Adjoint methods as design tools in thermoacoustics

Luca Magri

University of Cambridge
Engineering Department
Trumpington Street, Cambridge, CB2 1PZ
United Kingdom
Email: lm547@cam.ac.uk

CONTENTS

1 Introduction 4
 1.1 Eigenvalue analysis 5
 1.1.1 Transient growth 5
 1.2 Adjoint-based methods: A literature review 5
 1.2.1 Non-reacting flows 6
 1.2.2 Reacting flows 7
 1.2.3 Thermoacoustics 8
 1.3 Conventions 8
 1.4 Dimensional and nondimensional parameters 9
 1.5 Objectives and structure 9

2 Thermoacoustic models 10
 2.1 Nonlinear, multicomponent, compressible,
 reacting flow equations 10
 2.2 Acoustics 11
 2.2.1 Linearization 11
 2.2.2 Nondimensional mean-flow equations 11
 2.2.3 Nondimensional acoustic equations 12
 2.3 Flame models 16
 2.3.1 Diffusion flame 16
 2.3.2 Premixed flame 16
 2.3.3 Flame response models 17
 2.4 Hydrodynamic models 17

3 Stability, receptivity and sensitivity (SRS) analysis 17
 3.1 Stability 18
 3.1.1 Stability conditions 18
 3.1.2 Nonlinear eigenproblem 18
 3.1.3 Features of nonlinear eigenproblems 19
 3.2 Receptivity (adjoint eigenproblem) 19
 3.2.1 CA, DA or AD? 20
 3.2.2 Physical information from adjoint
 eigenfunctions 21
 3.3 Eigenvalue sensitivity 21
 3.3.1 Multi-index expansion 22

3.3.2 Sensitivity to one parameter 22
3.3.3 Sensitivity to multiple parameters 23
3.3.4 Sensitivity to the thermoacoustic
 matrix ... 24
3.3.5 Intrinsic sensitivity 24
3.4 Adjoint methods vs finite difference 24
3.5 Example of continuous adjoint equations of
 a thermoacoustic network 24

4 Thermoacoustic models with multiple scales 25
 4.1 Low-Mach number equations 26
 4.2 Acoustics 26
 4.3 Two-way coupling terms 27
 4.3.1 Linearization 27
 4.4 Discrete adjoint 28

5 The thermoacoustic spectrum 28

6 Applications of SRS analysis without uncertainty 29
 6.1 Direct and adjoint eigenfunctions 29
 6.1.1 Helmholtz resonators 30
 6.2 Sensitivity to design parameters 30
 6.2.1 Experimental validation 31
 6.3 Sensitivity to passive devices 33
 6.4 Sensitivity to intrinsic physical mechanisms 34

7 Applications of SRS analysis under uncertainty 35
 7.1 Forward uncertainty quantification 35
 7.2 Adjoint-based Monte-Carlo methods 36
 7.3 Monte-Carlo free methods 37

8 Applications of SRS analysis to optimization 38
 8.1 Optimal placement and tuning of acoustic
 dampers ... 38
 8.2 Shape optimization 38

9 Combining Bloch theory with adjoints: The inclina-
 tion rule in annular combustors 38
10 Weakly nonlinear analysis

11 Sensitivity of limit cycles: Adjoint Floquet analysis

11.1 Floquet analysis

11.2 Floquet-exponent sensitivity

11.3 Period sensitivity

12 Conclusions

12.1 Current and future directions

A Local Smith form of nonlinear eigenproblems

B More on adjoint equations

B.1 Adjoint equations of nonlinear time-dependent systems

B.2 More remarks on adjoint equations

B.3 Regularity of the continuous adjoint function in strong and weak forms

C An adjoint-based interpretation of thermoacoustic stability criteria

Nomenclature

Abbreviations:

DNS Direct numerical simulation
FTF Flame transfer function
h.o.t. Higher order terms
LES Large-eddy simulation
NEP Nonlinear eigenproblem
ODE Ordinary differential equation
PDE Partial differential equation
PDF Probability density function
RANS Reynolds-averaged Navier-Stokes
URANS Unsteady Reynolds-averaged Navier-Stokes

Greek:

N_i Heat capacity factor of species i
α Fuel-to-air port ratio in the diffusion flame
ω_A j Acoustic pressure amplitude of the j-th Galerkin mode
μ M-tuple of non-negative integers for multi-index notation
Δh_i,j Formation enthalpy of species i
Δs_i,j Formation entropy of species i
ω_i Production rate of species i
η_i Acoustic velocity amplitude of the j-th Galerkin mode
γ Heat-capacity ratio, γ = cp/cv
κ Flame curvature
λ Thermal diffusivity
O Big O notation
μ_i Chemical potential of species i
ψ Stoichiometric mass ratio
ω Angular frequency, Im(σ)

Mathematical:

∠ Phase
· Base- or mean-flow quantity
→ Scalar product
≡ Definition
∇ Laplace transformed quantity
⟨·,·⟩ Bilinear, or sesquilinear form
∥·∥ Euclidean norm (p = 2)
∥·∥_p p-norm
C_N Field of N-tuple of complex numbers
R_N Field of N-tuple of real numbers
L Laplace transform of S_c
D Diffusion coefficient
L Markstein length, or generic continuous linear operator, or Lagrangian
N_c A nonlinear operator of the governing equations
R_c Specific gas constant
R_e Universal gas constant
S_c Advect ed entropy disturbance
Z Acoustic impedance
- Dimensional quantity

Roman:

q Base- or mean-flow solution
δP Perturbation matrix
s Spatial structure of harmonic forcing
ψ Direct eigenvector
σ_k,± k-th order eigenvalue drifts in auxiliary eigenproblem
f_i Volume force on species i
H_Δp Thermoacoustic matrix perturbed along the multi-parameter direction Δp
I Identity matrix
M Positive-definite matrix
N Matrix of the nonlinear eigenproblem
n Normal vector
u Velocity
\(V_i\) Diffusion velocity of species \(i\)
\(X\) Matrix of auxiliary eigenproblem
\(x\) Spatial coordinates
\(X_f, Y_f\) Spatial coordinates in the flame domain
\(Y\) Mass matrix of auxiliary eigenproblem
\(z_A\) Eigenvectors of auxiliary eigenproblem
\(\hat{q}^+\) Adjoint eigenvector
\(\text{det}\) Determinant
\(\text{dim}\) Dimension of a vector space
\(\text{null}\) Null space (or kernel)
\(\text{rank}\) Rank of a matrix
\(q\) State in continuous spaces, such as Hilbert spaces
\(\tilde{q}\) State vector
\(\Delta p\) Perturbation unit direction in the multi-parameter space
\(a\) Algebraic multiplicity of an eigenvalue
\(b\) Bloch wave number
\(c\) Speed of sound
\(c_{p,i}\) Heat capacity at constant pressure of species \(i\)
\(c_{v,i}\) Heat capacity at constant volume of species \(i\)
\(Da\) Damköhler number
\(F\) Laplace transform of \(f\)
\(f\) Acoustic wave travelling in the direction of the mean flow
\(F_G\) Flame gain, or \(G\) field in the level-set method for premixed flames, or Laplace transform of \(g\)
\(g\) Acoustic wave travelling in the opposite direction of the mean flow, or geometric multiplicity of an eigenvalue
\(h\) Enthalpy
\(h_{s,i}\) Sensible enthalpy of species \(i\)
\(He\) Helmholtz number
\(i\) Imaginary unit, or eigenvalue’s index in multi-index notation
\(K\) Disturbance phase velocity in premixed flames
\(L\) Length scale
\(M\) Mach number, or number of parameters, i.e. length of \(p\)
\(m_i\) Partial multiplicity of local Smith form
\(n\) Flame index
\(N_i\) Number of species
\(p\) Pressure, or single parameter
\(Pe\) Péclet number
\(Q\) Number of elements in truncated asymptotic expansion
\(Q_{h}\) Rate of heat released by reaction with multiplescales
\(R_d\) Acoustic reflection coefficient at the outlet
\(R_e\) Entropy-to-acoustics reflection coefficient at the outlet
\(R_{ud}\) Acoustic reflection coefficient at the inlet
\(Re\) Reynolds number
\(s\) Entropy
\(S_1\) Density ratio
\(S_2\) Adiabatic flame temperature to ambient temperature ratio
\(s_L\) Flame speed in premixed flames
\(s_{s,i}\) Sensible entropy of species \(i\)
\(Sc\) Schmidt number
\(T\) Temperature
\(t\) Time
\(u\) Axial velocity
\(u'_c\) Flame front speed in a one-dimensional flame
\(V\) Domain
\(V_f\) Flame domain
\(W_i\) Molar mass of species \(i\)
\(x_f\) Flame location
\(Y_i\) Mass fraction of species \(i\)
\(Z\) Mixture fraction
\(q\) State vector

Subscripts:
0 Unperturbed variable, or initial condition
1 First-order perturbation
2 Second-order perturbation
\(d\) Downstream of the flame
\(F\) Fuel
\(f\) Flame
\(fr\) Flame front of the premixed flame
\(h\) Homogeneous solution
\(in\) Inlet
\(O\) Oxidizer
\(p\) Particular solution
\(ref\) Reference condition
\(u\) Upstream of the flame

Superscripts:
\('\) Fluctuation in the time domain
\(*\) Complex conjugate
\(+\) Right limit
\(–\) Left limit
\(\circ\) Standard condition
\(H\) Conjugate transpose

Glossary:
- **Adjoint:** Or dual. It could be used as an adjective or a noun.
- **Base flow:** A steady solution of the governing equations. With abuse of terminology, sometimes it is used interchangeably with “mean flow”
- **Direct eigenfunction:** Eigenfunction
- **Direct solution:** The solution of the problem, as opposed to the adjoint solution
- **Drift:** Or perturbation, or shift, or small change
- **Defective eigenvalue:** A degenerate eigenvalue with fewer independent eigenfunctions than its algebraic multiplicity
- **Degenerate eigenvalue:** A defective eigenvalue or a semi-simple eigenvalue with multiplicity greater than unity
- **Eigenfunction:** Also known as eigenmode, eigenshape, eigensolution, eigenvector, mode, global mode
- **Eigenpair:** Eigenvalue with the corresponding
Thermoacoustic oscillations are a challenging problem that affects aircraft and industrial gas turbines, as well as rocket and heat-exchanger manufacturing [1–7]. In gas turbines, the chemical energy contained in the fuel is converted into thermal energy via controlled combustion with air. During the combustion process, the flame releases unsteady heat, which is a powerful monopole source of sound waves [8] propagating back and forth within the combustion chamber. When they echo and return to the flame, sound waves may enhance the heat released by the flame, which, in turn, generates even stronger sound waves. These are called thermoacoustic instabilities or oscillations, which are also known as combustion instabilities. For this to occur, three macro subsystems – hydrodynamics, acoustics, and the flame (Fig. 1) – constructively interact with each other. Hydrodynamic instabilities (e.g., shear layer instabilities) unsteadily change the flame shape, which, in turn, changes the heat release rate, thereby generating acoustic perturbations. The latter, in turn, excite hydrodynamic instabilities at the flame’s base, which closes the feedback loop. The essence of this feedback mechanism was explained by Lord Rayleigh [16] and mathematically formalized in [17, 18] by defining the acoustic energy as

$$\tilde{E}_{ac} = \frac{1}{2} \int_{\Omega} \left(\tilde{p} \tilde{u}' \cdot \tilde{u}' + \frac{\tilde{p}^2}{\rho^2} \right) d\tilde{V},$$

where $\tilde{\ }$ denotes a dimensional quantity; $\tilde{\ }$ is the mean-flow quantity; $'$ is the small fluctuation; \tilde{p} is the density; \tilde{u} is the velocity; \tilde{p} is the pressure; \tilde{c} is the speed of sound; and \tilde{V} is the space domain, i.e., the volume of the combustion chamber. By combining the acoustic momentum and energy equations (Sec. 2), the instantaneous change in the acoustic

Abstract

In a thermoacoustic system, such as a flame in a combustor, heat release oscillations couple with acoustic pressure oscillations. If the heat release is sufficiently in phase with the pressure, these oscillations can grow, sometimes with catastrophic consequences. Thermoacoustic instabilities are still one of the most challenging problems faced by gas turbine and rocket motor manufacturers. Thermoacoustic systems are characterized by many parameters to which the stability may be extremely sensitive. However, often only few oscillation modes are unstable. Existing techniques examine how a change in one parameter affects all (calculated) oscillation modes, whether unstable or not. Adjoint techniques turn this around: They accurately and cheaply compute how each oscillation mode is affected by changes in all parameters. In a system with a million parameters, they calculate gradients a million times faster than finite difference methods. This review paper provides (i) the methodology and theory of stability and adjoint analysis in thermoacoustics, which is characterized by degenerate and non-degenerate nonlinear eigenvalue problems; (ii) physical insight in the thermoacoustic spectrum, and its exceptional points; (iii) practical applications of adjoint sensitivity analysis to passive control of existing oscillations, and prevention of oscillations with ad-hoc design modifications; (iv) accurate and efficient algorithms to perform uncertainty quantification of the stability calculations; (v) adjoint-based methods for optimization to suppress instabilities by placing acoustic dampers, and prevent instabilities by design modifications in the combustor’s geometry; (vi) a methodology to gain physical insight in the stability mechanisms of thermoacoustic instability (intrinsic sensitivity); and (vii) in nonlinear periodic oscillations, the prediction of the amplitude of limit cycles with weakly nonlinear analysis, and the theoretical framework to calculate the sensitivity to design parameters of limit cycles with adjoint Floquet analysis. To show the robustness and versatility of adjoint methods, examples of applications are provided for different acoustic and flame models, both in longitudinal and annular combustors, with deterministic and probabilistic approaches. The successful application of adjoint sensitivity analysis to thermoacoustics opens up new possibilities for physical understanding, control and optimization to design safer, quieter and cleaner aero-engines. The versatile methods proposed can be applied to other multi-physical and multi-scale problems, such as fluid-structure interaction, with virtually no conceptual modification.

1 Introduction

Thermoacoustic oscillations are a challenging problem that affects aircraft and industrial gas turbines, as well as rocket and heat-exchanger manufacturing [1–7]. In gas turbines, the chemical energy contained in the fuel is converted into thermal energy via controlled combustion with air. During the combustion process, the flame releases unsteady heat, which is a powerful monopole source of sound waves [8] propagating back and forth within the combustion chamber. When they echo and return to the flame, sound waves may enhance the heat released by the flame, which, in turn, generates even stronger sound waves. These are called thermoacoustic instabilities or oscillations, which are also known as combustion instabilities. For this to occur, three macro subsystems – hydrodynamics, acoustics, and the flame (Fig. 1) – constructively interact with each other. Hydrodynamic instabilities (e.g., shear layer instabilities) unsteadily change the flame shape, which, in turn, changes the heat release rate, thereby generating acoustic perturbations. The latter, in turn, excite hydrodynamic instabilities at the flame’s base, which closes the feedback loop. The essence of this feedback mechanism was explained by Lord Rayleigh [16] and mathematically formalized in [17, 18] by defining the acoustic energy as

$$\tilde{E}_{ac} = \frac{1}{2} \int_{\Omega} \left(\tilde{p} \tilde{u}' \cdot \tilde{u}' + \frac{\tilde{p}^2}{\rho^2} \right) d\tilde{V},$$

where $\tilde{\ }$ denotes a dimensional quantity; $\tilde{\ }$ is the mean-flow quantity; $'$ is the small fluctuation; \tilde{p} is the density; \tilde{u} is the velocity; \tilde{p} is the pressure; \tilde{c} is the speed of sound; and \tilde{V} is the space domain, i.e., the volume of the combustion chamber. By combining the acoustic momentum and energy equations (Sec. 2), the instantaneous change in the acoustic

1 Additionally, there exist thermoacoustic instabilities that occur in anechoic systems, which are called intrinsic thermoacoustic instabilities [9–15].

2 i.e. non-reacting flow phenomena governed by low-Mach number equations.
1. Eigenvalue analysis

In the preliminary design of an aero-engine combustor, the first objective is to guarantee that the configuration is linearly stable to small perturbations over the desired operating range. A necessary condition for thermoacoustic oscillations not to occur is that the growth rates of the eigenvalues are negative, i.e., the eigenvalues lie in the stable semi-plane. Eigenvalue analysis is attractive because it is computationally cheaper than testing, high-fidelity computations and nonlinear analysis.

1.1 Transient growth

Truth must be told – The stability of eigenvalues is a necessary but not sufficient condition for the combustor not to experience nonlinear oscillations. Indeed, if the transient growth is sufficiently large, even small perturbations, such as background noise, can be amplified and trigger nonlinearities. This phenomenon is particularly dangerous in subcritical bifurcations, within the hysteresis region in which a finite-amplitude solution co-exists with an eigenvalue stable fixed point. If the degree of non-normality is large in the hysteresis region, a linearly stable solution can be driven to an oscillating attractor. This phenomena is therefore called triggering or bypass transition.

