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Abstract

Treatment switching in a randomised controlled trial occurs when participants change from their 

randomised treatment to the other trial treatment during the study. Failure to account for treatment 

switching in the analysis (i.e. by performing a standard intention-to-treat analysis) can lead to 

biased estimates of treatment efficacy. The rank preserving structural failure time model 

(RPSFTM) is a method used to adjust for treatment switching in trials with survival outcomes. The 

RPSFTM is due to Robins and Tsiatis (1991) and has been developed by White et al. (1997, 

1999).

The method is randomisation based and uses only the randomised treatment group, observed event 

times, and treatment history in order to estimate a causal treatment effect. The treatment effect, ψ, 

is estimated by balancing counter-factual event times (that would be observed if no treatment were 

received) between treatment groups. G-estimation is used to find the value of ψ such that a test 

statistic Z(ψ) = 0. This is usually the test statistic used in the intention-to-treat analysis, for 

example, the log rank test statistic.

We present an R package that implements the method of rpsftm.

Introduction

In a two-arm randomised controlled trial, participants are randomly allocated to receive one 

of two treatments or interventions. Ideally, all participants would fully receive their allocated 

treatment and no other treatment. However, in a recent review, 98 of 100 trials published in 

four high quality general medical journals reported some form of departure from randomised 

treatment (Dodd et al., 2012). When treatment is ‘all-or-nothing’ (for example, a surgical 

procedure), possible departures include not receiving the allocated treatment, receiving the 

other trial treatment, or receiving a non-trial treatment. When treatment is given over time 

(for example, a drug for HIV treatment), departures also occur over time, and often include 

starting a new treatment in response to a disease-related event.
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This paper specifically focuses on the case of treatment switching over time, where 

participants may switch to receive the other trial treatment during the trial (Latimer et al., 

2014). A common example is in a trial of active treatment versus placebo where placebo arm 

participants may start the active treatment in response to disease progression.

A randomised controlled trial with departures from randomised treatment is commonly 

analysed by intention-to-treat, in which departures from randomised treatment are ignored 

and all randomised participants are compared in the groups to which they were randomised 

(Higgins et al., 2011). This provides an unbiased comparison of two treatment policies, 

which accept that treatment may be changed, but does not compare the efficacies of the 

treatments themselves (White et al., 1999).

In order to compare the efficacies of the treatments, analysts often use per-protocol analysis, 

which censors participants when they depart from randomised treatment. However, this loses 

the advantage that randomisation produces comparable groups and instead introduces 

selection bias. Another possibility is to include treatment as a time-dependent variable in a 

Cox regression model. The issue with this method is that the estimate of treatment effect 

may not have a causal interpretation when switchers are prognostically different to non-

switchers (Robins and Tsiatis, 1991).

There has therefore been strong interest in causal inference methods including marginal 

structural models (MSM) (i.e. inverse probability of censoring weighting (IPCW)) (Hernán 

et al., 2001) and instrumental-variable-type methods (White, 2005; Watkins et al., 2013).

The IPCW method is an extension of the per-protocol censoring approach, whereby the bias 

associated with censoring participants that depart from randomised treatment is removed by 

weighting the remaining non-switchers (Latimer et al., 2016). A model is formed for the 

probability of switching using baseline and time-dependent covariates. Time-varying 

weights are then obtained for each participant based on the inverse probability of not 

switching until a given time (Watkins et al., 2013). The method relies on data on prognostic 

factors for mortality that also affect the probability of switching being collected at both 

baseline and over time. This is called the ‘no unmeasured confounders’ assumption. Since 

this assumption is untestable, the method relies on good planning at the study design stage in 

order to collect information on all possible confounders. The method also has two potential 

issues: a) if many prognostic factors are included in the model to calculate weights the 

model may fail to converge, and b) if only a few participants switch then large weights are 

assigned to the remaining participants, which may result in biased analyses. The method has 

already been implemented in R in the package ipw and so is not considered further here.

