Neuroimaging

In vivo coupling of tau pathology and cortical thinning in Alzheimer’s disease

Elijah Mak a,*, Richard A. I. Bethlehem a, Rafael Romero-García a, Simon Cervenka c, Timothy Rittman b, Silvy Gabel a,d, Ajenthal Surendranathan a, Richard W. Bevan-Jones a, Luca Passamonti b, Patricia Vázquez Rodríguez b, Li Su a,e, Robert Arnold a, Guy B. Williams f, Young T. Hong b,f, Tim D. Fryer b,f, Franklin I. Aigbirhio b,f, James B. Rowe g,h,1, John T. O’Brien a,1

aDepartment of Psychiatry, University of Cambridge, Cambridge, UK
bDepartment of Clinical Neurosciences, University of Cambridge, Cambridge, UK
bDepartment of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
cLaboratory for Cognitive Neurology, University of Leuven, Leuven, Belgium
dChina-UK Centre for Cognition and Ageing Research, Southwest University, Chongqing, China
eWolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
fMedical Research Council, and Brain Sciences Unit, Cambridge, UK
gDepartment of Clinical Neurosciences, University of Cambridge, Cambridge, UK
hBehavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK

Abstract

Introduction: The deposition of neurofibrillary tangles in neurodegenerative disorders is associated with neuronal loss on autopsy; however, their in vivo associations with brain atrophy across the continuum of Alzheimer’s disease (AD) remain unclear.

Methods: We estimated cortical thickness, tau ([18F]-AV-1451), and amyloid beta (Aβ) status ([11C]-PiB) in 47 subjects who were stratified into Aβ− (14 healthy controls and six mild cognitive impairment–Aβ−) and Aβ+ (14 mild cognitive impairment–Aβ+ and 13 AD) groups.

Results: Compared with the Aβ− group, tau was increased in widespread regions whereas cortical thinning was restricted to the temporal cortices. Increased tau binding was strongly associated with cortical thinning in each Aβ group. Locally, regional tau was associated with temporoparietal atrophy.

Discussion: The strong coupling of tau with atrophy, even in the absence of significant Aβ, positions tau as a promising therapeutic target. Further studies are needed to elucidate the casual relationships between tau pathology and trajectories of cortical thinning in AD.

Keywords: Alzheimer’s disease; Tau; Amyloid; Positron emission tomography; Atrophy; Cortical thickness; MRI

1. Background

The prevailing disease model of Alzheimer’s disease (AD) implicates amyloidosis as the initiating pathologic event, followed by a cascade involving aggregation of neurofibrillary tangles (NFTs), early synaptic dysfunction, downstream progressive cerebral atrophy, and ultimately clinical and functional decline [1]. However, evidence from post-mortem and positron emission tomography (PET) studies has not been able to demonstrate strong associations of amyloid beta (Aβ) with neuronal loss or disease severity in AD [2,3]. In contrast, NFTs accumulate in tandem with neuronal loss, disease progression, and show strong correlations with clinical phenotypes [4–6], findings which have since been corroborated by cerebrospinal fluid evidence implicating...
tau as a key substrate of brain atrophy across various neurodegenerative conditions [7–10].

The advent of PET radiotracers that bind to hyperphosphorylated paired helical filaments of aggregated tau has permitted us to characterize the in vivo spatial distribution of tau burden, and how it relates to other pathologic processes in the AD cascade. To these ends, the neuropathologic staging of tau has been consistently recapitulated across research groups: tau pathology is localized in the medial temporal lobe among cognitively normal elderly adults before extending to the posterior parietal cortices in mild cognitive impairment (MCI) and AD [11–15]. One of the recurrent themes in the tau imaging literature concerns the striking overlap of increased [18F]-AV-1451 binding with brain regions that comprise the AD “cortical signature” of atrophy [16], suggesting a close coupling between tau and downstream neurodegeneration. To date, only a few studies have delineated these relationships in cognitively normal elderly [17,18] and small samples of patients with AD [19]. It also remains unclear if and to what extent does Aβ levels modify the relationships between tau and brain atrophy.