In general, thermoacoustic systems are non-normal because their eigenfunctions are not orthogonal to each other. As reviewed by Sujith et al. [39], non-normality in thermoacoustics was investigated in ducted diffusion flames [36,37] and heat sources [34,35,41–45]; solid rocket motors [46,47]; and premixed flames [48]. Later on, the authors of [38] showed that thermoacoustic non-normality in ducted diffusion flames is not as influential as it was thought to be. The calculations were performed both by singular value decomposition [38] and semi-norm Lagrangian optimization [49]. In ducted premixed flames, the level of non-normality was shown to be small [50]. The small degree of non-normality justifies the use of eigenvalue analysis in thermoacoustic stability. Non-normal effects are ignored accordingly in this review.

1.2 Adjoint-based methods: A literature review

Figure 2a shows a typical low-order thermoacoustic network of an aeronautical gas turbine. When stability analysis is performed, some thermoacoustic eigenvalues may be found to be unstable. To study the influence of a small change in one of the many parameters of the network, the naive approach is to re-run the stability analysis for every parameter and calculate how every eigenvalue is affected. This is called the finite-difference approach. When the parameters

1 In the original Rayleigh criterion the dissipation integral, \(\int_S \rho \mathbf{u} \cdot \mathbf{n} dS \), is not accounted for, but it can be found in Chu [18]. Other sources of acoustic damping, such as dissipation in the thermal/viscous boundary layer, are not taken into account to a first approximation. As a side note, as shown by Chu [19], the acoustic energy can support spurious growth even in the absence of sources and presence of dissipation. This aspect is discussed by defining other thermoacoustic norms to measure the acoustic energy [20–28].

2 A linear operator that does not commute with its adjoint is called non-normal. A property of non-normal systems is that their eigenfunctions are not orthogonal to each other.

3 An example occurs in incompressible hydrodynamics of the Poiseuille flow, where the eigenvalue becomes unstable at a Reynolds number \(Re \approx 5772 \), but in experiments transition to turbulence is observed at \(Re \approx 1000 \) [29–33]. In this case eigenvalue analysis fails because the system is highly non-normal.
are more than the quantities of interests, an inverse approach turns this procedure around. One single adjoint calculation provides the gradient of the quantity of interest with respect to all the parameters of the network\(^8\) (Fig. 2b). This is called the adjoint approach.

In other words, the solution of the adjoint system provides the gradient of the quantity of interest to all the parameters of the system. Computationally, adjoint methods require fewer computations than finite-difference methods when the number of parameters is larger than the number of quantities of interest, which is a typical situation in many engineering problems. Furthermore, adjoint methods enable the calculation of the forced response (receptivity) of the flow to external open-loop forcing.

1.2.1 Non-reacting flows

In non-reacting fluid mechanics, adjoint methods were first applied to shape optimization problems. Pironneau [52] analytically derived the optimal shape of a unit-volume body with smallest drag in a Stokes flow. This technique was subsequently used to calculate the shape derivative of a hump to minimize the drag [53]. Notably, adjoint methods were developed and integrated into the wing-design cycle of aircraft by Jameson (and co-workers) [54–56], as acknowledged in [57].

This section offers an overview of adjoint methods used in non-reacting hydrodynamic stability, i.e., the blue portion of the circle in Fig. 1. Adjoint techniques were first applied to boundary-layer receptivity by Tumin and Fedorov [58]. In order to map out the regions where to insert a second small cylinder to stabilize the vortex shedding instability of a cylinder flow at \(Re = 50 \), Hill [59] combined direct\(^7\) and adjoint eigenfunctions. The sensitivity maps obtained from this theoretical analysis compared favourably with the experimental data of Strykowski and Sreenivasan [60]. In a subsequent study, inspired by the spectral theory of the Orr-Sommerfeld operator [61, 62], Hill [63] used the adjoint eigenfunctions to calculate the receptivity of Tollmien-Schlichting waves in Blasius boundary layers to forcing of the momentum, mass, vorticity, boundary conditions and to acoustic waves. Adjoint sensitivity studies were performed by Luchini and Bottaro [64], to calculate the receptivity of the Görtler instability, and by Pralits et al. [65] to calculate the wall and momentum forcing sensitivity of compressible boundary layers. The leading-edge receptivity of flat plates using adjoint eigenfunctions was investigated by Giannetti and Luchini [66]. Notably, the work by Hill [59] was revisited by Giannetti and Luchini [67], who introduced the concept of structural sensitivity to estimate the wavemaker region, i.e. the region of absolute instability in local analysis [68], with a global approach\(^8\). The first-order eigenvalue drift formula of [67] was also used in flow instability in [69–71]. Sensitivity analysis to base-flow\(^9\) modifications and steady forcing acting on the steady equations was proposed by Bottaro et al. [72] in a local-analysis framework. The analysis was generalized to a global approach by [73–75], who reproduced the results of [60] with a good agreement.

The above pioneering studies laid out the foundations of many other applications in hydrodynamic stability. In incompressible flows, examples of applications are,

\(^6\)In the same vein, adjoint methods can be applied to the calculation of the optimal position where to place an external passive device, thereby reducing the number of computations by a factor equal to the number of grid points, which can be millions in numerical simulations.

\(^7\)The word direct is used to denote the eigenproblem derived from the governing equations to distinguish it from the adjoint eigenproblem.

\(^8\)In the hydrodynamic-stability jargon, global stability analysis denotes eigenvalue analysis performed on a base-flow solution with no particular symmetry assumptions, in contrast to local analysis, which assumes the base flow to be parallel.

\(^9\)The base flow is the solution of the steady equations, i.e., it is a fixed point.
among others, the forward-facing step [76]; disks and spheres [77–79]; rotating cylinders [80]; wake flows [81]; non-Newtonian cylinder flows [82]; a channel with sudden expansion [83]; oblate spheroidal bubbles [84]; a T-junction [85, 86] and X-junction [87] relevant to micro-fluid dynamics; two side-by-side cylinders [88]; the sensitivity of the recirculation length to steady forcing in separated flows [89]; cavities in Newtonian [90] and non-Newtonian fluids [91]. The first-order sensitivity theories were extended to second order analysis by Tammisola et al. [92], who used adjoint eigenfunctions to study the effect of span-wise wavy blowing-suction perturbations of a semi-infinite plate on stability. A second-order framework was employed to compute the optimal span-wise periodic flow modifications in a parallel shear flow [93]. In low-Mach number flows, where the density changes with the temperature but not the pressure, adjoint methods were applied by Qadri et al. [94–96] to understand the physical mechanism of the spiral vortex breakdown of swirling flows and design control strategies in jets. In compressible flows, the structural and base-flow sensitivity were applied by Meliga et al. [77, 97, 98], who studied the stability of axisymmetric wakes past disks, spheres and rocket-shaped bodies; and by Fedorov [99], who calculated the receptivity of a supersonic boundary layer.

In non-reacting fluid mechanics, the theory was extended by Giannetti et al. [100] to calculate the sensitivity of a limit-cycle stability, in particular the secondary instability of the cylinder flow, by Floquet theory. This framework was applied to investigate the secondary instability of a rotating flow [101]; and the origin of the flip-flop instability of two side-by-side cylinder wakes [102]. The effect that base-flow modifications have on the secondary instability of a cylinder wake was investigated in [103].

Adjoint sensitivity methods can be applied to time-averaged flows taking the mean flow as the input of the analysis, instead of the base flow. Eigenvalue analysis on time-averaged turbulent flows [104] provide useful and accurate results on the frequency of coherent structures in a wide range of flows, although such an analysis is not mathematically justified a priori because the mean flow is not a fixed point of the governing equations. Inspired by the results of the cylinder flow of Barkley [105], the conditions under which mean-flow analysis is valid were found by Sipp and Lebedev [106] via weakly nonlinear analysis of laminar flows, and by Beneddine et al. [107] via resolvent analysis of turbulent flows, who extended the studies of McKeon and Sharma [108] and Turton et al. [109]. Crouch et al. [110] successfully investigated the stability and global modes of the aerofoil transonic buffet including the Spalart-Allmaras eddy viscosity at the perturbation level. Fosas de Pando et al. [111] proposed a matrix-free algorithm to extract the discrete direct and adjoint solutions from a nonlinear code, which was applied to calculate the stability and receptivity of turbulent aerofoil tonal noise [112]. Meliga et al. [113] applied adjoint-based analysis to a D-shaped object to find the optimal locations at which to place a small cylinder to control the coherent structure frequency at a high Reynolds number by unsteady Reynolds-averaged Navier-Stokes (URANS) equations. Mettot et al. [114] revisited the case of [113] at a lower Reynolds number by decomposing the variables in time-averaged, phase-averaged and turbulent components [115]. Importantly, they found that to improve the accuracy of stability calculations on mean flows the eddy viscosity should be extracted from the unsteady simulation. By extracting the eddy viscosity from direct numerical simulation (DNS), the sensitivity of the coherent structure oscillations to the shape of the injector in a helicopter engine combustion chamber (cold flow) was calculated in [116]. When the Reynolds number was based on the combined molecular and eddy viscosity, the prediction of the coherent structure frequency and shapes was markedly improved. In experiments, adjoint analysis was performed by Camarri et al. [117] on mean flows of the wake past a porous cylinder and a thick plate to design a passive control strategy [118].

Although beyond eigenvalue sensitivity, it is worth summarizing some applications of adjoint sensitivity analysis in unsteady non-reacting flows. When the drag is the quantity of interest, a physical interpretation of the unsteady adjoint field of the incompressible cylinder flow was proposed by Wang and Gao [119]. The adjoint field was interpreted as the transfer function between small forces applied to the fluid and the resulting drag on the cylinder. By deploying the shadowing lemma [120, 121], the sensitivity of time-averaged cost functionals was developed by Wang [122]. Such a technique was made more computationally feasible by the least-square shadowing method [123–126] and its improved versions [127–129]. The discussion of Larsson and Wang [130] is particularly relevant to fluid dynamics simulations. In aeroacoustics, turbulent jet noise was controlled via adjoint-based optimization by Kim et al. [131], and the optimal shape of a Helmholtz resonator to maximize acoustic damping was found by Caeiro et al. [132].

The excellent articles by Sipp et al. [133], Luchini and Bottaro [134] and Camarri [135] review adjoint analysis for flow control of non-reacting fluids in depth.

1.2.2 Reacting flows

This section offers an overview of adjoint methods used in reacting flows at the intersection between the red and blue circles in Fig. 1. Eigenvalue sensitivity analysis was applied to a low-Mach number combusting flow by Chandler et al. [136]. The wavemaker region of a low-Mach number flame was calculated in [137], where a passive control strategy to suppress a jet flame oscillation was designed. The eigenvalue sensitivity of reacting bluff-body wakes was investigated by local analysis by Emerson et al. [138].

Although beyond eigenvalue sensitivity, it is worth summarizing some applications of adjoint sensitivity analysis in reacting flows. In the calculation of sensitivities
in chemical kinetics, adjoint methods were reviewed by Sandu et al. [139]. An implementation of these methods can be found in the open-source solver for chemical kinetics, thermodynamics and transport processes CANtera [140]. In Reynolds-averaged Navier-Stokes (RANS) simulations, Wang et al. [141] accelerated Monte-Carlo assessment for uncertainty quantification of the scramjet unstart by adjoint methods. The sensitivity of the flame tip temperature and NOx emissions in hydrogen flames to chemistry model parameters was investigated in [142]. Other implementations of adjoint methods in steady reacting flow solvers can be found in [143–145]. In time-dependent problems, Lemke et al. [146, 147] showed that adjoint equations of one- and two-dimensional compressible reacting flows provide accurate gradient information even with stiff nonlinear reaction rates. The sensitivities and optimal initial conditions to maximize the integrated heat release were computed for a three-dimensional reacting jet crossflow [148]. In laminar flames, adjoint looping was implemented by Qadri et al. [149] to calculate the optimal location where to spark a diffusion flame to maximize the nonlinear integrated heat release. Linearly optimal initial conditions that maximize the acoustic output of a radially imploding flame were calculated in [150]. The sensitivity of the optimal frequency response to swirling of M-flames was investigated by Skene and Schmid [151]. In turbulent flames, adjoint methods enabled the calculation of the sensitivity of localized ignition in non-premixed mixing layers [152].

1.2.3 Thermoacoustics

This section offers an overview of adjoint methods for thermoacoustic stability at the intersection of the three circles in Fig. 1. Adjoint methods for thermoacoustic eigenvalue sensitivity analysis were developed in a longitudinal n-t combustor model by Magri and Juniper [153]. A pedagogical explanation of the method can be found in [154]. Using Galerkin methods, they studied the eigenvalue sensitivity to (i) any of the design parameters of the system and (ii) generic passive control devices (feedback sensitivity, also known as structural sensitivity). The latter was tested experimentally in a Rijke tube in [155–157], who measured the growth rate and the frequency shift in the presence of the passive control device. The growth-rate shift was predicted accurately by adjoint sensitivity analysis applied to an open-ended duct flame model [153]. Adjoint analysis was extended to a ducted compact diffusion flame in [158, 159] to calculate the thermoacoustic sensitivity to the flame parameters, and to a premixed flame modelled by a flame front tracking equation [160]. By multiple-scale analysis, the authors of [161] proposed a thermoacoustic model that simulates the three-way interactions between all subsystems (Fig. 1). The individual influence of the hydrodynamic and acoustic fields on the thermoacoustic stability were identified and calculated by an adjoint method. The adjoint sensitivity framework was applied in [162] to thermoacoustic networks, which are used in the preliminary design of aero-engines and gas turbines for power generation. Adjoint methods were developed to accelerate uncertainty quantification of thermoacoustic stability in an annular-combustor network [163] and in a turbulent swirled combustor [164], where first- and second-order corrections for nonlinear degenerate eigenproblems were used [165]. The first implementations of an adjoint Helmholtz solver can be found for a turbulent swirl combustor in [164] and a two-dimensional annular combustor in [166]. Monte-Carlo free methods were developed by Mensah et al. [167], who calculated the probability that a dump combustor becomes unstable by deriving an adjoint-based algebraic expression for the stability margin. To reduce the cost of computations in rotationally symmetric annular combustors, Mensah et al. [166] computed the thermoacoustic modes by applying Bloch wave theory [168, 169] to only one sector of the combustor. By using adjoint methods, they calculated the sensitivity of the degenerate eigenvalue to asymmetries in the flame transfer function due, for example, to an azimuthal mean flow. They extended their analysis to flame describing functions for the calculation of limit cycles [170]. Different symmetry-breaking perturbations to the burners were studied with higher-order perturbation adjoint theory in [171]. In eigenvalue optimization, Mensah and Moeck [172] calculated the optimal placement and tuning of acoustic dampers in an annular combustor; while Aguilar and Juniper [173, 174] eliminated thermoacoustic oscillations by shape optimization. Recently, Silva et al. [175] applied adjoint methods to calculated the critical flame index with relevance to intrinsic thermoacoustic modes. The receptivity and sensitivity to different thermoacoustic source terms, as applied to the quasi-one-dimensional Helmholtz equation, were recently studied in [176].

Beyond eigenvalue sensitivity, adjoint gradient-based optimization was used to find the optimal initial perturbation that could cause triggering in an electrically heated Rijke tube [34, 42]. In a stochastic framework, Boujo and Noiray [177] used the adjoint Fokker-Planck equation to identify the parameters of a stochastic harmonic oscillator, such as the linear growth rate and damping, with relevance to output-only system identification of thermoacoustic oscillations from noisy time series [178–180]. In weakly nonlinear analysis, Orchini et al. [181] calculated the unstable solution of subcritical bifurcations in a Rijke tube by expanding the Stuart-Landau equation up to fifth order, where adjoint equations were used to enforce solvability conditions [106, 182–186].

1.3 Conventions

Depending on the convention used in the original papers, the complex plane is plotted either with the growth rate on the vertical axis or the horizontal axis. In the former case, the unstable semi-plane is at the top, in the latter case the unstable semi-plane is on the right. Readers who are new to thermoacoustics will soon familiarize with, and even sooner may get frustrated by, the different conventions used in stability analysis. To help with visualization, the unstable
plane is shaded in a grey colour. Note that σ denotes both a complex variable (i.e., the Laplace variable) and the eigenvalue. This is a slight abuse of notation because, in general, an eigenvalue is a complex variable but the converse is not necessarily true. To avoid confusion, care has been taken to make the distinction between an eigenvalue and a Laplace variable clear in the relevant sections.

1.4 Dimensional and nondimensional parameters

This review paper wishes to show the versatility of adjoint-based methodology to tackle thermoacoustic stability. In so doing, a variety of configurations are reviewed. Unless otherwise stated, the exact parameters and operating points used in the applications taken from the literature can be found in the original publications, as referenced in each section or caption. Unless otherwise specified, (i) the spatial coordinate is nondimensionalized by the length of the combustor for longitudinal configurations, or the length of the circumference for annular combustors; and (ii) the time is nondimensionalized by the acoustic time, which is the ratio between the characteristic length and the reference speed of sound. It follows that the eigenvalue is nondimensionalized by the acoustic frequency.