Instead, this paper focuses on a popular causal method - the rank preserving structural 

failure time model (RPSFTM) (Robins and Tsiatis, 1991). In contrast to the IPCW method 

which requires potential confounders to be collected over time, the RPSFTM is 

randomisation based and only requires information on the randomised treatment group, 

observed event times, and treatment history in order to estimate a causal treatment effect. 

The method has been used, for example, in submissions to the UK’s National Institute for 

Health and Clinical Excellence whose Decision Support Unit commissioned a guidance 
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document (Latimer and Abrams, 2014). The RPSFTM has been implemented in Stata 

(White et al., 2002) but not in R.

This paper describes the theory of the RPSFTM and presents a new implementation of the 

method in R, using data based on a trial in HIV infection.

Theory

RPSFTM method and assumptions

The RPSFTM uses a causal model to produce counter-factual event times (the time that 

would be observed if no treatment were received) in order to estimate a causal treatment 

effect. Let  be the observed event time for participant i, where  and 

represent the time spent off and on treatment, respectively. The Ti are related to the counter-

factual event times, Ui, via the following causal model:

(1)

where exp(-ψ0) is the acceleration factor associated with treatment and ψ0 is the true causal 

parameter.

A grid search (g-estimation) procedure is used to estimate the treatment effect that balances 

the counter-factual event times across randomised treatment groups. To estimate the causal 

treatment effect, ψ, we assume that the Ui are independent of randomised treatment group 

Ri, i.e. if the groups are similar with respect to all other characteristics except treatment, the 

average event times should be the same in each group if no participant were treated. In 

general, this assumption is plausible in a randomised controlled trial.

A g-estimation procedure is used to find the value of ψ such that Ui is independent of Ri. 

For a range of ψs, the hypothesis ψ0 = ψ is tested by computing Ui(ψ), subject to censoring, 

and calculating the test statistic Z(ψ). This is usually the same test statistic as for the 

intention-to-treat analysis, for example, the log rank test statistic to compare survival 

distributions between groups. In the rpsftm() function, the possible test options are the log 

rank, and the Wald test from a Cox or Weibull regression model. For the parametric Weibull 

test, the point estimate (ψ̂) is the value of ψ for which Z(ψ) = 0. For the non-parametric 

tests (log rank, Cox), ψ̂ is the value of ψ for which Z(ψ) crosses 0, since Z(ψ) is a step 

function. Confidence intervals are similarly found with the 100(1 − α)% confidence interval 

being the set {ψ : |Z(ψ)| < z1−α/2}, where z1−α/2 is the 1 − α/2 percentile of the standard 

normal distribution.

After finding ψ̂, an adjusted hazard ratio can be calculated. For example, by comparing 

counter-factual event times at ψ̂ in the control group to the observed event times in the 

experimental group we can estimate the treatment effect that would have been observed in 

the absence of switching (in the case where only the control group switch).
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As well as assuming that the only difference between randomised groups is the treatment 

received, the RPSFTM also assumes a ’common treatment effect’. The common treatment 

effect assumption states that the treatment effect is the same for all participants (with respect 

to time spent on treatment) regardless of when treatment is received, which is implicit in 

equation (1).

Re-censoring

We assume that censoring occurs if participants survive to a specific calendar date (Robins 

and Tsiatis, 1991). Thus the potential censoring time Ci is known for all participants. The 

censoring indicators of the observed event times are initially carried over to the counter-

factual event times. However, the uninformative censoring on the Ti scale may be 

informative on the Ui scale. Suppose we have two participants with the same Ui, one of 

whom receives the superior treatment. The participant receiving the superior treatment has 

their Ui extended so that they are censored whilst the other participant may observe the 

event.

In detail, Ci, the censoring times for the Ti, are transformed to Ci (1 − Pi + Pi exp(ψ)) when 

we work on the Ui scale, where Pi is a random variable, the proportion of time on treatment, 

 This transformation of censoring times occurs by representing the 

censoring status in two equivalent ways: {Ci < Ti}, and re-scaling both sides {Ci (1 − Pi + Pi 

exp(ψ)) < Ti (1 − Pi + Pi exp(ψ)) = Ui}. We cannot assume the variable Pi is independent of 

Ui. For example, adherence to a protocolised treatment may depend on the underlying 

prognosis.