The objective of our study was to elucidate the relationships between tau pathology and brain atrophy across individuals varying degrees of Aβ burden. We used a multimodal paradigm that included [11C]-PiB PET for Aβ classification in MCI individuals, [18F]-AV-1451 PET for quantification of tau pathology, and T1-MPRAGE for estimation of cortical thickness. Individuals with mild AD and [11C]-PiB + MCIs were treated as a single group, because these individuals represent a continuum from prodromal to early AD. We further examined the impact of tau on brain atrophy in another group comprising cognitively normal elderly and [11C]-PiB − MCI individuals, thereby enabling us to inquire whether the influence of tau on brain atrophy may be influenced by existing amyloid burden. First, we compared the spatial distributions of tau burden and cortical thickness between both Aβ subgroups. Second, we tested the hypothesis that the global topography of tau closely overlaps with cortical atrophy. Third, we directly mapped local burden of tau pathology onto regional cortical thickness. Finally, the distributed patterns of tau-associated atrophy were investigated using a seed-based approach, with the inferior temporal tau selected as a proxy of early tau propagation.

2. Methods

2.1. Participants

As part of the Neuroinflammation in Memory and Related Other Disorders study [21], 20 MCI and 13 AD subjects were recruited from cognitive disorder clinics in neurology, old age psychiatry, and related services at Cambridge University Hospital and other Trusts within the region. MCI was defined as (1) Mini-Mental State Examination (MMSE) >24; (2) not demented but with memory impairment beyond that expected for age and education, which does not meet the criteria for probable AD dementia and is not explained by another diagnosis [22]. Probable AD was diagnosed according to the National Institute on Aging-Alzheimer’s Association diagnostic guidelines [23]. Fourteen healthy control subjects were recruited from spouses of subjects and from volunteers. They were defined as subjects with MMSE scores ≥26 and with an absence of (1) regular memory complaints; (2) symptoms suggestive of dementia; and (3) unstable or significant medical illnesses. All research participants underwent a detailed clinical and neuropsychological assessment as previously described [15].

2.2. Image acquisition

Participants underwent T1-weighted magnetic resonance imaging (MRI) using an MPRAGE sequence (TR = 2300 ms, TE = 2.98 ms, field of view = 240 mm, flip angle = 9°) on a Siemens 3 T Tim Trio or Verio (Siemens Healthcare, Erlangen, Germany). PET examinations were performed on the GE Advance or GE Discovery 690, with the tau radioligand [18F]-AV-1451 (Avid Radiopharmaceuticals). A 15-minute 68Ge/68Ga rotating rod transmission scan was used for attenuation correction on the Advance, which was replaced by a low-dose computed tomography scan on the Discovery 690. The PET examination protocols were the same for both scanners: 550 MBq [11C]PiB injection followed by acquisition of static emission data from 40 to 70 minute after an injection; and collection of 90-minute dynamic data after a 370 MBq [18F]-AV-1451 injection. Each emission frame was reconstructed using the PROMIS three-dimensional filtered back projection algorithm into a 128 × 128 matrix 30 cm transaxial field of view, with a transaxial Hann filter cutoff at the Nyquist frequency. Corrections were applied for randoms, dead time, scatter, attenuation, and sensitivity. In addition, subjects with MCI underwent [11C]-PiB PET imaging to quantify the density of fibrillar Aβ deposits for classification of Aβ (PiB cortical standardized uptake value ratio [SUVR] >1.5) [24].

2.3. Processing of structural MRI and PET data

2.3.1. Structural MRI

The T1-MPRAGE data were processed with FreeSurfer v6 to obtain cortical thickness measurements in 34 ROIs per hemisphere, based on the Desikan-Killiany parcellation scheme [25]. Briefly, for each T1-MPRAGE data, the pial and white matter surfaces were generated and the cortical thickness was measured as the distance between the boundaries of pial and white matter surfaces. Visual inspection was carried while blinded to group diagnosis and corrections were performed to ensure accurate skull stripping and
reconstruction of white matter and pial surfaces, and one AD subject was excluded as a result.

