026 5492 bp ds-DNA circular 10-APR-2017
DEFINITION .
FEATURES Location/Qualifiers
terminator 2846..2880
/label="t0 terminator of phage lambda"
/ApEinfo_revcolor=#ff9ccd
/ApEinfo_fwdcolor=#ff9ccd
CDS 4968..5488
/label="amyE (front)"
/ApEinfo_revcolor=#84b0dc
/ApEinfo_fwdcolor=#84b0dc
rep_origin complement(48..647)
/label="Col E1 ori"
/ApEinfo_revcolor=#75c6a9

164 Plasmid Listings
3421 ggccectgaa tgcagaaaga gacatgggct tggaggcgcct ctcgagccgc gatgtacccc
3481 gaggacggcg cccgaaggcc egagatcaga aggagtgaag aegcgggacc
3541 tacaagctgt aggtcaacag cactacaaag gcgaagactc ccgtgacagt gcggcggcgc
3601 tacaagctca acataaggct ggcataccac tcecaacagcc aggaactacac catgtggaaa
3661 cagtagaagac ggcctggagg cggcactccc acggcggaag tgggagcgtg tcaagggaga
3721 taatactagag gcagcgccat aaatatataa aagggcctag tggaggaact ggcccttcgc
3781 ttttatgttt tgaacetctg ctetactaggt cacaactgtc aacttcgcg
3841 TACGGCTCAAGC CCGGATCCAC ACCATTTTATT ATTCTATTTG TCCGATTTGG
3901 AATACGTCTTA ACCACTTTAT ACCCATTTTG ACCCATTTTG
3961 GCAACAATGCG CAGGACACCG GCAACGACCT
4021 TIGAGAAGAA GCAACGACCT
4081 ACCGACACCG GCAACGACCT
4141 GTGAGAAGAA GCAACGACCT
4201 GCAACAATGCG CAGGACACCG GCAACGACCT
4261 TIGAGAAGAA GCAACGACCT
4321 GCAACAATGCG CAGGACACCG GCAACGACCT
4381 GCAACAATGCG CAGGACACCG GCAACGACCT
4441 GCAACAATGCG CAGGACACCG GCAACGACCT
4501 GCAACAATGCG CAGGACACCG GCAACGACCT
4561 GCAACAATGCG CAGGACACCG GCAACGACCT
4621 GCAACAATGCG CAGGACACCG GCAACGACCT
4681 GCAACAATGCG CAGGACACCG GCAACGACCT
4741 GCAACAATGCG CAGGACACCG GCAACGACCT
4801 GCAACAATGCG CAGGACACCG GCAACGACCT
4861 GCAACAATGCG CAGGACACCG GCAACGACCT
4921 GCAACAATGCG CAGGACACCG GCAACGACCT
4981 GCAACAATGCG CAGGACACCG GCAACGACCT
5041 GCAACAATGCG CAGGACACCG GCAACGACCT
5101 GCAACAATGCG CAGGACACCG GCAACGACCT
5161 GCAACAATGCG CAGGACACCG GCAACGACCT
5221 GCAACAATGCG CAGGACACCG GCAACGACCT
5281 GCAACAATGCG CAGGACACCG GCAACGACCT
5341 GCAACAATGCG CAGGACACCG GCAACGACCT
5401 GCAACAATGCG CAGGACACCG GCAACGACCT
5461 GCAACAATGCG CAGGACACCG GCAACGACCT
5521 GCAACAATGCG CAGGACACCG GCAACGACCT

//
modified_base

CDS

source

RBS

misc_feature

misc_feature

misc_feature

misc_feature

terminator

ORIGIN

1 CATTTTACCA ATCTCTGAAAC GCCTCCTGAAA GCCTCCTGAA GCCTCCTGAAA GCCTCCTGAAA
61 TCCGGCGCCG CGCCTGCCTG CGCCTGCCTG CGCCTGCCTG CGCCTGCCTG CGCCTGCCTG
121 CAGGTGTAAG TATCTCAGTT CGGTTGTAAGCG GTGCCGCTCC AGCTGGCCTT ATCCGATTAAC TATCTCAGTT
181 CGGCTCGCG CGGCTCGCG CGGCTCGCG CGGCTCGCG CGGCTCGCG CGGCTCGCG
241 CGGCTCGCG CGGCTCGCG CGGCTCGCG CGGCTCGCG CGGCTCGCG CGGCTCGCG
301 CGGCTCGCG CGGCTCGCG CGGCTCGCG CGGCTCGCG CGGCTCGCG CGGCTCGCG
361 CGGCTCGCG CGGCTCGCG CGGCTCGCG CGGCTCGCG CGGCTCGCG CGGCTCGCG
421 CGGCTCGCG CGGCTCGCG CGGCTCGCG CGGCTCGCG CGGCTCGCG CGGCTCGCG
481 CGGCTCGCG CGGCTCGCG CGGCTCGCG CGGCTCGCG CGGCTCGCG CGGCTCGCG

ApEinfo_fwdcolor=#75c6a9

ApEinfo_fwdcolor=#d59687

ApEinfo_fwdcolor=#84b0dc

ApEinfo_fwdcolor=#c6c9d1

ApEinfo_fwdcolor=#f8d3a9

ApEinfo_fwdcolor=#ffef86

ApEinfo_fwdcolor=#b4abac

ApEinfo_fwdcolor=#85dae9

ApEinfo_fwdcolor=#ff9ccd
Plasmid Listings

541 GAGTTGATAG CTCTTGATCC GGGAAACAAA CCACCGCTGG TAGCGGTGGT TTTTTTGTTT
601 GCAAGCAAGA GTAAATCACG AGAAGAAAAG GATCTCAAGA AGATCCTTIG ATCTTTTCCTA
661 CGGGCTCTTG CGTTCTGATT TTGATTCTTG ACTTGTCTTG TTGGTCTTCTG TCCCTAATTCA
721 CGTTTGTCTT CTAGTTGGGT CTCTGCTGGA GACGTTTCAGA GTCACTGAGA GACGTCTCCT
781 GTGACTACTCC CAGAATTTAG ATGTTATTCT CATGTTTCTT ATGTTATTTT TTGCTTTCTG
841 CCAGGACGCG GAGAAGTTGTT GTGTTTCTTG GATTTTCTTG GATTTTCTTG GATTTTCTTG
901 GAGAGAGGAT TGCTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
961 CAGCGGGCTC TCTTTTGTTT TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
1021 GTTCTCTCTCT TCTCCTTCTT TCTCCTTCTT TCTCCTTCTT TCTCCTTCTT TCTCCTTCTT
1081 GTCTTCTTCTT TCTCCTTCTT TCTCCTTCTT TCTCCTTCTT TCTCCTTCTT TCTCCTTCTT
1141 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
1201 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
1261 GAGAGGAT TGCTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
1321 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
1381 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
1441 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
1501 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
1561 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
1621 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
1681 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
1741 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
1801 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
1861 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
1921 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
1981 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
2041 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
2101 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
2161 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
2221 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
2281 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
2341 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
2401 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
2461 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
2521 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
2581 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
2641 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
2701 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
2761 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
2821 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
2881 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
2941 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
3001 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
3061 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
3121 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
3181 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
3241 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
3301 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
3361 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
3421 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
3481 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
3541 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
3601 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
3661 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
3721 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
3781 CAGCGTTTCT CTTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG TTGTTTCTTG
3841 AAAATATATA TTATGTTTAC AGTAATATTTG ACCTTTAAAA AAGGATGAG TCTAATGAAG
3901 AAAGCAGACA AGTAAGCCTC CGAACTGAGA CCGAACCGGT GAACGCTCTC TACTAGAGAT
3961 GTGTATAATA TATAAATTAT ATATACTGTT AGAACAAATG TGAAGGATTG TACTAAAAG
4021 CTAAGTCGA AATTTTTTTA AATGTTTATA AATGTTTATG CCAATCTAGG GCAATGTTTAT
4081 TGAGATATCA CATATAATTT ATATGAAACAT AATCAACGAG GTGAATATTTT GACAAATTTT
4141 ATTAACGGAA AAATACCAAA TCAAGCGATT CAAAATCAA AAATCGTAAA AGATTTATTT
4201 GGAAGTCCAA TACGTGGATT ATATCTATTT GGTTACCCG TAAATCGTTT TTTACCGGATT
4261 AACACGGAT TAGTGTGTCT AGTCGTCGAC AATCATTTTT TACCTCAATT AACTCAAAAA
4321 AAACCAACAG AAAGAAATTT GACCTATATCA GAAAGAATTT GAAATACGAG TTTTACCGAAA
4381 CACTTGAAG TTACCGTTAT AAAATAGGAG TAAAGTGGCC TTGGCAATA TCCCTCCAAA
4441 AGAGAATTTA TATACGGTAA GTGCTCTGGA GCGAAATTG AGAATGCA AATCAACGAAA
4501 CCAAGCTATG ATCTCTGATT GGCATTTTT TTAGCAACAAG CAGAAGAAGA TAGTATTTCT
4561 CTATTGTGTC TCGATCTCTT CAGTATACCT GTCTCCGTAC TTGGACAGA TATAAGAGTT
4621 GCAATTAAGG ATCTCTGCTT AGAGAATTTG GAAAGAATTG AGAATCTATT TTATGCTTCTT
4681 ATTTAACCC TAGCTCGAAG GTGGCAAAA CAGAATATTT ATGAAGTCTT GGGAAATTG TCGGAAAAT
4741 GTTGTGGGAA ATGCGGCTTT TATCATTTTT CACTCAATTAA CTGAAAGGAA ATATCTATTT
4801 GCTAGAAAAAG GCTATCCGAG AGAGTGTGAT GATAATGCGG AAGGAATATA TCCAAAGGTT
4861 AACACGGAT TAGTGTGTCT GAAATACGAG TTTTACCGGATT AACACGGAT TAGTGTGTCT
4921 ATTTAACCC TAGCTCGAAG GTGGCAAAA CAGAATATTT ATGAAGTCTT GGGAAATTG TCGGAAAAT
4981 GATTTTCTCT TCTTTTAAGG TCGGCTGTTT CTTGGCAACTT CTTGGCAACTT
5041 GGCGGCTGCG AGTGCTGAAA CGGCGAACAA ATCGAATGAG TCTACAGCAC CGCGTCTAGC
5101 CTCAGTACAA GAAGAAGAAA GTAGTGAATG TCGGTCAAG CTGTTAAAAC
5161 ACAATAATG GAAGAATGAT GACGATACAT ATAGCAGTAC TCAAGACATG CGGTTACAAA
5221 AGAATCAACAA AGGGAGCTAA AAGGAATGTTT CAATATGAGG GAGTGTGACG CTTGTATTTG
5281 CGAATCTAC AGGGAGCTAA AAGGAATGTTT ATTATATTTG TACCACTATG TCAATATAGG
5341 GTGCAAGGAG CTAATATATG GAAATACGAG TTTTACCGGATT AACACGGAT TAGTGTGTCT
5401 GCTAGAAAAAG GCTATCCGAG AGAGTGTGAT GATAATGCGG AAGGAATATA TCCAAAGGTT
5461 AACACGGAT TAGTGTGTCT GCTAGAAAAAG GTATATTTAG GTTGAATATTTG AAGGAATATA