We can overcome this induced dependence by considering the sample space for Pi 

marginally over Ui and, optionally, conditioning on Ri. If we replace Pi with a function of its 

sample space then any dependency on Ui is thus removed. Any alternative transformed 

censoring times must be smaller than the original censoring times, else we may have to 

impute uncensored Ui values for censored Ti observations, which would be impossible. 

Hence taking the minimum value from the sample space for Pi meets both desiderata. If the 

sample space differs between arms, say switching is impossible in one arm, then this can be 

utilised to potentially observe more events with gains in efficiency.

Operationally, let Ci be the potential censoring time for participant i. A participant is then 

recensored at the minimum possible censoring time:

If  then Ui is replaced by  and the censoring indicator is replaced by 0. For 

treatment arms where switching does not occur, there can be no informative censoring and 

so re-censoring is not applied.

Sensitivity analysis

As previously mentioned, the RPSFTM has two assumptions:

Allison et al. Page 4

R J. Author manuscript; available in PMC 2018 March 19.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



1. The only difference between randomised groups is the treatment received.

2. The treatment effect is the same for all participants regardless of when treatment 

is received.

Whilst the first assumption is plausible in a randomised controlled trial, the latter may be 

unlikely to hold. For example, if control group participants can only switch at disease 

progression then the treatment benefit may be different in these participants compared to 

those randomised to the experimental treatment. The rpsftm() function allows for 

investigation of deviations from the common treatment effect assumption by featuring a 

treatment-effect modifier variable which means the treatment effect can be varied across 

participants. The assumption that defines the counter-factual treatment-free event times Ui is 

thus modified by multiplying ψ by some factor ki > 0:

The value taken by ki is derived from observed data and is left to the user to assign.

The package assumes that ki is determined at baseline, and re-censoring is undertaken in a 

similar way by re-censoring at the minimum possible censoring time:

Again, if  then Ui is replaced by  and the censoring indicator is replaced 

by 0. The case where ki is observed post randomisation is equally valid in terms of defining 

Ui, but more complicated re-censoring may be required, taking the minimum value of 

over the sample space of ki conditional on arm. This is not implemented in the package.

Using package rpsftm

The main function in the package rpsftm is of the same name, rpsftm(), which returns an 

object that has print, summary, and plot methods. The arguments to rpsftm() are given 

in table 1 below.

Example

The rpsftm function will be illustrated using a simulated dataset immdef taken from 

(White et al., 2002), based on a randomized controlled trial (Concorde Coordinating 

Committee, 1994). The trial compares two policies (immediate or deferred treatment) of 

zidovudine treatment in symptom free participants infected with HIV. The immediate 

treatment arm received treatment at randomisation whilst the deferred arm received 

treatment either at onset of AIDS related complex or AIDS (CDC group IV disease) or 

development of persistently low CD4 count. The endpoint considered here was time from 

study entry to progression to AIDS, or CDC group IV disease, or death.

Data

The immdef data frame has 1000 rows of 9 variables as described in table 2
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The first six observations are given below

 > library(rpsftm)

 > head(immdef)

   id def imm censyrs xo     xoyrs prog  progyrs entry

 1  1   0   1       3  0  0.000000    0 3.000000     0

 2  2   1   0       3  1  2.652797    0 3.000000     0

 3  3   0   1       3  0  0.000000    1 1.737838     0

 4  4   0   1       3  0  0.000000    1 2.166291     0

 5  5   1   0       3  1  2.122100    1 2.884646     0

 6  6   1   0       3  1  0.557392    0 3.000000     0

For example, participant 2 was randomised to the deferred arm, started treatment at 2.65 

years and was censored at 3 years (the end of the study). Subject 3 was randomised to the 

immediate treatment arm and progressed (observed the event) at 1.74 years. Subject 5 was 

randomised to the deferred treatment arm, started treatment at 2.12 years and progressed at 

2.88 years. The trial lasted 3 years with staggered entry over the first 1.5 years. The variable 

censyrs gives the time from entry to the end of the trial.

