Ca^{2+} signalling between the endoplasmic reticulum and lysosomes

PEACE ATAKPA

University of Cambridge

Department of Pharmacology

A dissertation submitted for the degree of

Doctor of Philosophy

Hughes Hall

September 2018
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>5</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>6</td>
</tr>
<tr>
<td>Summary</td>
<td>7</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>9</td>
</tr>
</tbody>
</table>

1. Introduction

1. An overview of Ca\(^{2+}\) signalling
 1.1 Ca\(^{2+}\) release from intracellular stores
 1.2 Ca\(^{2+}\) entry from the extracellular space
 1.3 Ca\(^{2+}\) extrusion mechanisms
 1.4 Spatial and temporal organisation of Ca\(^{2+}\) signalling

1.2 Lysosomes as signalling organelles
 1.2.1 Biogenesis of lysosomes
 1.2.2 Lysosomal acidification mechanism
 1.2.3 Overview of lysosomal Ca\(^{2+}\)

1.3 Structure and function of membrane contact sites

1.4 Practical limitations to studying lysosomal Ca\(^{2+}\) release

1.5 Aims of this project

2. Materials and Methods

2.1 Materials

2.2 Cell culture and transfection

2.3 Measurements of [Ca\(^{2+}\)]\(_c\) in cell populations

2.4 *In vitro* calibration of fluo 8

2.5 Measurements of pH\(_{cyt}\) in cell populations

2.6 Cloning of LAMP1-G-GECO1.2
2.7 Quantitative PCR 57
2.8 Proximity ligation assay and analysis 57
2.9 Generation of cathepsin C KO cell line 61
2.10 Generation of HEK cells deficient in TMCO1 61
2.11 Protein isolation 62
2.12 Western blotting 62
2.13 Measurement of cathepsin C activity 63
2.14 Fluorescence microscopy 63
2.15 Measurement of near-lysosome Ca2+ signals 64
2.16 Flash photolysis of caged IP\textsubscript{3} 64
2.17 Loading lysosomes with luminal fluorescent indicators 64
2.18 Measurement of lysosomal pH 65
2.19 Measurement of lysosomal size 66
2.20 Other image analysis 66
2.21 Statistical analysis 67

3. IP\textsubscript{3}Rs selectively deliver Ca2+ to lysosomes at ER-lysosomes contact sites 68
3.1 Introduction 68
3.2 Materials and Methods 71
3.3 Results and Discussion 71
 3.3.1 Dissipating the lysosomal H+ gradient potentiates Ca2+ signals evoked by IP\textsubscript{3}R 71
 3.3.2 Dissipating the lysosomal H+ gradient does not affect SOCE 79
 3.3.3 IP\textsubscript{3}Rs selectively deliver Ca2+ to lysosomes 82
 3.3.4 Lysosomes sequester Ca2+ released by all IP\textsubscript{3}Rs 89
 3.3.5 A sustained increase in lysosomal pH disrupts lysosomal distribution and Ca2+ handling 93
 3.3.6 Association of lysosomes and ER does not require IP\textsubscript{3}R 97
4. GPN evokes Ca\(^{2+}\) release from the ER by increasing cytosolic pH independent of lysosomes and cathepsin C

4.1. Introduction

4.1.1 Glycyl-L-phenylalanine-2-naphthylamide as a cathepsin C substrate used to study lysosomal biology

4.1.2 Lysosomotropic agents

4.1.3 Lysosomal membrane permeabilization

4.1.4 GPN and lysosomal Ca\(^{2+}\)

4.2 Materials and Methods

4.3 Results and Discussion

4.3.1 GPN evokes pH changes and Ca\(^{2+}\) signals without rupturing lysosomes

4.3.2 GPN-evoked increase in [Ca\(^{2+}\)]\(_c\) requires Ca\(^{2+}\) in the ER

4.3.3 GPN-induced increase in [Ca\(^{2+}\)]\(_c\) is not mediated by canonical CICR channels

4.3.4 Effects of GPN on pH\(_{\text{ly}}\), pH\(_{\text{cyt}}\) and [Ca\(^{2+}\)]\(_c\) do not require cathepsin C

4.3.5 Other weak bases evoke ER-dependent Ca\(^{2+}\) signals

4.3.6 GPN stimulates Ca\(^{2+}\) release from the ER by increasing pH\(_{\text{cyt}}\)

4.4 Conclusions

5. Conclusions

References
Preface

The work presented in this dissertation was performed, otherwise stated, solely by the author in the Department of Pharmacology, University of Cambridge between October 2014 and September 2018. This thesis does not exceed the word limit approved by the Biology Degree Committee and is not substantially the same as any other that has been submitted for a degree, diploma or other qualification at any establishment.

Peace Atakpa

3rd September, 2018
Acknowledgements

I would like to sincerely express my gratitude to my supervisor Prof. Colin W Taylor for giving me the opportunity to work as a member of his research group and for his guidance, support, and patience throughout this project.

I thank Dr. David Prole for his helpful support at the start of my PhD and for introducing me to molecular biology. I also thank Dr. Nagendra Babu Thillaiappan and Laura M. van Marrewijk, for their support and collaboration throughout different aspects of this project.

I would like to express my gratitude to other past and present members of the group, for providing a warm and friendly environment. I have to especially mention Dr. Sumita Chakraborty, Stefania Mataragka, Dina Tahboub, Dr. Raul Lagos, Dr. Emily Taylor, Dr. Michael Apta-Smith and Dr. Ana Rossi.

I am sincerely grateful to my parents for giving me the best opportunities in life and for constantly being just a phone call away to provide prayers, support and encouragement. I could not have done this without you. I also thank my siblings Joshua, Caleb and Joy for their constant support.

I thank Pst (Dr). and Pst (Mrs). Joshua Omada for their constant prayers, support and encouragement.

I am grateful to Mr. and Mrs. O.P.S Adaji for their constant encouragement.

I thank my husband, Enemona Emmanuel Adaji for helping me stay sane through very difficult times during this project and being just the absolute best friend throughout this time.

Finally, I would like to thank the Cambridge Commonwealth, European and International Trust for funding my studies.
Summary

Ca$^{2+}$ is a universal and versatile intracellular messenger, regulating a vast array of biological processes due to variations in the frequency, amplitude, spatial and temporal dynamics of Ca$^{2+}$ signals. Increases in cytosolic free Ca$^{2+}$ concentration ([Ca$^{2+}]_c$) are due to influx from either an infinite extracellular Ca$^{2+}$ pool or from the more limited intracellular Ca$^{2+}$ stores. Stimulation of the endogenous muscarinic (M3) receptors of human embryonic kidney (HEK) cells with carbachol results in the activation of phospholipase C (PLC) and formation of inositol 1,4,5-trisphosphate (IP$_3$), activation of IP$_3$ receptors (IP$_3$Rs), release of Ca$^{2+}$ from the endoplasmic reticulum (ER), and activation of store-operated Ca$^{2+}$ entry (SOCE).

Lysosomes are the core digestive compartments of the cell, but their importance as signalling organelles is also now widely appreciated. Accumulating evidence indicates that lysosomal Ca$^{2+}$ is important for their physiological functions. Lysosomal Ca$^{2+}$ release triggers fusion during membrane trafficking and, through calmodulin, it regulates lysosome size. Luminal Ca$^{2+}$ is critical for regulation of lysosomal biogenesis and autophagy during starvation through the transcription factor, TFEB. Furthermore, aberrant lysosomal Ca$^{2+}$ is associated with some lysosomal storage diseases.

Lysosomes in mammalian cells have long been suggested to accumulate Ca$^{2+}$ via a low-affinity Ca$^{2+}$-H$^+$ exchanger (CAX). This is consistent with evidence that dissipating the lysosomal H$^+$ gradient increased [Ca$^{2+}]_c$, and decreased lysosomal free [Ca$^{2+}$], and with the observation that lysosomal Ca$^{2+}$ uptake was followed by an increase in pH$_{ly}$. Furthermore, heterologous expression of *Xenopus* CAX in mammalian cells attenuated carbachol-evoked Ca$^{2+}$ signals. However, there is no known CAX in mammalian cells, and so the identity of the lysosomal Ca$^{2+}$ uptake pathway in mammalian cells is unresolved. Using mammalian cells loaded with a fluorescent Ca$^{2+}$ indicator, I show that dissipating the pH$_{ly}$ gradient pharmacologically or by siRNA-mediated knockdown of an essential subunit of the H$^+$ pump, increases the amplitude of IP$_3$-evoked cytosolic Ca$^{2+}$ signals without affecting those evoked by SOCE. A genetically encoded low-affinity Ca$^{2+}$ sensor expressed on the lysosome surface reports larger increases in [Ca$^{2+}]_c$ than the cytosolic sensor, but only when the Ca$^{2+}$ signals are evoked by IP$_3$R rather than SOCE. Using cells expressing single IP$_3$R subtypes, I demonstrate that each of the three IP$_3$R subtypes can deliver Ca$^{2+}$ to lysosomes. I conclude that IP$_3$Rs release Ca$^{2+}$ within near-lysosome microdomains that fuel a low-affinity lysosomal Ca$^{2+}$ uptake system. The temporal relationship between the increase in pH$_{ly}$ and reduced Ca$^{2+}$
sequestration suggests that pH\textsubscript{ly} affects the organization of the microdomain rather than the Ca2+ uptake mechanism. I show that abrogation of the lysosome H+ gradient does not acutely prevent uptake of Ca2+ into lysosomes, but disrupts junctions with the ER where the exchange of Ca2+ occurs.

The dipeptide, glycyl-L-phenylalanine 2-naphthylamide (L-GPN), is much used to disrupt lysosomes and release Ca2+ from them. The mechanism is widely assumed to require cleavage of GPN by cathepsin C, causing accumulation of amino acid residues, and osmotic lysis of lysosomal membranes. I show, using LysoTracker Red and Oregon Green-dextran to report pH\textsubscript{ly}, that L-GPN is effective in HEK cells lacking functional cathepsin C, following CRISPR-Cas9-mediated gene disruption. Furthermore, D-GPN, which is resistant to cleavage by cathepsin C, is as effective as L-GPN at increasing pH\textsubscript{ly}, and it is similarly effective in cells with and without cathepsin C. L-GPN and D-GPN increase cytosolic pH, and the effect is similar when the lysosomal V-ATPase is inhibited with bafilomycin A\textsubscript{1}. This is not consistent with GPN releasing the acidic contents of lysosomes. I conclude that the effects of GPN on lysosomes are not mediated by cathepsin C. Both L-GPN and D-GPN evoke Ca2+ release, the response is unaffected by inhibition or knock-out of cathepsin C, but it requires Ca2+ within the ER. GPN-evoked increases in [Ca2+]\textsubscript{c} require Ca2+ within the ER, but they are not mediated by ER Ca2+ channels amplifying Ca2+ release from lysosomes. GPN increases [Ca2+]\textsubscript{c} by increasing pH\textsubscript{cYT}, which then directly stimulates Ca2+ release from the ER. I conclude that physiologically relevant increases in pH\textsubscript{cYT} stimulate Ca2+ release from the ER independent of IP\textsubscript{3} and ryanodine receptors, and that GPN does not selectively target lysosomes.

I conclude that all three IP\textsubscript{3}R subtypes selectively deliver Ca2+ to lysosomes, and that the low pH within lysosomes is required to maintain the junctions between ER and lysosomes, but not for lysosomal Ca2+ uptake. I suggest that GPN lacks the specificity required to allow selective release of Ca2+ from lysosomes.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO</td>
<td>Acridine Orange</td>
</tr>
<tr>
<td>AP3</td>
<td>Adaptor protein 3</td>
</tr>
<tr>
<td>ARM</td>
<td>Armadillo-repeat domain</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>βGC</td>
<td>β-glucocerebrosidase</td>
</tr>
<tr>
<td>Baf A₁</td>
<td>Bafilomycin A₁</td>
</tr>
<tr>
<td>BAPTA</td>
<td>1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid</td>
</tr>
<tr>
<td>BK channel</td>
<td>Ca$^{2+}$-activated K$^+$ channel</td>
</tr>
<tr>
<td>BTF</td>
<td>β-trefoil</td>
</tr>
<tr>
<td>cADPR</td>
<td>Cyclic adenosine diphosphate ribose</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>[Ca$^{2+}$]$_c$</td>
<td>Intracellular free Ca$^{2+}$ concentration</td>
</tr>
<tr>
<td>[Ca$^{2+}$]$_e$</td>
<td>Extracellular free Ca$^{2+}$ concentration</td>
</tr>
<tr>
<td>CcA</td>
<td>Concanamycin A</td>
</tr>
<tr>
<td>CCh</td>
<td>Carbachol</td>
</tr>
<tr>
<td>CICR</td>
<td>Ca$^{2+}$-induced Ca$^{2+}$ release</td>
</tr>
<tr>
<td>CLC</td>
<td>Chloride channel</td>
</tr>
<tr>
<td>CLD</td>
<td>Central linker domain</td>
</tr>
<tr>
<td>CLM</td>
<td>Cytosol-like media</td>
</tr>
<tr>
<td>CLN</td>
<td>Neuronal ceroid lipofuscinosis</td>
</tr>
<tr>
<td>CPA</td>
<td>Cyclopiazonic acid</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>CRAC</td>
<td>calcium release-activated channels</td>
</tr>
<tr>
<td>CRISPR</td>
<td>Clustered regularly interspaced short palindromic repeats</td>
</tr>
<tr>
<td>Cy-GG</td>
<td>Cytosolic green modified Ca(^{2+}) indicator for optical imaging 1.2</td>
</tr>
<tr>
<td>Δψ</td>
<td>Lysosome membrane potential</td>
</tr>
<tr>
<td>DAG</td>
<td>Diacylglycerol</td>
</tr>
<tr>
<td>Dx</td>
<td>Dextran</td>
</tr>
<tr>
<td>D-GPN</td>
<td>Glycyl-D-phenylalanine-(\beta)-naphthalamide</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle’s Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EC(_{50})</td>
<td>Half-maximally effective concentration</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene diamine tetraacetic acid</td>
</tr>
<tr>
<td>EE</td>
<td>Early endosome</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal growth factor receptor</td>
</tr>
<tr>
<td>EGTA</td>
<td>ethylene glycol-bis((\beta)-aminoethyl ether)-N,N,N',N'-tetraacetic acid</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>FBS</td>
<td>Foetal bovine serum</td>
</tr>
<tr>
<td>GDP</td>
<td>Guanosine diphosphate</td>
</tr>
<tr>
<td>Gly-Arg-AMC</td>
<td>Glycyl-arginine-diazomethylketone</td>
</tr>
<tr>
<td>Gly-Phe-DMK</td>
<td>Glycyl-L-phenylalanine-diazomethylketone</td>
</tr>
<tr>
<td>JD</td>
<td>Juxtamembrane domain</td>
</tr>
<tr>
<td>L-GPN</td>
<td>Glycyl-L-phenylalanine-(\beta)-naphthalamide</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosine triphosphate</td>
</tr>
<tr>
<td>HBS</td>
<td>HEPES-buffered saline</td>
</tr>
<tr>
<td>HEK</td>
<td>Human embryonic kidney</td>
</tr>
<tr>
<td>IBC</td>
<td>IP3-binding core</td>
</tr>
<tr>
<td>IC50</td>
<td>half-maximally inhibitory concentration</td>
</tr>
<tr>
<td>IP3</td>
<td>Inositol 1,4,5-triphosphate</td>
</tr>
<tr>
<td>IP3R</td>
<td>IP3 receptor</td>
</tr>
<tr>
<td>KO</td>
<td>Knock-out</td>
</tr>
<tr>
<td>LAMP1</td>
<td>Lysosome-associated membrane protein 1</td>
</tr>
<tr>
<td>LAMP2</td>
<td>Lysosome-associated membrane protein 2</td>
</tr>
<tr>
<td>LE</td>
<td>Late endosome</td>
</tr>
<tr>
<td>LeuLeuOME</td>
<td>L-leucyl-L-leucine methyl ester</td>
</tr>
<tr>
<td>LIMP2</td>
<td>Lysosomal integral membrane protein 2</td>
</tr>
<tr>
<td>LMP</td>
<td>Lysosomal membrane permeabilization</td>
</tr>
<tr>
<td>LRO</td>
<td>Lysosome-related organelle</td>
</tr>
<tr>
<td>LSD</td>
<td>Lysosomal storage disease</td>
</tr>
<tr>
<td>M3R</td>
<td>M3 muscarinic receptor</td>
</tr>
<tr>
<td>M6P</td>
<td>Mannose-6-phosphate</td>
</tr>
<tr>
<td>M6PR</td>
<td>Mannose-6-phosphate receptor</td>
</tr>
<tr>
<td>MAM</td>
<td>Membrane-associated membranes</td>
</tr>
<tr>
<td>MCS</td>
<td>Membrane contact site</td>
</tr>
<tr>
<td>MCU</td>
<td>Mitochondrial Ca$^{2+}$ uniporter</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Name</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Mfn2</td>
<td>Mitofusin 2</td>
</tr>
<tr>
<td>MSDH</td>
<td>O-methyl-serine dodecylaminehydrochloride</td>
</tr>
<tr>
<td>NAADP</td>
<td>Nicotinic acid adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NCL</td>
<td>Neuronal ceroid lipofuscinosis</td>
</tr>
<tr>
<td>NCX</td>
<td>Na(^+)-Ca(^{2+}) exchanger</td>
</tr>
<tr>
<td>NHE</td>
<td>Na(^+)/H(^+)-exchanger</td>
</tr>
<tr>
<td>NKA</td>
<td>Na(^+)-K(^+)-ATPase</td>
</tr>
<tr>
<td>OG</td>
<td>Oregon Green</td>
</tr>
<tr>
<td>ORP1L</td>
<td>Oxysterol-binding protein-1</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>pEC(_{50})</td>
<td>-log EC(_{50})</td>
</tr>
<tr>
<td>pIC(_{50})</td>
<td>-log IC(_{50})</td>
</tr>
<tr>
<td>pH(_{cyt})</td>
<td>Cytosolic pH</td>
</tr>
<tr>
<td>pH(_{ly})</td>
<td>Lysosomal luminal pH</td>
</tr>
<tr>
<td>PIP(_2)</td>
<td>Phosphatidylinositol 4,5-bisphosphate</td>
</tr>
<tr>
<td>PLA</td>
<td>Proximity ligation assay</td>
</tr>
<tr>
<td>PLC</td>
<td>Phospholipase C</td>
</tr>
<tr>
<td>PM</td>
<td>Plasma membrane</td>
</tr>
<tr>
<td>PMCA</td>
<td>Plasma membrane Ca(^{2+})-ATPase</td>
</tr>
<tr>
<td>PPA 2</td>
<td>Pyrophosphatase 2</td>
</tr>
<tr>
<td>PTP1B</td>
<td>Protein tyrosine phosphatase 1B</td>
</tr>
<tr>
<td>PTPIP51</td>
<td>Protein tyrosine phosphatase-interacting protein 51</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RIPA</td>
<td>Radio immuno precipitation assay</td>
</tr>
<tr>
<td>RNF26</td>
<td>Ring finger protein 26</td>
</tr>
<tr>
<td>R_{celoc}</td>
<td>Pearson’s correlation coefficient</td>
</tr>
<tr>
<td>RNAi</td>
<td>Ribonucleic acid interference</td>
</tr>
<tr>
<td>ROC</td>
<td>Receptor-operated Ca$^{2+}$ channel</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of interest</td>
</tr>
<tr>
<td>RyR</td>
<td>Ryanodine receptor</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulfate-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SERCA</td>
<td>Sarco/endoplasmic reticulum Ca$^{2+}$-ATPase</td>
</tr>
<tr>
<td>sgRNA</td>
<td>Single guide RNA</td>
</tr>
<tr>
<td>siRNA</td>
<td>Small interfering ribonucleic acid</td>
</tr>
<tr>
<td>SLC36</td>
<td>Solute carrier 36</td>
</tr>
<tr>
<td>SMOC</td>
<td>Second messenger-operated Ca$^{2+}$ channel</td>
</tr>
<tr>
<td>SOAR/CAD</td>
<td>STIM1 Orai-activating region/CRAC-activation domain (the region of STIM1 that activates Orai 1)</td>
</tr>
<tr>
<td>SOC</td>
<td>Store-operated Ca$^{2+}$ channel</td>
</tr>
<tr>
<td>SOCE</td>
<td>Store-operated Ca$^{2+}$ entry</td>
</tr>
<tr>
<td>SR</td>
<td>Sarcoplasmic reticulum</td>
</tr>
<tr>
<td>STARD3</td>
<td>StAR-related lipid transfer domain-3</td>
</tr>
<tr>
<td>STARD3NL</td>
<td>StAR-related lipid transfer domain-3 N-terminal like</td>
</tr>
<tr>
<td>STIM1</td>
<td>Stromal interaction molecule-1</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-acetate-EDTA</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris-buffered saline</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Name</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-EDTA</td>
</tr>
<tr>
<td>TFEB</td>
<td>Transcription factor E-Box</td>
</tr>
<tr>
<td>TG</td>
<td>Thapsigargin</td>
</tr>
<tr>
<td>TGN</td>
<td>Trans-Golgi network</td>
</tr>
<tr>
<td>TIRF</td>
<td>Total internal reflection fluorescence</td>
</tr>
<tr>
<td>TMD</td>
<td>Transmembrane domain</td>
</tr>
<tr>
<td>TPC</td>
<td>Two pore channel</td>
</tr>
<tr>
<td>TRPC</td>
<td>Transient receptor potential canonical subtype</td>
</tr>
<tr>
<td>TRPML1</td>
<td>Transient receptor potential mucolopin 1</td>
</tr>
<tr>
<td>VAMP</td>
<td>Vesicle-associated membrane protein</td>
</tr>
<tr>
<td>VAPA</td>
<td>VAMP-associated protein A</td>
</tr>
<tr>
<td>VAPB</td>
<td>VAMP-associated protein B</td>
</tr>
<tr>
<td>VOC</td>
<td>Voltage-operated Ca(^{2+}) channel</td>
</tr>
<tr>
<td>WT</td>
<td>Wild-type</td>
</tr>
</tbody>
</table>
Chapter 1

1. Introduction

1.1 An overview of Ca²⁺ signalling

In physiological conditions, intracellular messengers are critical to the transduction of the diverse extracellular stimuli that cells encounter into intricately regulated and specialised intracellular responses. Ca²⁺ is a universal and versatile intracellular messenger regulating a vast array of biological processes due to variations in the frequency, amplitude, and spatial and temporal dynamics of Ca²⁺ signals (Berridge et al., 2000; Taylor & Dale, 2012). A plethora of signalling machinery underlies the versatility of Ca²⁺ signalling and allows the independent regulation of seemingly unrelated processes such as fertilization, proliferation, muscle contraction and apoptosis (Berridge et al., 2000; Bootman et al., 2001; Whitaker, 2006). Unlike most intracellular messengers, whose signalling is finely tuned by a balance between synthesis and degradation, Ca²⁺ homeostasis is regulated by its transport across membranes and binding to specialised proteins (Bootman & Berridge, 1995). The intracellular free Ca²⁺ concentration ([Ca²⁺]ₐ) can increase due to influx from an infinite extracellular Ca²⁺ pool or from the more limited intracellular Ca²⁺ stores. Ca²⁺ reaching the cytosol is rapidly transported into juxta-apposed organelles or out of the cell into the extracellular medium. This protects cells from prolonged elevations of [Ca²⁺]ₐ, which are cytotoxic.

1.1.1 Ca²⁺ release from intracellular stores

Cells in physiological conditions are bathed in a high concentration of Ca²⁺ (~1 mM) in the extracellular medium. In resting conditions, the [Ca²⁺]ₐ is maintained at 10 - 100 nM, which is 10,000 times lower than the extracellular free Ca²⁺ concentration ([Ca²⁺]ₑ) and considerably lower than the [Ca²⁺] within intracellular Ca²⁺ stores (typically 100s of µM). This gradient is supported by cellular machineries that are constantly pumping Ca²⁺ back into the extracellular medium or into specialised organelles. The endoplasmic reticulum (ER) in non-excitable cells and the sarcoplasmic reticulum (SR) in muscle are the best characterised Ca²⁺ stores. They contain free [Ca²⁺] of up to 100-700 µM (Hogan & Rao, 2007), with the majority of the ER Ca²⁺ load bound to characteristic Ca²⁺ buffers with low affinity and high capacity, such as calsequestrin, calreticulin or calnexin (Prins & Michalak, 2011). However, other organelles have also been reported to sequester Ca²⁺. These include lysosomes (luminal free [Ca²⁺] ~500 µM) (Christensen et al., 2002; Lloyd-Evans et al., 2008), mitochondria (1-
10 µM) (Baughman et al., 2011) and the Golgi apparatus (~300 µM) (Dolman & Tepikin, 2006) (see Figure 1.1).

Figure 1.1 Overview of intracellular Ca\(^{2+}\) stores. Ca\(^{2+}\) can be mobilised from intracellular stores by IP\(_3\)R (ER/SR), RyR (ER/SR) or NAADP (lysosomes), upon stimulation of extracellular receptors by agonists or by depolarisation. Upon binding of agonists to receptors, such as Gq-coupled muscarinic M3 receptors, phospholipase C (PLC) is activated leading to cleavage of PIP\(_2\) and production of IP\(_3\), which along with Ca\(^{2+}\) regulates IP\(_3\)R. cADPR and NAADP are each synthesised by the same enzyme. NAADP probably stimulates Ca\(^{2+}\) release from lysosomes, while cADPR may regulate either the SERCA or RyR. There is also cross-talk between different stores, as Ca\(^{2+}\) from ER can be sequestered by lysosomes, and Ca\(^{2+}\) released from lysosomes can modulate IP\(_3\)R and RyR activity. Image is reproduced from Berridge et al. (2003).
Coordinated regulation of Ca\(^{2+}\) release and Ca\(^{2+}\) extrusion from the cytosol is essential to maintain a low [Ca\(^{2+}\)]\(_{c}\) and circumvent the toxic effects of prolonged exposure to high [Ca\(^{2+}\)]\(_{c}\) (Orrenius et al., 2003). A common mechanism for the generation of Ca\(^{2+}\) signals in response to extracellular stimuli is the release of Ca\(^{2+}\) from intracellular stores via second messengers (Berridge et al., 2000). Inositol 1,4,5-trisphosphate (IP\(_3\)) (Berridge et al., 1983) and cyclic adenosine diphosphate ribose (cADPR) (Fill & Copello, 2002) are the most studied and well characterized Ca\(^{2+}\)-releasing messengers. However, a third potent and ubiquitous messenger, nicotinic acid adenine nucleotide diphosphate (NAADP), has also been described (Lee et al., 1995) (Figure 1.1). NAADP remains the most controversial of the three Ca\(^{2+}\)-mobilising agents. This would be discussed in more detail in Section 1.2.3.

The sensing of extracellular stimuli, such as growth factors, drugs or hormones, results in the activation of receptors such as Gq-coupled receptors (GPCR) or receptor tyrosine kinases (RTK) on the plasma membrane (PM). Gq-coupled receptors activate the trimeric Gq protein, which is made up of α, β and γ subunits. Upon binding of an agonist, such as acetylcholine or histamine, the active receptor promotes dissociation of GDP and binding of GTP to Gαq. This allows dissociation of the α subunit from the βγ complex. These subunits then activate different isoforms of phospholipase C (PLC) (Figure 1.1). PLC hydrolyses a PM lipid, phosphatidylinositol 4,5-bisphosphate (PIP\(_2\)), into signalling molecules, diacylglycerol (DAG) and IP\(_3\). DAG remains in the PM, as it is a lipophilic molecule, where it may stimulate protein kinase C or the activity of second-messenger-operated channels (SMOCs), including some members of the canonical transient receptor potential channel (TRPC) family, resulting in Ca\(^{2+}\) influx (Hofmann et al., 1999). The water-soluble IP\(_3\) molecule diffuses into the cytoplasm to the ER, where it binds to the IP\(_3\)-binding core (IBC) of the IP\(_3\) receptor (IP\(_3\)R). Although IP\(_3\) was thought to diffuse freely in the cytosol (Allbritton et al., 1992), it is now clear that there are sufficient IP\(_3\)-binding sites in most cells to slow its diffusion (Dickson et al., 2016; Taylor & Konieczny, 2016). Binding of IP\(_3\) to the IBC triggers a conformational change resulting in the efflux of Ca\(^{2+}\) from the ER through the IP\(_3\)R. Recovery from IP\(_3\)R-mediated Ca\(^{2+}\) signals is dependent on the inactivation of IP\(_3\) and clearance of Ca\(^{2+}\) from the cytosol. IP\(_3\) is inactivated by phosphorylation, which is mediated by IP\(_3\)-3-kinase converting IP\(_3\) to inositol 1,3,4,5-tetrakisphosphate (IP\(_4\)), or by dephosphorylation, which converts IP\(_3\) to inositol 1,4-bisphosphate (IP\(_2\)). It is unlikely that physiological concentrations of either metabolite bind to IP\(_3\)R (Saleem et al., 2013). It has,
However, been suggested that IP₃ might regulate Ca²⁺ entry (Irvine, 2007; Miller et al., 2007). The role of IP₃ in physiological conditions remains controversial.

IP₃ receptors

IP₃Rs are ubiquitously expressed in eukaryotic cells and predominately occur in the ER membrane. IP₃R can also be found on the nuclear envelope (Malviya et al., 1990), PM (Dellis et al., 2006; Foskett et al., 2007) as well as in the Golgi (Pinton et al., 1998) and secretory vesicles (Yoo & Albanesi, 1990) of animal cells. IP₃Rs are also present in protozoans (Prole & Taylor, 2011). However, no similar protein has been found in plants (Wheeler & Brownlee, 2008) or fungi (Prole & Taylor, 2012). There are three subtypes of IP₃R and their splice variants encoded in the genomes of vertebrates (Furuichi et al., 1989; Mignery et al., 1989; Taylor et al., 1999). Different cell types express the different subtype to different degrees. For example, the IP₃R2 isoform is predominately expressed in cardiac myocytes (Vervloessem et al., 2015), IP₃R1 is predominately expressed in Purkinje cell neurons (Maeda et al., 1989; Nakanishi et al., 1991), and IP₃R3 in pancreatic β cells (Blondel et al., 1994). Although all three IP₃R subtypes have ~65% sequence homology, they also exhibit different biophysical and regulatory properties (Foskett et al., 2007). IP₃R2 is the most sensitive subtype to IP₃ and mediates robust and regular Ca²⁺ oscillations, whilst IP₃R1 mediates less regular Ca²⁺ oscillations (Zhang et al., 2011). IP₃R3 is the least sensitive of the three subtypes and is reported to only mediate monophasic Ca²⁺ transients (Tu et al., 2002; Iwai et al., 2005). Although results are cell-type and stimulus-specific, a theme in the field is that IP₃R2 is pro-oscillatory and IP₃R3 is anti-oscillatory, whilst IP₃R1 can mediate both Ca²⁺ transients and oscillations (Zhang et al., 2011).

The structure of rat IP₃R has been resolved to ~4.7 Å through cryo-electron microscopy (cryo-EM) (Fan et al., 2015). Very recently, a similar structure of human IP₃R was resolved with and without IP₃ up to ~3.5 Å (Paknejad & Hite, 2018). A single IP₃R subunit consists of cytosolic N- and C- termini as well as 6 transmembrane domains (TMDs), towards the C-terminus which form the ion-conducting pore of the functional receptor (Foskett et al., 2007; Seo et al., 2012). A functional IP₃R is a tetrameric channel. This can be homomeric or heteromeric. Activation of IP₃R occurs following the binding of IP₃ to the IP₃-binding core (IBC), which sits close to the N-terminus (residues 224-604) of each subunit in an IP₃R (Bosanac et al., 2002). The number of IP₃ molecules required to bind for receptor activation has been a long-standing question in the field. However, recent structure-activity studies
using concatenated tetrameric IP$_3$R proposed that all 4 subunits of the IP$_3$R need to be bound to IP$_3$ for activation to occur (Alzayady et al., 2016; Taylor & Konieczny, 2016). Furthermore, IP$_3$R gating requires binding of both IP$_3$ and Ca$^{2+}$ (Foskett et al., 2007). Two binding sites for Ca$^{2+}$ have been reported to occur in IP$_3$R3, one at the central linker domain (CLD) and armadillo-repeat domain 2 (ARM2) interface and the other is thought to occupy a pocket between juxtamembrane domain (JD) and ARM3 recently (Figure 1.2) (Paknejad & Hite, 2018). The Ca$^{2+}$-dependent regulation of IP$_3$R activity is biphasic depending on the presence or absence of IP$_3$ (Taylor & Tovey, 2010). Therefore, a co-regulation of IP$_3$R by IP$_3$ and Ca$^{2+}$ is thought to occur, where the presence of low concentrations of Ca$^{2+}$ in the presence of IP$_3$ activates the channel (Mak & Foskett, 1998) and high Ca$^{2+}$ concentrations in the absence of IP$_3$ are inhibitory (Kaftan et al., 1997; Mak & Foskett, 1998).
Figure 1.2 **Model of human IP$_3$R and regulation by IP$_3$ and Ca$^{2+}$.** (A) Structure of tetrameric human IP$_3$R3. Side view is in the plane of the membrane with the cytoplasmic domain at the top. The key domains of a single subunit are shown in colour. The N-terminal cytoplasmic domain which contains two β-trefoil-containing domains (BTF1, shown in purple and BTF2, shown in blue), the first segment of the central linker domain (CLD, shown in cyan), three armadillo-repeat domain (ARM1 (violet), ARM2 (green) and ARM3 (yellow) and the second segment of the CLD, is followed by a juxtamembrane domain (JD) (orange) and a transmembrane domain (TMD) (red). (B) In the absences of both IP$_3$ and Ca$^{2+}$, IP$_3$R3 exists in a closed state. Binding of IP$_3$, promotes a conformational change to one of the pre-activated states. Following this, binding of Ca$^{2+}$ causes a conformational change to what is thought to be the activated state. IP$_3$R bound to IP$_3$ in high Ca$^{2+}$ conditions causes the receptor to exist in an inhibited state. Images are reproduced from Paknejad *et al* (2018).
Other regulators of IP₃R have also been reported. These can be broadly categorised into proteins that bind to enhance the functions of IP₃R, inhibit the functions of IP₃Rs or modulate the spatial distribution of IP₃R (Prole & Taylor, 2016). Proteins that have been reported to enhance or inhibit the activity of IP₃R work largely by modulating the IP₃ and Ca²⁺-mediated regulation of IP₃R (Prole & Taylor, 2016). For example, IP₃R in some settings are preferentially arranged in microdomains with GPCRs, βγ subunits, and some PLC isoforms (Tu et al., 1998). This arrangement is thought to facilitate effective delivery of IP₃ to IP₃R, thereby enhancing activation (Prole & Taylor, 2016) Also, in single-channel recordings, chromogranin B, an ER-resident protein binds to IP₃R enhancing its activity in response to IP₃ (Thrower et al., 2003). Conversely, calmodulin (CaM), CaBP1 and calcineurin have been reported to be involved in a Ca²⁺-dependent inhibition of IP₃R (Michikawa et al., 1999; Prole & Taylor, 2016). Furthermore, IP₃R-binding protein released with IP₃ (IRBIT), has been shown to inhibit all IP₃R subtypes (Ando et al., 2003). In mouse cerebellum, IRBIT has been reported to occur in the cytosol and to compete with IP₃ for binding at the IBC of the IP₃R, therefore modulating the sensitivity of IP₃R to IP₃ (Ando et al., 2014). Other regulators include cytosolic ATP (Tu et al., 2005), luminal Ca²⁺ (Irvine, 1990; Berridge, 2007) and phosphorylation and dephosphorylation (Vanderheyden et al., 2009). Furthermore, cAMP-dependent protein kinase (PKA) phosphorylates all IP₃R subtypes, potentiating IP₃R1- and IP₃R2-mediated Ca²⁺ signals (Bruce et al., 2002; Wagner et al., 2003; Wagner et al., 2004). The effect of phosphorylation of IP₃R by PKA appears to be cell-type specific. IP₃R3-mediated Ca²⁺ signals have been reported to be attenuated following PKA-mediated phosphorylation in pancreatic cells (Giovannucci et al., 2000), whilst PKA has been reported to activate IP₃R3 in insulinoma cells (Chaloux et al., 2007). High concentrations of cAMP, independent of PKA, can also increase the sensitivities of all IP₃R subtypes (Short & Taylor, 2000; Tovey et al., 2003; Tovey & Taylor, 2013). This highlights how tightly regulated the activities of IP₃R are in cells.

