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Abstract

Computer simulation and theoretical prediction
of thermally induced polarisation

Peter Wirnsberger

In this thesis, we study the phenomenon of thermally induced polarisation using
a combination of theory and computer simulation. Molecules of sufficiently low
symmetry exhibit thermo-molecular orientation when subjected to a temperature
gradient, leading to considerable electrostatic fields in polar liquids. Here, we first
use non-equilibrium molecular dynamics simulations to study this interesting effect
numerically. To this end, we propose an integration algorithm to impose a constant
heat flux in simulations and show that it greatly improves energy conservation
compared to a previous algorithm. We next investigate the thermal polarisation
of water and find that truncation of electrostatic interactions can lead to severe
artefacts, such as the wrong sign of polarisation and an overestimation of the electric
field. We further show that the quadrupole-moment contribution to the electric
field is significant and responsible for an inversion of its sign. To facilitate the
theoretical description of electrostatic interactions, we propose a new dipolar model
fluid as a perturbation of a Stockmayer fluid. Using this modified Stockmayer model,
we provide numerical evidence for the recently proposed phenomenon of thermally
induced monopoles. We show that the electrostatic field generated by a pair of
heated/cooled colloidal particles immersed in such a solvent can be trivially described
by two Coulomb charges. Finally, we propose a mean-field theory to predict the
thermo-polarisation effect exhibited by our model fluid theoretically, and demonstrate
near quantitative agreement with simulation results.
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1

Introduction

In this thesis, we study the behaviour of polar liquids far from thermal equilibrium
using a combination of theory and computer simulation. Thermally induced non-
equilibrium effects have been an active field of research for more than a century1,2 with
a wide range of interesting applications on the micro- and nanoscale3–6. In mixtures
or solutions, for example, a temperature gradient can exert forces on particles,
giving rise to thermophoresis. Different particles experience different thermophoretic
forces so that the effect can be utilised to achieve mass separation1,2. However, the
magnitude of the thermophoretic drift velocity and even the direction of motion,
i.e. whether a particle moves parallel or antiparallel to the temperature gradient,
have proved challenging to predict so that even small changes in the experimental
parameters, like salt and solvent concentration, can flip the direction of motion6.
Computer simulations allow for tuning interactions precisely and individually7 and
therefore provide a valuable tool for understanding the microscopic driving forces
involved.

In recent years, thermophoresis has gained significant research attention for its
potential to drive self-propelled motion of microswimmers5. Metal-capped Janus
particles represent one experimental realisation of such a microswimmer8. Under
optical illumination with a laser, this type of Janus particle exhibits directed and
self-propelled motion due to its asymmetric heat absorption that generates a local
temperature gradient and drives flow in the vicinity of the particle8–11. The ability to
actuate nanomotors and transport cargo on the nanoscale is of great practical interest
for drug delivery, and poses one of the key challenges in nanoscience5,12. Another
important question in nanotechnology is how to drive flow efficiently on the micro-
and nanoscale13. A temperature gradient is known to affect interfacial stresses near
a solid surface, which can lead to thermo-osmotic slip or, similarly, thermo-osmotic
flow within a microchannel6,14. Understanding the physical mechanisms involved in
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Introduction

these processes is of practical interest for nanofluidic devices, where the size reduction
down to the nanoscale opens a range of new possibilities and promising functionalities
in biotechnology13.

In addition to their important role in self-propelled motion, metal nanoparticles
(NPs) have received considerable attention recently for their ability to heat a volume
of fluid locally15–17. Metal NPs as heaters have the advantage that their energy
absorption can be controlled precisely using visible and infrared light, and that the
total amount of heat generated is relatively easy to estimate16. The supplied heat
diffuses from the NP to the surrounding medium, where it induces a temperature
gradient. These ‘nano-heaters’ have promising biomedical applications, for example
in cancer therapy16, and are well suited to the study of thermally induced non-
equilibrium phenomena17. NPs immersed in dilute suspensions have also been shown
to have surprising effects on heat transfer properties compared to the bulk fluid18.
Experiments on ethylene glycol, for example, suggest a significant increase in the
thermal conductivity upon dispersion of copper NPs at very low volume fractions19,20.
Although the precise physical origin of this anomalous increase is still unclear, the
improved heat transfer properties are interesting for the design of more efficient
cooling systems18,21–23. A related challenge is the efficient conversion of waste heat
into electrical power or the conversion of electrical power into heating or cooling.
The physical mechanism underlying the former is the Seebeck effect while the latter
is based on the Peltier effect. Experimentally, both conversions can be achieved by
nanoscale thermoelectric devices based on semiconductor systems24.

The research interest in thermo-electric effects is not limited to solids but also
extends to polar liquids and electrolytes11,25–30, where these effects have been shown
to affect complex non-equilibrium interactions to a significant extent25,27. In colloidal
suspensions in an electrolyte, for example, thermophoretic forces can lead to a
charge separation of positive and negative ions and thereby generate a macroscopic
thermo-electric field25. If a colloidal particle carries a finite charge, it will couple to
the electric field generated by the ions so that the particle experiences a dragging
force. In agreement with experimental results, this mechanism was demonstrated to
be the predominant cause of thermophoretic motion of colloids in an electrolyte25.
However, even a pure electrolyte can exhibit interesting thermo-electric behaviour.
If a small volume of the electrolyte is heated locally, for example using metal NPs,
phoretic motion of the ions leads to a charge accumulation close to the heat source27.
Interestingly, this ‘thermo-charge’ generates an electric field that decays as 1/r2 and
is therefore long-ranged27. Theoretical estimates of the charge suggest that it may
be as high as hundreds of elementary charges if the substance is heated by 10 K
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compared to the bulk temperature, and therefore of relevance to thermal actuation
of colloidal suspensions and electrolytes29.

While the thermo-charge discussed above arises due to the phoretic motion of
ions in the electrolyte, thermo-electric fields can occur even in pure polar liquids,
such as water, in the absence of any free charges26. Numerical simulations revealed
that a range of polar and non-polar liquids experience thermo-molecular orientation
when subjected to a temperature gradient, indicating a generic non-equilibrium
phenomenon exhibited by fluids of sufficiently low symmetry31. If molecules carry a
dipole moment, the thermo-orientation of dipoles polarises the solvent and generates
an electric field. This phenomenon, termed the ‘thermo-polarisation’ (TP) effect, was
discovered a decade ago26 and is clearly more general than the one observed in an
electrolyte, as it occurs even in the absence of ions. Since its discovery, the TP effect
has attracted considerable research attention26,28,30–37, but only moderate progress
has been made towards understanding the physical origin of this fascinating effect.
Theoretical approaches to explaining thermal polarisation are typically based on
phenomenological equations26,28,31–35 and involve phenomenological coefficients whose
estimation requires expensive computer simulations. Recent theoretical advances,
however, have provided new insights into this complex non-equilibrium phenomenon.
Firstly, a mean-field treatment has been demonstrated to capture the scaling of the
thermo-orientation as a function of molecular asymmetry correctly for the case of a
simple liquid30. Secondly, it has been shown theoretically that the TP effect gives
rise to an apparent thermo-charge that generates a long-range electric field38. This
interesting observation implies that, in principle, it should be possible to map the
entire solvent-mediated net electrostatic force due to the temperature gradient, say
in water, on to a much simpler macroscopic arrangement of these thermally induced
monopoles. We therefore think it is desirable to explore these recent theories in more
detail, both theoretically and using computer simulations, to shed further light on
this curious non-equilibrium phenomenon.

1.1 Thesis outline

We first introduce the relevant simulation techniques and algorithms typically used to
study the TP effect in Chapter 2. In particular, we focus on non-equilibrium molecular
dynamics (NEMD) simulations, for which we derive an improved thermostatting
algorithm, its time discretisation and the underlying equations of motion from first
principles. In Chapter 3, we then explore the thermal polarisation of water under the
influence of a strong temperature gradient. After a brief summary of the literature,
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we concentrate on the treatment of electrostatic interactions, which turned out to be
particularly sensitive to truncation and were handled incorrectly in previous work. In
Chapter 4, we demonstrate the existence of thermally induced monopoles numerically,
using a simple model of a polar liquid, which we devised specifically for this purpose.
In Chapter 5, we derive a mean-field approach to explain the TP effect exhibited
by our model fluid and carry out a comparison with simulation data. Finally, we
conclude with a summary and future outlook in Chapter 6.
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Computational techniques

Preface

This chapter is based on the publication ‘An enhanced version of the heat ex-
change algorithm with excellent energy conservation properties’ by P. Wirnsberger,
D. Frenkel and C. Dellago, which was published in the Journal of Chemical Physics
(2015)39. A free version of the article is available for download on the arXiv
(https://arxiv.org/abs/1507.07081).

The author contributions are as follows: I implemented the software, performed
the simulations, analysed the data and wrote the initial draft of the manuscript.
D. Frenkel, C. Dellago and I designed the research together and wrote the final
version of the manuscript.

2.1 Simulating a thermal gradient

In atomistic simulations, a temperature gradient is typically studied either directly
using NEMD40 or indirectly using equilibrium MD simulations, often in combination
with Linear Response Theory41. Here, we focus on the former because the method is
straightforward to employ for our purposes and allows for direct comparison with
existing literature on the TP effect26.

In NEMD studies of heat conduction, an external field is applied to the system
thereby driving it to a steady state. The nature of the coupling between the external
field and the system differs between algorithms and determines whether a spatially
homogeneous state42, a temperature gradient43–45 or a heat flux is imposed46–49. A
suitable algorithm for a particular application depends on its ability to model the
underlying physics correctly. If energy is supplied at a constant rate in an experiment,
for example metal NPs under optical illumination16, a thermostat which imposes

5
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a heat flux would lend itself for the simulation. From a computational point of
view, generating a flux might be preferable, because it is simpler to measure the
temperature than the heat flux.

One way to generate a heat flux in computer simulations involves swapping kinetic
energy between two subdomains of the simulation box46,47. In the heat exchange
(HEX) algorithm developed by Ikeshoji and Hafskjold46,50, a specific amount of heat
is periodically removed from one subdomain or reservoir, and supplied to the other.
These two regions thus act as a heat sink and source, respectively. The HEX method
adjusts the non-translational kinetic energy by velocity rescaling while preserving
the individual center of mass velocities of the two heat reservoirs. Other methods
use different procedures to generate heat fluxes. In the reverse NEMD (RNEMD)
method developed by Müller-Plathe47, the heat transfer is established by continuously
identifying hot and cold particles inside the reservoirs and exchanging their momenta.
Extensions of the RNEMD method were proposed by Kuang and Gezelter48,49, who
replaced the momenta swaps by velocity rescaling moves. The velocity scaling and
shearing (VSS) RNEMD method49 allows for imposing a momentum flux in addition
to the thermal flux. However, we note that in the absence of any momentum flux,
the method is identical to the HEX algorithm. Although these methods are widely
applicable, they all lack an attractive feature which is a formulation based on time
continuous equations of motion. Knowing the equations of motion is advantageous,
for example, if one is interested in studying system properties such as phase space
compressibility or the development of accurate integration schemes.

Due to its simplicity, the HEX algorithm is an attractive choice for simulating a
fluid in the absence of solid inhomogeneities. Since the same amount of energy is
added and removed, one would expect the algorithm to conserve the total energy
exactly. However, as pointed out in one of the original papers50 and subsequent
work51, numerical implementations of the algorithm lead to a considerable energy drift
over simulation time scales of a few nanoseconds. A change in total energy of several
percent of the initial value was considered acceptable in past work. Nevertheless,
the energy drift is a severe restriction limiting the accessible simulation time scales.
Remedies to this problem either involve employing a smaller timestep or compensating
the energy drift with an additional thermostat52 which is undesirable, because such
thermostats may affect the very temperature profile that one aims to study.

In this chapter, we identify the underlying cause of the energy loss and suggest a
new algorithm to achieve improved energy conservation. The chapter is organised as
follows: In Sec. 2.2, we summarise the HEX algorithm and its numerical implementa-
tion. We then show that the integration scheme leads to an unphysical energy drift.
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In order to understand the origin of this problem, we derive the equations of motion
for continuous time in Sec. 2.3. This allows us to express the integration scheme
as a Trotter factorisation of the Liouville operator. In Sec. 2.4, we work out the
leading-order error term of the employed operator splitting. Based on our analysis,
we propose an enhanced algorithm in Sec. 2.5 and compare the results in Sec. 2.6.

2.2 Heat exchange algorithm

The goal of the HEX algorithm is to impose a constant heat flux onto the system.
This is accomplished by adding heat ∆QΓk at each timestep to NΓ pair-wise disjoint
subdomains Γk, of the simulation box Ω (Fig. 2.1). Heat is subtracted if ∆QΓk is
negative. We label those parts of the simulation box which are not thermostatted
with Γ0. The box contains N atoms each labelled with a unique index. If there is no
net energy flux into the simulation box as we assume here, i.e.

∑
k ∆QΓk = 0, the

system will approach a steady state in which heat fluxes are established between the
subdomains. The position and velocity vectors of atom i are ri and vi, respectively.
Furthermore, we use vΓk and vΩ to denote the centre of mass velocities of the regions
Γk and the box Ω, respectively.

2.2.1 Energy supply

Energy is added or removed by rescaling the velocities of all particles contained in
region Γk by the same factor ξk and shifting them by a constant. The value of ξk is
chosen such that the non-translational kinetic energy of that region,

KΓk =
∑

i∈γk

miv
2
i

2
− mΓkv

2
Γk

2
, (2.1)

changes by ∆QΓk leaving vΓk unchanged, where mΓk is the total mass contained in
Γk. The time-dependent index set γk comprises all particles which are located in Γk.
Particles outside any thermostatted region are not affected by this procedure. For
the individual region Γk, the velocity update can be formulated as46,53

vi 7→ v̄i = ξkvi +
(
1− ξk

)
vΓk , (2.2)

where the rescaling factor is given by

ξk =

√
1 +

∆QΓk

KΓk
. (2.3)
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Figure 2.1: Illustration of the simulation box, Ω, with Hamiltonian regions, Γ0, a hot region,
Γ1 (red), and a cold region, Γ2 (blue). The centre of mass velocities of Ω, Γ1 and Γ2 are vΩ ,
vΓ1 and vΓ2 , respectively. Atoms are represented by red/blue circles, if they are located in

the hot/cold region and by empty circles otherwise.

Here, updated quantities are denoted with an overbar. It can easily be verified that
the update step given by Eq. (2.2) satisfies K̄Γk = KΓk + ∆QΓk and v̄Γk = vΓk . Since
there is no net energy flux into the system according to our assumptions, this also
implies that the total system energy E remains constant.

We note that the above formulation of the velocity update as presented by
Aubry et al.53 is simpler than the one which was originally proposed by Ikeshoji and
Hafskjold46. In the latter case, ξk is a more complex function of the velocities, but it
is easy to see that both formulations are equivalent.

2.2.2 Time integration

In order to keep track of the time evolution, it is convenient to introduce some
additional notation. We label all quantities sampled at time t = n∆t with a
superscript n, where ∆t is the timestep. In addition we define ξ0 to be unity at all
times and k(ri) to be the index of the region in which particle i is located. The
current state of the system is fully described by a 6N -dimensional vector x = (r,v)

in phase space, where the vectors r and v contain all particle positions and velocities,

8
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respectively. The HEX algorithm for velocity Verlet can then be formulated as

v̄ni = ξnk(ri)
vni +

(
1− ξnk(ri)

)
vnΓk(ri)

, (2.4a)

v̄
n+ 1

2
i = v̄ni +

∆t

2mi

fni , (2.4b)

rn+1
i = rni + ∆t v̄

n+ 1
2

i , (2.4c)

fn+1
i = −∇ri U(r) |r=rn+1 , (2.4d)

v̄n+1
i = v̄

n+ 1
2

i +
∆t

2mi

fn+1
i , (2.4e)

vn+1
i = ξ̄n+1

k(ri)
v̄n+1
i +

(
1− ξ̄n+1

k(ri)

)
v̄n+1
Γk(ri)

, (2.4f)

where U(r) is the potential energy and fi the force acting on particle i. For the entire
scheme to be symmetric, half the energy is supplied at the beginning of the timestep
and the other half at the end. The scaling factors ξnk(ri)

and ξ̄n+1
k(ri)

are evaluated using
Eq. (2.3) at the states

(
rn,vn

)
and

(
rn+1, v̄n+1

)
, respectively.

We note that in the original work46,50, the authors do not provide any details
about when exactly the thermostatting step should happen. For comparison, we
also tested an asymmetric version of the algorithm (HEX/a), where all the energy is
supplied at the end of the timestep. In this case, the initial velocity update reduces
to the identity operation.

2.2.3 Model system

We studied the energy conservation of the HEX algorithm for a Lennard-Jones (LJ)
fluid using the simulation package LAMMPS (version 9Dec14)54. The symmetric,
pairwise LJ potential is given by7

uLJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, (2.5)

where ε is the depth of the potential and σ the effective atomic diameter. In order to
rule out any effects due to simple spherical truncation of the potential, we employed
a slightly modified potential which is given by55

uSF(r) = uLJ(r)− uLJ(rs)− (r − rs)u′LJ(rs) (2.6)

for r ≤ rs and zero otherwise, where rs is the cutoff. From the functional form of
Eq. (2.6) it is clear that uSF(r) and u′SF(r) are both continuous at the cutoff. We
employed a value of r∗s = 3 for all simulations in this section. Quantities labelled

9
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with an asterisk are expressed in reduced units (Appendix A.1).

2.2.4 Equilibration

The rectangular simulation box with dimensions L∗z/2 = L∗x = L∗y = 10.58 comprised
N = 2000 atoms resulting in a density of ρ∗ = 0.8444. The thermodynamic conditions
considered in this work are similar to those in Ref. 46. Starting from an initial
lattice structure with zero linear momentum, the system was heated up to twice
the target temperature of T ∗ = 0.72 and subsequently cooled down again at the
same rate. The thermostatting during this initial period was achieved by velocity
rescaling and the entire annealing process took 2.5× 104 timesteps. The equations
of motion were integrated with the velocity Verlet algorithm using a timestep of
∆t∗ = 0.002. We then increased the timestep to ∆t∗ = 0.004 and carried out a 2×105

timestep NVT simulation using a Nosé–Hoover thermostat56,57 with a relaxation
time of τ ∗ = 0.5. During this run we computed the average system energy. Using
the HEX algorithm, we then adjusted the energy of the last configuration and used
it as input for another 2 × 105 timestep NVE equilibration run. This procedure
allowed us to achieve an average equilibrium temperature of T ∗ = (0.7200± 0.0002).
The error bar corresponds to one standard deviation of the error of the mean, the
variance of which was estimated using block average analysis7.

As a reference for the energy conservation in equilibrium, we carried out an
additional set of NVE simulations at various timesteps. With the above protocol we
matched the temperature of these runs to be close to the one inside the hot reservoir
in the NEMD case. The average temperature was T ∗ = (0.8400± 0.0002).

2.2.5 Energy conservation

The previously equilibrated structures were subjected to a temperature gradient
along the z-axis using the HEX algorithm. Always starting from the same phase
space point, we varied the timestep for a fixed energy flux FΓk = ∆QΓk/∆t into the
reservoir. The two thermostatted regions are centred at the points z = ±Lz/4 and
have a width of 2 in reduced units (Fig. 2.1). During each timestep, the heat ∆Q

is taken from Γ2 and added to Γ1 (∆QΓ1 = −∆QΓ2 = ∆Q > 0). We waited for 100
reduced time units for any transient behaviour to disappear and to allow the system
to reach a steady state. The production run of 5000 reduced time units started at
t∗ = 0.

In order to capture the spatial variation of the temperature, we divided the z-axis
into Nb bins. We use the notation Xj for the evaluation of a quantity X over bin j

10
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and assign the value to the centre of the bin. The instantaneous kinetic temperature
of bin j is then given by

Tj =
2Kj

(Njf − 3)kB
, (2.7)

where Kj is the total non-translational kinetic energy of the bin, Nj the number of
atoms contained in the bin and kB Boltzmann’s constant. The quantity f is the
number of degrees of freedom per atom (fLJ = 3 and fSPC/E = 2). We subtracted
three degrees of freedom to account for the centre of mass velocity of the bin. In the
stationary state, the heat flux between the reservoirs in Fig. 2.1 is given by

JQ,z =
∆Q

2∆tLxLy
=

F
2LxLy

, (2.8)

where the factor of 2 in the denominator accounts for the periodic setup. Considering
a reference layer, this is intuitively clear, because half the supplied heat will flow
to the other reservoir in the reference box and the other half to its image in the
neighbouring box. The heat flux is an input parameter of the HEX algorithm, which
we set to 0.15 in reduced units. The dependence of the energy loss at the final time
on the timestep is shown in Fig. 2.2. From the quadratic fit, it is clear that the HEX
algorithm exhibits an energy drift which scales as O(∆t2). On the other hand, the
energy was conserved perfectly well in NVE simulations at the peak temperature
inside the hot reservoir. (The temperature profiles are discussed in Sec. 2.6.)