Intention-to-treat analysis

First, we estimate the effect of giving zidovudine ignoring any treatment changes during the 

trial. This is found by fitting an accelerated failure time model using the eha package:

> library(eha)

> itt_fit <- aftreg(Surv(progyrs, prog) ~ imm, data = immdef)

> itt_fit

Call:

aftreg(formula = Surv(progyrs, prog) ~ imm, data = immdef)

Covariate          W.mean          Coef   Time-Accn se(Coef) Wald p

imm                0.510        -0.147       0.863    0.077  0.056

Baseline parameters:    

log(scale)                      1.404                   0.062  0.000

log(shape)                      0.392                   0.052  0.000

Baseline life expectancy:            

 

Events                    312

Total time at risk        1932.5

Max. log. likelihood      -855.14

LR test statistic         3.69

Degrees of freedom        1

Overall p-value           0.0548817
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The intention-to-treat estimate is −0.147 which means that lifetime is used up exp(−0.147) = 

0.863 times as fast when on zidovudine as when off zidovudine (or zidovudine extends 

lifetime by a factor of exp(0.147) = 1.16).

Fitting the RPSFTM

We now show how to use rpsftm with the immdef data. First, a variable rx for the 

proportion of time spent on treatment must be created:

rx <- with(immdef, 1-xoyrs/progyrs)

This sets rx to 1 in the immediate treatment arm (since no participants could switch to the 

deferred arm, and xoyrs=0 in such participants), 0 in the deferred arm participants that did 

not receive treatment (as xoyrs=progyrs in such participants) and 1-xoyrs/progyrs in 

the deferred arm participants that did receive treatment. Using the default options, the fitted 

model is

rpsftm_fit_lr <- rpsftm(formula=Surv(progyrs, prog) ~ rand(imm, rx),

                        data=immdef,

                        censor_time=censyrs)

The above formula fits an RPSFTM where progyrs is the observed event time, prog is the 

indicator of disease progression, imm is the randomised treatment group indicator, rx is the 

proportion of time spent on treatment and censyrs is the censoring time. The log rank test 

is used in finding the point estimate of ψ̂. Re-censoring is performed since the 

censor_time parameter is specified; if not specified then re-censoring would not be 

performed. After finding ψ̂, rpsftm refits the model at ψ̂ and produces a survdiff object 

of the counter-factual event times to be used in plotting Kaplan-Meier curves. The list of 

objects that the function returns is given in table 3.

The point estimate and 95% confidence interval (CI) can be returned using rpsftm_fit_lr

$psi and rpsftm_fit_lr$CI which gives ψ̂ = –0.181(–0.350, 0.002), slightly larger than 

in the intention-to-treat analysis. This means that lifetime is used up exp(–0.181) = 0.834 

times as fast when on zidovudine as when off zidovudine, i.e. the time to progression to 

AIDS, or CDC group IV disease, or death is longer when on zidovudine (treatment is 

beneficial). However, the confidence interval contains zero, which suggests the treatment 

effect is non-significant. The function plot() produces Kaplan-Meier curves of the 

counter-factual event times in each group and can be used to check that the distributions are 

indeed the same at ψ̂ as shown in figure 1

We now provide examples of using the Cox regression model and the Weibull model in 

place of the log rank test. To use the Wald test from a Cox regression model, we specify 

test=coxph in the function parameters. Covariates can also be included in the estimation 

procedure by adding them to the right hand side of the formula. For example, baseline 

covariates that are included in the intention-to-treat analysis may also be incorporated into 

Allison et al. Page 7

R J. Author manuscript; available in PMC 2018 March 19.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



the estimation procedure of the RPSFTM. In the following example we add entry time as a 

covariate and use summary() to find the value of ψ̂ and its 95% CI.