//
Appendix E

Primer Sequences

Sequences for all primers used during the project are shown in the table below. Physical DNA is available in the freezer boxes marked ‘Haydn Primers I-V’ stored at -20°C. This information is also available in digital form at -

https://docs.google.com/spreadsheets/d/1cw5qsqBMo47zV6GzNeU1o2P9nLXBbZ2ZQI

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>H1-spec-fw</td>
<td>AATATGCATCCTTTAACAAAGAGTTTATTGATCTGTA TAATAAGAATATGATATTC</td>
</tr>
<tr>
<td>4b</td>
<td>H1-spec-rv</td>
<td>GATTTGTTAAGAGGATGATATT</td>
</tr>
<tr>
<td>4a</td>
<td>spec-H2-fw</td>
<td>CAATAACAGGTGCTTTTTTTTTTTTACAGACCTTTTTCT</td>
</tr>
<tr>
<td>3b</td>
<td>spec-H2-rv</td>
<td>ACTTTATCTAAAAAAGAAAGGTCTGATTTAAAGAAGTAAG CACCTGTATTG</td>
</tr>
<tr>
<td>2a</td>
<td>H2-backbone-fw</td>
<td>ACTTTTCTGATGTTTTTCAATTTGTGCGGTTTTTTCCATG</td>
</tr>
<tr>
<td>1b</td>
<td>H2-backbone-rv</td>
<td>CTATGGAAAAACGCCAGCAATTGAACATCCAGAAA GT</td>
</tr>
<tr>
<td>1a</td>
<td>backbone-H1-fw</td>
<td>CTTCAAAAATCAAAATAGGTGTCGAAGATGTCGGAATGATGAG</td>
</tr>
<tr>
<td>2b</td>
<td>backbone-H1-rv</td>
<td>GATGATTTTTTTAATTCTATCCAGTGATCATTCTGACACT</td>
</tr>
<tr>
<td>s1</td>
<td>pHK001-seq0</td>
<td>GCGCATCAGAGCCTTTT</td>
</tr>
<tr>
<td>s2</td>
<td>pHK001-seq1</td>
<td>CGATCCCTTGATCCTTTGTC</td>
</tr>
<tr>
<td>s3</td>
<td>pHK001-seq2</td>
<td>AGCAGCATCTCCACAAAGCG</td>
</tr>
<tr>
<td>s4</td>
<td>pHK001-seq3</td>
<td>GCGGACCAAATTACGGCG</td>
</tr>
<tr>
<td>s5</td>
<td>pHK001-seq4</td>
<td>GAAAGCAACTAATCCTGCGC</td>
</tr>
<tr>
<td>s6</td>
<td>pHK001-seq5</td>
<td>TATCCTTGCGGTGGTACAC</td>
</tr>
<tr>
<td>s7</td>
<td>pHK001-seq6</td>
<td>GCAGCAATCTCCTGCTACCTT</td>
</tr>
<tr>
<td>s8</td>
<td>pHK001-seq7</td>
<td>CCTCCATCGCTACTTTGCTACTAC</td>
</tr>
<tr>
<td>s9</td>
<td>pHK001-seq8</td>
<td>TTGCTGTAACCAGGGTGTAG</td>
</tr>
<tr>
<td>s10</td>
<td>pHK001-seq9</td>
<td>GGAACGCAAGGAGGATGAA</td>
</tr>
<tr>
<td>s11</td>
<td>pHK002-seq0</td>
<td>GTACTTAAACCCTAAAGGTCAC</td>
</tr>
<tr>
<td>s12</td>
<td>pHK002-seq1</td>
<td>ATACGGGTAGTGCTCAGG</td>
</tr>
<tr>
<td>s13</td>
<td>pHK002-seq2</td>
<td>GGGGAGATGTAGTGAATG</td>
</tr>
<tr>
<td>5</td>
<td>pHK003_cat-H2_fw</td>
<td>GGAGTCGCATAAGGGAGAGCGGTCTTCTTTCATTTTCATAA</td>
</tr>
<tr>
<td>6</td>
<td>pHK003_cat-H2_rv</td>
<td>GCCCTTTATGAAATGAAGAAGGCTCTCTCCCTATGC</td>
</tr>
<tr>
<td>7</td>
<td>pHK003_ars-venus_fw</td>
<td>CATCCTTCCACATAAGGTGTTTTAAACAATTCAGAAGC</td>
</tr>
<tr>
<td>8</td>
<td>pHK003_ars-venus_rv</td>
<td>GGAACGACGGTTGAAATTTGTTAAACCCCTATGT</td>
</tr>
<tr>
<td>s14</td>
<td>pHK003_seq0</td>
<td>ACCACGATCAGCATGAAAGGCA</td>
</tr>
<tr>
<td>s15</td>
<td>pHK003_seq1</td>
<td>TGATACCTAGGCAACGATC</td>
</tr>
<tr>
<td>s16</td>
<td>pHK003_seq2</td>
<td>CATTCTTGATATTTGAGCTCCTG</td>
</tr>
<tr>
<td>s17</td>
<td>pHK003_seq3</td>
<td>GGCCCTATATCGGCACAT</td>
</tr>
<tr>
<td>9</td>
<td>pHK003_turk-cat_fw</td>
<td>GTTGTGCAGGTGAAAGGCTCTCTACTAGGCCCATTAGTCA</td>
</tr>
<tr>
<td>10</td>
<td>pHK003_turk-cat_rv</td>
<td>GGTGAACTAATGGGCTAGTAGAGACGGCTGTCACAGC</td>
</tr>
<tr>
<td>11</td>
<td>pHK003_ars-turk_fw</td>
<td>CATCAGGTTTTAAAACATTCAGACATCG</td>
</tr>
<tr>
<td>12</td>
<td>pHK003_ars-turk_rv</td>
<td>CGGCAACCGAGCGTTGAAATTTGTTAAACCTTATG</td>
</tr>
<tr>
<td>s18</td>
<td>pHK003_seq4</td>
<td>CAAGCTGACCCTGAAGTTCATC</td>
</tr>
<tr>
<td>s19</td>
<td>pHK003_seq5</td>
<td>GCTGAGAGCTGACAGGCA</td>
</tr>
<tr>
<td>13</td>
<td>pHK004_yqKC-venus_fw</td>
<td>TATAATACCTAAAAATTTTTCCATTTCTAGTACAGCTG</td>
</tr>
<tr>
<td>14</td>
<td>pHK004_yqKC-venus_rv</td>
<td>CGAGCTGTTACAGGAAAAATTTTTTAGTATATA</td>
</tr>
<tr>
<td></td>
<td>Sequence Name</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>15</td>
<td>pHK004_vnus-arsR0_fw</td>
<td>ACCTTTTCTATTGAATCCATTCATATCGCCTTCTTTTAATTC</td>
</tr>
<tr>
<td>16</td>
<td>pHK004_vnus-arsR0_rv</td>
<td>GATTTAAGAAGGGATATGAAATGGATTTCAATAGAAAAAGGT</td>
</tr>
<tr>
<td>17</td>
<td>pHK004_vnus-arsR30_fw</td>
<td>CTTTTCTATTTGAAATCCATCCGTAGCAGTTCTGATTGG</td>
</tr>
<tr>
<td>18</td>
<td>pHK004_vnus-arsR30_rv</td>
<td>AAATCAGAAGCTACTAGGATGGATTCAATAGAAAAGGT</td>
</tr>
<tr>
<td>19</td>
<td>pHK004_vnus-arsR60_fw</td>
<td>ACCTTTTCTATTGAATCCATAGCAAGAGCCTTAAATTTTTTTTT</td>
</tr>
<tr>
<td>20</td>
<td>pHK004_vnus-arsR60_rv</td>
<td>AAAAAATTTTAAGGCTCTTGTATGATTTCAATAGAAAAAGGT</td>
</tr>
<tr>
<td>21</td>
<td>pHK005_yqcK-ven_fw</td>
<td>GTAGTAGCAAAAGTAGCGATGGG</td>
</tr>
<tr>
<td>22</td>
<td>pHK005_yqcK-ven_rv</td>
<td>CTACACCGGCTCACAGCA</td>
</tr>
<tr>
<td>23</td>
<td>pHK005_ven-arsR_fw</td>
<td>CAGGAGTCCAAATACCAGAGAATG</td>
</tr>
<tr>
<td>24</td>
<td>pHK005_ven-arsR_rv</td>
<td>GATGAACCTTCAGGCTAGTTG</td>
</tr>
<tr>
<td>25</td>
<td>pHK005_ver0_rv</td>
<td>TATTTACCGGTGTTATCCAAACACTGAGTGCAATCAC</td>
</tr>
<tr>
<td>26</td>
<td>pHK003_seq0</td>
<td>ATTTCAGAAGCGCTCGGTTGCG</td>
</tr>
<tr>
<td>27</td>
<td>pHK003_ver0</td>
<td>ATTAGTTGCCACTAGTTGGGATAACCACCGGTTAAA</td>
</tr>
<tr>
<td>28</td>
<td>pHK003_ver1</td>
<td>CTACACCGGCTCACAGCA</td>
</tr>
<tr>
<td>29</td>
<td>pHK003_ver2</td>
<td>CAGGAGTCCAAATACCAGAGAATG</td>
</tr>
<tr>
<td>30</td>
<td>pHK003_r2os1l1-turk_fw</td>
<td>GATGAACTTCAGGCTAGTTG</td>
</tr>
<tr>
<td>31</td>
<td>pHK003_r2os1l2-cat_fw</td>
<td>GATGAACTTCAGGCTAGTTG</td>
</tr>
<tr>
<td>32</td>
<td>pHK003_turk-r2os1l2_rv</td>
<td>GATGAACTTCAGGCTAGTTG</td>
</tr>
<tr>
<td>33</td>
<td>pHK003_r2os1l3-H2_fw</td>
<td>GATGAACTTCAGGCTAGTTG</td>
</tr>
<tr>
<td>34</td>
<td>pHK003_r2os1l3-cat_rv</td>
<td>GATGAACTTCAGGCTAGTTG</td>
</tr>
<tr>
<td>35</td>
<td>pHK005_yqcK-ven_rv</td>
<td>TCTTATATATATATCAAAAAATTTTGATATTCTAGTTG</td>
</tr>
<tr>
<td>36</td>
<td>pHK005_yqcK-ven_rv</td>
<td>ACAGCTGCTGCAAA</td>
</tr>
<tr>
<td>37</td>
<td>pHK005_ven-arsR_fw</td>
<td>TGGACGAGCTGTACATGAAATGATCAAATTTTTTTTGTATG</td>
</tr>
<tr>
<td>38</td>
<td>pHK005_ven-arsR_rv</td>
<td>CCTCCTTTATCAATTTTTTTGATTTAATATCACC</td>
</tr>
<tr>
<td>39</td>
<td>pHK005_ven-arsR_rv</td>
<td>TAAATATATGAAATGACGTTAAGAGCCGAGACGTCAGTCAG</td>
</tr>
<tr>
<td>40</td>
<td>pHK005_ven-arsR_rv</td>
<td>AAAAATTTGATTTAAGAGCCGATAGTGAATGTTCAAC</td>
</tr>
<tr>
<td>41</td>
<td>pHK005_ven-arsR_rv</td>
<td>TAGAAAGTGTAGGCTAGTAAAGCGAGACGTCAGTCAG</td>
</tr>
</tbody>
</table>
Primer Sequences