0 1 2 3 4 5 6 7

0

−10

−20

−30

−40

∆t∗/10−3

∆
E

∗

NVE
HEX

HEX/a
HEX (fit)

Figure 2.2: Energy loss for LJ at the final time t∗ = 5000 as a function of the timestep.
Each point in the figure corresponds to a separate simulation. The equilibrium run (blue
diamonds) is compared to the symmetric (red circles) and asymmetric (black squares)
versions of the HEX algorithm, respectively. A quadratic fit (red, solid line) was carried

out for the symmetric version.
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2.3 Equations of motion

To gain a better understanding of the energy drift of the HEX algorithm, we first
derive the ordinary differential equations (ODEs) solved by the algorithm in the limit
∆t→ 0. To this end we consider the velocity update for continuous time. Dropping all
particle and region indices for readability and eliminating the intermediate velocities,
we can cast Eq. (2.4f) into

vn+1 = ξ̄n+1

[
ξnvn + (1− ξn)vnΓ +

∆t

2m

(
fn + fn+1

)]

+
(
1− ξ̄n+1

)
v̄n+1
Γ . (2.9)

If we subtract vn on both sides and divide by the timestep, we get

vn+1 − vn
∆t

=
ξ̄n+1

2m

(
fn + fn+1

)
(2.10)

+

(
ξ̄n+1ξn − 1

)
vn

∆t

+
ξ̄n+1 (1− ξn)vnΓ +

(
1− ξ̄n+1

)
v̄n+1
Γ

∆t
.

It is straightforward to show that
(
ξ̄n+1ξn − 1

)
vn

∆t
→ FΓv(tn)

2KΓ (tn)

and
ξ̄n+1 (1− ξn)vnΓ +

(
1− ξ̄n+1

)
v̄n+1
Γ

∆t
→ −FΓvΓ (tn)

2KΓ (tn)

in the limit of ∆t→ 0. From Eq. (2.4c), it is immediately obvious that the derivative
of the coordinates is given by the velocities.

The continuous equations of motion solved by the HEX algorithm are therefore
given by

ṙi = vi, (2.11a)

v̇i =
fi
mi

+
ηi
mi

, (2.11b)
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where the thermostatting force is defined as

ηi =




mi

FΓk(ri)

2KΓk(ri)

(
vi − vΓk(ri)

)
if k(ri) > 0,

0 otherwise.
(2.12)

In order for the equations to be well-defined, we assume that there are sufficiently
many particles inside any reservoir, i.e. regions with k(ri) > 0, such that the non-
translational kinetic energy never vanishes. Outside the reservoirs the thermostatting
force is zero and the particles obey Hamiltonian motion. Some further properties of
the equations are analysed in Appendix A.

2.4 Operator splitting

Our goal is to show that the energy drift is caused by higher-order truncation terms,
which are not taken into account in the time integration. These terms can be derived
easily once the integration scheme is expressed in terms of a Trotter factorisation of
the Liouville operator.

2.4.1 Trotter factorisation

Tuckerman et al.58 showed that reversible integrators can be generated based on
a Trotter factorisation of the Liouville operator iL. Utilising the same theoretical
framework, we consider the splitting

iL = iL1 + iL2, (2.13a)

iL1 =
N∑

j=1

∑

α∈{x,y,z}

ηj,α
mj

∂

∂vj,α
, (2.13b)

iL2 =
N∑

j=1

∑

α∈{x,y,z}

[
fj,α
mj

∂

∂vj,α
+ vj,α

∂

∂rj,α

]
(2.13c)

and apply it to the current state of the system which is fully described by x in the
6N -dimensional phase space. The exact time evolution of the system is formally
given by

xex(t) = etiLx(0). (2.14)

Unfortunately, it is not feasible to evaluate this expression analytically for the
equations we are interested in. The problem can be simplified, however, by considering
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the approximation

x(t) =
[
e

∆t
2
iL1e∆tiL2e

∆t
2
iL1

]P
x(0), (2.15)

where P is an integral number which implicitly defines the timestep through ∆t = t/P .
The operator e

∆t
2
iL1 acts on the velocities and adds the energy ∆Q/2 to the system.

In fact, as shown in Appendix A.2, the velocity update of the HEX algorithm is the
exact solution of this operation. Hamilton’s equations of motion are then integrated
with e∆tiL2 followed by the second energy supply. For the analysis in the next section,
we assume that all operations in Eq. (2.15) can be carried out analytically, although in
the simulation we use an additional approximation of e∆tiL2 , as discussed in Sec. 2.5.

2.4.2 Local truncation error

The splitting given by Eq. (2.15) is known as Strang splitting59. It has the local
truncation error60

x(∆t)− xex(∆t) = ∆t3Exex(0) +O
(
∆t4
)
, (2.16)

where the first term on the RHS is determined by the operator

E =
1

12

[
iL2, [iL2, iL1]

]
− 1

24

[
iL1, [iL1, iL2]

]
(2.17)

and [A,B] = AB −BA is the commutator. Rearranging terms, we find

x(∆t)−∆t3Exex(0) = xex(∆t) +O
(
∆t4
)
. (2.18)

This means that the key to improving the accuracy of the numerical approximation
is to apply the correction −∆t3Exex(0) to the original solution. Alternatively, we
can also use a correction −∆t3Ex̃(∆t), where x̃(∆t) = xex(0) + O(∆t), without
changing the order of the truncation error.

2.5 Enhanced heat exchange algorithm

The analysis of the previous section remains valid for any approximation of e∆tiL2

which is sufficiently accurate. This is necessarily the case if the local truncation error
is O

(
∆t4
)
or higher. Velocity Verlet integration is less accurate than that and has a

local truncation error of O
(
∆t3
)
. Nevertheless, we found that it is fully sufficient to

consider a coordinate correction of the form of Eq. (2.18) to get hold of the energy
loss. We therefore ignored the additional velocity Verlet truncation error and all
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other correction terms in Eq. (2.18) affecting velocities only.
This analysis leads us directly to the enhanced heat exchange (eHEX) algorithm,

which is defined through the update sequence

v̄ni = ξnk(ri)
vni +

(
1− ξnk(ri)

)
vnΓk(ri)

, (2.19a)

v̄
n+ 1

2
i = v̄ni +

∆t

2mi

fni , (2.19b)

r̄n+1
i = rni + ∆t v̄

n+ 1
2

i , (2.19c)

fn+1
i = −∇ri U(r) |r=r̄n+1 , (2.19d)

v̄n+1
i = v̄

n+ 1
2

i +
∆t

2mi

fn+1
i , (2.19e)

vn+1
i = ξ̄n+1

k(r̄i)
v̄n+1
i +

(
1− ξ̄n+1

k(r̄i)

)
v̄n+1
Γk(r̄i)

, (2.19f)

rn+1
i = r̄n+1

i −∆t3E r̄n+1
i . (2.19g)

Apart from the last integration step and some relabelling, this scheme is identical to
the HEX algorithm. As shown in Appendix A, the correction term is given by

Eri,α =
ηi,α

miKΓk(ri)

[
FΓk(ri)

48
+

1

6

∑

j∈γk(ri)

fj ·
(
vj − vΓk(ri)

)]

−
FΓk(ri)

12KΓk(ri)

[
fi,α
mi

− 1

mΓk(ri)

∑

j∈γk(ri)

fj,α

]
(2.20)

and evaluated at the state x̄n+1. We note that this expression vanishes for particles
outside any reservoir, because the thermostatting force is zero in that case. The
scaling factors ξnk(ri)

and ξ̄n+1
k(r̄i)

are calculated at the system states xn and x̄n+1,
respectively. As in the formulation of the original algorithm, we also consider the
case where all the energy is supplied asymmetrically in Eq. (2.19f). We refer to this
version of the algorithm as eHEX/a.

2.5.1 Rigid molecules

Employing constraining forces, we can extend the eHEX algorithm to a system
of rigid bodies, such as SPC/E water61. In the SHAKE algorithm62, originally
devised for Verlet integration, rigidity is imposed by solving iteratively for a set of
Lagrange multipliers. If the underlying equations are integrated with the velocity
Verlet algorithm, a second set of constraining forces is required to eliminate velocity
components along any fixed bond. This is taken into account by the RATTLE
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algorithm63 which we implemented in LAMMPS.
To be compatible with the treatment of constraining forces in LAMMPS, we

consider the eHEX/a algorithm for rigid bodies. We use RATTLE to ensure that
the velocities and positions are satisfied up to the target tolerance after the second
velocity update (Eq. (2.19e)). Provided that all sites of a reference molecule are
located in the same region, the scaling and shifting in Eq. (2.19f) does not violate
the constraints. For this reason, we only rescale an individual site of a molecule if its
centre of mass is located within the reservoir.

For the small fraction of molecules inside a reservoir, the coordinate correction in
Eq. (2.19g) introduces an O(∆t3) error in the bond distances. This error is small
and of the same order as the local error of the RATTLE algorithm itself63. For this
reason, we consider an unconstrained update acceptable. However, we monitor the
maximum relative errors throughout all simulations. The constraining forces for the
coordinates are recalculated at the end of the timestep to ensure that the positions
are correct after the subsequent velocity Verlet update.

2.5.2 Model system

In addition to the monatomic system, we tested the eHEX/a algorithm for the SPC/E
water model61. The simulation box with dimensions Lz/2 = Lx = Ly = 25.26 Å
contained 1024 molecules resulting in a density of 0.95 g/cm3. We used a real-space
cutoff of 11 Å for the LJ and Coulomb interactions, which were evaluated with
standard Ewald summation7. The damping parameter was α = 6.816/Lx with 9841

k-vectors (before employing symmetry properties of the reciprocal sum).
Starting from a lattice structure, we rescaled velocities for 10 ps to drive the

system close to a target temperature of 400 K. We employed a timestep of 1 fs and
the equations were integrated with velocity Verlet. This was followed by a 2× 105

timestep NVT simulation using a Nosé–Hoover thermostat with a relaxation time
of 1 ps. The total energy of the last configuration was then adjusted such that
it corresponds to the average of the NVT run. The average temperature over a
subsequent 2× 105 timestep NVE simulation was (400.5± 0.2) K.

We then switched on the thermostat and waited for 100 ps for the system to
reach a steady state before starting with the 1 ns production run. The reservoirs
of width 4 Å were centred at the points z = ±Lz/4 and we imposed a heat flux of
4.08 × 1010 W/m2. As a reference for the energy conservation, we carried out an
additional set of 1 ns NVE simulations at various timesteps. The temperature in
these runs was (468.0± 0.2) K.
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2.6 Results

The effect of the additional coordinate integration in the eHEX algorithm on the
total energy conservation is shown in Figs 2.3–2.4. As can be seen, the new algo-
rithm exhibits excellent energy conservation. Even for large timesteps close to the
stability limit for a NVE simulation at the peak temperature (∆t∗max, LJ ≈ 0.0075

and ∆tmax, SPC/E ≈ 3.5 fs), there is no noticeable drift on this scale. The energy loss
of the HEX algorithm, on the other hand, is substantial. At the largest timestep, the
total system energy changed by about 0.45% for LJ and 1.6% for SPC/E, respec-
tively. Although an energy loss of several percent was considered acceptable in the
past46,50,51, it sets an upper limit to the accessible simulation time scales. The only
way to circumvent this problem apart from coupling the system to an additional
thermostat is to decrease the timestep and thereby waste valuable computing time.
Based on a series of eight simulations at the largest timestep and with different initial
conditions, we can give a conservative estimate of the improvement due to the new
algorithms. For LJ we found that the eHEX algorithm loses at least 500 times less
energy than the HEX algorithm (450 for eHEX/a compared to HEX/a). For SPC/E
water we found that the eHEX/a algorithm improves the energy conservation by at
least a factor of 100 compared to the HEX/a algorithm. The accessible simulation
time scale therefore increased by two orders of magnitude.

The spatial variation in temperature is shown in Figs 2.5–2.6. For the monatomic
system, the results agree well without any marked differences (Fig. 2.5). We note that
in both cases there are some visible discontinuities in the vicinity of the reservoirs.
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Figure 2.3: Energy loss for LJ at the final time t∗ = 5000 for various timesteps. The
equilibrium run (blue diamonds) and the symmetric (black squares) and asymmetric (green,
open circles) versions of the eHEX algorithm, respectively, do not show any appreciable
drift. The energy loss of the HEX algorithm (red, full circles) together with a quadratic fit

(red, solid line) is shown for comparison.
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Figure 2.4: Energy loss for SPC/E water at the final time t = 1 ns for various timesteps.
The equilibrium run (blue diamonds) is compared to the asymmetric eHEX algorithm
(green, open circles) and the asymmetric HEX algorithm (red, full circles) together with a

quadratic fit (red, solid line).

This should not be very surprising, since the thermostatting force is also discontinuous.
We found that the gap decreases as we go to lower temperature gradients, because
the fluid can dissipate the heat sufficiently fast. A possible way of controlling this gap
is to employ a weight function and to redefine temperature such that it is continuous
at the boundary of the reservoir44. This procedure allows for better control and is
numerically convenient, but it is not obvious which weight function is physically most
meaningful. Furthermore, generalising this approach to arbitrary reservoir shapes
is challenging, because it requires some sort of signed distance information to the
boundary.

For SPC/E water the energy loss at large timesteps is reflected in a slight drop
of temperature (Fig. 2.6). The overall profiles agree well, but they are shifted by a
few Kelvin. This shift is consistent with the energy loss of about 1% for the 2.5 fs
timestep. There are no visible temperature discontinuities in the vicinity of the
reservoirs. This might be related to the fact that in our scheme the boundaries are
naturally smeared out as we only rescale entire molecules which could be intersected
by the reservoir boundary.

Although we omitted a constrained coordinate update in the eHEX/a algorithm,
the relative deviation from the ideal bond distance never exceeded 1.1× 10−5. This
was the case for the largest timestep of 3 fs, but the error decays rapidly (with
∆t3) such that it reduced to 3.6 × 10−7 for a timestep of 1 fs. The maximum
induced relative velocity along any rigid bond was an order of magnitude lower for
both timesteps, respectively. Only a small fraction of molecules inside a reservoir
(≈ 16%) suffers from this inconsistency. We consider this error acceptable and an
unconstrained update justified. An extension of the eHEX algorithm to a constrained
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Figure 2.5: Comparison of the temperature profiles for LJ.
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Figure 2.6: Comparison of the temperature profiles for SPC/E water.

update is possible in case higher precision is required.
With regard to conservation of total linear momentum, we found that both

algorithms satisfied this condition perfectly. We initialised the linear momentum
of the box to zero at the beginning and it remained close to machine precision
throughout the entire simulation.

2.7 Conclusions

In this chapter, we have presented a new algorithm for NEMD simulations of thermal
gradients. The method comprises an extension to the HEX algorithm, which rescales
and shifts velocities of particles inside reservoirs to impose a constant heat flux. The
problem with the original algorithm is that it exhibits a drift in the total energy whose
origin remained hitherto unclear. For long simulations, this energy loss becomes
restrictive, limiting the accessible simulation time scales to a few nanoseconds. In
our approach, we reformulated the HEX algorithm as a Trotter factorisation of
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the Liouville operator. Using this theoretical framework, it is straightforward to
determine higher-order truncation terms which are a consequence of the employed
operator splitting. We demonstrated that the leading-order truncation error of the
coordinates is responsible for the observed energy drift.

To test the accuracy of the method, we implemented the eHEX algorithm in
LAMMPS and ran simulations on a LJ system and SPC/E water. In both cases, we
observed at least a hundredfold reduction in the energy loss compared to the HEX
algorithm. With the eHEX algorithm, it is therefore possible to carry out constant
heat flux simulations which are on the order of a hundred nanoseconds and based on
fully deterministic equations of motion.
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3

Challenges in the simulation of
thermal polarisation

Preface

This chapter is based on the publication ‘Non-equilibrium simulations of thermally
induced electric fields in water’ by P. Wirnsberger, D. Fijan, A. Šarić, M. Neu-
mann, C. Dellago and D. Frenkel, which was published in the Journal of Chemical
Physics (2016)36. A free version of the article is available for download on the arXiv
(https://arxiv.org/abs/1602.02734).

The author contributions are as follows: I implemented the software, performed
the simulations, analysed the data and wrote the initial version of the manuscript.
M. Neumann, C. Dellago, D. Frenkel and I designed the research and interpreted
the results; D. Fijan and A. Šarić helped with performing the research; A. Šarić,
M. Neumann, C. Dellago, D. Frenkel and I wrote the final version of the paper.

We note that a similar article (Ref. 35) appeared online shortly before submission
of our manuscript. That article is not cited in the current chapter but we included
references in subsequent chapters whenever appropriate.

3.1 Motivation

Bresme and co-workers showed that the theory of non-equilibrium thermodynamics
(NET) predicts a linear relationship between the temperature gradient and the
thermally induced electric field in a polar medium, which is known as the TP effect26.
Within the theoretical formalism of NET, the entropy production in the steady
state is related to non-equilibrium fluxes and generalised forces3 that are coupled
by phenomenological relations. For the specific case of thermal polarisation, the
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relevant fluxes were identified to be the heat flux Jq and the displacement current
∂P /∂t, where P is the polarisation26. The specific entropy production (per volume)
can therefore be written as

ṡv = − 1

T

∂P

∂t
· (Eeq −E)− 1

T 2
Jq · ∇T, (3.1)

where Eeq = P /(χeε0) is the electric field present already in equilibrium, χe = εr − 1

is the electric susceptibility and εr and ε0 are the relative dielectric constant and
the vacuum permittivity26. We note that, without further justification, the density
gradient is neglected entirely in the expression above. The phenomenological relations
corresponding to Eq. (3.1) are

∂P

∂t
= −Lpp

T
(Eeq −E)− Lpq

T 2
∇T (3.2)

and
Jq = −Lqp

T
(Eeq −E)− Lqq

T 2
∇T, (3.3)

where Lpp, Lpq, Lqp and Lqq are phenomenological coefficients satisfying Lpq = Lqp.
Assuming a steady state in the absence of free charges, we have ∂P /∂t = 0 and
P = −ε0E, so that Eqs (3.2)–(3.3) yield26

E =

(
1− 1

εr

)
Lpq
Lpp

∇T
T
. (3.4)

Using NEMD simulations, Bresme and co-workers reported electric fields as high
as 108 V/m for gradients of 5 K/Å28,64 and confirmed that the electric field scales
linearly with the temperature gradient28,32,64.

In molecular simulations, Coulomb interactions are regularly treated via Ewald
summation65 (including approximations to it) or a form of truncated interactions66.
In most studies on the thermo-polarisation effect26,28,32,64, electrostatic interactions
were handled with the truncated, short-ranged Wolf method67. It was argued that
Ewald summation can introduce artefacts, which can be avoided by using the short-
ranged method26. Very recently, however, Bresme and co-workers found that the
Wolf method overestimates the induced electric field in a spherical droplet of water
by an order of magnitude compared to Ewald summation68.

The Wolf method and other short-ranged methods66,69–77 are attractive because
they achieve linear scaling with the number of particles compared to the fastest
approximations to Ewald summation, such as Particle-mesh Ewald, which scale as
O(N logN)78,79. However, it is well known that truncation of long-ranged Coulomb
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interactions in simulations can lead to severe artefacts80–87. In particular, short-
ranged methods often fail for heterogeneous systems containing interfaces, even
though they are known to perform well in bulk equilibrium simulations provided
that the parameters are chosen carefully83,86–88. In simulations of the liquid–vapour
interface, for example, the Wolf method was found inadequate for predicting the
electrostatic potential and dipole orientations, regardless of the choice of parameters89.
In the context of local molecular field (LMF) theory it has been demonstrated recently
that averaged long-range effects can be taken into account self-consistently through
an external potential76,83. In this approach, short-ranged interactions are modelled
through a pairwise potential which bears strong similarities to the Wolf method90.
However, in the absence of the external potential the short-ranged method failed to
reproduce the correct results as obtained with Ewald summation and molecules were
found to overorient83.

In this chapter, using a full treatment of electrostatic interactions with Ewald
summation we investigate the validity of the electric fields and induced orientations
observed by Bresme and co-workers26,28,32,64,68. The field calculation requires espe-
cially careful consideration, as the large body of work published thus far relies on
the formulation which is inconsistent with the dynamics of the simulation26,28,32,64,68.
The correct calculation of the field requires a modified kernel (rather than r−1) that
is consistent with the effective truncated Coulomb interactions91,92. We discuss
this issue in detail and carry out a comparison of the thermally induced fields and
multipole moments as obtained both with Ewald summation and the Wolf method.