IP₃R and the ryanodine receptor (RyR) are closely related and are the most characterised Ca²⁺-release channels that populate the ER and SR. IP₃R and RyR are large-conductance channels that show poor selectivity for Ca²⁺ over other cations. Both IP₃R and RyR have three different subtypes. IP₃R and RyR are both tetrameric proteins with structural similarities reported in the N and C terminus of each subunit (Lai et al., 1988; Shah & Sawhamini, 2001; Seo et al., 2012). However, a single subunit of RyR is bigger at ~550 kDa (Lai et al., 1988) than a single IP₃R subunit at 250 kDa (Foskett et al., 2007). Furthermore,
the stimulus for the activation of both receptors is distinct. The opening of RyR is regulated by the plant alkaloid ryanodine, in a concentration-dependent manner, where low concentrations increase the open probability (Buck et al., 1992), and high concentrations are inhibitory (Zimanyi et al., 1992). RyR1, in skeletal muscles is regulated by Ca\textsubscript{V}1.1 during excitation-contraction coupling (des Georges et al., 2016). RyR2 in cardiac muscles is activated by Ca2+ influx through Ca\textsubscript{V}1.2 via Ca2+-induced Ca2+-release (CICR) (Fabiato, 1983). Other regulators of RyR include ATP (Kushmerick et al., 1992), calmodulin (Hamilton & Reid, 2000) and FK506-binding protein (FKBP) (Marx et al., 1998). Furthermore, cADPR, formed by the enzyme ADP ribosyl cyclase (Lee, 1999) is also reported as an activator of RyR (Lee, 1997; Ogunbayo et al., 2011). However, this remains controversial (see Section 1.2.3).

1.1.2 Ca2+ entry from the extracellular space

The main Ca2+-permeable channels in the PM can be classified based on their mode of activation into voltage-operated channels (VOC), ligand-operated channels (LOC) and store-operated channels (SOC) (Berridge, 1997). However other Ca2+-permeable channels located on the PM have been reported to allow Ca2+ influx into the cell, including mechanosensitive Ca2+ channels (Welsh et al., 2002; Yin & Kuebler, 2010) and temperature-sensitive Ca2+ channels (Togashi et al., 2006; Bautista et al., 2007).

VOCs on the PM are triggered to open by membrane depolarisation, particularly in excitable cells such as neurones, leading to L, P/Q, R or T-type Ca2+ currents (Lacinova, 2005). The classification is based on their pharmacological properties and voltage sensitivities. In muscle, the influx of Ca2+ following activation of VOCs is coupled with RyR to regulate contraction (Catterall, 1991; Bers, 2000; Bers, 2002). Ca2+ influx, following the activation of VOCs in neuronal cells, regulates neurotransmitter release (Catterall, 2000; Stephens et al., 2001; Nanou & Catterall, 2018).

LOCs are PM-resident Ca2+ channels that are activated by ligand binding to allow Ca2+ influx into cells. Examples of LOCs include NMDA and AMPA receptors present in neuronal synapses and activated by the neurotransmitter glutamate (Burnashev et al., 1995). Nicotinic acetylcholine receptors (Burnashev, 1998) and P2X receptors activated by binding of extracellular ATP are further examples of LOCs (Virginio et al., 1998). In all the examples of LOCs described above, the binding of the agonist occurs on the extracellular side. However, in a subgroup of LOCs the activating agonist binds on the cytosolic side of the PM to allow
Chapter 1

Ca2+ influx. This subgroup is called SMOC. DAG produced following PLC activation has been reported to activate PM Ca2+-permeable channels in this way (Hofmann \textit{et al.}, 1999; Okada \textit{et al.}, 1999; Birnbaumer, 2009). Other examples of SMOCs include arachidonate-regulated Ca2+ channels (Shuttleworth, 1996), cyclic nucleotide-gated Ca2+ channels (Biel & Michalakis, 2009), as well as the TRPC (transient receptor potential, type C) family of receptors (Plant & Schaefer, 2005).

SOC are PM-resident Ca2+-permeable channels, activated following the depletion of intracellular stores to allow SOC rapid and sustained influx of Ca2+ which can contribute to the refilling of intracellular stores (Putney, 2004). This Ca2+ influx, previously called capacitative Ca2+ entry, is now widely called store-operated Ca2+ entry (SOCE). The phenomenon of Ca2+ entry regulated by the state of the intracellular stress has been long described (Putney, 1986), but it was only in 2005 that the proteins regulating it were described. The molecular sensor of ER Ca2+ concentration is now known to be stromal interaction molecule 1 (STIM1), and the Ca2+ channel in the PM is Orai1 (Liou \textit{et al.}, 2005; Roos \textit{et al.}, 2005; Feske \textit{et al.}, 2006; Cahalan, 2009). There are two isoforms of STIM (STIM1-2), which share \textasciitilde60 \% sequence homology (McNally \textit{et al.}, 2012). STIM1 consists of an N-terminal domain containing the EF-hand Ca2+-sensing motif in the ER lumen, a single membrane-spanning TMD, and C-terminus (Stathopoulos \textit{et al.}, 2008). The C-terminal, as well as the coiled-coil domains (CC1-3), a serine/proline region and a polybasic domain, are cytosolic (Hogan & Rao, 2015). STIM1 is distributed in the ER in resting conditions. Following depletion of ER Ca2+ content, such as following Ca2+ release or in stress conditions, STIM1, via its luminal EF-hand domain senses the drop in ER [Ca2+], oligomerises from dimers into tetramers and redistributes to ER-PM junctions to activate Orai1 (Liou \textit{et al.}, 2005; Lewis, 2007; Smyth \textit{et al.}, 2008; Tamarina \textit{et al.}, 2008). There are three isoforms of Orai in mammalian cells (Orai1-3). Orai1 has four TMD, an intracellular N domain and a pore-forming C-terminal domain (Yeromin \textit{et al.}, 2006). The Orai1 channel is a hexamer (Hou \textit{et al.}, 2012). The oligomerization of STIM1 leads to a conformational change that extends its polybasic domain and exposes the Orai1-activating motif called the SOAR/CAD domain (Park \textit{et al.}, 2009; Yuan \textit{et al.}, 2009; Prakriya & Lewis, 2015). The extended polybasic domain of STIM1 is known to interact with PIP\textsubscript{2} and other phospholipids at the PM, in a manner that traps STIM1 at ER-PM junctions facilitating the STIM1 gating of Orai1 channels (Liou \textit{et al.}, 2007; Korzeniowski \textit{et al.}, 2009). Binding of the SOAR/CAD domain allows opening of the Orai channel to allow Ca2+ influx into the cell. The
physiological role of STIM2 is not well understood. Downregulation of STIM2 has a minimal effect on SOCE in multiple cell lines (Liou et al., 2005; Roos et al., 2005; Soboloff et al., 2006). However, STIM2 could be involved in the regulation of basal cytosolic and ER Ca\(^{2+}\) concentrations (Brandman et al., 2007; Lu et al., 2009), and it may influence the effectiveness of STIM1 in activating Orai1 (Miederer et al., 2015).

The STIM-Orai pathway is not the only reported mechanism for Ca\(^{2+}\) entry. Other channels such as TRPCs after store depletion have also been reported to act as SOC to drive Ca\(^{2+}\) influx (Lee et al., 2010). There are seven isoforms of TRPC (TRPC1-7) (Vazquez et al., 2004). The evidence for TRPC channels as SOCE-mediators has largely come from knockdown studies, where downregulation of TRPC1 results in a reduction of SOCE signals in diverse cell types (Liu et al., 2003; Mehta et al., 2003; Tiruppathi et al., 2006). Knockdown of TRPC4 has also been shown to downregulate EGF-induced SOCE activation in epithelial cells (Yang et al., 2005). Furthermore, TRPC4 has been reported to be part of an essential component of the SOCE machinery in adrenal cells (Philipp et al., 2000), endothelial cells (Sundivakkam et al., 2012) and in smooth muscle cells (Zhang et al., 2004). TRPC has been reported to form complexes with STIM1 and Orai1 to mediate Ca\(^{2+}\) influx (Liao et al., 2008; Birnbaumer, 2009). However, TRPC is less Ca\(^{2+}\) selective than most SOC currents (Lopez et al., 2016). Therefore, whilst TRPC could be a regulator of SOCE, it now seems clear that STIM1/Orai1 interaction are the key players in SOCE.

Since the identification of the core machinery for SOCE in most cells, there is now a growing list of regulators of SOCE. Most of the modulators of SOCE channels have been reported to strengthen the interaction between STIM1 and Orai1. CRACR2A (Ca\(^{2+}\) release-activated channel-regulator 2A), is a 45-kDa protein, that has been reported to form a ternary complex with STIM1 and Orai1 to stabilise their interaction. CRACR2A therefore promotes SOCE (Srikanth et al., 2010). The translocation of STIM to ER-PM junctions following Ca\(^{2+}\) store depletion is thought to be an important rate-limiting step in the activation of Ca\(^{2+}\) entry (Liou et al., 2007). There are classes of SOCE modulators that work by promoting STIM translocation to ER-PM junctions. These include, STIM-activating enhancer (STIMATE), which populates the ER membrane and is reported to enhance the translocation of STIM1 to ER-PM junctions (Jing et al., 2015) and septins (Sharma et al., 2013). Whilst EB1 binding from STIM1 is thought to restrict STIM1 translocation to ER-PM junctions (Chang et al., 2018). Other regulators include SOCE-associated regulatory factor (SARAF), proposed to prevent spontaneous activation of SOCE by interacting with the C-terminal inhibitor domain.
of STIM1 (Palty et al., 2012; Albarran et al., 2016). Furthermore, intracellular \(\text{Ca}^{2+} \) release channels, particularly immobile IP\(_3\)R, have been shown to populate ER-PM junctions where STIM1 occurs (Thillaiappan et al., 2017). The IP\(_3\)R may therefore both directly and indirectly regulate SOCE (Chakraborty et al., 2016).

Figure 1.3 Activation of SOCE. ER \(\text{Ca}^{2+} \) depletion such as following mobilisation of \(\text{Ca}^{2+} \) from the ER following IP\(_3\)R release of \(\text{Ca}^{2+} \) leads to oligomerisation and translocation of STIM1 towards the PM, where it regulates Orai1 gating and activates SOCE.

As understanding of the SOCE machinery has increased, so has the understanding of the downstream function of SOCE \(\text{Ca}^{2+} \) signals. SOCE regulates gene expression via nuclear factor of activated T cells (NFAT) (Kar et al., 2011), lymphocyte activation (Kerschbaum & Cahalan, 1999) and regulation of adenylyl cyclase (Fagan et al., 2000). SOCE is also thought to be critical for the immune system, as mutations in STIM1 and STIM2 result in autoimmune diseases in mice (Oh-Hora et al., 2008). Orai1-deficient mice have defects in T and B cell functioning (Gwack et al., 2008). Mutations in Orai1 and STIM1 cause severe immunodeficiencies, myopathy and ectodermal dysplasia (McCarl et al., 2009). SOCE has been widely believed to be critical for acute ER \(\text{Ca}^{2+} \) refilling, but the ER still contains \(\text{Ca}^{2+} \) in cells devoid of known SOCE mechanisms (Zheng et al., 2018). This shows that SOCE is not critical for long-term ER \(\text{Ca}^{2+} \) homeostasis. Nonetheless, SOCE-mediated \(\text{Ca}^{2+} \) signals are important physiological and pathological effectors.
1.1.3 Ca2+ extrusion mechanisms

To maintain cellular homeostasis, increases in [Ca2+]\textsubscript{c} are rapidly cleared to protect the cells from the effects of prolonged elevated [Ca2+]\textsubscript{c}, such as apoptosis and necrosis. The clearance of Ca2+ from the cytosol is mediated by proteins that use either energy from ATP hydrolysis or the membrane electrochemical gradient. For example, the PM Ca2+ ATPases (PMCA) move Ca2+ out of the cytosol to the extracellular space hydrolysing ATP in the process (Carafoli, 1991). The sarco/endoplasmic reticulum Ca2+ ATPases (SERCA) likewise use ATP hydrolysis to actively pump Ca2+ back into the ER/SR (Periasamy & Kalyanasundaram, 2007). For one molecule of ATP hydrolysed, two Ca2+ ions are pumped into the ER by SERCA (Inesi & Tadini-Buoninsegni, 2014). For PMCA, the ratio is one molecule of ATP hydrolysis to one Ca2+ ion extruded to the extracellular space (Brini & Carafoli, 2011). The Na+/Ca2+ exchanger (NCX) in the PM extrudes Ca2+ from the cell in exchange for Na+ moving down its gradient in a ratio of three Na+ ions to one Ca2+ ion (Hilge, 2012). NCX acts in both a ‘forward’ and ‘reverse’ mode. In the forward mode, the Na+ influx is coupled to Ca2+ extrusion, whilst in the reverse mode, Na+ extrusion is coupled to Ca2+ influx (Blaustein & Lederer, 1999).

In recent years, mitochondria and lysosomes have also been found to contribute to sequestering Ca2+ following an increase in [Ca2+]\textsubscript{c}. NCLX in the inner mitochondrial membrane also moves Ca2+ up its gradient from the mitochondrial matrix to the cytosol (Palty \textit{et al.}, 2010; O-Uchi \textit{et al.}, 2012). A membrane potential also drives Ca2+ accumulation by mitochondria through a channel (the mitochondrial uniporter, MCU) expressed in the inner mitochondrial membrane (O-Uchi \textit{et al.}, 2012). The role of mitochondria in shaping cytosolic Ca2+ signals has been well documented as mitochondria are reported to possess a substantial Ca2+ uptake capacity through a low affinity uptake system to allow clearing of Ca2+ from microdomains. However, the free [Ca2+] in the mitochondria is 1-10 \mu M (Collins \textit{et al.}, 2001; Baughman \textit{et al.}, 2011; De Stefani \textit{et al.}, 2011), which is low compared to the other intracellular Ca2+ stores such as the ER. Lysosomes have also been reported to selectively sequester Ca2+ released via IP\textsubscript{3}R (Lopez-Sanjurjo \textit{et al.}, 2013). Lysosomes are discussed further in chapter 3 and in section 1.2.

The rates and sensitivities of the various Ca2+-clearing pathways either into intracellular stores or extracellular space are different. Whilst the PMCA and SERCA are high-affinity Ca2+-clearing systems, NCX and MCU are low-affinity Ca2+-clearing systems (Rizzuto \textit{et al.}, 2011).
The high affinity of SERCA and PMCA means they can detect and respond to modest changes in \([\text{Ca}^{2+}]_c\). The low affinity of the MCU matches observations that mitochondrial uptake of \(\text{Ca}^{2+}\) released from the ER occurs at specialised microdomains at membrane contact sites between the ER and mitochondria (see Section 1.3). Understanding the mechanisms of lysosomal sequestration of \(\text{Ca}^{2+}\) released from the ER is not well characterised (see Chapter 3).

1.1.4 Spatial and temporal organisation of \(\text{Ca}^{2+}\) signalling

Intracellular \(\text{Ca}^{2+}\) signals are not homogenous, but they are instead characterized by diverse patterns regulated in part by the nature and intensity of the extracellular stimulation. This diversity in the temporal and spatial dynamics of \(\text{Ca}^{2+}\) signals contributes to the versatility of \(\text{Ca}^{2+}\) signalling. \(\text{Ca}^{2+}\) signals are usually generated from localised regions in the cell. For \(\text{Ca}^{2+}\) signals evoked by IP\(_3\)Rs, low-level stimulation allows the localised opening of a single IP\(_3\)R resulting in a \(\text{Ca}^{2+}\) ‘blip’. These stochastic openings of single \(\text{Ca}^{2+}\) channels are rapidly terminated unless the \(\text{Ca}^{2+}\) they release can reach nearby IP\(_3\)Rs with IP\(_3\) bound (Dickinson et al., 2012; Ruckl et al., 2015). They then trigger a \(\text{Ca}^{2+}\) puff’ (or ‘spark’ for RyR) (Berridge et al., 2000), when a small cluster of IP\(_3\)Rs open together. With more intense stimulation, a puff can activate a neighbouring puff site resulting in a regenerative \(\text{Ca}^{2+}\) wave that can spread across a cell or into neighbouring cells through gap junctions. Studies in chicken DT40 cells using patch-clamp recordings of the outer nuclear membrane suggest that IP\(_3\) stimulates clustering of IP\(_3\)Rs into small clusters of about five receptors (Taufiq et al., 2009). This requires that IP\(_3\)Rs are mobile within the ER and nuclear envelope. However, previous optical analyses of \(\text{Ca}^{2+}\) signals suggested that \(\text{Ca}^{2+}\) blips and puffs originate from static points (Thomas et al., 2000; Tovey et al., 2001; Smith et al., 2014). A more recent study using endogenously tagged IP\(_3\)R1 show ~74% of IP\(_3\)R are mobile within the ER and only the immobile IP\(_3\)R respond to IP\(_3\) (Thillaiappan et al., 2017). This result shows that IP\(_3\)R are already clustered into functional units and only the immobile IP\(_3\)R are licensed to respond to IP\(_3\) (Thillaiappan et al., 2017). An emerging theme is that IP\(_3\)R are spatially organised into functional clusters and only a sub-population of immobilised IP\(_3\)R are licensed to respond to IP\(_3\). The mechanisms by which these IP\(_3\)Rs are immobilised are still not known. These results show the importance of understanding the spatial arrangement of IP\(_3\)R or RyR on the ER as single channels or clusters, and of how that relates to the resulting \(\text{Ca}^{2+}\) responses (blip, puff or a regenerative wave).
Ca^{2+} signals generated in response to extracellular stimuli can be spatially organised at a confined space such as Ca^{2+} oscillations at extremities of secretory cells (microdomains) or amplified and propagated throughout the cell as global events (Ca^{2+} waves) (Petersen, 2004). The existence of Ca^{2+} microdomains is facilitated by the slow diffusion of Ca^{2+}, due to Ca^{2+} buffers in the cytosol such as parvalbumin, calbindin and calretinin (Schwaller, 2010). Spatially organised Ca^{2+} microdomains have been implicated in various physiological processes, such as neurotransmitter release at presynaptic junctions. Here, a localised pulse of Ca^{2+} released by P/Q type voltage-gated Ca^{2+} channels on the PM can mediate exocytosis of neurotransmitters at presynaptic junctions (Berridge, 2006). Ca^{2+} released from internal stores has also been reported to mediate exocytosis of glutamate at synaptic junctions (Grosche et al., 1999; Volterra & Meldolesi, 2005). The occurrence of effective Ca^{2+} microdomains is reliant on the close apposition of effector proteins, organelles and Ca^{2+} transporters. Ca^{2+} signals also display complex temporal dynamics that contribute to the final cellular response (Slavov et al., 2013). For example, oscillatory Ca^{2+} signals, but not sustained signals, control the pulsatile secretion of insulin (Bertram et al., 2010). Ca^{2+} oscillations can also affect the regulation of signalling protein such as ras (Cullen & Lockyer, 2002) and transcription factors like NFAT (Hogan et al., 2003) and NFkB (Kupzig et al., 2005; Tabary et al., 2006). The oscillatory nature of Ca^{2+} signals requires feedback loops that provide both positive and negative feedback control of Ca^{2+} release from intracellular stores, but the details are not yet fully resolved (Thurley et al., 2014). Nevertheless, this intricate control is important in protecting cells from prolonged increases in [Ca^{2+}]_c as well as in transducing the Ca^{2+} signals into different downstream processes. Ca^{2+} oscillations present as repetitive transient Ca^{2+} elevations in [Ca^{2+}]_c that encodes a myriad of cellular responses. The versatility and universality of Ca^{2+} signals are notably due to the intricate decoding of complex Ca^{2+} oscillations.
1.2 Lysosomes as signalling organelles

Lysosomes are the digestive compartments of the cell that degrade endocytosed or obsolete intracellular material (Cooper & Hausman, 2000). Extracellular materials destined for degradation are funnelled to lysosomes via the endocytic pathway, whilst intracellular components are delivered to lysosomes via the autophagic pathway. In the last few years, lysosomes have come to be appreciated as important components of physiological processes rather than just catabolic units in the cell. Lysosomes are tuned to sensing both extracellular and intracellular cues and are important for maintaining cellular homeostasis, energy metabolism and organelle biogenesis (Settembre et al., 2011; Roczniak-Ferguson et al., 2012). Lysosomes are membrane-bound vesicular organelles with a luminal pH of ~4.5 in animal cells and they contain many hydrolytic enzymes (Saftig & Klumperman, 2009). The acidity is important for the activity of the lysosomal enzymes. The lysosomes membrane is protected from degradation by a thick layer of glyocalyx formed from the heavy glycosylation of the membrane proteins (Settembre et al., 2013). The lysosomal membrane protects the cytosol from the enzymatic activities of lysosomes. However, even after rupture of lysosomes, the cytosol is partially protected because most lysosomal enzymes are optimally active at the acidic pH of the lysosome (Mellman et al., 1986), although disruption of lysosomal membranes and leakage of lysosomal enzymes have been reported to induce cell death (Guicciardi et al., 2004). The total number of proteins in lysosomes has been estimated to be approximately 130 (Gao et al., 2017), however, not all of these have been functionally characterised largely, due to their low abundance and hydrophobic properties which hinders isolation and purification (Schroder et al., 2010). Of the 130 proteins, there are believed to be 60 diverse soluble catalytic enzymes in the lysosomal lumen.

Dysfunction in lysosomal activity is an important mediator of lysosomal storage diseases (LSDs), which refer to a class of genetic diseases involving mutations in lysosomal enzymes or altered lysosomal signalling. LSDs are usually characterised by the accumulation of undegraded substrates in lysosomes. For example, Gaucher disease, which is the most common LSD, is due to a mutation in glucocerebrosidase leading to accumulation of toxic undegraded metabolites in the cell (Morgan et al., 2011; Sardi et al., 2015). Impaired lysosomal homeostasis has also been implicated in Parkinson’s disease, a common neurodegenerative disease (Neudorfer et al., 1996; Aharon-Peretz et al., 2004). Batten disease, a fatal childhood neurodegenerative condition, is another common LSD,
characterized also by the accumulation of storage material in lysosomes. This disease is highly associated with mutations in neuronal ceroid lipofuscinoses (NCLs) (Cárcel-Trullols et al., 2015). Defective NCL expression leads to the faulty production of important lysosomal proteins, such as battenin (Golabek et al., 1999).

1.2.1 Biogenesis of lysosomes

The biogenesis of lysosomes is a process that involves both endocytic and biosynthetic pathways (Saftig & Klumperman, 2009). The biosynthesis of lysosomal proteins occurs in the ER and they are processed in the Golgi, where most hydrolases are targeted to the lysosomes largely by the addition of mannose-6-phosphate (M6P) within the trans-Golgi network (TGN). The M6P receptor (M6PR) mediates transport of these proteins from the Golgi either directly to lysosomes or via the PM and endocytic trafficking to lysosomes (Braulke & Bonifacino, 2009; Saftig & Klumperman, 2009). Endocytosis allows cells to take up materials from the extracellular space. The internalised ‘cargo’ is either recycled or reaches lysosomes for degradation (Saftig & Klumperman, 2009). Endocytosed vesicles from the PM first encounter early endosomes (EE); this allows either recycling of the endocytosed vesicles back to the PM or progression to late endosomes (LE). Although, the movement of cargo from EE to LE might require some transport vesicles (Aniento, 1993), a more widely accepted view is that EE progress to LE via a maturation process (Stoorvogel et al., 1991). The pH of the lumen of EE is ~6. This allows dissociation of newly synthesised hydrolases from M6PR arriving from the TGN, and recycling of M6PR back to the TGN (Saftig & Klumperman, 2009). Because M6PRs are absent from lysosomes, the absence of M6PRs is a widely accepted means of distinguishing lysosomes from other compartments in the endocytic pathway (Morgan et al., 2011). Various theories exist for the progression of endocytosed cargo from LE (pH 5-6) to lysosomes. Firstly, movement of the endocytosed cargo from LE to lysosomes may be mediated by vesicular transport, suggesting a role for carriers in moving cargo between the two organelles. A second proposition is the ‘kiss and run’ hypothesis, where transient fusion and mixing of contents is followed by a splitting process (Storrie & Desjardins, 1996). The third hypothesis suggests that the LE and lysosomes completely fuse, followed by budding of a reformed lysosome for reuse (Bright et al., 2005; Pryor & Luzio, 2009). A fourth hypothesis is that LE progressively mature into lysosomes, losing markers like the M6PR and taking up the characteristics of lysosomes such as lower pH (Saftig & Klumperman, 2009). Some evidence now supports the complete fusion
of LE and lysosomes. A hybrid organelle with a size matching a combination of the two organelles containing markers of LE (such as M6PR) and lysosomes (cathepsin L) has been observed in vitro (Mullock et al., 1998) and in optical studies of intact cells (Futter, 1996). However, transient ‘kissing’ events are also observed to precede complete fusion of the two organelles (Mullock et al., 1998; Bright et al., 2005). Therefore, the biogenesis of lysosomes may arise via a combination of the different processes described.

Figure 1.4 Biogenesis of lysosomes. The biogenesis of lysosomes begins with endocytosis at the PM, resulting in the first compartment, the early endosome (EE), which acts as a sorting centre for endocytosed cargo. Parts of the EE can be recycled back to the PM or progress through the endocytic pathway. EE mature to form late endosomes (LE). Formation of lysosomes from LE is proposed to occur either by maturation or a fusion event. As the endocytic pathway progresses, the luminal pH decreases. Lysosomal proteins are produced in the ER and proceed via the TGN for targeting to lysosomes directly or via the endocytic pathway. Image is reproduced from Huotari and Helenius (2011).
There are also M6P-independent routes for trafficking of proteins to lysosomes, for example targeting of β-glucocerebrosidase (βGC) to lysosomes via lysosomal integral membrane protein 2 (LIMP2) (Saftig & Klumperman, 2009). Binding of βGC and LIMP2 is pH-dependent, such that the proteins associate in the ER and dissociate in the acidic lumen of lysosomes (Reczek et al., 2007). LIMP2 knock-out mice show a deficiency in βGC translocation to lysosomes (Reczek et al., 2007). The lysosomal targeting of lysosomal membrane proteins (LMPS) is less understood. The most studied route for the translocation of LMPS is via the adaptor protein 3 (AP3) through the indirect translocation pathway (Ihrke et al., 2004; Peden et al., 2004). It has also been suggested that LAMP-1 and LAMP-2 are delivered to lysosomes by a pathway independent of M6PR and AP3. Evidence from this study shows that LAMP1 and LAMP2 may be directly delivered to lysosomes via VAMP7 and hVps41 (Pols et al 2013). Understanding the molecular mediators in the biogenesis of lysosomes remains a very active area of research.

Other organelles similar to lysosomes but with specialised functions have been described. These are called lysosome-related organelles (LROs) and are thought to share the same mechanisms of biogenesis, enzyme targeting and basic hallmarks, but have acquired additional specialist functions. For example, secretory lysosomes which show combined properties of lysosomes and secretory granules (Morgan, 2011a). Secretory lysosomes undergo secretion at the PM to possibly contribute to PM repair and other cellular defence mechanisms (Luzio et al., 2014). Other LROs include melanosomes and lytic granules (Morgan et al., 2011). The biogenesis of LROs is thought to utilise the same machineries as lysosomes but they contain additional proteins such as Rab27a in secretory organelles that is otherwise absent in lysosomes (Morgan et al., 2011).

1.2.2 Lysosomal acidification mechanism

Lysosomal pH (pH_{ly}) is maintained by the V-ATPase, which is found ubiquitously in animal cells and continuously drives H⁺ into the lumen of endo-lysosomal organelles against the electrochemical gradient. V-ATPase is also found in the Golgi apparatus, PM of certain cells (e.g. osteoclasts) (Voronov et al., 2013) and in synaptic vesicles (Bodzeta et al., 2017). H⁺ translocation via the V-ATPase is driven by energy from ATP hydrolysis (1 ATP is hydrolysed for each 2-4 H⁺ transported) (Morgan, 2011a). The V-ATPase is a large complex comprising up to 14 polypeptides arranged to form the ATP-, ADP- and Pi-interacting cytoplasmic region (V₁ domain), and the transmembrane domain that allows H⁺ translocation.
(V₀) (Beyenbach and Wieczorek, 2006). The V₁ domain contains a peripheral stalk, where ATP hydrolysis occurs leading to rotation of the central stalk, which transfers the energy to the V₀ domain allowing a conformational change that allows movement of H⁺ into the lumen (Beyenbach and Wieczorek, 2006). The pH values of the different endocytic compartments are different; therefore, the activity of V-ATPase has to be tightly regulated. Although it is not entirely known how this regulation occurs, the varying density of V-ATPase across different compartments of the endocytic pathway (Huotari & Helenius, 2011) and differential rates of association and dissociation of the V₁ and V₀ domains (Maxson & Grinstein, 2014), have been proposed as regulators of the V-ATPase activity. Furthermore, the pH of lysosomes varies depending on their position in the cell, with lysosomes in the perinuclear region being more acidic than lysosomes in the peripheral region (Johnson et al., 2016). Peripheral lysosomes exhibit decreased V-ATPase activity and increased passive leak of protons (Johnson et al., 2016).

The activity of the V-ATPase is electrogenic, generating a positive membrane potential (Δψ) in the lumen of the lysosome as well as establishing a H⁺ gradient. The lysosomal membrane potential (Δψ) is a difference of V_lumen from V_cytosol (Δψ = V_cytosol - V_lumen) (Xu and Ren, 2015). It is a function of a balance between H⁺ pumps and ionic homeostasis by a plethora of pumps, exchangers and leak channels. Na⁺ and K⁺ gradients between lysosomal lumen and cytosol are important in maintaining resting lysosomal Δψ and the acidification rate of lysosomes (Ishida et al., 2013). The [Na⁺] is greater in the lumen compared to the cytosol, whereas the [K⁺] is lower in the lumen relative to the cytosol (Xu and Ren, 2015). There is a wide variation in reported values of Δψ in the literature, which range from +10 to +100 mV (Morgan et al., 2011). The protonmotive force generated from the activity of V-ATPase is coupled to transport of amino acids via solute carrier 36 (SLC36) (Thwaites & Anderson, 2011) and anions such as chloride, via chloride channel-7 (CLC-7) (Scott & Gruenberg, 2011). Acidification of the lysosome lumen is critical for the core functions of lysosomes. Alkalisation of lysosomes results in mistargeting of proteases and ligands in multiple cell types (Gonzalez-Noriega et al., 1980; Basu et al., 1981; Reaves & Banting, 1994; Presley et al., 1997). A functional V-ATPase is also required for the appropriate budding of carrier vesicles in the endocytic pathway as this is attenuated by alkalising agents (Clague et al., 1994; van Weert et al., 1995; Aniento et al., 1996). Also, The V-ATPase is structurally required for homotypic vesicle fusion either directly (Baars et al., 2007; Takeda et al., 2008), or indirectly by interaction with SNARE proteins (Strasser et al., 2011).
Furthermore, the V-ATPase is important for lysosomal nutrient sensing, providing a critical sensor for metabolic switching from anabolic to catabolic states (Zhang et al., 2014). The mammalian target of rapamycin complex 1 (mTORC1) is a serine/threonine kinase mediator of anabolic processes for energy balance in times of nutrient scarcity (Zoncu et al., 2011). During starvation, mTORC1 occurs diffusely in the cytosol, however in the presence of nutrients/amino acids, there is a rapid translocation of mTORC1 to the lysosome surface. Lysosomal recruitment of mTORC1 involves multiple proteins in a tightly regulated complex. In the presence of amino acids, Rag GTPase complex becomes active by adopting a Rag-A/B GTP bound conformation and Rag-C/D GDP bound conformation and this facilitates the lysosomal attachment of mTORC1 by directly interacting with Raptor (Sancak et al., 2010). The translocation of mTORC1 to the lysosomal surface is important, because mTORC1 is usually inhibited due to its phosphorylation, but upon reaching the lysosome surface, it encounters Rheb (Ras homolog enriched in brain). Rheb is a small GTPase that activates mTORC1 kinase activity (Saucedo et al., 2003). Once activated, mTORC1 can phosphorylate downstream effectors which collectively work to promote anabolic processes and inhibit catabolic processes. The V-ATPase regulates recruitment and activation of mTORC1 in a mechanism independent of lysosomal acidification (Zoncu et al., 2011). Association of the V₀ and V₁ subunit is increased upon amino acid starvation, and dissociation increases in the presence of amino acids (Stransky & Forgac, 2015). The activity of the V-ATPase is important in maintaining lysosomal homeostasis and optimal functioning. The V-ATPase can be selectively inhibited by bafilomycin A₁ and concanamycin A, two macrolide antibiotics (Yoshimori et al., 1991; Drose & Altendorf, 1997). The effects of bafilomycin A₁ and concanamycin A are explored further in chapter 3.
Figure 1.5 **Overview of proteins affecting the pH of acidic organelles.** The activity of the V-ATPase provides H\(^+\) that maintain the acidic pH\(_{ly}\) and a luminal positive \(\Delta\psi\). This requires proteins (e.g. chloride channels (CLC), cation channels) that allow charge-compensation to sustain H\(^+\) pumping. Possible H\(^+\) leak channels such as Na\(^+\)/H\(^+\) exchanger (NHE) also contribute to maintaining the pH\(_{ly}\) set point. The Na\(^+\)-K\(^+\)-ATPase (NKA) is also thought to support the luminal-positive \(\Delta\psi\). The activity of CLC is believed to both support (uptake of negatively charged Cl\(^-\) ions) and inhibit (H\(^+\) extrusion) acidification of lysosomes.

1.2.3 Overview of lysosomal Ca\(^{2+}\)

The recognition of lysosomes as a significant Ca\(^{2+}\) store rather than solely as degradative organelles has only occurred in recent years. Due to the difficulty in deciphering the effect of pH vs Ca\(^{2+}\) on indicators, there have been limited studies with pH-adjusted luminal Ca\(^{2+}\) measurements in lysosomes. However, in macrophages, using Ca\(^{2+}\)-sensitive dextran (Dx) and readjusting for pH, the estimated free [Ca\(^{2+}\)] in the lysosomes was reported to be 400-600 \(\mu\)M (Christensen et al., 2002), substantially higher than basal [Ca\(^{2+}\)], suggesting the presence of lysosomal Ca\(^{2+}\) uptake and storage mechanisms. Similar results were obtained in human B lymphoblasts (Lloyd-Evans et al., 2008). Following this, lysosomes have been shown to accumulate Ca\(^{2+}\) in HEK cells, COS-7 cells and HeLa cells (Lopez-Sanjurjo et al., 2013; Garrity et al., 2016). Furthermore, accumulating evidence supports the presence of an unidentified low-affinity, Ca\(^{2+}\) uptake system in lysosomes (Lopez-Sanjurjo et al., 2013;
This is proposed to drive substantial accumulation of Ca\(^{2+}\), which might then be mobilized by NAADP or other activators of lysosomal Ca\(^{2+}\) release channels (Churchill et al., 2002).