> rpsftm_fit_cph <- rpsftm(formula=Surv(progyrs, prog) ~ rand(imm, rx) + 

entry,

+                     data=immdef,

+                     censor_time=censyrs,

+                     test=coxph)

> summary(rpsftm_fit_cph)

   arm     rx.Min.  rx.1st Qu. rx.Median      rx.Mean rx.3rd Qu.   rx.Max.

1    0 0.0000000   0.0000000 0.0000000  0.1574062  0.2547779 0.9770941

2    1 1.0000000   1.0000000 1.0000000  1.0000000  1.0000000 1.0000000

   n= 1000, number of events= 286

         coef exp(coef) se(coef)      z Pr(>|z|)

entry  0.1235     1.1315      0.1487  0.831       0.406

       exp(coef) exp(-coef) lower .95 upper .95

entry      1.131     0.8838    0.8454     1.514

Concordance= 0.514  (se = 0.018)

Rsquare= 0.001    (max possible= 0.976)

psi: -0.1811697

exp(psi): 0.8342938

Confidence Interval, psi -0.3496874 0.003370267

Confidence Interval, exp(psi)  0.7049084 1.003376

For the Weibull model we specify test=survreg in the function parameters. :

> rpsftm_fit_wb <- rpsftm(formula=Surv(progyrs, prog) ~ rand(imm, rx) + 

entry,

+                     data=immdef,

+                     censor_time=censyrs,

+                     test=survreg)

> summary(rpsftm_fit_wb)

  arm    rx.Min. rx.1st Qu. rx.Median    rx.Mean rx.3rd Qu.    rx.Max.

1   0 0.0000000  0.0000000 0.0000000  0.1574062  0.2547779    0.9770941

2   1 1.0000000  1.0000000 1.0000000  1.0000000  1.0000000    1.0000000

Call:

rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx) + entry,

    data = immdef, censor_time = censyrs, test = survreg)

              Value Std. Error        z         p

(Intercept)  1.3881    0.0857 16.197 5.34e-59
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entry        -0.0582    0.0906 -0.642 5.21e-01

Log(scale)  -0.4176    0.0568 -7.349 2.00e-13

Scale= 0.659

Weibull distribution

Loglik(model)= -759.8    Loglik(intercept only)= -760

Number of Newton-Raphson Iterations: 6

n= 1000

psi: -0.1811851

exp(psi): 0.8342809

Confidence Interval, psi -0.3501459 0.005170935

Confidence Interval, exp(psi)  0.7045852 1.005184

As we can see from the output for the Cox and Weibull models, the estimates of ψ are 

similar to the estimate obtained from using the log rank test. Both fitted models could be 

used as inputs to the plot() function, which produce figures very similar to figure 1.

As a sensitivity analysis we can investigate what would happen to the estimate of ψ if the 

treatment effect in the deferred treatment group was half of that in the immediate treatment 

group by setting ki = 1 for participants in the latter group and ki = 0.5 for participants in the 

former group.

> weight <- with(immdef, ifelse(imm==1, 1, 0.5))

> rpsftm(Surv(progyrs, prog) ~ rand(imm, rx), data = immdef, censor_time = 

censyrs,

+    treat_modifier = weight

+    )

 arm    rx.Min. rx.1st Qu. rx.Median   rx.Mean rx.3rd Qu.   rx.Max.

1  0  0.0000000  0.0000000 0.0000000 0.1574062  0.2547779 0.9770941

2  1  1.0000000  1.0000000 1.0000000 1.0000000  1.0000000 1.0000000

Call:

rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx), data = immdef,

    censor_time = censyrs, treat_modifier = weight)

         N Observed Expected (O-E)^2/E (O-E)^2/V

.arm=0 500    157     157  5.75e-07  1.22e-06

.arm=1 500      143      143  6.31e-07  1.22e-06

Chisq= 0  on 1 degrees of freedom, p= 0.999

psi: -0.1704745

exp(psi): 0.8432646
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In this case the estimate of treatment effect is reduced slightly to −0.170 and lifetime is used 

up 0.843 times as fast when on treatment as when off treatment.