35 PHK003.1_1L3-H2_fw CTACTGTGAAATAGGAAGTGCCGAAAACTCCCTCAATC
 CATCCTCCACATAAGG

36 pHK003.1_back-H1_rv TTAACATTATTTACGCCATATTCTGACACTCTATTATT
 GATTTTTTG

37 pHK003.1_back-H1_fw CAAAAATAAAATAGGAAGTGCCGAAAACTCCCTCAATC
 AATAGTTAAAAATC

38 pHK003.1_op-1L1_rv GTTTGGATAACCCAGGGTAAATAATGTTAAAAAC
 TTATGTTGAAG

39 pHK003_ver3 CTACACCGGCTCACAGCAA

40 pHK003_ver4 GAACAGGCGATCGAGGATCG

41 pHK003.2_H2-back_fw TTAATCAGACCTTTTCTTTTTGAATAAG

42 pHK003.2_H2-back_rv TCTTGACACTCTTTATTTGATTTTTTG

43 pHK003.2_H1-op_fw ATGATCGGTGAAATAGTTAAAAATC

44 pHK003.2_H1-op_rv ATTTTTAAAACCTTTATGTTGAAGG

45 pHK003.2_cat_fw TACTAGCCATTTAGTTCAACAAAC

46 pHK003.2_cat_rv AGCTCTCCCTTATGCGAC

47 pHK003.2_mTurk_fw TTCAGAACGCTCGTTGC

48 pHK003.2_mTurk_rv CAGACCGTGCCACACAAAC

49 pHK003.2_H2-back_H1-op CGGAAGTAAGTCTTCAAAAAATCAAATAAGGAGTGTCA
 AGAatgatcgggtgaatagttaaaaaattcatcgcgaatgttgc

50 pHK003.2_H1-op_mTurk GCCATCAATCCATCCTTCCACATAAGGTTAAAAACAA
 Ttttccccagctctcgggttgcgc

51 pHK003.2_mTurk_cat CGTTTTATCTTTTCTTTTCTTTTTGGAAGCTCTGtacta
 gccctttattttaacaacaaagaaaaatggatatgacgtttaaatcag

52 pHK003.2_cat_H2-back CCTAATTGAGGGATCGCATAGGGAGAGCTttaatcg
 accttttttttgaataagttctctcttttttcataaaaa
 gg