1.5 Objectives and structure

This paper reviews the theory and applications of adjoint methods in thermoacoustics. Because adjoint models are, by definition, tied up with the physical models, this paper also reviews modelling approaches in thermoacoustics starting from the general, compressible, multi-component, reacting governing equations. Different thermoacoustic models (n-τ model, flame transfer function, diffusion and premixed flames), numerical approaches (Galerkin method, wave approach, Helmholtz solver, multiple scales) and configurations (longitudinal and annular combustors) are presented in Sec 2.

The theory of adjoint sensitivity analysis is mathematically formalized and reviewed in depth in Sec. 3. In low-order thermoacoustic networks and Helmholtz solvers, the stability problem is typically governed by nonlinear eigenproblems. In rotationally symmetric combustors, such as annular and can-annular combustors, these nonlinear eigenproblems can be degenerate with one eigenvalue being associated with two independent eigenfunctions. First, the stability problem is presented for time-delayed models. Emphasis is given on nonlinear eigenproblems, which govern the stability of most thermoacoustic systems. Second, the adjoint problem is explained and physically interpreted as the receptivity of thermoacoustic linear oscillations. Both continuous, discrete, and automatic differentiation adjoint approaches are presented. Third, the adjoint-based calculation of the eigenvalue sensitivity is shown for higher order perturbations, both for non-degenerate eigenvalues, which are typically relevant to longitudinal configurations, and degenerate eigenvalues, which are typically relevant to rotationally symmetric annular and can-annular configurations.

A more general model of thermoacoustic stability by multiple scales is presented in Sec. 4, which is a standalone section. In thermoacoustics, hydrodynamic instabilities influence the dynamics of the flow field around the flame. Acoustic perturbations, in turn, may excite hydrodynamic instabilities at the flame’s base (e.g. shear layer instabilities). However, in most thermoacoustic systems, the hydrodynamics-acoustics dynamics is one-way coupled; the hydrodynamics is usually modelled with simple models and the acoustics develop on top of it. By multiple scales, a model is devised such that the hydrodynamics and acoustics are two-way coupled in a mathematically robust manner. Physical insight between the coupling of the subsystems is enabled by the concept of intrinsic sensitivity.

Key features of the thermoacoustic spectrum are shown in Sec. 5, as relevant to longitudinal configurations. The interaction between acoustic modes and intrinsic thermoacoustic modes is shown by varying the flame gain and time delay. An exceptional point is found at the intersection of the trajectories of the acoustic and intrinsic modes.

The remainder of the paper shows applications of adjoint analysis. Both deterministic and probabilistic approaches are reviewed. Section 6 reviews deterministic approaches, where no uncertainty is assumed in the system’s parameters. The objectives are to (i) calculate the sensitivity of thermoacoustic stability to the design parameters of the system and the insertion of passive devices to control oscillations; and (ii) physically explain the coupling mechanisms between the hydrodynamic and acoustic subsystems. A comparison with experimental results is shown. Section 7 reviews probabilistic approaches, where the flame parameters are assumed uncertain. The objective is to develop adjoint-based methods to calculate the probability that a system will become unstable. Two adjoint-based methods are reviewed. In the first method, an adjoint code enables the accurate calculation of the probability of instability by reducing the number of computations by a factor of \(\sim O(M) \), where \(M \) is the number of Monte Carlo samples, which, in this case, is 10,000. In the second method, an adjoint method avoids the Monte Carlo sampling altogether. The uncertainty present in the flame parameters can markedly affect the predictions from deterministic stability analysis. It is advised that uncertainty quantification should be run along with traditional stability analysis for robust design.

Optimization of thermoacoustic configurations is enabled when the sensitivity information obtained by an adjoint method is embedded in a gradient-update routine. Section 8 reviews adjoint-based optimizations by placing acoustic dampers and making passive changes in the geometry. Effects of symmetry-breaking perturbations on annular combustors are shown in Sec. 9. A Bloch wave approach is used to (i) reduce the number of computations by taking advantage of the discrete rotational symmetry of the problem, and (ii) gain physical insight on a stabilization mechanism (the inclination rule).

The last two sections include nonlinear thermoacoustic effects. Section 10 shows how to accurately approximate the amplitude of the oscillations by weakly nonlinear analysis, where adjoint equations enforce solvability conditions. Fi-
nally, Sec. 11 presents a new method to accurately calculate the drift of the Floquet exponents of a periodic oscillation in time, which extends eigenvalue analysis from fixed points to limit cycles.

Conclusions and future directions end the paper.

2 Thermoacoustic models

Thermoacoustics is a multi-physical phenomenon that ensues from the interaction between three subsystems, i.e., acoustics, hydrodynamics and flame (Fig. 1) [1, 3–5, 7, 187]:

- **Acoustics.** This subsystem includes the fluid phenomena that are characterized by wave propagation. In low-Mach number mean flows, the acoustics are chiefly influenced by the (i) impedances of the combuster’s boundaries; (ii) propagation with the mean-flow speed of sound; and (iii) refraction due to mean-flow gradients. Acoustics are damped mainly by radiation/convection out of the domain; vortical dissipation where the flow separates; and vortical/entropic coupling at the thermoviscous boundary layer.

- **Hydrodynamics.** This subsystem includes all the non-reacting fluid phenomena that are characterized by low-Mach convection, which is the typical regime of gas-turbine combustion assumed in this paper. In particular, unsteady coherent structures generated by hydrodynamic instabilities are important to thermoacoustic stability, such as shear-layer instability of two different fluid streams (also known as Kelvin-Helmholtz instability); vortex shedding behind bluff bodies used to stabilize flames (also known as Bénard-von-Kármán instability); jet instabilities, such as vortex breakdown in swirling jets; backward-facing steps and cavities [187]; stably premixed flames. Therefore, two limit cases of flames will be considered in this paper: A diffusion flame, whose dynamics are governed by mixing, and a premixed flame, whose dynamics are governed by flame propagation

- **Flame.** This subsystem includes all the phenomena that are characterized by chemical processes and their interaction with the flow dynamics. In the calculation of thermoacoustic stability, the most important output of the combustion process is the heat-release rate of the flame. Aeronautical gas turbines typically work in a rich-burn quick-quench lean-burn (RQL) regime, which is a mixing-controlled process. In order to lower NOx emissions, industrial technology is moving toward partially premixed flames. Therefore, two limit cases of flames will be considered in this paper: A diffusion flame, whose dynamics are governed by mixing, and a premixed flame, whose dynamics are governed by flame propagation

\[\frac{D\rho}{Dt} + \rho \tilde{\nabla} \cdot \tilde{\mathbf{u}} = 0, \]
\[\rho \frac{D\tilde{\mathbf{u}}}{Dt} + \tilde{\nabla} \tilde{p} = \tilde{\nabla} \tilde{\tau} + \tilde{\rho} \sum_{i=1}^{N_i} Y_i \tilde{f}_i, \]
\[\rho \frac{D\tilde{h}}{Dt} = \frac{D\tilde{\rho}}{Dt} + \tilde{Q} + \tilde{\nabla} \cdot (\tilde{\lambda} \tilde{\nabla} T) - \tilde{\nabla} \cdot \left(\tilde{\rho} \sum_{i=1}^{N_i} Y_i \tilde{V}_i \right) + \tilde{\tau} \cdot \tilde{\nabla} \cdot \tilde{\mathbf{u}} + \tilde{\rho} \sum_{i=1}^{N_i} Y_i \tilde{f}_i \cdot \tilde{V}_i, \]
\[\rho \frac{D\tilde{Y}_i}{Dt} + \tilde{\nabla} \cdot (\tilde{\rho} \tilde{V}_i \tilde{Y}_i) = \tilde{\omega}_i, \]

where \(\tilde{\cdot} \) denotes a dimensional variable; \(\tilde{\rho} \) is the density; \(\tilde{\mathbf{u}} \) is the velocity; \(\tilde{p} \) is the pressure; \(\tilde{T} \) is the temperature; \(\tilde{h} \) is the enthalpy; \(\tilde{\tau} \) is the viscous stress tensor; \(N_i \) is the number of species; the subscript \(i \) denotes the \(i \)-th species; \(\tilde{f}_i \) is a volume force; \(\tilde{V}_i \) is the diffusion velocity, which, adopting Fick’s law, is \(\tilde{V}_i = -\tilde{D} \tilde{\nabla} \log (Y_i) \); \(\tilde{D} \) is the diffusion coefficient; \(\tilde{\lambda} \) is the thermal diffusivity; \(Y_i \) is the mass fraction; \(\tilde{\omega}_i \) is the production rate; and \(\tilde{Q} \) is the external-source heat release rate. The material derivative is \(D(\cdot)/Dt = \partial(\cdot)/\partial t + \tilde{\mathbf{u}} \cdot \tilde{\nabla} (\cdot) \), where \(\tilde{\nabla} \) is the nabla operator and \(\langle \cdot \rangle \cdot \tilde{\nabla} \langle \cdot \rangle \equiv \langle \cdot \rangle \partial / \partial x_i \langle \cdot \rangle_i \) in Einstein’s notation. \(\tilde{t} \) is the time. Vector quantities are denoted in bold, tensors are denoted in bold with an underscore

The entropy \(\tilde{s} \) is defined by Gibbs’ relation for a multi-component gas

\[T d\tilde{s} = d\tilde{h} - \frac{d\tilde{\rho}}{\tilde{\rho}} - \sum_{i=1}^{N_i} \tilde{\mu}_i \frac{d\tilde{Y}_i}{\tilde{W}_i}, \]

where \(\tilde{\mu}_i \) is the chemical potential and \(\tilde{W}_i \) is the molar mass. By combining Gibbs’ equation (4) and the energy equation (3c), the latter can be re-formulated with the entropy variable, as follows

\[T \frac{D\tilde{s}}{Dt} = -\sum_{i=1}^{N_i} \frac{\tilde{\mu}_i}{\tilde{W}_i} \frac{D\tilde{Y}_i}{Dt} + \frac{1}{\tilde{\rho}} \left[\tilde{Q} + \tilde{\nabla} \cdot (\tilde{\lambda} \tilde{\nabla} T) \right] \]
\[+ \frac{1}{\tilde{\rho}} \left[-\tilde{\nabla} \cdot (\tilde{\rho} \sum_{i=1}^{N_i} \tilde{h}_i \tilde{Y}_i \tilde{V}_i) + \tilde{\tau} \cdot \tilde{\nabla} \cdot \tilde{\mathbf{u}} + \tilde{\rho} \sum_{i=1}^{N_i} Y_i \tilde{f}_i \cdot \tilde{V}_i \right]. \]

In a mixture of gases, the enthalpy and entropy are defined as

\[\tilde{h} = \sum_{i=1}^{N_i} \tilde{h}_i Y_i, \quad \tilde{s} = \sum_{i=1}^{N_i} \tilde{s}_i Y_i, \]

10Other important hydrodynamic phenomena that can bring about thermoacoustic instabilities, in particular in aero-engines, are droplet formation, jet impingement, secondary breakup and coalescence.

11In real aero-engines, flames are often imperfectly premixed and the evaporation of sprays is another mechanism that leads to thermoacoustic instabilities [188]. Imperfectly premixed flames and sprays will not be considered in this review.
where
\[
\tilde{h} = \tilde{h}_{i,j} + \Delta \tilde{h}_{f,j}, \quad \tilde{s} = \tilde{s}_{i,j} + \Delta \tilde{s}_{f,j},
\] (7)

where \(\tilde{h}_{i,j}\) and \(\tilde{s}_{i,j}\) are the species’ sensible enthalpy and entropy, respectively. \(\Delta \tilde{h}_{f,j}\) and \(\Delta \tilde{s}_{f,j}\) are the formation enthalpy and entropy, respectively, at standard condition \(c\). Equations (3a)-(3d) govern the nonlinear thermoacoustic problem when a state equation is chosen and initial/boundary conditions are imposed. Low-order models for the acoustics (Sec. 2.2), flame (Sec. 2.3) and hydrodynamics (Sec. 2.4) are presented with their simplifying assumptions. Table 1 summarizes the thermoacoustic models, numerical methods, and configurations reviewed in this paper.

2.2 Acoustics

The acoustic subsystem and its interaction with the heat released by the flame are often characterized by the following assumptions [193, 194]:

- there is no external source of heat, \(\tilde{Q} = 0\);
- species-diffusion effects are negligible, \(\tilde{V}_i = 0\);
- viscous effects are negligible, \(\tilde{r} = 0\);
- thermal diffusivity is negligible, \(\tilde{\lambda} = 0\);
- volume forces are negligible, \(\tilde{f}_i = 0\);
- the gas is calorifically perfect, i.e., \(\tilde{c}_{p,i}\) and \(\tilde{c}_{v,i}\) are constant and

\[
\tilde{h} = \tilde{c}_p(\tilde{T} - \tilde{T}^0) + \sum_{i=1}^{N_s} \Delta \tilde{h}_{f,i} Y_i,
\] (8)

where \(\tilde{c}_p = \frac{\sum_{i=1}^{N_s} \tilde{c}_{p,i} Y_i}{\tilde{Y}}\), with \(\tilde{\rho}\), \(\tilde{\lambda}\), and \(\tilde{\rho}\) being the universal gas constant.

Under these assumptions, the nonlinear dimensional equations (3) simplify to

\[
\frac{D\tilde{\rho}}{Dt} + \tilde{p}\tilde{\rho} \tilde{V} \cdot \tilde{u} = 0,
\] (10a)

\[
\frac{D\tilde{\rho}}{Dt} + \tilde{p}\tilde{\rho} \tilde{V} \cdot \tilde{u} = 0,
\] (10b)

\[
\frac{D\tilde{\rho}}{Dt} + \tilde{p}\tilde{\rho} \tilde{V} \cdot \tilde{u} = (\gamma - 1)\tilde{\rho}_t + \frac{\tilde{p} - \tilde{p}^0}{\tilde{\gamma}} D Y_i,
\] (10c)

\[
\tilde{p} \frac{DY_i}{Dt} = \tilde{\omega}_i,
\] (10d)

where \(\tilde{\omega}_t = -\sum_{i=1}^{N_s} \Delta \tilde{h}_{f,i} \tilde{\omega}_i\) is the volumetric heat release rate due to reaction, and \(\gamma\) is the heat capacity ratio. Gibbs’ relation (4) simplifies to [195]

\[
\frac{d\tilde{s}}{\tilde{c}_p} = \frac{d\tilde{\rho}}{\tilde{\gamma} \tilde{p}} - \frac{N_s}{\sum_{i=1}^{N_s} (\psi_i + \psi_i)} dY_i,
\] (11)

where

\[
\psi_i = \frac{1}{\tilde{c}_p T} \left(\tilde{p}_r - \Delta \tilde{h}_{f,i} \right),
\] (12)

\[
\psi_i = \frac{1}{\tilde{c}_p T} d \log(\gamma) + \tilde{\theta} d \log(\tilde{c}_p) T
\] (13)

are the species’ chemical potential function and heat-capacity factor, respectively [195, 196]. The energy equation formulated with the entropy variable (5) simplifies to

\[
\frac{1}{\tilde{c}_p^2} \frac{D\tilde{s}}{D\tilde{t}} = -\sum_{i=1}^{N_s} \left(\psi_i + \Delta \tilde{h}_{f,i} \right) \frac{DY_i}{D\tilde{t}}.
\] (14)

2.2.1 Linearization

Assuming that the acoustics are small perturbations evolving on top of a mean flow, a generic flow variable is decomposed as

\[
\tilde{\tilde{f}} = \tilde{\tilde{f}} + \varepsilon \tilde{\tilde{f}}',
\] (15)

where \(\varepsilon \ll 1\) is the arbitrary perturbation parameter; the overbar “̄” denotes the steady mean-flow variable (\(\partial(\tilde{\tilde{f}})/\partial t = 0\)), and the prime ’ denotes the unsteady fluctuation. The equations are nondimensionalized with reference quantities denoted by the subscript \(\text{ref}\): \(\tilde{V} = \tilde{V}/\tilde{L}_\text{ref}\); where \(\tilde{L}_\text{ref}\) is a length scale; \(\tilde{\rho} = \tilde{\rho}_\text{ref}; \tilde{p} = \tilde{p}_\text{ref}\); where \(\tilde{\rho}_\text{ref} = \tilde{\rho}_\text{ref}/\tilde{c}_\text{ref}; \tilde{c}_\text{ref}\) is the reference speed of sound; and the other variables are nondimensionalized differently according to whether they are mean-flow or acoustic quantities, as explained in the following sections.

The heat capacities are assumed constant, therefore \(d\tilde{\tilde{c}}_p = 0\) and \(d\gamma = 0\).