Trouble Shooting

There is no guarantee that unique solutions exist to the estimating equations for the estimate 

and confidence interval limits, or that we have searched a wide enough interval to find them 

if they do exist and are unique.

There are three instances where rpsftm will produce warning messages due to the search 

interval. The function first evaluates Z(ψ) at low_psi and hi_psi and will produce a 

warning message if Z(ψ) is the same sign at these two points and no root exists within the 

interval.

Warning messages:

1: In rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx), data = immdef,  :

The starting interval (-1, -0.9) to search for a solution for psi 

gives values of the same sign (7.53, 6.88).

Try a wider interval. plot(obj$eval_z, type="s"), where obj is the output of 

rpsftm() 

2: In rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx), data = immdef,  :

  Evaluation of the estimated values of psi failed. It is set to NA

3: In rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx), data = 

immdef,  : 

  Evaluation of a limit of the Confidence Interval failed.  It is set to NA

4: In rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx), data = 

immdef,  : 

  Evaluation of a limit of the Confidence Interval failed.  It is set to NA

This suggests widening the search interval via trial and error until a root for ψ can be found 

between low_psi and hi_psi. The second warning message occurs when uniroot.all, 

the function used to solve the estimating equation for ψ̂ and its 95% confidence interval 

limits, fails to find any one of these. It will set the value to NA and produce the following 

warning message

> rpsftm_fit <- rpsftm(formula=Surv(progyrs, prog) ~ rand(imm, rx),

+                   data=immdef,

+                   censor_time=censyrs,

+                   low_psi=-1,

+                   hi_psi=-0.1)

Warning message:

In rpsftm(formula = Surv(progyrs, prog) ~ rand(imm, rx), data = immdef,  :

  Evaluation of a limit of the Confidence Interval failed.  It is set to NA
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Investigation of a plot of Z(ψ) against ψ in figure 2 for a range of values of ψ could show 

why the function fails to find a root. The fitted object, rpsftm_fit, returns a data frame 

rpsftm_fit$eval_z with values of the Z-statistic evaluated at 100 points between the 

limits of the search interval. The data frame can be supplied as the argument to plot() to 

visualise the estimating equation.

plot(rpsftm_fit$eval_z, type="s", ylim=c(-2, 6))

abline(h=qnorm(c(0.025, 0.5, 0.975)))

abline(v=rpsftm_fit$psi)

abline(v=rpsftm_fit$CI)

In this case, we see that the search interval used was not wide enough to find the upper 

confidence limit. The third warning message occurs when multiple roots are found:

Warning message:

In root(0) : Multiple Roots found

In order to show what happens when multiple roots are found, a subset of the immdef 

dataset was created and is stored within the test area of rpsftm. Whilst the function 

uniroot.all will return multiple roots, the function rpsftm will only display the first root 

found by uniroot.all. A plot of Z(ψ) against ψ can be used to find the other roots.

The limits of the confidence intervals may not exist at all if Z(·) reaches an asymptote before 

it hits the required quantile of the standard normal distribution, in which case the limits 

should be reported as ± ∞. This scenario would be illustrated by a similar plot to figure 2.

Another possibility is for the coxph function to fail to converge. This occurs when the 

maximum likelihood estimate of a coefficient is infinity, e.g. if one of the treatment groups 

has no events. The coxph documentation states that the Wald statistic should be ignored in 

this case and therefore the rpsftm output should be taken with caution.

Limitations

As well as the potential computational issues highlighted in the previous section, the 

RPSFTM itself has some limitations. The method relies on the assumption that the treatment 

effect is the same for all participants regardless of when treatment is received. We have 

allowed for investigation of deviations from this assumption within the rpsftm() function 

by adding a treatment-effect modifier variable. Another possible limitation of the model is 

its requirement for only the total amount of time spent on/off treatment. In instances where 

participants can switch back and forth between treatments the model may be inefficient.