There is growing evidence for the importance of lysosomal Ca\(^{2+}\) for the physiological functions of lysosomes. Lysosomal Ca\(^{2+}\) release is a critical trigger to allow fusion in membrane trafficking (Pryor et al., 2000). Furthermore, luminal Ca\(^{2+}\) is critical for transcription factor E box (TFEB)-mediated regulation of lysosomal biogenesis and autophagy during starvation (Medina et al., 2015). Lysosomal Ca\(^{2+}\) release is also reported to regulate lysosomal size in a calmodulin-dependent manner (Cao et al., 2017). Additionally, aberrant lysosomal Ca\(^{2+}\) has been reported in some LSDs (Kiselyov et al., 2010).

\textit{Ca}^{2+} \textit{release by lysosomes}

The role of acidic organelles as signalling compartments is rapidly emerging, but our understanding of Ca\(^{2+}\) handling by lysosomes is not as well understood as it is for the ER. The most recently discovered Ca\(^{2+}\)-mobilising messenger is NAADP. It was first reported in 1987, when it was observed to release Ca\(^{2+}\) in sea urchin eggs independent of IP\(_3\)- and cADPR-sensitive stores (Clapper et al., 1987; Lee et al., 1995). Thapsigargin, an irreversible inhibitor of SERCA that unMASKs a Ca\(^{2+}\) leak in ER leading to depletion of its Ca\(^{2+}\) content, had no effect on NAADP-mediated Ca\(^{2+}\) release (Chini et al., 1995; Lee et al., 1995). NAADP-mediated Ca\(^{2+}\) release has been reported in invertebrates (Albrieux et al., 1998), vertebrates (Cancela et al., 1999) and plants (Navazio et al., 2000). It is thought to be the most potent agent capable of mobilising intracellular Ca\(^{2+}\) stores with effective concentrations in the pM - nM range (Ronco et al., 2015). There is now substantial evidence that the intracellular targets of NAADP are lysosomes and related acidic organelles. Bafilomycin A1, a selective inhibitor of lysosome vacuolar-type H\(^{+}\) ATPase (V-ATPase) (Yoshimori et al., 1991), selectively abrogated NAADP-mediated Ca\(^{2+}\) release (Churchill et al., 2002; Yamasaki et al., 2004). These studies have strengthened the proposition that NAADP acts by mobilising Ca\(^{2+}\) from acidic organelles.

There still remains some controversy in the field, as there are reports of NAADP mobilising Ca\(^{2+}\) by activating RyR on the nuclear envelope of acinar cells (Gerasimenko et al., 2003). Considerable effort has been invested in identifying the molecular target of NAADP. NAADP has been proposed to activate RyR on ER and on acidic organelles (Mojzisová et al., 2001; Hohenegger et al., 2002). The Ca\(^{2+}\)-mobilising effect of NAADP was blocked by
inhibitors of RyR in T-lymphocytes (Dammermann and Guse, 2005) and pancreatic acinar cells (Gerasimenko, 2006). This observation, however, has not been replicated in other cells. For example, over-expression of RyR in HEK 293 cells potentiated cADPR-mediated Ca2+ release, without a corresponding potentiation of NAADP-induced Ca2+ release (Calcraft et al., 2009). Also, arguing against RyR as a selective target of NAADP is the observation that NAADP retains its ability to mobilise Ca2+ in cells devoid of RyRs (Calcraft et al., 2009; Ogunbayo et al., 2011). It is unclear whether acidic stores like lysosomes express RyR or the observed responses are a result of the close apposition of lysosomes to ER allowing an initial NAADP-evoked Ca2+ release to be amplified by CICR mediated by RyR. TRPML1 has also been proposed to mediate responses to NAADP (Bargal et al., 2000). It belongs to the mucolipin family of ion channels, and it is implicated in mucolipidosis type IV, a neurodegenerative disease in children. TRPML1 is a Ca2+-permeable channel localised to LE (Kilpatrick et al., 2016). NAADP has been reported to activate TRPML1 to cause Ca2+ release that is unaffected by inhibition of IP\textsubscript{3}R and RyR (Zhang & Li, 2007). However, others have failed to detect a functional link between TRPML1 and NAADP. For example, TRPML1 knockout mice show unperturbed NAADP-induced Ca2+ release (Yamaguchi et al., 2011). But an interesting observation is that TRPML1 co-immunoprecipitates with two-pore channels (TPC), and this might have implications for the NAADP-evoked Ca2+ signals observed (Yamaguchi et al., 2011). These conflicting observations mean that the exact interplay between TRPML1 and NAADP remains unresolved.

The most convincing candidate for the molecular target of NAADP is TPCs. TPCs are highly glycosylated proteins localised to LE and lysosomes. The high glycosylation of the protein protects it from the acidic lumen of the lysosome (Morgan, 2014). There are three isoforms of TPCs; TPC1 and TPC2 are the more common isoforms in animal cells. TPC1 is more localised to EE, whilst TPC2 is more localised to lysosomes (Zhu et al., 2010; Morgan, 2011a). There is no TPC3 in primate and rodent genomes (Cai & Patel, 2010). TPC/NAADP-mediated Ca2+ signalling has been associated with various physiological and pathological processes such as muscle differentiation (Aley et al., 2010), homeostasis of liver cells (Grimm et al., 2014), contraction in smooth muscle (Tugba Durlu-Kandilci, 2010), neoangiogenesis (Favia et al., 2014) and Ebola infection (Sakurai, 2015). NAADP activates TPCs in a bell-shaped concentration-dependent manner (Calcraft et al., 2009; Brailoiu et al., 2010; Pitt et al., 2010; Schieder et al., 2010b). NAADP-dependent Ca2+ release via TPC is inhibited by Ned-19, which is a cell-permeant NAADP antagonist (Brailoiu et al., 2010; Pitt
et al., 2010). Over-expression of TPC and its RNAi-mediated knockdown caused corresponding changes in NAADP-induced Ca\(^{2+}\) release (Morgan, 2014). Re-expression of TPC into TPC1\(^{-/-}\) and TPC2\(^{-/-}\) cells re-sensitised the cells to NAADP-mediated Ca\(^{2+}\) release (Ruas et al., 2015). Additional evidence has come from electrophysiology studies showing that TPC gating is NAADP-regulated (Brailoiu et al., 2010; Pitt et al., 2010; Schieder et al., 2010b). Different strategies have been used here, such as redirecting TPC to the PM, which results in bafilomycin A\(_1\)-insensitive NAADP-regulated Ca\(^{2+}\) influx independent of acidic organelles (Brailoiu et al., 2010). Secondly, direct patch-clamp measurements from enlarged single lysosomes with over-expressed TPC2 also showed that TPCs are NAADP-sensitive Ca\(^{2+}\)-permeable channels (Schieder et al., 2010b). A third approach was the incorporation of TPC2 into artificial lipid bilayers (Pitt et al., 2010; Rybalchenko et al., 2012; Pitt et al., 2014).

Some recent contradictory evidence has reported that TPCs are neither gated by NAADP nor permeant to Ca\(^{2+}\). TPC was reported to be activated by PI(3,5)P\(_2\) resulting in Na\(^+\) conduction in endo-lysosomal compartments (Wang et al., 2012; Cang et al., 2013). Patch-clamp recording from cells isolated from wild type and TPC knockout mice suggested that TPCs were Na\(^+\)-selective channels (Wang et al., 2012). Here, TPC mainly conducted Na\(^+\) in a PI(3,5)P\(_2\)-sensitive, NAADP-insensitive manner (Wang et al., 2012). The TPC knockdown status of these cells has been questioned as they may still retain an ability to express functional variants of TPC proteins (Ruas et al., 2015). There is also evidence that NAADP does not directly bind to TPC, but binds to accessory proteins which facilitate its binding to TPC (Walseth et al., 2011; Lin-Moshier et al., 2012; Walseth et al., 2012). There is, however, no known candidate for this accessory protein. Although the evidence that TPC2 contributes to a NAADP-regulated Ca\(^{2+}\) channel in lysosomes is substantial, it remains a controversial area.

Other Ca\(^{2+}\) release channels identified on lysosomes include P2X4 (Qureshi et al., 2007) and TRPM2 (Figure 1.6) (Lange et al., 2009). P2X4 as other purinoceptors were known to be at the cell surface, however it is has been reported to also be present on the lysosomal membrane with a luminal nucleotide binding domain (Qureshi et al., 2007). Similarly, TRPM2, largely thought to be on the PM as been reported to localize to lysosomes with some reports of sensitivity to NAADP. Although requiring concentrations orders of magnitude higher than what is known for other NAADP-sensitive channels such as TPC2 (Morgan, 2011a).
Figure 1.6 Ca\(^{2+}\) filling and release mechanisms of lysosomes. The specific Ca\(^{2+}\) uptake protein into lysosomes is not known. However, mechanisms involving a Ca\(^{2+}/H^+\) exchanger (CAX) have been suggested, although there is no known CAX in mammalian cells. A coupled transport system involving Na\(^+/Ca^{2+}\) exchange (NCX), coupled to Na\(^+/H^+\) exchange has also been proposed. Other Ca\(^{2+}\) uptake mechanisms involving SERCA3 and PMCA-like Ca\(^{2+}\) pumps have also been proposed. Ca\(^{2+}\) release channels proposed include TRPML1, TPC2, P2X4 receptors and TRPM2.

Lysosomal Ca\(^{2+}\) uptake

Lysosomes can undergo cycles of Ca\(^{2+}\) emptying and refilling (Garrity et al., 2016). ML-SA1, a synthetic compound identified as a potent activator of TRPML channels on lysosomes, was shown to mediate robust Ca\(^{2+}\) release from lysosomes (Garrity et al., 2016). Early re-challenge with ML-SA1 lead to decreased responses, however, after sufficient time in Ca\(^{2+}\)-containing medium, the responses to ML-SA1 recovered (Garrity et al., 2016). These results provide evidence that lysosomes can continuously support a Ca\(^{2+}\) uptake process, albeit via an unknown mechanism.

The identity of the mechanism mediating endo-lysosomal Ca\(^{2+}\) uptake is unknown. In plants, Ca\(^{2+}\) uptake by the vacuole (function of which is similar to that of lysosomes in animal cells) against its electrochemical gradient occurs via P-type Ca\(^{2+}\)-ATPases or Ca\(^{2+}/H^+\) exchangers.
(CAX) that use energy provided by the H\(^+\) gradient (Schönknecht, 2013). The vacuolar CAX shares some sequence and topological homology with PMCA, however the CAX uptake system is a low-affinity Ca\(^{2+}\) uptake system, compared to the high-affinity PMCA (Rooney & Gross, 1992; Brini & Carafoli, 2009; Morgan, 2011a). A similar Ca\(^{2+}\)/H\(^+\) exchange is proposed to occur in animal cells. This is thought to occur directly via a CAX-like protein or indirectly via a two-way mechanism involving a Na\(^+\)/H\(^+\) exchanger in parallel with a Ca\(^{2+}\)/Na\(^+\) exchanger (Klemper, 1985; Patel & Docampo, 2010) (Figure 1.6). In mammalian cells, the luminal pH has been long thought to be critical for lysosomal Ca\(^{2+}\) handling (Morgan et al., 2011). In sea urchin oocytes, flooding the peri-vesicular regions of the acidic vesicles with high [Ca\(^{2+}\)] resulted in a concomitant increase in the luminal pH (Morgan & Galione, 2007). A loss of function mutation in mucolipin-3, a pH-regulated Ca\(^{2+}\) channel, leads to extensive Ca\(^{2+}\) accumulation and an accompanying alkalinisation of endo-lysosomal organelles (Lelouvier & Puertollano, 2011). Also, abolishing the lysosomal H\(^+\) gradient with bafilomycin A\(_1\) or NH\(_4\)Cl leads to a decrease in the free [Ca\(^{2+}\)] in lysosomes (Christensen et al., 2002).

A study suggests that lysosomes express a BK\(_{Ca}\)-like channel, called LysoK\(_{VCa}\) (Wang et al., 2017). LysoK\(_{VCa}\) is proposed to be a Ca\(^{2+}\)-activated K\(^+\)-conducting channel, analogous to PM Ca\(^{2+}\)-activated K\(^+\) channels (Wang et al., 2017). LysoK\(_{VCa}\) currents were blocked by the BK\(_{Ca}\) inhibitors, paxilline and quinidine. Increasing [Ca\(^{2+}\)]\(_e\) induced large amplitude single-channel openings of LysoK\(_{VCa}\) and resulted in a more negative lysosomal \(\Delta \psi\) in patched lysosomes (Wang et al., 2017). Lysosomal Ca\(^{2+}\) filling was attenuated by dissipating the K\(^+\) gradient in lysosomal preparations using valinomycin and abolished by pre-treatment with paxilline and quinidine (Wang et al., 2017). Co-stimulation of lysosomal preparations with NS1619 (BK\(_{Ca}\) channel activator) and ML-SA1 (TRPLM1 activator) potentiated lysosomal Ca\(^{2+}\) release (Wang et al., 2017). The BK-like channel in lysosomes has been implicated in the regulation of Ca\(^{2+}\) via TRPML-1 as inhibition by paxilline attenuated Ca\(^{2+}\) release from lysosomes promoting the accumulation of Ca\(^{2+}\) in lysosomes (Cao et al., 2015). Although Wang et al., (2017) show that the regulation of lysosomal Ca\(^{2+}\) uptake does not require the lysosome pH gradient, but is dependent on \(\Delta \psi\), they note that lysosomal H\(^+\) release may activate LysoK\(_{VCa}\) by simultaneously raising luminal pH.

Therefore these observations may not be completely independent of the pH\(_{ly}\). One concern is that proteomic analyses have not detected BK\(_{Ca}\)-like channels in lysosomes, suggesting that the observation might be an artefact of random fusion events of lysosomes with other cellular structures induced by vacuolin. Juxta-lysosomal Ca\(^{2+}\) was measured using TRPML-GCamP3, which has a high affinity for Ca\(^{2+}\), thus may not reliably detect only local Ca\(^{2+}\) changes.
Nevertheless, novel mechanisms for lysosomal Ca2+ are emerging and require careful interrogation.

A further class of proteins proposed to mediate Ca2+ uptake into lysosomes are endolysosomal Ca2+ pumps. These are suggested to be thapsigargin-insensitive ATP-hydrolysing Ca2+ pumps that actively drive Ca2+ into vacuolar-type organelles (Morgan, 2011a). Evidence for this has come largely from the observations that vanadate, an inhibitor of P-type Ca2+-ATPases inhibits Ca2+ uptake in vacuoles (Rooney & Gross, 1992; Rooney et al., 1994), protist acidocalcisomes (Vercesi et al., 1994), rabbit reticulocyte endosomes (Nunez et al., 1990) and the Golgi (Pinton et al., 1998). The presence of Ca2+-ATPases does not appear to be widespread across all acidic Ca2+ stores, as the vanadate-mediated inhibition of Ca2+ uptake was not observed in fungal acidic Ca2+ stores (Milani et al., 2001), human neutrophil endocytic organelles (Krause & Lew, 1987) nor in oocytes (Churchill et al., 2002). This suggests that the contribution of Ca2+-ATPases to Ca2+ uptake in acidic Ca2+ stores occurs only in specialised cells. SERCA3 has been suggested as a specific candidate for Ca2+ uptake into NAADP-sensitive acidic Ca2+ stores in platelets (Lopez et al., 2005). However, the expression of SERCA3 is limited to specific tissues (Prasad et al., 2004). Our understanding of the mechanisms important in maintaining ionic gradients in the lysosomes is still limited. More research is required to elucidate the mechanism governing uptake of Ca2+ into lysosomes.

The most well characterised Ca2+ store in the cell is the ER. Ca2+ release and Ca2+ entry into the ER is highly regulated. The distance between the ER and lysosomes is as narrow as 8.3 nm, which would favour crosstalk between the organelles (Alpy et al., 2013). One of the long-standing controversies in the field is resolving the interdependence between the ER and lysosomal Ca2+ release. Nonetheless, lysosomal Ca2+ uptake systems have been shown to preferentially sequester Ca2+ released from the ER, without accumulating Ca2+ which entered the cell via SOCE (Lopez-Sanjurjo et al., 2013). The Ca2+ signals resulting from CCh-evoked Ca2+ release were exaggerated by bafilomycin A\textsubscript{1}, whereas SOCE evoked by thapsigargin or cyclopiazonic acid (CPA) was insensitive to bafilomycin A\textsubscript{1} (Lopez-Sanjurjo et al., 2013). The relationship between ER and lysosomes is consistent with their close association, as demonstrated by various optical studies (Jaiswal et al., 2002; Kilpatrick et al., 2013; Lopez-Sanjurjo et al., 2013). The release of Ca2+ from the ER is spatially and temporally regulated, where possibly only a subset of the Ca2+ released is detected in the cytosol and an undetected
subset is channelled via highly specialised microdomains to organelles such as lysosomes. There is a growing consensus suggesting the presence of an ER-lysosome Ca\(^{2+}\) interface, through which an exchange could occur albeit through an unknown uptake system. In summary, it is not known how lysosomes sequester Ca\(^{2+}\), and even the most long-standing suggestion that it requires the lysosomal H\(^+\) gradient has recently been challenged (discussed further in Chapter 3). More research is required to elucidate the mechanism regulating lysosomal Ca\(^{2+}\) uptake.

1.3 Structure and function of membrane contact sites

The organisation of organelles into membrane-bound structures allows for spatial separation of biochemical processes, but it also creates a need for a means of transferring metabolites and signalling molecules between organelles. One solution to this is the presence of membrane contact sites (MCSs), where the membranes of two organelles are held 10-50 nm apart by specific tether proteins without the direct association of the membranes (Figure 1.7) (Prinz, 2014; Quon & Beh, 2015). The ER consists of a complex reticular network that extends throughout the cell from the nuclear envelope to the cell periphery. It is widely viewed as a central connector forming contact sites with diverse organelles in the cell. A characteristic feature of contact sites between the ER and other organelles is the exclusion of ribosomes at this interface, suggesting specialised organisation of the ER at these junctions (Csordas et al., 2006; Eden et al., 2010; Friedman et al., 2011; Alpy et al., 2013; Friedman et al., 2013). Furthermore, at contact sites, tethering occurs without complete fusion of the two membranes (Phillips & Voeltz, 2016). The structure and dynamics of ER MCSs is better resolved now with electron microscopy and more recently with high-resolution optical microscopy (Valm et al., 2017). The distances between ER and endosomes are now resolved to 3-15 nm (Alpy et al., 2013) and the distance between the ER and mitochondria resolved to less than 15 nm (Csordas et al., 2006; Friedman et al., 2011). Cumulative analysis of interactions with the ER suggests that 2-5% of the surface area of mitochondria forms an MCS with the ER (Cosson et al., 2012; Murley et al., 2013) and similarly 3-5% of the surface area of an endosome forms an MCS with the ER (Eden et al., 2010; Alpy et al., 2013; Friedman et al., 2013). The functional consequence of MCS is the provision of microenvironments for specialised biochemical processes such as organelle trafficking, intracellular Ca\(^{2+}\) signalling, cell survival and lipid exchange.
One of the known functions of MCS is to regulate organelle biogenesis, particularly mitochondria and endosomes. The mitochondrial network is constantly undergoing remodelling due to fission and fusion events. In mammalian cells, mitochondrial fission is controlled by dynamin-related protein 1 (DRP1). DRP1 oligomerises into spirals that surround the mitochondria to mediate breakage in both the inner and outer membranes (Ingerman et al., 2005; Mears et al., 2011). The assembly point of DRP1 or Dnm1 (the yeast homologue) on mitochondria is regulated by ER MCS, thereby regulating the point of mitochondrial fission (Friedman et al., 2011; Murley et al., 2013). Parts of the mitochondria in contact with the ER have been shown to be constricted and this marks the point of DRP1 or Dnm1 assembly (Friedman et al., 2011). Similarly, ER-endosome MCS has also been shown to regulate the fission of late endosomes from early endosomes during lysosomal biogenesis. During cargo sorting, the ER-endosome MCS arranges around the budding domain, colocalising with the WASH complex-associated FAM21 (Rowland et al., 2014). This interaction is followed by a dynamic rearrangement of an ER tubule around the budding domain leading to a complete fission of the bud (Rowland et al., 2014). The composition of the tethering complexes in this setting are not clearly defined, however, a member of the cargo recognition complex consisting of vacuolar protein sorting-associated protein-26 (VPS35) has been suggested as a possible tether recruiting the ER to these sites (Rowland et al., 2014). Nonetheless, this shows the ER-endosome MCS regulates the position and timing of endosome fission. ER-endosome MCS have also been reported to regulate the sorting and degradation of epidermal growth factor receptor (EGFR) by providing a microenvironment for its dephosphorylation by protein-Tyr phosphatase 1B (PTP1B) localised to the ER (Eden et al., 2010). The dephosphorylation of EGFR by PTP1B is critical for its internalisation and degradation.

ER MCS also regulates the dynamics of endosomes. The ER itself is very dynamic and constantly undergoing remodelling along the microtubule cytoskeleton. During endosome-to-lysosome maturation, endosomes traffic along microtubules maintaining contacts with the ER as they progress through the endocytic pathway. The composition of the ER contact sites with endosomes changes though the maturation process. Notably, about 90% of late endosomes have been reported to show some contact with the ER during organelle trafficking (Friedman et al., 2013). Furthermore, changes in intracellular cholesterol levels affect lysosomal trafficking and distribution by modulating the ER-lysosome MCS (Rocha et al., 2009). During cholesterol depletion, lysosomes accumulate at the cell periphery. Conversely in the
presence of cholesterol, lysosomes accumulate at the perinuclear region via a mechanism that requires oxysterol-binding-related protein 1L (ORPIL) (Rocha et al., 2009). ORP1L senses cholesterol in the lysosomal membrane via its ΔORD domain. This induces a conformational change in ORP1L allowing it to interact with the Rab7–RILP–p150Glued dynein complex resulting in the trafficking of lysosomes to the perinuclear region (Rocha et al., 2009). In cholesterol-depleted conditions, ORP1L binds to ER VAP protein instead of the Rab7–RILP complex interfering with p150Glued binding and causing a more peripheral positioning of lysosomes. A major hallmark of Niemann-Pick type C and other lysosomal storage diseases is a marked accumulation of lysosome in the perinuclear region (Mukherjee & Maxfield, 2004; Neufeld et al., 2004) accompanied with an overload of lysosomal cholesterol (Frolov et al., 2003). This could occur as a result of a defect in the cholesterol sensing and/or lysosomal trafficking via the ORP1L and Rab7–RILP–p150 complex.

Another candidate protein for the ER-lysosome MCS that can sense lysosomal cholesterol levels, altering MCS to regulate lysosomal trafficking, is steroidogenic acute regulatory protein (STARD3) and STARD3 N-terminal like protein (STARD3NL). These are expressed on lysosomes (Aley et al., 2010; Alpy, 2013). Like ORP1L, STARD3 is able to bind to cholesterol in vitro through its START domain (Tsujishita & Hurley, 2000). STARD3 and STARD3NL were shown to create MCSs with ER by recruiting and binding to ER-resident VAMP-associated proteins A (VAP-A) and B (VAP-B) (Alpy et al., 2013). STARD3 and STARD3NL contain a transmembrane MENTAL domain connected to FFAT motifs exposed on the cytoplasmic face of the lysosomes (Alpy et al., 2013). The interaction of STARD3/STARD3NL with VAP is facilitated by the presence of the FFAT-like motif, which is conserved in both STARD3 and STARD3NL (Alpy et al., 2013). Although the cytoskeletal mediators of STARD3 modulation of lysosome positioning are not yet characterised, heterologous expression of STARD3 has been shown to result in perinuclear enrichment of lysosomes. Conversely knockdown of STARD3 results in the redistribution of lysosomes to the cell periphery (Holtta-Vuori et al., 2005). These tethering proteins are independent of each other as knockdown of ORP1L and PTP1B did not affect MCS formation by STARD3 and STARD3NL with VAP (Alpy et al., 2013).

Protrudin is an ER-resident protein that can also contribute to ER lysosome MCS (Chang et al., 2013; Raiborg et al., 2015). Protrudin is a VAP-interacting protein that also binds to Rab7
on lysosomal membranes as well as to phosphatidylinositol-3-phosphate (PtdIns(3)P (enriched in endosomal membranes) via its FYVE domain (Raiborg et al., 2015). This promotes movement of lysosome to the cell periphery, particularly neurite outgrowths (Raiborg et al., 2015). Knockdown of protrudin leads to accumulation of lysosomes in the perinuclear region (Raiborg et al., 2015). Furthermore, ubiquitin ligase Ring finger protein 26 (RNF26) located on the ER is reported to regulate endosomal movement between the perinuclear and peripheral regions of the cell in a ubiquitination-dependent manner (Jongsma et al., 2016). Therefore, there is rapidly growing evidence for the role of ER-lysosome MCS in regulating lysosomal trafficking and positioning.

MCS are likely to regulate Ca2+ signals by providing microdomains for the efficient delivery of Ca2+ to effector proteins or organelles at synapse-like interfaces. A classic example of a MCS regulating Ca2+ signals is at the ER-PM junction where SOCE occurs. Here, the close apposition of both membranes, allow the drop in ER [Ca2+] to activate a PM channel through a direct interaction between proteins in the two membranes (see Figure 1.2).

Ca2+ uptake by mitochondria is facilitated by close apposition of ER and the outer mitochondrial membrane stabilized by MCS. For example, Ca2+ sequestration by the mitochondrial Ca2+ uniporter (MCU) is dependent on an optimum distance between the organelles (Qi et al., 2015). The MCU is a low-affinity Ca2+-permeable channel, requiring [Ca2+] orders of magnitude higher than in the bulk cytosol for its activation (Marchi & Pinton, 2014). Due to slow rates of Ca2+ diffusion in cytosol, IP\textsubscript{3}-mediated increases in [Ca2+]\textsubscript{c} are higher around IP\textsubscript{3}R than globally. There is evidence of a high [Ca2+]\textsubscript{c} exceeding 10 µM around ER-mitochondria MCS (Csordas et al., 2010). This suggests the presence of high Ca2+ microdomains occurring transiently after IP\textsubscript{3}R-mediated Ca2+ release (Rizzuto et al., 1993; Rizzuto et al., 1998; Szabadkai et al., 2006). GRP75, a cytosolic chaperone protein, forms a tether between VDAC (voltage-dependent anion channel) present on the outer mitochondrial membrane and IP\textsubscript{3}R on the ER (Szabadkai et al., 2006). Mitochondria are well situated to shape Ca2+ signals released from the ER (Rizzuto et al., 2004). Increasing the gap between both organelles using artificial tethers attenuates the Ca2+ transfer from ER to mitochondria (Csordas et al., 2006; Csordas et al., 2010). The finding that Ca2+ exchange occurs between ER and mitochondria at MCS populated by IP\textsubscript{3}R revolutionised our understanding of Ca2+ signalling by demonstrating that the ER could deliver its Ca2+ signals to the cytosol and other organelles. Apart from contributing to the cytosolic Ca2+ clearing
mechanism, uptake of Ca2+ by mitochondria is important for mitochondrial function. Constitutive IP\textsubscript{3}R activity regulates mitochondrial bioenergetics as well as macro-autophagy in cells (Cardenas et al., 2010). Key mitochondrial enzymes important for energy production such as pyruvate dehydrogenase, NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase are Ca2+-regulated (Denton, 2009). Intricate regulation of mitochondrial Ca2+ uptake is required because mitochondrial Ca2+ overload triggers apoptotic signals (Pinton et al., 2008).

There is growing research into regulators of ER-mitochondria MCS. Depletion of Mitofusin 2 (MFN2), a GTPase found in the outer membrane of mitochondria, was shown to disrupt ER-mitochondria MCS and attenuate Ca2+ transfer (de Brito & Scorrano, 2008). However, this is controversial as others have shown that depletion of MFN2 strengths ER-mitochondria MCS (Cosson et al., 2012; Filadi et al., 2015). Other reported regulators of ER-mitochondria MCS include promyelocytic leukaemia tumour suppressor (PML) (Giorgi et al., 2010). PML forms a complex with Akt and PP2A at mitochondria-associated membranes (MAMs) to regulate IP\textsubscript{3}R-mediated Ca2+ release, fine-tuning the amount of Ca2+ transferred to mitochondria and the response to pro-apoptotic stimuli (Giorgi et al., 2010). Understanding the physiological regulation of ER-Mitochondria MCS and Ca2+ signalling remains an exciting area of research.

Like mitochondria, most lysosomes are closely apposed to the ER (Friedman et al., 2013; Kilpatrick et al., 2013; Lopez-Sanjurjo et al., 2013). The distance between the ER and lysosomes is as narrow as 8.3 nm, which would favour crosstalk between the organelles (Alpy, 2013). High-resolution studies show that lysosomes are also intimately associated with SR to form discrete microdomains in ventricular myocytes (Aston et al., 2017). The cross talk between lysosomes and ER is bidirectional. Ca2+ released from ER is sequestered by lysosomes (Lopez-Sanjurjo et al., 2013), and Ca2+ released upon GPN-mediated rupture of lysosomes has been reported to induce IP\textsubscript{3}R-mediated Ca2+ spikes (Kilpatrick et al., 2013). The interaction between lysosomes and ER is reminiscent of the interaction between the ER and mitochondria. For example, lysosomes sequester Ca2+ released by IP\textsubscript{3}R (Lopez-Sanjurjo et al., 2013; Garrity et al., 2016), lysosomes are proposed to buffer cytosolic Ca2+ following release from the ER (Lopez Sanjurjo et al., 2013), and lysosomes form extensive tethers with the ER (Eden et al., 2010; Helle et al., 2013; Prinz, 2014). However, whereas high local [Ca2+] at the surface of mitochondria have been directly determined by tethered Ca2+ sensors,
this has yet to be demonstrated for lysosomes (Montero et al., 2000). Hence, many questions remain to be answered concerning the identity and functions of MCS tethering proteins in relation to Ca\(^{2+}\) exchange between ER and lysosomes.

Figure 1.7 **Selected tethering proteins reported to populate ER MCS in mammalian cells involved in regulating Ca\(^{2+}\) signalling.** Multiple tethering proteins populate specialised MCS between the ER and multiple organelles. Tethering proteins not described in the text include VAPB (ER) interaction with protein tyrosine phosphatase-interacting protein 51 (PTPIP51) on the outer mitochondria membrane to regulate Ca\(^{2+}\) homeostasis (De vos et al., 2012). Junctophilins have a single TMD spanning the SR membrane, and a protruding cytosolic domain that interacts with the PM to also regulate Ca\(^{2+}\) signalling (Takeshima et al., 2000; Hirata et al., 2006). Although overexpression of junctophilins strengthens SR/PM interactions (Takeshima et al., 2000), it is not required for assembly of SR/PM junctions (Prinz, 2014). The voltage-sensing dihydropyridine receptor (DHPR) activates RyR1 in the SR in the closely apposed SR/PM junctions of skeletal muscles (Rebbeck et al., 2011).
1.4 Practical limitations to studying lysosomal Ca\(^{2+}\) release

The accurate measurement of pH\(_{ly}\) is now optimised and readily achievable (Johnson et al., 2016). However, quantitatively measuring the lysosomal Ca\(^{2+}\) content is more difficult. Using electron microbe analysis (Morgan et al., 2011) and plasma mass spectrometry (Wang et al., 2012), the total [Ca\(^{2+}\)] of lysosomes has been estimated to be 14 mM and ~2 mM respectively. These approaches either rely on fixed cells where organelles are identified by morphology or following cell fractionation methods which are usually contaminated with other organelles. Therefore, it has so far been difficult to reproducibly quantify the total and free [Ca\(^{2+}\)] in the lysosomal lumen.

Measuring the free luminal [Ca\(^{2+}\)] in lysosomes is challenging. Only two studies have quantitatively reported an estimated free [Ca\(^{2+}\)], they suggest it to be ~500 µM (Christensen et al., 2002; Lloyd-Evans et al., 2008). The very acidic pH of lysosomes alongside their cocktail of proteolytic enzymes are major limitations for luminal measurements of Ca\(^{2+}\). The pH can alter the dye by quenching the chromophore or altering the Ca\(^{2+}\) binding kinetics, both of which are deleterious to meaningful luminal Ca\(^{2+}\) measurements (Morgan et al., 2015). One strategy used in directing materials to lysosomes is by hijacking the endocytic machinery to direct probes to lysosomes. Usually, this involves the co-endocytosis of dextran tagged pH- and Ca\(^{2+}\)-sensitive probes to allow ratiometric reporting of pH and Ca\(^{2+}\) changes in lysosomes using a pulse-chase protocol (Gerasimenko et al., 1998; Lloyd-Evans et al., 2008). The chase component is used to allow movement of the dextran-conjugated probes to lysosomes, which are the terminal compartments of the endocytic pathway. For example, Rhod-2, when loaded at 37°C, has been used in reporting lysosomal Ca\(^{2+}\) (Mirmikjoo et al., 2009), however, Rhod-2 is also reported to accumulate in the mitochondria due to its cationic nature (Trollinger et al., 1997). The selectivity of Rhod-2 in measuring lysosomal Ca\(^{2+}\), therefore, requires careful consideration. However, more selectivity has been achieved using dextran conjugates to direct probes to lysosomes. Nevertheless, to successfully obtain meaningful results, it is important to use pH-resistant probes. The rhodamine dyes are more stable than fluorescein dyes. However, limitations exist, such as the difficulty in directing even dextran conjugates to lysosomes consistently. The effect of pH\(_{ly}\) on Ca\(^{2+}\) indicators is confounded by the dynamic changes in pH\(_{ly}\) that occurs during lysosomal Ca\(^{2+}\) modulations (Morgan & Galione, 2007; Cosker et al., 2010; Collins et al., 2011; Morgan, 2011b; Lopez Sanjurjo et al., 2013).
The problems with luminal Ca\(^{2+}\) measurements remain unsolved. However, one strategy is the use of genetically-modified fluorescent proteins appended to lysosomal proteins on the cytosolic side of the membrane to allow measurement of peri-lysosomal Ca\(^{2+}\) changes. An advantage of this approach is an insight into local Ca\(^{2+}\) changes around lysosomes that can otherwise be missed in global Ca\(^{2+}\) measurements, whilst avoiding problems with luminal degradation of proteins. This approach has been used for secretory vesicles (Pouli et al., 1998; Emmanouilidou et al., 1999) and LE/lysosomes. In the lysosomal studies, GCaMP3 was fused to the N-terminus of TRPML1 (Shen et al., 2012) or YCaM3.6 cameleon was fused to the C-terminus of LAMP1 (McCue et al., 2013). However, the Ca\(^{2+}\) indicators used have high-affinity for Ca\(^{2+}\), which limited the ability to selectively report juxta-lysosomal Ca\(^{2+}\) dynamics. Therefore, the need for a low-affinity fluorescent sensor to detect peri-lysosomal Ca\(^{2+}\) changes remains.

Another approach used in studying lysosomal Ca\(^{2+}\) signalling is by releasing lysosomal Ca\(^{2+}\) and assessing changes in [Ca\(^{2+}\)]. The most common pharmacological tools used are NAADP, ML-SA1 and GPN. The target and organelle selectively of NADDP remains controversial (see Section 1.2.3). The use of NAADP has also been limited because it is not cell-permeant and the AM ester form is highly unstable and not readily available. NAADP is also reported to have a lag time (up to minutes) to attain a peak change in [Ca\(^{2+}\)]\(_c\) (Morgan et al., 2015). The TRPML agonist, ML-SA1, is widely used to release lysosomal Ca\(^{2+}\) (Morgan et al., 2015; Kilpatrick et al., 2016). However, there is a suggestion that the action of TRPML1 is not limited to local lysosomal Ca\(^{2+}\) signalling and involves ER Ca\(^{2+}\) and extracellular Ca\(^{2+}\) influx as well (Kilpatrick 2016). This remains a useful tool, but, caution is required in interpreting results obtained using ML-SA1 as a selective reporter of lysosomal Ca\(^{2+}\) release.