Another important aspect that deserves consideration, is the spatial averaging
of the potential and the field. In order to resolve the spatial variation of these
quantities, it is advantageous to consider a quasi one-dimensional setup to enhance
sampling. Usually, the charge density is first spatially averaged over small slabs
(bins) and then convoluted with an appropriate kernel to obtain, for example, the
potential93–96. As a consequence, the potential calculated in this way does, in general,
not represent the exact average over the individual bin. However, as we demonstrate
in this chapter, calculating the exact analytical average can be done straightforwardly
for both summation methods and can lead to huge reductions in the error bars for
low resolutions. Therefore, this approach frees us from the constraint of employing
an unnecessarily high, submolecular resolution.

The remainder of this chapter is structured as follows: In Sec. 3.2, we briefly
summarise the electrostatic kernels for Ewald summation and the Wolf method,
respectively, and discuss important differences using a simple model system. Then, in
Sec. 3.3, we reduce the three-dimensional problem to one spatial dimension employing
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symmetry properties of the setup. The two different multipole expansions considered
in this chapter are derived in Sec. 3.4. The simulation protocol is explained in Sec. 3.5
and all simulation results are presented in Sec. 3.6.

3.2 Electrostatic interactions

In MD simulations, periodic boundary conditions (PBCs) are usually employed
to reduce finite-size or surface effects7. This implies that the simulated system is
infinite, but can be fully described with knowledge of the state of a reference box.
The electrostatic potential, Φ, is governed by Poisson’s equation,

∇2Φ = −4πρq, (3.5)

where ρq is the charge density and all quantities are expressed in Gaussian units. One
way of determining the potential is to solve this equation directly for the fictitious
infinite system. Alternatively, the task can be mapped onto the problem of finding
a generalised kernel or Green’s function, G, compatible with a finite volume with
PBCs, considering nearest images only97. Once G is known, the potential and the
field can then be calculated as

Φ(r) =

ˆ
Ω

d3r′ G(r − r′)ρq(r′), (3.6)

and
E(r) = −∇Φ(r), (3.7)

where Ω is the simulation box of volume V . Throughout this chapter, we assume
that PBCs are explicitly taken into account whenever expressions that depend on an
argument of the form r − r′ are evaluated (see for example Appendix B.1).

Although both approaches lead to the same result, there is an important con-
ceptual difference: In the former case, we consider the infinite system of charges
interacting with the potential that scales as r−1 (in three dimensions) plus surface
term, whereas in the latter case, we only consider the charge distribution in our
reference box with an effective interaction. The periodicity of the setup is then fully
mimicked by the Green’s function, which no longer decays as r−1 and is not even
spherically symmetric.

Let us consider a charge-neutral system consisting of N molecules each comprising
n partial charges qiα located at positions riα (i labels molecules and α sites within a
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molecule). The total electrostatic energy is then given by97,98

U(R) =
1

2

∑

i 6=j

∑

α,β

qiαqjβ G(riαjβ) (3.8)

+
1

2

∑

j

∑

α 6=β
qjαqjβ

[
G(rjαjβ)− 1

rjαjβ

]

+
1

2

∑

j

∑

α

q2
jα lim

r→0

[
G(r)− 1

r

]
,

where riαjβ = rjβ − riα is the distance vector between the nearest pair of images,
r = |r| andR = (r11, . . . , rNn) is a 3n×N -dimensional vector. In the above equation
we have omitted the summation bounds for readibility.

In Eq. (3.8) the surface term of de Leeuw and co-workers91 has been omitted,
because we employ conducting (tin-foil) boundary conditions. We can see that the
functional form of G directly affects the forces, which are calculated from the negative
gradient of the energy, and therefore the dynamics of the simulation. In what follows,
we briefly summarise the kernels for Ewald summation and the Wolf method.

3.2.1 Ewald summation

Ewald summation is a numerical approximation to the exact solution of Eq. (3.5) for
PBCs, whose Green’s function is formally given by

GPBC(r) =
1

V

∑

k 6=0

4π

k2
eik·r. (3.9)

Here, the summation extends over reciprocal vectors k with components kα =

2πpα/Lα, where pα is an integer and Lα the box size in direction α. Introducing the
convergence factor e−k2/4η2 , the expression is split up into two terms, one of which is
converted back to real space. This leads to the representation98

GE,full(r) =
∑

n

erfc(η|r + n|)
|r + n| − π

η2V
(3.10)

+
1

V

∑

k 6=0

4π

k2
e−

k2

4η2 eik·r,

where n is a shift vector between a molecule and its periodic image and the summation
runs over all periodic images. Choosing η carefully, it is possible to achieve fast
convergence of the first sum and small contributions for n 6= 0. If we ignore these
terms and introduce a spherical cutoff, rc, for better performance, Eq. (3.10) finally
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reduces to

GE(r) = Θ(rc − r)
erfc(ηr)

r
− π

η2V
(3.11)

+
1

V

∑

k 6=0

4π

k2
e−

k2

4η2 eik·r,

where Θ(r) is the Heaviside function. Inserting this expression back into Eq. (3.8)
yields the standard Ewald summation expression97 as presented in textbooks, e.g. in
Ref. 7.

3.2.2 Wolf method

Wolf and co-workers showed that in a condensed ionic system the net Coulomb po-
tential is effectively short-ranged67. Based on this insight, they devised a summation
method that avoids the expensive k -space term in Eq. (3.11) altogether. Instead,
the potential is damped and shifted in a way that enforces charge neutrality within
the cutoff sphere for improved convergence properties. The corresponding kernel is
given by

GW(r) = Θ(rc − r)
[
erfc(ζr)

r
− erfc(ζrc)

rc

]
(3.12)

and reproduces the correct Madelung energy as suggested by Wolf and co-workers67.
Later the method was extended to eliminate also higher-order multipoles inside the
cutoff sphere73,74. However, it was pointed out that the entire approach embodies
certain assumptions on the underlying physical system74, such as the availability of
charges outside the cutoff region for screening72. Whether these assumptions are
reasonable is not always clear a priori, especially for inhomogeneuous systems such
as the one considered here.

We note that the first term in GW is identical to the one in GE, although the
optimal choice of the damping parameter, ζ, is not necessarily the same as for Ewald
summation. A good value can be found by analysing the convergence of the Madelung
energy per ion67. Furthermore, in the Wolf method the force is not exactly given
by the negative gradient of the potential energy. The reason for this inconsistency
is that the expression G

′
W(r) − G′

W(r)|r=rc is used for the evaluation rather than
G

′
W(r) in order for the force to vanish at the cutoff distance67. There are extensions

of the Wolf method which address this issue (for example Ref. 70). However, given a
reasonable combination of damping parameter and cutoff value, we expect the effects
of this inconsistency on the electric field to be negligible.
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3.2.3 Model system

To illustrate the difference between the electrostatic kernels, we consider a test case
based on calculating the potential generated by a single SPC/E water61 molecule. This
simple example should draw attention to the fact that, for an identical arrangement
of charges, the results for the Wolf method sensitively depend on the choice of kernel,
damping parameter and cutoff radius. The quality of the Wolf approximation to the
electrostatic potential, computed according to Eq. (3.6), is assessed by comparison
with the results of Ewald summation, which approximates the exact solution.

Considering only a single molecule may seem atypical for the Wolf method, since
it relies on the idea that long-range contributions average out in a dense system.
However, this comparison serves as a guideline for the choice of new parameters
which help us to reduce the dependence on this crucial assumption. This is achieved
by tuning the potential to get better agreement with Ewald summation already on
the level of a single molecule. The comparison in Sec. 3.6 will then allow us to assess
the performance of the Wolf method for a wider range of parameters, but it is not
the intention of this work to single out an optimal choice.

Figure 3.1 shows the potential due to a single SPC/E water molecule in a fully
periodic system. The molecule is located at the centre of a rectangular simula-
tion box with dimensions L = Lx = Ly = Lz/3 = 36.35 Å. The three charges,
qO = 0.8476qe and qH1/2

= −qO/2, where qe is the elementary charge, are located in
the x = 0–plane at positions rO = (0, 0,−0.289) Å and rH1/2

= (0,±0.816, 0.289) Å,
respectively. Ewald summation was carried out taking rc = L/2 with ηL = 5.85,
and choosing the set of k-vectors for Eq. (3.11) such that the estimated relative
error of the force was approximately 10−5. For the Wolf method, we compare two
sets of parameters: (ζL = 1.0, rc = L/2) and (ζL = 7.2, rc = 11 Å). The latter
combination was employed by Armstrong and Bresme28 and the former with consid-
erably weaker damping and a larger cutoff is added for comparison. We note that
we also investigated the effects of a large cutoff combined with strong damping, i.e.
(ζL = 7.2, rc = L/2). However, we did not observe any substantial differences for
the main results of this work compared with the 11 Å cutoff and therefore omitted
the comparison.

It is obvious that for the strong damping (dashed lines) the potential decays too
quickly compared to the result we get with Ewald summation (solid lines). Only
the short-range behaviour in the immediate vicinity of the molecule is captured
correctly. The weaker damping parameter (dotted lines), on the other hand, yields a
reasonable agreement with Ewald summation within a distance of about 6 Å from
the origin, but shows some deviation further away. Employing even lower values
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Figure 3.1: Absolute value of the electrostatic potential of a single SPC/E water molecule
computed by Ewald summation (solid lines) and the Wolf method with ζL = 1.0 (dotted
lines) and ζL = 7.2 (dashed lines). With increasing distance from the origin, the isolines
of the potential correspond to the values 14.4 V, 1.44 V, 0.72 V, 0.144 V and 0.072 V,

respectively.

for ζ, for example 0.5/L, reduces the discrepancy between the outermost contour
lines only minimally (not shown). Since the value of the potential represented by
the lowest contour level in Fig. 3.1 corresponds to only 0.5% of the highest one, we
conclude that the parameters (ζL = 1.0, rc = L/2) yield a reasonable approximation
to the Ewald result within the cutoff sphere of 11 Å. Validation of both sets of
parameters in bulk simulations also reveals good agreement with Ewald summation
(see Appendix B.3).

3.3 Spatial averaging

Once the method to treat electrostatic interactions is chosen and optimised, one
typically wishes to improve the statistics of the collected averages. For this purpose
a simulation setup with high spatial symmetry is advantageous28. Here, we focus
on the case where the underlying three-dimensional problem can be reduced to one
spatial dimension, as illustrated in Fig. 3.2. For such a system, the average charge
density can only depend on z for sufficiently long simulation times, because the
system is isotropic in all other directions. Therefore, this approach is justified only if
one considers sufficiently long simulations. Assuming ρq(r′) ≡ ρq(z

′), we can then
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Figure 3.2: Simulation setup with a hot reservoir (coloured in red) wrapped around the
boundaries and a cold reservoir (coloured in blue) in the centre of the simulation box. The
superimposed rectangle (black solid lines) schematically illustrates a bin of width ∆z.

rewrite Eq. (3.6) as

Φ(z) =

Lz/2ˆ

−Lz/2

dz′ G1D(z − z′)ρq(z′), (3.13)

where we introduced the one-dimensional kernel

G1D(z) =

Lx/2ˆ

−Lx/2

dx′
Ly/2ˆ

−Ly/2

dy′ G(x− x′, y − y′, z). (3.14)

Taking the negative gradient of Eq. (3.13) yields the electrostatic field

Ez(z) = −
Lz/2ˆ

−Lz/2

dz′ G
′
1D(z − z′)ρq(z′), (3.15)

where G′
1D denotes the derivative of G1D. The above integrals can be evaluated

readily for Ewald summation and the Wolf method (see Appendix B.1). The results
can be improved considerably by averaging the potential and the microscopic field
over small spatial regions, such that we obtain the macroscopic Maxwell field for the
latter. The centre of each control volume then represents its exact spatial average.
To this end, we consider Nb bins of width ∆z, as depicted in Fig. 3.2. The lower and
upper boundaries of bin j, where j = 1, . . . , Nb, are given by zj,1 = −Lz/2+(j−1)∆z

and zj,2 = zj,1 + ∆z, respectively. The spatial average of the potential over bin j is
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then given by

Φ̄j =
1

∆z

zj,2ˆ

zj,1

dz Φ(z) (3.16a)

=

Lz/2ˆ

−Lz/2

dz′ Ḡ1D,j(z
′)ρq(z

′), (3.16b)

where the overbar denotes the spatially averaged kernel

Ḡ1D,j(z
′) =

1

∆z

zj,2ˆ

zj,1

dz G1D(z − z′). (3.17)

For our effectively one-dimensional system of point charges, we can decompose the
charge density according to

ρq(z) =
1

LxLy

∑

i

qi δ(z − zi), (3.18)

where δ(z) is the one-dimensional Dirac delta function. Inserting this expression
back into our previous result for the potential yields

Φ̄j =
1

LxLy

∑

i

qi Ḡ1D,j(zi). (3.19)

Analogously, the averaged field is given by

Ēz,j = − 1

LxLy

∑

i

qi Ḡ
′
1D,j(zi). (3.20)

The corresponding expressions for Ḡ1D and Ḡ′
1D for Ewald summation are derived

in Appendix B.1. The above averages for potential and field depend on all particle
positions and therefore implicitly on time. The time average of any quantity X is
defined as

〈X〉 =
1

τ

τˆ

0

dt X(t), (3.21)

where τ is the total simulation time of the production run. It is straightforward
to evaluate 〈Φ̄j〉 and 〈Ēz,j〉 for the discrete trajectory obtained from the NEMD
simulation.
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Figure 3.3: Illustration of two different multipole expansions: a) with respect to the centre
of the region γ (‘slab expansion’) and b) for each molecule γj individually with the oxygen
site at the origin (‘molecule expansion’). Both approaches give rise to the same field at a

distant point P .

3.4 Multipole expansion

In what follows, we outline how the exact potential, as calculated from the charge
density, can be decomposed into individual multipole contributions. This helps us to
gain insight into how the alignment of the molecules with respect to the temperature
gradient affects the field. We consider two different expansions for comparison which
are illustrated in Fig. 3.3. In the slab expansion (Fig. 3.3a), the multipole moments
due to the charges located inside a bin are calculated relative to its centre. In the
molecule expansion (Fig. 3.3b), separate multipole expansions are carried out for
each individual molecule and the multipoles are located at the respective oxygen
sites. If all moments were considered in the expansion, both approaches would give
rise to the same potential at a distant point P . We note that both types of expansion
have already been considered in the past for interfacial systems96,99. However, here
we use a more general formulation100 which is also applicable to modified kernels
representing truncated Coulomb interactions.

The potential generated by a charge distribution enclosed in a volume γ is given
by

Φ(r) =

ˆ
γ

d3r′ G(r − r′)ρq(r′). (3.22)

From this equation we can obtain the contributions of the individual multipole

31



Challenges in the simulation of thermal polarisation

moments by expanding G(r − r′) into a Taylor series around r,

Φ(r) ≈ G(r)

ˆ
γ

d3r′ρq(r
′)

︸ ︷︷ ︸
q

(3.23)

−
∑

α

∇αG(r)

ˆ
γ

d3r′r′αρq(r
′)

︸ ︷︷ ︸
µα

+
∑

α,β

∇α∇βG(r)
1

2

ˆ
γ

d3r′r′αr
′
βρq(r

′)

︸ ︷︷ ︸
Qαβ

,

where q is the total charge in γ, µ the dipole moment and Q the quadrupole moment.
The symbol ∇α denotes the derivative with respect to the Cartesian component
rα. Moving the origin of the charge distribution to r̃ and taking into account the
symmetry properties of our effectively one-dimensional system, we find

LxLyΦ(z) ≈ G1D(z − z̃) q︸ ︷︷ ︸
monopole contribution

−G′
1D(z − z̃) µz︸ ︷︷ ︸

dipole contribution

(3.24)

+ G
′′
1D(z − z̃) Qzz︸ ︷︷ ︸

quadrupole contribution

.

From the simulated trajectory, we then compute time averages of the multipole
densities ρ̄q,j , ρ̄µ,j and ρ̄Q,j for the monopole, dipole and quadrupole moments of every
bin j, respectively. Before defining these quantities, we first introduce some additional
notation to distinguish between the two types of expansion. We use superscripts ·(m),
where m = 1 for slabs (Fig. 3.3a) and m = 2 for molecules (Fig. 3.3b). The density
of X = q, µz, Qzz [cf. Eq. (3.23)] is then given by

ρ̄
(1)
X,j =

1

∆v
× {moment of bin j} (3.25)

for the case m = 1 and

ρ̄
(2)
X,j =

1

∆v
× {sum of molecular moments in bin j} (3.26)

for the case m = 2, where ∆v = LxLy∆z is the volume of the bin. Since we only
consider the multipole moments q, µz and Qzz, from now on we omit the subscripts
for readability.

In general, the multipole moments depend on the way the charge distribution is
partitioned101,102 and consequently the multipole densities for slabs and molecules
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are not directly comparable. For example, the quadrupole moment of a reference
bin will, in general, not be equal to the sum of the molecular quadrupole moments.
Furthermore, we make an intentional, small mistake in the evaluation of ρ̄(2)

µ,j and ρ̄
(2)
Q,j

for the sake of computational convenience, because we ignore the precise location of
the molecular moments within the bin j. However, as we will see in Sec. 3.6, the
error in the electrostatic potential introduced by this approximation is negligible.

The electrostatic potential (at the centre of bin j) is then calculated as the sum
of the three contributions in Eq. (3.24),

Φ
(m)
j = Φ

(m)
q,j + Φ

(m)
µ,j + Φ

(m)
Q,j , (3.27)

which are given by

Φ
(m)
q,j = ∆z

Nb∑

l=1

G1D(zj − zl)ρ̄(m)
q,l , (3.28a)

Φ
(m)
µ,j =−∆z

Nb∑

l=1

G
′
1D(zj − zl)ρ̄(m)

µ,l , (3.28b)

Φ
(m)
Q,j = ∆z

Nb∑

l=1

G
′′
1D(zj − zl)ρ̄(m)

Q,l , (3.28c)

respectively. Since the molecules are charge-neutral, it follows that all values ρ(2)
q,j

and consequently Φ(2)
q,j vanish identically.

3.5 Simulation protocol

For production runs, we prepared the system in the same state as Armstrong and
Bresme28 in order to carry out a quantitative comparison. The simulation box
(Fig. 3.2) has exactly the same dimensions as the one used for the model system. For
two of the three NEMD simulations we used the Wolf method and the remaining
one was performed with Ewald summation (the relevant parameters are summarised
in Sec. 3.2.3). LJ interactions were truncated at 11 Å in all cases. The box contains
N = 4500 SPC/E molecules resulting in a mass density of ρm = 0.934 g/cm3.
All simulations were carried out using a modified version of the software package
LAMMPS (9Dec14)54 which we augmented with the eHEX/a algorithm39.
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3.5.1 Equilibration

The system was first equilibrated and validated. Starting from an initial lattice
structure with zero linear momentum, we integrated the equations of motion with the
velocity Verlet algorithm103 employing a timestep of ∆t = 1 fs. For the first 20 ps we
rescaled the velocities to drive the system close to the target temperature of 400 K.
This was followed by a short 200 ps NpT run using a Nosé–Hoover thermostat with
a relaxation time of τT = 1 ps and a Nosé–Hoover barostat with a relaxation time of
τp = 2.5 ps56,57. We then rescaled the box to the target dimensions and carried out
a 500 ps NVT run during which we monitored the average system energy. Next, we
adjusted the kinetic energy of the last configuration by velocity rescaling and used it
as input for another 1 ns NVE equilibration run. The average temperature during
this run was T = (400±0.1) K, where the error bar was estimated using block average
analysis7. We computed the pair-correlation function, the velocity autocorrelation
function, the dielectric constant and the distance-dependent Kirkwood g-factor (see
Appendix B.3). The validation suggests that our implementation is correct and our
choice of parameters reasonable.

3.5.2 Non-equilibrium stationary state

To investigate the effect of a thermal gradient after the equilibration, the system was
driven to a non-equilibrium stationary state by imposing a constant heat flux between
two reservoirs, Γ1 and Γ2 (Fig. 3.2). The equations were solved numerically using the
eHEX/a algorithm developed in the previous chapter with a timestep of ∆t = 2 fs.
After switching on the thermostat, we waited for 10 ns for any transient behaviour
to disappear before starting with the τ = 60 ns run. The energy conservation was
excellent (|∆E/E| ≈ 0.005%) and the centre of mass velocity of the simulation box
remained close to machine precision throughout the simulation. The heat fluxes are
input parameters of the eHEX algorithm which were adjusted by trial and error.
The employed values are summarised in Tab. 3.1.