53 pHK006_dif-cat_fw ACTTCCTAGAATATAATATTAGTAAAAATAGAAGCTTTTA
 ATAAAAATTGATAAGG

54 pHK006_dif-cat_rv AGTTTTAACATAATATATATTCTAGAAAGTTTAAAGAAC
 CAGTCATTAGG

55 pHK006_venus_fw CAAATTTAAAAACTGCTTGATCGTCCAATTTTCTTGTTTG
 TTGAC

56 pHK006_venus_rv CTGAATTAGCCCTTCGGAAGCTGCTCGTACC
57 PHK006_turq_fw TCTGAACGATCAGACCAGTTCGGAACGAAGGGCTAATT
CAG
58 PHK006_turq_rv TATATATTCTAGGAAGTGTCTACAGATTAATAATTATT
CTTTATTATAC
59 pHK006_cat_fw AAAGAATAAATTATTAATCTGTACACTTCTAGAATA
TATATATGTAAC
60 pHK006_cat_rv CATCATCGCTCATCCATGCGAAGTTTACATAATATA
ATTCTAGGAAGTTTATAAAAG
61 pHK006_back_fw CTTCCTGAATAATATTATATATGAAACTTGCAGACATGGATA
GAGCGATG
62 pHK006_back_rv GTTCAACAAACGAAAAATTGAGCAGATCGACAGCAGGTTTTTT
AATTGG
63 pHK006_ver0 CTTTTTCATGTGATCTGGG
64 pHK006_ver1 TTTTGCTTTTCCCGGG
65 pHK007_back_fw GTTTTTTCAAGCTTTGACATCACTTGCTGGCGTTTTTC
CATAG
66 pHK007_back_rv GAGAATTGTCGTAAACACATTAGTCTTGACACTCT
TATTTGATTTTTTG
67 pHK007_lacA_fw CAAAAAATCAAATAAGGAGTGTCAAGACTAATGTGTGT
TTACGACAATTCTC
68 pHK007_lacA_rv CTATGGAAAAACGCCAGCAAGTGATGTCAAAGCTTGAA
AAAAC
69 pHK007_ver0 GGTATCTTTTATAGTCTTGCG
70 pHK008_ars_fw GAATTCTCCTCTTTAATTGGTGCTTCATATCGGCCTTC
TTAATCAATTTTTTG
71 pHK008_ars_rv GCCGCCGGGCGTTTTTTATTAATTGTTTAAAACCTTAT
GTGGAAG
72 pHK008_back_fw CCACATAAGGGTTTTTAACATATTTATACAAAGCTTCA
CC
73 pHK008_back_rv CAAAAAATGGATTAAGAAGGCGATATGAAGACACC
AATTAAAGGAGGAATTC
74 pHK009_ase_fw CCGGGCGTTTTTTATACAGCGCCTCTAAAGGAGCC
75 pHK009_ase_rv GAATTCTCCTCTTTAATTGGTGTTATGAGCTCCTCCTTC
CC
76 pHK009_back_fw GGGAGGAGGAGGCTCATAACCAATTAAGGAGGATA
TC
77 pHK009_back_rv TCTCTTTAGGCGCTTTTATATAAAAAAGCGCCCG
<table>
<thead>
<tr>
<th></th>
<th>Primer Name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>pHK006.2_A_fw</td>
<td>TATTTACCCGTTATCCACACACTGAGTGGAATCAATACCTCTGAAATATACTCGAGGACGGC</td>
</tr>
<tr>
<td>79</td>
<td>pHK006.2_A_rv</td>
<td>GTTTATTACCCGTTATCCACACACTGAGTGGAATCAATACCTCTGAAATATACTCGAGGACGGC</td>
</tr>
<tr>
<td>80</td>
<td>pHK006.2_B_fw</td>
<td>TTCGTTACCTTATCCACACACTGAGTGGAATCAACTGAAGGACGGC</td>
</tr>
<tr>
<td>81</td>
<td>pHK006.2_B_rv</td>
<td>TATCGGATTACCCGTTATCCACACACTGAGTGGAATCAACTGAAGGACGGC</td>
</tr>
<tr>
<td>82</td>
<td>pHK010_bla_fw</td>
<td>GCACACTCGTTTCCTTAATGATACTACACAGACTAGGAACTGAGTGGAATCAATACCTCTGAAATATACTCGAGGACGGC</td>
</tr>
<tr>
<td>83</td>
<td>pHK010_bla_rv</td>
<td>GCACACTCGTTTCCTTAATGATACTACACAGACTAGGAACTGAGTGGAATCAATACCTCTGAAATATACTCGAGGACGGC</td>
</tr>
<tr>
<td>84</td>
<td>pHK010_ven_fw</td>
<td>TATTTACCCGTTATCCACACACTGAGTGGAATCAATACCTCTGAAATATACTCGAGGACGGC</td>
</tr>
<tr>
<td>85</td>
<td>pHK010_ven_rv</td>
<td>TATTTACCCGTTATCCACACACTGAGTGGAATCAATACCTCTGAAATATACTCGAGGACGGC</td>
</tr>
<tr>
<td>86</td>
<td>pHK006v4_ven_fw</td>
<td>TATTTACCCGTTATCCACACACTGAGTGGAATCAATACCTCTGAAATATACTCGAGGACGGC</td>
</tr>
<tr>
<td>87</td>
<td>pHK006v4_ven_rv</td>
<td>TATTTACCCGTTATCCACACACTGAGTGGAATCAATACCTCTGAAATATACTCGAGGACGGC</td>
</tr>
<tr>
<td>88</td>
<td>pHK006v4_turq_fw</td>
<td>TATTTACCCGTTATCCACACACTGAGTGGAATCAATACCTCTGAAATATACTCGAGGACGGC</td>
</tr>
<tr>
<td>89</td>
<td>pHK006v4_turq_rv</td>
<td>TATTTACCCGTTATCCACACACTGAGTGGAATCAATACCTCTGAAATATACTCGAGGACGGC</td>
</tr>
<tr>
<td>90</td>
<td>pHK006v4_cat_fw</td>
<td>TATTTACCCGTTATCCACACACTGAGTGGAATCAATACCTCTGAAATATACTCGAGGACGGC</td>
</tr>
<tr>
<td>91</td>
<td>pHK006v4_cat_rv</td>
<td>TATTTACCCGTTATCCACACACTGAGTGGAATCAATACCTCTGAAATATACTCGAGGACGGC</td>
</tr>
<tr>
<td>92</td>
<td>pHK006v4_back_fw</td>
<td>TATTTACCCGTTATCCACACACTGAGTGGAATCAATACCTCTGAAATATACTCGAGGACGGC</td>
</tr>
<tr>
<td>93</td>
<td>pHK006v4_back_rv</td>
<td>TATTTACCCGTTATCCACACACTGAGTGGAATCAATACCTCTGAAATATACTCGAGGACGGC</td>
</tr>
<tr>
<td>94</td>
<td>pHK006v5_preB_fw</td>
<td>TATTTACCCGTTATCCACACACTGAGTGGAATCAATACCTCTGAAATATACTCGAGGACGGC</td>
</tr>
<tr>
<td>95</td>
<td>pHK006v5_preB_rv</td>
<td>TATTTACCCGTTATCCACACACTGAGTGGAATCAATACCTCTGAAATATACTCGAGGACGGC</td>
</tr>
<tr>
<td>96</td>
<td>pHK006v5_preS_fw</td>
<td>TATTTACCCGTTATCCACACACTGAGTGGAATCAATACCTCTGAAATATACTCGAGGACGGC</td>
</tr>
</tbody>
</table>
pHK006v5_preS_rv
TAACAACGTGGATTTTCTGATTGAACTCACTTACGGC
GAGTTGAACTACATGCACTCC
pHK006v5_B_fw
AGTTCAATCAGAAAATCCACAGTTGTTAGGCTCAGTC
pHK006v5_B_rv
CAGTTCAATCAGAAAATCCACAGTTGTTAGGCTCAGTC
pHK006v5_T_fw
GAGTTCAATCAGAAAATCCACAGTTGTTAGGCTCAGTC
pHK006v5_T_rv
GAGTTCAATCAGAAAATCCACAGTTGTTAGGCTCAGTC
pHK006v5_V_fw
GAGTTCAATCAGAAAATCCACAGTTGTTAGGCTCAGTC
pHK006v5_V_rv
GAGTTCAATCAGAAAATCCACAGTTGTTAGGCTCAGTC
pHK006v5_seq0
TTCTGCTGGTAGTGGTC
pHK006v5_seq1
CTCAGTTGTTGGATAACCACGGGTAATAGGCTCAGTC
pHK006v6_T_fw
GAGTTCAATCAGAAAATCCACAGTTGTTAGGCTCAGTC
pHK006v6_T_rv
GAGTTCAATCAGAAAATCCACAGTTGTTAGGCTCAGTC
pHK006v6_V_fw
GAGTTCAATCAGAAAATCCACAGTTGTTAGGCTCAGTC
pHK006v6_V_rv
GAGTTCAATCAGAAAATCCACAGTTGTTAGGCTCAGTC
pHK008v2_A_fw
TTTGGTCTCAAAGACTGCAGTTGCTCAGTC
pHK008v2_A_rv
TTTGGTCTCAAAGACTGCAGTTGCTCAGTC
pHK008v2_B_fw
TTTGGTCTCAAAGACTGCAGTTGCTCAGTC
pHK008v2_B_rv
TTTGGTCTCAAAGACTGCAGTTGCTCAGTC
pHK011_fw
CAGTTCAATCAGAAAATCCACAGTTGTTAGGCTCAGTC
pHK011_rv
CAGTTCAATCAGAAAATCCACAGTTGTTAGGCTCAGTC
pHK012_fw
CAGTTCAATCAGAAAATCCACAGTTGTTAGGCTCAGTC
pHK012_rv
CAGTTCAATCAGAAAATCCACAGTTGTTAGGCTCAGTC
117 pHK012_rv CGCCCTTGCTCACCATTTTGAATTCCTCCTTTAATTGG
118 HK_amyE_fw CGAACTGGTACTGGCTG
119 HK_amyE_rv TCAAGGAAAAACATGAGGC
120 HK_rep_fw GCCCATTAGTTCAACAAACG
121 HK_rep_rv TTAACGCTAAAGGTCG
122 pHK008v3_B_fw CATTTTGAATTCCTCCTTTAATTGGTGTTCCAATTTTTT
123 pHK008v3_B_rv CGGGCGTTTTTTATTCATCATTGGAAGGATGGATTGAA