GPN is most widely used as a selective disruptor of lysosomes. GPN is proposed to be cleaved by cathepsin C in the lysosomal lumen, leading to lysosomal permeabilization and leakage of Ca\(^{2+}\) (Jadot et al., 1984; Turk et al., 2001). Although widely believed and cited, the evidence for this model is minimal. I return to explore the action of GPN in Chapter 4. And even seemingly straightforward tools such as NAADP and ML-SA1 that has offered insight into lysosomal activity, have difficulties, such as complexity arising from interactions between different organelles. It is, for example, difficult to disentangle Ca\(^{2+}\) signals arising directly from lysosomal Ca\(^{2+}\) release from those that have been amplified by Ca\(^{2+}\) release from the ER. Disrupting lysosomes pharmacologically or via siRNA might also lead to compensatory off-target effects. In conclusion, there is still no reliable means to measure
[Ca$^{2+}$] within the lysosomal lumen, and these tools are urgently needed to investigate the mechanism of Ca$^{2+}$ uptake by lysosomes.

1.5 Aims of this project

Lysosomes have come to be appreciated as Ca$^{2+}$ signalling hubs, capable of sequestering and releasing Ca$^{2+}$ in highly regulated processes. The release of lysosomal Ca$^{2+}$ via TRPML1 is reported to regulate lysosomal size in a calmodulin-dependent manner (Cao et al., 2017), regulate lysosomal biogenesis in nutrient sensing, and autophagy in starvation (Medina et al., 2015), and precede lysosomal fusion in membrane trafficking (Pryor et al., 2000). Also, aberrant lysosomal Ca$^{2+}$ is implicated in some LSDs (Kiselyov et al., 2010).

Lysosomes selectively sequester Ca$^{2+}$ released from IP$_3$Rs, unmasked following inhibition of lysosomal V-ATPase with bafilomycin A$_1$ (Lopez Sanjurjo et al., 2013). However, this has been challenged by evidence that refilling of lysosomes with Ca$^{2+}$ is independent of the V-ATPase (Garrity et al., 2016). There is, therefore, a need to investigate the exchange of Ca$^{2+}$ between ER and lysosomes and the contribution of the V-ATPase to it. I address these issues in chapter 3.

In interrogating lysosomal Ca$^{2+}$ uptake and release, one of the most widely used tools to selectively release lysosomal Ca$^{2+}$ is GPN. About a hundred publications report the use of GPN (Berg et al., 1994; Haller et al., 1996; Churchill et al., 2002; Morgan & Galione, 2007; Dionisio et al., 2011; Coen et al., 2012; Davis et al., 2012; Kilpatrick et al., 2013; Ruas et al., 2015; Garrity et al., 2016; Melchionda et al., 2016). In chapter 4, I examine the mechanism of action of GPN.
Chapter 2

2. Materials and Methods

2.1 Materials

Bovine serum albumin (BSA) was from Europa Bio-Products (Ely, UK). Bafilomycin A₁ was from Fluorochem (Hadfield, UK) and Alfa Aesar (Massachusetts, USA). Concanamycin A was from Insight Biotechnology (Middlesex, UK). Thapsigargin and cyclopiazonic acid (CPA) were from Bio-Technic (Minnesota, USA). Fluo 8-AM was from Stratech Scientific (Suffolk, UK). 1,2-bis(O-aminophenoxy)ethane-N,N,N’N’-tetraacetic acid (BAPTA) was from Phion (Dorset, UK). Agarose and α-select gold efficiency competent *Escherichia coli* were from Bioline Ltd (London, UK). Platinum Pfx DNA polymerase, custom primers, Rapid DNA ligation kit, DMEM/F-12 GlutaMAX, TrypLE express, Iscove’s Modified Dulbecco’s Medium (IMDM), Tris-acetate SDS (sodium dodecyl sulphate) running buffer, 3-8% Tris-acetate PAGE (polyacrylamide gel electrophoresis) gel, EDTA-free Pierce protease inhibitor mini-tablets, Spectra multicolour broad range protein ladder, iBLOT transfer kit, NucBlue Live ReadyProbes Reagent, SNARF-5F, Dextran (Dx) conjugates of Oregon Green™ 488 (10 kDa), Fluorescein (3 & 10 kDa), and LysoTracker Red DND-99 were from ThermoFisher (Paisley, UK). TransIT-LT1 transfection reagent was from GeneFlow (Lichfield, UK). HiPerFect transfection reagent, siRNA against ATP6V0C or a non-silencing control siRNA (catalogue numbers s79 and AM4611), QIAquick gel extraction kit, QIAprep spin miniprep kit and QIAprep endofree maxi kit were from Qiagen (Crawley, West Sussex). Cell culture plastics and 96-well assay plates were from Greiner (Stonehouse, Gloucestershire, UK). Imaging dishes (35-mm diameter with a 7-mm No. 0 glass insert) were from MatTek Corporation (Ashland, USA) or IBL (Baustoff+Labor GmbH, Austria). Ionomycin was from Merck Eurolab (Nottingham, UK). Poly-L-lysine, Triton X-100, carbamylcholine chloride (carbachol), dimethyl sulfoxide (DMSO), Pluronic F-127, foetal bovine serum (FBS), Duolink proximity ligation kit, Tween-20, dithiothreitol (DTT), Triton X-100, nigericin, monensin, MES, ethylenediaminetetraacetic acid (EDTA) and Tris base were from Sigma-Aldrich (Poole, Dorset, UK). Human plasma fibronectin was from Merck Millipore (Watford, UK). Caged cell-permeant IP₃ (ci-IP₃/PM) was from SiChem (Bremen, Germany). Glycyl-L-phenylalanine 2-naphthylamide (GPN) and Gly-Arg-AMC were from Bachem (St. Helens, UK) and Santa Cruz Biotechnology (Texas, USA), respectively. Glycyl-D-phenylalanine 2-naphthylamide (D-GPN) was custom-synthesised by LifeTein (Somerset, USA). Gly-Phe-DMK was from MP Bio (Derby, UK). ECL prime Western blotting detection reagent was
from GE Life Sciences (Little Chalfont, UK). Vector px458 was from Addgene (plasmid#48138). Antibodies used for protein expression analysis were mouse anti-cathepsin C (Santa Cruz Inc., 1:500), rabbit anti-TMCO1 (Sigma, 1:1000), mouse anti-β-actin (Cell Signaling, 1:1000), donkey anti-mouse IgG-HRP (1:2000) and donkey anti-rabbit IgG-HRP (1:5000) from Santa Cruz, Inc. (California, USA). Antibodies used for PLA were: VAP-A (mouse, Santa Cruz Biotechnology, sc-293278), Rab7 (rabbit, Cell Signaling Technology, D95F2) and GFP (mouse, ThermoFisher, A-11120). Other reagents, unless otherwise specified, were from Sigma-Aldrich (Dorset, UK).

2.2 Cell culture and transfection

Human embryonic kidney (HEK) cells, in which CRISPR/Cas9 was used to delete one or more IP₃R subtypes, were from Kerafast (Boston, MA, USA) (Alzayady et al., 2016). HAP1 cells, genetically engineered using CRISPR/Cas9 to disrupt genes for all three IP₃R subtypes, were developed with Horizon Discovery (Cambridge, UK). Hereafter, HEK and HAP1 cells with no functional IP₃R are referred to as HEK-3KO and HAP1-3KO cells respectively. HeLa and HEK-293 cell lines were cultured in Dulbecco’s Modified Eagles Medium (DMEM)/F-12 with GlutaMAX supplemented with FBS (10%). HAP1 cells were cultured in Iscove’s Modified Dulbecco’s Medium (IMDM) GlutaMAX with 10% FBS. The cells were maintained at 37°C in humidified air with 5% CO₂ and passaged every 3-4 days using GibcoTrypLE Express. All cell lines were confirmed to be free of mycoplasma. For cell population assays, cells were seeded on poly-L-lysine (10% v/v)-coated 96-well plates. For imaging, cells were grown on 35-mm glass-bottomed dishes coated with human fibronectin (10 μg/ml).

For plasmid DNA transfection, HEK and HeLa cells were seeded on fibronectin-coated 35-mm glass-bottomed dishes in serum-containing medium and grown for 24 h at 37°C with 5% CO₂. Cells were transfected with plasmids encoding Ca²⁺ indicators or tagged proteins according to the manufacturer’s instructions using TransIT-LT1 reagent (1 μg DNA/2.5 μl reagent). TransIT-LT1 reagent was added to the plasmid in serum-free medium and incubated at 22°C for 15 min to allow the formation of complexes. The complexes were then added drop-wise to the cells, ensuring a uniform distribution within the plate. The cells were incubated for 24 h before imaging.
For siRNA transfection, the ThermoFisher high-throughput transfection procedure was used. siRNA directed against ATP6V0C or a non-silencing control siRNA (catalogue numbers 79 and AM4611, ThermoFisher) was spotted onto empty wells of a 96-well plate. The siRNA was overlaid with siPORT NeoFX Transfection Agent (220 ng siRNA/µl reagent) diluted in serum-free medium and incubated for 10 min at 22°C to allow the formation of complexes. The complexes were then overlaid with cells in suspension (30,000 cells/well) to a final volume of 200 µl (40 nM/well). Experiments were performed 48 - 72 h after transfection.

2.3 Measurements of $[\text{Ca}^{2+}]_c$ in cell populations

Confluent monolayers of cells grown in a 96-well plate were loaded with fluo-8 by incubation for 1 h at 20°C in HEPES-buffered saline (HBS, 100 µl) containing fluo 8-AM (2 µM) and 0.02% Pluronic F-127. Cells were then washed and incubated in HBS for 1 h at 20°C to allow de-esterification of fluo 8-AM. HBS had the following composition: 135 mM NaCl, 5.9 mM KCl, 1.2 mM MgCl₂, 1.5 mM CaCl₂, 11.5 mM D-glucose, 11.6 mM HEPES, pH 7.3. CaCl₂ was omitted from nominally Ca²⁺-free HBS, and in some experiments, (see figure legends) BAPTA (final concentration 2.5 mM) was added to the HBS immediately before stimulation to reduce the free [Ca²⁺] of the HBS to < 20 nM. Fluorescence was recorded using a FlexStation III fluorescence plate-reader that allows automated fluid additions while recording fluorescence (Molecular Devices, Sunnyvale, CA, USA). Fluorescence was recorded at 1.44-s intervals, with excitation at 485 nm and emission at 525 nm. Data were collected and analyzed using SoftMax Pro (Molecular Devices). Maximal (F_{max}) and minimal (F_{min}) fluorescence values were determined from parallel wells after addition of Triton X-100 (0.1%) to lyze cells with either 10 mM CaCl₂ (F_{max}) or 10 mM BAPTA (F_{min}). The fluorescence values (F) were calibrated to $[\text{Ca}^{2+}]_c$ using a $K_D = 389$ nM (fluo 8) from:

$$[\text{Ca}^{2+}]_c = K_D \times \frac{(F-F_{\text{min}})}{(F_{\text{max}}-F)}$$

2.4 In vitro calibration of fluo 8

Since the K_D of BAPTA for Ca²⁺ (160 nM in the absence of Mg²⁺) (Pethig et al., 1989) is unaffected by pH changes between 7 and 8 (Tsien, 1980), standard Ca²⁺ solutions were prepared in modified cytosol-like medium (MCLM). MCLM had the following composition: 140 mM KCl, 20 mM NaCl, 20 mM HEPES and 10 mM BAPTA. Solutions containing the
free acid form of fluo-8 were placed in 96-well plates and fluorescence was recorded at intervals of 1.44 s using a fluorescence plate reader (FlexStation), with excitation at 485 nm and emission at 525 nm. Calculation of free $[Ca^{2+}]$ were computed using http://maxchelator.stanford.edu/webmaxc/webmaxcS.htm.

2.5 Measurements of pH_{cyt} in cell populations

Confluent cultures of cells grown in 96-well plates were loaded with the ratiometric pH indicator, SNARF-5F (Liu et al., 2001), by incubation (30 min, 20°C) with SNARF-5F AM (2 μM) in HBS containing Pluronic F-127 (0.02%). Cells were washed in HBS, and fluorescence was recorded from cells in HBS (20°C) at intervals of 3.8-s (excitation, 543 nm; emission, 580 and 640 nm) using a FlexStation 3 fluorescence plate-reader with SoftMaxPro software. Fluorescence was calibrated to pH_{cyt} from:

$$pH_{cyt} = pK_a - \log \left[\frac{(R - R_b)}{(R_a - R)} \times \frac{F_b}{F_a} \right]$$

Where, pK_a is the negative log of the acid-base dissociation constant (K_a); R is the fluorescence emission ratio (F_{580}/F_{640}); R_a (F_a) and R_b (F_b) are the fluorescence ratios (or fluorescence intensities at 640 nm) for the fully protonated and de-protonated forms of the indicator. For calibration, cells loaded with SNARF-5F were treated for 30 min in Ca^{2+}-free cytosol-like medium (CLM, pH 7.4) with nigericin (50 μM), which is a H^+/K^+ antiporter. CLM was then replaced by CLM supplemented with nigericin (50 μM) and buffered at different pH values (pH 5.0 - 8.5), and SNARF-5F fluorescence was measured. Ca^{2+}-free CLM had the following composition: KCl 140 mM, NaCl 4 mM, MgCl$_2$ 1.4 mM, HEPES 10 mM, EGTA 1 mM.

2.6 Cloning of LAMP1-G-GECO1.2

The initial templates for cloning of the low-affinity Ca^{2+} sensor, LAMP1-G-GECO1.2 (LysGG) targeted to the lysosomal membrane were LAMP1-mCherry (Lopez-Sanjurjo et al., 2013) and cytosolic G-GECO1.2 (Zhao et al., 2011). A HindIII restriction site was inserted at the 5’ end of LAMP1-mCherry using primer LAMP1F. LAMP1-mCherry contained a pre-existing BamHI site. Primers LAMP1F and LAMP1R were used to amplify the LAMP1 sequence from LAMP1-mCherry using PCR. The PCR conditions are described in Table 2.1.
Table 2.1 Thermocycling parameters for PCR reactions used to construct Ly-GG

<table>
<thead>
<tr>
<th></th>
<th>Temperature (°C)</th>
<th>Time</th>
<th>Number of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary denaturation</td>
<td>94</td>
<td>3 min</td>
<td>1</td>
</tr>
<tr>
<td>Denaturation</td>
<td>94</td>
<td>15 s</td>
<td></td>
</tr>
<tr>
<td>Annealing</td>
<td>55</td>
<td>30 s</td>
<td>25</td>
</tr>
<tr>
<td>Extension</td>
<td>68</td>
<td>105 s</td>
<td></td>
</tr>
<tr>
<td>Final extension</td>
<td>68</td>
<td>2 min</td>
<td>1</td>
</tr>
</tbody>
</table>

The LAMP1 PCR product was digested with HindIII and BamHI. The digested PCR products were analysed by agarose gel electrophoresis. A 1% agarose gel containing Midori Green DNA stain (4 µl/100 ml) was used. 6x DNA loading dye was mixed with the PCR product prior to loading onto the agarose gel. Tris-acetate-EDTA (TAE) buffer comprises 40 mM Tris, 20 mM acetic acid and 1 mM EDTA. The electrophoresis was run at 115 V for 45 min. A Fastgene LED transilluminator was used to detect the bands, which were then purified using a Qiagen gel extraction kit. The product at this point was LAMP1 with flanking sticky ends derived from the HindIII and BamHI sites. A BamHI site was introduced in frame with the 5’ end of G-GECO1.2 via PCR, using the conditions shown in Table 2.1 and primer G-GECO1.2F (Table 2.2). An EcoRI site was introduced at the 3’ end of G-GECO1.2 using the primer GGECO1.2R (Table 2.2). The product was then digested with BamHI and EcoRI, run on a 1% agarose gel, and the DNA contained within the band was purified using the Qiagen gel extraction kit.

The Ly-GG construct was then assembled in pcDNA3.1(+) (ThermoFisher), a mammalian expression vector. pcDNA3.1(+) was digested with HindIII and EcoRI overnight to create sticky ends suitable for ligation with the LAMP1 and G-GECO1.2 fragments. The digested LAMP1, G-GECO 1.2 and pcDNA3.1(+) were ligated using T4 DNA ligase according to the manufacturer’s protocol.
Table 2.2 Primers used for PCR amplification and sequencing of plasmids

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGECO1.2F</td>
<td>CATGGATCCATGGTCGACTCATCACGTCGTAAG</td>
</tr>
<tr>
<td>GGECO1.2R</td>
<td>GTAGAATTCCTACTTCGCTGTCATCATTTG TACAAACTCTTC</td>
</tr>
<tr>
<td>LAMP1F</td>
<td>TACAAGCTT GCTTCGAATTCTCGCCACCAT</td>
</tr>
<tr>
<td>LAMP1R</td>
<td>GGTGGATCCTCTGAACCTCGATGGTCTG ATAGCCCGCG</td>
</tr>
<tr>
<td>LAMP1SeqF1</td>
<td>ACGTTCAGCACCTCAAACTA</td>
</tr>
<tr>
<td>LAMP1SeqF2</td>
<td>ATCGGCAGGAAGGGAGGTCA</td>
</tr>
<tr>
<td>T7 promoter (F)</td>
<td>TAATACGACTCACTATAGGG</td>
</tr>
<tr>
<td>BGH Reverse</td>
<td>TAGAAGGCACAGTGGAGGG</td>
</tr>
<tr>
<td>GGECO1.2SeqM</td>
<td>CAAAACCCCAAGTGTTGCTCAAG</td>
</tr>
<tr>
<td>GGECO1.2SeqE</td>
<td>GCCTACCACCTACCAGCAGAA</td>
</tr>
</tbody>
</table>

The ligated DNA was transformed in gold efficiency E. coli α-select competent cells according to the manufacturer’s protocol and inoculated on carbenicillin-containing (100 μl/ml) agar plates. The agar plates were incubated for 16 h at 37°C. Single colonies were picked into sterile lysogeny broth (LB) Miller medium containing 100 μg/μl carbenicillin. The bacterial culture was grown for 16 h at 37°C in a shaking incubator at 260 rpm. The cells were harvested, and the plasmid was purified using a QIAprep spin miniprep kit according to the manufacturer’s protocol. Following sequence verification, the plasmid DNA was amplified and purified using a Qiagen endofree plasmid maxi kit according to the manufacturer’s protocol. The DNA was eluted in Tris-EDTA (TE) buffer, and the concentration was determined using BioDrop µLITE (BioDrop, UK). TE buffer is composed of 10 mM Tris-Cl, pH 8.0, and 1 mM EDTA.

The sequence of LAMP1-R-GECO1.2 was verified using primers: LAMP1SeqF1, LAMP1SeqF2, T7 promoter (F) and BGH Reverse using the Sanger sequencing service (Table 2.2) (Source BioSciences, UK). The sequence of LAMP1-G-GECO1.2 was verified using primers: LAMP1SeqF1, LAMP1SeqF2, T7 promoter (F), GGECO1.2SeqM and GGECO1.2SeqE (Table 2.2). Sequencing data were analysed using BioEdit software (Ibis Biosciences) and alignments were carried out using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/).
Chapter 2

2.7 Quantitative PCR

QPCR was carried out as previously described (Tovey et al., 2008). cDNA was synthesized in a final volume of 20 μl directly from a lysate prepared from confluent cells in one well of a 96-well plate, using a FastLane cell cDNA kit (QIAGEN, Crawley, UK). For QPCR, each reaction included primers specific for ATP6V0C and for calibration, primers for a housekeeping gene (glyceraldehyde phosphate dehydrogenase, GAPDH). Each reaction (20 μl) included Rotor-Gene SYBR Green PCR master mix (10 μl), cDNA (5 μl), Quantitect primer assay (2 μl) and RNAase-free water (3 μl). In two negative controls, the primers were omitted during QPCR, or the reverse transcriptase was omitted during cDNA synthesis. For QPCR (Rotor-Gene 6000; Corbett Life Sciences), an initial denaturation at 95°C for 5 min was followed by 40 cycles of amplification (93°C for 5 s, 60°C for 10 s) and then a melting curve (72°C to 95°C). Expression of mRNA relative to that for GAPDH was calculated from:

\[
\text{Expression} = \frac{E^{-C_{ATP6V0C}}}{E^{-C_{GAPDH}}},
\]

Where, E is the amplification efficiency, calculated as \(10^m\), where m is the average fluorescence increase for four cycles increase after the cycle threshold (C_T) for the indicated PCR product. Results are reported as mean ± SD for cDNA samples independently isolated from 6 different experiments.

2.8 Proximity ligation assay and analysis

A Duolink proximity ligation assay (PLA, Sigma) was used to quantify interactions between proteins less than ~40 nm apart, according to the manufacturer’s instructions. The method uses antibodies from two species (mouse and rabbit) to recognize two candidate proteins in situ (Figure 2.1). The antibodies are then recognized by secondary antibodies conjugated to complementary oligonucleotides, which are amplified to incorporate a fluorescent nucleotide (Texas Red) only if the pair of secondary antibodies are less than ~40 nm apart (Fredriksson et al., 2002; Koos et al., 2013). Cells grown on fibronectin-coated 35-mm glass-bottom dishes were fixed at 20°C (4% paraformaldehyde, 30 min), washed with PBS, permeabilized (0.25% Triton X-100, 5 min), and incubated with primary antibodies (12-16 h, 4°C). Cells were washed 3 x 5 min in PBS with constant agitation, before addition of PLA probes. The Duolink® In Situ PLA probe anti-Rabbit PLUS and anti-Mouse MINUS (Sigma) were used. Equal volumes of both PLA probes were mixed in the antibody diluent provided in the kit (1:5 dilution, 12 μl PLUS, 12 μl MINUS and 36 μl diluent). Incubation with PLA probes (1 h,
37°C) was performed in a preheated humidity chamber to ensure that the cells do not dry out. Cells were washed for 2 x 5 min with wash buffer A, at 20°C with shaking and then incubated with ligase in a preheated humidity chamber (1:40 dilution in ligation buffer, 30 min, 37°C). Next, following 2 x 5 min wash with wash buffer A, amplification was performed by incubating cells with polymerase (1:80 dilution in amplification buffer, 30 min, 37°C) in the dark. Following this, cells were washed (2 x 10 min) in wash buffer B, and further 1-min wash in 0.01x wash buffer B. Cells were then mounted in Duolink II mounting medium containing DAPI to label the nucleus (Sigma) and imaged the next day. For imaging, cells were stored at 4°C overnight. For ER-lysosome interactions, the primary antibodies were against VAP-A (1:100) and Rab7 (1:100), and for EGFP-IP3R1-lysosome interactions they were against GFP (1:500) and Rab7 (1:100). The specificity of the PLA reactions was confirmed by the omission of either primary antibody (VAP-A or Rab7) and, for EGFP-IP3R1-lysosome measurements by using cells without EGFP-IP3R1.

PLA products were visualized using an Olympus microscope with x100 objective, and spots were quantified using CellProfiler software (http://cellprofiler.org/). The pipeline for analysis (Figure 2.2) was constructed by me based on previously published methods (Carpenter et al., 2006).

An overlay RGB image of the maximum projection of PLA dots and nucleus staining was exported into Cell profiler, and then split into individual channels. Primary objects (nucleus) were defined based on the differences between DAPI-stained nuclei and the background fluorescence. Next, secondary objects were defined by extending out from the nucleus up to 80 pixels using the Distance-N method. The total number of PLA dots in the field was then identified, and sorted into the different cell objects identified (secondary objects). Dots outside the cell mask drawn were rejected as outliers.
Figure 2.1 In situ PLA to detect protein-protein interactions in fixed cells. (1) Two proteins of interest are recognised by two specific primary antibodies (1st) raised in two different species (e.g. mouse and rabbit). (2) Two oligonucleotide-conjugated secondary antibodies (2nd) recognising either mouse or rabbit antibodies are then added. (3) If the target proteins are in close proximity (~40 nm), the PLA probes hybridizes to connector oligonucleotides and ligated to form a circular DNA. (4) The circular DNA is then a template for rolling circle amplification (RCA) catalysed by a polymerase. During amplification, the RCA products incorporate a fluorescent tag (Texas red). The resulting red dots are detected by fluorescence microscopy.
Figure 2.2 **Schematic representation of the PLA analysis conducted with Cell Profiler.** Nucleus stained with DAPI was defined as a primary object. Secondary objects were identified by making extensions from the centroid of the nucleus. Finally, PLA dots within each cell was counted and assigned to the parental cell.
2.9 Generation of a cathepsin C KO HEK cell line

CRISPR/Cas9 was used to disrupt the gene encoding cathepsin C (CTSC). Guide sequences were chosen based on two web-based tools, E-crispr.org (Heigwer et al., 2014) and zitfit.partners.org (Sander et al., 2010). Oligonucleotides encoding four different guide RNAs (sgRNA) were used to target the first, second and third exons of CTSC (Exon 1: GCTGGGCACCTGGGTCTTCC; Exon 1: GCCCTCCTGCTGCTTCTCTC; Exon 2: GATACAGCATATGATGACCT; Exon 3: GTTGACATACACATTCTCAG). Each guide and its complementary sequence had a sticky end (5´-CACC or 5´-AAAC) to allow ligation into the Px458 vector, which also encodes Cas9 nuclease and GFP (Addgene #48138) (Ran et al., 2013). Vectors were digested with BbsI, which cuts after the hU6 promotor in the px458 vector and analysed by agarose gel electrophoresis. Following gel extraction, the product at this point was a digested vector with sticky ends. Guide RNA oligos were made double-stranded by PCR. Samples were first incubated for 30 min at 37°C to anneal the oligos, then for 5 min at 95°C, then ramped down to 25 °C at 5°C/min. Then, the annealed guide RNAs oligos were ligated into the digested px458 vector using T4 DNA ligase (ThermoScientific) according to the manufacturer’s protocol. The coding sequence of the final plasmid was verified by sequencing using the Hu6 primer, which binds to the promoter in front of the insert. The coding sequences of the four final plasmids were verified. HEK cells were transfected with pX458-sgRNAs using Trans LT1 (4 μg DNA per 6-well plate). After 48 h, EGFP-expressing cells were sorted as single cells into 96-well plates by fluorescence-activated cell sorting (FACS). After 8 weeks, clones were screened by Western blotting and validated using a functional assay. CRISPR/Cas9 experiments were done by Laura van Marrewijk.

2.10 Generation of HEK cells deficient in TMCO1

The methods used to generate cells deficient in Transmembrane and Coiled-Coil Domains 1 (TMCO1) were the same as those used to generate HEK-CTSC-KO cells. The only effective sgRNA (GAAGCGGAAGTGCGATCTTC) targeted exon 1. Neither different sgRNAs, targeting exon 1 (GTGCACGGCTCTGCTCGCAG) or exon 3 (GAAAACAATAACAGAGTCAGC and GTTTACAGTGAAAAGAAGA), nor repeated transfections with multiple sgRNAs succeeded in achieving cells with both TMCO1 alleles disrupted. CRISPR/Cas9 experiments were done by Laura van Marrewijk.
2.11 Protein isolation

Whole cell lysates for Western blotting and cathepsin C activity assay were obtained as follows. Cells in 6-well plates were washed twice with 1.5 ml PBS. 30 μl of pre-chilled Radio Immuno Precipitation Assay (RIPA) buffer was added to each well of the 6-well plate. The RIPA buffer composition was 150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS and 50 mM Tris at pH 8.0. Cells from each well were scraped into a pre-chilled Eppendorf tube. The samples were syringed 5 times using a blunt needle. The samples were sonicated for 3 × 10 s on iced water. The samples were maintained at 4 °C for 1 h with constant agitation. Supernatants were obtained after centrifugation (~14,000 ×g, 15 min, 4°C).

2.12 Western blotting

The protein-loading sample was made up to 20 μl (13 μl lysate supernatant, 5 μl LDS (lithium dodecyl sulphate) sample buffer 4x, and 2 μl of 1M DTT (dithiothreitol). The sample was heated for 10 min at 85°C and loaded onto a 3-8% Tris-acetate PAGE gel. Electrophoresis was achieved by applying 160 V for 1 h in Tris-acetate SDS running buffer. Following electrophoresis, separated proteins on the SDS-PAGE gel were transferred onto a polyvinyl difluoride (PVDF) membrane using the iBLOT gel transfer system. Membrane blocking was carried out in Tris-buffered saline (TBS) supplemented with 0.1% Tween-20 (TBST) and 5% BSA (bovine serum albumin) for 1 h with gentle shaking at 22°C. TBS was composed of 50 mM Tris-HCl, 150 mM NaCl, adjusted to pH 7.5 using HCl. The membrane was washed with TBST and incubated with the primary antibody at 40°C for 16 h with gentle shaking. Following this, the membrane was washed 3 times (5 min each) with 15 ml TBST at 22°C. The membrane was then incubated with secondary antibody solution (1:5000 dilution of IgG-HRP) in TBST with 1% BSA for 1 h at 22°C with gentle shaking. Following this, the membrane was washed 3 times (5 min each) with 15 ml TBST. Enhanced chemiluminescence (ECL) primer Western blotting detection reagent (Amersham, UK) and a Syngene PXi chemiluminescence detection system were used to detect HRP. The antibodies used were mouse anti-cathepsin C (Santa Cruz Inc.,1:500), rabbit anti-TMCO1 (Sigma, 1:1000), mouse anti β-actin (Cell Signaling, 1:1000), donkey anti-mouse IgG-HRP (1:2000) and donkey anti-rabbit IgG-HRP (1:5000).
2.13 Measurement of cathepsin C activity

Cathepsin C activity was measured according to a protocol modified from previously described methods (Hamilton et al., 2008; Eick et al., 2014). Whole cell lysates were extracted from HEK WT and HEK-CTSC-KO cells as described (Section 2.11). HEK cell lysates were diluted in assay buffer (25 mM MES, 50 mM NaCl, 5 mM DTT, pH 6) to provide a protein concentration of 200 μg/ml, and distributed into 96-well plates (50 μl/well). Cleavage of Gly-Arg-AMC (50 μM) was monitored at 0.2-min intervals (excitation, 380 nm; emission 460 nm) using a FlexStation 3 plate-reader and SoftMax Pro software. A substrate blank was included as a control.

2.14 Fluorescence microscopy

Fluorescence microscopy used an inverted Olympus IX83 microscope equipped with a 100x objective (numerical aperture, NA, 1.49), a multi-line laser bank (395, 405, 425, 488, 561 and 647 nm) and an iLas² targeted laser illumination system (Cairn, Faversham, UK). Excitation light was transmitted through either a quad dichroic beam-splitter (TRF89902-QUAD) or a dichroic mirror (for 425 nm; ZT442rdc-UF2, Chroma, Germany). Emitted light was passed through appropriate filters (Cairn Optospin; peak/bandwidth: 480/40 nm, 525/50 nm, 630/75 nm and 700/75 nm) and detected with either an iXon Ultra 897 electron multiplied charge-coupled device (EMCCD) camera (512×512 pixels, Andor, Belfast, Northern Ireland). For all multi-colour imaging, I confirmed that there was no bleedthrough between channels. For TIRFM, the penetration depth was 90-140 nm. The iLas² illumination system was used for TIRFM and wide-field imaging. Bright-field images were acquired using a Cairn MonoLED illuminator.

All fluorescence images were corrected for background by subtraction of fluorescence from a region outside the cell. Image capture and processing were done using MetaMorph Microscopy Automation and Image Analysis Software (Molecular Devices).
2.15 Measurement of near-lysosome Ca2+ signals

HeLa cells transfected with Ly-GG were washed three times in HBS, and Ly-GG fluorescence (excitation at 488 nm, emission at 525 nm) was imaged using wide-field fluorescence microscopy (50 frames/min) at 20°C. After background correction, the Ly-GG fluorescence associated with single lysosomes was measured using single-particle tracking with the MetaMorph Track Objects plugin (Meijering et al., 2012). A template-match algorithm was used to connect tracks between successive frames. Tracks that terminated before completion of the recording (240 s for cells stimulated with histamine; 1330 s for analyses of SOCE) were excluded from the analysis. In parallel analyses of HeLa cells expressing Cy-GG, ROIs similar in dimensions to tracked lysosomes (radius ~1.6 µm) were manually selected for analysis.

2.16 Flash photolysis of caged IP\textsubscript{3}

HeLa cells grown on fibronectin-coated glass-bottomed dishes were first transfected with Ly-GG or Cy-GG, then loaded with ci-IP\textsubscript{3}/PM (1 µM, 50 min) (Dakin & Li, 2007). After washing and incubation in HBS for a further 45 min, cells were imaged (20°C) using an inverted Olympus IX83 microscope equipped with a 100x objective. Ly-GG fluorescence was recorded in wide-field (488 nm excitation, 525/50 nm emission). Cells were imaged for 50 s before photolysis of ci-IP\textsubscript{3} using a SPECTRA X-light engine (Lumencor, 395/20 excitation, exposure time 50 ms/frame for 10 frames). Images were acquired at 50-ms intervals with an iXon Ultra 897 EMCCD camera. Images were collected, corrected for background fluorescence and analyzed using MetaMorph. Ly-GG was tracked to determine Ca2+ signals around single lysosomes. It is worth noting that photolysis of ci-IP\textsubscript{3} releases an active, but more metabolically stable, analogue of IP\textsubscript{3} (i-IP\textsubscript{3}, in which the 2- and 3-hydroxyls are linked by an isopropylidene group) (Dakin & Li, 2007).

2.17 Loading lysosomes with luminal fluorescent indicators

To load lysosomes by endocytosis with fluorescent dyes, cells grown on poly-L-lysine-coated, glass-bottomed 35-mm dishes were incubated (16 h, 37°C) in culture medium supplemented with either a dextran-conjugated indicator (0.1 mg/ml) or Lucifer Yellow (0.2 mg/ml). After a further 4-6 h in the same medium without indicator, to chase along the
indicator along the endocytic pathway into lysosomes, cells were used for experiments (Figure 2.3).

Figure 2.3 Chasing indicators into the lysosomal lumen by endocytosis. Dextran in the extracellular medium is taken up into endosomes via endocytosis and then chased into lysosomes by incubating cells in a medium without the dextran.

For labelling with LysoTracker Red, cells were incubated in HBS with LysoTracker Red DND-99 (100 nM, 20°C). After 20 min, cells were washed three-times with HBS and used immediately. Oregon Green-Dx and fluorescein-Dx were excited at 488 nm and emitted fluorescence was captured using a 525/50 nm filter (peak/bandwidth). LysoTracker Red was excited at 561 nm and emitted fluorescence was captured using a 630/75 nm filter (peak/bandwidth).

2.18 Measurement of pH

Cells were incubated with the ratiometric pH indicator, fluorescein-Dx (10-kDa, 0.2 mg/ml), for 16 h followed by a 4-h chase in DMEM F12 at 37°C. The cells were then washed 3 times with HBS and imaged immediately with alternating excitation/emission (F₄₂₅: λ_{ex} = 425 nm, λ_{em} = 480 nm. F₄₈₈: λ_{ex} = 488 nm, λ_{em} = 525 nm). Images were collected for 100 ms, with 5-min between each round of data acquisition. After background subtraction, regions of interest (ROIs) were drawn around lysosome clusters and fluorescence ratios (R, which increases with increased pH) were calculated from F₄₈₈/F₄₂₅ at each time point. Results are presented as R/R₀, where R₀ is the fluorescence ratio recorded before stimulation.
For experiments where LysoTracker Red was used qualitatively to report the timeframe of pH changes following addition of concanamycin A (Figure 3.20), cells were loaded with 50 nM LysoTracker Red DND-99 for 1 h, washed 3 times with HBS, and imaged immediately.

2.19 Measurement of lysosomal size

Lysosome size was measured in HEK cells expressing LAMP1-mCherry. After application of a threshold (ImageJ Threshold), particles were accepted for analysis if they had a circulatory value (4.π.area/circumference²) of 0.6-1.0. The circularity criterion ensured that only roughly circular particles were selected for analysis (Lai et al., 1988). Visual inspection of images before and after application of the selection criteria confirmed that most lysosomes were included in the final analysis. The Feret diameter is used to report lysosome size, which is the maximum distance between two points on the perimeter of the particle (ImageJ Analyze Particles).