2.2.2 Nondimensional mean-flow equations

The mean-flow velocity scales with the convection velocity, i.e., \(\tilde{u} = \tilde{u}_\text{ref}/\tilde{c}_\text{ref}\). The mean production rate is nondimensionalized as \(\tilde{\omega}_t = \tilde{\omega}_t/\tilde{\rho}_\text{ref}/\tilde{L}_\text{ref}\), such that \(\tilde{\omega}_t = \tilde{\omega}_t/\tilde{u}_\text{ref}/\tilde{c}_\text{ref}\) is the nondimensional mean heat-release rate due to combustion. On grouping the steady terms, the nondimensional mean-flow continuity, momentum, energy and species equations read, respectively

\[
\nabla \cdot (\tilde{\rho} \tilde{u} \tilde{\rho}) = 0,
\] (16a)

\[
\nabla (\tilde{M}^2 \tilde{u} \tilde{p} + \tilde{\rho}) = 0,
\] (16b)

\[
\tilde{u} \cdot \nabla \tilde{p} + \gamma \tilde{\rho} \nabla \tilde{u} = (\gamma - 1)\tilde{\omega}_t,
\] (16c)

\[
\tilde{\rho} \tilde{u} \cdot \nabla \tilde{Y}_t = \tilde{\omega}_t.
\] (16d)
where \(\bar{M} = \bar{u}_{\text{ref}} / \bar{c}_{\text{ref}} \) is the mean-flow Mach number. In the limit of low-Mach number combustion, Eqn. (16b) shows that the mean-flow pressure is constant at first order of \(\bar{M} \), i.e.,

\[
\nabla \bar{p} = 0 \quad \text{for} \quad \bar{M} \ll 1. \tag{17}
\]

Variations of the mean pressure are neglected accordingly in this paper. The nondimensional mean-flow energy equation expressed with the entropy variable reads

\[
\bar{u} \cdot \nabla \bar{s} = - \sum_{i=1}^{N_s} \left(\psi_i + \frac{\Delta \bar{h}_i}{\bar{c}_p} \right) \bar{u} \cdot \nabla Y_i, \tag{18}
\]

where \(\bar{s} = \bar{s}' \bar{c}_p \).

2.2.3 Nondimensional acoustic equations

The acoustic velocity scales with the speed of sound, \(\bar{u}' = \mathbf{u}' \bar{c}_\text{ref} \), therefore the time scales with the wave-propagation time, \(\bar{t} = t L_{\text{ref}} / \bar{c}_\text{ref} \). The acoustic pressure is nondimensionalized as \(\bar{p}' = \bar{p}_{\text{ref}} p' \). The production-rate fluctuation is nondimensionalized as \(\bar{q}' = \bar{q}' L_{\text{ref}} / (\bar{p}_{\text{ref}} \bar{c}_\text{ref}) \), such that \(\bar{q}' = \bar{q}' L_{\text{ref}} / (\bar{p}_{\text{ref}} \bar{c}_\text{ref}) \) is the nondimensional heat-release rate fluctuation due to combustion. On grouping the terms \(\sim O(\varepsilon) \), the nondimensional linearized continuity, momentum, energy and species equations read, respectively

\[
\frac{\partial \bar{p}'}{\partial \bar{t}} + \nabla \cdot (\bar{p}' \mathbf{u}') = 0, \tag{19a}
\]

\[
\frac{\partial \bar{u}'}{\partial \bar{t}} + \bar{M} (\mathbf{u}' \cdot \nabla \bar{u} + \bar{u} \cdot \nabla \mathbf{u}') + \frac{\nabla \bar{p}'}{\bar{p}} = 0, \tag{19b}
\]

\[
\frac{\partial \bar{p}'}{\partial \bar{t}} + \bar{M} (\mathbf{u}' \cdot \nabla \bar{p}') + \gamma p' \nabla \cdot \mathbf{u}' = (\gamma - 1) \bar{q}', \tag{19c}
\]

\[
\frac{\partial Y_i'}{\partial \bar{t}} + \bar{M} \mathbf{u} \cdot \nabla Y_i' + \mathbf{u}' \cdot \nabla Y_i = \frac{\Delta \bar{h}_i}{\bar{p}' \bar{c}_p} \bar{q}', \tag{19d}
\]

The non-dimensional linearized energy equation expressed with the entropy reads

\[
\frac{\partial \bar{s}'}{\partial \bar{t}} + \bar{M} \mathbf{u} \cdot \nabla \bar{s}' + \mathbf{u}' \cdot \nabla \bar{s} = - \sum_{i=1}^{N_s} \left(\psi_i + \frac{\Delta \bar{h}_i}{\bar{c}_p} \right) \bar{u} \cdot \nabla Y_i, \tag{20}
\]

where \(\bar{s}' = s' \bar{c}_p \). The hydrodynamics affects the mean flow and its interaction with the heat released by the flame. When the hydrodynamic and flame subsystems are modelled, Eqs. (19) are closed and called thermoacoustic equations. In the following sections, three common simplifications and solution methods of the acoustic equations (19) are presented. The pros/cons of each approach are explained. The heat-release term in Eqn. (19c), which is the monopole source of acoustics, is modelled in Sec. 2.3.

Helmhotz equation

In addition to the assumptions listed in Sec. 2.2, in the Helmholtz-equation model it is assumed that [40,197]:

- the mean-flow Mach number is negligible, \(\bar{M} = 0 \);
- the gas composition is uniform, therefore the single-fluid model is adopted. This means that the species equation (3d) is not considered, the heat-release rate in Eqn. (19c) needs to be specified and \(\bar{q}' = 0 \) in Eqn. (16c) [40,197]. The latter is justified providing that \(\bar{M} \ll L_f / L_a \), where \(L_f \) is the flame spatial length and \(L_a \) is the acoustic spatial scale [197,198].

By taking the time derivative of Eqn. (19c) and subtracting the divergence of Eqn. (19b) multiplied by \(\gamma \bar{p} \), an

12Ray theory and Green’s function techniques to solve the acoustics are not treated in this paper.

Table 1: Road map of the thermoacoustic models, numerical methods, and configurations reviewed in this paper. DOFs stands for degrees of freedom.

<table>
<thead>
<tr>
<th>Methodology</th>
<th>Physical model</th>
<th>Application</th>
<th>DOFs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustics</td>
<td>Flame</td>
<td>Low-Mach number Eqns.</td>
<td>Dump combuster (O(10^6))</td>
</tr>
<tr>
<td>Helmholtz equation</td>
<td>Multi-dimensional Flame Eqns.</td>
<td>Flame response</td>
<td>Dump combuster (O(10^5))</td>
</tr>
<tr>
<td>Wave approach</td>
<td>One-dimensional Flame Eqns.</td>
<td>Flame response</td>
<td>Choked ducted flame (O(10))</td>
</tr>
<tr>
<td>Galerkin method</td>
<td>One-dimensional Flame Eqns.</td>
<td>Disturbance phase velocity</td>
<td>Annular combuster (O(10^2))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Open ducted flame (O(10))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Annular combuster (O(10))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Open ducted flame (O(10^3))</td>
</tr>
</tbody>
</table>
inhomogeneous wave equation is obtained

\[\frac{\partial^2 p'}{\partial t^2} - \gamma \rho \nabla \cdot \left(\frac{\nabla p'}{\rho} \right) = (\gamma - 1) \frac{\partial q'}{\partial t}, \]

(21)

which can expressed with the speed of sound

\[\frac{\partial^2 p'}{\partial t^2} - \nabla \cdot (\hat{c}^2 p') = (\gamma - 1) \frac{\partial q'}{\partial t}, \]

(22)

where \(\hat{c} = \tilde{c}/c_{ref} \) such that \(\tilde{c}^2 = \gamma \tilde{p}/\tilde{\rho} \). The Laplace transform of Eqn. (21) is the Helmholtz equation\(^{13}\)

\[\sigma^2 \hat{\rho} - \nabla \cdot (\hat{c}^2 \hat{\rho}) = \sigma (\gamma - 1) \hat{q}'. \]

(23)

Other conventions for the Laplace variable that are often used in the literature are \(\sigma = i \omega \) or \(\sigma = -i \omega \), where \(\omega \) is the complex eigenfrequency and \(i^2 = -1 \). At fully reflective boundaries, \(\hat{\rho} = 0 \), whereas at rigid walls, \(\hat{\nabla} \hat{\rho} \cdot \hat{n} = 0 \), where \(\hat{n} \) is the normal to the boundary. The general boundary condition is prescribed with the acoustic impedance \(Z = \hat{p}/(\hat{c} \hat{u} \cdot \hat{n}) \) such that \(\tilde{Z} \hat{V} \hat{p} \cdot \hat{n} + \tilde{\sigma} \hat{\rho} = 0 \), which models the dissipation of energy by acoustic radiation. To model further sources of damping, the reader may refer to [189]. A detailed explanation of the Helmholtz equation as applied to thermoacoustics is given by Nicoud et al. [40, 197]. The advantage of the Helmholtz-equation framework is that it can tackle three-dimensional geometries, with the con that it holds for very small mean-flow Mach numbers and requires numerical discretization, such as finite elements (e.g., [40, 166, 172, 199–202]), finite volumes (e.g., [164]) or finite difference. This model is applied in Sec. 7 for uncertainty quantification of the stability of a turbulent annular combustor.

Travelling-wave approach. The travelling-wave approach (or simply wave approach) is a method to solve the linearized Euler equations based on Riemann decomposition of the primitive variables [203]. Applications of the wave-approach in thermoacoustics are numerous [193, 198, 204–210], to name only a few. The travelling-wave approach is presented for longitudinal and annular combustors.

Travelling-wave approach in longitudinal acoustics The main assumptions are:

- the mean flow is one-dimensional and uniform (but not necessarily zero);
- the flame is a perfectly premixed flame front moving at speed \(\hat{u}_f \) with respect to the laboratory frame, and it is anchored to the burner, i.e., \(\hat{u}_0 = 0 \); and
- the fluid is modelled as a single-component mixture.

Here, it is customary to nondimensionalize the convection mean flow speed with the speed of sound, \(\tilde{u} = \hat{u}_f \tilde{c}_{ref} \), hence, \(\tilde{q} = \tilde{q} \tilde{L}_{ref}/(\tilde{c}_{ref} \tilde{p}_{ref}) \).

By combining Eqns. (19b)-(19c) in their homogeneous forms, the acoustic pressure reads

\[\left(\frac{\partial}{\partial t} + \frac{\hat{u}}{\hat{c}} \frac{\partial}{\partial x} \right)^2 p' - \tilde{c}^2 \frac{\partial^2 p'}{\partial x^2} = 0. \]

(24)

From Eqn (20), the entropy fluctuation reads

\[\frac{\partial S'}{\partial t} + \hat{u} \frac{\partial S'}{\partial x} = 0. \]

(25)

The acoustic density, \(\rho' \), and velocity, \(u' \), are governed by a convective wave equation, the form of which is equal to Eqn. (24). By integrating the linearized Gibbs’ relation along a pathline, the entropy fluctuation can be related to the acoustic pressure and density as

\[S' = p' - \rho'. \]

(26)

The partial differential equations (24)-(25) are hyperbolic and can be solved with the method of characteristics, yielding

\[p' = f \left(t - \frac{x}{\hat{c} + \tilde{u}} \right) + g \left(t + \frac{x}{\hat{c} - \tilde{u}} \right), \]

(27a)

\[S' = S_c \left(t - \frac{x}{\tilde{u}} \right), \]

(27b)

\[\rho' = \rho_c \left(t - \frac{x}{\tilde{u}} \right), \]

(27c)

\[u' = \frac{1}{\hat{c} \tilde{c}} \left[f \left(t - \frac{x}{\hat{c} + \tilde{u}} \right) - g \left(t + \frac{x}{\hat{c} - \tilde{u}} \right) \right], \]

(27d)

where \(u' \) originates from the linearized momentum equation, and \(p' \) comes from Eqn. (26). The solutions are the forward, \(f \), and backward, \(g \), acoustic waves (Riemann invariants), which travel at speeds \(\tilde{c} + \tilde{u} \) and \(\tilde{c} - \tilde{u} \), respectively.\(^{15}\) In addition, there exists an entropy wave, \(S_c \), which is convected with the mean flow at speed \(\tilde{u} \), which generates an excess density [211]. Modelling a multi-component mixture creates additional excess density [195]. Figure 3 shows a schematic of the longitudinal combustor modelled with the wave approach.

The assumption of a compact heat source physically signifies that there is no accumulation rate of mass, momentum

\[\text{For a generic function } f, \text{ the Laplace transform is defined as } \mathcal{L} \{ f \} \equiv \int_0^\infty f(t) e^{-\sigma t} dt. \]

\[\text{Technically, this is an inhomogeneous Helmholtz equation, however, the adjective inhomogeneous is dropped for brevity.} \]

\[\text{In other words, the characteristic lines are given by } dx/dt = \tilde{c} \pm \tilde{u}. \]
Fig. 3: Travelling-wave approach as applied to a longitudinal combustor with upstream (downstream) acoustic reflection coefficient R_u (R_d) and entropic reflection coefficient, R_e. The Mach number at the outlet is sonic, i.e. the combustor is choked. f is the downstream-travelling acoustic wave, g is the upstream-travelling acoustic wave, and S_e is the entropic perturbation generated by the unsteady flame, whose flame front fluctuates with velocity u_f'.

which physically corresponds to ensuring that the critical mass flow rate is maximal. Therefore the downstream reflected acoustic wave reads

$$G_d(\sigma) = R_d F_d(\sigma) e^{-x_f' \tau_d} + R_e A_e(\sigma) e^{-\sigma \tau_e}, \quad (33a)$$

where

$$R_d = \frac{1 - \frac{1}{2}(\gamma - 1) \tilde{M}_d}{1 + \frac{1}{2}(\gamma - 1) \tilde{M}_d}, \quad (33b)$$
$$R_e = \frac{1}{1 + \frac{1}{2}(\gamma - 1) \tilde{M}_d}, \quad (33c)$$
$$\tau_d = \frac{2(1-x_f)\bar{c}_d}{\bar{c}_d^2 - \bar{u}_d^2}, \quad (33d)$$
$$\tau_e = \frac{(1-x_f)\bar{c}_d}{\bar{u}_d(\bar{c}_d^2 - \bar{u}_d^2)} \quad (33e)$$

and A_e is the Laplace transform of the entropy disturbance, S_e. Entropy fluctuations are assumed to be generated by the unsteady flame front, therefore the flow is isentropic upstream of the flame.

Travelling-wave approach in an annular combustor.

Annular combustion chambers are used in aircraft gas turbines because of their compactness, low-NOx emissions and ability for efficient light round [215, 216]. Such configurations, however, suffer from combustion instabilities due to azimuthal modes that often become unstable at low frequencies, at which damping mechanisms are less effective. This low-order model describes a combustion chamber connected by longitudinal burners fed by a common annular plenum (Fig. 4).

The main assumptions are:

- in the plenum and the combustor, the acoustics depend on the azimuthal coordinate. In the burners, the acoustics depend only on the axial coordinate;
- the mean-flow convection speed is zero;
- the external walls of the annular cavities are rigid;
- there is no flame-to-flame interaction from one sector to another;
undergoes a discontinuity induced by the dilation from the
acoustic pressure does not change, but the flow rate
across the flame inside the burner, the three velocity waves. Across the flame inside the burner, the acoustic pressure does not change, but the flow rate undergoes a discontinuity induced by the dilation from the

incremental jump condition provides the relation between the three pressure waves, and (ii) the momentum jump condition provides the relation between the three velocity waves. Across the flame inside the burner, the acoustic pressure does not change, but the flow rate undergoes a discontinuity induced by the dilation from the

heat-release rate, which is modelled with a flame transfer function. For more the mathematical details the reader may refer to [220–222].

Galerkin method. With the Galerkin method the governing partial differential equations are discretized into a set of ordinary differential equations by choosing a Riesz basis that matches the boundary conditions and the discontinuity condition at the flame. Here, an open-ended duct, where the acoustic pressure is zero at the ends, is chosen. In this section, the same assumptions as the “Travelling-wave approach” hold, with the additional condition that the mean-flow convection velocity is zero. Therefore, advected disturbances, such as entropy spots, cannot be modelled. The Galerkin method, which is a weak-form method, ensures that the error is orthogonal to the chosen basis in the subspace in which the solution is discretized, so that the solution is an optimal weak-form solution. The pressure, p', and velocity, u', are expressed by separating the time and space dependence, as follows [158]

\[
p' = \sum_{j=1}^{K} \left\{ \alpha_{u,j}(t) \Psi_{u,j}(x), \quad 0 \leq x < x_f, \quad \alpha_{d,j}(t) \Psi_{d,j}(x), \quad x_f < x \leq 1, \right. \tag{34}
\]

\[
u' = \sum_{j=1}^{K} \left\{ \eta_{u,j}(t) \Phi_{u,j}(x), \quad 0 \leq x < x_f, \quad \eta_{d,j}(t) \Phi_{d,j}(x), \quad x_f < x \leq 1. \right. \tag{35}
\]

For an open-ended duct

\[
p' = \sum_{j=1}^{K} \left\{ -\alpha_j(t) \sin(\omega_j \sqrt{\rho_u} x), \quad 0 \leq x < x_f, \right. \tag{36}
\]

\[
u' = \sum_{j=1}^{K} \left\{ -\alpha_{u,j}(t) \left(\frac{\sin\gamma_j}{\sin\beta_j} \right) \sin(\omega_j \sqrt{\rho_d}(1 - x)), \quad x_f < x \leq 1, \right. \tag{37}
\]

where $\gamma_j = \omega_j \sqrt{\rho_u} x_f$ and $\beta_j = \omega_j \sqrt{\rho_d}(1 - x_f)$. The spatial dependency of each mode of (36)-(37) is shown in Fig. 5. ω_j is calculated through the dispersion relation

\[
\sin\beta_j \cos\gamma_j + \cos\beta_j \sin\gamma_j \sqrt{\frac{\rho_u}{\rho_d}} = 0. \tag{38}
\]

Note that in the limit $\tilde{\rho}_u = \tilde{\rho}_d$, the nondimensional angular frequencies of the acoustic eigenfunctions are $\omega_j = j \pi$, as it ought to be for an open-ended duct.