We note that lower heat fluxes are required for the Wolf method in order to
achieve the same temperature gradient as for Ewald summation. This is consistent
with the observation that the truncation of electrostatic interactions results in lower
thermal conductivities87.
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Table 3.1: Imposed heat fluxes and measured values for the tempature gradients. We note
that our heat flux for the Wolf (ζL = 7.2) run is about 1.7% larger than the value used by

Armstrong and Bresme28.

JQ,z (1010 W/m2) ∇T (K/Å)

Ewald 4.243 −5.14± 0.04

Wolf (ζL = 1.0) 4.166 −5.17± 0.04

Wolf (ζL = 7.2) 3.875 −5.18± 0.04
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Figure 3.4: Spatial variation of a) temperature and b) oxygen number density obtained
with Ewald summation and the Wolf method. The horizontal lines indicate the spatial and
temporal equilibrium averages of the temperature and the number density, respectively.
The vertical stripes indicate the locations of the hot (coloured in red) and cold (coloured in

blue) reservoirs.

3.6 Results

In this section, we present the key results for the temperature and density profiles
(Sec. 3.6.1), the multipole expansions (Sec. 3.6.2), the potential (Sec. 3.6.3), the field
(Sec. 3.6.4) and the polarisation (Sec. 3.6.5). We estimated error bars for all results
in this section. To this end we divided the entire trajectory into 600 blocks (of length
100 ps) and assumed the results for the individual blocks to be uncorrelated. The
size of the individual error bar then corresponds to twice the standard deviation of
the mean. This estimate comprises the statistical error as well as the methodological
error arising, for example, from the employed quadrature.

3.6.1 Temperature and density

Figures 3.4a-b show the spatial variations in temperature and density along the
z-direction with a resolution of ∆z = 2.73 Å (Nb = 40). The temperature of an
individual bin was calculated from the non-translational kinetic energy of the atoms
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inside that bin39. There are only small differences between the results obtained
with the Ewald and Wolf methods. The peak temperature at the centre of the
hot reservoir is about 552 K and the lowest temperature at the centre of the cold
reservoir is about 285 K (Fig. 3.4a). The temperature profile is linear outside the
reservoirs and symmetric with respect to the origin of the simulation box, which is
in accordance with the setup.

The measured average number densities (Fig. 3.4b) obtained with Ewald sum-
mation and the Wolf method agree well apart from slight differences in the vicinity
of the cold reservoir. The mass density varies by up to 15% (cold reservoir) with
respect to ρm. We note that on this scale, we did not observe any appreciable dis-
continuities of the temperature or density close to the reservoir boundaries, although
the thermostatting force is discontinuous.

3.6.2 Molecular orientation and multipole moments

In this section, we discuss the induced molecular alignment and multipole moments
due to the thermal gradient for both expansions in Fig. 3.3. The left column in
Fig. 3.5 corresponds to the slab (centre-of-bin) expansion and the right column to the
molecule expansion. The monopole in the molecule expansion vanishes identically,
hence it is not shown. The spatial variations of all quantities are shown with a
resolution of ∆z = 5.45 Å (Nb = 20).

Let us consider the time averaged charge density for slabs first (Fig. 3.5a). For
Ewald summation the error of the average is so large that it swamps the signal even
after 60 ns of simulation time. We also note that the curve is not symmetric in the
vicinity of the cold reservoir within the statistical uncertainty shown in the plot.
We believe that this may be due to the fact that we computed the error bars as if
neighbouring bins were independent, which is not the case, because molecules are
charge neutral. The real error bars may be larger due to long-wavelength fluctuations.
We confirmed that the results become symmetric (within the statistical error) upon
doubling the simulation time.

For the Wolf method there is an accumulation of positive charge in the vicinity of
the hot reservoir, which is enhanced by stronger damping. This result agrees qualita-
tively with the findings of Rodgers and Weeks for a different inhomogeneous system,
where the authors compared the (Gaussian-smoothed) charge density obtained with
Gaussian-truncated (GT) water to that of Ewald summation83. Furthermore, we
note that the error bar increases by about one order of magnitude upon refining the
resolution by a factor of 10, which corresponds to ∆z ≈ 0.54 Å (Nb = 200) used by
Armstrong and Bresme28.
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Figure 3.5: Multipole densities for the slab expansion (left column) and molecule expansion
(right column). The panels a-c) show the charge density, dipole density and quadrupole
density, respectively, for the slab expansion. The panels d) and e) show the dipole density
and quadrupole density, respectively, for the molecule expansion. The inset in panel d)
shows the average molecular alignment with the temperature gradient. Horizontal lines in

the inset and the full figure were added to highlight the symmetry of the result.
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Figures 3.5b and d show the dipole densities for both expansions, respectively.
For the slabs (Fig. 3.5b), there is no noticable trend of the dipole density within the
statistical uncertainity. However, for the molecule expansion (Fig. 3.5d) we find a
strong disagreement between the two electrostatic kernels. For this case, we also
quantified the average molecular alignment using the order parameter31

cos(θ) = n · ez, (3.29)

where n = µ/µ defines the orientation of a molecule and ez is the unit vector in the
direction of the temperature gradient. In the case of Ewald summation molecules,
on average, point to the cold reservoir and the alignment is fairly constant outside
the reservoirs (see inset in Fig. 3.5d). The Wolf method entirely fails to capture this
behaviour. For the wide range of parameters considered here (including the ones
previously employed in the literature), the method predicts opposite orientations
and overestimates the magnitude of alignment by a factor of about 7 for the strong
damping. Employing a lower value for the damping parameter reduces the overesti-
mation, but cannot correct the wrong sign. We also note that our results for the
average molecular orientation (inset in Fig. 3.5d) are in agreement with the ones
reported by Armstrong and Bresme28.

The quadrupole densities, shown in Figs 3.5c and e, agree well with each other
within each expansion. Similarily to the dipole density, considering slabs for the
expansion (Fig. 3.5c) yields results which are negligible compared to the molecule
expansion (Fig. 3.5e). We note that in the latter case, the profile is proportional to
the oxygen number density (Fig. 3.4b) and can lead to considerable contributions to
the potential.

Repeating our simulation with Ewald summation and vacuum boundary conditions
(see Refs 97 and 91 for more details), we found consistent results for the multipole
densities (not shown). We can therefore rule out any artefacts arising from the
boundary conditions at infinity on the results shown in this section. However, we
noticed that the statistical error of the molecular dipole density decays much faster
for vacuum boundary conditions relative to tin-foil boundary conditions.

3.6.3 Electrostatic potential

In the previous section, we analysed the thermally induced multipole moments for two
different multipole expansions, namely slabs and molecules. The aim of this section is
to compare three different ways of calculating the electrostatic potential: Firstly, we
consider the exact analytical average given by Eq. (3.19). Secondly, we approximate
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Figure 3.6: The exact potential is shown in panel a) and a comparison between the potential
calculated solely from the monopole density in the slab expansion and the exact result
calculated with Ewald summation is shown in b). The inset compares the ratio of the
maximum errors which were calculated from 600 blocks of length 100 ps as a function of
the number of bins. The arrow indicates the error ratio for the resolution shown in the full

figure.

the potential using only the average charge density given by the slab expansion,
Eq. (3.28a), which is the approach regularly employed in the literature28,93–95. Thirdly,
we approximate the potential using also the dipole and quadrupole densities, i.e.
Eqs (3.28b-c).

Let us consider the results for the exact calculation first, which are shown in
Fig. 3.6a. All graphs are symmetric with respect to the origin of the simulation
box and periodic, indicating that the field vanishes at the centres of the reservoirs.
Although the shape of the potential predicted by the short-ranged method is similar
to the one for Ewald summation, the results are sensitive to the choice of damping
parameter. Weak damping overestimates the potential, whereas strong damping
leads to an underestimation. Both our choices fail to reproduce the Ewald summation
result correctly, although it seems plausible that intermediate values for the damping
parameter could lead to a better agreement.

Figure 3.6b compares (for Ewald summation) the exact result for the electrostatic
potential to that given by the monopole density in the slab expansion. We recall that
the latter approach corresponds to averaging the charge density first and integrating
it with the appropriate kernel afterwards [Eq. (3.28)a]. It is clear from comparison
of the two curves including error bars that the exact calculation yields a huge
improvement over the approximation. For the resolution shown in the plot (Nb = 40,
∆z = 2.73 Å), the error bars are reduced by more than one order of magnitude. The
inset shows the ratio of the maximum error of the approximation to the maximum
error of the exact calculation as a function of the number of bins. (We define the
maximum error to be half the length of the largest error bar throughout the entire
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Figure 3.7: Individual contributions to the potential for the slab expansion (left column)
and molecule expansion (right column). The results for Ewald summation are shown in
panels a) and c) in the first row and for the Wolf method in panels b) and d) in the second

row.

interval.) For a very low resolution of 10 grid points (∆z = 10.9 Å), the maximum
error decreases by about a factor of 26. For high resolutions of ∆z ≤ 0.5 Å the error
ratio approaches unity implying that both methods become comparable, which is
the expected behaviour in the limit ∆z → 0. At the same time the magnitude of the
error naturally increases for higher resolutions because fewer molecules contribute to
a particular bin (for 400 bins the maximum error increases by about 50% compared
to the resolution of 40 bins shown in the figure).

Given that molecules point, on average, in opposite directions for the two electro-
static kernels (Fig. 3.5d), it is counterintuitive that the potentials are qualitatively
comparable. To understand the origin of this seeming contradiction, we singled
out the individual multipole contributions, which are illustrated in Figs 3.7a-d for
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both expansions. Let us consider the slab expansion first. For both electrostatic
kernels (Figs 3.7a-b) we found the monopole contribution (black curve) to capture the
exact potential (red line) reasonably well for the chosen spatial resolution (Nb = 40,
∆z = 2.73 Å). However, if we consider a point dipole and a point quadrupole
(representative for the respective bin average) in addition to the point monopole
located at the centre of each bin, we obtain a much better approximation to the exact
result (red circles). In fact, for Ewald summation we recover the exact potential
almost perfectly, whereas we observe an overshoot inside the hot reservoir for the
Wolf method. We believe that a more accurate approximation for the short-ranged
method might be obtained by considering octupole and hexadecapole contributions
in addition, but we did not investigate this further.

The situation changes entirely for the molecule expansion shown in Figs 3.7c-d,
where the monopole contribution is zero. For Ewald summation (Fig. 3.7c), the dipole
density leads to a linear potential outside the reservoirs (green curve) corresponding
to a negative field in the left half of the simulation box. However, close to the hot
reservoir the quadrupole contribution (blue curve) outweighs the dipole contribution
causing the slope of the overall potential to be negative and therefore the field to
be positive. In the vicinity of the cold reservoir the dipole contribution dominates
over the quadrupole contribution and the field is negative. The sum of both terms
(red circles) agrees perfectly with the exact average (red line). For the Wolf method
we found that the quadrupole density constitutes a much smaller correction to the
dipole contribution which is almost negligible outside the reservoirs. This might
seem surprising at first given that the results for the quadrupole densities agree well
for both summation methods (Fig. 3.5e). The apparent contradiction is explained
by the fact that the derivatives of the kernels in the evaluation of the potential are
very different for both methods. We will get back to this point in Sec. 3.6.5 when we
discuss the macroscopic polarisation.

With regard to the accuracy of the full multipole approximations (up to the
quadrupole term), we observed different trends for the maximum error of the potential
within each expansion. For the slab expansion we found the maximum error to be
about 6 times larger than the error of the exact potential for the lowest resolution
(Nb = 10, ∆z = 10.9 Å). Upon increasing the resolution, the error ratio approaches
unity, which is the expected behaviour. However, this is not the case for the molecule
expansion, where the error is only about 20% larger than the error of the exact
potential initially, but the difference increases to about 100% for the highest resolution
(Nb = 3200, ∆z = 0.034 Å). We believe that this behaviour is reasonable, because we
never intersect molecules and cannot resolve the potential inside a molecule correctly.
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Figure 3.8: The exact field is shown in figure a) and a comparison between the field
calculated from the monopole density in the slab expansion and the exact result is shown
in b). The inset compares the ratio of the maximum errors which were calculated from 600
blocks of length 100 ps as a function of the number of bins. The arrow indicates the error

ratio for the resolution shown in the full figure.

The higher the resolution the worse we expect the approximation to become in the
vicinity of the point multipoles. Averaging the potential exactly is preferable on all
scales, rendering it clearly the method of choice.

3.6.4 Electrostatic field

The exact results for the field in the sense of Eq. (3.20) are shown in Fig. 3.8a.
Focusing on the left half of the simulation box, we notice that the field is positive
and strongest in the vicinity of the hot reservoir. For the peak field strength we
measured values of about 2.8×107 V/m, 4.4×107 V/m and 2.2×107 V/m for Ewald
summation and the Wolf method with weak and strong damping, respectively. Close
to the hot reservoir, the short-ranged method overshoots the Ewald summation result
for low damping and vice versa for high damping. We also infer from the figure that
the field changes its sign in the vicinity of the cold reservoir. From the discussion of
the potentials in the previous section (Fig. 3.7c) we know that the inversion happens
exactly when the dipole contribution to the field dominates over the quadrupole
contribution.

Comparing our results to the ones reported by Bresme and co-workers, we find a
major discrepancy: In the original work28 the reported fields are about one order
of magnitude higher than what we found. Recently, however, it was suggested that
the thermally induced field in a spherical droplet of SPC/E water is of the order
of 107 V/m after comparison with Ewald summation (PPPM)68. Nevertheless, the
discrepancy still persists as the authors68 suggest that the Wolf method itself is
responsible for the overestimated field, whereas, in fact, the opposite is true for the
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set of parameters employed in Ref. 28. The Wolf method slightly underestimates the
field if it is calculated consistently, namely using the correct kernel (see Fig. 3.8a).
We can reproduce the results of Armstrong and Bresme closely if we calculate the
field as28

Ez(z) = 4π

zˆ

−Lz/2

dz′ρq(z
′), (3.30)

considering Gaussian units and taking the lower integration bound to be −Lz/2
rather than −∞. (A comparison is omitted for brevity.) For Ewald summation this
expression is correct and equivalent to Eq. (3.15) with G′

1D,E as long as the net dipole
density of the box,

ρ̄µ,Lz =
1

Lz

Lz/2ˆ

−Lz/2

dz′z′ρq(z
′), (3.31)

vanishes. Considering sufficiently long simulations, this is necessarily the case for
our system because of the symmetric setup (see Figs 3.2, 3.5b and d). If this was
not the case, an additional term 4πρ̄µ,Lz would have to be added to the right-hand
side of Eq. (3.30). The equivalence is trivially shown by rewriting the integral in
Eq. (3.15) taking into account periodicity and charge neutrality. Alternatively, one
can integrate Poisson’s equation directly and impose periodicity by choosing the
integration constants accordingly104. However, applying Eq. (3.30) for the Wolf
method is wrong and the discrepancy between our result and the one of Armstrong
and Bresme28 can therefore be traced back to using the incorrect expression in the
calculation.

Similarly to what we observed for the potential, considering exact averages rather
than estimating the field from the average charge density yields a huge improvement
for low resolutions. The comparison in Fig. 3.8b is carried out for a resolution of
Nb = 10 (∆z = 10.9 Å) and, as shown in the inset, the error of the approximative
field, i.e. using the negative derivative of G1D,E in Eq. (3.28a), is about 10 times
larger than the exact one. For resolutions higher than Nb = 80 bins (∆z ≤ 1.36 Å),
both approaches yield similar errors. Comparing the insets of Figs 3.6b and 3.8b, we
notice that the enhancement of the exact method over the approximative one is much
higher for the potential. This can be partly explained by looking at the functional
form of G′

1D,E (Eq. (B.9a) in Appendix B.1). The function is piecewise linear and the
midpoint rule, which corresponds to multiplying the function value at the centre of
the bin by ∆z, is exact in the absence of any discontinuity. Therefore, the advantage
of using Ḡ′

1D,E over G′
1D,E for the evaluation of the field is less significant than for

the potential.
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Figure 3.9: Spatial maximum error as a function of the resolution ∆z for the exact field
(red circles) and the monopole field (black, open squares), respectively. (The error is defined
as one standard deviation of the mean and the error bar in Fig. 3.8b corresponds to twice

the value for ∆z = 10.9 Å.)

Figure 3.9 compares the spatial maximum errors for varying resolutions. Interest-
ingly, for sufficiently high resolutions of ∆z ≤ 1 Å we found the maximum error of
the approximative method to be up to almost 30% lower than the one for the exact
average. We attribute this to cancellation of errors, since convergence tests support
a correct implementation. Far more important is the magnitude of the error for
high resolutions. For simulation time scales of 100 ns the error is comparable to the
signal itself requiring even longer runs for the statistics to be satisfactory. Suppose
we wanted to get a rough idea of what the field looked like. With the conventional
method, i.e. averaging the charge density first and then integrating it, the best we
can do is to calculate the results on a sufficiently high resolution and then perform
some sort of averaging. On the one hand, this approach is problematic because the
coarse-grained values do not represent the correct bin averages. On the other hand,
it is not straightforward to propagate the statistical errors from the fine resolution
to the coarse one since the values are highly correlated. Our proposed method of
averaging the potential and the field analytically eliminates both issues and yields a
huge improvement for low resolutions reducing the required simulation time scales
by up to two orders of magnitude for the same quality of statistics.

3.6.5 Macroscopic polarisation

Our final goal in this section is to relate the molecular multipole densities to the
macroscopic polarisation. We show that the macroscopic Maxwell equation

Ēz(z) = D̄z(z)− 4πP̄z(z) (3.32)
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holds locally for the bin averages calculated with Ewald summation, where P̄z and
D̄z are the z-components of polarisation and displacement field, respectively. We
do not make any a priori assumptions about the locality105 and use the multipole
expansions developed in Sec. 3.4 as a general starting point for the discussion. We
then identify the quantities on the right-hand side of Eq. (3.32) after simplifying the
expressions. We note that our analysis only holds in the context of sufficiently long
simulations (like in Sec. 3.4), because we use ρq(z) in place of the full ρq(r). This
simplifies the discussion in that we only need to consider the z-component of the
spatially averaged dipole density, ρ̄µ, and the density of Qzz given by ρ̄Q, respectively.

The water molecules comprise the polarisable background medium and there
are no free charges. From our discusion in Sec. 3.6.3, we know that the dipole
contribution alone yields a poor approximation to the potential (Figs 3.7c and d).
As a natural extension we considered the quadrupole contribution106, which was
also found to be important in simulation studies of interfacial electric fields96,99,107.
With the inclusion of this contribution, the potentials from the molecular multipole
expansions match the exact potentials very well for both methods, respectively. The
corresponding expression for the field extends to

Ēz(z) =

Lz
2ˆ

−Lz
2

dz′
[
G

′′
1D(z − z′)ρ̄µ(z′)−G′′′

1D(z − z′)ρ̄Q(z′)

]
(3.33a)

=

Lz
2ˆ

−Lz
2

dz′ G
′′
1D(z − z′)

[
ρ̄µ(z′)− ρ̄′

Q(z′)
]
, (3.33b)

where the derivatives of the kernels are given in Appendix B.1. To get to Eq. (3.33b)
we integrated the second term in Eq. (3.33a) by parts taking into account the
periodicity. We can solve the above integral analytically for Ewald summation and
find that

Ēz(z) = −4π
[
ρ̄µ(z)− ρ̄µ,Lz − ρ̄

′
Q(z)

]
, (3.34)

where ρ̄µ,Lz is the box average of ρ̄µ(z). In general, we can identify this contribution
with D̄z as it corresponds to the (constant) field arising from an induced surface
charge density at infinity (tin-foil boundary conditions). We refer to Refs 108 and
109 for a more general discussion. Although the instantaneous value of D̄z may
fluctuate, we know that its time average vanishes, because our system does not
exhibit a net dipole moment (Figs 3.5b and d). For Ewald summation the definition
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of polarisation as
P̄z(z) = ρ̄µ(z)− ρ̄′

Q(z) (3.35)

therefore naturally leads to the correct proportionality of 〈P̄z(z)〉 = −〈Ēz(z)〉/4π.
For the Wolf method the relation between electric field and polarisation (as defined
above) is more complicated, because we cannot solve the integral in Eq. (3.33b)
analytically. More importantly, we cannot expect the short-ranged method to predict
fields accurately in general, because its kernel is not a solution of Poisson’s equation.
The estimates for the thermally induced fields might be reasonable, but it is trivial
to come up with an example, such as a plate capacitor, for which the method would
fail.