2.3.2. \(^{18F}\)-AV-1451

The \(^{18F}\)-AV-1451 emission image series were aligned across the frames to correct for head motion during data acquisition with SPM8. The realigned dynamic frames were coregistered to the T1-MPRAGE. The data were corrected for partial volume effects with the symmetric geometric transfer matrix in PetSurfer, following previously adopted procedures in a growing number of multimodal PET and MRI studies [17,28]. Using the gray matter cerebellum as the reference region, kinetic modeling was performed using the two-stage Multilinear Reference Tissue Model [29] within the PetSurfer pipeline to derive partial volume corrected nondisplicable binding potential (BP\(_{\text{ND}}\)) values for each ROI [30].

2.3.3. \(^{11C}\)-PiB

\(^{11C}\)-PiB data were quantified using an SUVR with the superior cerebellar gray matter as the reference region. The \(^{11C}\)-PiB SUVR data were similarly subjected to the geometric transfer matrix technique for partial volume correction and treated as a dichotomous variable for A\(\beta\)-classification. MCI subjects were classified as A\(\beta+\) if the averaged cortical \(^{11C}\)-PiB SUVR was >1.5 [24]. This classification resulted in 14 A\(\beta+\) and six A\(\beta-\) MCI subjects.

2.4. Statistical analyses

All statistical analyses were performed in MATLAB 2017A and R. First, linear regressions were performed to adjust the imaging data for age, gender, and scan interval between structural MRI and PET assessments, consistent with our previous methodology [31]. The specific analyses catering to the main objectives of the study are described as follows: (1) Student’s \(t\) tests were used to compare regional tau burden and cortical thickness between the A\(\beta-\) (healthy control subjects and MCI-A\(\beta-\)) and A\(\beta+\) (MCI-A\(\beta+\) and AD) groups and corrected for multiple comparisons with Benjamini-Hochberg false discovery rate (FDR; adjusted \(P < .05\)). (2) To examine the spatial overlap between tau and cortical thickness, we used mixed effects models to evaluate the inter-regional associations between both imaging modalities across the cortex. Specifically, cortical thickness was assigned as the dependent variable, with \(^{18F}\)-AV-1451 BP\(_{\text{ND}}\) as a fixed factor, allowing for random intercepts across subjects and cortical lobes. A second reduced model was derived by omitting the fixed effects of \(^{18F}\)-AV-1451 BP\(_{\text{ND}}\) from the original model. Likelihood ratio tests were used to infer statistical significance by comparing the fit between the full and reduced models [32]. (3) To delineate the topography of local relationships between tau and cortical thickness, we pursued an unbiased approach and investigated correlations between the adjusted \(^{18F}\)-AV-1451 BP\(_{\text{ND}}\) and cortical thickness data within the same ROI. One-way analysis of covariance was performed with the A\(\beta+\) and A\(\beta-\) groups as a factor and cortical thickness as a covariate to investigate potential interactions of A\(\beta\) status on tau-associated cortical thinning. (4) To investigate the local-to-distributed influence of tau pathology, we selected the inferior temporal cortex as a proxy measure of early tau seeding and assessed its correlations with cortical thickness ROIs. Two AD subjects were excluded from the statistical analyses as they were outliers on \(^{18F}\)-AV-1451 BP\(_{\text{ND}}\) data (Grubb’s test) and were inflating many of the regional correlations between tau burden and cortical thickness.

3. Results

3.1. Demographics of study sample

Participant clinical and demographic characteristics are shown in Table 1. Although there were no significant differences between both A\(\beta\) groups in terms of age, gender, and education, the A\(\beta+\) group was significantly more impaired on the MMSE and underwent a longer scan interval between MRI and PET imaging.