Fig. 4: Schematic of a rotationally symmetric annular combustor, which consists of a plenum and combustion chamber connected by longitudinal burners. In this case there are 16 burners. (a) Mean-flow speed of sound; (b,c) cross sections of the annular combustor. This represents the MICCA combustor [202,217–219] as modelled in [171].

- flames are compact;
- the fluid is modelled as a single-component mixture.

The derivation of the model is conceptually similar to the longitudinal-wave approach, but the mathematical expressions are more involved because of the geometry. The acoustics propagate in the plenum, combustor and burners as travelling waves. At the intersection between a burner and an annular cavity, (i) the energy jump condition provides the relation between the three pressure waves, and (ii) the momentum jump condition provides the relation between the three velocity waves. Across the flame inside the burner, the acoustic pressure does not change, but the flow rate undergoes a discontinuity induced by the dilation from the
2.3 Flame models

Two simplified flame models are presented to model diffusion and premixed flames.

2.3.1 Diffusion flame

Diffusion flames are governed by the mixing between the fuel and oxidizer streams. As such, diffusion flames do not propagate. An important geometric parameter that affects the flame shape is the fuel-to-air port ratio. The main assumptions of this simplified model are: (i) the density in the flame domain is uniform; (ii) the Lewis number, defined as the ratio of thermal diffusivity to mass diffusivity, is unitary; (iii) the chemistry is infinitely fast with one-step reaction; (iv) the flame is two-dimensional. In diffusive problems, it is convenient to introduce the mixture fraction, \(Z \) [223]

\[
Z \equiv \frac{v Y_F - Y_O + Y_{O, in}}{v Y_{F, in} + Y_{O, in}},
\]

where \(v \) is the stoichiometric mass ratio; the subscripts \(F \), \(O \) and \(in \) denote fuel, oxidizer and inlet, respectively; and \(Y \) is the mass fraction. The fuel and oxidizer diffuse into each other and, under the infinite-rate chemistry assumption, combustion occurs in an infinitely thin region at the stoichiometric contour, \(Z = Z_{sto} \), where \(Z_{sto} = (1 + v Y_{F, in}/Y_{O, in})^{-1} \). The governing equation for \(Z \) is derived from the species equations [224,225] and, in nondimensional form, reads

\[
\frac{\partial Z}{\partial t_f} + (\bar{u} + u'_{f}) \frac{\partial Z}{\partial x_f} - \frac{1}{Pe} \left(\frac{\partial^2 Z}{\partial X_f^2} + \frac{\partial^2 Z}{\partial Y_f^2} \right) = 0,
\]

where \(t_f \) is the nondimensional time in the flame domain; \(u'_{f} \) is the acoustic velocity evaluated at the flame location; \(Pe \) is the Péclet number, which is the ratio between the diffusion and convective time scales; and \(X_f \) and \(Y_f \) denote the nondimensional spatial coordinates in the flame domain. In the flame domain, which is separated from the acoustic domain, the time scales with the inverse of the convective velocity. Therefore, the velocities are nondimensionalized by the mean flow convective velocity. More details can be found in [158]. At the oxidizer port \(Z = 1 \), whereas at the fuel port \(Z = 0 \) [16]. Neumann boundary conditions are prescribed everywhere to ensure that there is no diffusion across the walls of the combustor, and that \(Z = 1 \) at the end of the flame domain. The variable \(Z \) is split into two components, \(Z = \bar{Z} + \zeta' \), in which \(\bar{Z} \) is the steady solution [158] and \(\zeta' \) is the small fluctuation. The nondimensional heat release (rate) is given by the integral of the total derivative of the nondimensionalized sensible enthalpy

\[
\frac{\partial}{\partial t_f} \frac{\partial \bar{Z}}{\partial Z} \frac{dX_f dY_f}{d\tau}
\]

2.3.2 Premixed flame

The dynamics of a premixed-flame front is modelled here with a kinematic model, the \(G \)-equation (see, e.g., [189, 227–230]), which is a level-set method that tracks the propagating infinitely-thin flame front that separates reactants by nonlinear phenomena, which are not captured by linear analysis. Turbulence effects are neglected for simplicity. The nondimensional \(G \)-equation reads

\[
\frac{\partial G}{\partial t_f} + \mathbf{u} \cdot \nabla G = s_f^0 (1 - L \kappa) |\nabla G|,
\]

where \(\mathbf{u} \) is the hydrodynamic velocity field; \(s_f^0 \) is the flame speed; \(L \) is the Markstein length; and \(\kappa \) is the flame curvature. The flame front is the locus of points for which \(G = 0 \). The flame is assumed axisymmetric. The \(G \)-equation can be linearized around a mean flame shape [17]. Following [160], Axial back diffusion at the port is neglected because the Péclet number is assumed to be large [226].

Elaborate flame dynamics, such as pinch-off and flame wrinkling, are nonlinear phenomena, which are not captured by linear analysis.
on linearization, the flame front is a single-valued function of the radial coordinate of the flame front

\[G(X_{fr}, R_{fr}, t_f) = X_{fr} - \tilde{F}_G(R_{fr}) - F_G'(R_{fr}, t_f), \quad (43) \]

where the flame shape is defined by the mean function \(\tilde{F}_G \) and the fluctuation by \(F_G' \), which are provided by Eqs. (6a)-(6b) in [160]. The subscript \(f_r \) stands for “flame front”. The axial and radial components of the hydrodynamic velocity field are, respectively

\[u_X = \bar{u} + \Delta u_X, \quad (44) \]
\[u_R = -\frac{1}{2}R_f \frac{\partial \Delta u_X}{\partial X_f}. \quad (45) \]

In forced flames, the nondimensional axial perturbation \(\Delta u_X \) is prescribed, whereas in self-excited thermoacoustic problems, as those under investigation in this paper, the axial perturbation is provided by the acoustic model. Finally, the total nondimensional heat release rate is obtained by integration [160]

\[\hat{\dot{Q}} \sim 2\pi \int_0^R (1 - \mathcal{L}_\kappa) \sqrt{1 + \left(\frac{d\tilde{F}_G}{dR_f} + \frac{\partial F_G'}{\partial R_f} \right)^2} R_f dR_f, \quad (46) \]

where the symbol \(\sim \) signifies that the exact expression for the quantity depends on the scale factors used.

2.3.3 Flame response models

In linear approximation, the total unsteady heat release can be expressed in terms of response functions (chapter 12 of [187])

\[\frac{\hat{\dot{q}}}{\hat{q}}(\omega) = \text{FTF}_u \frac{\hat{\dot{u}}}{\hat{u}} + \frac{1}{M} \text{FTF}_p \frac{\hat{\dot{p}}}{\hat{p}} + \frac{1}{M} \text{FTF}_0 \frac{\hat{\dot{\phi}}}{\hat{\phi}}, \quad (47) \]

where FTF\(_u\), FTF\(_p\) and FTF\(_0\) are the transfer functions obtained by harmonically forcing (with a small amplitude) the velocity, pressure and equivalence ratio, respectively, over a range of angular frequencies, \(\omega \), and measuring the heat release output. (The presence of \(1/M \) is due to the nondimensionalization used in Secs. 2.2.2-2.2.3.) Transfer functions characterize the behaviour of linear time-invariant systems. In this paper, only FTF\(_u\) is considered because it is the dominant transfer function in fully premixed flames. The subscript \(u \) will be dropped from now on. Transfer functions that are measured in a different range of forcing amplitudes are called flame describing functions (see, e.g., [206, 227, 231, 232] for more references). In polar notation, the normalized heat release rate is provided by

\[\frac{\hat{\dot{q}}}{\hat{q}} = |\text{FTF}| \frac{\hat{\dot{u}}}{\hat{u}} \exp(i\angle \text{FTF}). \quad (48) \]

The negative slope of the transfer-function phase is the time delay

\[\tau = -\frac{d\angle \text{FTF}}{d\omega}, \quad (49) \]

which, at low-frequencies, can be assumed constant, such that

\[\frac{\hat{\dot{q}}}{\hat{q}} = |\text{FTF}| \frac{\hat{\dot{u}}}{\hat{u}} \exp(-i\tau \omega). \quad (50) \]

The inverse Fourier-transform of Eqn. (50) justifies the time-delayed model (also known as the \(n - \tau \) model)

\[\frac{\hat{\dot{q}}}{\hat{q}} = n \hat{\dot{u}} (t - \tau), \quad (51) \]

where \(n \) is the interaction index, which measures the flame gain. The time-delayed model in Eqn. (51) was a phenomenological model proposed by Crocco and Cheng [233], after some discussions with Summerfield [234], to explain rocket-engine combustion instabilities [4, 235, 236].

2.4 Hydrodynamic models

Accurate hydrodynamic fields can be obtained by computational fluid dynamics, however, this review focuses on simplified qualitative models. First, in the diffusion-flame problem, the hydrodynamic field is assumed uniform for simplicity. Secondly, in the premixed-flame model, the action of the hydrodynamic field is encapsulated in the nondimensional disturbance phase velocity, \(K \), which modulates the perturbation along the flame, \(\Delta u \), at the flame’s base as

\[\frac{\partial \Delta u_X}{\partial t_f} + \frac{1}{K} \frac{\partial \Delta u_X}{\partial X_f} = 0. \quad (52) \]

In general, the nondimensional disturbance phase velocity, \(K \), depends on the frequency of oscillation. \(K \) was calculated from Direct Numerical Simulations in a conical flame [237]. Here, \(K \) is assumed constant, \(K = 1.2 \), as proposed in [160]. Thirdly, in the flame response model, the action of the hydrodynamics is absorbed in the interaction index, \(n \), and the time delay, \(\tau \), both of which encapsulate combustion and hydrodynamic phenomena.

3 Stability, receptivity and sensitivity (SRS) analysis

The theoretical foundations of stability, receptivity and sensitivity analysis of thermoacoustic systems are laid out in the following subsections. The proposed framework and formalism are kept as general as possible, such that they can be applied to other problems, such as hydrodynamic stability, time-delayed differential equations, and multi-physical systems. The stability of the system is calculated by eigenvalue analysis, whereas the receptivity to open-loop forcing
is calculated by adjoint analysis. Finally, it is shown that the sensitivity can be accurately and cheaply calculated by combining the information from stability and adjoint analyses.

3.1 Stability

In general, the linearized thermoacoustic problem in the time domain is governed by a time-delayed problem

\[
\frac{dq}{dt} = Lq + L_\tau q(t-\tau) + s, \quad t > 0, \tag{53a}
\]

\[
q = g(t), \quad t < 0, \tag{53b}
\]

\[
q = q_0, \quad t = 0. \tag{53c}
\]

where \(q \in \mathbb{R}^N \) is the state vector, which represents a linear perturbation around an unperturbed mean flow; \(g \in \mathbb{R}^N \) is the preshape condition; \(q_0 \) is the initial condition; and \(s \) is an open-loop forcing term, i.e. it does not depend on the state variables and is set to zero except in Sec. 3.2. Although the solution, \(q \), lives in \(\mathbb{R}^N \), time delayed systems are infinite dimensional because of (53b). The linearized problem (53) is also known as direct problem.

Physically, the time delay is the time that a flow perturbation at the flame’s base takes to release a heat perturbation into the acoustics. There are two scenarios. In the first scenario, the heat release, \(\hat{q} \), is modelled by a flame response (Sec 2.3), in which \(\tau \neq 0 \) (hence \(L_\tau \neq 0 \)) is a key thermoacoustic parameter. The matrices \(L \) and \(L_\tau \) are the spatial discretizations of the partial derivatives of the linear operator and the linear time-delayed operator, respectively, which embed the discretized boundary conditions. Without loss of generality, it is assumed that \(q = 0 \) for \(t < 0 \) and \(q = q_0 \) at \(t = 0 \), i.e. the flame and acoustics are at rest for \(t < 0 \). In the second scenario, the heat release is not modelled by a flame response, therefore the hydrodynamic and flame equations are solved to obtain \(\hat{q} \). The matrix \(L \) contains the hydrodynamic and combustion equations; \(\tau = 0 \), hence \(L_\tau = 0 \); and \(q = q_0 \) at \(t = 0 \). The linear time-delayed system becomes a linear initial value problem.

All the remarks that are being made are valid for both time-delayed systems and initial value problems.\(^{18}\)

3.1.1 Stability conditions

Time-delayed thermoacoustic systems, which are retarded systems, are asymptotically stable if and only if there exists \(\delta > 0 \) such that, \(\forall q([-\tau,0]) \) with \(\|q([-\tau,0])\|_0 < \delta \), \(\|q\|_\infty < \varepsilon \) for \(t \geq 0 \), where \(\|\cdot\|_0 \) is the infinity norm. Physically, a thermoacoustic system is asymptotically stable if perturbations die out in the long-time limit, i.e. \(q = 0 \) for \(t \to \infty \).

Crucially, thermoacoustic systems are asymptotically stable if they are exponentially stable. To calculate the exponential stability, a modal decomposition is employed for the state vector

\[
q(x,t) = \hat{q}(x) \exp(\sigma t), \tag{54}
\]

where \(x \) are the spatial coordinates, \(\sigma \in \mathbb{C} \), and \(\hat{\cdot} \) is the Laplace transformed quantity. The system is exponentially stable if \(\text{Re}(\sigma) < 0 \), i.e. the growth rate is negative. The angular frequency is provided by the imaginary part, \(\text{Im}(\sigma) \). If the largest growth rate is zero, the system is marginally stable, i.e. perturbations persist with no amplification/decay. Otherwise, the system is unstable.

3.1.2 Nonlinear eigenproblem

The substitution of the modal decomposition (54) into the governing equations, in general, results in a nonlinear eigenproblem (NEP) \(^{40,163,165}\), in contrast to most cases in hydrodynamic stability where linear eigenproblems\(^{17}\) govern the stability. The nonlinear eigenproblem reads

\[
N(\sigma,p)\hat{q} = 0 \tag{55}
\]

where \(N \) is an \(N \times N \) complex matrix, which is assumed analytic\(^{20}\) with respect to the parameters’ vector, \(p \), and the complex number, \(\sigma \), in a suitably defined domain of the complex plane.\(^{21}\) The dependence on \(\sigma \) and \(p \) is dropped unless it is necessary for clarity. The size of the matrix has the order of either \(1 - 100 \), in the case of a network-based model, or \(10^3 - 10^6 \) in Helmholtz solvers. The nonlinear eigenproblem is solved when \(\sigma \) and \(\hat{q} \neq 0 \) are found such that (55) is satisfied, which corresponds to the condition

\[
\text{det}(N) = 0. \tag{56}
\]

The above condition cannot be directly solved in most problems by cofactor expansion because the determinant has a complexity that grows factorially with the size of the matrix. More numerically efficient methods are typically used (Sec. 3.1.3).

The main sources of nonlinearity in the eigenproblem (55) are (i) the flame response model, which introduces a characteristic time delay \(\tau \) appearing as \(\exp(-\sigma \tau) \) in the frequency space; (ii) and non-ideal acoustic boundary conditions, which are functions of frequency-dependent impedances \(^{40}\). \(\sigma \) may appear under rational, polynomial, trigonometric and exponential nonlinearities. In general, such an NEP cannot be recast as a linear eigenproblem. The set of all the eigenvalues of \(N(\sigma,p) \) is the spectrum; and \(\hat{q} \) is the direct\(^{25}\) eigenfunction, which forms an eigenpair with \(\sigma \). The eigenfunction is the natural shape with which a small perturbation oscillates around the base state.

\(^{17}\)Or nonlinear eigenproblems with quadratic nonlinearities, which can be recast as linear eigenproblems.

\(^{20}\)Some authors discard the growth rate in the Flame Transfer Function (FTF) and retain only the angular frequency. In this scenario, we can apply analytic continuation to extend the FTF to the complex plane.

\(^{21}\)For example, by leaving out of the domain the singularities of rational functions.