2.20 Other image analysis

Time-lapse recordings of cells loaded with Dx-conjugated indicators were analysed by taking randomly selected ROI large enough for each to include several lysosomes (ROI, 3.2 μm x 3.2 μm). Fluorescence changes were then expressed as F/F₀, where F₀ and F denote the average fluorescence within the ROI at the start of the experiment (F₀) and at each subsequent time point (F).

To analyse the number of lysosomes in cells before and after GPN treatment, the Fiji TrackMate plugin (Tinevez et al., 2017) was used to identify lysosomes as spots in background-corrected wide-field images.

For colocalisation analysis, R_{coloc} was calculated from all pixels within the ROI that exceeded a threshold value (ImageJ Colocalisation Analysis/Colocalisation Threshold):

\[
R_{\text{coloc}} = \frac{\sum (R_i - R_m)(G_i - G_m)}{\sqrt{\sum (R_i - R_m)^2 \Sigma (G_i - G_m)^2}}
\]

where, G_i and R_i are the intensities of individual green and red pixels respectively, and G_m and R_m are the mean intensities of green and red pixels. After quantifying colocalization of fluorophores using Pearson’s correlation coefficient (R_{coloc}), Costes randomization method
with 100 iterations (Costes et al., 2004), was used to confirm that any colocalization was more than expected from randomly distributed fluorophores (ImageJ Colocalisation Analysis/Colocalisation Test).

2.21 Statistical analysis

All analyses were done using GraphPad Prism (version 5, La Jolla, CA, USA). For each experiment, concentration-effect relationships were fitted using non-linear curve-fitting to a Hill equation. From each experiment, pEC$_{50}$ and the maximal response were obtained and used in statistical analyses. A Student’s t-test (2 variables) one-way or two-way ANOVA (more than 2 variables) was used for statistical analyses. Dunnett’s, Tukey’s multiple comparison tests and Bonferroni post hoc tests were conducted where stated. A P-value < 0.05 was considered significant.
Chapter 3

3. IP₃R selectively deliver Ca²⁺ to lysosomes at ER-Lysosomes contact sites

3.1 Introduction

There is some evidence that the ER is required for lysosomes to fill with Ca²⁺, but the intricate details are unclear. Previous work from this laboratory suggested that Ca²⁺ released from the ER is selectively accumulated by lysosomes. That conclusion derives substantially from the evidence that bafilomycin A₁ selectively increased the amplitude of the cytosolic Ca²⁺ signals evoked by IP₃R. For example, muscarinic M3 receptors in HEK cells, activated by carbachol (CCh) that stimulate the formation of IP₃ (Lopez-Sanjurjo et al., 2013). This potentiation is not due to NAADP, because inhibition of NAADP-mediated Ca²⁺ release by NED-19 affected neither the CCh-induced alkalinisation of lysosomes (assumed to reflect the increased activity of a Ca²⁺-H⁺ exchange mechanism) nor the amplitude of the cytosolic Ca²⁺ signals evoked by CCh (Lopez-Sanjurjo et al., 2013). These results suggest that lysosomes continuously sequester Ca²⁺ released via IP₃Rs. Disruption of lysosomes unmasks this sequestration of Ca²⁺ and leads to greater increases in [Ca²⁺]c after stimulation with CCh. This evidence agrees with others in the field suggesting that the pH is important for lysosomal Ca²⁺ uptake (Section 1.2.3). However, CAX genes have been found in protostomes, deuterostomes, amphibians, reptiles and birds, but not in placental mammals (Melchionda et al., 2016). Furthermore, it has been reported that inhibition of the V-ATPase does not affect the acute refilling of lysosomes in mammalian cells (Garrity et al., 2016). Together, these results suggest that the almost universally accepted view that lysosomal Ca²⁺ uptake requires an H⁺ gradient requires closer examination.

The primary effect of the V-ATPase on the lysosomal membrane is to maintain the characteristic low pH of lysosomes (Figure 3.1A). However, there are also secondary effects arising from changes in pHₗy, as low pHₗy is important in maintaining ionic balance, cargo sorting and maintenance of proper functioning of lysosomal hydrolytic enzymes. For example, a chronic increase in pHₗy affects the expression of key lysosomal proteins such as lysosomal/autophagy master transcription factor TFEB and of the V-ATPase itself (Guha et al., 2014). Knockdown of V-ATPase induces accumulation of non-functional lysosomes abrogating autophagic pathway (Mauvezin et al., 2015). Furthermore, yeast vacuoles expressing mutant V-ATPase are enlarged because the balance between fusion and fission is disrupted (Baars et al., 2007; Peri & Nusslein-Volhard, 2008). Acute increases in pHₗy
following treatment with methylamine (MA) or bafilomycin A1 promote lysosomal fusion in a calmodulin-dependent manner (Cao et al., 2015). Furthermore, inhibition of V-ATPase with concanamycin A or bafilomycin A1 decreases the total lysosome volume in HEK cells (Figure 3.1B) (Abu-Remaileh et al., 2017). Other means of increasing pH\textsubscript{ly} in single cells such as following heterologous expression of Arl8b promotes a distinct redistribution of lysosomes to peripheral regions (Johnson et al., 2016).

Treatment with pharmacological agents known to increase pH\textsubscript{ly}, such as chloroquine, has been repeatedly reported to induce clinical manifestations of retinopathy (Bernstein & Ginsberg, 1964; Araiza-Casillas et al., 2004). This has been linked to the effect of chloroquine on lysosomes in a number of ways. Firstly, in whole-animal models, chronic increase in pH\textsubscript{ly} following treatment with chloroquine show an increase in retinopathy, characterised by increased enzyme accumulation in lysosomes (Bernstein & Ginsberg, 1964; Meier-Ruge, 1965; Guha et al., 2014). Notably, chronic alkalinisation of lysosomes results in impaired degradation of outer segments in retinal pigment epithelial (RPE) cells isolated from patients, and this was rescued by reacidification of lysosomes (Liu et al., 2008; Guha et al., 2012). Hence, increasing the pH of lysosomes can have a plethora of secondary effects that remain unexplored in relation to lysosomal Ca2+ homeostasis.

Lysosome enlargement can also be induced by small molecules such as brefeldin A (Wood & Brown, 1992) and chloroquine (Yoon et al., 2010). But, these are not selective to lysosomes (Lippincott-Schwartz et al., 1991) and they perturb Ca2+ signalling (Dickinson et al., 2010). Vacuolin, a triazine-based molecule, reversibly enlarges lysosomes (Cerny et al., 2004; Huynh & Andrews, 2005; Durchfort et al., 2012), but the mechanisms are not well characterised. However, vacuolin is routinely used to provide fused organelles large enough to patch-clamp (Dong et al., 2010; Schieder et al., 2010a; Wang et al., 2012; Cang et al., 2013). Enlargement of lysosomes with vacuolin increased the amplitude of the cytosolic Ca2+ signals evoked by IP\textsubscript{3}R in HEK cells (Lopez-Sanjurjo et al., 2013). This provides evidence that altering lysosomal size and morphology can disrupt lysosomal Ca2+ homeostasis.
Figure 3.1 **Inhibition of the V-ATPase affects the distribution and functions of lysosomes.** (A) Bafilomycin A₁ and concanamycin A inhibit the V-ATPase, blocking the pumping of H⁺ into the lysosomal lumen. This leads to an increase in pH_{ly}. (B) Inhibition of the V-ATPase causes lysosomes to redistribute and increase in size (Cao et al., 2015), and there is an overall decrease in total cellular lysosomal volume (Abu-Remaileh et al., 2017). (C) During autophagy, autophagosomes fuse with lysosomes to allow transfer of materials destined for degradation by autolysosomes. Lysosome alkalinising agents such as bafilomycin A₁ and chloroquine, inhibit this fusion, thereby inhibiting autophagy (Redmann et al., 2017).

Pharmacological inhibition of IP₃R has been shown to inhibit the refilling of lysosomes with Ca²⁺ (Garrity et al., 2016). Ca²⁺ refilling of lysosomes was completely blocked by Xestospongin C, used to inhibit IP₃R, but unaffected in DT40 cells lacking IP₃R. However, Xestospongin C has been shown to have off-target effects such as emptying the ER (Solovyova et al., 2002) and it does not universally inhibit IP₃Rs (Saleem et al., 2013). There is a poorly defined relationship between pH_{ly}, lysosomal morphology and the impact of these on the exchange of Ca²⁺ between ER and lysosomes. These relationship are explored in this chapter.
3.2 Materials and Methods

All materials and methods have been described in chapter 2.

3.3 Results and Discussion

3.3.1 Dissipating the lysosomal H+ gradient potentiates Ca²⁺ signals evoked by IP₃R

Stimulation of endogenous muscarinic receptors (M3R) in HEK cells by cholinomimetics such as CCh results in the activation of PLC and formation of IP₃ (Section 1.1.1). This has been previously shown to result in a biphasic Ca²⁺ signal (Tovey et al., 2008), comprising an initial Ca²⁺ transient due to Ca²⁺ release from intracellular stores mediated by IP₃R (Tovey et al., 2008; Lopez-Sanjurjo et al., 2013) and a more sustained increase in [Ca²⁺]ᵽ resulting from SOCE. Experiments described here were carried out in Ca²⁺-free HBS to allow the effects of CCh on Ca²⁺ release from intracellular stores to be specifically addressed. This was achieved by addition of the Ca²⁺-chelating agent BAPTA 30 s prior to stimulation with CCh. The results, which are consistent with previous observations (Lopez-Sanjurjo et al., 2013), show that CCh causes a concentration-dependent increase in [Ca²⁺]ᵽ, reflecting the IP₃-mediated release of Ca²⁺ from intracellular stores (pEC₅₀ = 4.8 ± 0.2, n = 6, where pEC₅₀ is the negative logarithm of the molar concentration of CCh required to cause a half-maximal response) (Figure 3.2).
Figure 3.2 **CCh stimulates Ca\(^{2+}\) release from intracellular stores in HEK cells** (A) Typical increases in \([\text{Ca}^{2+}]_c\) obtained from populations of HEK cells stimulated with a maximal concentration of CCh (1 mM) in Ca\(^{2+}\)-free HBS. Results are means ± SD for 3 wells from a single experiment. (B) Concentration-dependent effects of CCh on peak Ca\(^{2+}\) signals (\(\Delta[\text{Ca}^{2+}]_c\)) recorded from populations of HEK cells in Ca\(^{2+}\)-free HBS. Results are means ± SEM from 6 experiments, each with 3 replicates.

The CCh-induced increase in \([\text{Ca}^{2+}]_c\) in HEK cells is selectively mediated by IP\(_3\)R as it is abolished by inhibition of PLC, but unaffected by inhibition of RyR or TPC2 (Lopez Sanjurjo et al., 2013). Therefore, CCh mobilises Ca\(^{2+}\) selectively from intracellular stores via IP\(_3\)R.

LysoTracker is a lipophilic amine conjugated to the probe Red DND-99 (Duvvuri et al., 2004). Therefore, it accumulates in the most acidic parts of the cell. LysoTracker Red colocalises with LAMP1 in HEK cells (\(R_{\text{coloc}}\) of 0.80 ± 0.1, \(n = 4\)) (Figure 3.3), therefore it efficiently labels lysosomes in these cells. \(R_{\text{coloc}}\) is the Pearson's correlation coefficient; 1 denotes perfect colocalization. To allow dissipation of the lysosomal H\(^+\) gradient, HEK cells were treated with bafilomycin A\(_1\) or concanamycin A, which inhibit the V-ATPase.

Treatment with concanamycin A, a more selective inhibitor of the V-ATPase than bafilomycin A\(_1\) (Drose & Altendorf, 1997; Huss & Helmut, 2009), results in loss of LysoTracker accumulation in HEK cells (Figure 3.4A). Similar results were obtained following treatment with bafilomycin A\(_1\) (Figure 3.4B).

Treatment of HEK cells with concanamycin A (1 \(\mu\)M, 1 h), under conditions that dissipate the lysosome H\(^+\) gradient, caused a significant increase in the basal \([\text{Ca}^{2+}]_c\) (Figure 3.5B, C). Furthermore, the peak increase in \([\text{Ca}^{2+}]_c\) evoked by CCh, which stimulates IP\(_3\) formation via
endogenous M₃ muscarinic receptors in HEK cells, was significantly increased by concanamycin A (Figure 3.5B, D).

Figure 3.3 **LysoTracker colocalises with LAMP1 in HEK cells.** Wide-field images of HEK cells transiently transfected with LAMP1-GFP and loaded with LysoTracker Red (100 nM, 10 min). Scale bar is 10 µm. Image is typical of 4 independent dishes.

Figure 3.4 **Bafilomycin A₁ and concanamycin A abolish LysoTracker accumulation in lysosomes.** Brightfield (left) and wide-field images of HEK cells loaded with LysoTracker Red (100 nM, 10 min) with or without concanamycin A (CcA, 1 µM, 1 h) (A) or bafilomycin A₁ (Baf A₁, 1 µM, 1 h) (B). The images are typical of 3 independent experiments.
Similar results were obtained following treatment of HEK cells with bafilomycin A₁, which caused a significant increase in basal [Ca\(^{2+}\)]\(c\) (Figure 3.6A). Furthermore, bafilomycin A₁ significantly potentiated the CCh-evoked increase in [Ca\(^{2+}\)]\(c\) (Figure 3.6A, C).

Figure 3.5 \textit{Inhibition of lysosomal acidification potentiates CCh-evoked Ca\(^{2+}\) signals in HEK cells.} (A) Bafilomycin A₁ and concanamycin A inhibit the lysosomal V-ATPase and so prevent H\(^{+}\) accumulation by lysosomes. (B) Fluo-8-loaded HEK cells were treated with concanamycin A (CcA, 1 μM, 1 h) in HBS before addition of BAPTA (2.5 mM) to chelate extracellular Ca\(^{2+}\) and then CCh (1 mM) to stimulate IP\(_3\) formation. Typical results show means ± SD from 3 wells in a single experiment. (C, D) Summary results show effects of CcA on basal [Ca\(^{2+}\)]\(c\) (C) and peak increase in [Ca\(^{2+}\)]\(c\) (Δ[Ca\(^{2+}\)]\(c\)) evoked by CCh (D). Results show paired individual values (each from 3 determinations) and the mean (n = 7, line). *P < 0.05, paired Student’s t-test.
Figure 3.6 Inhibition of lysosomal acidification potentiates CCh-evoked Ca\(^{2+}\) signals in HEK cells. (A) Concentration-dependent effects of CCh on peak Ca\(^{2+}\) signals (Δ[Ca\(^{2+}\)]\(_c\)) with and without pre-incubation with bafilomycin A\(_1\) (Baf A\(_1\), 1 µM, 1 h). Results are means ± SEM from 5 independent experiments. (B) Basal [Ca\(^{2+}\)]\(_c\) in HEK cells treated with Baf A\(_1\). *P < 0.05, Student's t-test. (C) Peak increases in [Ca\(^{2+}\)]\(_c\) (Δ[Ca\(^{2+}\)]\(_c\)) evoked by CCh alone or after incubation with Baf A\(_1\). Results are means ± SEM, n = 5, with triplicate determinations in each. *P < 0.05, Student’s t-test.

Similar results were obtained in HeLa cells, where treatment with bafilomycin A\(_1\) resulted in an increase in basal [Ca\(^{2+}\)]\(_c\) from 65 ± 6 nM to 73 ± 7 nM (P < 0.05, paired Student’s t-test, n = 5). The IP\(_3\)-R-mediated increase in [Ca\(^{2+}\)]\(_c\) following stimulation with a maximal concentration of histamine was also potentiated by bafilomycin A\(_1\) (Figure 3.7A, B).
Figure 3.7 Inhibition of lysosomal acidification potentiates histamine-evoked Ca\(^{2+}\) signals in HeLa cells. (A) Fluo-8-loaded HeLa cells were treated with Baf A\(_1\) (1 μM, 1 h) in HBS before addition of BAPTA (2.5 mM) to chelate extracellular Ca\(^{2+}\), and then histamine (100 μM) to stimulate IP\(_3\) formation. Typical results show means ± SD from 3 wells in a single experiment. (B) Summary results show Δ[Ca\(^{2+}\)]\(_c\) as paired comparisons of peak histamine responses (each with 3 replicates) and the mean value (n = 5, line). *P < 0.05, paired Student’s t-test.

A small interfering RNA (siRNA) to an essential pore-forming subunit of the V-ATPase (ATP6V0C) (Figure 3.8A) (Forgac, 2007) reduced expression of its mRNA by 55 ± 4% (n = 6) (Figure 3.8B). There are no reliable antibodies to determine expression of the ATP6V0C protein (Mangieri et al., 2014). Following knockdown of ATP6V0C, the accumulation of LysoTracker Red in lysosomes was attenuated, indicating an increase in pH\(_{ly}\) (Figure 3.8C). This agrees with a previous report that siRNA to ATP6V0C is sufficient to dissipate the pH\(_{ly}\) gradient (Mangieri et al., 2014).
Figure 3.8 Knockdown of ATP6V0C dissipates the lysosomal H⁺ gradient (A) ATP6V0C (circled in red) is a key subunit of the V-ATPase involved in the translocation of H⁺ into the lysosomal lumen to drive lysosomal acidification. Image is modified from Smith et al (2003). (B) Expression of mRNA for ATP6V0C relative to that for GAPDH in cells treated with non-silencing siRNA (NS) or siRNA for ATP6V0C. Results are means ± SEM from 6 experiments. *P < 0.05, paired Student’s t-test. (C) TIRFM images show the effects of the indicated siRNAs in HEK cells expressing TPC2-GFP or stained with LysoTracker Red (100 nM, 10 min). Scale bar applies to all images. Images are typical of 3 independent experiments.
Unlike bafilomycin A₁ and concanamycin A, siRNA to ATP6V0C did not significantly affect the basal \([\text{Ca}^{2+}]_c\), but the siRNA significantly increased the amplitude of the CCh-evoked \(\text{Ca}^{2+}\) signals to the same extent as concanamycin A (Figure 3.9). The different effect of siRNA and pharmacological inhibition of the V-ATPase on basal \([\text{Ca}^{2+}]_c\) might arise from an adaptive response to the more prolonged siRNA treatment. Furthermore, there was no further effect of concanamycin A on the CCh-evoked increase in \([\text{Ca}^{2+}]_c\) after knockdown of the V-ATPase (Figure 3.9B). These results confirm that the effects of concanamycin A on CCh-evoked \(\text{Ca}^{2+}\) signals are mediated by inhibition of the V-ATPase. The results are important because bafilomycin A₁ and concanamycin A have additional effects, which at higher concentrations include inhibition of the P-ATPases that transport \(\text{Ca}^{2+}\) across the PM and ER membranes.

Inhibition of V-ATPase does not affect the production of IP₃ nor the sensitivity of the IP₃R to IP₃ (Lopez Sanjurjo et al., 2013). Furthermore, the \(\text{Ca}^{2+}\) content of the ER is unaffected by pre-treatment with bafilomycin A₁ (Lopez Sanjurjo et al., 2013). Hence, inhibition of V-ATPase potentiates the IP₃R-mediated increase in \([\text{Ca}^{2+}]_c\), not by increasing \(\text{Ca}^{2+}\) released from the ER, but by unmasking the ability of lysosomes to sequester \(\text{Ca}^{2+}\) released from the ER via IP₃R.
Chapter 3

Figure 3.9 Knockdown of ATP6V0C potentiates CCh-evoked Ca^{2+} signals in HEK cells

(A) Summary results show effects of siRNA treatments on basal \([\text{Ca}^{2+}]_c\). Results show paired individual values (each from 3 determinations) and the mean (\(n = 6\), line). \((P = 0.56\), paired Student’s \(t\)-test). (B) Summary results show the effect of siRNA treatments on CCh-evoked \(\text{Ca}^{2+}\) signals with or without CcA pre-incubation (1 \(\mu\)M, 1 h). Results are means ± SEM, \(n = 3\)-5, with triplicate determinations in each. *\(P < 0.05\), two-way Anova, Bonferroni post hoc test.

3.3.2 Dissipating the lysosomal H\(^+\) gradient does not affect SOCE

The sustained response to CCh, and to most stimuli that activate PLC, requires \(\text{Ca}^{2+}\) entry across the PM through the SOCE pathway, which is stimulated by loss of \(\text{Ca}^{2+}\) from the ER (Parekh & Putney, 2005; Lopez-Sanjurjo et al., 2013). In cells pre-treated with thapsigargin in \(\text{Ca}^{2+}\)-free HBS to deplete the ER of \(\text{Ca}^{2+}\), restoration of extracellular \(\text{Ca}^{2+}\) caused a sustained increase in \([\text{Ca}^{2+}]_c\) reflecting the activity of SOCE (Figure 3.10A). Although the global increase in \([\text{Ca}^{2+}]_c\) resulting from thapsigargin-evoked SOCE was comparable to the increase after CCh-evoked \(\text{Ca}^{2+}\) release, the SOCE signals were not significantly affected by concanamycin A (Figure 3.10A, B).

Bafilomycin A\(_1\) also had no effect on the \(\text{Ca}^{2+}\) signals evoked by SOCE in HEK cells, even when the amplitudes of the SOCE exceeded the \(\text{Ca}^{2+}\) signals evoked by IP\(_3\)Rs (Figure 3.11A). Similar results were obtained in HeLa cells, where thapsigargin evoked SOCE was unaffected by bafilomycin A\(_1\) (Figure 3.11B).
Figure 3.10 **Inhibition of lysosomal V-ATPase with concanamycin A does not affect the Ca\(^{2+}\) signals evoked by SOCE.** (A) HEK cells were treated with thapsigargin (1 μM, 15 min) in Ca\(^{2+}\)-free HBS to activate SOCE before restoration of extracellular Ca\(^{2+}\) (10 mM) alone or after treatment with CcA (1 μM, 1 h). Typical results show means ± SD from 3 wells in a single experiment. (B) SOCE after the restoration of extracellular Ca\(^{2+}\) (10 mM) to cells pre-treated with thapsigargin in nominally Ca\(^{2+}\)-free HBS is shown for control or CcA-treated cells. Results are from 4 independent experiments.

Figure 3.11 **Inhibition of lysosomal V-ATPase with bafilomycin A\(_1\) does not affect the Ca\(^{2+}\) signals evoked by SOCE.** (A) HEK cells pre-incubated with Baf A\(_1\) (1 μM, 1 h) were treated with thapsigargin (1 μM, 15 min) in Ca\(^{2+}\)-free HBS before restoration of extracellular Ca\(^{2+}\). Summary results show means ± SEM, n = 3, with triplicate determinations in each. (B) SOCE after the restoration of extracellular Ca\(^{2+}\) (10 mM) to HeLa cells pre-treated with thapsigargin in nominally Ca\(^{2+}\)-free HBS is shown for control or Baf A\(_1\)-treated cells (1 μM, 15 min). Results are means ± SEM from 4 independent experiments (P = 0.81, paired Student’s t-test).
Furthermore, following the knockdown of ATP6VOC, the thapsigargin-induced SOCE was not significantly different compared to cells treated with scrambled siRNA \((n = 7, P = 0.18)\) (Figure 3.12). These results extend previous observations (Lopez-Sanjurjo et al., 2013) by demonstrating that disruption of the pH gradient, using siRNA to the V-ATPase or pharmacological inhibitors, exaggerates the cytosolic Ca\(^{2+}\) signals evoked by IP\(_3\)-evoked Ca\(^{2+}\) release without affecting those evoked by SOCE (Figure 3.13).

Figure 3.12 Knockdown of ATP6VOC has no effect on thapsigargin-induced SOCE signals. (A) HEK cells were treated with thapsigargin (1 μM, 15 min) in Ca\(^{2+}\)-free HBS to activate SOCE before restoration of extracellular Ca\(^{2+}\) (10 mM) in cells treated with the indicated siRNA. (B) Summary results show Δ[Ca\(^{2+}\)]\(_{c}\) after restoration of extracellular Ca\(^{2+}\) to cells treated with the indicated siRNA. \(P = 0.18\), Student’s \(t\)-test. Results are mean values from 7 independent experiments, with triplicate determinations in each.

Figure 3.13 Lysosomes selectively shape IP\(_3\)R-mediated Ca\(^{2+}\) signals. Lysosomes (LY) selectively sequester Ca\(^{2+}\) released from ER through IP\(_3\)Rs, but not Ca\(^{2+}\) entering the cell through SOCE.
3.3.3 IP$_3$Rs selectively deliver Ca$^{2+}$ to lysosomes

Results described so far establish a selective communication between IP$_3$R and lysosomes. The next strategy was to use a minimally perturbing assay to investigate the selective coupling between lysosomes and IP$_3$R. There is a need for Ca$^{2+}$ indicators that directly report free [Ca$^{2+}$] within the lysosome lumen, but their development presents considerable challenges (Section 1.4). An improvement on present measurements of global [Ca$^{2+}$] with conventional Ca$^{2+}$ indicators would be to use a low-affinity Ca$^{2+}$ indicator tethered to the cytosolic surface of the lysosome membrane to measure juxta-lysosomal [Ca$^{2+}$]. Previously, lysosomal proteins have been tethered to high-affinity Ca$^{2+}$ sensors, thus making it difficult to selectively measure juxta-lysosomal Ca$^{2+}$ (Shen et al., 2012; McCue et al., 2013; Garrity et al., 2016). My first attempt to generate a low-affinity fluorescent protein tethered to a lysosomal protein was done by attaching R-GECO1.2 (Wu et al., 2014) to the C-terminus of LAMP1. However, this protein did not localise to lysosomes, but instead formed aggregates within HEK cells (results not shown). I thus have tethered the C-terminus of LAMP1 to the low-affinity Ca$^{2+}$ sensor (G-GECO1.2, $K_D^{Ca} = 1.2 \mu M$) (Zhao et al., 2011). G-GECO1.2 was initially produced by random mutagenesis of GCaMP (Zhao et al., 2011), which comprises a circularly permuted green fluorescent protein (cpGFP), CaM-binding M13 peptide and calmodulin (CaM) (Zhao et al., 2011). Binding of Ca$^{2+}$ to the modified CaM, allows the Ca$^{2+}$-CaM to bind to M13 and that causes an increase in the GFP fluorescence intensity.

HeLa cells, in which histamine stimulates IP$_3$ formation and Ca$^{2+}$ release from the ER (Thillaiappan et al., 2017), were used for these experiments because they are better suited for imaging organelles. In HeLa cells, just as in HEK cells, IP$_3$-evoked increases in [Ca$^{2+}$]$_c$ were potentiated by bafilomycin A$_1$, whereas SOCE-evoked Ca$^{2+}$ signals were not (Figure 3.7 and Figure 3.11B). For comparison with these local measurements of [Ca$^{2+}$] at lysosome membranes, I used the same low-affinity sensor expressed in the cytosol (Cy-GG) to record global increases in [Ca$^{2+}$]$_c$. Since the peak [Ca$^{2+}$]$_c$ after histamine stimulation does not exceed ~360 nM (Figure 3.7), Ly-GG and Cy-GG selectively report local increases in [Ca$^{2+}$]$_c$ in HeLa cells. In HeLa cells, Ly-GG co-localized with LAMP1-mCh ($R_{coloc} = 0.93 \pm 0.02$, $n = 3$) and with the lysosomal cation channel, TPC2-RFP ($R_{coloc} = 0.86 \pm 0.09$, $n = 3$) (Figure 3.14). All colocalization analyses were done from wide-field images.
Figure 3.14 Ly-GG is specifically targeted to lysosomes. Wide-field fluorescence images of HeLa cells expressing TPC2-RFP with either Ly-GG (top) or Cy-GG (bottom). Scale bar = 10 μm.

In unstimulated cells, \([\text{Ca}^{2+}]_c\) (reported as \(\text{F/F}_{\text{max}}\)) was similar when detected with Ly-GG (\(\text{F/F}_{\text{max}} = 0.25 \pm 0.01, n = 3\)) and Cy-GG (\(0.23 \pm 0.01, n = 3, P = 0.33\), Student’s \(t\)-test) (Figure 3.15D), suggesting that the \(\text{Ca}^{2+}\) affinity of the sensor was unaffected by differential targeting. HeLa cells in \(\text{Ca}^{2+}\)-free HBS were stimulated with histamine, which evokes IP\(_3\) formation, and fluorescence was recorded from single tracked lysosomes (Ly-GG) or from comparable areas of cytosol (Cy-GG) (see Section 2.15). Histamine caused a transient increase in Cy-GG fluorescence and a larger transient increase in Ly-GG fluorescence that came close to saturating the indicator (Figure 3.15A-C). The change in fluorescence (\(\text{F/F}_{\text{max}}\)) for Ly-GG was \(0.73 \pm 0.08\) (\(n = 4\)) and for Cy-GG it was \(0.44 \pm 0.04\) (\(n = 3, P < 0.05\), Student’s \(t\)-test).
Figure 3.15 Lysosomes are exposed to local large [Ca$^{2+}$] after Ca$^{2+}$ release via IP$_3$R. (A, B) Recordings from HeLa cells expressing Cy-GG (A) or Ly-GG (B) showing responses to histamine (100 μM) in Ca$^{2+}$-free HBS, and then ionomycin (10 μM) with 2 mM CaCl$_2$ (to saturate sensor). Results (F/F$_{\text{max}}$, where F$_{\text{max}}$ is response after ionomycin) show responses of a single tracked lysosome (B) or a similarly sized cytosolic ROI (A). (C,D) Summary results (mean ± SEM) show basal fluorescence (C) (3 experiments with 198 ROI for Cy-GG, and 83 tracks for Ly-GG), and peak fluorescence signals (D) evoked by histamine for Cy-GG (3 experiments with 198 ROI) and Ly-GG (4 experiments with 83 lysosome tracks). (E) Summary results show peak fluorescence signals following uncaging of ci-IP$_3$ (mean ± SEM). *P < 0.05, Student’s t-test.

The distribution of the fluorescence intensity changes of Ly-GG from 83 tracked lysosomes showed a 41% overlap with those from Cy-GG, but the remaining 59% responded with much larger changes (Figure 3.16). There was no difference in the average speed of lysosomes responding to histamine with large (F/F$_{\text{max}} > 0.6$; speed = $0.45 \pm 0.17 \ \mu\text{m/s}$, $n = 51$) or cytosol-like responses (F/F$_{\text{max}} < 0.6$; $0.34 \pm 0.22 \ \mu\text{m/s}$, $n = 32$; $P = 0.60$).
Figure 3.16 **IP₃Rs selectively deliver Ca²⁺ to a subset of lysosomes.** (A, B) Summary results from the experiments in Figure 3.15, show the distribution of F/Fₘₐₓ values for Ly-GG and Cy-GG for tracks (Ly-GG) or ROIs obtained from cells stimulated with histamine. The distribution of values for Cy-GG is consistent with a normal distribution (Kolmogorov-Smirnov normality test, P = 0.0018), whereas the distribution of values for Ly-GG appears multi-modal (P > 0.1). (C,D) Distribution of peak F/Fₘₐₓ values for Cy-GG (C) and Ly-GG (D) after photolysis of ci-IP₃ in Ca²⁺-free HBS (n = 59 ROIs from 4 dishes for Cy-GG, and 49 tracks from 3 dishes for Ly-GG).

Activation of histamine (H₁) receptors has been previously reported to cause the production of NAADP, which can trigger release of Ca²⁺ from acidic stores (Esposito et al., 2011). The consequence of this would be that the Ca²⁺ detected by Ly-GG upon histamine stimulation could be due to release of Ca²⁺ directly from lysosomes and not from the ER via IP₃R. However, HeLa cells have been reported to respond to NAADP only after overexpression of TPC2, since they do not express TPC2 endogenously (Lu et al., 2013). In Hela cell populations, U73122, an inhibitor of PLC (Bleasdale et al., 1990), caused a concentration-
dependent inhibition (pIC$_{50}$ (negative log of the half-maximally inhibitory concentration) = 6.6 ± 0.07, n = 3) of the Ca$^{2+}$ signals evoked by a maximally effective concentration histamine (100 µM), while the inactive analogue, U73343 (≤10 µM), had no effect (Figure 3.17A). Furthermore, in single cells, the histamine-mediated increase in Ly-GG fluorescence was abolished by treatment with U73122 (10 µM, 20 min). This establishes that the histamine-induced increase in [Ca$^{2+}$]$_c$ is dependent on IP$_3$ production and consequently dependent on IP$_3$-mediated release of Ca$^{2+}$ from the ER.

Another approach was direct activation of IP$_3$Rs by photolysis of caged IP$_3$ (ci-IP$_3$). Photolysis of ci-IP$_3$ also caused increases in [Ca$^{2+}$]$_c$ that were larger at the lysosome surface than in the bulk cytosol (Figure 3.15E). Furthermore, whereas U73122 abolished Ly-GG responses to histamine, it had no effect on responses to photolysis of ci-IP$_3$ (Figure 3.17D), consistent with the effects of U73122 on histamine-evoked Ca$^{2+}$ signals arising from inhibition of PLC. My results establish that Ca$^{2+}$ release through IP$_3$Rs is required for the near-lysosome Ca$^{2+}$ signals.
Figure 3.17 Histamine-mediated increase in \([\text{Ca}^{2+}]_c\) requires PLC in HeLa cells. (A) Effects of the indicated concentrations of U73122 or U73343 (20 min) on the peak increase in \([\text{Ca}^{2+}]_c\) evoked by histamine (100 μM). Results are means ± SEM from 3 experiments, each with 3 determinations. (B, C) Typical traces from HeLa cells expressing Ly-GG show responses to histamine (100 μM) (B) or photolysis of ci-IP\(_3\) (C) in Ca\(^{2+}\)-free HBS with or without U73122 (10 μM, 20 min), and then ionomycin (10 μM) with 2 mM CaCl\(_2\). Results show responses of a single tracked lysosome. (D) Summary results show the effects of U73122 (10 μM, 20 min) on peak Ly-GG signals evoked by histamine (100 μM) or photolysis of ci-IP\(_3\). Mean ± SEM, \(n = 3\)-4. *\(P < 0.05\), Student’s \(t\)-test, relative to control.

Cells were incubated in Ca\(^{2+}\)-free HBS with thapsigargin to empty the stores, followed by restoration of Ca\(^{2+}\) to allow SOCE. There was no difference in the signal reported by Ly-GG and Cy-GG during Ca\(^{2+}\) release from the ER in response to thapsigargin (Figure 3.18A, B). There was no significant difference between the signal detected by Cy-GG and Ly-GG following SOCE signals after restoration of extracellular Ca\(^{2+}\) to thapsigargin-treated cells (Figure 3.18C). These results suggest that during histamine-evoked Ca\(^{2+}\) release through IP\(_3\)R\(_s\) about 60% of lysosomes experience a much larger increase in \([\text{Ca}^{2+}]_c\) than the global increase in \([\text{Ca}^{2+}]_c\). SOCE, by contrast, does not selectively deliver Ca\(^{2+}\) to lysosomes.
Figure 3.18 There is no difference between the Ca$^{2+}$ signals detected by lysosomes and in the cytosol following SOCE. (A, B) Typical recordings from HeLa cells expressing Cy-GG (A) or Ly-GG (B) show responses in Ca$^{2+}$-free HBS to TG (1 µM), restoration of extracellular Ca$^{2+}$ (2 mM), and then ionomycin (10 µM). (C) Summary results (mean ± SEM) show peak responses to TG (1 µM) in Ca$^{2+}$-free HBS (30 tracks for Ly-GG and 45 ROI for Cy-GG). (D) Summary results for the peak signal evoked during SOCE following restoration of extracellular Ca$^{2+}$. Results are means ± SEM (30 tracks for Ly-GG and 45 ROI for Cy-GG) from at least 3 independent experiments.