124 pHK008v3_P_fw CATTTTGAATTCCTCCTTTAATTGGTGTCCAATTTTTT
125 pHK008v3_P_rv CGGGCGTTTTTTATTCATCATTGGAAGGATGGATTGAA
126 HK_cat-lin_fw GGTCTCAACTGTCTCTCGACATGGATGAC
127 HK_cat-lin_rv GGTCTCATGACCATATACATTGCCCG
128 pHK006v6-lin_fw GGTCTCAACTGTCTCTCGACATGGATGAC
129 pHK006v6-lin_rv GGTCTCATGACCATATACATTGCCCG
130 pHK006v7_preB-fr_fw GAGTTCAATCAGAAAATCCACAGTTGTTAGGTCTCAGT
131 pHK_RR_preB_a1 GTTGTGAAGGTCTCAGTATGACATCAAAAAGCC
132 pHK_RR_preB_a2 GGTAAATAGGTCTCAACCTCAAACCCGATCGACAGATT
133 pHK_RR_preB_b1 CTTGATGTTGAGTCTGACCATGAC
134 pHK_RR_preB_b2 CTATGACCATGAC
135 pHK_RR_preT_a1 GGTGTTAGGTCTCAGTATGACATCAAAAAGCC
136 pHK_RR_preT_a2 GGTAAATAGGTCTCAACCTCAAACCCGATCGACAGATT
137 pHK_RR_preT_b1 GGTGTTAGGTCTCAGTATGACATCAAAAAGCC
138 pHK_RR_preT_b2 GGTGTTAGGTCTCAGTATGACATCAAAAAGCC
139 pHK_RR_preT_b2 GGTGTTAGGTCTCAGTATGACATCAAAAAGCC
<table>
<thead>
<tr>
<th>Sequence ID</th>
<th>Sequence 1</th>
<th>Sequence 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHK_RR_preV_a1</td>
<td>GTTAGGTCAGTGAGGAGGGGCTTACTTGTTGCTTTTC</td>
<td></td>
</tr>
<tr>
<td>pHK_RR_preV_a2</td>
<td>GGGTAATAGGCTCTCAAGGTTATTAGCGCGGATTTTC</td>
<td>CAATG</td>
</tr>
<tr>
<td>pHK_RR_preV_b1</td>
<td>GCGGCATAATCAACCTTGAGACCTATTTACCCGTGGTT</td>
<td></td>
</tr>
<tr>
<td>pHK_RR_preV_b2</td>
<td>CAAGTAACCCCTCACGAGACCTAACTGTGGATTTC</td>
<td>ATC</td>
</tr>
<tr>
<td>pHK_RBS_preV_fw</td>
<td>TCGCCGTAAGTGATTTGTAACAAAATCGCTTCAG</td>
<td></td>
</tr>
<tr>
<td>pHK_RBS_preV_rv</td>
<td>GATTTTCTGATTGAACCTCTACTACGGCGACGTCTCTAG</td>
<td>AAAATTTACATATGTAAAGATTTAAATGC</td>
</tr>
<tr>
<td>pHK018_pV_A_fw</td>
<td>ACCGAAAAAGTCTCAGTACACGGGATTTGGGTCTACTC</td>
<td></td>
</tr>
<tr>
<td>pHK018_pV_A_rv</td>
<td>TAAAGATAGACACTATCCCTGTAAACTGAGACTTTTCG</td>
<td>TATTAACGAGCAATCTCCTCTCAC</td>
</tr>
<tr>
<td>pHK020_ArsR_fw</td>
<td>AAAAGAAGACAAATGGAAGCAGAATCAGAACTGCTAG</td>
<td></td>
</tr>
<tr>
<td>pHK020_ArsR_v1_rv</td>
<td>AAAGAAGACCGGTCTTTTACGCAATCTCCTTGAC</td>
<td>AAAAGAAGACCGGTCTTTTACGCAATCTCCTTGAC</td>
</tr>
<tr>
<td>pHK020_ArsR_v2_rv</td>
<td>AAAGAAGACCGGTCTTTTACGCAATCTCCTTGAC</td>
<td>AAAAGAAGACCGGTCTTTTACGCAATCTCCTTGAC</td>
</tr>
<tr>
<td>PHK020_seq0</td>
<td>GGGTCCGTCATCTTTATATGG</td>
<td>CTGTTCAATAAAGCTGAC</td>
</tr>
<tr>
<td>PHK020_seq1</td>
<td>GGTTGCCGTCATCTTTATATGG</td>
<td>CTGTTCAATAAAGCTGAC</td>
</tr>
<tr>
<td>pHK020_spc-bla_v1_fw</td>
<td>AAAGAAGACCAAGAGAAGTGATGATGATAGCAGGG</td>
<td>AAAAGAAGACCAAGAGAAGTGATGATGATAGCAGGG</td>
</tr>
<tr>
<td>pHK020_spc-bla_v1_rv</td>
<td>AAAGAAGACCAAGAGAAGTGATGATGATAGCAGGG</td>
<td>AAAAGAAGACCAAGAGAAGTGATGATGATAGCAGGG</td>
</tr>
<tr>
<td>pHK020_spc-bla_v2_fw</td>
<td>AAAGAAGACCAAGAGAAGTGATGATGATAGCAGGG</td>
<td>AAAAGAAGACCAAGAGAAGTGATGATGATAGCAGGG</td>
</tr>
<tr>
<td>pHK020_spc-bla_v2_rv</td>
<td>AAAGAAGACCAAGAGAAGTGATGATGATAGCAGGG</td>
<td>AAAAGAAGACCAAGAGAAGTGATGATGATAGCAGGG</td>
</tr>
<tr>
<td>pHK020_yvfM_rv</td>
<td>TTAGAAGACAAAGGTTTAGCCCTGTGCGGCC</td>
<td></td>
</tr>
<tr>
<td>pHK020_yvfM_v1_fw</td>
<td>AAAGAAGACAAAGGTTTAGCCCTGTGCGGCC</td>
<td>AAAGAAGACAAAGGTTTAGCCCTGTGCGGCC</td>
</tr>
<tr>
<td>pHK020_yvfM_v2_fw</td>
<td>AAAGAAGACAAAGGTTTAGCCCTGTGCGGCC</td>
<td>AAAGAAGACAAAGGTTTAGCCCTGTGCGGCC</td>
</tr>
<tr>
<td>pHK021_seq2</td>
<td>GTTGGCGTCATCTTTATATGG</td>
<td>GTTGGCGTCATCTTTATATGG</td>
</tr>
<tr>
<td>pHK021_seq1</td>
<td>GGGTGTCTCTAGTAAATAATTCCG</td>
<td>GGGTGTCTCTAGTAAATAATTCCG</td>
</tr>
<tr>
<td>pHK021_seq0</td>
<td>GGACAAACATTACGTGATAGCC</td>
<td>GGACAAACATTACGTGATAGCC</td>
</tr>
<tr>
<td>pHK023_seq1</td>
<td>GCTGAGCCGTACGTTAAAAGTAC</td>
<td>GCTGAGCCGTACGTTAAAAGTAC</td>
</tr>
<tr>
<td>pHK023_seq0</td>
<td>CCGTGCGGTCTATTCAAATTTAG</td>
<td>CCGTGCGGTCTATTCAAATTTAG</td>
</tr>
<tr>
<td></td>
<td>Primer Sequences</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>pHK023v2_back_rv AAAGAAGACAACGTAGCATAATAAAGATGACGGCAACC</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>pHK023v2_back_fw AAAGAAGACAAAGAACACCGGTCTCTACTAGTAGATCTG</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>pHK023v1_back_fw AAAGAAGACTAGAACCGGTGAACGCTCTCTAC</td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>pHK023v1_back_rv ATAGAAGACAACGTATTAGCCCTTCCTTCGCC</td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>pHK023v2_ven_rv AAAGAAGACTTTGTTCTCGTGCTCTGCTCTGCTCTTTTTTCA</td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>pHK023v1_ven_rv AAAGAAGACTTTGTTCTCGTGCTCTGCTCTGCTCTTTTTTCA</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>pHK023v2_ven_fw AAAGAAGACAATACCGGTCTCAGTTGAGGCGATTACTTTTCTCTGCC</td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>pHK023v1_ven_fw AAAGAAGACAATACCGGTCTCAGTTGAGGCGATTACTTTTCTCTGCC</td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>pHK022_seq1 GTCATTTTCTATGCTGTTAACC</td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>pHK022_seq0 GCTTTACTTGTCTCTTTTTTCT</td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>pHK022v2_e4R_rv AAAGAAGACAATTACGCGTCTCAGAAACGCAATACGATA</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>pHK022v1_e4R_rv AAAGAAGACAATTACGCGTCTCAGAAACGCAATACGATA</td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>pHK022v2_e4R_fw AAAGAAGACTTTGTTCAATAGAAAAAGTAAGCATG</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>pHK022v1_e4R_fw AAAGAAGACTTTGTTCAATAGAAAAAGTAAGCATG</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>pHK022v2_back_fw AAAGAAGACAATACCGGTCTCAGAAACGCAATACGATA</td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>pHK022v1_back_fw