3.2. Global and regional comparisons of cortical thickness and tau accumulation

Although there were no significant differences in mean cortical thickness (\(P = .2\)), mean cortical tau burden was significantly increased in the A\(\beta+\) group relative to the A\(\beta-\) group (\(P < .001\)) (Fig. 1). Next, we compared the regional cortical thickness and \(^{18F}\)-AV-151 binding observed in widespread regions, predominantly spanning the temporoparietal cortices in the A\(\beta+\) group (FDR corrected, \(P < .05\); Fig. 2, middle row). Topographically, the trend-level pattern of cortical thinning was embedded within a wider extent of tau accumulation (Fig. 2, bottom row).

3.3. Topographical relationship between tau accumulation and cortical thickness

Mixed effect models indicated significant and negative associations between tau burden and cortical thickness irrespective of A\(\beta\) grouping (A\(\beta-\): \(\beta = -0.5\), standard error = 0.03, \(T = -14.6\); A\(\beta+\): \(\beta = -0.3\), standard error = 0.02, \(T = -14.8\)). These topographical associations are illustrated in the scatterplots of Fig. 3. In addition, we evaluated the robustness of these relationships within each cortical lobe. Intralobar associations from the mixed effect models are reported in Supplementary Fig. 1 and
4. Discussion

Determining the in vivo relationships between tau pathology and other neurodegenerative processes is essential for the evaluation of early biomarkers and to facilitate the development of therapeutic candidates in AD. Our findings collectively demonstrated that tau pathology, measured in vivo with [18F]-AV-1451 PET, is strongly associated with cortical thinning. In addition, we demonstrated that the phenomenon of tau-associated atrophy exists irrespective of amyloid burden. Broadly, these findings suggest that the impact of tau pathology on brain atrophy may be underway even at subthreshold accumulation of Aβ, raising the possibility that early anti-tau interventions may have greater therapeutic potential than anti-Aβ, especially early in the course of disease.

Recent PET imaging studies have demonstrated close relationships of tau aggregation with Aβ burden [34–36] and hypometabolism [33]. In addition to corroborating previous findings in populations of cognitively normal elderly and smaller samples of patients with different AD variants (n = 6) [17,19], our study also confirmed the large body of neuropathologic evidence implicating NFTs as a precursor of downstream neuronal loss in AD. However, previous studies have relied on case-control samples or did include groups with varying degrees of amyloid burden. As such, our findings extended the literature by demonstrating a tight coupling between tau and atrophy that may not be contingent on existing severity of Aβ burden.

Despite being a necessary condition of AD, the precise involvement of Aβ underlying disease progression or brain atrophy has been tenuous (see [38] for a systematic review). For instance, it remains uncertain if—and to what extent—taupathy in the absence of Aβ can perpetuate the neurodegenerative cascade that ultimately leads to clinical and functional impairment. Our mixed effect analyses revealed prominent associations between increased tau burden and cortical thinning, which were surprisingly also found among individuals classified in the Aβ− group (Fig. 3). Furthermore, we did not detect a significant interaction of Aβ levels on the local-to-local associations between tau burden and atrophy (Supplementary Fig. 2). Together, both lines of evidence may be interpreted as evidence against the hypothesis of a dose-dependent relationship between tau-associated atrophy and severity of Aβ levels. These findings are broadly consistent with recent data showing Aβ-independent relationship between tau and hypometabolism in a large sample of cognitively normal elderly [39]. Indeed, the practical implications of these observations are...
manifold. First, the presence of tau-related atrophy in individuals with minimal Aβ may reflect subtle neurodegeneration that coexists with primary age-related tauopathy. The ubiquity of NFTs is well documented in the brains of the older population, even in the absence of Aβ plaques, and may be associated with mild or diffuse cortical atrophy [40]. Second, these findings could be taken to support the growing recognition that clearance of Aβ pathology alone is insufficient as a treatment approach, with the corollary that anti-tau interventions may have more therapeutic potential in the early phases of AD. Indeed, in contrast to the prevailing theory that tau hyperphosphorylation is secondary to the build up of Aβ, other groups have argued that tau pathology is a necessary precursor for Aβ-induced neurotoxicity [41], thereby highlighting the potential of tau-targeting therapies to have beneficial impact on both pathologies [42].