Others have previously used a Ca$^{2+}$ sensor targeted to lysosome membranes (LAMP1-yellow cameleon3.60) to detect Ca$^{2+}$ signals evoked by histamine in HeLa cells (McCue et al., 2013), but this sensor with its high affinity ($K_{D}^{Ca} =$ 250 nM) (Nagai et al., 2004) cannot distinguish local from global increases in [Ca$^{2+}$]. My use of a targeted low-affinity sensor to lysosome membranes (Ly-GG, $K_{D}^{Ca} = 1.2$ µM) has shown that IP$_3$Rs, but not SOCE, selectively deliver Ca$^{2+}$ to about 60% of lysosomes. A similar situation prevails for mitochondria, where the release of Ca$^{2+}$ from IP$_3$Rs adjacent to mitochondria generates a high local [Ca$^{2+}$], sufficient to allow Ca$^{2+}$ uptake through the low-affinity mitochondrial uniporter complex (MCU) (Rizzuto et al., 2012). For both lysosomes and mitochondria, the ER
through its SERCA and IP$_3$Rs, provides a route through which Ca$^{2+}$ can be accumulated from the low [Ca$^{2+}$]$_c$ of resting cells by a high-affinity uptake system (SERCA) and then delivered locally (through IP$_3$Rs) at a high concentration to a low-affinity uptake system (MCU or lysosomes).

IP$_3$Rs provide a link between extracellular stimuli and delivery of Ca$^{2+}$ to lysosomes, but additional unidentified ER Ca$^{2+}$ channels may also deliver Ca$^{2+}$ to lysosomes in unstimulated cells. Therefore, in agreement with a recent report (Garrity et al., 2016), these results suggest that microdomains of high local [Ca$^{2+}$] presented to lysosomes by IP$_3$Rs may facilitate lysosomal Ca$^{2+}$ uptake.

3.3.4 Lysosomes sequester Ca$^{2+}$ released by all IP$_3$Rs

The Ca$^{2+}$ signals evoked by histamine in HeLa cells or by CCh in HEK cells are initiated by activation of IP$_3$Rs. The former is confirmed by the lack of response to histamine following inhibition of PLC and the latter by the lack of response to CCh in HEK cells without IP$_3$Rs (Section 3.3.6). Western blot analysis show that the HEK cells from which the HEK-IP$_3$RKO cells were generated, express all three IP$_3$R subtypes, with IP$_3$R3 \geq IP$_3$R1 $>$ IP$_3$R2 (Mataragka & Taylor, 2018). Differential regulation of Ca$^{2+}$ signalling by different IP$_3$R subtypes is an emerging theme in cell signalling. For example, siRNA against IP$_3$R1 and IP$_3$R3, but not IP$_3$R2, attenuated the activation of calcium release-activated channels (CRAC) in liver cells (Jones et al., 2011). Interactions between the ER and mitochondria, which appear similar to the cross talk between ER and lysosomes, have been reported to require specific IP$_3$R subtypes. In astrocytes, IP$_3$R2 has been reported to colocalise with mitochondria, while in HEK cells and Chinese Hamster Ovary (CHO) cells, IP$_3$R3 has been reported to colocalise with mitochondria (Mendes et al., 2005). To investigate the subtype-selectivity in communication between IP$_3$R and lysosomes, HEK cells in which the genes for one or two of the three IP$_3$R subtypes had been disrupted were used (Alzayady et al., 2016). There was no significant difference in the basal [Ca$^{2+}$]$_c$ between the seven cell lines examined and nor did bafilomycin A$_1$ affect the basal [Ca$^{2+}$]$_c$ in any of the cell lines (Figure 3.19).
Figure 3.19 **Basal $[\text{Ca}^{2+}]_c$ is unaffected by bafilomycin A$_1$ in cells expressing one or more IP$_3$R subtype.** Summary results show the basal $[\text{Ca}^{2+}]_c$ in HEK cells treated with or without Baf A$_1$ (1 µM, 1 h). Results are means ± SEM, $n = 3$, with triplicate determinations in each experiment. WT, wild-type and for others R denotes the native IP$_3$R subtypes exposed in each cell line.

There were some unexpected differences in the amplitudes of the increase in $[\text{Ca}^{2+}]_c$ evoked by a maximal concentration of CCh (1 mM) between wild-type cells and the cell lines lacking one or more IP$_3$R subtypes, with some of the latter giving larger signals (Figure 3.20). This has not been explored further, but it probably arises from changes in the expression of M3 receptors or downstream signalling proteins during the selection of cell lines. However, the effects of bafilomycin A$_1$ were similar in wild-type HEK cells and in cells lacking any one or two of the native IP$_3$R subtypes, irrespective of the amplitude of the CCh-evoked Ca$^{2+}$ signals (Figure 3.20, Table 3.1). In each case, bafilomycin A$_1$ caused the increase in $[\text{Ca}^{2+}]_c$ evoked by 1 mM CCh to be increased by about 20-30%. These results demonstrate that all three IP$_3$R subtypes can deliver Ca$^{2+}$ to lysosomes.
Table 3.1 **Response to CCh in control and bafilomycin A1-treated populations of HEK cells expressing different combinations of IP$_3$Rs subtypes.** The IP$_3$R subtype expressed in each cell line is listed under ‘cell type’. From the results shown in Figure 3.20. Results (means ± SEM from 6 independent experiments) show pEC$_{50}$ values for CCh, peak increase in [Ca$^{2+}$]$_c$ and basal [Ca$^{2+}$]$_c$. *$P < 0.05$, paired Student’s t-test, relative to control in each.

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Treatment</th>
<th>Basal [Ca$^{2+}$]$_c$ (nM)</th>
<th>Peak [Ca$^{2+}$]$_c$ (nM)</th>
<th>pEC$_{50}$ (/M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEK WT</td>
<td>Control</td>
<td>20 ± 0.2</td>
<td>298 ± 6</td>
<td>5.18 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>Bafilomycin A1</td>
<td>23 ± 0.3</td>
<td>373 ± 14*</td>
<td>5.17 ± 0.07</td>
</tr>
<tr>
<td>IP$_3$R1</td>
<td>Control</td>
<td>22 ± 9</td>
<td>175 ± 20</td>
<td>5.10 ± 0.20</td>
</tr>
<tr>
<td></td>
<td>Bafilomycin A1</td>
<td>21 ± 9</td>
<td>212 ± 23*</td>
<td>5.11 ± 0.26</td>
</tr>
<tr>
<td>IP$_3$R2</td>
<td>Control</td>
<td>19 ± 8</td>
<td>497 ± 11</td>
<td>5.81 ± 0.06</td>
</tr>
<tr>
<td></td>
<td>Bafilomycin A1</td>
<td>19 ± 8</td>
<td>624 ± 14*</td>
<td>5.78 ± 0.07</td>
</tr>
<tr>
<td>IP$_3$R3</td>
<td>Control</td>
<td>19 ± 8</td>
<td>413 ± 32</td>
<td>5.05 ± 0.17</td>
</tr>
<tr>
<td></td>
<td>Bafilomycin A1</td>
<td>20 ± 9</td>
<td>471 ± 34*</td>
<td>5.03 ± 0.16</td>
</tr>
<tr>
<td>IP$_3$R1 and IP$_3$R2</td>
<td>Control</td>
<td>18 ± 8</td>
<td>518 ± 9</td>
<td>5.75 ± 0.06</td>
</tr>
<tr>
<td></td>
<td>Bafilomycin A1</td>
<td>19 ± 8</td>
<td>625 ±16*</td>
<td>5.72 ± 0.09</td>
</tr>
<tr>
<td>IP$_3$R1 and IP$_3$R3</td>
<td>Control</td>
<td>22 ± 10</td>
<td>451 ± 35</td>
<td>5.58 ± 0.35</td>
</tr>
<tr>
<td></td>
<td>Bafilomycin A1</td>
<td>21 ± 9</td>
<td>552 ± 43*</td>
<td>5.58 ± 0.38</td>
</tr>
<tr>
<td>IP$_3$R2 and IP$_3$R3</td>
<td>Control</td>
<td>17 ± 7</td>
<td>491 ± 18</td>
<td>5.57 ± 0.09</td>
</tr>
<tr>
<td></td>
<td>Bafilomycin A1</td>
<td>18 ± 8</td>
<td>631 ± 22*</td>
<td>5.54 ± 0.08</td>
</tr>
</tbody>
</table>
Figure 3.20 **Lysosomes sequester Ca\(^{2+}\) released by all IP\(_3\)R subtypes.** (A-F) Concentration-dependent effects of CCh on Ca\(^{2+}\) release with and without pre-incubation with bafilomycin A\(_1\) shown in HEK cells expressing only IP\(_3\)R1 (A), IP\(_3\)R2 and IP\(_3\)R3 (B), IP\(_3\)R2 (C), IP\(_3\)R3 and IP\(_3\)R1 (D), IP\(_3\)R3 (E) and IP\(_3\)R2 and IP\(_3\)R1 (F) in Ca\(^{2+}\)-free HBS. Results show means ± SEM, n=6 independent experiments. Summary results and statistics are shown in Table 3.1.
3.3.5 A sustained increase in pH\textsubscript{ly} disrupts lysosomal distribution and Ca2+ handling

Fluorescein-Dx (10-kDa) directed to lysosomes of HEK cells by endocytosis, allows the ratiometric imaging of pH\textsubscript{ly}; excitation at 488 nm is pH-sensitive, whilst it is relatively insensitive to pH following excitation at 425 nm (Canton & Grinstein, 2015; Johnson \textit{et al.}, 2016). CcA caused a time-dependent increase in the fluorescence ratio indicating a dissipation of the lysosomal H+ gradient (Figure 3.21A, B). This increase reached a plateau after approximately 40 min (Figure 3.21B). Similarly, there was a significant loss of LysoTracker Red in lysosomes after a 30-min treatment with CcA, indicative of lysosomal alkalinisation (Figure 3.21D). Hence, both a quantitative (fluorescein-Dx) and qualitative (LysoTracker) means of assessing the time course for loss of the lysosomal H+ gradient, provide evidence that the lysosomal H+ gradient is significantly lost 30-40 mins after treatment with concanamycin A.

In parallel analyses, the effects of concanamycin A on the Ca2+ signals evoked by CCh were determined. As expected, prolonged incubation with concanamycin A caused the amplitude of the CCh-evoked increase in [Ca2+], to increase (Figure 3.21C), consistent with normal lysosomes sequestering Ca2+ released through IP\textsubscript{3}Rs. However, the effect of concanamycin A on CCh-evoked Ca2+ signals was much slower to develop than its effect on pH\textsubscript{ly}. There was no evident effect of concanamycin A on Ca2+ signals within 40 min, and a statistically significant potentiation of CCh-evoked Ca2+ signals required a 60-min incubation with concanamycin A (Figure 3.21C). These results suggest that Ca2+ sequestration by lysosomes persists after dissipation of the H+ gradient, suggesting that compromised sequestration of the Ca2+ released through IP\textsubscript{3}Rs may be a secondary consequence of the increase in pH\textsubscript{ly}.
Figure 3.21 **Concanamycin A dissipates the lysosomal H\(^+\) gradient more rapidly that it dissipates lysosomal Ca\(^{2+}\) uptake.** (A) Lysosomes of HEK cells were loaded with fluorescein-Dx (pK\(_\text{a}\) = 6.4). Wide-field images show fluorescence recorded at pH-sensitive (\(\lambda_{\text{ex}} = 488\) nm) and insensitive (\(\lambda_{\text{ex}} = 425\) nm) wavelengths before (0 min) and after CcA (1 \(\mu\)M, 1 h). Images typical of 3 experiments. (B) Summary results (mean ± SEM, \(n = 3\)) show time course of pH\(_{\text{ly}}\) changes after CcA as fluorescence ratios (\(R = F_{488}/F_{425}\)), which increase as pH increases. \(R_0\) is R determined before CcA. (C) Parallel analysis of CcA (1 \(\mu\)M) effects on peak increase in [Ca\(^{2+}\)]\(_e\) evoked by CCh (1 mM) in Ca\(^{2+}\)-free HBS. Results (mean ± SEM, \(n = 4-9\), with 3 determinations) show increase in peak Ca\(^{2+}\) signal in presence of CcA relative to that in its absence, as percentage of response evoked by CCh alone. (D) Effects of CcA (1 \(\mu\)M) using LysoTracker Red (50 nM, 1 h) fluorescence, which declines as pH\(_{\text{ly}}\) increases. Mean ± SEM, \(n = 4-10\). *\(P < 0.05\), one-way ANOVA with Dunnett’s *post hoc* test, relative to \(t = 0\).
Lysosomes have been previously reported to fuse when their pH increases (Cao et al., 2015), and the least acidic lysosomes are more peripherally located (Johnson et al., 2016). I therefore considered whether the delayed effects of concanamycin A on CCh-evoked Ca\(^{2+}\) signals might be due to redistribution of lysosomes. In control conditions, lysosomes are densely packed in the perinuclear region. However, following prolonged treatment with concanamycin A, there was an increase in the number of enlarged lysosomes and they were more peripherally located (Figure 3.22A). Prolonged treatment with concanamycin A caused a small, but statistically insignificant, decrease in the number of small lysosomes and a significant increase in the number of large lysosomes (Figure 3.22B). These changes, perhaps suggesting fusion of lysosomes, are similar to those evoked by knockdown of a core subunit of the V-ATPase (Figure 3.8C). Hence, prolonged dissipation of the lysosomal H\(^+\) gradient causes lysosomes to enlarge and accumulate peripherally. These changes could thereby disrupt their interactions with ER. Vacuolin, which is routinely used to enlarge lysosomes (Dong et al., 2010; Schieder et al., 2010a; Wang et al., 2012; Cang et al., 2013), has also been shown to prevent the sequestration of Ca\(^{2+}\) released from the ER by lysosomes (Lopez Sanjurjo et al., 2013). Therefore, both my results and those with vacuolin suggest that the effect of inhibition of V-ATPase on lysosomal Ca\(^{2+}\) uptake could be a secondary consequence of perturbing lysosomal morphology and/or distribution rather than a primary consequence of the dissipation of the pH\(_{ly}\) gradient.
Figure 3.22 Treatment with concanamycin A enlarges lysosomes. (A) Confocal z-stack of HEK cells expressing LAMP1-mCherry before and after CcA (1 μM, 1 h). Nuclei stained with NucBlue. The appearance of larger lysosomes in the cell periphery (white arrows) following CcA (1 μM, 1 h) was clearly observed in 4 of 6 cells. (B) Effect of CcA (1 μM, 1 h) on distribution of lysosome sizes (reported as Feret diameter, see Section 2.19). Results are from 721 (control) and 617 lysosomes (CcA-treated) from 4 experiments. Inset shows enlargement of largest size category. *P < 0.05, Student’s t-test.
3.3.6 Association of lysosomes and ER does not require IP3R

Lysosomes traffic and form contact sites with the ER (Kilpatrick et al., 2013; Lopez-Sanjurjo et al., 2013; Garrity et al., 2016). I investigated the role of IP3R in the formation of ER lysosome junctions.

Previously, abrogation of the lysosomal H+ gradient was shown to increase the [Ca2+]c evoked by inhibition of SERCA with thapsigargin (Lopez-Sanjurjo et al., 2013). In that report, IP3R was proposed to mediate the Ca2+ leak from the ER. However, in HEK cells lacking IP3Rs (IP3RKO), where the CCh-mediated increase in [Ca2+]c was abolished (Figure 3.23A), the thapsigargin-mediated Ca2+ signals persisted (Figure 3.23B-D). Furthermore, bafilomycin A1 potentiated the peak increase in [Ca2+]c evoked by thapsigargin by 45 ± 14 % in HEK WT and by 48 ± 4 % in HEK cells lacking IP3Rs respectively (n = 4) (Figure 3.23).

Similar results were obtained in HAP1 cells, which are a near-haploid mammalian cell line routinely used for gene-editing (Essletzbichler et al., 2014). Stimulation of permeabilised HAP1 cells with IP3 releases Ca2+ from the ER in WT cells, but not in cells genetically engineered to lack all IP3R (HAP1-KO) (Figure 3.24A, B) (Atakpa et al., 2018). This establishes that HAP1 cells contain functional IP3R that are lost in the HAP1-KO cells. Inhibition of SERCA with thapsigargin released Ca2+ in WT HAP1 cells and the increase in [Ca2+]c was potentiated by bafilomycin A1 (Figure 3.24C, D). This suggests that in HAP1 cells, thapsigargin also unmask a Ca2+ leak from the ER and the Ca2+ released is then sequestered by lysosomes. Similar results were obtained in HAP1 cells without IP3R (Figure 3.24D). This confirms that IP3R neither mediate the passive leak of Ca2+ from the ER nor form an essential part of the junctions between ER and lysosomes.
Figure 3.23 Bafilomycin A₁ exaggerates thapsigargin-evoked increases in [Ca²⁺]c in HEK cells lacking IP₃Rs. (A) Concentration-dependent effects of CCh on Ca²⁺ release in wild-type (WT) HEK cells and HEK cells without IP₃Rs (KO) cells (means ± SEM, n = 3 independent experiments). (B) HEK cells were treated with Baf A₁ (1 μM, 1 h) in HBS before addition of BAPTA (2.5 mM) and thapsigargin (1 μM). Typical results show means ± SD from 3 wells in a single experiment. (C-D) Summary results of experiments described in B show thapsigargin-evoked release in WT cells (C) and KO cells (D) with or without Baf A₁. Results (C and D) are mean values from 4 experiments, with triplicate determinations in each. *P < 0.05, paired Student’s t test.
To assess the role of IP₃R in the physical affiliation of ER and lysosomes, firstly, I used fluorescent markers to label ER and lysosome membranes and secondly in situ proximity ligation assay (PLA). In mammalian cells, fluorescently labelling the ER and lysosomes has been used to report an intimate interaction between the two organelles (Lopez Sanjurjo et al., 2013; Rowland et al., 2014; Garrity et al., 2016).

Figure 3.24 **Bafilomycin A₁ exaggerates thapsigargin-evoked increases in [Ca²⁺]ₑ in the HAP1 cells lacking IP₃Rs.** (A) Effect of IP₃ on Ca²⁺ release from the ER in HAP1-WT and HAP1-KO cells. Typical results show means ± SD from 3 wells in a single experiment. (B) HAP1 cells were treated with Baf A₁ (1 μM, 1 h) in HBS before addition of BAPTA (2.5 mM) and then thapsigargin (1 μM). Typical results show means ± SD from 3 wells in a single experiment. (C, D) Summary results (n = 4-5, with triplicate determinations in each) show the peak thapsigargin-evoked Ca²⁺ release in WT (C) and KO cells (D). *P < 0.05 paired Student’s t-test. Results in A and B were obtained by Stefania Matargka.
Using TIRF microscopy, there was a clear affiliation between lysosomes and the ER, with the majority of lysosomes residing close to the ER for prolonged periods (Figure 3.25). In HEK WT cells, lysosomes reside on ER tubules for up to 100s (Figure 3.26). Analogous interactions have been reported previously (Lopez Sanjurjo et al., 2013; Garrity et al., 2016). Similar results were obtained in HEK KO cells which lack IP₃R, where lysosomes also sit at ER tubules for prolonged periods (Figure 3.26B). This result also suggest that the affiliations between the ER and lysosomes remain in the absence of IP₃R.

The intimate relationship between lysosomes and IP₃R has been previously described (Lopez-Sanjurjo et al., 2013). In HeLa cells, in which IP₃R1 was endogenously tagged with EGFP, (EGFP-IP₃R1-Hela cells) (Thillaiappan et al., 2017), most lysosomes were mobile, but they often paused, sometimes for tens of seconds, at IP₃R puncta. Lysosomes were also observed to park at IP₃R puncta for a prolonged period and jump from one IP₃R cluster to another These features have been described by Dr. Thillaiappan in a recent publication (Atakpa et al., 2018).

Figure 3.25 **IP₃Rs are not required to sustain ER-lysosome contacts.** TIRFM images of wild-type HEK cells (WT) (A) and HEK cells lacking IP₃Rs (KO) (B), expressing mCherry-LAMP1 and EGFP-ER. Enlargements of the boxed region (right) show intimate interactions between lysosomes and the ER in WT and KO cells.
Although, TIRF microscopy is useful in showing the trafficking of lysosomes and ER, one limitation is that because it is diffraction-limited, it does not provide accurate information about junctions between organelles (< 50 nm apart). Therefore, I used PLA to investigate ER-lysosome MCS in HEK WT and HEK-IP₃RKO cells (see Section 2.8). This assay reveals the proximity (<40 nm) between two proteins by fluorescent dots. PLA has been used previously to investigate ER-mitochondria junctions, where they revealed IP₃R-VDAC interactions (Honrath et al., 2017; Thivolet et al., 2017).
Figure 3.26 **Lysosomes reside for long periods on ER tubules in HEK cells.** (A-B) Time series from experiments similar to those described in Figure 3.25 (shown at 3-s intervals) show the dynamics of ER-lysosomes interactions. Lysosomes remain in stable contact with the ER for prolonged periods in WT (A) and KO (B) cells. Brightness and contrast were auto-adjusted to mitigate the effects of bleaching.
To investigate ER-lysosome junctions, antibodies to VAP-A (ER) and Rab7 (lysosomes) were used, as they have been reported to occur at multiple ER-lysosome junctions (Rocha et al., 2009; Alpy et al., 2013; Raiborg et al., 2015). PLA utilising antibodies to endogenous VAP-A and Rab7, detected many spots in HEK cells indicative of VAP-A/Rab7 proximity (MCS) (Figure 3.27). When either primary antibody was omitted, the PLA dots were almost abolished confirming the specificity of the PLA (Figure 3.27). The number of PLA dots per cell was reduced following treatment with concanamycin A, but the number was not different in HEK cells with and without IP₃Rs (Figure 3.27C). This suggests that endogenous VAPA and Rab7 occur at MCS in HEK cells. This MCS is not affected by loss of IP₃R, but disrupted following treatment with concanamycin A.

The PLA technique was also used by Dr. Thillaiappan (described in Atakpa et al., 2018), to investigate whether IP₃R reside in close proximity to lysosomes using antibodies to Rab7 and GFP to identify endogenously tagged EGFP-IP₃R1. PLA detected many spots in EGFP-IP₃R1-Hela cells indicating IP₃R/Rab7 proximity, but not in WT cells with no EGFP tags. This confirms the specificity of the PLA (Atakpa et al., 2018). The number of PLA spots detected was significantly reduced following treatment with concanamycin A for 1 h (Atakpa et al., 2018). Furthermore, in these cells, EGFP-IP₃R puncta and the PLA spots indicative of VAP-A/Rab7 proximity were significantly colocalized (Mander’s colocalization coefficient, 0.62 ± 0.16, n = 10 cells, Coste’s P-value, 100%) (Atakpa et al 2018). This shows that the MCS between ER and lysosomes (revealed by the proximity of VAP-A and Rab7) are populated by IP₃R puncta. This indicates that lysosomes associate with regions of ER where there are IP₃R puncta.

Collectively, the results show that IP₃Rs associate with stable ER-lysosome MCS, but they are not required for their assembly. Increasing pH₇.₄ causes a redistribution of lysosomes and disrupts these junctions thereby affecting lysosome Ca²⁺ uptake (Figure 3.28).
Figure 3.27 PLA Analyses show IP₃Rs at ER-Lysosome MCS. (A) Images of HEK cells with (WT) and without (KO) IP₃Rs from PLA analyses of VAP-A proximity to Rab7. Confocal maximum intensity Z-projections show PLA spots (red) and nuclei (blue). Effects of CcA (1 µM, 1 h) and omission of either primary antibody (Ab) are shown. (B) Summary results (mean ± SD, n = 15-25 cells from 3 experiments (2 experiments for single-antibody controls) show number of PLA spots/cell. P < 0.05, one-way ANOVA with Dunnett's test, relative to WT control.
Chapter 3

Figure 3.28 **Dissipating pH$_{ly}$ gradient does not immediately prevent lysosomal Ca$^{2+}$ uptake, but slowly disrupts junctions within which it occurs.** Most lysosomes are closely associated, probably by tethers, with ER at MCS populated by small clusters of IP$_3$Rs. Increasing the pH$_{ly}$ affects the distribution of lysosomes, thereby disrupting ER-lysosome junctions.

3.4 Conclusions

I have shown that dissipating the pH$_{ly}$ gradient pharmacologically or genetically unmasks the selective sequestration by lysosomes of Ca$^{2+}$ released from the ER by IP$_3$R (Section 3.3.1), but not Ca$^{2+}$ entering the cell via SOCE (Section 3.3.2). This corresponds with previous observations (Lopez-Sanjurjo et al., 2013). In addition, the use of a low-affinity Ca$^{2+}$ sensor tuned to detect peri-lysosomal Ca$^{2+}$ reported that IP$_3$Rs, but not SOCE, delivers Ca$^{2+}$ selectively to the surface of a large subset of lysosomes (Section 3.3.3). This suggests that lysosomes are preferentially situated in specialised areas of the cells to allow the occurrence of Ca$^{2+}$ microdomains to fuel a low-affinity Ca$^{2+}$ uptake system into lysosomes.

My results also suggest that all IP$_3$R subtypes can deliver their Ca$^{2+}$ to lysosomes (Section 3.3.4). Although it is established that dissipating the lysosomal H$^+$ gradient inhibits Ca$^{2+}$ uptake, there is a large temporal mismatch between the effects of concanamycin A on pH$_{ly}$ and attenuated Ca$^{2+}$ uptake, with the latter developing much more slowly (Section 3.3.5). I conclude that lysosomes can, at least acutely, accumulate Ca$^{2+}$ in the absence of a pH gradient.

IP$_3$Rs associate with stable ER-lysosome MCS, but they are not required for their assembly since exchange of Ca$^{2+}$ between the ER and lysosomes persists in the absence of IP$_3$R (Section 3.3.6). I suggest that the inability of lysosomes to sequester Ca$^{2+}$ released from the
ER after sustained inhibition of the V-ATPase results from a disruption of the MCS between lysosomes and ER at which the Ca\(^{2+}\) transfer occurs. The ER, with its high-affinity SERCA and large-conductance Ca\(^{2+}\) channels, behaves like a compressor or piston linking a low [Ca\(^{2+}\)]\(_e\) to the low-affinity uptake systems of organelles at specialised junctions (Figure 3.29).

Figure 3.29 The ER delivers Ca\(^{2+}\) to lysosomes in a piston-like manner at junctions populated by IP\(_3\)R. Delivery of Ca\(^{2+}\) through IP\(_3\)Rs or unidentified ‘leak channels’ into MCS provides a low-affinity Ca\(^{2+}\) uptake system in lysosomes with the high local [Ca\(^{2+}\)] required for its activity. The ER, with its high-affinity Ca\(^{2+}\) pump (SERCA) accumulates Ca\(^{2+}\) from cytosol, and delivers it at high local concentration to the surface of lysosomes through large-conductance IP\(_3\)Rs. ER behaves as an ATP-powered piston to concentrate Ca\(^{2+}\) around the lysosomal uptake system.
4. GPN evokes Ca\(^{2+}\) release from the ER by increasing cytosolic pH independent of lysosomes and cathepsin C

4.1. Introduction

4.1.1 Glycyl-L-phenylalanine-2-naphthylamide as a cathepsin C substrate used to study lysosomal biology

Glycyl-L-phenylalanine 2-naphthylamide (GPN) (see Figure 4.1A for its structure) is a frequently used lysosome-perturbing treatment. A search on PubMed Central on GPN returns ~100 articles. GPN has been widely used as a selective tool to release lysosomal Ca\(^{2+}\) (Berg et al., 1994; Haller et al., 1996; Churchill et al., 2002; Morgan & Galione, 2007; Dionisio et al., 2011; Coen et al., 2012; Davis et al., 2012; Kilpatrick et al., 2013; Ruas et al., 2015; Melchionda et al., 2016). However, GPN has also been used to disrupt lysosomes during autophagy (Thurston et al., 2012; Berezinov et al., 2016), nutrient sensing (Sbano et al., 2017), lysosomal ionic balance (Steinberg et al., 2010; Chakraborty & Leung, 2017) and other lysosomal functions (Liu et al., 2012; Sbano et al., 2017). GPN is a substrate of the lysosomal enzyme, cathepsin C, and it has long been believed to cause selective and transient permeabilization of lysosomes in cells (Berg et al., 1994; Haller et al., 1996; Churchill et al., 2002; Morgan & Galione, 2007; Dionisio et al., 2011; Coen et al., 2012; Davis et al., 2012; Kilpatrick et al., 2013; Ruas et al., 2015; Melchionda et al., 2016).

Cathepsin C, also called dipeptidyl peptidase 1 or CTSC, is one of over 50 identified hydrolases in lysosomes. Eleven cysteine cathepsins have been identified, including cathepsins B, C, F, H, K, L, O, S, V and X (Repnik et al., 2012). Cathepsin C was first discovered in the 1940s (Gutmann & Fruton, 1948), and its cDNA was sequenced in the 1990s (Paris et al., 1995). Cathepsin C is a tetramer, with four identical subunits. Each subunit comprises an N-terminal fragment, also known as the residual propart domain, a heavy chain and a light chain (Dolenc et al., 1995; Cigic et al., 1998). Cathepsin C primarily acts as a non-specific amino dipeptidase that cleaves two-residue units from the N-terminus of polypeptides (Turk et al., 1998). However, at high pH, cathepsin C has been reported to also act as a transferase to drive the reaction in the opposite direction (Planta et al., 1964; McGuire et al., 1992). Cathepsin C cleaves 2-residue units until the C-terminus is reached or an arginine or lysine residue is encountered at the N-terminus (McGuire et al., 1992). Cathepsin C is also thought not to cleave when proline is present on either side of the peptide.
bond of a substrate (McGuire et al., 1992). The targeting of cathepsin B, D and L to lysosomes is dependent on the M6P receptor, which is specifically involved in the targeting of proteins to the lysosomal lumen (Pohlmann et al., 1995; Probst et al., 2006). Furthermore, immunofluorescent labelling of other cathepsins, particularly cathepsin D, shows a punctate structure that colocalises with lysosomal markers (Probst et al., 2006; Jin & Mills, 2014). Cathepsin C colocalises with LAMP1 in hippocampal pyramidal neurons (Koike et al., 2013). Although some cathepsins have been reported to be present in the nucleus (Goulet et al., 2004; Duncan et al., 2008), most of the identified functions of cathepsins are related to their proteolytic activity in lysosomes.

Studies using pharmacological inhibitors have been very important in elucidating the functions of cathepsin C. Cystatin F (Hamilton et al., 2008) and E-64 (Towatari et al., 1991) are naturally occurring non-selective cysteine proteases that have been shown to inhibit cathepsin C activity at high concentrations. However, their lack of specificity limits their use in the selective characterisation of cathepsin C functions. Other cathepsin C inhibitors include diazomethylketones (Kam et al., 2004), vinyl sulfones (Korver et al., 2001) and semi-carbazides (Bondebjerg et al., 2005). Of these, Gly-Phe-diazomethylketone (Gly-Phe-DMK) is widely used to selectively inhibit cathepsin C, with no significant effect on other proteases (Thiele & Lipsky, 1990; McGuire et al., 1993; Repnik et al., 2017). Previous work has shown that inhibition of other cathepsins such as cathepsins B, L and S (but not C) does not prevent the effects of GPN (Gerasimenko et al., 2006; Lopez-Sanjurjo et al., 2013). However, the effect of cathepsin C inhibition on GPN-mediated effects on lysosomes remains largely unexplored.

4.1.2 Lysosomotropic agents

Lysosomes are susceptible to the trapping of basic compounds due to their very acidic luminal pH. Lysosomotropic agents are basic lipophilic compounds that can freely permeate the PM and accumulate in lysosomes where they become protonated. The now charged molecule is trapped in the lysosomal lumen and cannot freely diffuse back into the cytosol (de Duve et al., 1974; Villamil Giraldo et al., 2014). This pH partitioning drives the accumulation of these compounds to concentrations up to 100 fold higher in lysosomes compared to the cytosol (Oda et al., 1986). This accumulation is widely referred to as lysosomotropism. A previous screen to identify lysosomotropic drugs found this property across structurally and functionally diverse classes of pharmacological agents such as
antimalarial drugs, antidepressants and anticancer drugs (Nadanaciva et al., 2011). However, the physiochemical properties of these drugs were similar, with all of the lysosomotropic agents having a ClogP (ClogP refers to the logarithm of the partition coefficient between n-octanol and water, a measure of hydrophilicity) greater than 2, and a basic pKa above 6.5 (Nadanaciva et al., 2011). This observation agrees with a previous suggestion that the lipophilicity and basic property of a compound could make it prone to lysosomal accumulation (de Duve et al., 1974). Lysosomotropism is also linked to drug-induced toxicity. A screen of currently licenced pharmaceuticals found that compounds with lysosomotropic profiles increase lysosomal volume, induce DNA fragmentation and alter the size of the nucleus (Lu et al., 2012). GPN has been reported to be a weak base and slightly hydrophobic (Jadot et al., 1984). However, the lysosomotropic tendency of GPN, as well as the interplay between the lysosomotropic effects of GPN and its reported effects on lysosomal Ca\(^{2+}\) and pH, have been largely unexplored.

4.1.3 Lysosomal membrane permeabilization

Lysosomotropism has been linked to lysosomal membrane permeabilization (LMP) and cytotoxicity (Lu et al., 2012; Villamil Giraldo et al., 2014). The unusually harsh proteolytic and acidic lumen of lysosomes is encapsulated by a single membrane, protecting the cytosol and the rest of the cell from lysosomal contents. Substantial damage to the lysosomal membrane could, therefore, breach this protection and lead to the release of lysosomal contents, potentially introducing hydrolytic enzymes into the cytosol as well as leading to cytosolic acidification (Guicciardi et al., 2004; Terman et al., 2006). Complete or partial permeabilization of the lysosomal membrane has been reported to induce necrosis (Kagedal et al., 2001) or apoptosis (Li et al., 2000), respectively. Compounds reported to induce LMP include detergents such as O-methyl-serine dodecylamine hydrochloride (MSDH) (Dubowchik et al., 1995) and L-leucyl-L-leucine methyl ester (LeuLeuOMe) (Uchimoto et al., 1999). Sphingosine, a naturally occurring phospholipid precursor, has also been reported to induce LMP through a cathepsin-mediated mechanism (Kagedal et al., 2001; Werneburg et al., 2002; Ullio et al., 2012). Examples of lysosomotropic agents reported to induce LMP include chloroquine (Geng et al., 2010), chlorpromazine (Ch'Ng et al., 2011), thioridazine (Ashoor et al., 2013), desipramine (Honegger et al., 1983) and imipramine (Lu et al., 2017). LMP has also been reported to occur following non-pharmacological stimuli such as following oxidative stress (Terman et al., 2006) and DNA damage (Emert-Sedlak et al., 2005; Paquet et al., 2005). It is also not clear if all or only a subset of lysosomes are
susceptible to LMP (Guicciardi *et al.*, 2004). The mechanism of LMP are poorly understood however, LeuLeuOMe is believed to polymerise in a cathepsin C-dependent manner (Repnik *et al.*, 2017). The polymer is membranolytic and leads to damage of lysosomal membranes. Damaged lysosomes are reported to rapidly recruit endosomal sorting complex required for transport (ESCRT) machinery which promotes membrane repair (Skowyra *et al.*, 2018).