Finally, we would like to discuss the macroscopic Maxwell equation (3.32) in
the context of the slab expansion. As shown in Figs 3.7a-b, we can identify all
relevant multipole contributions to the potential and recover a good approximation
to the exact solution implying overall consistency. Due to the nature of the spatial
averaging, we obtain a non-vanishing charge density (Fig. 3.5a) for our inhomogeneous
system. This is inconsistent, however, with the derivation of Eq. (3.32), where
charges within a molecule are summed first in order to get from the microscopic
to the macroscopic description101,106 and the charge density vanishes identically.
Identification of displacement field and polarisation is therefore not meaningful for
the slab expansion. This problem is avoided altogether in the molecule expansion,
which is consistent with Eq. (3.32), and we can unambiguously identify all terms in
the macroscopic Maxwell equation.

3.7 Conclusions

In this chapter, we have analysed the electric fields and multipole moments induced
by a strong thermal gradient in NEMD simulations of water in a setup which was
previously studied by Armstrong and Bresme28. Our comparison comprises results
for two different treatments of Coulomb interactions, namely Ewald summation and
the short-ranged Wolf method. The latter was employed in most of the previous
studies on the thermo-polarisation effect26,28,32,64,68. We identified two key differences
to the literature data: Firstly, the Wolf method fails to reproduce the dipole density
correctly for parameters that work well in equilibrium simulations. The molecules
point, on average, in opposite directions compared to Ewald summation and the
alignment is strongly enhanced.

Secondly, for both methods the peak field strength is of the order of 107 V/m.
However, for the Wolf method the result depends sensitively on the employed
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parameters. For low damping the Wolf method slightly overestimates the field
obtained with Ewald summation and vice versa for high damping. The results are
therefore in direct constrast to very recent findings of Bresme and co-workers68 who
reported that the Wolf method overestimates the field by an order of magnitude. In
fact, we argue that the employed formula for the calculation of the field is incorrect.
Taking such truncation into account correctly results in comparable results for the
electric field.

Another key result of this chapter are the highly improved spatial averages of the
potential and the field for low resolutions. We propose to integrate these quantities
analytically over the bins rather than calculating them from the time-averaged charge
density, as is usually done in the literature. Potentials and fields then truly represent
the exact spatial averages over the microscopic or macroscopic control volumes. We
showed that this procedure is straightforward for both summation methods and
requires no computational overhead. Comparing the ratio of maximum errors, we
found a more than 20-fold reduction of the error for the potential and a 10-fold
reduction for the field at the coarsest resolution of ∆z ≈ 10.9 Å. Consequently,
employing the new method can reduce the simulation time scales by up to two
orders of magnitude for the same quality of statistics. The advantage of calculating
analytical averages becomes less significant with increasing spatial resolution and
both methods are comparable for resolutions of ∆z ≤ 1 Å. However, in this case
the magnitude of the statistical error is comparable to the signal itself rendering the
results meaningless.

In addition, we found that accurate estimates of the potential and the field
can be obtained by approximating the water molecules as ideal point dipoles and
quadrupoles. For low spatial resolutions we found this approach to yield considerably
better results than the calculation from the averaged charge density. Our detailed
comparison of the results for the slab and molecule expansions illustrates that the
ratio of the individual contributions depends on the control volume we choose for the
expansion. For slabs almost all the information can be recovered by considering the
monopole, as is usually done in the literature. However, in the molecule expansion
the dipole and the quadrupole contributions are significant and both have to be
considered in order to recover results from the exact calculation accurately.

Finally, taking into account the quadrupole contribution leads to the expected
proportionality between the polarisation and the macroscopic Maxwell field in
accordance with the macroscopic Maxwell equations. The Wolf method fails to
satisfy this relation entirely. Based on its shortcomings, we therefore conclude
that the method is not suitable for reproducing the electrostatic key quantities in
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inhomogeneous systems reliably. This is in agreement with the findings of Takahashi
and co-workers89, who reported poor predictions for the electrostatic potential and
dipolar orientations in simulations of the liquid–vapour interface, even for cutoff radii
almost six times larger than the maximum value considered here.
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Preface

This chapter is based on the publication ‘Numerical evidence for thermally induced
monopoles’ by P. Wirnsberger, D. Fijan, R. A. Lightwood, A. Šarić, C. Dellago
and D. Frenkel, which was published in the Proceedings of the National Academy of
Sciences USA (2017)37. A free version of the article is available for download on the
arXiv (https://arxiv.org/abs/1610.06840).

The author contributions are as follows: I implemented the software, performed
the simulations, analysed the data and wrote an initial draft of the manuscript.
C. Dellago, D. Frenkel and I designed the research; D. Fijan, R. A. Lightwood and
A. Šarić assisted in performing the research; A. Šarić, C. Dellago, D. Frenkel and I
wrote the final version of the paper.

4.1 Hypothesis

The existence of quasi-monopoles in a system of heated or cooled colloidal particles in
a polar or paramagnetic fluid follows directly from non-equilibrium thermodynamics,
combined with the equations of electro/magneto-statics38. Although suggested
theoretically, they have thus far not been studied experimentally. In this chapter,
we provide numerical evidence indicating that the predicted effects are real and
robust. In what follows, we consider the case of thermally induced quasi-monopoles
in a dipolar liquid, but all our results also apply to paramagnetic liquids. It has
been shown that a thermal gradient will create an electric field in a liquid of dipolar
molecules with sufficiently low symmetry26,31. In the absence of any external electric
field, a heated or cooled colloidal particle placed in such a liquid, will generate an
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electric field according to the phenomenological relation26,30,35

ETP(r) = STP∇T (r), (4.1)

where T (r) is the temperature and STP the thermo-polarisation coefficient, with a
magnitude that is not known a priori. For water near room temperature, STP has
been estimated to be STP ≈ 0.1 mV/K35,36.

Let us next consider the electric polarisation around a heated (or cooled) colloidal
particle, for brevity also referred to simply as colloid. We note that the sole function
of the colloid is to generate a temperature gradient field in the solvent, which in turn
couples to the electric field via Eq. (4.1). Other heat sources (sinks) would lead to
the same effect. In steady state the temperature profile at a distance r from the
centre of an isolated, spherical colloid of radius R satisfies

T (r) = T∞ + (TR − T∞)
R

r
, (4.2)

and hence
ETP(r) = −STP(TR − T∞)

R

r2
r̂, (4.3)

where T∞ is the temperature in the bulk liquid and r̂ the radially outward pointing
unit vector. We note that ETP decays as 1/r2. Using Gauss’s theorem, we can then
write ‹

ETP(r) · dS = −4πSTP(TR − T∞)R ≡ qTP
ε0
, (4.4)

where ε0 is the dielectric permittivity of vacuum. In words: the flux through a
closed surface around a neutral colloid is non-zero, and is equal to the flux due to an
apparent charge qTP = −4πε0STP(TR − T∞)R. This effective charge is proportional
to the radius of the particle, hence larger colloids will have a larger apparent charge.

4.2 Simulation strategy

To verify the existence of thermally induced charges numerically, we performed
NEMD and equilibrium MD simulations of a heated and a cooled colloid immersed
into a modified (‘off-centre’) Stockmayer fluid110. The modification is such that the
LJ centre is displaced from the dipole by ∆r = αµ̂, where α = −σ/4 controls the
asymmetry and µ̂ is the unit vector of the dipole moment µ. This modification
leads to additional torque contributions which are summarised in Appendix C.2.
A non-zero value for α is necessary for molecules to undergo thermo-molecular
orientation (see Appendix C.5), in accordance with simulation studies on dumbbell
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molecules which identified shape or mass asymmetry as a requirement for this effect31.
An important property of our model fluid is that STP is effectively constant in the
temperature and density range investigated (see Appendix C.4), thereby facilitating
the analysis compared to the polar models considered previously26,28,32–36,111.

4.2.1 Setup

All equilibrium and non-equilibrium MD simulations were performed using a modified
version of the software package LAMMPS54 (version 14Jun16). We employed a fully
periodic rectangular simulation box with dimensions (Lx, Ly, Lz) = (L/2, L/2, L),
where L = 41.93σ, containing 13422 solvent particles of LJ diameter σ, which defines
the unit of length (see Appendix A.1), and two colloids centred at rh/c = (0, 0,∓L/4).
Each colloid was modelled with an elastic network of 201 beads with 2808 harmonic
springs connecting nearest, second-nearest and third-nearest neighbours. The initial
colloid configuration was cut out of an fcc lattice with a density of 0.75/σ3 matching
the solvent density. Springs were then added to all beads within a distance of R = 4σ

of the centre of mass positions of the two colloids. The equilibrium distances of the
harmonic spring potentials were taken to be the initial bead separations and the
spring constant was set to 5ε/σ2, where the LJ parameter ε defines the energy scale.
During the simulation the colloids were held in place by two additional stiff harmonic
springs (100ε/σ2) tethering the centres of mass to the equilibrium positions.

The colloidal bead-solvent interactions were modelled with a LJ potential using
the same parameters, ε and σ, as for the solvent-solvent interactions, and both solvent
particles and colloidal beads have the same mass m. Electrostatic interactions were
treated with Ewald summation and tin-foil boundary conditions91. Cutoff radii for
all LJ and real space Coulomb interactions were set to 8σ and the k-space settings
were chosen such that the relative accuracy of the force was approximately 10−5, as
estimated with the formulas provided in Ref. 112. The equations of motion were
integrated using a timestep of ∆t = 0.002τ , where τ = σ

√
m/ε is the unit of time.

4.2.2 Equilibration

The initial lattice structure was equilibrated in the NVT ensemble for a period of
2× 103τ using a Nosé–Hoover thermostat56,57 with a relaxation time of 0.5τ and a
target temperature of T∞ = 1.15ε/kB, where kB is the Boltzmann constant which
was set to unity. Subsequently, all particle velocities of the last configuration were
rescaled to match the average kinetic energy of the NVT run, which was followed
by a 2× 103τ long NVE equilibration run. A heat flux was then imposed onto the

51



Thermally induced monopoles

system using the eHEX/a algorithm39, where the rate of energy supplied to the hot
(and withdrawn from the cold) colloid was set to F = 52.75ε/τ . After waiting for a
period of 104τ for any transient behaviour to disappear and the system to reach a
steady state, we started the 1.5× 105τ long production run and stored snapshots of
the trajectory for further post-processing of translational, kinetic temperature and
dipole orientations. In addition, we carried out a 1.5× 105τ long NVE simulation in
order to subtract non-vanishing equilibrium averages of the spatially averaged field
and the dipolar orientations from the NEMD results. The relative increase in the
total energy throughout the entire NEMD production run (75 million timesteps) was
approximately 0.14%, which is comparable to the value of 0.12% for the equilibrium
production run.

4.3 Results

As a first test of the theory, we measured two-dimensional steady state profiles for
the temperature and the average dipolar orientations, both shown in Fig. 4.1. To
improve statistics, we computed cylindrical averages (indexed by z and s), although
the underlying problem does not exhibit full radial symmetry in the xy–plane due to
effects of periodic boundary conditions. However, as the theoretical predictions were
also cylindrically averaged, the comparison between simulation and theory is still
valid. The dashed vertical line going through the origin of Fig. 4.1A corresponds
to the equilibrium (or bulk) temperature T∞. With the temperature values of
the specific contour lines shown in the figure and a value of S∗TP = 0.216 ± 0.022

computed in the vicinity of the origin (see Appendix C.4), we can employ Eq. (4.4)
to obtain an estimate of q∗TP ≈ −0.134 for the thermally induced charge. If we use
the LJ parameters of SPC/E water61 for the unit conversion, this corresponds to
qTP ≈ 5.15× 10−3qe, where qe is the charge of an electron.

Figure 4.1B shows the average dipolar orientations superimposed onto the electric
field lines generated by two virtual point charges located at the centres of the colloids.
To single out the thermally induced alignment from contributions already present in
equilibrium, e.g. the alignment caused by surface layering of solvent molecules in the
vicinity of the colloids, we measured equilibrium orientations in a separate simulation
and subtracted them from the non-equilibrium result. This procedure assumes
that the coupling between the molecular alignment present in equilibrium and the
thermally induced one is negligible. We found this assumption to be reasonable
everywhere apart from the immediate vicinity of the colloids. Therefore we excluded
the first layer of solvent molecules, i.e. all particles within a distance of R∗TP = 5 from
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Figure 4.1: Temperature and dipole distributions generated by a pair of heated/cooled col-
loids. (A) Cylindrically averaged temperature profile with symmetry axis z∗, perpendicular
direction s∗, and isosurfaces (solid and dashed lines) around two colloids of radius R∗, one
heated and the other one cooled. Temperature and quantities labelled with an asterisk are
expressed in reduced units. (B) Cylindrically averaged electric field lines generated by two
point charges, ±qTP, with fully periodic boundary conditions. The superimposed arrows
indicate the average dipolar orientations obtained from the simulations. Averages were
calculated inside small volumes (dashed rectangle). To avoid spurious boundary effects, we

did not consider dipoles within a radius R∗TP from the center of either colloid.
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the colloid centres, from the averaging. The precise value of RTP does not matter as
long as it is chosen sufficiently large. We picked the smallest value that allows us
to single out the effect. As we can see, the dipoles are aligned very well with the
electric field lines generated by two point charges in a fully periodic system.

As a more quantitative test of the theory, we measured the electric field induced
by the temperature gradient. To improve the statistical accuracy of our results, we
averaged the field over planes perpendicular to the symmetry axis, such that all
contributions apart from Ez,TP cancel out. The system behaves as if the two charges
of opposite sign are distributed over thin spherical shells of radius RTP, as depicted
in Figs 4.2A and B. For this geometry, we obtain the analytical solution for the
electric field (see Appendix C.1):

〈Ez,TP(z)〉
Ẽ

=





−1 if |z| > zc +RTP,

+1 if |z| < zc −RTP,

(z − zh)/RTP if |z − zh| ≤ RTP,

(zc − z)/RTP otherwise,

(4.5)

where zh/c = ∓L/4 denote the locations of the hot and cold colloid, respectively, L
is the box length in the z-direction, Ẽ = qTP/(2Aε0) is the constant value of the
averaged field between the colloids, and A = L2/4 is the cross-sectional area. The
left-hand side of the above expression can be related to the average dipole density
such that36

〈Ez,TP(z)〉 = −〈ρµ(z)− ρ̄µ〉
ε0

, (4.6)

where ρ̄µ = 1/L
´

dz〈ρµ(z)〉 is the box average of 〈ρµ(z)〉. We note that the dipole
density corresponds to the electric polarisation. Equation (4.6) enables us to link the
theory and NEMD simulations quantitatively. We can estimate the right-hand side
of the above equation readily by sampling the instantaneous dipole orientations and
performing temporal and spatial averaging for slabs perpendicular to the symmetry
axis. Using Eq. (4.5), we can then infer the value of Ẽ from our results and obtain an
independent numerical estimate of qTP, in addition to the one provided by Eq. (4.4).
Observing a good agreement for both estimates would provide strong support for
the theory, since it would suggest that Gauss’s theorem can be applied to arbitrary
volumes enclosing the colloids, just as if they carried real Coulomb charges. We note,
however, that there is an important conceptual difference between estimating the
charge using Eq. (4.5) versus Eq. (4.4): the latter already assumes that Eq. (4.1)
holds whereas the former validates it.
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Figure 4.2: Electric field induced by a pair of heated/cooled colloids. (A) Illustration of
the setup. The dashed lines of radius RTP enclosing the hot and cold colloids represent
infinitesimally thin spherical shells carrying the induced charges ±qTP. The black solid line
illustrates a field line and the arrow represents a field vector. (B) A typical configuration
obtained from simulation showing the colloids immersed into the solvent particles. (C )
Thermally induced field averaged over slabs perpendicular to the symmetry axis. The
simulation results (blue symbols) were calculated from the averaged dipole density excluding
two balls of radius RTP centred around the colloids. The solid line shows the theoretical
prediction given by Eq. (4.5). The dotted vertical and horizontal lines were added to guide

the eye and to highlight the symmetry of the induced field.
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Figure 4.2C shows the steady state result for the spatial variation of the averaged
field calculated according to Eq. (4.6). Equilibrium averages were subtracted and
solvent particles within a distance of RTP from the colloid centres excluded from the
averaging, which makes the effective radius of the charge distribution essentially an
input parameter of our model. We can see that the simulation data are in excellent
agreement with the theoretical expression (4.5): the average field is constant in the
fluid region and changes linearly within a distance of RTP from the colloid centre.
From the plateau in the centre we estimate Ẽ∗ = (−1.96 ± 0.20) × 10−3 for the
regions where the field is constant, and find a value of qTP = (5.27± 0.54)× 10−3qe

for the thermally induced charge using the SPC/E parameters for the unit conversion.
Both estimates for qTP are in excellent agreement. The sign of qTP can be controlled
either by changing the rate of energy, F , supplied to or withdrawn from the colloid
(flipping hot and cold) or by changing α, such that sgn(qTP) = sgn(α)sgn(F).

4.4 Conclusions

A key question is whether the effective electric or magnetic charge of colloidal
monopoles can be measured in experiments. The present simulations suggest that,
at the very least the effect of the monopole fields on probe charges (or dipoles)
should be observable. Of course, it would be attractive to make the effect as large
as possible by increasing the temperature difference between the particle and the
solvent. However, the temperature range is limited by the fact that extreme heating
or cooling will bring the system out of the linear-response regime and possibly even
induce phase transitions in the solvent. Moreover, the colloidal monopoles differ in an
important respect from true monopoles: they cannot be moved by a uniform external
field38. For an isolated thermal monopole, this follows from the fact that neither its
self-energy, i.e. the energy of the electric field around it, nor the interaction energy
between the external field and solvent dipoles exhibit a dependence on the position
of the thermal monopole. It is therefore tempting (be it slightly frivolous) to call
such colloidal monopoles ‘quacks’, as they quack like a duck (i.e. they create a field
similar to that of a real monopole), but they don’t swim like a duck (they cannot be
used to transport charge). One of the main effects that may obscure observation of
the Coulomb-like interaction between oppositely heated colloids is thermophoresis,
which will also cause colloids to move in the temperature gradient caused by another
colloid. However, at least in the linear regime, this effect should cause otherwise
identical but oppositely heated colloids to move in the same direction with respect
to the fluid rather than with respect to one another. Finally, there are many open
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questions about the practical consequences of the existence of thermal monopoles.
It is, for instance, conceivable that such particles in an electrolyte solution will get
‘decorated’ with real charges, and thereby acquire real charge (opposite and equal to
the ‘thermal’ charge) that can be dragged along. That charge should respond to a
uniform external field: the resulting electro-osmotic flow would cause motion of the
colloids.
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Preface

The manuscript underlying this chapter is entitled ‘Theoretical prediction of thermal
polarisation’ by P. Wirnsberger, C. Dellago, D. Frenkel and A. Reinhardt. It has
been accepted for publication in Physical Review Letters and a free version of the
article is available for download on the arXiv (https://arxiv.org/pdf/1804.03624.pdf).

The author contributions are as follows: A. Reinhardt and I performed the
research and analysed the data; all authors designed the research together and wrote
the manuscript following my initial draft.

5.1 Mean-field theory

Microscopic interactions in systems out of thermal equilibrium are typically limited
to a phenomenological treatment based on the theory of non-equilibrium thermo-
dynamics3. While this theory predicts a linear relationship between the TP field
and the temperature gradient26 [see Eq. (3.4)], as shown in Eq. (3.4), it involves
phenomenological coefficients that are unknown and require fitting to simulation data.
Recently, this shortcoming was addressed by using a different theoretical approach
based on a mean-field treatment30. The theory was shown to capture the scaling
of the induced alignment of size-asymmetric polar dumbbell molecules accurately,
but it involves an unknown parameter that is either estimated from dimensional
arguments or fitted to simulation data.

In principle, it should be possible to eliminate this restriction, so that quantitative
predictions can be made solely based on the knowledge of the molecular geometry,
the local thermodynamic state and the prevailing temperature and density gradients.
In this chapter, we propose a mean-field approach to predict the thermally induced
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Figure 5.1: An off-centre Stockmayer particle and an illustration of the steady-state force
balance. The centre of mass (blue circle) of the off-centre Stockmayer particle is located
at z0 and coincides with the location of the point dipole p (black arrow). At steady state,
the external force fext (blue arrow) is balanced by a force fcm (brown arrow) acting at
the centre of mass and a force fLJ (red arrow) acting at the LJ centre. Upon rotating the
dipole by an angle θ relative to the z-axis, the z-position of the LJ centre is z0 + α cos θ

(since α < 0).

alignment of an off-centre Stockmayer liquid without the need for any additional
fitting parameters. To avoid notational confusion with the chemical potential µ, we
use p to denote the dipole moment in this chapter. The relative displacement of the
LJ site of an off-centre Stockmayer particle is then given by αp̂ (Fig. 5.1), where
α controls the level of molecular asymmetry, and p̂ = p/|p|37. Although we use
reduced units (see Appendix A.1), we drop the asterisk for notational convenience
and use α = −1/4, in line with previous work37.