Conclusion

The intention is to fill a void in the methodology available to R users by providing this 

package and thus facilitate the adoption of newer methods in application to real data in 

future. The sensitivity analyses, which generalise the definition of the counter-factual 

treatment-free event times, are an original development.
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Further developments to the package may include expanding the functionality to allow 

multi-armed studies with three or more arms. Such an extension would have at its core a set 

of g-estimating equations to solve, one for each element of the vector of ψ parameters. 

Defining the syntax to capture the multi-dimensional metric of time on treatments is 

challenging, as will be the numerical computational details when the g-estimating equations 

are step functions.
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Figure 1. 
Output from plot(rpsftm_fit_lr)
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Figure 2. 
Plot of Z(ψ) against ψ to detect problems with the choice of search interval
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Table 1

Arguments for the rpsftm() function

rpsftm() arguments

formula a formula with a minimal structure of Surv(time,status) ~rand(arm,rx) where

• arm is the randomised treatment arm

• rx is the proportion of time spent on treatment, taking values in [0, 1].

Further terms can be added to the right hand side to adjust for covariates.

data an optional data frame containing the variables

censor_time variable or constant giving the time at which censoring would, or has occurred. This should be provided for all 
observations unlike standard Kaplan-Meier or Cox regression where it is only given for censored observations. If no 
value is given then re-censoring is not applied.

subset an expression indicating which subset of the rows of data should be used in the fit. This can be a logical vector, a 
numeric vector indicating which observation numbers are to be included, or a character vector of row names to be 
included. All observations are included by default.

na.action a missing-data filter function. This is applied to the model.frame after any subset argument has been used. 
Default is options()$na.action.

test one of survdiff, coxph or survreg. Describes the test to be used in the estimating equation. Default 
is survdiff.

low_psi the lower limit of the range to search for the causal parameter. Default is −1.

hi_psi the upper limit of the range to search for the causal parameter. Default is 1.

alpha the significance level used to calculate the confidence intervals. Default is 0.05.

treat_modifier an optional variable that ψ is multiplied by on an participant observation level to give differing impact to treatment. 
Default is 1.

autoswitch a logical to autodetect cases of no switching. Default is TRUE. If all observations in an arm have perfect 
compliance then re-censoring is not applied in that arm. If FALSE then re-censoring is applied regardless of 
perfect compliance.

n_eval_z The number of points between hi_psi and low_psi at which to evaluate the Z-statistics in the estimating 
equation. Default is 100.
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Table 2

Description of simulated data set

immdef variables

id participant ID number

def indicator that the participant was assigned to the Deferred treatment arm

imm indicator that the participant was assigned to the Immediate treatment arm

censyrs censoring time, in years, corresponding to the close of study minus the time of entry for each participant

xo an indicator that switching occurred

xoyrs the time, in years, from entry to switching, or 0 for participants in the Immediate arm

prog an indicator of disease progression (1), or censoring (0)

progyrs time, in years, from entry to disease progression or censoring

entry the time of entry into the study, measured in years from the date of randomisation
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Table 3

Outputs from the rpsftm() function

rpsftm() outputs

psi the estimated parameter

fit a survdiff object to produce Kaplan-Meier curves of the estimated counter-factual event times in each treatment arm using 
plot()

CI a vector of the confidence interval around psi

Sstar the (possibly) re-censored Surv() data using the estimate value of psi to give counterfactual untreated failure times.

rand the rand() object used to specify the allocated and observed amount of treatment.

ans the values from uniroot.all used to solve the estimating equation, but embedded within a list as per uniroot, with 
an extra element root_all, a vector of all roots found in the case of multiple solutions. The first element of root_all 
is subsequently used.

eval_z a data frame with the Z-statistics from the estimating equation evaluated at a sequence of values of psi. Used to plot and check 
if the range of values to search for solution and limits of confidence intervals need to be modified.
Further elements corresponding to either a survdiff, coxph, or survreg object. This will always include:

call the R call object

formula a formula representing any adjustments, strata or clusters - used for the update() function

terms a more detailed representation of the model formula
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