The major techniques used in detect LMP include the use of antibodies to show redistribution of lysosomal proteins such as cathepsins into the cytosol following damage to the lysosomal membrane. For example, immunofluorescent labelling of cathepsin B in healthy cells usually shows punctate structures in regions of the cells that co-localise with lysosomal markers. However, following LMP, cathepsin B appears diffuse ly in the cytosol (Boya *et al.*, 2003). Furthermore, subcellular fractionation has revealed the translocation of lysosomal proteases following LMP (Michallet *et al.*, 2004). Similar results have been reported using optical microscopy techniques visualising LMP through fluorescently labelled lysosomal proteases (Werneburg *et al.*, 2002; Werneburg *et al.*, 2007). Another means of detecting LMP is the use of fluorescent molecules that can be directed to the lysosomal lumen. Lysosomotropic probes are fluorophores conjugated to basic moieties allowing their accumulation in lysosomes via pH partitioning. The LysoTracker dyes are examples of lysosomotropic probes, and have been widely used in studies of lysosomes (Akazawa *et al.*, 2009; Brailoiu *et al.*, 2009; Demaegd *et al.*, 2013; Lopez-Sanjurjo *et al.*, 2013). The reduction in LysoTracker fluorescence is commonly claimed to report LMP (Kilpatrick *et al.*, 2013; Repnik *et al.*, 2017). However, it is important to consider that this reduction could also be an indication of the increase in the pH$_{ly}$ and is therefore not an exclusive reporter of LMP. Acridine orange (AO) is another marker of LMP. It is also lysosomotropic and emits red fluorescence when accumulated in lysosomes, and green florescence when in the cytosol and nucleus (Antunes *et al.*, 2001; Boya *et al.*, 2003; Michallet *et al.*, 2004; Trincheri *et al.*, 2007). However, due to its lysosomotropic property, attributing its change in fluorescence to LMP may be erroneous as any change in the pH of the compartment could alter AO distribution. A third means of detecting LMP is using Dx-conjugated fluorophores of different sizes, which can be directed to the lysosomal lumen by hijacking the endocytic machinery. The dextrans are taken up via endocytosis and then allowed to travel along the pathway until they reach the terminal parts of the endo/lysosomal pathway. Staurosporine, an LMP-inducing agent, was shown to result in the loss of dextran lower than 40 kDa from lysosomes into the cytosol, and retention of 70-kDa and 250-kDa dextrans (Bidere *et al.*, 2003).
The conventional explanation for the mechanism of action of GPN suggests that cathepsin C cleaves GPN into the dipeptide and naphthylamide group (Figure 4.1). The dipeptides are unable to diffuse across the lysosomal membrane due to their polarity, and this leads to an osmotic build up in lysosomes and an eventual bursting of their membrane. However, the evidence for this is not clear. Furthermore, following a disruptive fractionation protocol, GPN was shown to result in loss of an endocytosed ligand from the lysosomes in cell-free preparations (Berg et al., 1994). This work has largely provided the basis for the widely accepted view that the activity of GPN is due to the osmotic permeabilization of lysosomes in a cathepsin C-dependent manner. However, considering this work was carried out in isolated liver fractions, it is important to carefully evaluate the mechanism of action of GPN in intact cells. GPN has also been shown to result in the loss of lysosomotropic dyes such as LysoTracker in MCDK cells (Haller et al., 1996). The effects of short-term treatments with GPN are thought to be reversible. It has been reported that removal of GPN allows the re-accumulation of lysosomotropic dyes by an unknown mechanism; membrane resealing has been suggested (Steinberg et al., 2010). Studies utilising dextran targeted to lysosomes have suggested a size cut-off of the pores at >10 kDa, as dextrans of 10 kDa and above were retained in lysosomes (Steinberg et al., 2010; Penny et al., 2014). In summary, the evidence for the widely accepted view that GPN induces permeabilization of the lysosomal membrane is not well substantiated by the literature.

Figure 4.1 GPN is a cathepsin C substrate. (A) GPN is cleaved by cathepsin C (blue arrow) to release the naphthylamine group. (B) The cleavage of GPN by cathepsin C is proposed to lead to an acute osmotic swelling and permeabilization of the lysosomal membrane to allow the release of lysosomal luminal contents.
4.1.4 GPN and lysosomal Ca2+

GPN has been used as a means of selectively releasing lysosomal Ca2+. Inhibition of cathepsins, other than cathepsin C, does not affect GPN-mediated effects on [Ca2+]_c (Gerasimenko, 2006; Steen et al., 2007; Lopez Sanjurjo et al., 2013). However, the contribution of ER and lysosomes to GPN-mediated Ca2+ signals is not clear. Especially as GPN-induced Ca2+ release from lysosomes is believed to diffuse towards the ER and activate ER CICR channels, amplifying the initial Ca2+ signal (Kilpatrick et al., 2013; Morgan et al., 2015) in a similar way to physiological stimuli such as NAADP (Morgan, 2011b). GPN-mediated increase in [Ca2+]_c is massively attenuated following emptying of the ER in monocytes (Sivaramakrishnan et al., 2012), fibroblasts (Kilpatrick et al., 2013), lymphocytes (Steen et al., 2007) and in epithelial cells (Haller et al., 1996). However, in human lymphoblasts, GPN remains able to induce Ca2+ signals following treatment with thapsigargin or ionomycin (Lloyd-Evans et al., 2008).

The work presented in this chapter investigates the mechanism of action of GPN and its selectivity for lysosomes.

4.2 Materials and Methods

All materials and methods have been described in chapter 2.

4.3 Results and Discussion

4.3.1 GPN evokes pH changes and Ca2+ signals without rupturing lysosomes

The mechanism of action of GPN is largely thought to be due to the osmotic permeabilization of lysosomes following its cleavage by cathepsin C (Figure 4.1).
Oregon Green-Dx, fluorescein-Dx and LysoTracker Red were used to assess pH\textsubscript{ly}. The pKa of Oregon Green-Dx (4.7) is optimal for measurements of pH\textsubscript{ly} (Sabnis, 2015). Fluorescein is also pH-sensitive with a higher pKa of 6.3 (Canton & Grinstein, 2015). Oregon Green-Dx (10 kDa) (Christensen \textit{et al.}, 2002; Haggie & Verkman, 2007; Weinert \textit{et al.}, 2010) and fluorescein-Dx (Christensen \textit{et al.}, 2002; Weinert \textit{et al.}, 2010; Lelouvier & Puertollano, 2011; Voronov \textit{et al.}, 2013; Penny \textit{et al.}, 2014; Johnson \textit{et al.}, 2016) have been routinely used in the study of lysosomal biology.

The fluorescence intensity of Oregon Green (Lopez-Sanjurjo \textit{et al.}, 2013) and fluorescein (Aits \textit{et al.}, 2015) is greatly reduced at very low pH, such as found in lysosomes. A shift to a more alkaline pH causes an increase in fluorescence. GPN acutely caused fluorescence to decrease for LysoTracker Red and increase for Oregon Green-Dx (10 kDa) and fluorescein-Dx (3 kDa) (Figure 4.2, Table 4.1). pH\textsubscript{ly} did not recover following prolonged treatment with GPN in HEK cells (Figure 4.3). Therefore, GPN causes a sustained increase in pH\textsubscript{ly}.

GPN induced a transient increase in [Ca2+]\textsubscript{i} in cells bathed in Ca2+-free HBS, showing that this Ca2+ is mobilised from intracellular stores (Figure 4.4A). The Ca2+ signals evoked by GPN were slower than those evoked by carbachol, which stimulates IP\textsubscript{3} formation and Ca2+ release through IP\textsubscript{3}Rs, but faster than those evoked by inhibiting the ER Ca2+ pump (SERCA) with thapsigargin (Figure 4.4B, C). While these results are consistent with the reported actions of GPN, additional observations are not consistent with its presumed mode of action (Figure 4.1B).
Figure 4.2 **GPN increases pH\text{ly} in HEK cells.** (A) Wide-field images of HEK cells loaded with LysoTracker Red or Dx conjugates of Oregon Green-Dx (10 kDa) or fluorescein-Dx (3 kDa) show an increase in pH\text{ly} after addition of GPN (200 µM, 200 s). (B) Time courses of GPN-evoked pH\text{ly} changes. Each trace shows mean ± SD from 3-4 ROIs in a single cell.
Figure 4.3 **pH₇ does not recover after prolonged treatment with GPN** (A) Wide-field images show LysoTracker Red staining (100 nM, 20 min) of HEK cells with and without GPN (200 µM, 30 min). (B) Summary results (mean ± SEM, n = 4 coverslips) show the intensity of LysoTracker Red staining. *P < 0.05, Student’s t-test. RFU, Relative fluorescence unit.

Figure 4.4 **GPN-induced increase in [Ca²⁺]_c is faster than that evoked by CCh, but slower than that evoked by thapsigargin.** (A) Initial responses of HEK cells to carbachol (CCh, 1 mM), GPN (200 µM) or thapsigargin (TG, 1 µM) in Ca²⁺-free HBS (mean ± SD of 3 replicates). Arrow shows point of addition. (B) From experiments similar to those in A, times to peak increase in [Ca²⁺]_c are shown (mean ± SEM, n = 4, with 3 replicates). *P < 0.05, Student’s t-test. (C) Similar analysis shows rates of rise of [Ca²⁺]_c after addition of GPN (200 µM) or thapsigargin (1 µM) in Ca²⁺-free HBS, each measured over the same range of [Ca²⁺]_c. Results show means ± SEM, n = 5, with 3 replicates. *P < 0.05, Student’s t-test.
The suggested disruptive mechanism of action of GPN, in which the formation of pores in the lysosomal membrane is believed to result in the loss of low-molecular weight lysosomal components including H⁺, is expected to induce intracellular acidification (Guicciardi et al., 2004; Terman et al., 2006). This occurs, for example, when TNFα triggers loss of H⁺ and cathepsin D from lysosomes during the early stages of apoptosis (Nilsson et al., 2006).

However, the direct effect of GPN on cytosolic pH (pH$_{\text{cyt}}$) has hitherto not been explored. To investigate this, SNARF-5F, a ratiometric pH-sensitive dye was used to measure pH$_{\text{cyt}}$, because it allows for a reliable measurement minimising artefacts due to photobleaching, the variability of cell thickness, dye leakage and non-uniform loading of the indicator (Liu et al., 2001). To allow direct comparison with GPN-mediated Ca$^{2+}$ signals, all experiments were performed 30 s after addition of BAPTA (2.5 mM) to chelate extracellular Ca$^{2+}$. Under these conditions, GPN induced an increase in pH$_{\text{cyt}}$ in HEK cells. GPN was obtained from Bachem (Lopez-Sanjurjo et al., 2013) and from Santa Cruz (Kilpatrick et al., 2013), two reliable and widely used sources of GPN. Following addition of GPN, there was a rapid increase in pH$_{\text{cyt}}$ with a peak at approximately 50 s. The pH$_{\text{cyt}}$ then returned to baseline after 10 min. (Figure 4.5A). The maximum change in pH$_{\text{cyt}}$ following GPN in HEK cells was 0.35 ± 0.03 pH units following 400 µM GPN (Bachem) and 0.30 ± 0.03 following 400 µM GPN (Santa Cruz) (Figure 4.5B). Similar results were obtained in HeLa cells (Figure 4.5B).

As there was no difference in the kinetics of cytosolic alkalinization between the two sources of GPN, the rest of the experiments described were performed with GPN from Bachem. These results establish that GPN from two different sources induces an increase in pH$_{\text{cyt}}$ in HEK and HeLa cells.
Figure 4.5 **GPN induces an acute cytosolic alkalinization in HEK cells.** (A) Populations of HEK cells loaded with SNARF-5F were stimulated in Ca^{2+}-free HBS with GPN (200 µM). 2.5 mM BAPTA was added to cells 30 s prior to GPN stimulation. (B) Summary results show the effects of GPN (200 µM) from the indicated suppliers on pH_{cyt} in HEK and HeLa cells. Results are mean ± SEM, n = 5.

The regulation of pH_{cyt} and pH_{ly} is intricately entangled. One possibility was that the effect of GPN on pH_{cyt} was intertwined with a permeabilization of lysosomes and consequent loss of the H^+ gradient. Therefore, the effect of the pH_{ly} gradient on the GPN-induced increase in pH_{cyt} was tested. Bafilomycin A_1 has been previously shown to abrogate the lysosomal H^+ gradient (Chapter 3). There was no significant difference between the basal pH_{cyt} in control cells and cells pre-treated with bafilomycin A_1 (Figure 4.6B). Furthermore, pre-treatment with bafilomycin A_1 did not affect the peak change in pH_{cyt} following treatment with GPN (Figure 4.6A, C). This establishes that the ability of GPN to increase pH_{cyt} is independent of the lysosomal H^+ gradient.
GPN-induced increase in \(\text{pH}_{\text{cyt}} \) is independent of the lysosomal \(\text{H}^+ \) gradient.

(A) HEK cells loaded with SNARF-5F were stimulated in \(\text{Ca}^{2+} \)-free HBS with GPN (200 \(\mu \text{M} \)) with or without pre-treatment with bafilomycin A\(_1\) (1 \(\mu \text{M}, 1 \text{ h} \)). Results are mean ± SD for one experiment with triplicate determinations (B) Summary data shows the basal \(\text{pH}_{\text{cyt}} \) with or without bafilomycin A\(_1\) pre-treatment (1 \(\mu \text{M}, 1 \text{ h} \)). Results are mean ± SEM from 5 independent experiments. \(P = 0.30 \). (C) Summary data shows the peak change in \(\text{pH}_{\text{cyt}} \) with or without bafilomycin A\(_1\) pre-treatment (1 \(\mu \text{M}, 1 \text{ h} \)). Results are mean ± SEM from 5 independent experiments. \(P = 0.37 \), paired Student’s \(t \)-test.

Overwhelmingly, the evidence for lysosomal membrane permeabilization arises from loss of acidotropic dyes such as LysoTracker Red (Kilpatrick et al., 2013; Repnik et al., 2017) and Acridine Orange (Antunes et al., 2001; Boya et al., 2003; Michallet et al., 2004; Trincheri et al., 2007), which will redistribute when \(\text{pH}_{\text{L}} \) increases. GPN has been previously reported to result in the loss of low molecular weight dextran (< 10 kDa), purportedly due to a cathepsin C-dependent permeabilization (Penny et al., 2014; Penny et al., 2015).

In cells where LysoTracker accumulation was abolished by GPN, it did not acutely affect the number of lysosomes assessed by Alexa Fluor 488-Dx (10 kDa) (Figure 4.7). This is consistent with previous reports using rhodamine-Dx (10 kDa) (Penny et al., 2014) and Oregon Green-Dx (Steinberg et al., 2010; Penny et al., 2014), that large-molecular weight components are not lost from lysosomes following treatment with GPN.
Figure 4.7 **GPN does not affect the distribution of Alexa Fluor 488-Dx.** (A) Simultaneous recording of LysoTracker Red and Alexa Fluor 488-Dx (M_r ~10,000) from HEK cells treated with GPN (300 μM) showing that an increase in pH_{ly} is not accompanied by loss of large molecules from lysosomes. (B) Summary results (mean ± SEM, n = 3) show the number of lysosomes identified by Alexa Fluor 488-Dx before and 5 mins after addition of GPN.

Lysosomes were also loaded with Lucifer Yellow (M_r 457). This low-molecular weight marker accumulates in lysosomes when loaded via the endocytic machinery (Yang et al., 1998; Chaurra et al., 2011; Bright et al., 2016). In cells where lysosomes were loaded with Lucifer Yellow, GPN did not acutely affect the number lysosomes (Figure 4.8). Addition of GPN has been previously reported to result in a partial dissipation of Lucifer Yellow only in a sub-population of lysosomes in NRK cells (Bright et al., 2016). However, at times matching GPN-evoked Ca²⁺ signals, there was no evidence of GPN-mediated loss of Lucifer Yellow accumulation.
Figure 4.8 **GPN does not affect the distribution of Lucifer Yellow.** (A) Lack of effect of GPN (200 µM, 10 min) on the punctate fluorescence from endocytosed Lucifer Yellow (Mr 447). (B) Summary results (mean ± SEM, n = 5) show the number of lysosomes identified (per field of view) by Lucifer Yellow before and 5 mins after addition of GPN.

More prolonged incubations with GPN (>10 min) caused some loss of lysosomal Alexa Fluor 488-Dx, but even after 25 min most was retained by lysosomes (Atakpa et al 2018).

Altogether, these results are not consistent with the acute effects of GPN on \(\text{pH}_{\text{cyt}} \) or \([\text{Ca}^{2+}]_c \) arising from rupture of lysosomes.

Since \(\text{Ca}^{2+} \) indicators are pH-sensitive (see Speake and Elliott, 1998), one possibility is that the change in fluorescence observed in fluo 8 following GPN is due to a shift in the affinity of the indicator for \(\text{Ca}^{2+} \) due to pH changes. However, I determined that the \(K_D \) of fluo 8 for \(\text{Ca}^{2+} \) did not change between pH 7 and 8. \(K_D = 434 \pm 51 \text{ nM} \) at pH 7, 374 ± 43 nM at pH 7.3, 355 ± 39 nM at pH 7.6 and 401 ± 29 nM at pH 8 (Figure 4.9). This establishes that the GPN-evoked increases in fluo 8 fluorescence are due an increase in \([\text{Ca}^{2+}]_c \).
Figure 4.9 The affinity of fluo 8 for Ca$^{2+}$ is unaffected by changing pH between 7 and 8. (A-C) Fluorescence of fluo 8 in BAPTA-buffered modified cytosol-like medium (MCLM) at the indicated pH. Since the K_D of BAPTA for Ca$^{2+}$ (160 nM in the absence of Mg$^{2+}$) (Pethig et al., 1989) is unaffected by pH changes between 7 and 8 (Tsien, 1980), the free [Ca$^{2+}$] of MCLM containing 10 mM BAPTA, but without Mg$^{2+}$, was computed at the indicated pH using the same K_D for Ca$^{2+}$ for each pH. Results are mean ± SEM, $n = 3$, each with 3 determinations. RFU, relative fluorescent unit.
4.3.2 GPN-evoked increase in \([\text{Ca}^{2+}]_c\) requires \(\text{Ca}^{2+}\) in the ER

The increase in \([\text{Ca}^{2+}]_c\) evoked by GPN was abolished by depleting the ER of \(\text{Ca}^{2+}\) using CPA to inhibit SERCA (Figure 4.10). Similar results was obtained in HAP1 cells, where treatment with thapsigargin significantly attenuated GPN-induced \(\text{Ca}^{2+}\) signals (see Figure 4.13B).

![Figure 4.10](image)

Figure 4.10 GPN-induced increase in \([\text{Ca}^{2+}]_c\) is blocked by inhibition of SERCA in HEK cells. (A) HEK cells in \(\text{Ca}^{2+}\)-free HBS were stimulated with GPN (200 μM) alone or after addition of CPA (20 μM). Results show mean ± SD for 3 wells from a typical experiment. (B) Summary results show peak increases in \([\text{Ca}^{2+}]_c\) evoked by GPN (\(\Delta[\text{Ca}^{2+}]_c\)) with or without pre-incubation with CPA (20 μM, 15 min). Results are means ± SEM, \(n = 3\). *\(P < 0.05\), Student’s \(t\)-test.

Although no SERCA was detected in the proteome of lysosomal membranes (Bagshaw et al., 2005; Chapel et al., 2013), it has been suggested that a SERCA with reduced \(\text{Ca}^{2+}\) affinity (SERCA3) may contribute to \(\text{Ca}^{2+}\) uptake by acidic stores (Lopez et al., 2005). Therefore, it was important to investigate whether inhibition of GPN-evoked cytosolic \(\text{Ca}^{2+}\) signals by thapsigargin and CPA might be due to direct inhibition of lysosomal \(\text{Ca}^{2+}\) sequestration. When activated by carbachol (CCh), \(\text{M}_3\)Rs stimulate phospholipase C and thereby \(\text{Ca}^{2+}\) release from ER through \(\text{IP}_3\)Rs. However, endogenous expression of \(\text{M}_3\)Rs is insufficient to fully deplete the ER of \(\text{Ca}^{2+}\) in HEK cells (Konieczny et al., 2017). Therefore, a viral vector, BacMam, was used to over-express \(\text{M}_3\)Rs in HEK cells. Overexpression of \(\text{M}_3\)R increased the \(\text{Ca}^{2+}\) mobilised from the ER (Figure 4.11A, B). Under these conditions, \(\text{IP}_3\)-evoked \(\text{Ca}^{2+}\) release from the ER also massively and rapidly attenuated the cytosolic \(\text{Ca}^{2+}\) signals evoked
by GPN (Figure 4.11C, D). This confirms that loss of Ca\(^{2+}\) from the ER, rather than SERCA inhibition itself, rapidly inhibits GPN-evoked increases in [Ca\(^{2+}\)]\(_c\).

Figure 4.11 Depleting ER Ca\(^{2+}\) stores by activating IP\(_3\)Rs rapidly attenuates GPN-evoked increases in [Ca\(^{2+}\)]\(_c\). (A) The results show [Ca\(^{2+}\)]\(_c\) recorded from a population of fluo 8-loaded HEK cells with or without (mock-infected) over-expressed M\(_3\)Rs, and stimulated with a maximally effective concentration of CCh (1 mM). BAPTA (2.5 mM) was added before CCh to chelate extracellular Ca\(^{2+}\). (B) Summary results (mean ± SEM, n = 3) show the peak increase in [Ca\(^{2+}\)]\(_c\) (Δ[Ca\(^{2+}\)]\(_c\)). *P < 0.05, Student’s t-test. Responses to CCh were abolished in cells pre-treated with thapsigargin (1 μM, 15 min) to inhibit SERCA (results not shown). (C) HEK cells over-expressing M\(_3\)Rs were stimulated with CCh (1 mM) in Ca\(^{2+}\)-free HBS and then with GPN (200 μM). Results show mean of 3 replicates. (D) Summary results (mean ± SEM, n = 3) show responses to the indicated concentrations of GPN alone or after stimulation with CCh. The results demonstrate that depleting the ER of Ca\(^{2+}\) by stimulating IP\(_3\)Rs rapidly attenuates the increase in [Ca\(^{2+}\)]\(_c\) evoked by GPN.
Figure 4.12 **GPN-induced increases in pH\textsubscript{ly} and pH\textsubscript{cyt} are unaffected by pre-treatment with thapsigargin.** (A) Typical time course showing effect of GPN (200 μM) on LysoTracker Red fluorescence in HEK cells after treatment with thapsigargin (TG, 1 μM, 5 min). (B) Similar analyses of the effects of the indicated concentrations of GPN in Ca2+-free HBS alone or after treatment with thapsigargin (TG, 1 μM, 15 min) on ΔpH\textsubscript{cyt} (mean ± SEM, n = 3, each with duplicate determinations).

The effect of thapsigargin on the GPN-induced increase in pH\textsubscript{ly} and pH\textsubscript{cyt} was also assessed. A previous study showed that thapsigargin does not affect pH\textsubscript{ly}, as LysoTracker accumulation was unaffected (Ganley et al., 2011). Here, pre-treatment with thapsigargin did not affect the GPN-induced increase in pH\textsubscript{ly} or pH\textsubscript{cyt} (Figure 4.12).

4.3.3 GPN-induced increase in [Ca2+]\textsubscript{c} is not mediated by canonical CICR channels

Why should loss of Ca2+ from the ER abolish the response to GPN? Hitherto, it has been supposed that any contribution of the ER to lysosomal Ca2+ signals arises from an amplification of the initial Ca2+ release from lysosomes by Ca2+-induced Ca2+ release (CICR) through either IP\textsubscript{3}Rs or ryanodine receptors (RyRs) (Zhu et al., 2010; Morgan, 2011a; Kilpatrick et al., 2013) in the ER. Both IP\textsubscript{3}Rs and RyRs are stimulated by cytosolic Ca2+ (Endo et al., 1970; Iino, 1990; Taylor & Tovey, 2010). In HEK-IP\textsubscript{3}RKO cells, the Ca2+ signals evoked by 200 μM GPN were similar to those in normal HEK cells, and they were again blocked by pre-treatment with thapsigargin (Figure 4.13A). Similarly, the Ca2+ signals evoked by GPN were unchanged in HAP1-IP\textsubscript{3}RKO cells (Figure 4.13B).
Figure 4.13 **GPN-induced increase in \([\text{Ca}^{2+}]_c\) is unaffected by knock-out of \(\text{IP}_3\R\).** (A) HEK cells with (wild-type, WT) or without \(\text{IP}_3\Rs\) (\(\text{IP}_3\R\)-KO) were stimulated in \(\text{Ca}^{2+}\)-free HBS with GPN (200 \(\mu\text{M}\)) alone or after treatment with thapsigargin (TG, 1 \(\mu\text{M}\), 15 min). Results (mean \(\pm\) SEM, \(n = 4\), with 3 replicates) show \(\Delta[\text{Ca}^{2+}]_c\). (B) Effects of GPN (200 \(\mu\text{M}\)) in \(\text{Ca}^{2+}\)-free HBS on HAP1 cells with (wild-type, WT) or without \(\text{IP}_3\Rs\) (\(\text{IP}_3\R\)-KO), alone or after treatment with thapsigargin (TG, 1 \(\mu\text{M}\), 15 min). Results show mean \(\pm\) SEM, \(n = 3\), each with 3 replicates.

Some HEK cells have been reported to express RyR (Kurian *et al.*, 2009). However, caffeine, which stimulates RyRs, did not evoke \(\text{Ca}^{2+}\) release in the HEK or HAP1 cells used here (Figure 4.14A, C). Furthermore, prolonged incubation with a high concentration of ryanodine to block RyR did not affect the \(\text{Ca}^{2+}\) signals evoked by GPN in the HEK cells used here (Figure 4.14B). Similarly, prolonged incubation with ryanodine did not affect the \(\text{Ca}^{2+}\) signals evoked by GPN in HAP1 cells (Figure 4.14 D).
Figure 4.14 **RyRs do not contribute to cytosolic Ca\(^{2+}\) signals evoked by GPN.** (A) Effects of caffeine (1 mM) in Ca\(^{2+}\)-free HBS on [Ca\(^{2+}\)]\(_c\) in HEK cells. Traces show mean ± SD from 3 replicates. Similar results were obtained in 3 independent analyses. (B) Effects of GPN in Ca\(^{2+}\)-free HBS on the peak increase in [Ca\(^{2+}\)]\(_c\). (Δ[Ca\(^{2+}\)]\(_c\)) alone or after treatment with ryanodine (20 µM, 15 min) to inhibit RyRs. Results (mean ± SEM, \(n = 3\), each with 3 replicates) are from HEK cells stimulated with 200 µM GPN. (C) Effects of caffeine (1 mM) in Ca\(^{2+}\)-free HBS on [Ca\(^{2+}\)]\(_c\) in HAP1 cells. Traces show mean ± SD from 3 replicates. Similar results were obtained in 3 independent analyses. (D) Effects of GPN (200 µM) in Ca\(^{2+}\)-free HBS on HAP1 cells alone or after treatment with ryanodine (20 µM, 15 min). Results show mean ± SEM, \(n = 3\), each with 3 replicates.
Figure 4.15 **CICR mediated by TMCO1 does not contribute to GPN-evoked increases in \([Ca^{2+}]_c\)**. (A) TMCO1 is proposed to oligomerize into a functional Ca\(^{2+}\)-permeable channel as the ER loads with Ca\(^{2+}\). Hence, TMCO1 may be able to mediate CICR as Ca\(^{2+}\) released by other intracellular channels fuels ER Ca\(^{2+}\) uptake by SERCA leading to Ca\(^{2+}\) overload and the opening of TMCO1. (B) Typical Western blot showing expression of \(\beta\)-actin and TMCO1 in HEK cells in which CRISPR/Cas9 was used to achieve a partial knock-down of TMCO1 (67 ± 14 %, \(n = 4\), mean ± SD). M\(_r\) markers (kDa) and protein loadings (μg) are shown. (C, D) Peak Ca\(^{2+}\) signals evoked by a maximally effective concentration of carbachol (C) or the indicated concentrations of GPN (D) in Ca\(^{2+}\)-free HBS (mean ± SEM, \(n = 3\)). *\(P < 0.05\), Student’s \(t\)-test.
Another possible CICR channel in the ER is TMCO1 (transmembrane coiled-coil domain 1). TMCO1 is an ER membrane protein that oligomerizes to form a Ca\(^{2+}\) pore as the ER overloads with Ca\(^{2+}\) (Figure 4.15A) (Wang et al., 2016). TMCO1 might thereby allow GPN-evoked Ca\(^{2+}\) release from lysosomes to be amplified. Multiple rounds of CRISPR/Cas9 failed to achieve a complete knockout of TMCO1 in HEK cells, but with TMCO1 expression reduced by 67 ± 14% (Figure 4.15B), there was the expected increase in carbachol-evoked Ca\(^{2+}\) signals (Figure 4.15C) (Wang et al., 2016), but there was no effect on the increase in [Ca\(^{2+}\)]\(_{c}\) evoked by GPN (Figure 4.15D).

These results establish that none of the known mechanisms (RyR, IP\(_3\)R and TMCO1) that might mediate CICR from the ER contribute to the increase in [Ca\(^{2+}\)]\(_{c}\) evoked by GPN. The results so far demonstrate that GPN increases pH\(_{L}y\) and [Ca\(^{2+}\)]\(_{c}\), but they challenge the conventional explanations for these phenomena (Figure 4.1B).

4.3.4 Effects of GPN on pH\(_{L}y\), pH\(_{Cyt}\) and [Ca\(^{2+}\)]\(_{c}\) do not require cathepsin C

The effects of GPN are thought to require its proteolysis by cathepsin C (Figure 4.1), an enzyme that is widely assumed to be expressed mainly in lysosomes (Rao et al., 1997; Wolters & Chapman, 2000). This distribution of cathepsin C is invoked to suggest that GPN selectively targets lysosomes.

Various approaches were adopted to assess the contribution of cathepsin C to the effects of GPN. CRISPR/Cas9 was used to generate HEK cells devoid of cathepsin C activity (HEK-CTSC-KO) (Figure 4.16A-C). Gly-Phe-DMK was used to inhibit cathepsin C activity (Methot et al., 2007; Repnik et al., 2017). Gly-Phe-DMK binds covalently to Cys-234 on the active site of cathepsin C and blocks its ability to cleave its substrates (Molgaard et al., 2007). The proteolytic activity of cathepsin C measured using the fluorogenic substrate, Gly-Arg-AMC in whole HEK cell lysates, was completely inhibited by the cathepsin C inhibitor Gly-Phe-DMK (Figure 4.16B, C). Gly-Arg-AMC is cleaved by cathepsin C to release the fluorogenic AMC. There was no detected AMC following prolonged inhibition of cathepsin C with Gly-Phe-DMK. In all conditions, a buffer control, containing no cell lysates was included to control for any basal fluorescence from the substrate. There was no significant difference between the buffer conditions and cells pre-treated with the cathepsin C inhibitor. (Figure 4.16B, C). There was no detectable AMC in HEK-CTSCKO cells (Figure 4.16B, C).
Figure 4.16 **Cathepsin C is not detected following CRISPR/Cas9-mediated gene-editing in HEK-CTSCKO cells.** (A) Western blot probing expression of cathepsin C and actin in HEK WT and HEK-CTSCKO. Lysates were serially diluted; the amount of total protein loaded in each lane is indicated. (B) Cleavage of the fluorogenic cathepsin C substrate Gly-Arg-AMC (50 µM) was assessed in whole cell lysates obtained from HEK WT or HEK-CTSCKO. Buffer control was included to correct for any basal change in fluorescence. Results are mean ± SD for 1 experiment with triplicate determinations, typical of 3 independent experiments. (C) Summary results from experiments described in B, shows the relative fluorescence of AMC detected in the conditions shown after 7 min. Results are mean ± SEM for 3 experiments. *P < 0.05, one-way ANOVA, Tukey’s test.
In HEK WT cells, GPN induced a significant increase in the OG fluorescence (Figure 4.17A, C). Furthermore, GPN resulted in a $74 \pm 5\%$ increase in the fluorescence of fluorescein-Dx (3-kDa) in HEK WT cells (Figure 4.17B, D, Table 4.1).

Figure 4.17 **GPN induces an increase in pH$_{i\gamma}$.** (A-B) Representative traces show the effect of GPN (300 µM) on Oregon Green-Dx (A) or fluorescein-Dx (B) fluorescence in HEK WT cells. (C-D) Summary results shows the effect of GPN on Oregon Green-Dx (C) or fluorescein-Dx (D) fluorescence in HEK WT cells before or 200 s after addition of GPN. Results shown are means ± SEM from 5 experiments. *$P < 0.05$, paired Student’s t-test.

In the next experiment, the role of cathepsin C in the GPN-mediated increase in pH$_{i\gamma}$ was assessed. In HEK-CTSCKO cells, GPN induced a $45 \pm 5\%$ increase in the Oregon Green-Dx fluorescence (Figure 4.18A, C). Furthermore, GPN resulted in a $68 \pm 8\%$ increase in the fluorescence of fluorescein-Dx (3-kDa) in HEK-CTSC KO cells (Figure 4.18B, D, Table 4.1). These results suggest that the GPN-evoked increase in pH$_{i\gamma}$ is independent of cathepsin C activity.
Figure 4.18 GPN induces an increase in pH in cells lacking cathepsin C. (A-B) Wide-field fluorescence images of HEK CTSCKO cells loaded with Oregon Green-Dx (A) or fluorescein-Dx (B). Images are shown before and 200 s after GPN (300 µM). Each image is representative of at least 3 independent experiments. Scale bar = 10 µm and applies to all images. (C-D) Summary results show the effect of GPN on Oregon Green-Dx (C) or fluorescein-Dx (D) fluorescence in HEK CTSCKO cells before or 200 s after addition of GPN. Results shown are means ± SEM from 5 experiments. *P < 0.05, paired Student’s t-test.

D-GPN, in which the L-Phe of L-GPN (hitherto described as GPN) is replaced by D-Phe; was also used to assess the role of cathepsin C is mediating the effect of GPN. Unlike L-GPN, D-GPN is not a substrate for cathepsin C (Jadot et al., 1990). In HEK WT cells, D-caused an increase in Oregon Green-Dx fluorescence (44 ± 8%) (Figure 4.19A, C, Table 4.1) and a 65 ± 8 % increase in the fluorescence of fluorescein-Dx (Figure 4.19B, D, Table 4.1).
Figure 4.19 **D-GPN induces an increase in pH_{ly}**. (A-B) Wide-field fluorescence images of HEK WT cells loaded with Oregon Green-Dx (A) or fluorescein-Dx (B). Images are shown before and 200 s after addition of D-GPN (300 µM). Each image is representative of at least three independent experiments. Scale bar = 10 µm and applies to all images. (C-D) Summary results show the effect of D-GPN on Oregon Green-Dx (C) or fluorescein-Dx (D) fluorescence in HEK WT cells before or 200 s after addition of GPN. Results shown are means ± SEM from 5 experiments. *P < 0.05, paired Student’s t-test.

GPN-induced loss of LysoTracker accumulation from lysosomes was unaffected by loss of cathepsin C (Figure 4.20). D-GPN also rapidly dissipated LysoTracker staining in HEK cells (Figure 4.20, Table 4.1). GPN caused the usual sustained increase in pH_{ly} in HEK cells without cathepsin C; and in normal HEK cells, GPN and D-GPN caused indistinguishable increases in pH_{ly}.

These results establish that the effects of GPN on pH_{ly} do not require cathepsin C, since the effects of GPN are unperturbed in cells with no demonstrable cathepsin C activity.
Figure 4.20 GPN induces release of LysoTracker from lysosomes. (A) Wide-field fluorescence images of HEK cells loaded with LysoTracker Red (100 nM, 20 min) before and 200 s after addition of GPN or D-GPN. Scale bar = 10 µm, and applies to all images. Representative traces next to the images show time course of LysoTracker Red following addition of GPN or D-GPN. (B) Summary results show the effect of GPN or D-GPN on LysoTracker Red fluorescence as means ± SEM from 6 independent experiments. *P < 0.05, 2-way ANOVA, Bonferroni post hoc tests.
Table 4.1 **GPN-induced increase in pH_{cyt}**. Changes in fluorescence of Oregon Green-Dx, fluorescein-Dx and LysoTracker Red induced by GPN (300 μM, 200s) in HEK cells. Results are means ± range from at least 4 independent experiments. A percentage decrease is shown for LysoTracker Red.