To simplify the theoretical treatment, we assume that (i) the effect can be
described by considering a single particle only, (ii) the average net force acting on
this particle vanishes in the steady state, and (iii) the system is at local equilibrium.
Suppose thermodynamic quantities and forces of interest vary along the z-axis. In
this case, the orientation of the particle can be defined by the polar angle between its
dipole moment vector and this axis, cos θ = p̂ · ẑ. If we have an effective Hamiltonian
H(cos θ; z0) that can account for the energy change upon rotating a particle about
its centre of mass at position z0 (Fig. 5.1), we can compute the Boltzmann-weighted
average of the induced orientation30,

〈cos θ(z0)〉 =
1

Q(z0)

ˆ 1

−1

q exp[−β(z0)H(q; z0)] dq, (5.1)

where Q(z0) =
´ 1

−1
exp[−βH(q; z0)] dq, β(z0) = 1/kBT (z0), T (z0) is the absolute

temperature and kB is Boltzmann’s constant. Integration over the azimuth angle is
omitted because contributions in the numerator and the denominator cancel out.

According to assumption (ii), on average all forces acting on a particle add up to
zero so that the system does not undergo continual net acceleration. Individual forces
can, however, act at different locations within the particle and thereby generate a
torque. There are three possible sites at which these forces could attach in our model
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system: the LJ site, the point dipole and the centre of mass. Since the latter two
coincide, any external force fextẑ acting on the particle must be balanced by the
sum of a force fcmẑ acting on the centre of mass and a force fLJẑ acting on the LJ
site, such that

fLJ + fcm + fext = 0. (5.2)

The overall torque acting on the particle is therefore given by αp̂× fLJ. An infinites-
imal rotation changes the energy by −fLJα d(cos θ). However, this rotation polarises
the liquid, and we thus also need to account for the coupling between the dipole and
the mean electric field 〈E(z0)〉. Combining both contributions, we can approximate
the total work done to rotate the particle as

H(cos θ; z0) = −α cos θfLJ(z0)− p cos θ〈E(z0)〉. (5.3)

Using this Hamiltonian, the integral in Eq. (5.1) yields

〈cos θ(z0)〉 = coth ξ − ξ−1 =
ξ

3
+O(ξ3), (5.4)

where ξ = −αfLJ(z0)− p〈E(z0)〉. For |ξ| � 1, we can truncate the series at linear
order in ξ. We further approximate the field self-consistently using30

〈E(z0)〉 ≈ −4πρ(z0)p〈cos θ(z0)〉, (5.5)

where ρ(z0) is the number density, and thus obtain our central result,

〈cos θ(z)〉 =
β(z)αfLJ(z)

3 + 4πρ(z)β(z)p2
. (5.6)

Apart from the nature of the force, this expression is analogous to Eq. (11) of Ref.
30.

We note that our choice of using the Maxwell field [Eq. (5.5)] for evaluating the
energy in Eq. (5.3) is subject to debate. In fact, the question of what is the correct
expression for predicting the magnitude of dipolar alignment in the presence of an
external electric field has been studied extensively for more than a century106. Our
particular choice may not be suitable for estimating the dielectric constant assuming
linear response, because it can lead to negative values. However, the numerical results
presented in the next section strongly suggest that it yields accurate predictions for
the thermally induced orientation. We will therefore leave a detailed investigation
into this matter for future work, as it is beyond the scope of this Chapter.
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5.2 Simulation results

In order to benchmark the predictions of this equation against simulation results, we
ran NEMD simulations of an off-centre Stockmayer fluid in a quasi one-dimensional
geometry. We imposed temperature and density gradients by simulating a hot
and a cold reservoir orthogonal to the z-axis36, so that all thermodynamic driving
forces varied only along z. Following the approach of Daub et al.34, we disentangled
the effects of temperature and density gradients by applying a body force to each
particle. In ‘∇ρ-runs’, we generated a density gradient by applying a body force to
the centre of mass of each particle in an equilibrium NV T simulation. Similarly, in
‘∇T -runs’, we eliminated the density gradient by applying a body force of opposite
sign to the full NEMD-run. This procedure allowed us to decompose the full non-
equilibrium phenomenon into an equilibrium problem at constant temperature and a
non-equilibrium problem at constant density.

5.2.1 Off-centre Lennard-Jones particles

We show typical ρ and T profiles of all three runs for an off-centre LJ system (i.e. at
zero dipole strength) in Fig. 5.2a. We adjusted the applied body forces to yield
gradients within 1% of the NEMD results. Full technical details of the simulation
set-up are given in Appendix D.1.

The applied body force in simulation corresponds to fext in Fig. 5.1. To determine
fLJ, we first compute fcm and then invoke the force-balance argument [Eq. (5.2)],
fLJ = −fext−fcm. In the absence of a dipole moment, the centre of mass itself does not
exhibit any direct interaction with other particles. In simulations, forces are computed
from gradients of the potential energy, and so do not include thermodynamic forces
arising from momentum degrees of freedom. The z component of the average force
derived from the potential energy, 〈fi〉, balances such ‘ideal’ forces at steady state;
we demonstrate in Appendix D.3 that 〈fi〉 = f idext, where

f idext =





(
∂µid

∂ρ

)

T

dρ

dz
=
kBT

ρ

dρ

dz
for ∇ρ-runs,

[
sid +

(
∂µid

∂T

)

ρ

]
dT

dz
= kB

dT

dz
for ∇T -runs,

(5.7)

with µid being the ideal chemical potential and sid the ideal entropy per particle. To
compute fLJ, we need to consider where the force compensating f idext acts. Although
the attachment site of this force is not immediately obvious, comparison with simu-
lation data for 〈cos θ〉 answers this question unambiguously: the term proportional
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Figure 5.2: Off-centre LJ (p2 = 0 and L = 31.45). (a) Density and temperature profiles
for NEMD-, ∇ρ- and ∇T -runs with reservoirs highlighted (shaded regions). (b) Mean
orientation from simulation (symbols) and theoretical predictions (solid lines). Dashed
coloured lines correspond to incorrect attachment sites of f idext. Points at which force
superposition (dotted line) is expected to perform well are indicated by dashed vertical

lines. Symbols are larger than error bars.

to ∇ρ acts on the centre of mass (f (∇ρ)
cm = −f idext), and the term proportional to ∇T

acts on the LJ site (so that f (∇T )
cm = 0). The force-balance argument [Eq. (5.2)] thus

gives

fLJ = −fext +





kBT
ρ

dρ
dz

for ∇ρ-runs,
0 for ∇T -runs.

(5.8)

Using this expression and fits to the sampled temperature and density profiles, we
employ Eq. (5.6) to obtain a theoretical estimate of 〈cos θ〉.

We show the theoretical prediction and simulation data for a representative ther-
modynamic state in Fig. 5.2b, alongside alternative predictions with the attachment
sites of f idext swapped (dashed lines), demonstrating that our choice of attachment
sites in Eq. (5.8) is correct. Theoretical predictions agree remarkably well with
simulation data in the regions outside the reservoirs. In the vicinity of the reservoirs,
the agreement is worse; this may be due to the discontinuous nature of the employed
thermostat, which creates an interface and likely violates our assumption of local
equilibrium. Interestingly, the density gradient induces a rotation of the LJ centre
towards lower densities, while the temperature gradient has the opposite effect. In
each case, the alignment is an order of magnitude higher than in the full NEMD
case. These individual gradients also allow us to estimate the full NEMD result
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for the points at which ρ and T agree in all three runs, i.e. at z = ±L/4, where
ρ = ρ and T = T . To this end, we summed the two forces in Eq. (5.8) and employed
Eq. (5.6) together with the full NEMD temperature and density profiles. We show
in Fig. 5.2b that the superposition estimate is in rather good agreement with the
simulation result not only for z = ±L/4, but everywhere outside the reservoirs. The
near quantitative agreement with simulation results demonstrates that our theory
captures the underlying physics accurately in the non-polar case and suggests that
the assumptions underlying our theoretical treatment are reasonable.

5.2.2 Off-centre Stockmayer particles

Next, we studied the behaviour of an off-centre Stockmayer fluid for different dipole
strengths p2 ∈ [0, 3]. To make comparisons meaningful, we chose a reference state of
T = 1.25 and ρ = 0.82, at which an equilibrium Stockmayer fluid is a liquid for all
dipole strengths considered113. We imposed the same temperature gradient in all
NEMD-runs by fixing the reservoir temperatures while letting the induced density
vary freely as a function of p2 (Appendix D.3). To rule out the presence of a nematic
or ferrofluidic phase, we measured the correlation functions h110(r) and h220(r) and
verified that both vanish in the limit r →∞114. As in the non-polar case, the crucial
quantity for our theory is fLJ, whose estimation is now complicated by electrostatic
dipole–dipole interactions. The dipole is located at the centre of mass, and any
dipole-induced isotropic force contribution is assumed to attach to that site, adding
to fcm.

Suppose fext(p2) is the external force that generates the target density gradient
in a ∇ρ-run with dipole strength p2. This force differs from that required to generate
the same density gradient in the non-polar case by ∆fdip(p

2) = fext(p
2) − fext(0).

Since all other parameters are kept fixed, we can attribute the entirety of this force
to the presence of the dipole. An analogous result holds for the ∇T -run, where the
force difference is evaluated for a fixed temperature gradient at constant density.
In order to employ the force-balance argument [Eq. (5.2)] to compute fLJ, we also
need to determine where the ideal forces [Eq. (5.7)] attach. In the non-polar case,
the ideal force proportional to ∇ρ acted at the centre of mass. We do not expect
this behaviour to change for p2 6= 0. However, the situation is less clear for the ∇T
contribution, which we initially assigned solely to the LJ site. It is not unreasonable
to assume that for sufficiently large p2, because the dipole moment site is at the
centre of mass, some part of this balancing ideal force will also act at this site, but the
dipole strength at which this shift becomes relevant to our theory is not obvious. For
a Stockmayer system, a dipole strength of p2 = 0.25 constitutes an almost negligible
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thermodynamic contribution to pure LJ115, and we do not therefore expect the
behaviour to change qualitatively in this case. However, electrostatic contributions
increase rapidly with p2 115; we thus assume that for p2 ≥ 1, the ideal balancing force
is split equally between fLJ and fcm. As we lack further insight into the precise
mechanism by which this process occurs, our choice is rather arbitrary, and, for
completeness, we also provide the results for an alternative choice in Appendix D.2.
Gathering all contributions and assuming force-balance [Eq. (5.2)], we find

fLJ(p
2) = −fext(0) +





kBT
ρ

dρ
dz

for ∇ρ-runs,
0 for ∇T -runs if p2 < 1,
1
2
kB

dT
dz

for ∇T -runs if p2 ≥ 1.

(5.9)

Apart from the behaviour of the ideal force, this result is identical to Eq. (5.8). The
difference between fLJ(p

2) and fLJ(0) ≡ fLJ is that all terms are evaluated for a
different thermodynamic state, since the density profile changes with dipole strength
(Appendix D.3).

We compare simulation results to the theoretical estimates obtained with Eqs (5.6)
and (5.9) (Fig. 5.3). For the ∇ρ- and ∇T -runs, the magnitude of the alignment is
maximal for p = 0 and decreases quickly with p due to the energetically unfavourable
interaction with the total electric field. For the highest dipole strength (p2 = 3),
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Figure 5.3: Mean orientation for an off-centre Stockmayer liquid at varying dipole strength.
L = 30.53. Symbols represent simulation results and solid lines correspond to theoretical
predictions. Only the region between the reservoirs is shown for compactness. Simulation

results were averaged over both halves of the simulation box to improve statistics.
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the induced alignment is approximately an order of magnitude lower than in the
non-polar case (p2 = 0). Intriguingly, the presence of the dipole flips the sign
of the orientation in the NEMD-run, a feature not observed for size-asymmetric
polar dumbbell molecules34. The zero-crossing happens close to p2 = 0.2, where
the alignment due to the density gradient is almost exactly compensated by the
temperature gradient. Furthermore, the full NEMD result remains largely unchanged
for p2 ≥ 1, perhaps indicating that the effect becomes saturated. Overall, our
theoretical prediction agrees very well with the simulation data. By construction,
absolute errors in the predictions for the individual gradient contributions propagate
to the prediction for the full NEMD result because we superimpose the forces. This
point is well illustrated for p2 = 3, where the ∼20% error in the prediction of the ∇T -
run result causes the estimate for the NEMD-run to be shifted by the same constant.
Nevertheless, despite this limitation, these results suggest that our mean-field theory
captures the essential physics underlying this non-equilibrium phenomenon very well.

5.3 Predicting the steady-state force

So far, we have treated fLJ as an input parameter of the theory and we determined
it numerically to either match or eliminate a density gradient. However, we may be
able to predict the force acting on the LJ site from the LJ equation of state (EOS).
Although we do not have an exact expression for this EOS, accurate fits exist116,117

and can readily be implemented. Starting from the Gibbs–Duhem relation, we find
an explicit expression for the external force in terms of the chemical potential µ
(Appendix D.2),

fext =

(
∂µ

∂ρ

)

T

dρ

dz
+

[
s+

(
∂µ

∂T

)

ρ

]
dT

dz
. (5.10)

At local equilibrium, this force will be exactly balanced by a pressure-gradient force

fbalance = fcm + fLJ = −1

ρ

[(
∂P

∂T

)

ρ

dT

dz
+

(
∂P

∂ρ

)

T

dρ

dz

]
, (5.11)

so that the sum of both forces vanishes. For ∇ρ-runs, all terms in Eq. (5.10) that
involve a temperature gradient vanish, and vice versa for ∇T -runs, so the external
force can be written as

fext(0) =





(∂µ/∂ρ)T (dρ/dz) for ∇ρ-runs,
[
s+ (∂µ/∂T )ρ

]
(dT/dz) for ∇T -runs.

(5.12)
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Figure 5.4: Mean orientation from simulation (symbols) and theoretical predictions (solid
lines) using an EOS-derived estimate of fLJ. Symbols are larger than error bars. (a) State

corresponding to Fig. 5.2. (b) State corresponding to Fig. 5.3iv.

Therefore, to generate for example a density gradient, instead of manually adjusting
the external force until we get agreement with NEMD results, we can use the Johnson
EOS116 and Eq. (5.12) to predict it by multiplying the derivative of the chemical
potential by the density gradient we wish to match. For suitably large system sizes,
we find the simulation result to be in excellent agreement with the target value with
a deviation of less than 1%. The prediction of the force to cancel the gradient in
∇T -runs is less accurate, with a deviation of ∼2.5%.

A comparison of simulation results with the theoretical prediction of Eqs (5.6) and
(5.12) using the Johnson EOS116 is shown in Fig. 5.4. For off-centre LJ (Fig. 5.4a),
the predictions are almost as accurate as the ones obtained with the numerically
determined force (Fig. 5.2b). The agreement is excellent for the ∇ρ-run and exhibits
only a slight deviation of approximately 5% for the ∇T -run. Superposition of the
forces yields again an accurate estimate for the NEMD result with a deviation of
only ∼20%. For the polar case (Fig. 5.4b), the EOS estimate yields very accurate
predictions for the ∇ρ-run and overestimates the alignment in the ∇T -run only
slightly. The prediction for the NEMD-run is shifted by the same constant and is off
by approximately 30% compared to the simulation result. Although the estimates
are not quite as accurate as the original ones (Fig. 5.3), we find it remarkable that
such good agreement can be achieved solely based on the LJ EOS. While not perfect,
such a route can provide a particularly facile back-of-the-envelope estimate of the
degree of molecular alignment without the need to perform any simulations at all.
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5.4 Conclusions

We have proposed a mean-field theory to explain the thermo-orientation and -
polarisation effects exhibited by an off-centre Stockmayer liquid. Our theoretical
predictions are in almost quantitative agreement with simulation results for a range of
dipole strengths, including in the absence of any dipole. In line with previous work30,
we find that the two effects are caused by the same underlying physical mechanism.
Differences in the predicted alignment as a function of the dipole strength are mainly
caused by the energetic penalty for forming an electric field and the behaviour of ideal
forces when dipoles are present. By separating temperature and density gradients
using an applied body force, we found that the individual contributions lead to an
alignment of opposite sign, which can be rationalised by the requirement for overall
force balance in the non-equilibrium steady state. Finally, we demonstrated that very
reasonable predictions can be obtained solely based on the equation of state for LJ
and the non-equilibrium temperature and density profiles. In future work, it will be
interesting to see whether our theory can be extended to water, where quadrupolar
interactions are known to play an important role in thermal polarisation35,36.
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Summary and conclusions

In this thesis, we investigated the phenomenon of thermally induced polarisation using
a combination of theory and simulation. We first proposed a new thermostatting
algorithm, the eHEX algorithm, for NEMD simulations of thermal gradients. This
algorithm is very well suited to the simulation of a physical system to which energy
is supplied at a constant rate, such as a metal NP heated by a laser. To resolve the
severe energy drift exhibited by the HEX algorithm, on which the eHEX algorithm
is based, we derived the lowest-order truncation error of the numerical integration
scheme and eliminated it through an additional coordinate integration step. This
procedure fixed the energy loss entirely; even in very long simulations, involving
108 timesteps, we have not observed any appreciable energy loss compared to an
equilibrium simulation. In future work, it would be interesting to extend the algorithm
to account for rotational degrees of freedom in the thermostatting, so as to enable
the algorithm to be fully compatible with rigid-body integration schemes.

Using the eHEX algorithm, we then studied the behaviour of water under the
influence of a strong temperature gradient. We focused primarily on the treatment
of electrostatic interactions, which were truncated using the Wolf method in most of
the previous work on the TP effect. Our simulation results for Ewald summation
suggest that the induced electric field was previously overestimated due to this
truncation, and is, in fact, an order of magnitude weaker than assumed. Moreover,
we showed that truncation of electrostatic interactions can flip the sign of molecular
orientations and therefore lead to artefacts in the dipole density. By considering two
different multipole expansions, we showed that, for inhomogeneous polarisations, the
quadrupole contribution can be significant and even outweigh the dipole contribution
to the electric field. Finally, we proposed a more accurate way of calculating the
electrostatic potential and the field. In particular, we showed that averaging the
microscopic field analytically to obtain the macroscopic Maxwell field reduces the
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error bars by up to an order of magnitude. As a consequence, the simulation
times required to reach a given statistical accuracy decrease by up to two orders of
magnitude. We think that our general approach could also be of benefit to other
systems with a quasi one-dimensional geometry and a similar signal-to-noise ratio.

Quadrupolar contributions to the thermal polarisation of water complicate the
theoretical study of thermally induced monopoles. To probe this interesting theory
numerically, we therefore devised an off-centre Stockmayer model that exhibits
the TP effect while particles carry only a dipole moment. We then performed
NEMD simulations of a pair of heated/cooled colloidal particles immersed in such a
liquid. Our simulation results clearly demonstrate that the molecular dipoles are well
aligned with the electric field generated by two virtual charges, in agreement with
the theoretical prediction. We can therefore describe the overall net electrostatic
interaction between the colloidal particles by two Coulomb charges of opposite sign,
representing a hugely simplified picture compared to the original non-equilibrium
problem. However, it turns out that the effect is very small and may therefore be
challenging to observe experimentally. More work is necessary to identify suitable
observables for comparison with experiments and to map out parameters which
maximise the thermo-charge.

Exploring the TP effect numerically requires very long simulations and is compu-
tationally expensive due to the presence of long-range electrostatic interactions. To
avoid this bottleneck, we therefore devised a mean-field theory to predict the TP
effect exhibited by an off-centre Stockmayer liquid theoretically. Unlike previous
theories that are based either on phenomenological equations or on scaling argu-
ments, our approach does not require any fitting parameters. Given an equation
of state and assuming local equilibrium, we constructed an effective Hamiltonian
for computing local Boltzmann averages. This simple theoretical treatment predicts
molecular orientations that are in very good agreement with simulation results for
the range of dipole strengths investigated. By decomposing the overall alignment
into contributions from the temperature and density gradients, we shed further light
on how the non-equilibrium result arises from the competition between the two
gradients. While not perfect, our theoretical predictions can be hugely beneficial
for screening large regions of the phase diagram to find thermodynamic states that
maximise the TP effect. An interesting extension for future work would be the
inclusion of quadrupolar interactions, so that our theory can be applied to water and
used as a guide for experimentalists in their search for the effect.

Finally, most of the past research on the TP effect has focused primarily on
understanding the scaling and the magnitude of the effect using computer simulations.
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Based on the promising theoretical advances due to mean-field approaches, we hope
that future investigations will focus on improving the theoretical description to shed
further light on the physical mechanism underlying this curious non-equilibrium
effect.
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Appendix A

Heat exchange algorithm

A.1 Reduced units

In the following, ε is the LJ well depth, σ is the LJ particle diameter, kB is the
Boltzmann constant, ε0 is the electric constant and m is the particle mass. We
non-dimensionalise all quantities in terms of these basic units, as shown in the table
below.