AAAGAAGACAATACCGGTCTCAGAAACGCAATACGATA</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>pHK022v2_back_rv ATTAGAAGACAATTACGCGTCTCAGAAACGCAATACGATA</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>pHK022v1_back_rv ATTAGAAGACAATTACGCGTCTCAGAAACGCAATACGATA</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>pHK022v2_amyEf_fw AAAGAAGACTAGACTGAGTCTCAGAAACGCAATACGATA</td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>pHK022v1_amyEf_fw AAAGAAGACTAGACTGAGTCTCAGAAACGCAATACGATA</td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>pHK022v2_amyEf_rv AAAGAAGACTAGACTGAGTCTCAGAAACGCAATACGATA</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>pHK022v1_amyEf_rv AAAGAAGACTAGACTGAGTCTCAGAAACGCAATACGATA</td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>pHK022fix_aE(f)_r CAGCCAGTACCAGTTCCAGATGCTTTTATCTCTCTTGTG</td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>pHK022fix_aE(f)_r CAGCCAGTACCAGTTCCAGATGCTTTTATCTCTCTTGTG</td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>pHK022fix_aE(f)_r CAGCCAGTACCAGTTCCAGATGCTTTTATCTCTCTTGTG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sequence</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>pHK022fix_aE(f)_f GAATCAAGGAGATAAAAGCATGTCGAACTGGTACTGCC</td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>pHK022fix_aE(b)_r CCTTAAACGCTGTCGCTCGTTCAATTAGTTGATAAAC</td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>pHK022fix_aE(b)_f GTTTATCAATCAATAATGGACAGACGACAGCGTTTTAAGG</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>pHK_Pars_ArsR_rv TTTCTCTCAGTCTTAAAATTTTTTTAGCAGCAATCTCC</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>pHK_RBSars_rv TTTCTCTCACCATATCGCTCTTTAAATCAATTTTTTTTT</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>pHK_RBSars_fw AAACGCTCTCAAGACAAAAAAATAGATTAAGAGAGGGATATGAATATGA</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>pHK_Pars_rv TTTCTCTCCTCGTCTGATTTAATCTCATGTATTGATTTAATTAATG</td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>pHK_Pars_fw TTTCTCTCTCGTCTCTGTTTTAAACAACCTATGTGGAAG</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>pHK022_ggFixB_rv ATGGAAGACTTATGCTTTTATCTCCTTGACTTCC</td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>pHK022_ggFixA_fw AAAGAAGACTAAGCATTGCCTCGAAGACTCGTGACTGAGCTG</td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>pHK022_ggFixB_fw AAAGAAGACAGACAGGCGTTTAAGGATG</td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>pHK022_ggFixA_rv AATGAAGACTATGCTCGTCCATTATCGATTGATTGATAAAC</td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>HK_pPen_fw TTTCTCTCTCCGTACATCATCGCTCGTCAATTACATATG</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>HK_pPen_rv TTTCTCTCTCCGTACATTACATATGATGAGACGAAATCA</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>pHK023_arsRfix_bb_int TCGACGCTCAAAGTCAG</td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>pHK023_arsRfix_arsR_rv CTTACCTTTTTATGGAATCTTTGGAATTCTCCTCTT</td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>pHK023_arsRfix_arsR_fw GATTAAGAAGGCCCAGATGATGGATGAGCGAAATCA</td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>pHK023_arsRfix_bb_rv CCGTACGCTTCGTTGATTTCCGTCCCATCATCATCG</td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>pHK023_arsRfix_bb_fw GACACCAATTTAAGGAGGAAATTTGGATTCAATAAGAT</td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>pHK025_synth_rv TTTGAAGACAACCATAAAGAGGACAGCATAAATAGTCCAG</td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>pHK025_seq1 GTACAGCTCGTCCATGC</td>
<td></td>
</tr>
<tr>
<td>Line</td>
<td>Description</td>
<td>Sequence</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>218</td>
<td>pHK025_seq0</td>
<td>CTGTCCTTCCCGAG</td>
</tr>
<tr>
<td>219</td>
<td>pHK025_mCherry_rv</td>
<td>AAAGAAGACAATACGG3AGTGAGCCACGTGAC</td>
</tr>
<tr>
<td>220</td>
<td>pHK025_mCherry-fw</td>
<td>AAAGAAGACAAATGTTGAGCAGGCGAGG</td>
</tr>
<tr>
<td>221</td>
<td>pHK023_arsRfix_arsR_rv2</td>
<td>TGAATCCCATTTGAAATTCCTCTTTAATTTGCACTCA</td>
</tr>
<tr>
<td>222</td>
<td>pHK025_mCherry_int</td>
<td>AATGAAGACTCCCCATGTTTTTCTTCTGCAATTAC</td>
</tr>
<tr>
<td>223</td>
<td>pHK001_ars_RHS_FW</td>
<td>TTTGGTCTCATACGTTAATGTCTAGCTATACGAACCTTGAC</td>
</tr>
<tr>
<td>224</td>
<td>pHK001_arsC_RHS_FW</td>
<td>TTTGGTCTCATACGGGAATTTGGAACAGG</td>
</tr>
<tr>
<td>225</td>
<td>pHK001_arsB_RHS_FW</td>
<td>TTTGGTCTCATACGTTAATGTCTACATATACCTG</td>
</tr>
<tr>
<td>226</td>
<td>pHK001_yqcK_RHS_FW</td>
<td>TTTGGTCTCATACGTTAATGTCTATACATATACCTG</td>
</tr>
<tr>
<td>227</td>
<td>pHK001_arsR_RHS_FW</td>
<td>TTTGGTCTCATACGTTAATGTCTATACATATACCTG</td>
</tr>
<tr>
<td>228</td>
<td>pHK001_ars_LHS_rv</td>
<td>TTTGGTCTCATACGTTAATGTCTATACATATACCTG</td>
</tr>
<tr>
<td>229</td>
<td>pHK001_arsC_LHS_rv</td>
<td>TTTGGTCTCATACGTTAATGTCTATACATATACCTG</td>
</tr>
<tr>
<td>230</td>
<td>pHK001_arsB_LHS_rv</td>
<td>TTTGGTCTCATACGTTAATGTCTATACATATACCTG</td>
</tr>
<tr>
<td>231</td>
<td>pHK001_yqcK_LHS_rv</td>
<td>TTTGGTCTCATACGTTAATGTCTATACATATACCTG</td>
</tr>
<tr>
<td>232</td>
<td>pHK001_arsR_LHS_rv</td>
<td>TTTGGTCTCATACGTTAATGTCTATACATATACCTG</td>
</tr>
<tr>
<td>233</td>
<td>pHK001_bbRHS_rv</td>
<td>TTTGGTCTCATACGTTAATGTCTATACATATACCTG</td>
</tr>
<tr>
<td>234</td>
<td>pHK001_bbLHS_fw</td>
<td>TTTGGTCTCATACGTTAATGTCTATACATATACCTG</td>
</tr>
<tr>
<td>235</td>
<td>pHK001_dcat_rv</td>
<td>TTTGGTCTCATACGTTAATGTCTATACATATACCTG</td>
</tr>
<tr>
<td>236</td>