![Graphs showing group comparisons of regional cortical thickness and tau accumulation between both Aβ subgroups.](image1.png)

Fig. 1. Between-group comparisons of mean cortical thickness and [18F]-AV-151 burden. Student’s t tests revealed no significant differences in mean cortical thickness between Aβ groups, although tau accumulation was significantly increased in the Aβ+ group (P < .001). Abbreviation: Aβ, amyloid beta.

![Graphs showing group comparisons of mean cortical thickness and tau accumulation between both Aβ subgroups.](image2.png)

Fig. 2. Group comparisons of regional cortical thickness and tau accumulation between both Aβ subgroups. (Top and middle rows) Relative to the Aβ− group, the magnitude and spatial extent of tau accumulation (red, FDR P < .05) were in excess of trend-level cortical thinning (cyan, P < .05). (Bottom row) The spatial overlap in the distributions of cortical thinning and tau accumulation is visually apparent when the contrast maps are superimposed on each other. Abbreviations: Aβ, amyloid beta; FDR, false discovery rate.
Taken together, these findings position tau pathology as an important and early therapeutic target, even in preclinical AD.

After demonstrating the spatial concordance of tau and cortical thinning across the cortex as well as within each lobe, we delineated the cortical landscape of colocalized tau and atrophy. As hypothesized, we found significant local relationships that were predominantly in the inferior temporal and parietal cortices, retaining statistical significance even at a relatively stringent FDR-adjusted threshold (Fig. 4, top row). The posterior bias of the local associations, confirmed by our analysis of variance comparisons of the intralobar correlational coefficients (i.e., temporoparietal lobes > frontal lobe; Fig. 4, bottom row), is in keeping with the Braak staging of tau propagation where tau first originates in the medial temporal lobe before spreading to posterior cortices along neural pathways [43]. Rather intriguingly, the topography of tau-associated atrophy in this study is highly reminiscent of the cortical signature of AD, a set of brain regions that are highly susceptible to undergo atrophy in patients with established AD [16]. Extrapolating the concept of ischemic penumbra to our observation, it is conceivable that peak regions showing the strongest tau-atrophy correlations may form a “neurodegenerative penumbra” that subsequently serves as the pathologic scaffold from which atrophy ultimately emerges in a pattern akin to the cortical signature of AD, a set of brain regions that are highly susceptible to undergo atrophy in patients with established AD [16]. Interestingly, the atrophic sites—temporal cortices. Interestingly, the atrophic sites—temporal cortex and precuneus—were embedded and surrounded of disease propagation in AD. Longitudinal studies will be necessary to disentangle the temporal sequence of these events. If our hypothesis is borne out in prospective and longitudinal studies, it would provide compelling evidence for a mechanistic bridge between tau, a cardinal pathologic substrate of AD, and cortical atrophy—the common end point of neurodegeneration.

In addition to tau-related local atrophy, distal neurodegeneration may also be plausible through means of connective diaschisis. Using the inferior temporal cortex as a proxy of tau burden within a seed-based framework, we showed that its associations with atrophy extended locally to encompass adjacent temporal cortices and the bilateral precuneus (Fig. 5). These results also confirm previous studies, in cognitively normal individuals, that implicated inferior temporal tau with diffuse patterns of atrophy and Aβ in temporoparietal cortices [17,18]. Interpreted from a network-mapping perspective [45], these findings are in keeping with a role of the inferior temporal cortex as a “gateway region” for disease propagation in AD. To elucidate the diaschisistic underpinnings of tau-related neurodegeneration in AD, one key area of interest will be in discerning the remote consequences of local tau pathology on the connectomic architecture in AD.