Reduced quantity Definition

distance `∗ `/σ

number density ρ∗ ρσ3

force f ∗ fσ/ε

time t∗ t/
√
σ2m/ε

temperature T ∗ kBT/ε

dipole moment p∗ p/
√

4πε0εσ3

A.2 Exact solution

We would like to show that the rescaling step

vi(t) = ξvi(0) +
(
1− ξ

)
vΓ (0) (A.1)

of the HEX algorithm is the exact solution of

v̇i =
F
2K (vi − vΓ ), (A.2)

where K is given by Eq. (2.1) and ξ by Eq. (2.3). We will first show that F/2K is
independent of the particle velocities and only a function of time. This can be seen
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easily by considering the time evolution of the internal kinetic energy, which is given
by

dK
dt

=
∑

i∈γ
mi (vi − vΓ ) · (v̇i − v̇Γ ) (A.3a)

= F (A.3b)

and therefore we can write K(t) = K(0) + Ft. We note that we can exchange the
order of taking the time derivative and the summation, because the particle positions
are fixed during this operation. At the same time, it is easy to see that the centre of
mass velocity is constant in time since

dvΓ
dt

=
1

mΓ

∑

i∈γ
miv̇i (A.4)

=
1

mΓ

∑

i∈γ
mi

[ F
2K (vi − vΓ )

]
(A.5)

= 0. (A.6)

In order to solve Eq. (A.2) analytically, it is advantageous to carry out a variable
transformation first. Let us consider the transformation vi 7→ v̄i = vi − vΓ . With
the definition

λ(t) =
F

2 [K(0) + Ft] , (A.7)

we can express the time evolution of the new velocities as

˙̄vi = λv̄i. (A.8)

The solution of this equation is then given by

v̄i(t) = e
´ t
0 dt′ λ(t′)v̄i(0) = ξv̄i(0). (A.9)

If we substitute the old variables back, we recover Eq. (A.1) which proves the
assertion.

A.3 Splitting error

In this section, we sketch the derivation of the leading-order error term of the
coordinate integration arising from the operator splitting in the HEX algorithm. To
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this end, we evaluate the expression

Eri,α = (A.10)
(

1

12

[
iL2, [iL2, iL1]

]
− 1

24

[
iL1, [iL1, iL2]

]
)
ri,α

for the operators

iL1 =
N∑

j=1

∑

β∈{x,y,z}

ηj,β
mj

∂

∂vj,β
, (A.11a)

iL2 =
N∑

j=1

∑

β∈{x,y,z}

[
fj,β
mj

∂

∂vj,β
+ vj,β

∂

∂rj,β

]
. (A.11b)

For the first term in Eq. (A.10) we find

[
iL2, [iL2, iL1]

]
ri,α

= −2
N∑

j=1

∑

β

[
fj,β
mj

∂

∂vj,β
+ vj,β

∂

∂rj,β

]
ηi,α
mi

(A.12a)

= − 2

mi

∑

j∈γk(ri)

∑

β

fj,β
mj

∂ηi,α
∂vj,β

, (A.12b)

omitting summation bounds for β for readibility. In the last step we assumed that
particles do not cross reservoir boundaries, in which case ηi,α depends only on the
velocities of particles within the reservoir Γk(ri). For the second term in Eq. (A.10)
we find [

iL1, [iL1, iL2]
]
ri,α =

1

mi

∑

j∈γk(ri)

∑

β

ηj,β
mj

∂ηi,α
∂vj,β

(A.13)

and combining the two expressions we get

Eri,α = − 1

6mi

∑

j∈γk(ri)

∑

β

1

mj

(
fj,β +

ηj,β
4

)
∂ηi,α
∂vj,β

. (A.14)

It is straightforward to compute the derivative

∂ηi,α
∂vj,β

=
miFΓk(ri)

2KΓk(ri)

[
δα,β

(
δi,j −

mj

mΓk(ri)

)
(A.15)

− mj

KΓk(ri)

(
vj,β − vΓk(ri)

,β

)(
vi,α − vΓk(ri)

,α

)]
,
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where δi,j is the Kronecka delta. The final result, Eq. (2.20), is then recovered by
substituting the derivative in Eq. (A.14) with the expression above.
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Electrostatics

B.1 One-dimensional kernels

B.1.1 Wolf method

Our goal is to integrate GW over the entire cutoff sphere in order to obtain G1D,W.
To this end we have to evaluate the integral

G1D,W(z) =

Lx
2ˆ

−Lx
2

dx

Ly
2ˆ

−Ly
2

dy GW(x, y, z) (B.1a)

= 2π

sc(z)ˆ

0

ds s

[
erfc(ζ

√
s2 + z2)√

s2 + z2
− erfc(ζrc)

rc

]
, (B.1b)

where r2 = x2 + y2 + z2 = s2 + z2. We first consider the integral

I(z) =

sc(z)ˆ

0

ds s
erfc(ζ

√
s2 + z2)√

s2 + z2
(B.2)

and use the substitution τ(s, z) =
√
s2 + z2 to rewrite the expression as

I(z) =

τ(sc(z),z)ˆ

τ(0,z)

dτ erfc(ζτ). (B.3)
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Using integration by parts it is easy to show that the result is

I(z) = rc erfc(ζrc)− |z| erfc(ζ|z|) +
e−ζ2z2 − e−ζ2r2

c

√
πζ

(B.4)

for |z| ≤ rc and zero otherwise. The integration of the second term in Eq. (B.1b) is
trivial and the averaged kernel is given by

G1D,W(z)

2π
=

rc
2

erfc(ζrc)− |z| erfc(ζ|z|) (B.5)

+
e−ζ2z2 − e−ζ2r2

c

√
πζ

+
z2 erfc(ζrc)

2rc

for |z| ≤ rc and it vanishes otherwise. The first three derivatives of this function are

G
′
1D,W(z)

2π
=− sgn(z) erfc(ζ|z|) +

z erfc(ζrc)

rc
, (B.6a)

G
′′
1D,W(z)

2π
=− 2δ(z) erfc(ζ|z|) (B.6b)

+
2ζ√
π

sgn(z)2e−ζ
2z2

+
erfc(ζrc)

rc
,

G
′′′
1D,W(z)

2π
=− 2δ

′
(z) erfc(ζ|z|) (B.6c)

+
2ζ√
π

sgn(z)e−ζ
2z2
[
− 2ζ2|z|+ 6δ(z)

]
,

respectively.

B.1.2 Ewald summation

Instead of integrating the kernel GE (Eq. (3.11)) directly, we replace it by GPBC

(Eq. (3.9)) in order to simplify the problem. The sum in Eq. (3.9) is only conditionally
convergent, which is why we are formally not allowed to change the order of integration
and summation. However, if we ignore this fact we arrive at the same result that we
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would have obtained by considering GE directly. This yields

G1D,E(z) =

Lx
2ˆ

−Lx
2

dx

Ly
2ˆ

−Ly
2

dy GPBC(x, y, z) (B.7a)

=

Lx
2ˆ

−Lx
2

dx

Ly
2ˆ

−Ly
2

dy
1

LxLyLz

∑

k 6=0

4π

k2
eik·r (B.7b)

=
1

Lz

∑

kz 6=0

4π

k2
z

eikzz. (B.7c)

In the last step, we make use of the fact that the integration eliminates all terms
in the summation for which kx 6= 0 or ky 6= 0. The inverse Fourier transform in
Eq. (B.7c) is

G1D,E(z) = 2π

(
−|z|+ z2

Lz
+
Lz
6

)
(B.8)

and the first three derivatives of this expression are given by

G
′
1D,E(z) = 2π

(
− sgn(z) +

2z

Lz

)
, (B.9a)

G
′′
1D,E(z) = 2π

(
−2δ(z) +

2

Lz

)
, (B.9b)

G
′′′
1D,E(z) = −4πδ

′
(z), (B.9c)

respectively.

B.2 Exact averaging

The aim is to average the one-dimensional kernel analytically for any bin j of width
∆z = zj,2 − zj,1 to obtain

Ḡ1D,j(z
′) =

1

∆z

zj,2ˆ

zj,1

dz G1D(z − z′) (B.10)

taking into account the periodicity. As mentioned in Sec. 3.2, in our notation we
understand the argument z−z′ to be mapped back to the interval [−Lz

2
, Lz

2
] implicitly.

The interesting case, where the separation of the charge at z′ and the bin covering
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Figure B.1: Integration of the spatially averaged kernel for the case where the separation of
the charge at z′ and the bin j covering the interval [zj,1, zj,2] is such that periodicity has to
be taken into account. αj(z′) and βj(z′) are the nearest images of the bin boundaries.

the interval [zj,1, zj,2] is such that periodicity has to be taken into account in the
integration, is illustrated in Fig. B.1.

The first step is to map the distances from z′ to the bin boundaries back into the
reference interval using the function

pbc(z) = z − Lz round

(
z

Lz

)
, (B.11)

where round(z) gives the nearest integral number to z. Applying this function yields
the shortest distances to the nearest images which we label with

αj(z
′) = pbc(zj,1 − z′), (B.12a)

βj(z
′) = pbc(zj,2 − z′), (B.12b)

respectively. For the case shown in Fig. B.1, where βj(z′) < αj(z
′), we can split the

original expression into the two integrals

Ḡ1D,j(z
′) =

1

∆z



βj(z

′)ˆ

−Lz
2

dz G1D(z) +

Lz
2ˆ

αj(z′)

dz G1D(z)


 . (B.13)

In order to simplify the integration further, we focus on the case of Ewald summation.
Application of the procedure to the Wolf method is omitted for brevity, because the
integration is tedious. We know that the average of G1D,E over the reference interval
vanishes because the term corresponding to kz = 0 in Eq. (B.7c) is absent. Therefore,
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the special case shown in Fig. B.1 reduces to the ordinary case

Ḡ1D,E,j(z
′) =

1

∆z

βj(z
′)ˆ

αj(z′)

dz G1D,E(z), (B.14)

in which the entire bin is located inside the reference box. All possible scenarios are
therefore taken into account by straightforward integration of Eq. (B.8), which yields

Ḡ1D,E,j(z
′)

2π
=

αj(z
′)|αj(z′)| − βj(z′)|βj(z′)|

2∆z

+
β3
j (z
′)− α3

j (z
′)

3Lz∆z
(B.15)

+
Lz
(
βj(z

′)− αj(z′)
)

6∆z
.

Likewise, we find

Ḡ
′
1D,E,j(z

′)

2π
=
|αj(z′)| − |βj(z′)|

∆z
+
β2
j (z
′)− α2

j (z
′)

∆zLz
(B.16)

for the average of the derivative. Equations (B.15) and (B.16) along with Eqs (B.12a–
b) can be substituted into Eqs (3.19) and (3.20) to calculate the exact averages of
the potential and the field, respectively.

B.3 Validation

In this section, we compare the oxygen-oxygen pair correlation function, g(r), the
oxygen-oxygen velocity autocorrelation function, VACF(t), a cumulative estimate of
the dielectric constant, ε(t), and the distance-dependent Kirkwood g-factor, GK(r).
We refer to Refs 7 and 118 for a detailed discussion and the relevant formulae.
All quantities were sampled during 2 ns NVE simulations before imposing the
temperature gradients.

The results are shown in Figs B.2a–d. As we can see, all sets of parameters
lead to excellent agreement for g(r) and VACF(t) (Figs B.2a–b). The dielectric
constant (Fig. B.2c) is well reproduced by the Wolf method with strong damping,
whereas weak damping leads to an overestimation. More insight about the structural
properties can be gained by looking at GK(r) in Fig. B.2d. For very short distances
both sets of parameters for the Wolf method yield a good agreement with Ewald
summation. We note that for the weak damping the agreement extends a bit further
than for strong damping, which is consistent with our observations for the model
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Figure B.2: The comparison comprises (a) the oxygen-oxygen pair correlation function, (b)
the oxygen-oxygen VACF, (c) a cumulative estimate of the dielectric constant and (d) the

distance-dependent Kirkwood g-factor.

system. We also note that the shape of GK(r) looks different for our elongated box
compared to a cubic box.

B.4 Mechanical equilibrium

In this section, we show that the average acceleration vanishes in the regions outside
the reservoirs (mechanical equilibrium)3. To this end, we measured the spatial
variation of the pressure tensor, as implemented in LAMMPS (version 9Dec14), along
the direction of the temperature gradient. We note that an exhaustive investigation
of this topic is outside the scope of this demonstration and refer to other literature
for details on derivation and computation of the pressure. In particular, Ref. 119
explains how the virial contribution to the pressure can be evaluated in terms of
forces acting on atoms. A derivation of the long-range contribution to the pressure
for Ewald summation is given in Ref. 120, its decomposition using the Harasima
path is summarised in Ref. 121, and an extension to PPPM is provided in Ref. 122.

The results for Ewald summation are shown in Fig. B.3. We only present the
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Figure B.3: Comparison of the diagonal components of the pressure tensor for Ewald
summation. The horizontal line corresponds to the box average of the trace.

diagonal components of the pressure tensor because the off-diagonal ones are negligible
on this scale. We can clearly see that all three components change significantly
within the reservoirs. Although we have not investigated this behaviour further, we
think that it may be related to discontinuities created by the thermostat. More
importantly, however, the component Pzz exhibiting the largest variation changes
only by approximately 1% outside the reservoirs. In atomistic simulations, pressure
differences on this scale are typically considered small and we do not expect them
to have a significant effect on the results. We therefore conclude that mechanical
equilibrium holds reasonably well in the regions of interest.
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Monopoles

C.1 Analytical model for the field

In this section we derive the analytical model proposed in Eq. (4.5). To this end, we
first show how the spatial average of the three-dimensional field, 〈Ez(z)〉, calculated
from the full charge density, ρ(r), is related to the one-dimensional field, E1D(z),
calculated from the spatially averaged charge density, ρ1D(z). The subscript TP used
in the main text is dropped for notational convenience. We consider PBCs and
understand that this is implicitly taken into account whenever an expression of the
form r − r̃ is evaluated.

For an arbitrary charge distribution, the field can be calculated as

E(r) = −κ∇r

ˆ
Ω

d3r̃ G(r − r̃)ρ(r̃), (C.1)

where κ = (4πε0)
−1 with ε0 being the vacuum permittivity, ∇r = (∂x,∂y,∂z) is

the gradient in Cartesian coordinates, Ω denotes the orthogonal simulation box
of volume V = LxLyLz and G(r − r̃) is a modified kernel that takes into account
periodicity36. Averaging the z-component of the field over planes perpendicular to
the z-axis yields36,104
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〈Ez(z)〉 =
1

LxLy

Lx
2ˆ

−Lx
2

Ly
2ˆ

−Ly
2

dxdy Ez(r) (C.2a)

= − κ ∂
∂z

Lz
2ˆ

−Lz
2

dz̃
1

LxLy

Lx
2ˆ

−Lx
2

Ly
2ˆ

−Ly
2

dx̃dỹ ρ(r̃)

︸ ︷︷ ︸
= ρ1D(z̃)

Lx
2ˆ

−Lx
2

Ly
2ˆ

−Ly
2

dxdy G(r − r̃)

︸ ︷︷ ︸
= G1D(z−z̃)

(C.2b)

= − κ

Lz
2ˆ

−Lz
2

dz̃ G′1D(z − z̃)ρ1D(z̃) (C.2c)

=
1

ε0

zˆ

−Lz
2

dz̃ ρ1D(z̃) +
1

ε0

1

Lz

Lz
2ˆ

−Lz
2

dz̃ z̃ρ1D(z̃)

︸ ︷︷ ︸
=Pz

(C.2d)

= E1D(z), (C.2e)

where
G1D(z) = 2π

[
−|z|+ z2

Lz
+
Lz
6

]
(C.3)

is the spatially averaged kernel for PBCs and Pz the z-component of the average box
dipole density.

Next, we work out the averaged charge density and compute the field from
Eq. (C.2d). The colloids are modelled by two homogeneously charged, spherical
shells of radius R (in the main text we refer to this quantity as RTP). Since all
equations involved are linear, we can decompose the problem and focus on a single
colloid. If we centre the charge distribution of this colloid around the origin, we can
formulate the charge density as

ρ(1)(r) =
q

4πR2
δ(r −R), (C.4)

where q =
´
Ω

d3rρ(1)(r) is the total charge, r the distance from the origin and δ(r−R)

the Dirac delta function. Let us assume that 2R < Lx = Ly ≤ Lz such that the
charge distribution is fully contained within the reference box. We then have the
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freedom to integrate over the largest inscribed cylinder and obtain

ρ
(1)
1D(z) =

1

LxLy

Lx
2ˆ

−Lx
2

Ly
2ˆ

−Ly
2

dxdy ρ(1)(r) (C.5a)

=
q

2R2LxLy

Lx/2ˆ

0

sds δ
(√

s2 + z2 −R
)
, (C.5b)

where r =
√
s2 + z2. Employing a second transformation, τ =

√
s2 + z2 with

sds = τdτ , it is straightforward to solve the above integral to find

ρ
(1)
1D(z) =





q
2RA

if |z| < R,

0 otherwise,
(C.6)

where A = LxLy is the cross-sectional area. The averaged charge density taking into
account both colloids centred around zh and zc, respectively, is therefore given by
the piecewise constant function

ρ1D(z) =
q

2RA





+1 if |z − zh| < R,

−1 if |z − zc| < R,

0 otherwise.

(C.7)

If we plug this result into Eq. (C.2d) and carry out the integration, we obtain the
final result

〈Ez(z)〉
Ẽ

=





−1 if |z| > zc +R,

+1 if |z| < zc −R,
(z − zh)/R if |z − zh| ≤ R,

(zc − z)/R otherwise,

(C.8)

where Ẽ = q/(2ε0A) is the constant field value for the region between the two colloids.
The quantity Ẽ can be understood easily by applying Gauss’s theorem to the

blue control volume shown in Fig. C.1. The charge q in the centre represents the
thermally induced charge of the hot colloid. Let us denote the surface of this volume
by ∂Γ , the union of the two faces highlighted in blue by ∂Γ‖, and the union of the
remaining faces by ∂Γ⊥. According to Gauss’s theorem the total charge enclosed by
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∂Γ‖Ω

Figure C.1: Application of Gauss’s theorem. Illustration of the simulation box Ω containing
a charge q located at the centre of a control volume Γ (solid and dashed blue lines) to
which we apply Gauss’s theorem. For the two faces of Γ denoted by ∂Γ‖ (highlighted in
blue) the field E has a contribution parallel to the surface normal vector dS, whereas it is

orthogonal to it on all other faces denoted by ∂Γ⊥.

∂Γ is related to the field flux through ∂Γ such that
‹

∂Γ

E(r) · dS =
q

ε0
, (C.9)

where dS is the surface normal vector. If we decompose the surface integral and
recall that the surface normal vector is perpendicular to the field on ∂Γ⊥ due to the
periodic setup, we find

‹

∂Γ

E(r) · dS =

¨

∂Γ‖

E(r) · dS +

¨

∂Γ⊥

E(r) · dS

︸ ︷︷ ︸
=0

= 〈Ez,‖〉2A =
q

ε0
. (C.10)

Rearranging terms, we find
Ẽ = 〈Ez,‖〉 =

q

2ε0A
, (C.11)

which is our final result.
We note that the value of Ẽ is constant and does not change if we move the

surfaces ∂Γ‖ along the z-axis as long as they enclose the charge entirely. Finally,
we note that the presence of the opposite charge −q is already taken into account
implicitly, which is indicated by the multiplication by twice the cross-sectional area
A in Eq. (C.10). Equivalently, we can think of the result as the sum of two equal
contributions, half from the charge q and the other half from −q.
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C.2 Off-centre Stockmayer model

Displacing the LJ centre from the location of the point dipole leads to modified
forces and torques compared to the original Stockmayer model110. We note that
electrostatic contributions are not affected by this modification and refer to Ref. 123
for the relevant expressions. All modifications of short-ranged interactions related
to the perturbation of the LJ centre are governed by a single parameter α and
summarised in this section.

Let us consider the short-ranged, pairwise interactions between two solvent
particles as illustrated in Fig. C.2. The point dipoles are located at the positions ri
and rj, respectively. The mass of a particle (m∗ = 1) is distributed homogeneously
over a ball of radius RI = σ/2 such that the moment of inertia is given by I = 2mR2

I/5,
which corresponds to I∗ = 0.1 in reduced units. The LJ centre is denoted by ξ and
displaced from the position of the dipole by a vector ∆r = ξ − r = αµ̂, where µ̂
is the unit vector of the dipole moment µ. The quantity α allows us to control the
level of asymmetry, i.e. the perturbation to the original Stockmayer model, and we
employed a value of α = −σ/4 in all our simulations.