<td>pHK001_dcat_fw</td>
<td>TTTGGTCTCATACGTTAATGTCTATACATATACCTG</td>
</tr>
<tr>
<td>237</td>
<td>pHK023_bbsI_RHS_FW</td>
<td>TTTGGTCTCATACGTTAATGTCTATACATATACCTG</td>
</tr>
<tr>
<td>238</td>
<td>pHK023_bbsI_arsR_rv</td>
<td>TTTGGTCTCATACGTTAATGTCTATACATATACCTG</td>
</tr>
<tr>
<td>239</td>
<td>pHK023_bbsI_arsR_fw</td>
<td>TTTGGTCTCATACGTTAATGTCTATACATATACCTG</td>
</tr>
<tr>
<td>240</td>
<td>pHK023_bbsL_LHS_rv</td>
<td>TTTGGTCTCATACGTTAATGTCTATACATATACCTG</td>
</tr>
<tr>
<td>241</td>
<td>pH_K_colE1_rv</td>
<td>TTTGGTCTCATACGTTAATGTCTATACATATACCTG</td>
</tr>
<tr>
<td>242</td>
<td>pH_K_colE1_fw</td>
<td>TTTGGTCTCATACGTTAATGTCTATACATATACCTG</td>
</tr>
<tr>
<td>243</td>
<td>pH_pNULL_rv</td>
<td>TTTGGTCTCATACGTTAATGTCTATACATATACCTG</td>
</tr>
<tr>
<td>244</td>
<td>pH_pNULL_fw</td>
<td>TTTGGTCTCATACGTTAATGTCTATACATATACCTG</td>
</tr>
<tr>
<td>245</td>
<td>pHK025v1_mC_rv</td>
<td>TTTGGTCTCATACGTTAATGTCTATACATATACCTG</td>
</tr>
<tr>
<td>246</td>
<td>pHK025v1_mC_rv</td>
<td>TTTGGTCTCATACGTTAATGTCTATACATATACCTG</td>
</tr>
<tr>
<td></td>
<td>Sequence</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>246</td>
<td>pHK025_mCherry_ifw</td>
<td>AAAGAAGACGATGGGCTGGGAGG</td>
</tr>
<tr>
<td>247</td>
<td>pHK_amyE(locus)_rv</td>
<td>AACTGCTTCCAACAAAACC</td>
</tr>
<tr>
<td>248</td>
<td>pHK_amyE(locus)_fw</td>
<td>GCATTGTTCTCCATTCTCG</td>
</tr>
<tr>
<td>249</td>
<td>pHK026_seq1</td>
<td>GAGGTTTGTAATCGTTTTGC</td>
</tr>
<tr>
<td>250</td>
<td>pHK026_seq0</td>
<td>GAAGCGTTTCAGGTTTCG</td>
</tr>
<tr>
<td>251</td>
<td>pHK026_amyE(us)_rv</td>
<td>AAAGAAGACAAAGTTCTGGAGAATTTGTTAAGCCTTA</td>
</tr>
<tr>
<td>252</td>
<td>pHK026_amyE(us)_fw</td>
<td>AAAGAAGACTACCGACTGTGTAACCCAGACATC</td>
</tr>
<tr>
<td>253</td>
<td>pHK026_amyE(fr)_fw</td>
<td>ATAGAAGACTTTTCAGAAGGAGGTCAAGAATGTTTG</td>
</tr>
<tr>
<td>254</td>
<td>pHK026_amyE(fr)_rv</td>
<td>AAAGAAGACAAACCTCGATCAGGTTTTTTTTAATTG</td>
</tr>
<tr>
<td>255</td>
<td>pHK026_mV_rv</td>
<td>AAAGAAGACATCGTACCTTAAAAAGTAAGCCTTTAT</td>
</tr>
<tr>
<td>256</td>
<td>pHK026_mV_fw</td>
<td>AAAGAAGACAAGAAGCAGCGATTCCATATGAGTTAG</td>
</tr>
<tr>
<td>257</td>
<td>pHK026_bb_rv</td>
<td>AAAGAAGACAATCGGGAGAGGATTAAACATGAGTC</td>
</tr>
<tr>
<td>258</td>
<td>pHK026_bb_fw</td>
<td>AAAGAAGACAAAGTCATTTTACCAATCTGAAACGG</td>
</tr>
<tr>
<td>259</td>
<td>pHK025v2_amyE_rv</td>
<td>TTGTTTCTCATAAGAAGGTTTTTATTTCTAGCCTCAG</td>
</tr>
<tr>
<td>260</td>
<td>pHK025v2_BsaI_synth_fw</td>
<td>TTGTTTCTCATAAGAAGGTTTTTATTTCTAGCCTCAG</td>
</tr>
<tr>
<td>261</td>
<td>HK_mCherry_0</td>
<td>CCTTGTGATGAAACTCGCC</td>
</tr>
<tr>
<td>262</td>
<td>HK_mCherry_1</td>
<td>GCCATGAAACTCGGATTGATG</td>
</tr>
<tr>
<td>263</td>
<td>HK_mCherry_2</td>
<td>CCCACGCAGAAACAG</td>
</tr>
<tr>
<td>264</td>
<td>pHK_lacA_rv</td>
<td>TTGTTTCTCATAAGAAGGTTTTTATTTCTAGCCTCAG</td>
</tr>
<tr>
<td>265</td>
<td>pHK_Cot_seq1</td>
<td>GTTTTTCCGACAGCTATTG</td>
</tr>
<tr>
<td>266</td>
<td>pHK_Cot_seq0</td>
<td>TTATAACCACCTCGTTTCAC</td>
</tr>
<tr>
<td>267</td>
<td>pHK026hr_cot_DS_rv</td>
<td>ATGAAGACAAATCGTCTTTCTACAGCAGGCACAC</td>
</tr>
<tr>
<td>268</td>
<td>pHK026hr_cot_DS-fw</td>
<td>AAAGAAGACAAGTCAATAAGGGGAGAAGGTTTTTTC</td>
</tr>
<tr>
<td>269</td>
<td>pHK026hr_cot_US_rv</td>
<td>TTGAAGACATACATGTCGCGAAGATACAAATTC</td>
</tr>
<tr>
<td>270</td>
<td>pHK026hr_cot_US-fw</td>
<td>TTGAAGACATATGTCAGTACAGGCAGCTTTTTCA</td>
</tr>
<tr>
<td>271</td>
<td>pHK026hr_lacA_ds_rv</td>
<td>TTGAAGACATACATGTCGCGAAGATACAAATTC</td>
</tr>
<tr>
<td>272</td>
<td>pHK026hr_lacA_ds-fw</td>
<td>TTGAAGACATACATGTCGCGAAGATACAAATTC</td>
</tr>
<tr>
<td>273</td>
<td>pHK026hr_lacA_US_rv</td>
<td>TTGAAGACATACATGTCGCGAAGATACAAATTC</td>
</tr>
<tr>
<td>274</td>
<td>pHK026hr_lacA_US-fw</td>
<td>TTGAAGACATACATGTCGCGAAGATACAAATTC</td>
</tr>
<tr>
<td>275</td>
<td>pHK026hr_I_rv</td>
<td>ATGAAGACATACATGTCGCGAAGATACAAATTC</td>
</tr>
<tr>
<td>276</td>
<td>pHK026hr_I-fw</td>
<td>TAGAAGACTAAATGTCGAGTTTTTCAAGACGCAG</td>
</tr>
<tr>
<td>277</td>
<td>pHK026hr_BB_rv</td>
<td>TTGAAGACATACATGTCGCGAAGATACAAATTC</td>
</tr>
<tr>
<td></td>
<td>Primer Sequences</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>278</td>
<td>pHK026hv_BB_fw</td>
<td>AAGAAGACAACGATTTTACCAATCCTGAAACGGC</td>
</tr>
<tr>
<td>279</td>
<td>pHK026hr_cot_US_fw2</td>
<td>TTGAAGACTATAGCGAGGTTTGAATCGTTTC</td>
</tr>
<tr>
<td>280</td>
<td>pHK026hr_I_rv2</td>
<td>ATGAAGACTATAGCGAGGTTTGAATCGTTTC</td>
</tr>
<tr>
<td>281</td>
<td>HK_R1_fw</td>
<td>AAACGTCTCAAGACCAATCAAAGGAGGAAATTCAAA</td>
</tr>
<tr>
<td>282</td>
<td>HK_R1_rv</td>
<td>TTTGTAGGACGTTT</td>
</tr>
<tr>
<td>283</td>
<td>HK_R2_fw</td>
<td>AAACGTCTCAAGACCAATCAAAGGAGGAAATTCAAA</td>
</tr>
<tr>
<td>284</td>
<td>HK_R2_rv</td>
<td>TTTGTAGGACGTTT</td>
</tr>
<tr>
<td>285</td>
<td>HK_R3_fw</td>
<td>AAACGTCTCAAGACCAATCAAAGGAGGAAATTCAAA</td>
</tr>
<tr>
<td>286</td>
<td>HK_R3_rv</td>
<td>TTTGTAGGACGTTT</td>
</tr>
<tr>
<td>287</td>
<td>HK_R4_fw</td>
<td>AAACGTCTCAAGACCAATCAAAGGAGGAAATTCAAA</td>
</tr>
<tr>
<td>288</td>
<td>HK_R4_rv</td>
<td>TTTGTAGGACGTTT</td>
</tr>
<tr>
<td>289</td>
<td>HK_R5_fw</td>
<td>AAACGTCTCAAGACCAATCAAAGGAGGAAATTCAAA</td>
</tr>
<tr>
<td>290</td>
<td>HK_R5_rv</td>
<td>TTTGTAGGACGTTT</td>
</tr>
<tr>
<td>291</td>
<td>HK_R6_fw</td>
<td>AAACGTCTCAAGACCAATCAAAGGAGGAAATTCAAA</td>
</tr>
<tr>
<td>292</td>
<td>HK_R6_rv</td>
<td>TTTGTAGGACGTTT</td>
</tr>
<tr>
<td>293</td>
<td>HK_R7_fw</td>
<td>AAACGTCTCAAGACCAATCAAAGGAGGAAATTCAAA</td>