Finally, through the between-group comparisons of tau and cortical thickness, we endeavored to indirectly probe the spatiotemporal relationships between tau and atrophy with complementary lines of evidence. Relative to Aβ− group, the Aβ+ group showed a pattern of increased tau accumulation that was more widespread than atrophy, which only followed a restricted trend of cortical thinning in the temporal cortices. Interestingly, the atrophic sites—temporal cortex and precuneus—were embedded and surrounded
by regions of significant tau accumulation, raising the possibility that these regions may represent the “epicenters” of AD. This notion is in accord with previous evidence demonstrating early vulnerability of the precuneus and the medial temporal lobe in AD[46]. Taken together, the disproportionate increase in tau accumulation relative to cortical thinning also confers primacy to NFTs as an upstream event relative to atrophy.

Several important caveats should be noted. Given the sample size, our findings will benefit from further replication in larger samples, although it is assuring that our findings retained statistical significance even after stringent FDR.
correction and adjustment for important covariates, such as
age, gender, and scan interval durations between PET and
MRI assessments. In the absence of longitudinal data, our in-
ferences regarding the spatiotemporal relationships between
tau and atrophy are limited by the assumption that cross-
sectional measurements are indices reflecting the summed
pathologic accumulation over time. However, these pro-
cesses may or may not follow a linear trajectory and accrual
of these measures does not necessarily reflect the duration of
their presence.

5. Conclusions

The findings in this report serve to triangulate observa-
tions from postmortem and cerebrospinal fluid studies and
provide in vivo evidence that tau aggregation is tightly asso-
ciated with both the spatial profile and severity of brain atro-
phy. Of note, we further showed the consistency of these
relationships across groups with varying degrees of Ab
pathology, suggesting that tau pathology should be recognized
as an early therapeutic target in preclinical AD. Locally, the
distributions of tau-associated cortical thinning are strik-
ingly reminiscent of the cortical signature of AD and may
indicate early vulnerability to the neurotoxicity of AD-
related pathologies. Ultimately, although this study is the
first to comprehensively delineate the topography of tau-
associated atrophy, we stress that prospective longitudinal
studies with larger samples are necessary to replicate our
findings.

Acknowledgments

We are grateful to our volunteers for their participation in the
Neuroinflammation in Memory and Related Other Disorders
(NIMROD) study. We thank the radiographers at Wolfson
Brain Imaging Centre (WBIC) and the PET/CT unit, Adden-
brooke’s Hospital for their technical expertise and support in
data acquisition. We thank the NIHR Dementias and Neuro-
degenerative Research Network for their help with subject
recruitment. We also thank Dr Istvan Boros, Dr Joong-
Hyun Chun, and WBIC RPU for the manufacture of the
[18F]-AV-1451. We also thank Avid (Lilly) for providing
the precursor for the production of [18F]-AV-1451 radioligand. The work was supported by the Cambridge NIHR Biomedical Research Centre; the Wellcome Trust (J.B.R., 103838); the Medical Research Council (F.I.A., MR/K02308X/1). We would also thank the support from Alzheimer’s Research UK.

Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.dadm.2018.08.005.

Uncited references

[20]; [26]; [27]; [37].

RESEARCH IN CONTEXT

1. Research in context: Despite postmortem evidence that tau accumulation is implicated in synaptic injury and cell death, the extent to which in vivo distributions of tau pathology maps onto patterns of brain atrophy in Alzheimer’s disease (AD) remain unclear.

2. Systematic review: We recently published a systematic review of tau positron emission tomography imaging studies in 2017, and further reviewed the literature (i.e., PubMed). There are very few investigations into the associations of tau positron emission tomography with brain atrophy, and samples in previous studies mainly involved cognitively elderly cohorts or smaller case series with AD. These studies have been cited.

3. Interpretation: Consistent with the aforementioned evidence in normal aging cohorts, our findings suggest that tau pathology is strongly associated with stereotypical patterns of atrophy that recapitulated the cortical signature of AD.

4. Future directions: Longitudinal designs are necessary to replicate these findings in larger prospective cohorts comprising individuals across the disease spectrum of the AD.

References