\(^{25}\)Also known as the right eigenvector or, simply, eigenvector.
3.1.3 Features of nonlinear eigenproblems

Nonlinear eigenproblems appear in different applications in science and engineering beyond thermoacoustics, for example, in vibrations of structures, fluid-structure interaction, nanotechnology (quantum dots), time delayed systems, control theory, to name a few. For more details, the reader may refer to [238–242]. The key facts of NEPs that are useful for stability, receptivity and sensitivity analysis of thermoacoustic systems and reacting flows are:

- A linear eigenproblem is a subset of NEPs with \(\mathbf{N} = \mathbf{A} - \sigma \mathbf{L} \), where \(\mathbf{A} \) and \(\mathbf{L} \) may be complex matrices. Some thermoacoustic systems, however, may be governed by linear eigenproblems (e.g., in state space models [243–245] or with time-delayed equations that are linearized in \(\tau [42, 153] \));
- The spectrum of an NEP is discrete, i.e. it does not have accumulation points. The eigenvalues are isolated and can be countably infinite;
- An eigenvalue has algebraic multiplicity \(a \) if \(d^j/d\sigma^j\det(\mathbf{N}) = 0 \) and \(d^a/d\sigma^a\det(\mathbf{N}) \neq 0 \), where \(j = 0, 1, ..., a - 1 \). The geometric multiplicity, \(g \), of an eigenvalue \(\sigma \) is the dimension of the null space of \(\mathbf{N}(\sigma) \), i.e. \(g = \dim(\text{null}(\mathbf{N}(\sigma))) \). In linear eigenproblems, the algebraic multiplicities add up to the dimension of the problem. However, in NEPs there may exist an infinite number of eigenvalues, and an eigenvalue may have any algebraic multiplicity greater than the dimension of the problem\(^{23}\);
- An eigenvalue is semi-simple if \(a = g \). If \(a = 1 \), the eigenvalue is simple;
- An eigenvalue is defective if \(a > g \). An important class of defective eigenvalues are branch-point eigenvalues of the characteristic function \(^{24}\), which are known as exceptional points \([246, 247]\). Exceptional points have infinite sensitivity to infinitesimal perturbations to the system (Fig. 7);
- Eigenvalues that are not simple are degenerate. For example, problems with symmetries, such as rotationally symmetric annular combustors, typically have semi-simple, thus degenerate, eigenvalues;
- Eigenvectors corresponding to distinct eigenvalues are linearly independent in linear eigenproblems, whereas this is not necessarily the case in NEPs. Likewise, generalized eigenvectors of linear eigenproblems are linearly independent, whereas this does not necessarily hold in NEPs. All the linearly independent eigenvectors (and generalized eigenvectors) provide a basis for non-defective (defective) NEPs;
- On the one hand, algebraic simplicity implies geometric simplicity. On the other hand, geometric simplicity and \(d\mathbf{N}/d\sigma \)-orthogonality (Eqn. (60)) implies algebraic simplicity \([248]\);
- Numerically, an NEP can be solved by Newton’s methods with iterative projection methods for large-scale problems (Lanczos, rational Krylov, Jacobi-Davidson, etc.), contour integration \([242]\) and linearization methods, to name a few. The references \([240, 242, 249]\) provide thorough descriptions of existing numerical methods for NEPs. In thermoacoustics, simple gradient-based iteration algorithms are typically utilized (e.g., [40]). Contour integration was applied to solve dispersion relations in \([250]\) and to find all the defective and non-defective eigenvalues in a given circle of the complex plane in \([247, 251]\). The contour integration method proved numerically more robust and stable than gradient-based iteration methods, with the advantage of finding all the eigenvalues in a defined domain in the complex plane;
- The eigenvalues of a state space model (Eqs. (53a)-(53c)) are the poles of the corresponding transfer function.

Appendix A explains the local Smith form of NEPs.

3.2 Receptivity (adjoint eigenproblem)

The receptivity of a thermoacoustical variable to open-loop forcing or initial conditions is calculated by solving the adjoint problem. The key facts of adjoint NEPs that are useful for receptivity analysis of thermoacoustic systems and reacting flows are:

- The adjoint operator, \(\mathbf{N}^+ \), is defined such that for any vector, \(\hat{\mathbf{q}}^+ \), the following identity holds
 \[
 \langle \hat{\mathbf{q}}^+, \mathbf{N}\hat{\mathbf{q}} \rangle_{\mathbf{M}} \equiv \langle \mathbf{N}^+\hat{\mathbf{q}}^+, \hat{\mathbf{q}} \rangle_{\mathbf{M}},
 \]
 where \(\langle \cdot, \cdot \rangle_{\mathbf{M}} \) is a bilinear form\(^{25}\), or a sesquilinear form\(^{26}\) when working with complex numbers instead of a bilinear form. In this paper, an inner product\(^{27}\) is used to define the adjoint operator
 \[
 \langle \mathbf{a}, \mathbf{b} \rangle_{\mathbf{M}} \equiv \mathbf{a}^H \mathbf{M} \mathbf{b},
 \]
 where \(\mathbf{M} \) is a positive-definite weight matrix, \(\mathbf{a}, \mathbf{b} \) are generic complex vectors and \(\mathbf{H} \) is the conjugate transpose. The adjoint operator reads
 \[
 \mathbf{N}^+ = \mathbf{M}^{-1} \mathbf{N}^H \mathbf{M}.
 \]

The right-hand side of (59) defines a similarity transformation, therefore the spectrum of \(\mathbf{N}^H \) is the com-

\(^{23}\) For example, the complex function \(F(z) = z^{N+k} \) with \(N \) being the space dimension and \(k \) being a positive integer, has an eigenvalue \(\sigma = 0 \) with algebraic multiplicity of \(N + k \).

\(^{24}\) The solutions of the characteristic function may be complex multivalued functions, hence, they may be branch points.

\(^{25}\) i.e., \(\langle \mathbf{a} + \mathbf{c}, \mathbf{b} + \mathbf{d} \rangle = \langle \mathbf{a}, \mathbf{b} \rangle + \langle \mathbf{c}, \mathbf{b} \rangle + \langle \mathbf{a}, \mathbf{d} \rangle + \langle \mathbf{b}, \mathbf{d} \rangle \) and \(\lambda \langle \mathbf{a}, \mathbf{c} \rangle = \lambda \langle \mathbf{a}, \mathbf{b} \rangle \), where \(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \) are arbitrary complex vectors and \(\lambda, \alpha \) are arbitrary complex scalars.

\(^{26}\) i.e., \(\langle \mathbf{a} + \mathbf{c}, \mathbf{b} + \mathbf{d} \rangle = \langle \mathbf{a}, \mathbf{b} \rangle + \langle \mathbf{c}, \mathbf{b} \rangle + \langle \mathbf{a}, \mathbf{d} \rangle + \langle \mathbf{b}, \mathbf{d} \rangle \) and \(\langle \lambda \mathbf{a}, \mathbf{c} \rangle = \lambda \langle \mathbf{a}, \mathbf{c} \rangle \), where \(\mathbf{a}, \mathbf{b}, \mathbf{c} \) are generic complex vectors.

\(^{27}\) i.e., a sesquilinear form that is symmetric, that is, \(\langle \mathbf{a}, \mathbf{b} \rangle = \langle \mathbf{b}, \mathbf{a} \rangle^* \).
plex conjugate\(^{28}\) of the spectrum of \(N\). This information serves as a good check when validating adjoint algorithms. Unless otherwise specified, in this paper, \(M = I\), thus, the subscript \(M\) in (58) is dropped;

- Importantly to sensitivity analysis (Sec. 3.3), a necessary and sufficient condition for the eigenvalue to be semi-simple is that direct and adjoint eigenvectors are \(\partial N / \partial \sigma\)-orthogonal to each other [248]

\[
\langle \hat{q}^+_j, \frac{\partial N}{\partial \sigma} | q_j \rangle = C \delta_{i,j},
\]

where \(\delta_{i,j}\) is the Kronecker delta, and \(C \neq 0\) is a user-defined normalization factor, often \(C = 1\). Equation (60) is a generalization of the bi-orthogonality condition of linear eigenproblems that appear in hydrodynamic stability [62];

- From a corollary of the Keldysh theorem [238, 242], in a neighbourhood of a simple eigenvalue \(\sigma_j\), the inverse of the operator can be represented as

\[
N^{-1}(\sigma) = \frac{1}{\sigma - \sigma_j} \langle \hat{q}^+_j \otimes \hat{q}^+_j, \frac{\partial N}{\partial \sigma} | q_j \rangle + O(\sigma - \sigma_j),
\]

where \(\otimes\) is the dyadic product, and \(\sim O(\sigma - \sigma_j)\) is an analytic additive term (a remainder from the Laurent series), which is zero in linear eigenproblems. Note that the adjoint eigenfunction projects a vector onto the corresponding direct eigenvector, or, in other words, the adjoint eigenvector is a projector.

3.2.1 CA, DA or AD?

To present the different ways and philosophies to obtain the adjoint of a system, a step back is taken to consider the nonlinear problem in time. Three steps are generally taken to simulate problems in thermo-fluid dynamics.

First, under the continuum hypothesis, continuous differential equations are selected to represent the physical problem, e.g., partial differential equations, ordinary differential equations are selected to represent the physical problem, where \(\partial \mathcal{L} / \partial \sigma\)-orthogonal to each other [248].

Continuous adjoint equations were introduced in the second half of the 18th century by the Italian-French mathematician Joseph-Louis Lagrange in the theory of linear ordinary differential equations. Here, the CA approach is analysed as applied to partial differential equations, and differences with the DA approach are discussed. First, in the CA approach the solutions live in different spaces, typically Sobolev spaces. For Riesz theorem, the adjoint always exists and is unique in continuous operators in Hilbert spaces, of which a finite dimensional space is a subset. Second, the adjoint boundary conditions explicitly appear as further variables, whereas in the DA approach they are encapsulated in the discrete operator. Third, the adjoint equations are defined by a bilinear form, or a sesquilinear form when working with complex numbers, that includes the spatial dependency

\[
\left[q^+ , \left(\frac{\partial}{\partial t} - \mathcal{L} \right) q \right] = \left[\left(\frac{\partial}{\partial t} - \mathcal{L}^\dagger \right) q^+ , q \right] = 0
\]

Here, an inner product is used to define the adjoint equations (see Sec. 3.2)

\[
[a, b] = \frac{1}{T} \int_0^T \int_V a^* \cdot b \, dV \, dt,
\]

where \(\mathcal{L}\) is the continuous linear thermoacoustic operator, which is a linear combination of the spatial derivatives (see Sec. 2); \(a, b\) are arbitrary functions in the function space in which the problem is defined\(^{30}\); \(V\) is the space domain; \(T\) is

28 Strictly speaking, for general NEPs such that \(\det((N(\sigma))^H) \neq \det((\mathbb{N}(\sigma))^H)\), the spectrum of \((N(\sigma))^H\) is the spectrum of \(N(\sigma)\) because \(\mathbb{N}\) is the solution of the adjoint problem, i.e., \(0 = \det((\mathbb{N}(\sigma))^H) = \det((\mathbb{N}(\sigma))^H) = \det((\mathbb{N}(\sigma))^H) = \det((N(\sigma))^H) = \det((\mathbb{N}(\sigma))^H)\). However, the NEP may be recast as \(M(\sigma)q = \eta q\), where \(M(\sigma) = \eta I - N(\sigma)\). With this arrangement, the complex conjugate, \(\sigma^*\), is the eigenvalue of the adjoint eigenproblem \((M(\sigma))^Hq^* = \sigma^*q^*\), i.e., the solution of \(\det(M(\sigma)^H - \sigma^* I) = 0\). In this paper, we implicitly use the latter when referring to the adjoint spectrum as being the complex conjugate of the direct spectrum.

29 In other areas in computational science, no distinction is made between DA and AD. However, the author feels that such a distinction should be made, in particular in thermoacoustic problems.

30 In this section, the underline is used to denote a function that depends on space as well.
the integration time; and * is the complex conjugate. Identity (62) is sometimes referred to as Green's (or Lagrange-Green) identity [134, 253]. To find the adjoint operator with the CA approach, integration by parts (with the divergence theorem) of (63) is performed. The adjoint boundary conditions, which arise from integration by parts of (63), are defined such that the right-hand side is zero. Importantly, it is straightforward to check the important property that $\partial([q^*_j, q_j])/\partial t = 0$, which is used for debugging unsteady adjoint codes (see dot-product test in Appendix B.2).

The authors of [153, 162] presented a comparison between the numerical truncation errors between the CA and DA methods as applied to thermoacoustics. Although the two formulations should converge in principle, it has been shown that convergence is actually not guaranteed a priori [134, 254–257]. Dual-consistent numerical schemes help improve this convergence (see, e.g., [258, 259]). On the one hand the CA approach highlights the physical information carried by the adjoint variables at the boundaries. On the other hand, the DA approach provides the exact gradient (to machine precision) of the discrete objective function. For the thermoacoustic system considered in this paper, the DA method provides more accurate results and is easier to implement. However, the results obtained via the CA method are shown to describe how the method works and interpret the jump conditions in thermoacoustic network models (Sec. 3.5). In Appendices B.2-B.3, other remarks on adjoint equations are listed for keen readers.

3.2.2 Physical information from adjoint eigenfunctions

To show the physical information that can obtained from the adjoint eigenpairs, here it is assumed that the eigenvalue is simple so that Eqn. (61) holds. Similar conclusions can be drawn if the eigenvalue is semi-simple. The spatially-discretized linearized time-delayed thermoacoustic problem (53) can be solved by the Laplace transform. By observing that the Laplace transform of $q(t - \tau)$ is $\hat{q}\exp(-\sigma t) + \hat{g}$, Eqns. (53) are transformed as

$$\begin{align*}
[\sigma I - L_t - L_r\exp(-\sigma t)]\hat{q} &= \hat{s} + q_0 + L_r\hat{g}.
\end{align*}
$$

The solution in the time domain is provided by the Bromwich integral\(^{32}\)

$$\begin{align*}
q(t) &= \frac{1}{2\pi i}\int_{t^- - i\infty}^{t^+ + i\infty} N^{-1}(\sigma) (\hat{s} + q_0 + L_r\hat{g})\exp(\sigma t) d\sigma \\
&= \sum_{j=1}^{\infty} A_j \exp(\sigma_j t),
\end{align*}
$$

where $N^{-1}(\sigma)$ is the resolvent. The last equality is a consequence of the theorem of residues, where $A_j \equiv \text{Res}\{\hat{q}_j\}$

$$\lim_{\sigma\to\sigma_j} (\sigma - \sigma_j)\hat{q}_j$$

for simple eigenvalues, σ_j. On substituting the inverse operator (61) in (65), the modal amplitudes of the solution in time are calculated as

$$A_j = \frac{\langle \hat{q}_j^* + \hat{s}(\sigma_j) + q_0 + L_r\hat{g}(\sigma_j) \rangle}{\langle q_j^* + \frac{\partial N}{\partial \sigma_j} \rangle}.\quad (67)$$

Physically, the response of the j^{th} component of q in the long-time limit increases (i) as the forcing frequency is close to the j^{th} eigenvalue, σ_j (resonance); (ii) as the forcing, \hat{s}, approaches the adjoint eigenfunction, \hat{q}_j^*; and (iii) as the initial and preshape conditions, q_0 and $L_r\hat{g}$, overlap, respectively, the adjoint eigenfunction. Therefore, to observe the maximum amplification of \hat{q}_j, the thermoacoustic system should be either forced with a frequency close to σ_j; or forced with $\hat{s} = \hat{q}_j^* \exp(i\omega_j t)$, where $\omega_j \equiv \text{Im}(\sigma_j)$; or initialized with $q_0 = \hat{q}_j^*$ and $L_r\hat{g} = \hat{q}_j^*$; or a combination of the above. For example, the adjoint eigenfunction of the acoustic momentum equation reveals the locations where the thermoacoustic system is most receptive to forces, such as acoustic dampers and drag devices (Secs. 6.1.1, 6.3).

3.3 Eigenvalue sensitivity

The objective is to calculate the change of a thermoacoustic eigenvalue due to an infinitesimally small change to the problem. Such a calculation is enabled by perturbation methods. Perturbation theory of eigenvalues was pioneered in self-adjoint problems, i.e. acoustic problems by Lord Rayleigh (1903, Sec. 90) and quantum mechanics\(^{33}\) by Schrödinger (pp. 64–76 of [262]). However, in general, thermoacoustic systems are not self-adjoint [35–37, 39, 40], which is a property calling for adjoint eigenvectors. The philosophy of adjoint perturbation theory can be summarized as follows. First, the thermoacoustic stability problem (55) is solved for a set of parameters p_0. The eigenvalue σ_0 and eigenfunction \hat{q}_0, with their multiplicities, are called the unperturbed solutions, which are subject to

$$N(\sigma_0, p_0)\hat{q}_{0,j} = 0, \quad j = 1, \ldots, g,\quad (68)$$

with the corresponding adjoint problem

$$N^H(\sigma_0, p_0)\hat{q}_{0,j} = 0, \quad j = 1, \ldots, g,\quad (69)$$

where $N^H(\sigma_0, p_0)$ is a shorthand for $[N(\sigma_0, p_0)]^H$. It is recalled that the thermoacoustic matrix is assumed analytic in σ and p. Second, the matrix N is perturbed by small changes to the parameters, p_0, or by small changes to the operator, δP

\(^{32}\)In spatially continuous problems, the continuous spectrum should be considered as well [260, 261]. More details for thermoacoustic systems can be found in [154].