</tr>
<tr>
<td>294</td>
<td>HK_R7_rv</td>
<td>TTTGTAGGACGTTT</td>
</tr>
<tr>
<td>295</td>
<td>HK_R8_fw</td>
<td>AAACGTCTCAAGACCAATCAAAGGAGGAAATTCAAA</td>
</tr>
<tr>
<td>296</td>
<td>HK_R8_rv</td>
<td>TTTGTAGGACGTTT</td>
</tr>
<tr>
<td></td>
<td>Sequence ID</td>
<td>Sequence</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>297</td>
<td>pHK027_mV_rv</td>
<td>AAAGAAGACATGAACCCTAAAGTAAGCACCTGTTATG</td>
</tr>
<tr>
<td>298</td>
<td>pHK027_mV_fw</td>
<td>AAAGAAGACAAAGTGTTGTTAAG</td>
</tr>
<tr>
<td>299</td>
<td>pHK031_R_rv</td>
<td>TTTGGTCTCAGACTCTCAACACTCACATTAGTTATTTC</td>
</tr>
<tr>
<td>300</td>
<td>HK_RBS-arsC_rv</td>
<td>TTTGGTCTCACCATATATCCCACTAGAGGTGAGTAGGATTTAAT</td>
</tr>
<tr>
<td>301</td>
<td>HK_RBS-arsC_fw</td>
<td>TTTGGTCTCAGACTCTCAACACTCACATTAGTTATTTC</td>
</tr>
<tr>
<td>302</td>
<td>HK_RBS-arsB_rv</td>
<td>TTTGGTCTCACCATATATCCCACTAGAGGTGAGTAGGATTTAAT</td>
</tr>
<tr>
<td>303</td>
<td>HK_RBS-arsB_fw</td>
<td>TTTGGTCTCAGACTCTCAACACTCACATTAGTTATTTC</td>
</tr>
<tr>
<td>304</td>
<td>HK_RBS-arsR_rv</td>
<td>TTTGGTCTCAGACTCTCAACACTCACATTAGTTATTTC</td>
</tr>
<tr>
<td>305</td>
<td>HK_RBS-arsR_fw</td>
<td>TTTGGTCTCAGACTCTCAACACTCACATTAGTTATTTC</td>
</tr>
<tr>
<td>306</td>
<td>HK_RBS-yqcK_fw</td>
<td>TTTGGTCTCAGACTCTCAACACTCACATTAGTTATTTC</td>
</tr>
<tr>
<td>307</td>
<td>HK_RBS-yqcK_rv</td>
<td>TTTGGTCTCAGACTCTCAACACTCACATTAGTTATTTC</td>
</tr>
<tr>
<td>308</td>
<td>HK_arsR-stop_fw</td>
<td>TTTGGTCTCAGACTCTCAACACTCACATTAGTTATTTC</td>
</tr>
<tr>
<td>309</td>
<td>HK_arsR-fw</td>
<td>TTTGGTCTCAGACTCTCAACACTCACATTAGTTATTTC</td>
</tr>
<tr>
<td>310</td>
<td>HK_pArsPlus_rv</td>
<td>TTTGGTCTCAGACTCTCAACACTCACATTAGTTATTTC</td>
</tr>
<tr>
<td>311</td>
<td>pHK029_L_fw</td>
<td>TTTGGTCTCAGACTCTCAACACTCACATTAGTTATTTC</td>
</tr>
<tr>
<td>312</td>
<td>pHK028_I_rv</td>
<td>TTTGGTCTCAGACTCTCAACACTCACATTAGTTATTTC</td>
</tr>
<tr>
<td>313</td>
<td>pHK028_I_fw</td>
<td>TTTGGTCTCAGACTCTCAACACTCACATTAGTTATTTC</td>
</tr>
<tr>
<td>314</td>
<td>pHK029_R_rv</td>
<td>TTTGGTCTCAGACTCTCAACACTCACATTAGTTATTTC</td>
</tr>
<tr>
<td>315</td>
<td>pHK028_L_rv</td>
<td>TTTGGTCTCAGACTCTCAACACTCACATTAGTTATTTC</td>
</tr>
<tr>
<td>316</td>
<td>pHK029_IR_rv</td>
<td>TTTGGTCTCAGACTCTCAACACTCACATTAGTTATTTC</td>
</tr>
<tr>
<td>317</td>
<td>pHK029_IL_rv</td>
<td>TTTGGTCTCAGACTCTCAACACTCACATTAGTTATTTC</td>
</tr>
<tr>
<td>318</td>
<td>pHK028_R_rv</td>
<td>TTTGGTCTCAGACTCTCAACACTCACATTAGTTATTTC</td>
</tr>
<tr>
<td>319</td>
<td>pHK030_spc_rv</td>
<td>TTTGGTCTCAGACTCTCAACACTCACATTAGTTATTTC</td>
</tr>
<tr>
<td>320</td>
<td>pHK030_bb_fw</td>
<td>TTTGGTCTCAGACTCTCAACACTCACATTAGTTATTTC</td>
</tr>
<tr>
<td>321</td>
<td>pHK030_spc-fw</td>
<td>TTTGGTCTCAGACTCTCAACACTCACATTAGTTATTTC</td>
</tr>
<tr>
<td></td>
<td>Primer Name</td>
<td>Sequence</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>322</td>
<td>pHK030_mV_rv</td>
<td>TTCGGTCTCAGTTCGGAGGCTTAC</td>
</tr>
<tr>
<td>323</td>
<td>pHK030_bb_rv</td>
<td>TTTGGTCTCGCCATAGAGACGATACACAATAGACAG</td>
</tr>
<tr>
<td>324</td>
<td>pHK030_mV_fw</td>
<td>CCGTCTCATACGAGACGACCTTT</td>
</tr>
<tr>
<td>325</td>
<td>HK_LP_rv</td>
<td>AAAAGGTCTCTGCTATGAGACGCTCTGTCTATTTGTA</td>
</tr>
<tr>
<td>326</td>
<td>HK_LP_fw</td>
<td>AGAGACGATACACAATAGTCACAGAGGCGTCTCATACAG</td>
</tr>
<tr>
<td>327</td>
<td>HK_LPcomGA_rv</td>
<td>TTTGTCTCTCCCATGCTTACCTTTTTCTATTGAATCCAT</td>
</tr>
<tr>
<td>328</td>
<td>HK_LPcomGA-fw</td>
<td>AGAGACGATACACAATAGTCACACTCACACATTAGTATT</td>
</tr>
<tr>
<td>329</td>
<td>pHK031_bb_fw</td>
<td>CTTAGGTCCTCAATCGCAGTACC</td>
</tr>
<tr>
<td>330</td>
<td>pHK031_R_rv</td>
<td>TTTGGTCTCATACGACTCTCACACTCACATTAGTATT</td>
</tr>
<tr>
<td>331</td>
<td>HK_mK2_seq0</td>
<td>GGAAGGCACAGTGAATAACC</td>
</tr>
<tr>
<td>332</td>
<td>HK_mK2_seq1</td>
<td>CTCATTGTCTGTGTTCCCT</td>
</tr>
<tr>
<td>333</td>
<td>HK_mK2_seq2</td>
<td>GAAGCGACACAGAAACC</td>
</tr>
<tr>
<td>334</td>
<td>HK_mS_seq0</td>
<td>GGAAGGCAGTATGAAAGAC</td>
</tr>
<tr>
<td>335</td>
<td>HK_mS_seq1</td>
<td>GAGGTCCACCTTTTGTACC</td>
</tr>
<tr>
<td>336</td>
<td>HK_mS_seq2</td>
<td>GTGATGCAGAAAAAGACGATG</td>
</tr>
<tr>
<td>337</td>
<td>pHK035_H1_fw</td>
<td>TTTGAAGACTTTACGAGCCTACATGACCTATTGCTG</td>
</tr>
<tr>
<td>338</td>
<td>pHK035_H2_rv</td>
<td>AAGAAGACTATTGCTCTCAATACAGGCCCCCTTTGG</td>
</tr>
<tr>
<td>339</td>
<td>pHK035_H2-fw</td>
<td>AAGAAGACAATACCGCAGACCGAATGAGAGACAGG</td>
</tr>
<tr>
<td>340</td>
<td>pHK035_H1_rv</td>
<td>AAGAAGACAAACCTGACTATTTCATTTGAGGAGTG</td>
</tr>
<tr>
<td>341</td>
<td>pHK035_dcat_rv</td>
<td>TTTGAAGACagCTTACATGACACTACATATATATATTCTAG</td>
</tr>
<tr>
<td>342</td>
<td>pHK035_dcat-fw</td>
<td>TTTGAAGACagAGGTACTTTCCTAGAATATATATATATG</td>
</tr>
<tr>
<td>343</td>
<td>HK_ase_rv2</td>
<td>TCACTGTGCAAACAGCAGCTCC</td>
</tr>
<tr>
<td>344</td>
<td>HK_ase_rv</td>
<td>AGATCACCAGTAAATAACTCC</td>
</tr>
<tr>
<td>345</td>
<td>pHK_ase-fw2</td>
<td>ACAAGGTGCTCTATCTCTCATAGG</td>
</tr>
</tbody>
</table>
| 346| HK_ase-fw | CCACCTCCCATAAAGTATGGT
<table>
<thead>
<tr>
<th></th>
<th>Primer Name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>347</td>
<td>pHK037_arsR_rv</td>
<td>TTGGTCTCAGACTCTAATTACAGGCAATC</td>
</tr>
<tr>
<td>348</td>
<td>pHK037_arsR_fw</td>
<td>TTGGTCTCAATGGATGAAACGAAATCAGAACTGCTAC</td>
</tr>
<tr>
<td>349</td>
<td>pHK036_mV_fw</td>
<td>AAGGTCTCAAGTCACACCAATTAAAGGAGGAATTTCAA</td>
</tr>
</tbody>
</table>

Table E.1 All primers sequences used during the project.