<table>
<thead>
<tr>
<th>Fluorophore</th>
<th>Loading</th>
<th>WT (GPN) (%)</th>
<th>CTSCKO (GPN) (%)</th>
<th>WT (D-GPN) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregon Green</td>
<td>Dx conjugate</td>
<td>50 ± 5</td>
<td>45 ± 5</td>
<td>44 ± 8</td>
</tr>
<tr>
<td>Fluorescein</td>
<td>Dx conjugate</td>
<td>74 ± 7</td>
<td>68 ± 8</td>
<td>65 ± 8</td>
</tr>
<tr>
<td>LysoTracker</td>
<td>Acidotropic dye</td>
<td>92 ± 5</td>
<td>94 ± 3</td>
<td>83 ± 4</td>
</tr>
</tbody>
</table>

The role of cathepsin C in the GPN-induced effect on pH_{cyt} was also assessed. In HEK WT cells, inhibition of cathepsin C activity did not affect the basal pH_{cyt} (Figure 4.21A, Table 4.2). The GPN-induced cytosolic alkalinization was also unaffected by cathepsin C inhibition. The maximum change in pH_{cyt} was 0.31 ± 0.06 in control cells and 0.28 ± 0.04 in cells treated with Gly-Phe-DMK (Figure 4.21B, Table 4.2).

Similarly, in HeLa cells, inhibition of cathepsin C activity did not affect the basal pH_{cyt} (Figure 4.21C, Table 4.2). GPN-induced cytosolic alkalinization was also unaffected by cathepsin C inhibition. The maximum change in pH_{cyt} was 0.41 ± 0.02 in control cells and 0.40 ± 0.04 in cells, treated with the inhibitor (Figure 4.21D, Table 4.2).
KO of cathepsin C also did not affect the basal pH_{cyt} (Figure 4.22A). There was also no significant difference between GPN-induced cytosolic alkalinization in HEK WT compared to cathepsin C KO cells (Figure 4.22B).

In HEK WT cells, treatment with D-GPN rapidly increased pH_{cyt} with a peak increase after approximately 50 s. It then returned to baseline after about 10 min. The maximum change in pH_{cyt} following treatment with 400 µM D-GPN was 0.34 ± 0.04 (Figure 4.23A, B).
Figure 4.22 **GPN-mediated increase in pH_{cyt} is unaffected by knock-out of cathepsin C.**

(A) Basal pH_{cyt} was measured in HEK WT cells and HEK-CTSCKO cells using SNARF-5F. Results are mean ± SEM. n = 3, P = 0.10, paired Student’s t-test. (B) GPN-mediated increase in pH_{cyt} is shown in HEK WT cells (black) and HEK-CTSCKO cells (red). Results are mean ± SEM from 3 independent experiments.

Table 4.2 **Inhibition of cathepsin C does not affect the GPN-induced increase in pH_{cyt}.**

Effect of cathepsin C inhibitor (Gly-Phe-DMK) on basal and peak changes in pH_{cyt} evoked by GPN (300 µM) in populations of HEK and HeLa cells loaded with SNARF-5F. Results are means ± SEM from 3 experiments.

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Treatment</th>
<th>Basal pH_{cyt}</th>
<th>Peak ΔpH_{cyt}</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEK WT</td>
<td>Control</td>
<td>7.16 ± 0.02</td>
<td>0.31 ± 0.06</td>
</tr>
<tr>
<td></td>
<td>Gly-Phe-DMK</td>
<td>7.14 ± 0.03</td>
<td>0.28 ± 0.04</td>
</tr>
<tr>
<td>HeLa</td>
<td>Control</td>
<td>7.17 ± 0.03</td>
<td>0.41 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>Gly-Phe-DMK</td>
<td>7.16 ± 0.03</td>
<td>0.40 ± 0.04</td>
</tr>
</tbody>
</table>
Figure 4.23 **D-GPN increases pH\textsubscript{cyt} in mammalian cells.** Populations of HEK cells loaded with SNARF-5F were stimulated in Ca2+-free HBS with D-GPN (300 µM). Results are mean ± SD for 1 experiment with triplicate determinations, typical of 3 independent experiments. (B) Summary results show that D-GPN increases pH\textsubscript{cyt} in a concentration-dependent manner in HEK cells. Results are mean ± SEM, \(n = 3 \). (C) Summary results show D-GPN increases pH\textsubscript{cyt} in a concentration-dependent manner in HeLa cells. Results are mean ± SEM, \(n = 3 \).

Similar results were obtained in HeLa cells, where treatment with D-GPN also increased pH\textsubscript{cyt} in a concentration-dependent manner (Figure 4.23C).

These results establish that GPN-mediated effects on pH\textsubscript{cyt} are not consistent with its proposed mode of action (Figure 4.1B), as GPN acutely increases pH\textsubscript{cyt} in a cathepsin C-independent manner.
The role of cathepsin C on the GPN-evoked increase in $[\text{Ca}^{2+}]_c$ was next assessed. Inhibition of cathepsin C with Gly-Phe-DMK did not affect the basal $[\text{Ca}^{2+}]_c$ in HEK cells. Basal $[\text{Ca}^{2+}]_c$ was 20 ± 3 nM in control cells and 20 ± 4 nM in cells treated with the inhibitor ($P = 0.19$, paired Student’s t test, $n = 4$). Furthermore, the concentration-dependent effects of GPN on $[\text{Ca}^{2+}]_c$ were indistinguishable in control HEK cells and in HEK cells treated with Gly-Phe-DMK (Figure 4.24A, B).

Similar analyses showed that there was no difference in basal $[\text{Ca}^{2+}]_c$ between HEK WT cells and HEK-CTSCKO cells (29 ± 8 nM in HEK WT cells and 23 ± 5 nM in HEK-CTSCKO cells) ($P = 0.30$, paired Student’s t test, $n = 4$). There was no difference in the GPN-induced increase in $[\text{Ca}^{2+}]_c$ between HEK WT cells and HEK-CTSCKO cells (Figure 4.25).

Finally, D-GPN caused the same concentration-dependent increases in $[\text{Ca}^{2+}]_c$ as GPN (Figure 4.26). These results demonstrate that the effects of GPN on pH_ly, pH_cyt and $[\text{Ca}^{2+}]_c$ do not require cathepsin C.

![Figure 4.24](image-url)

Figure 4.24 **GPN-mediated increase in $[\text{Ca}^{2+}]_c$ is unaffected by inhibition of cathepsin C.** (A) Populations of HEK cells in Ca$^{2+}$-free HBS were stimulated with GPN (200 µM), with or without pre-incubation with cathepsin C inhibitor (10 µM, 72 h). Results are means ± SD for three wells from a single experiment (B) Summary results from experiments described in A shows the effects of cathepsin C inhibitor on $\Delta[\text{Ca}^{2+}]_c$. Results are means ± SEM for 4 independent experiments.
Figure 4.25 GPN-mediated increase in \([\text{Ca}^{2+}]_c\) is unaffected by knock-out of cathepsin C. (A) Populations of HEK WT (WT) cells or HEK-CTSCKO (KO) cells were stimulated with GPN (300 µM), in Ca\(^{2+}\)-free HBS. Results are means ± SD for three wells from a single experiment. (B) Summary results show the concentration-dependent effect of GPN on \(\Delta[\text{Ca}^{2+}]_c\). Results are means ± SEM for 6 independent experiments.

Figure 4.26 D-GPN increases \([\text{Ca}^{2+}]_c\) in HEK cells. (A) Populations of HEK WT cells in Ca\(^{2+}\)-free HBS were stimulated with D-GPN or GPN (200 µM). Results are means ± SD for three wells from a single experiment. (B) Concentration-dependent effects of GPN and D-GPN on \(\Delta[\text{Ca}^{2+}]_c\). Results are means ± SEM for 3 independent experiments.
4.3.5 Other weak bases evoke ER-dependent Ca\(^{2+}\) signals

GPN, but not D-GPN, is a substrate for cathepsin C, but both are amphipathic weak bases (Table 4.3), which, in common with other lysosomotropic agents, accumulate within lysosomes (Figure 4.27A) (Nadanaciva et al., 2011; Villamil Giraldo et al., 2014). Therefore, the actions of GPN were compared with NH\(_4\)Cl, another lysosomotropic agent that is often used to increase pH\(_{\text{cyt}}\) (e.g., Johnson et al., 2016), and with an unrelated structure, fluoxetine (the antidepressant, Prozac), which also has lysosomotropic properties (Lu et al., 2017). As expected NH\(_4\)Cl and fluoxetine caused transient increases in pH\(_{\text{cyt}}\), similar to those evoked by GPN (Figure 4.27B, C).

<table>
<thead>
<tr>
<th></th>
<th>(^{a})Estimated p(_{K_a})</th>
<th>(^{a})Estimated ACD/logP</th>
<th>(^{d})Estimated ClogP</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH(_3)</td>
<td>8.86</td>
<td>-0.98</td>
<td>ND</td>
</tr>
<tr>
<td>LysoTracker Red</td>
<td>b7.5</td>
<td>ND</td>
<td>b2.10</td>
</tr>
<tr>
<td>'GPN</td>
<td>7.84</td>
<td>2.40</td>
<td>3.01</td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>9.8</td>
<td>4.17</td>
<td>4.57</td>
</tr>
</tbody>
</table>

Basic p\(_{K_a}\) refers to the p\(_{K_a}\) of the most basic moiety within the molecule. logP is the log of the partition coefficient of the neutral species between n-octanol and water. ACD/logP and ClogP are derived from different algorithms used to estimate logP values (reviewed in Mannhold et al., 2009). \(^{a}\)From Chemicalize (2018) calculation module: https://chemicalize.com/ developed by ChemAxon (http://www.chemaxon.com); except for \(^{b}\)(Duvvuri et al., 2004). \(^{c}\)For GPN, the most extremely basic moieties were disregarded, since their p\(_{K_a}\) values (13.6 and 15.3) lie too far beyond the physiological pH range; p\(_{K_a}\) values determined using the ACD/PhysChem Suite, version 12.0, Advanced Chemistry Development Inc, Toronto, Canada (http://ilab.cds.rsc.org/?cdsrdr=1). \(^{d}\)From http://ilab.cds.rsc.org/?cdsrdr=1, except for \(^{b}\)(Duvvuri et al., 2004). Most lysosomotropic compounds have basic p\(_{K_a}\) values >6.5 and ClogP values >2 (McCarl et al., 2009). ND, not determined.
Figure 4.27 **Other compounds that increase \(\text{pH}_{\text{cyt}} \).** (A) Structures and mechanisms of action of some lysosomotropic drugs. \(\text{B} \) and \(\text{B}^+ \) is the unprotonated and protonated form of a weakly basic compound respectively (B) A population of HEK cells loaded with SNARF-5F were stimulated with fluoxetine (300 \(\mu \text{M} \)) and \(\text{NH}_4\text{Cl} \) (20 mM). Results are mean ± SD from 3 wells in one experiment. (C) Summary results show the peak increase in \(\text{pH}_{\text{cyt}} \) (\(\Delta \text{pH}_{\text{cyt}} \)). Results are means ± SEM from 3 independent experiments.

\(\text{NH}_4\text{Cl} \) and fluoxetine also caused a rapid increase in \(\text{pH}_{\text{ly}} \), revealed by the loss of LysoTracker accumulation in HEK cells (Figure 4.28A-C). This is in agreement with previous reports of weak bases, such as fluoxetine, resulting in loss of LysoTracker accumulation in lysosomes (Kazmi et al., 2013; Lu et al., 2017).
Figure 4.28 **Fluoxetine and NH₄Cl acutely increase pH₀**. (A) Confocal images of HEK cells loaded with LysoTracker Red (100 nM, 20 min) and then treated (200 s) with NH₄Cl (20 mM) or fluoxetine (300 μM). (B-C) Summary results (mean ± SEM, n = 3-4) show fluorescence as F/F₀, where F₀ and F are fluorescence recorded before and 200 s after the addition of NH₄Cl (B) or fluoxetine (C). *P < 0.05, paired Student’s t-test.

D-GPN, the form of GPN that is not a substrate for cathepsin C, also increased [Ca²⁺]₀ and this was abolished by thapsigargin (Figure 4.29). Similarly, NH₄Cl and fluoxetine caused increases in [Ca²⁺]₀, like those evoked by GPN, which were also abolished by thapsigargin (Figure 4.29).
Figure 4.29 Other weak bases cause increases in $[\text{Ca}^{2+}]_c$ that are dependent on Ca^{2+} within the ER. (A-C) Effects of thapsigargin (TG, 1 μM, 15 min) in Ca^{2+}-free HBS on the Ca^{2+} signals evoked by D-GPN (200 μM) (A), fluoxetine (300 μM) (B), or NH_4Cl (20 mM) (C). Results show mean ± SD with 3 determinations. (D-F) Summary results show peak increases in $[\text{Ca}^{2+}]_c$ following D-GPN (200 μM) (D), fluoxetine (300 μM) (E), or NH_4Cl (20 mM) (F), with or without thapsigargin. Mean ± SEM, $n = 3$, each with 3 replicates. *$P < 0.05$, Student’s t-test.
Using carbachol or thapsigargin to estimate the residual Ca\(^{2+}\) content of the ER (by stimulating IP\(_3\) formation or inhibiting SERCA, respectively), both GPN and NH\(_4\)Cl were observed to cause a concentration-dependent decrease in the ER Ca\(^{2+}\) content (Figure 4.30). Since CCh, through IP\(_3\), stimulates Ca\(^{2+}\) release, while TG, by inhibiting SERCA, unmasks a basal leak, the peak amplitudes of the Ca\(^{2+}\) signals are different for the two stimuli. Both, however, reveal a similar concentration-dependent decrease in ER Ca\(^{2+}\) content after GPN treatment.

Figure 4.30 **GPN and NH\(_4\)Cl deplete the ER of Ca\(^{2+}\).** (A) HEK cells were stimulated with the indicated concentrations of GPN (15 min) in Ca\(^{2+}\)-free HBS before addition of carbachol (CCh, 1 mM) or thapsigargin (TG, 1 μM) to estimate the amount of Ca\(^{2+}\) remaining within the ER. Results (mean ± SEM, n = 3) show the Δ[Ca\(^{2+}\)]\(_c\) for CCh or TG. (B) Similar analyses (mean ± SEM, n = 4-6) show the effects of pre-treatment with NH\(_4\)Cl (15 min) on the subsequent Δ[Ca\(^{2+}\)]\(_c\) evoked by CCh or TG. The upper panel shows Δ[Ca\(^{2+}\)]\(_c\) evoked by NH\(_4\)Cl.
These results establish that four different weak bases (GPN, D-GPN, NH₄Cl and fluoxetine) have similar effects. Each causes a sustained increase in pHᵢᵧ, and transient increases in pHᵢᵧ and [Ca²⁺]ᵵ. The latter invariably requires Ca²⁺ within the ER.

4.3.6 GPN stimulates Ca²⁺ release from the ER by increasing pHᵢᵧ.

Since no known CICR mechanism contributes to the Ca²⁺ signals evoked by GPN (Section 4.3.3), the requirement for ER Ca²⁺ cannot arise from it amplifying an initial GPN-evoked Ca²⁺ release from lysosomes. However, as discussed in Chapter 3, the ER is important for lysosomal Ca²⁺ uptake. Therefore, a plausible possibility was that the primary action of GPN might be to trigger Ca²⁺ release from lysosomes, which might then be attenuated when lysosomes can no longer acquire Ca²⁺ from ER. Evidence that IP₃-evoked Ca²⁺ release from the ER immediately attenuates responses to GPN (Figure 4.11) argues against this proposal, and subsequent experiments confirm that it is untenable.

After dissipation of the pHᵢᵧ gradient by sustained treatment with bafilomycin A₁, the GPN-evoked increase in [Ca²⁺]ᵵ was exaggerated (Figure 4.31A, B), just as responses to Ca²⁺ release from the ER through IP₃Rs or inhibition of SERCA are exaggerated after bafilomycin A₁ treatment (Chapter 3). Hence, under conditions where GPN cannot cause an increase in pHᵢᵧ and when lysosomes are thought to be unable to accumulate Ca²⁺ (Chapter 3), GPN evokes larger increases in [Ca²⁺]ᵵ. Therefore, it was important to consider whether the GPN-evoked increases in pHᵢᵧ might directly stimulate Ca²⁺ release from the ER.
Figure 4.31 **GPN-induced increase in $[\text{Ca}^{2+}]_c$ is not prevented by loss of the lysosomal H$^+$ gradient.** (A) Effects of bafilomycin A$_1$ (Baf A$_1$, 1 μM, 1 h) on the Ca^{2+} signals evoked by GPN (200 μM) in HEK cells in Ca^{2+}-free HBS. Mean ± SD of 3 replicates. (B) Summary (mean ± SEM, $n = 4$, with 3 replicates). $^*P < 0.05$, Student’s t-test.

HEK cells were loaded with sodium propionate (NaP), a weak acid, to buffer the pH$_{cyt}$ changes evoked by GPN. NaP caused an initial drop in pH$_{cyt}$, but it slowly recovered. Subsequent addition of GPN then caused an attenuated increase in pH$_{cyt}$ (Figure 4.32A, B). The immediate effect of GPN on pH$_{cyt}$ was only modestly attenuated by NaP, but by 2 min the response was reduced by more than 60% (Figure 4.32).

Pre-treatment with NaP did not affect LysoTracker accumulation in HEK cells, and GPN rapidly dissipated this accumulation (Figure 4.33). Therefore, treatment with NaP does not affect the GPN-mediated increase in pH$_{ly}$.
Figure 4.32 Sodium propionate attenuates the prolonged increase in pH\textsubscript{cyt} evoked by GPN. (A) Population of HEK cells loaded with SNARF-5F in Ca2+-free HBS were treated with sodium propionate (NaP, 30 mM) before addition of GPN (200 μM). Results show pH\textsubscript{cyt} (mean of 3 replicates). (B) Summary (mean ± SEM, \(n = 3\), each with 3 replicates) show \(\Delta pH\textsubscript{cyt}\) measured 30 s or 2 min after GPN addition.

Figure 4.33 GPN increases pH\textsubscript{b} in the presence of sodium propionate of HEK cells. (A) Typical images of the effects of NaP (30 mM, 30 min) and then GPN (200 μM, 30 s) on LysoTracker Red staining. (B) Time-course shows the effect of NaP (30 mM, 10 min) and then GPN (200 μM, 30 s) on LysoTracker Red staining. Mean ± SD, from 3 cells.
The GPN-evoked increase in \([\text{Ca}^{2+}]_c\), which takes 106 \pm 2 s to reach its peak (Figure 4.4), was almost abolished by NaP (Figure 4.34A, B). NaP had no effect on the increase in \([\text{Ca}^{2+}]_c\) evoked by carbachol or the \text{Ca}^{2+} content of the intracellular stores assessed by addition of ionomycin (Figure 4.34C, D).

These results demonstrate that an increase in pH\text{cyt} is required for GPN to increase \([\text{Ca}^{2+}]_c\), while an increase in pH\text{ly} is ineffective.

Figure 4.34 Pre-incubation with sodium propionate selectively attenuates the GPN-induced increase in \([\text{Ca}^{2+}]_c\). (A) Populations of HEK cells loaded with fluo 8 in Ca2+-free HBS were treated with sodium proprionate (NaP, 30 mM) before addition of GPN (200 \mu M). Results show \([\text{Ca}^{2+}]_c\) (mean of 3 replicates). (B-D) Summary results (mean \pm SEM, \(n = 4\) (B) or 3 (C, D), each with 3 replicates) show peak Ca2+ signals (\(\Delta[\text{Ca}^{2+}]_c\)) evoked by GPN (200 \mu M, B), carbachol (CCh, 1 mM, C) or ionomycin (5 \mu M, D) in Ca2+-free HBS following treatment with NaP (30 mM). *\(P < 0.05\), Student’s \(t\)-test.
4.4 Conclusions

GPN is used extensively to perturb lysosomes and, as interest in the contributions of lysosomes to Ca\(^{2+}\) signalling has grown, GPN has been widely used to release Ca\(^{2+}\) from lysosomes (Section 4.1). It has been universally assumed that GPN achieves selectivity for lysosomes because its cleavage by a lysosomal enzyme, cathepsin C, causes an osmotic stress that ruptures lysosomal membranes (Figure 4.1). My results challenge these assumptions and demonstrate that GPN does not selectively target lysosomes.

GPN does not acutely rupture lysosomes (Figure 4.2, 4.7, 4.8) and it causes a transient increase in pH\(_{\text{cyt}}\) (Figure 4.5). GPN also increases pH\(_{\text{ly}}\) and [Ca\(^{2+}\)]\(_{\text{c}}\). None of these effects of GPN requires cathepsin C (Section 4.3.4). The GPN-evoked increase in [Ca\(^{2+}\)]\(_{\text{c}}\) is mediated by Ca\(^{2+}\) release from the ER, with no evident involvement of lysosomes: the Ca\(^{2+}\) signals are abolished by depleting the ER of Ca\(^{2+}\) (Figure 4.10, 4.13, 4.29), amplified when lysosomes are no longer acidified (Figure 4.31), and they show no requirement for CICR from the ER (Figure 4.13).

Several lines of evidence show that the GPN-evoked increase in pH\(_{\text{cyt}}\) stimulates Ca\(^{2+}\) release from the ER. Other membrane-permeant weak bases mimic GPN (Section 4.3.5), depleting the ER of Ca\(^{2+}\) abolishes the GPN-evoked increase in [Ca\(^{2+}\)]\(_{\text{c}}\) (Figure 4.10, 4.13, 4.29) without affecting the pH\(_{\text{cyt}}\) increase (Figure 4.12), and an increase in pH\(_{\text{ly}}\) is not required for GPN to release Ca\(^{2+}\) (Figure 4.31). Finally, GPN-evoked Ca\(^{2+}\) release is almost abolished by buffering the pH\(_{\text{cyt}}\) changes under conditions where GPN still causes an increase in pH\(_{\text{ly}}\) (Section 4.3.6). This suggests that GPN, and other membrane-permeant weak bases, cause an increase in pH\(_{\text{cyt}}\), which then stimulates Ca\(^{2+}\) release from the ER (Figure 4.35).

Cells tightly control their pH\(_{\text{cyt}}\) passively with buffers, and actively by means of ion transporters (Casey et al., 2010), but many stimuli cause acute increases in pH\(_{\text{cyt}}\) at least as large as those evoked by GPN (ΔpH = 0.37 ± 0.06, Figure 4.5). The stimuli include those that activate the plasma membrane Na\(^{+}\)-H\(^{+}\) exchanger (NHE) through protein kinase C (Wakabayashi et al., 2006) and signals that prepare sperm for fertilization (Babcock et al., 1983).
Chapter 4

Figure 4.35 **GPN evokes Ca\(^{2+}\) release from the ER via an increase in pH\(_{\text{cyt}}\).** GPN, a weak membrane-permeant base, causes pH\(_{\text{cyt}}\) to transiently increase and this directly stimulates Ca\(^{2+}\) release from the ER by a mechanism that requires neither IP\(_3\)Rs nor RyRs. Some of the Ca\(^{2+}\) released by this pH-regulated mechanism, in common with that released by IP\(_3\)Rs, is then accumulated by lysosomes (LY). Many physiological stimuli that increase pH\(_{\text{cyt}}\), including those that stimulate NHE through protein kinase C (PKC), may evoke increases in [Ca\(^{2+}\)]\(_{\text{c}}\) through the same pathway.

Furthermore, in tumours, pH\(_{\text{cyt}}\) is often increased (Schreiber, 2005). In many cell types, an increase in pH\(_{\text{cyt}}\) increases [Ca\(^{2+}\)]\(_{\text{c}}\). In some cells, the response requires Ca\(^{2+}\) entry (Grinstein & Goetz, 1985; Wakabayashi et al., 2006), but in many others it is due to Ca\(^{2+}\) release from intracellular stores, most likely the ER (Siskind et al., 1989; Shorte et al., 1991; Batlle et al., 1993; Yodozawa et al., 1997; Speake & Elliott, 1998; Willoughby et al., 2001). The mechanisms are unknown, and since the pH of the ER lumen (pH\(_{\text{ER}}\)) is assumed to equilibrate rapidly with pH\(_{\text{cyt}}\) (Casey et al., 2010), the effect might be exercised from the cytosol or ER lumen. Because increased pH\(_{\text{ER}}\) would be expected to increase Ca\(^{2+}\) buffering and so decrease ER luminal free [Ca\(^{2+}\)], the Ca\(^{2+}\) release evoked by increased pH\(_{\text{cyt}}\) is probably due to the opening of a Ca\(^{2+}\)-permeable ER channel. At increased pH\(_{\text{cyt}}\), phospholipase C may be stimulated (Yodozawa et al., 1997) and IP\(_3\) also binds more tightly to IP\(_3\)Rs (Joseph et al., 1989), but GPN-evoked Ca\(^{2+}\) release does not require IP\(_3\)Rs (Figure 4.13). SERCA, which transports Ca\(^{2+}\) in exchange for H\(^{+}\), is inhibited by increased pH (Lytton et al., 1992; Li et al., 2012). Inhibition of SERCA cannot explain my results because the Ca\(^{2+}\) release evoked by GPN was both faster and more substantial than that evoked by inhibition of SERCA by CPA.
or thapsigargin (Figure 4.4, 4.13). Hence, modest increases in pH_{cyt}, similar to those evoked by many physiological stimuli, trigger a substantial Ca^{2+} release from the ER that requires neither RyRs nor IP_{3}Rs.

The evidence that GPN induces lysosomal rupture is not well substantiated in the literature. Multiple studies rely on acidotropic dyes such as lysotracker red and acridine orange as a measure of LMP (Haller et al., 1996; Penny et al., 2014; Ruas et al., 2015). However, this is problematic as the distribution of these dyes is pH-dependent. GPN was shown to cause a partial loss of lucifer yellow in normal Rat Kidney Epithelial Cells (Bright et al., 2016). Furthermore, GPN was also shown to acutely reduce the fluorescence of MagicRed in lysosomes, reporting LMP (Skowyra et al., 2018). However, NH_{4}Cl which has been shown not to induce LMP (Skowyra et al., 2018), has also been shown to markedly reduce MagicRed fluorescence in mammalian cells (Johnson et al., 2016). Nevertheless, GPN was shown to mediate ESCRT-recruitment to lysosomes to a lesser degree than following LeuLeuOMe, in a Ca^{2+}-dependent manner (Skowyra et al., 2018). Whereas GPN-induced LMP was assessed via a pH-sensitive molecule (MagicRed), LeuLeuOMe -induced LMP was more robustly assessed using pH independent markers such as Gal3 and endocytosed dextrans. Nevertheless, there remains gaps and inconsistencies between the evidence of the effect of GPN on lysosomal membranes and previously reported effects of GPN on Ca^{2+} signals. Careful reconsideration of the preceding literature on the use of GPN as a Ca^{2+} release tool selective to lysosome is required in light of this new evidence showing the effects of GPN on cytosolic pH and Ca^{2+}.

In conclusion the results presented here show that, GPN does not, as hitherto supposed, evoke Ca^{2+} release from lysosomes through its cathepsin C-mediated proteolysis. Instead, GPN, in common with other membrane-permeant weak bases and many physiological stimuli, transiently increases pH_{cyt}, and that directly stimulates Ca^{2+} release from the ER by a mechanism that is independent of known ER Ca^{2+} release channels.
5. Conclusions

Lysosomes have been reported to contain substantial amounts of Ca\(^{2+}\) (Christensen et al., 2002), and they are increasingly regarded as a Ca\(^{2+}\) store. Lysosomes express Ca\(^{2+}\) release channels, including TRPML, TPC2 and ATP-regulated P2X4 receptors, that allow Ca\(^{2+}\) release by specific stimulus (Morgan et al., 2011). Ca\(^{2+}\) uptake by lysosomes has been proposed to be facilitated by MCS between lysosomes and ER, stabilized by scaffold proteins (Taylor, 1998; Probst et al., 2006; Alpy et al., 2013; Friedman et al., 2013; Phillips & Voeltz, 2016). The cytosolic Ca\(^{2+}\) signals evoked by TRPML or TPC2 can be amplified by CICR through IP\(_3\)Rs or RyRs in closely apposed ER (Nakade et al., 1994; Patel et al., 2010; Morgan et al., 2011). Conversely, Ca\(^{2+}\) released by ER channels can be rapidly sequestered by lysosomes. This sequestration can both attenuate cytosolic Ca\(^{2+}\) signals evoked by IP\(_3\)Rs (Lopez Sanjurjo et al., 2013) and, by loading lysosomes with Ca\(^{2+}\), prime TPC2 to respond (Morgan et al., 2013), control fusion and fission within endolysosomal pathways (Ruas et al., 2010), and regulate autophagy and lysosomal biogenesis through calcineurin activated by TRMPL-mediated Ca\(^{2+}\) release (Medina et al., 2015). A major limitation in the field is the lack of tools both to measure luminal lysosomal [Ca\(^{2+}\)] and to selectively release Ca\(^{2+}\) from lysosomes.

In the first part of this project (Chapter 3), I investigated the role of IP\(_3\)R in regulating lysosomal Ca\(^{2+}\) homeostasis. Previous work from this laboratory showed that lysosomes selectively sequester Ca\(^{2+}\) released from IP\(_3\)Rs and not Ca\(^{2+}\) entering via SOCE assessed via global \([Ca^{2+}]_c\) measurements (Lopez-Sanjurjo et al., 2013). But the mechanisms underlying this selectivity were not clear. In this project, I investigated mechanisms regulating the transfer of Ca\(^{2+}\) from the ER to lysosomes. From the results presented, I draw the following conclusions:

1. The ER through its SERCA and IP\(_3\)Rs, provides a route through which Ca\(^{2+}\) can be accumulated from the low \([Ca^{2+}]_c\) of resting cells by a high-affinity uptake system (SERCA) and then delivered locally through large-conductance channels (IP\(_3\)Rs and perhaps others) at a high local concentration to a low-affinity uptake system in lysosomes. The ER, with its high-affinity SERCA and large-conductance Ca\(^{2+}\) channels, behaves like a compressor or piston linking a low \([Ca^{2+}]_c\) to the low-affinity
uptake systems of lysosomes. This provides a close analogy with the relationship between ER and MCU in mitochondria.

2. Increasing pH$_\text{ly}$ does not immediately prevent Ca$^{2+}$ uptake, but it slowly causes lysosomes to enlarge, redistribute, reduce their affiliation with IP$_3$Rs and lose their ability to selectively sequester Ca$^{2+}$ released by IP$_3$Rs. I suggest that abrogating the lysosomal H$^+$ gradient disrupts the contacts between ER and lysosomes, and thereby the ability of IP$_3$R to selectively deliver Ca$^{2+}$ to lysosomes.

In the second part of this project (Chapter 4), I investigated the mechanism of action of GPN. GPN has been widely used to elucidate mechanisms of lysosomal Ca$^{2+}$ uptake and release. GPN is proposed to be cleaved by cathepsin C, which I investigated further in Chapter 4. From the results presented in Chapter 4, I conclude that GPN does not, as hitherto supposed, evoke Ca$^{2+}$ release from lysosomes through its cathepsin C-mediated proteolysis. Instead, GPN, in common with other membrane-permeant weak bases and many physiological stimuli, transiently increases pH$_\text{cyt}$, and that directly stimulates Ca$^{2+}$ release from the ER by a mechanism that is independent of known ER Ca$^{2+}$ release channels.

In summary, the coupling of lysosomes to the ER at MCS is critical for lysosome Ca$^{2+}$ uptake. Although IP$_3$R are not essential for the formation of these MCS, they deliver their Ca$^{2+}$ to the lysosomes at these junctions. It is still not clear if all lysosomal Ca$^{2+}$ uptake occurs at the MCS between ER and lysosomes. This issue will be effectively resolved only when it becomes possible to measure the luminal [Ca$^{2+}$] in individual lysosomes in contact with the ER. It has been suggested that IP$_3$R provide the only means by which Ca$^{2+}$ exchange occurs from the ER to lysosomes (Garrity et al., 2016). My results are consistent with ER-lysosome MCS being required for lysosomal Ca$^{2+}$ uptake after Ca$^{2+}$ release through IP$_3$R. This would provide a link between receptor-regulated IP$_3$ formation and Ca$^{2+}$ handling by lysosomes. It remains to be determined whether the same contact sites are required for all Ca$^{2+}$ uptake by lysosomes.
References

References

Chaloux B, Caron AZ, Guillemette G (2007). Protein kinase A increases the binding affinity and the Ca\(^{2+}\) release activity of the inositol 1,4,5-trisphosphate receptor type 3 in RINm5F cells. *Biol Cell* **99**: 379-388.

References

References

Jing J, He L, Sun A, Quintana A, Ding Y, Ma G, Tan P, Liang X, Zheng X, Chen L, Shi X,
Proteomic mapping of ER-PM junctions identifies STIMATE as a regulator of Ca^{2+} influx.

Jones L, Ma L, Castro J, Litjens T, Barritt GJ, Rychkov GY (2011). The predominant role of
IP_{3} type 1 receptors in activation of store-operated Ca^{2+} entry in liver cells. *Biochim Biophys

Jongsma ML, Berlin I, Wijdeven RH, Janssen L, Janssen GM, Garstka MA, Janssen H,
defines endosomal architecture for controlled cargo transport. *Cell* **166**: 152-166.

Joseph SK, Rice HL, Williamson JR (1989). The effect of external calcium and pH on

Kaftan EJ, Ehrlich BE, Watras J (1997). Inositol 1,4,5-trisphosphate (InsP_{3}) and calcium
interact to increase the dynamic range of InsP_{3} receptor-dependent calcium signaling. *J Gen
Physiol* **110**: 529-538.

Kagedal K, Zhao M, Svensson I, Brunk UT (2001). Sphingosine-induced apoptosis is

evaluation of inhibitors for dipeptidyl peptidase I (Cathepsin C). *Arch Biochem Biophys* **427**:
123-134.

Konieczny V, Tovey SC, Mataragka S, Prole DL, Taylor CW (2017). Cyclic AMP recruits a discrete Intracellular Ca2+ store by unmasking hypersensitive IP\textsubscript{3} receptors. *Cell Rep* **18**: 711-722.

References

Lopez-Sanjurjo CI, Tovey SC, Prole DL, Taylor CW (2013). Lysosomes shape Ins(1,4,5)P\textsubscript{3}-evoked Ca2+ signals by selectively sequestering Ca2+ released from the endoplasmic reticulum. *J Cell Sci* **126:** 289-300.

Lopez Sanjurjo CI, Tovey SC, Prole DL, Taylor CW (2013). Lysosomes shape Ins(1,4,5)P\textsubscript{3}-evoked Ca2+ signals by selectively sequestering Ca2+ released from the endoplasmic reticulum. *J Cell Sci* **126:** 289-300.

Mangieri LR, Mader BJ, Thomas CE, Taylor CA, Luker AM, Tse TE, Huisingh C, Shacka JJ (2014). ATP6V0C knockdown in neuroblastoma cells alters autophagy-lysosome pathway...

References

References

192

Pitt SJ, Lam AK, Riedorf K, Galione A, Sitsapesan R (2014). Reconstituted human TPC1 is a proton-permeable ion channel and is activated by NAADP or Ca^{2+}. *Sci Signal* **7**: ra46.

References

References

Scott CC, Gruenberg J (2011). Ion flux and the function of endosomes and lysosomes: pH is just the start: the flux of ions across endosomal membranes influences endosome function not only through regulation of the luminal pH. *Bioessays* **33**: 103-110.

Solovyova N, Fernyhough P, Glazner G, Verkhratsky A (2002). Xestospongin C empties the ER calcium store but does not inhibit InsP\textsubscript{3}-induced Ca2+ release in cultured dorsal root ganglia neurones. *Cell Calcium* **32**: 49-52.

References

References

References