\(^{33}\)Quantum mechanics offers a large “repository” of mathematical techniques, some of which can be adapted to tackle acoustic/thermoacoustic problems. For example, some aeroacoustic problems can be cast in a Schrödinger equation and solved by Dyson expansion [195]. There are other examples, which will be the subject of another study.
(Sec. 3.3.4). Third, the eigenvalues and eigenvectors are expanded in asymptotic series centred around p_0 or $N(\sigma_0, p_0)$ (Sec. 3.3.4). Finally, the different orders of the eigenvalue and eigenvector drifts (also known as corrections) are governed by linear inhomogeneous systems. These are solved by using the adjoint eigenvectors, which provide solvability conditions (see also Appendix B.2).

3.3.1 Multi-index expansion

In multi-index notation up to order k, the expansion of the thermoacoustic matrix N around the eigenvalue σ_0 and the set of M parameters cast in a vector p_0, reads [165, 171, 172]

$$N(\sigma, p) = \sum_{|\langle i, \mu \rangle| \leq k} N_{i, \mu} (\sigma - \sigma_0)^i (p - p_0)\mu + \text{h.o.t.}, \quad (70)$$

where $(i, \mu) \equiv (i, \mu_1, \ldots, \mu_M)$ is an $(M + 1)$-tuple of non-negative integers, h.o.t. are the higher order terms, and

$$N_{i, \mu} = \frac{1}{(i, \mu)!} \left\{ \frac{\partial^{\langle i, \mu \rangle} N}{\partial \sigma^i \partial \sigma^\mu} \right\}, \quad (71)$$

where

$$|\langle i, \mu \rangle| \equiv i + \mu_1 + \ldots + \mu_M, \quad (72)$$

$$(p - p_0)\mu \equiv (p_1 - p_{0,1})\mu_1 \cdots (p_M - p_{0,M})\mu_M, \quad (73)$$

$$(i, \mu)! \equiv i! \mu_1! \cdots \mu_M!, \quad (74)$$

$$\frac{\partial^{\langle i, \mu \rangle} N}{\partial \sigma^i \partial \sigma^\mu} = \frac{\partial^{\langle i, \mu \rangle} N}{\partial \sigma^i \partial p_1^\mu_1 \cdots \partial p_M^\mu_M}. \quad (75)$$

The Taylor series (70) converges providing that a singularity is not encountered. For example, the first order truncation of (70) yields

$$N(\sigma, p) \approx N(\sigma_0, p_0) + N_{1,0} (\sigma - \sigma_0) + N_{0,1} (p - p_0)$$

$$= N(\sigma_0, p_0) + \frac{\partial N}{\partial \sigma} (\sigma - \sigma_0) + \sum_{j=1}^{M} \frac{\partial N}{\partial p_j} (p_j - p_{0,j}). \quad (76)$$

3.3.2 Sensitivity to one parameter

The case of a perturbation applied to one parameter is first analysed. The parameter is assumed analytic with power series up to order Q

$$p = \sum_{j=0}^{Q} \epsilon^j p_j + \text{h.o.t.}, \quad (77)$$

where ϵ is the perturbation parameter. Simple and semi-simple thermoacoustic eigenpairs can be expanded as power series\(^{34}\)

$$\sigma = \sigma_0 + \sum_{j=1}^{Q} \sigma_j \epsilon^j + \text{h.o.t.}, \quad (78)$$

$$\hat{q} = \hat{q}_0 + \sum_{j=1}^{Q} \hat{q}_j \epsilon^j + \text{h.o.t.}. \quad (79)$$

To calculate the coefficients of (78)-(79), which are the eigenvalue and eigenvector drifts, respectively, the decompositions (78)-(79) are substituted into the eigenvalue problem (55). Each order of ϵ defines the equation for the eigenpair drift, which, at k-th order, reads in compact notation [172]

$$N_{0,0} \hat{q}_k = -\hat{r}_k - \sigma_0 N_{1,0} \hat{q}_0, \quad (80)$$

where $N_{0,0} \equiv N(\sigma_0, p_0)$ and\(^{35}\)

$$\hat{r}_k = \sum_{n=1}^{k} N_{0,n} \hat{q}_{k-n} + \sum_{0<\nu_\mu<k} \sum_{\nu_\mu \neq 1_k} (\mu)^{\nu_\mu} N_{0,\nu_\mu} \hat{q}_{k-n} - \nu_\mu \hat{r}_k, \quad (81)$$

where

$$\nu \equiv (1, 2, \ldots, M), \quad (82)$$

$$\left(\frac{\mu}{\mu!} \right) = \frac{\mu}{\mu!}, \quad (83)$$

$$\sigma_\mu^{\nu} \equiv \prod_{n=1}^{M} \sigma_n^{\nu_n}, \quad (84)$$

$$\mu \nu \equiv \mu_1 \nu_1 \cdots \mu_M \nu_M, \quad (85)$$

and 1_k is a multi-index of zeros except for the position k.

\(^{34}\)In contrast, if the eigenvalue is defective and a branch-point solution of the characteristic function, a fractional power series (also known as Newton-Puiseux series or Puiseux series) has to be employed, $\sigma = \sigma_0 + \sum_{j=1}^{Q} \sigma_j \epsilon^j + \text{h.o.t.}$ and $\hat{q} = \hat{q}_0 + \sum_{j=1}^{Q} \hat{q}_j \epsilon^j + \text{h.o.t.}$, where α is the algebraic multiplicity (Appendix I of [263], pp. 65-66 of [261] and [248, 264–269]). Although beyond the scope of this review paper, it is interesting to characterize the sensitivity of defective branch-point eigenvalues because their rate of change is infinitely larger than the rate of change of the parameters. In other words, the thermoacoustic stability at an exceptional point is infinitely more sensitive to perturbations than the thermoacoustic stability of a non-defective system [165, 247].

\(^{35}\)Private communication with G. Mensah and A. Orchini.
where it is 1. For example, the first three orders of \(r_k\) read

\[
\begin{align*}
\mathbf{r}_1 &= \mathbf{N}_{0,0}^1 \mathbf{q}_0, \\
\mathbf{r}_2 &= \mathbf{N}_{0,1}^1 \mathbf{q}_1 + \mathbf{N}_{0,0}^2 \mathbf{q}_0 + \mathbf{\sigma}_1 (\mathbf{N}_{1,0}^1 \mathbf{q}_1 + \mathbf{N}_{1,1}^1 \mathbf{q}_0) + \mathbf{\sigma}_1^2 \mathbf{N}_{2,0}^0 \mathbf{q}_0, \\
\mathbf{r}_3 &= \mathbf{N}_{0,1}^2 \mathbf{q}_2 + \mathbf{N}_{0,0}^2 \mathbf{q}_1 + \mathbf{N}_{0,0}^3 \mathbf{q}_0 + \mathbf{\sigma}_1 (\mathbf{N}_{1,0}^2 \mathbf{q}_2 + \mathbf{N}_{1,1}^1 \mathbf{q}_1 + \mathbf{N}_{1,2}^1 \mathbf{q}_0) + \mathbf{\sigma}_1^2 (\mathbf{N}_{2,0}^1 \mathbf{q}_1 + \mathbf{N}_{2,1}^1 \mathbf{q}_0) + \mathbf{\sigma}_2 (\mathbf{N}_{1,0}^1 \mathbf{q}_1 + \mathbf{N}_{1,1}^1 \mathbf{q}_0) + 2\mathbf{\sigma}_1 \mathbf{\sigma}_2 \mathbf{N}_{2,0}^0 \mathbf{q}_0 + 3\mathbf{\sigma}_1^2 \mathbf{N}_{3,0}^0 \mathbf{q}_0.
\end{align*}
\]

Equation (80) is a linear inhomogeneous system, which is not invertible because matrix \(\mathbf{N}_{0,0}\) is singular. For the linear system (80) to have solutions, a solvability condition has to be fulfilled at each order. This is where the adjoint eigenfunctions are called upon. Equation (80) is projected onto the corresponding adjoint eigenvector to yield

\[
\left(\mathbf{\hat{q}}^+, -r_k - \mathbf{\sigma}_1 \mathbf{N}_{1,0}^1 \mathbf{q}_0\right) = 0. \tag{87}
\]

On the one hand, if the eigenvalue is simple (non-degeneracy), Eqn. (87) can be solved for the eigenvalue drifts, \(\mathbf{\sigma}_k\), which can be subsequently substituted back into Eqn. (80) to obtain the eigenvector drift, \(\mathbf{\hat{q}}_k\). Numerical strategies to compute \(\mathbf{\hat{q}}_k\) can be found in [165]. On the other hand, if the eigenvalue is semi-simple, \(g\) solvability conditions have to be fulfilled simultaneously, which give rise to an auxiliary eigenvalue problem

\[
\mathbf{X}_k \mathbf{z} - \mathbf{\sigma}_1 \mathbf{Y} \mathbf{z} = 0 \tag{88}
\]

where \(\mathbf{X}_k\) and \(\mathbf{Y}\) are matrices whose components are

\[
\begin{align*}
[X]_{k,j,i} &= \left\langle \mathbf{\hat{q}}^+_{0,j}, -r_{k,j}\right\rangle, \tag{89} \\
[Y]_{k,j,i} &= \left\langle \mathbf{\hat{q}}^+_{0,j}, \mathbf{N}_{1,0} \mathbf{q}_0\right\rangle, \tag{90} \\
i, j &= 1, 2, \ldots, g. \tag{91}
\end{align*}
\]

If the \(\partial \mathbf{N} / \partial \mathbf{\sigma}\)-orthogonality normalization (60) is imposed, then \(\mathbf{Y} = \mathbf{I}\). By solving (88) for problems with double geometric multiplicity, \(g = 2\), such as rotationally symmetric annular combustors, the first-order eigenvalue drift reads

\[
\mathbf{\sigma}_{1,\pm} = \frac{\text{tr}(\mathbf{X})}{2} \pm \frac{\sqrt{\text{tr}(\mathbf{X})^2 - 4 \cdot \det(\mathbf{X})}}{2}, \tag{92}
\]

with the corresponding eigenvectors

\[
\mathbf{z}_{\pm} = \left(-\frac{[\mathbf{X}]_{12}}{[\mathbf{X}]_{11} - \mathbf{\sigma}_{1,\pm}} \right). \tag{93}
\]

Two scenarios are considered. First, the perturbation to the system may be such that the auxiliary problem is still degenerate up to \(k\)-th order, i.e. \(\mathbf{\sigma}_{k,\pm} = \mathbf{\sigma}_{k,-}\). Geometrically, the degenerate eigenspace does not unfold because \(\mathbf{z}_+ = \mathbf{z}_-\). Second, the perturbation to the system may be such that the auxiliary problem is not degenerate at \(k\)-th order, i.e. \(\mathbf{\sigma}_{k,\pm} \neq \mathbf{\sigma}_{k,-}\). The directions along which the degenerate eigenspace unfolds are provided by the two different eigendirections \(\mathbf{z}_\pm\), along which the perturbation analysis becomes non-degenerate (Sec. 9). Mode degeneracy with semi-simple eigenvalues is a problem relevant to annular and can-annular combustors because of their rotationally symmetric geometry (see, among others, [163, 165, 166, 171, 221, 270–279]). The multiplicity of the degeneracy induced by the symmetry is typically \(g = 2\), which physically corresponds to two eigenfunctions that are rotating in opposite azimuthal directions with the same frequency.

3.3.3 Sensitivity to multiple parameters

If the eigenvalue is simple, the extension to multiparameter expansion simply involves a multivariate expansion of the eigenvalue with respect to the parameters’ vector

\[
\mathbf{\sigma} = \mathbf{\sigma}_0 + \sum_{\mu \leq k} \frac{1}{\mu!} \frac{\partial^\mu \mathbf{\sigma}}{\partial \mathbf{p}^\mu} (\mathbf{p} - \mathbf{p}_0)^\mu + \text{h.o.t.} \tag{94}
\]

The eigenvalue drifts can be found by applying the method of Sec. 3.3.2. If the eigenvalue is semi-simple, (94) is not totally differentiable because of the auxiliary eigenvalue problem in (88) [171, 261]. To circumvent the lack of total differentiability, the problem can be turned to a single-parameter problem:

- A perturbation direction in the parameter space is chosen, \(\Delta \mathbf{p} = \mathbf{p} - \mathbf{p}_0\);
- The perturbation direction is normalized as

\[
\widetilde{\Delta \mathbf{p}} = \frac{\Delta \mathbf{p}}{||\Delta \mathbf{p}||}; \tag{95}
\]

- The parameters’ vector is perturbed as

\[
\mathbf{p} \equiv \mathbf{p}_0 + \varepsilon \widetilde{\Delta \mathbf{p}}, \tag{96}
\]

such that

\[
\mathbf{N}(\mathbf{\sigma}, \mathbf{p}) = \mathbf{N}(\mathbf{\sigma}, \mathbf{p}_0 + \varepsilon \widetilde{\Delta \mathbf{p}}) = \mathbf{H}_{\Delta \mathbf{p}}(\mathbf{\sigma}, \varepsilon), \tag{97}
\]

where \(\mathbf{H}_{\Delta \mathbf{p}}(\mathbf{\sigma}, \varepsilon)\) is the thermoacoustic matrix perturbed along the parameters’ direction \(\Delta \mathbf{p}\) by a single parameter \(\varepsilon\).
• The eigenvalue drifts can be calculated with the formulation of Sec. 3.3.2 by using

\[H_{\Delta p,m,n} = \left. \frac{\partial^{m+n}}{\partial \sigma^m \partial \varepsilon^n} H_\Delta \right|_{(\sigma=\alpha_0, \varepsilon=0)}. \] (98)

3.3.4 Sensitivity to the thermoacoustic matrix

Another approach is to directly perturb the operator by another operator

\[N(\sigma) = N_0(\sigma) + \varepsilon \delta P(\sigma), \] (99)

where \(N_0 \) is the unperturbed matrix. This is the usual approach used in hydrodynamic stability [134], which was used in thermoacoustics for the calculation of linearly optimal passive control devices [153, 154], base-state sensitivities [158, 160, 165], uncertainty quantification both in annular [163] and longitudinal combustors [164, 167] and optimal acoustic damper placements in annular combustors [172].

Base-flow perturbations. To design control strategies, the effect that a controller has on the base flow has to be considered. When an external controller, such as a Helmholtz resonator, is placed into the thermoacoustic system, it induces a perturbation to the matrix as

\[\delta P = \frac{\partial N}{\partial p} + \frac{\partial N}{\partial q} \frac{\delta q}{\delta p}. \] (100)

where \(p \) are the parameters that the object changes, i.e. a feedback forcing, drag coefficient, etc., and \(q \) is the base flow upon which the thermoacoustics evolve. In hydrodynamic stability, the sensitivity \(\partial N / \partial p \) is customarily called structural sensitivity [16], which estimates the wavemaker regions in the flow. The sensitivity \(\partial N / \partial q / \partial p \) is called base-flow sensitivity [72, 73]. In order to calculate the change of the base flow, another set of adjoint equations can be imposed to constrain the base-flow equations when a small steady forcing term is added. The adjoint base flow is the solution of an inhomogeneous linear system, where the inhomogeneous term depends on the direct and adjoint eigenfunctions [73]. Base-flow sensitivity was applied in thermoacoustics in [158] in a ducted diffusion flame to find the optimal changes to stabilize a thermoacoustic instability. Recently, the effect of shape modifications of annular and longitudinal combustors were calculated in [173, 174] to stabilize all the thermoacoustic eigenvalues.

3.3.5 Intrinsic sensitivity

The intrinsic sensitivity is defined as the eigenvalue sensitivity to intrinsic physical mechanisms [49, 161], i.e. the perturbation operator of the eigenvalue sensitivity formula (101) is the Jacobian itself (Eqn. 53b), i.e. \(\delta P = L \) for time-delayed systems. This enables us to identify the regions of the flow where the hydrodynamic and acoustic subsystems are active and quantify how they affect the overall thermoacoustic stability. When the mean flow is a fixed point of the equations, the real part of (101) provides a map showing the regions to which the thermoacoustic stability is most sensitive to the \(j \)-th variable through the \(i \)-th equation. Likewise, the imaginary part of (101) shows the regions to which the thermoacoustic angular frequency is most sensitive.

3.4 Adjoint methods vs finite difference

On the one hand, to calculate the first-order eigenvalue drift, \(\sigma_1 \), with a traditional finite-difference approach, the eigenproblem is solved for each parameter’s perturbation, which is computationally costly if the number of parameters is larger than the number of quantities of interest, in this case being the eigenvalues. On the other hand, with adjoint sensitivity analysis, only the unperturbed eigenproblem and its adjoint are solved to obtain \(\sigma_1 \), regardless of the number of parameters being perturbed. Therefore, if one is interested in the first-order sensitivity of one eigenvalue to, say, one million parameters, finite-difference methods would require solving one million eigenproblems, whereas adjoint methods would require solving only one eigenproblem and its adjoint.

3.5 Example of continuous adjoint equations of a thermoacoustic network

The adjoint of a thermoacoustic network solved with a wave approach is derived by a continuous adjoint (CA) approach, whereas the adjoint of the multiple-scale model is derived by a discrete adjoint (DA) approach (Sec. 4.4).