We recall that the radially symmetric, pairwise LJ potential is given by

u(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, (C.12)

where ε is the unit of energy. For performance reasons, we employed a cutoff of
rc = 8σ for all short-ranged interactions based on the centre of mass separation
rij = rj − ri. The energy contribution for the two particles shown in Fig. C.2 is
therefore given by uij = u(ξij)Θ(rc − rij), where Θ(r) is the Heaviside function and
ξij = ξj − ξi.

Taking the negative gradient of the energy with respect to ξi and applying a

αξijRI

ri rj

ξj

ξi

Figure C.2: Off-centre Stockmayer model. Two solvent particles with dipoles (coloured
arrows) located at ri and rj , respectively, and displaced LJ centres, ξi and ξj , separated
by a distance of ξij . The mass of a solvent particle is distributed homogeneously over a
ball of radius RI , as illustrated by the dashed circles. The asymmetry in the short-ranged

interactions, compared to the Stockmayer model, is controlled by the parameter α.
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cutoff, we obtain the force

fij = Θ(rc − rij)24σε

[(
σ

ξij

)6

− 2

(
σ

ξij

)12
]
ξij
ξ2
ij

(C.13)

acting on particle i with the corresponding force fji = −fij acting on particle j. The
short-ranged contributions to the torques acting on these particles are then simply
given by

τij = αµ̂i × fij (C.14)

and
τji = αµ̂j × fji, (C.15)

respectively, where × denotes the cross product between two vectors. In the limit
α→ 0 these torque contributions vanish such that we recover the original Stockmayer
model.

C.3 Statistical accuracy

The size of each error bar in Fig. 4.2C represents twice the standard deviation of
the mean value which was calculated as the difference between the non-equilibrium
and the equilibrium averages. For the individual production run we computed
field averages according to the following protocol: at regular time intervals of
δt = 50∆t we computed 〈Ez,TP(z)〉 according to Eq. (4.6), excluding dipoles within
a distance of RTP from the colloid centres. We then averaged 〈Ez,TP(z)〉 over slabs
of width ∆z = L/24 which are centred around the points zi = −L/2 + (i− 1/2)∆z,
where i = 1, . . . , 24. The resulting instantaneous spatial averages are denoted by
Em
i , where m = 1, . . . ,M indexes the simulation time according to tm = mδt

and M = 1.5 × 106 is the total number of configurations considered. From the
resulting time series {E1

i , . . . , E
M
i } we computed the mean value, Ēi, for each bin

and estimated its standard deviation, σ̄i, using block average analysis. Errors for
the final results Ēi,TP = Ēi,NEMD − Ēi,NVE shown in the plot were calculated as the
square root of the total variance σ̄2

i,NEMD + σ̄2
i,NVE, assuming that the production

runs were statistically independent. The quantity Ẽ, appearing in Eq. (4.5), was
computed from the slabs with index j ∈ {1, 2, 11, 12, 13, 14, 23, 24} using the relation
Ẽ = −1/8

∑
j |Ēj,TP|. These slabs correspond to the region of constant average

field between the colloids. Errors were propagated assuming that the terms in the
sum are statistically independent such that the error σẼ is given by the square
root of 1/8

∑
j σ̄

2
j,TP. The estimate of qTP follows from multiplication of Ẽ by the
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constant factor 2Aε0. The error bar for the estimate of qTP obtained with Eq. (4.4)
is omitted since we do not have error estimates for the temperature contour lines
shown in Fig. 4.1A. The computation of STP involves additional simulation data and
is explained in Appendix C.4.

C.4 Estimation of STP

We estimated the thermo-polarisation coefficient using the relation

STP(z) =
〈Ez,TP(z)〉
∂z〈T (z)〉 , (C.16)

where ∂z〈T (z)〉 denotes the gradient of the temperature averaged over planes per-
pendicular to the z-axis (see Fig. C.3).

The simulation data reveals a perfectly linear profile in the vicinity of the origin,
such that β ≡ ∂z〈T (z)〉 is constant. We recall that the field value is Ẽ in that region
(see Fig. 4.2C), implying that STP is effectively a constant. Propagating the errors
of Ẽ∗ = (−1.96± 0.20)× 10−3 and β∗ = (−9.09± 0.03)× 10−3 according to

σS =
1

|β|
√
σ2
Ẽ

+ S2
TPσ

2
β, (C.17)
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Figure C.3: Planar averages of temperature and density. Temperature (red circles) and
solvent number density (blue diamonds) were averaged over slabs perpendicular to the
z-axis in the vicinity of the origin. The width of each slab is ∆z∗ = L∗/31 and all error
bars are smaller than the symbol sizes. To estimate errors of the linear fit coefficients for
the interval shown in the plot, we first divided the NEMD trajectory into 1500 blocks
and performed individual fits for each block average. We then calculated the mean values
and standard deviations of the resulting coefficients using block average analysis. The
results are 〈T ∗(z∗)〉 = (−9.09 ± 0.03) × 10−3z∗ + (1.1522 ± 0.0002) (solid red line) and

〈ρ∗N (z∗)〉 = (3.76± 0.02)× 10−3z∗ + (0.74952± 0.00005) (dashed blue line).
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Figure C.4: Induced electric field for the off-centre and the on-centre Stockmayer model.
The results for the on-centre model (black circles) are compared to the ones for the off-centre
case (blue diamonds and solid red line) shown in Fig. 4.2C. The dotted horizontal line was

added to guide the eye and to highlight the symmetry of the induced field.

we obtain an estimate of S∗TP = 0.216± 0.022 for our model in the temperature and
density regions shown in Fig. C.3.

C.5 Comparison with on-centre Stockmayer model

A microscopic theory that accounts for the alignment of off-centre Stockmayer
particles in a thermal gradient is at present lacking, but recent studies on dumbbell
molecules suggest that a shape or mass asymmetry is required for the effect30,31,33.
In our model shape asymmetry is introduced by choosing a non-zero value for α
(Fig. C.2). The thermo-molecular orientation is expected to vanish for the on-
centre case where α is zero. To illustrate this behaviour, we carried out additional
simulations with the on-centre Stockmayer model110 following the same protocol
as in the off-centre case, apart from minor differences in the thermostat settings
(F = 49.58ε/τ). The comparison of the induced electric field, shown in Fig. C.4,
suggests that on-centre Stockmayer particles indeed do not align in a thermal gradient.

C.6 Comparison of temperature and electric poten-

tial

The results shown in Fig. 4.1 suggest that the electric field lines are aligned per-
pendicular to the temperature isosurfaces, implying that the electric field is parallel
to the temperature gradient field. A direct quantitative comparison of the three-
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Figure C.5: Planar averages of temperature and electric potential. The temperature (blue
diamonds) was averaged over slabs perpendicular to the z-axis and the bulk value T∞ was
subtracted for comparison with the averaged electric potential Φ(z) (red, solid line), which
was computed according to Eq. (C.18) and normalised by −STP. The dotted horizontal
line is a guide to the eye and highlights the symmetry of both quantities. Uncertainties in

the temperature values are smaller than the symbol size.

dimensional fields is difficult for the following reasons: Firstly, statistical fluctuations
in the computed electric field are relatively large, which is why we considered planar
averages in Fig. 4.2C. Secondly, computation of the temperature gradient field re-
quires taking numerical derivatives of the simulation data thereby increasing the error.
We therefore explore an alternative route and compare the averaged electric potential,
〈Φ(z)〉, to the averaged temperature deviation from the bulk value, 〈T (z) − T∞〉.
To facilitate the comparison, we integrate the analytical solution for the electric
field [Eq. (4.5)], which we have already shown to be in good agreement with the
simulation data (Fig. 4.2C), such that

〈Φ(z)〉 = −
zˆ

−L/2

〈Ez(z′)〉dz′ =
ẼL

2
+ (C.18)

Ẽ ×





z if z < zh −RTP,

zh −RTP/2− (z−zh)2

2RTP
if |z − zh| ≤ RTP,

2zh − z if |z| < zc −RTP,

2zh − zc +RTP/2 + (z−zc)2

2RTP
if |z − zc| ≤ RTP,

2(zh − zc) + z otherwise.

The comparison of both quantities is shown in Fig. C.5 and reveals excellent agreement
throughout the entire domain.
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C.7 Estimate for water

An accurate estimate of the thermally induced charge for water would require
additional simulations with a realistic model. We can, however, get a rough idea
of the order of magnitude using an estimate of STP ≈ 0.1 mV/K for SPC/E water
around room temperature35,36. Let us assume that the temperature gradient is
sufficiently weak such that we are in the linear regime where E = STP∇T holds
and quadrupole contributions to the electric field can be neglected. For a spherical
colloid of radius R = 500 nm which is heated by 20 K with respect to T∞, we can
then employ Eq. (4.4) to obtain an estimate of qTP ≈ 0.7qe for the thermally induced
charge, where qe is the charge of an electron.

Colloidal particles can also carry a charge due to the dissociation of ionisable
groups at the surface124. For example, polystyrene spheres of radius R = 66 nm,
in aqueous colloidal suspensions, were found to carry effective charges of almost
103qe which is much larger than the one we are trying to measure124,125. To single
out the thermally induced charge, we therefore think that it would be better to
consider sterically stabilised colloids that are, on average, uncharged and possibly
use electrophoresis to select those particles that carry the least charge. It is, however,
not immediately obvious which system would be a good model candidate to study.
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Mean-field theory

D.1 Simulation details

We used the LAMMPS simulation package54 (version 11Aug17) to perform all
molecular dynamics simulations presented in this work. In all cases, we employed
a fully periodic, prismatic simulation box with dimensions 3Lx = 3Ly = Lz ≡ L

containing 5832 off-centre Stockmayer particles37. We set the cutoff radius to 7σ for
all types of interaction and specified a relative accuracy of approximately 10−5 for
the computation of long-range forces along with tin-foil boundary conditions65,91,123.

To equilibrate our systems, we followed the protocol outlined in Ref. 37. We first
generated a lattice structure with random dipole orientations and equilibrated it in
an NV T -simulation for at least 2× 103τ , where τ = σ

√
m/ε is the unit of time. In

NV T simulations, we set the relaxation time of the Nosé–Hoover thermostat56,57 to
0.5τ . We employed a timestep of ∆t = 0.005τ for the discrete time integration for
the simulations corresponding to Fig. 5.2 and ∆t = 0.004τ for the ones corresponding
to Fig. 5.3. In ∇ρ-runs, we employed a body force to each particle during this
equilibration run in order to establish the desired density gradient. Subsequently,
we performed the production run retaining this body force, and we sampled spatial
profiles for temperature, density and molecular orientation. For ∇T -runs and full
NEMD-runs, we adjusted velocities of the last configuration of the NV T simulation
so that the total energy matched the average energy sampled39. We then equilibrated
the system for another 2× 103τ in an NVE simulation before imposing either a
heat flux using the eHEX algorithm39 or a temperature gradient by applying two
Gaussian thermostats locally to adjust the non-translational kinetic energy inside the
reservoirs appropriately. The former approach is suitable when imposing a constant
heat flux (e.g. the results presented in Fig. 5.2), while the latter is better suited when
a constant temperature gradient is desired (e.g. the results presented in Fig. 5.3).
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We waited for at least 2× 103τ for a steady state to become fully established
and for any transient behaviour to vanish before starting production runs. For
∇T -runs, we employed a body force both during the steady-state equilibration and
in the production run in order to remove the density gradient. Production runs
were simulated for between 1× 105τ and 5× 105τ ; we stopped simulations when
the statistics for 〈cos θ〉 were sufficiently converged. Even for the longest simulation
(the NEMD-run in Fig. 5.2), we did not observe any energy loss with the eHEX
algorithm. As pointed out in Ref. 36, the piecewise constant profile for 〈cos θ〉 is
established fairly quickly, but because there is no energetic penalty for having a
net dipole moment with tinfoil boundary conditions, long simulation times may be
required for 〈cos θ〉 to be centred around zero perfectly. Since the constant term
(1/L)

´
L
〈cos θ(z)〉 dz is very small and must vanish by symmetry for an infinitely

long run, we are justified in subtracting it from the sampled profile 〈cos θ(z)〉 to
reduce the computational cost.

Imposing a piecewise constant force proportional to sgn(z)ẑ leads to a serious
drift in the total energy in NVE simulations. We found this problem to be related
to the discontinuity of the force at the origin when a piecewise constant force was
applied. The problem was only observable in NVE simulations or in combination
with the eHEX algorithm, because in all other cases the lost energy is re-supplied by
the thermostat. To resolve it, we fitted third-order polynomials inside the reservoirs
so that the resulting force profile was continuously differentiable. This procedure
eliminated the energy drift completely.

D.2 Force derivation

In this section, we derive the analytical force expressions provided in Eqs (5.7)–(5.9).
We start from the fundamental equation for the internal energy E,

dE = T dS − P dV + F dz + µ dN, (D.1)

where S is the entropy, P the pressure, V the volume, F is a force acting on the
system, µ the chemical potential and N the number of particles. The Gibbs energy
is given by G = E − TS + PV = µN , so its total differential can be written as

dG = F dz + µ dN − S dT + V dP = N dµ+ µ dN. (D.2)
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After division by N , we obtain the Gibbs–Duhem analogue

dµ = f dz − s dT + v dP, (D.3)

where v = 1/ρ. Since µ = µ(T, ρ) and P = P (T, ρ), we can write the total
differentials of both functions as

dµ =

(
∂µ

∂ρ

)

T

dρ+

(
∂µ

∂T

)

ρ

dT (D.4)

and
dP =

(
∂P

∂T

)

ρ

dT +

(
∂P

∂ρ

)

T

dρ. (D.5)

Temperature and density vary only with z and their total differentials are given by

dρ =
dρ

dz
dz and dT =

dT

dz
dz. (D.6)

Combining Eqs (D.3)–(D.6) and comparing coefficients of the differentials, we find
that the force per particle can be expressed as

f =

(
∂µ

∂ρ

)

T

dρ

dz
+

[
s+

(
∂µ

∂T

)

ρ

]
dT

dz
︸ ︷︷ ︸

fext

−1

ρ

[(
∂P

∂T

)

ρ

dT

dz
+

(
∂P

∂ρ

)

T

dρ

dz

]

︸ ︷︷ ︸
fbalance

.

(D.7)

The overall thermodynamic force acting on a particle vanishes at equilibrium, i.e. f =

0. If we identify the force fext as an externally applied force, at equilibrium, it must
therefore be compensated exactly by the balancing force fbalance.

D.3 Ideal force

We can express the chemical potential as the sum of an ideal and an excess contribu-
tion, µ = µid + µex. This implies that we can also split the external force [Eq. (D.7)]
into an ideal and an excess contribution,

fext = f idext + f exext. (D.8)

Our goal in this section is to relate the ideal force f idext to the average force
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experienced by a particle in simulation,

〈fi〉 =
〈
fext +

∑

j

fij

〉
, (D.9)

where fij is the pairwise force that is exerted on particle i by particle j. Because µid

is derived from the kinetic term in the canonical partition function, and therefore
also applies to an ideal gas, we cannot interpret f idext as the gradient of a potential
energy. Therefore, 〈∑j fij〉 will only be able to balance the excess contribution of
the external force, and

〈fi〉 = f idext =

(
∂µid

∂ρ

)

T

dρ

dz
+

[
sid +

(
∂µid

∂T

)

ρ

]
dT

dz
. (D.10)

We can straightforwardly evaluate the right-hand side of the above equation using
the ideal chemical potential µid = kBT ln(ρΛ3), where Λ is the de Broglie thermal
wavelength. The first term yields

(
∂µid

∂ρ

)

T

dρ

dz
=
kBT

ρ

dρ

dz
. (D.11)

For the second term, we also use the Sackur–Tetrode expression for the ideal entropy,

sid =
5kB
2
− kB ln(ρΛ3), (D.12)

∇ρ-run

∇T -run

NEMD

−L/2 −L/4 0 L/4 L/2
−10

0

10

z

10
3

f

kBT

ρ

dρ
dz

kB
dT
dz

kBT

ρ

dρ
dz
+ kB

dT
dz

Figure D.1: Residual force measured in simulation (symbols) for the off-centre Stockmayer
system with p2 = 1 alongside the predicted ideal contributions from Eq. (D.14) (dashed

lines). Symbols are larger than error bars.
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and thus we can evaluate
sid +

(
∂µid

∂T

)

ρ

= kB, (D.13)

giving an overall expression of

f idext =
kBT

ρ

dρ

dz
+ kB

dT

dz
. (D.14)

In ∇ρ-runs, the second term is zero, whilst in ∇T -runs, the first term is zero,
giving the result we used in the main text. We note that, although our particles
have orientational degrees of freedom, contributions to the ideal force due to ideal
rotational motion evaluate to zero. Furthermore, 〈fi〉 being non-zero does not imply
a continual net acceleration of the particle, because this force is balanced by the
ideal pressure P id = ρkBT [Eq. (D.7)].

To test Eq. (D.10) numerically, we sampled 〈fi〉 during the production runs and
compared it to the analytical expression [Eq. (D.14)], as shown in Fig. (D.1). We
can see that the simulation results are in excellent agreement with the theoretical
expression.

D.4 Supplemental figures

In this section, we present additional results supporting Fig. 5.3. As outlined in the
main text, for p2 ≥ 1, we assigned half the temperature-gradient-induced ideal force
to the centre of mass. To highlight the consequences of this physically motivated but
to some extent arbitrary choice, we also present results for an alternative treatment
in which the entire force acts on the LJ site (Fig. D.2). The ideal force only has a
small effect on the results for p2 ≥ 1 (dotted lines), but splitting the force across the
LJ and centre of mass sites yields better agreement with the simulation data (solid
lines).

Figure D.3 shows the density and temperature profiles for the comparison in
Fig. 5.3. We fixed the temperatures of the hot and cold slabs to match the temperature
profiles in all NEMD- and ∇T -runs. The resulting density gradient increases with
dipole strength. We note the onset of a non-linear behaviour for p2 = 3. Numerical
values for the density gradients are summarised in the table below.
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4 6 8 10
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(i) p2 = 1
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(ii) p2 = 2

4 6 8 10
z

(iii) p2 = 3

Figure D.2: Mean orientation for an off-centre Stockmayer liquid at varying dipole strength
for an alternative choice of ideal attachment sites. Symbols represent simulation results
and solid lines correspond to theoretical predictions as discussed in the main text. Dotted
lines give an alternative set of theoretical predictions where the ideal balancing force acts

entirely on the LJ site for the ∇T -runs.

decreasing p2
p
2 =

3

p
2 = 0

∇T -run

0.8

0.82

0.84

ρ
(z)

∇T -run

∇ρ-run

−L/2 −L/4 0 L/4 L/2
1.2

1.25

1.3

z

T
(z)

p2 103
���� dρdz

����
0 2.10
0.2 2.17
0.5 2.33
1 2.58
2 3.13
3 3.84

Figure D.3: Density and temperature gradients for the off-centre Stockmayer system
considered in the main text (with p2 values of 0, 0.2, 0.5, 1, 2 and 3). The temperature
gradients do not change as a function of p2, but the density gradients do. The profiles
become slightly non-linear for large dipole moments; the mean values of the absolute values
of the density gradients are given. The mean temperature gradient is |dT/dz| = 0.010 for

∇T -runs at all values of p2.

D.5 Pressure and chemical potential

In this section, we present additional simulation results for the pressure and the
chemical potential. We first show that the Johnson EOS yields good analytical
estimates for the pressure (Fig. D.4). The theoretical result was computed solely
based on the temperature and density profiles and yields a very accurate prediction
for the ∇ρ- and ∇T -runs. However, we notice a small error in the prediction of
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Figure D.4: Pressure measured in simulation (symbols) for an off-centre LJ system with
T = 1.25, ρ = 0.65, |dT/dz| = 0.009 and |dρ/dz| = 0.004, alongside the predicted pressure

using the Johnson EOS (dashed lines). Symbols are larger than error bars.
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Figure D.5: Chemical potential (solid line) and its individual contributions (dashed and
dotted lines) computed using the Johnson EOS for the NEMD-run shown in Fig. D.4.

the pressure for the NEMD-run. Although the simulation result clearly shows that
the pressure is constant throughout the domain, the EOS predicts a small pressure
gradient. Compared to the pressure gradients observed in the ∇ρ- and ∇T -runs,
however, this error is small, so that we consider the quality of agreement reasonable.

Finally, we demonstrate that the NEMD-run exhibits a gradient in the chemical
potential. For a system in mechanical and local equilibrium, we expect the gradient
in the chemical potential to be given by [Eq. (D.3)]

dµ

dz
= −sdT

dz
. (D.15)

Figure D.5 shows that, apart from the small erroneously predicted pressure gradient
(Fig. D.4), this is indeed the case for the NEMD-run. This system therefore exhibits
a gradient in the chemical potential while the pressure is approximately constant.
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