The adjoint variables for the governing equations (19) are defined as \(\hat{\rho}^+(x), \hat{\alpha}^+(x), \hat{\beta}^+(x) \), whereas the adjoint variables for the jump conditions (28) are defined as \(\hat{f}^+, \hat{g}^+, \hat{h}^+ \). More details can be found in [162]. Integration by parts of Green’s identity (62), yields the continuous adjoint equations

\[
\sigma_1 = \left(\frac{\langle \hat{q}^+, \delta P \hat{q} \rangle}{\langle \hat{q}^+, \frac{\partial N}{\partial \sigma_0} \hat{q} \rangle} \right),
\] (101)

which is a formula that is used in a number of studies in flow instability, some references of which are discussed in Sec. 1.2.1.

\[\frac{\partial \hat{\rho}^+}{\partial x} + \hat{u} \frac{\partial \hat{\rho}^+}{\partial x} = 0, \] (102a)

\[-\sigma^* \hat{\beta}^+ + \hat{u} \frac{\partial \hat{\beta}^+}{\partial x} = 0, \] (102b)

\[-\sigma^* \rho \hat{\alpha}^+ + \hat{\rho} \frac{\partial \hat{\alpha}^+}{\partial x} + \hat{\beta} \frac{\partial \hat{\alpha}^+}{\partial x} + \gamma P \frac{\partial \hat{\alpha}^+}{\partial x} = 0, \] (102c)

\[-\sigma^* \hat{\beta}^+ + \hat{u} \frac{\partial \hat{\beta}^+}{\partial x} + \hat{d} \frac{\partial \hat{\beta}^+}{\partial x} = 0, \] (102d)
the relationships between adjoint variables

\[\hat{\rho}^+ = \hat{\rho}_d^+ + \frac{1}{2} (\gamma - 1) \hat{u}_d^2 \hat{\rho}_a^+ + \frac{1}{2} (\gamma - 1) \hat{u}_a^2 \hat{\rho}_d^+ - \frac{1}{2} (\gamma - 1) \hat{u}_a \hat{\rho}_a^+ \times \left(\frac{\hat{\rho}_a^+}{\hat{\rho}_a} \right) \right] \left[\hat{\rho}^+ - \hat{\rho}_a^+ \right]_x = \left[\hat{\rho}_a^+ \right]_x, \tag{103a} \]

\[\hat{\rho}_d^+ = \hat{u}_d^+ \left(\hat{\rho}_d - \hat{\rho}_u \right) \gamma - 1 + \frac{1}{2} \hat{\rho}_u \hat{u}_d (\hat{u}_d - \hat{u}_u) \right] \hat{\rho}_d^+, \tag{103b} \]

and the adjoint jump conditions

\[\left[\hat{\rho}^+ - \hat{\rho}_d^+ + \frac{1}{2} (\gamma - 1) \hat{u}_d^2 \hat{\rho}_a^+ \right]_x = - (c_a^2 - \hat{c}_a^2) \hat{u}_a \gamma \left[\hat{\rho}_a^+ \right]_x, \tag{103c} \]

where

\[\hat{\rho}_d^+ = \hat{u}_d^+ \left(\hat{\rho}_d - \hat{\rho}_u \right) \gamma - 1 + \frac{1}{2} \hat{\rho}_u \hat{u}_d (\hat{u}_d - \hat{u}_u) \right] \hat{\rho}_d^+, \tag{103d} \]

\[\hat{q}_d^+ = \left(\hat{\rho} \hat{\rho}_a^+ - \hat{\rho}_a^+ \right) \gamma - 1 + \frac{1}{2} \hat{\rho}_u \hat{u}_d (\hat{u}_d - \hat{u}_u) \right] \hat{\rho}_d^+, \tag{103e} \]

\[\hat{q}_a^+ = \left(\hat{\rho} \hat{\rho}_a^+ - \hat{\rho}_a^+ \right) \gamma - 1 + \frac{1}{2} \hat{\rho}_u \hat{u}_d (\hat{u}_d - \hat{u}_u) \right] \hat{\rho}_d^+, \tag{103f} \]

\[\hat{\rho}_d^+ = \hat{u}_d^+ \left(\hat{\rho}_d - \hat{\rho}_u \right) \gamma - 1 + \frac{1}{2} \hat{\rho}_u \hat{u}_d (\hat{u}_d - \hat{u}_u) \right] \hat{\rho}_d^+, \tag{103g} \]

where \(\hat{\rho}_d^+ \) was modelled with an \(n - \tau \) model (Eqn. 51). The term \(\hat{\rho}_d^+ \) is the adjoin flame speed in the lab frame of reference. Physically, it provides the response of the thermoacoustic mode to harmonic forcing of the flame speed. The adjoint boundary conditions are defined such that the boundary terms are zero

\[\hat{\rho}^+ \hat{u}\hat{\rho} + \hat{\rho}^+ \hat{\rho} + \hat{u}^+ \hat{\rho} + \hat{\rho}^+ \hat{\rho} + \hat{\rho}^+ \hat{\rho} = 0. \tag{105} \]

As shown by Aguilar et al. [162], the set of adjoint partial differential equations is hyperbolic: Two adjoint acoustic waves propagate at speeds \(\hat{\varepsilon} + \hat{u} \) and \(\hat{\varepsilon} - \hat{u} \) and an adjoin entropy wave convects at the mean speed \(\hat{u} \). The flame and frequency-dependent boundary conditions make the system non-self-adjoint. Equation (105) provides the upstream adjoint reflection coefficient relationship at the inlet

\[R_u^+ = \frac{1}{R_u} \frac{1 - M_u}{1 + M_u}, \tag{106} \]

therefore the upstream adjoint boundary condition reads

\[G_u^+ = R_u^{-1} F_u^+ e^{-\sigma \tau_u}, \tag{107} \]

Owing to the acceleration through the choked end, the entropy wave generates an acoustic disturbance, whereas the downstream acoustic wave does not generate an entropy wave. In the adjoint problem, however, the outgoing adjoint acoustic wave at the choked end creates both a backward adjoint acoustic wave and a backward adjoint entropy wave. This is because the direct equations propagate quantities forward in time, while the adjoint equations propagate receptivities backwards in time. Equation (105) provides the reflection coefficient relationships at the outlet

\[R_d^+ = \frac{1}{R_d} \frac{1 + M_d}{1 - M_d}, \tag{108} \]

\[R_c^+ = \frac{1}{R_c} \frac{M_d}{2(M_d - 1)}, \tag{109} \]

Finally, with these expressions, the downstream adjoint boundary conditions are obtained

\[F_d^+ = R_d^{-1} G_d^+ e^{-\sigma \tau_d}, \tag{110} \]

\[A_d^+ = R_c^{-1} G_d^+ e^{-\sigma \tau_d}. \tag{111} \]

As explained in [162], the receptivity to the mass equation, used to compute the corresponding feedback mechanisms, is given by \(\hat{\rho}^+ (x) + \hat{c}^2 \hat{\rho}^+ (x) \). In the same reference, the discrete adjoint equations can be found.

4 Thermoacoustic models with multiple scales

A more general thermoacoustic stability model was proposed by multiple-scale analysis [161]. By multiple-scale analysis, it is possible to simulate the hydrodynamic field and consistently calculate the heat-release rate from the chemistry equations. The main assumption of this approach is that the flame is smaller (but not compact) with respect to the acoustic spatial scale. The reacting low-Mach number equations, which govern hydrodynamic phenomena, are coupled with the acoustic equations in a mathematically consistent manner by combining an asymptotic approach with a multiple-scale method. The two perturbation parameters are the hydrodynamic Mach number, \(M \sim O(\varepsilon) \), and the flame compactness, \(\hat{h} / \hat{L} \sim O(\varepsilon^m) \), where \(0 < \varepsilon \ll 1 \), and \(\hat{h} \) is the flame length or shear-layer thickness and \(\hat{L} \) is the combustor longitudinal dimension. The Mach number is the smallest perturbation parameter, hence \(0 \leq \varepsilon \leq 1 \). In most gas turbine chambers, acoustic phenomena evolve at scales that are different from those of hydrodynamic phenomena. This is because low-frequency thermoacoustic instabilities are expected to scale with the longitudinal length, \(\hat{L} \), whereas hydrodynamic instabilities are expected to scale with the flame length or shear-layer thickness, \(\hat{h} \). Observing that (i) hydrodynamic phenomena scale with the convective time, \(\hat{h} / \hat{u} \), and the flame length, \(\hat{h} \); (ii) acoustic phenomena scale with the acoustic time, \(\hat{L} / \hat{c} \), and combustor’s length, \(\hat{L} \), it follows that \(\tau_{hyd} / \tau_{ac} = \hat{M} \hat{L} / \hat{h} = \varepsilon^{-m} \). \(\tau_{hyd} \) is the hydrodynamic time, \(\tau_{ac} \) is the acoustic time \(x_{hyd} \) are the
hydrodynamic spatial coordinates, and and \(x_{ac} \) are acoustic spatial coordinates. High-frequency transverse instabilities are not considered in this multiple-scale analysis.

3D Acoustic equations

\[F_{ac \rightarrow hyd} \]

\[F_{hyd \rightarrow ac} \]

3D Low Mach number equations

\[\text{Chemistry equations} \]

\[\text{Hydrodynamics} \]

\[\text{Acoustics} \]

Fig. 6: Coupling between combusting hydrodynamics, governed by the low-Mach number equations, and acoustics. Depending on the multiple-scale limit, the coupling terms, \(F_{ac \rightarrow hyd} \) and \(F_{hyd \rightarrow ac} \), have different expressions (Tab. 2) [161].

To reduce the complexity and separate out hydrodynamic and acoustic phenomena from the original equations (3), the following procedure is carried out:

(i) Asymptotic expansion: The variables are expanded assuming a low-Mach number decomposition of the form \(\phi = \sum e^i \phi_i \), where \(\phi \) denotes a generic variable.

(ii) Differential operators decomposition: In the double-time-double-space approach (2T-2S), \(\phi(x,t) \rightarrow \phi(x_{hyd},x_{ac},t_{hyd},t_{ac}) \). By applying the chain rule, both the temporal and spatial derivatives are decomposed as \(\partial / \partial t \rightarrow \partial / \partial t_{hyd} + e^{1-m} \partial / \partial t_{ac} \), and \(\nabla \rightarrow \nabla_{hyd} + e^{m} \nabla_{ac} \). In the double-time-single-space approach (2T-1S), \(\phi(x,t) \rightarrow \phi(x_{hyd},t_{hyd}) \) and only the temporal derivative is decomposed as \(\partial / \partial t \rightarrow \partial / \partial t_{hyd} + e^{1-m} \partial / \partial t_{ac} \). In the single-time-double-space approach (1T-2S), \(\phi(x,t) \rightarrow \phi(x_{hyd},x_{ac},t) \) and only the spatial derivative is decomposed as \(\nabla \rightarrow \nabla_{hyd} + e^{m} \nabla_{ac} \).

(iii) Order-by-order matching: New equations are defined by collecting terms in order of \(e \).

(iv) Average-plus-fluctuation decomposition and equation averaging: In 2T-2S, the time decomposition \(\phi = \langle \phi \rangle_{ac} + \phi_{ac}' \), is substituted into the operator presented in (ii) and the equations are time averaged over the slow hydrodynamic time scale \(t_{hyd} \). The angle brackets \(\langle \cdot \rangle_{ac} \) represent the time average of the fast variable, \(t_{ac} \), the superscript ‘ represents the small fluctuation. Then, the variables are split as \(\phi = \langle \phi \rangle_{hyd} + \phi_{hyd}' \) and the equations are spatially averaged over the long acoustic spatial scale \(x_{ac} \). The angle brackets \(\langle \cdot \rangle_{hyd} \) represent the spatial average of the short spatial variable \(x_{hyd} \). In 2T-1S, only the time decomposition and averaging is applied. In 1T-2S, only the spatial decomposition and averaging is applied.

Regardless of the limit used, the above four steps lead to a nonlinearly coupled set of low-Mach number and acoustic equations, which are explained in Secs. 4.1-4.2.

4.1 Low-Mach number equations

Hydrodynamic phenomena are governed by the continuity, momentum, energy and mixture-fraction low-Mach number equations for constant pressure flames [192]

\[
\frac{\partial \rho}{\partial t_{hyd}} + \nabla_{hyd} \cdot (\rho \mathbf{u}_{hyd}) = 0, \quad (112)
\]

\[
\frac{\partial \mathbf{u}_{hyd}}{\partial t_{hyd}} + \mathbf{u} \cdot \nabla_{hyd} \mathbf{u}_{hyd} + \frac{1}{\gamma \rho_{hyd}} \nabla_{hyd} \rho - \frac{1}{S_{1} \text{Re}} \nabla_{hyd} \cdot F_{ac \rightarrow hyd} = 0, \quad (113)
\]

\[
\frac{\partial T}{\partial t_{hyd}} + \mathbf{u} \cdot \nabla_{hyd} T - \frac{1}{S_{1} \text{Re} \Pr} \Delta_{acy} T - DaQ_{R} = 0, \quad (114)
\]

\[
\frac{\partial Z}{\partial t_{hyd}} + \mathbf{u} \cdot \nabla_{hyd} Z - \frac{1}{S_{1} \text{Re} \Sc \rho} \Delta_{acy} Z = 0, \quad (115)
\]

where the spatial gradient \(\nabla_{hyd} \) acts on the hydrodynamic spatial scale, \(x_{hyd} \). \(Da \) is the Damköhler number, \(Sc \) is the Schmidt number, \(S_{1} \) is the oxidizer-to-fuel density ratio of the jet, \(Pr \) is the Prandtl number, and \(Q_{R} \) is the rate of heat released by reaction as nondimensionalized in [161]. The state equation is \(\rho = \gamma \rho_{0} \rho_{0}^{\gamma - 1} \rho_{0}^{-1} Z_{0}^{1} \) when the ratio between the adiabatic flame temperature and the ambient temperature. The state equation shows that the thermodynamic pressure is constant and equal to unity when nondimensionalized. This nonlinear problem can be conveniently expressed in matrix form as \(\mathbf{q}_{hyd} - \mathbf{H}(\mathbf{q}_{hyd}) = \mathbf{F}(\mathbf{q}_{ac \rightarrow hyd}) \), where \(\mathbf{q}_{hyd} = (\rho, \mathbf{u}, T, Z)^{T} \) is the vector of the hydrodynamic variables; \(\mathbf{q}_{ac \rightarrow hyd} = \mathbf{q}_{ac \rightarrow hyd} / \mathbf{q}_{ac \rightarrow hyd} \); \(\mathbf{q} = (\mathbf{q}_{hyd}, \mathbf{q}_{ac})^{T} \), with \(\mathbf{q}_{ac} \) being the vector of the acoustic variables (Sec. 4.2); and \(\mathbf{F}_{ac \rightarrow hyd} = (0, F_{ac \rightarrow hyd}, 0, 0)^{T} \) is the vector of forcing terms (Tab. 2). The hydrodynamic operator, \(\mathbf{H} \), is nonlinear because of the convective derivatives and reaction term.

4.2 Acoustics

The acoustic variables are governed by the continuity, momentum and energy equations

\[
\frac{\partial \mathbf{u}_{ac}^{'}}{\partial t_{ac}} + \nabla_{ac} \cdot (\rho \mathbf{u}_{ac}^{'}) = F_{ac \rightarrow hyd} - \mathbf{ac}_{con}, \quad (116)
\]

\[
\frac{\partial \mathbf{p}_{ac}^{'}}{\partial t_{ac}} + \frac{1}{\gamma} \mathbf{p}_{ac}^{' \cdot} \nabla_{ac} \mathbf{p}_{ac}^{' \cdot} = F_{ac \rightarrow hyd} - \mathbf{ac}_{mom}, \quad (117)
\]

\[
\frac{\partial \mathbf{p}_{ac}^{'}}{\partial t_{ac}} + \gamma \mathbf{u}_{ac}^{'} \cdot \nabla_{ac} \mathbf{u}_{ac}^{'} = F_{ac \rightarrow hyd} - \mathbf{ac}_{con}, \quad (118)
\]
where the spatial gradient ∇_{ac} acts on the acoustic spatial scale, x_{ac}. The variables are nondimensionalized as in [161]. This problem can be expressed as $\mathbf{q}_{ac} - \mathbf{Aq}_{ac} = \mathbf{F}(\mathbf{q})_{hyd \rightarrow ac}$, where $\mathbf{q}_{ac} = (\rho'_{ac}, u'_{ac}, p'_{ac})^T$ is the vector of the acoustic variables; $\mathbf{q}_{ac} = \delta \mathbf{u}_{ac} / \delta \mathbf{ac}$; and $\mathbf{F}_{hyd \rightarrow ac} = \mathbf{F}_{hyd \rightarrow ac, con}$, $\mathbf{F}_{hyd \rightarrow ac, mom}$, $\mathbf{F}_{hyd \rightarrow ac, con}$, is the vector of forcing terms. The acoustic operator, \mathbf{A}, is linear. The nonlinearities are contained in the forcing term. State and mixture fraction equations (not shown) are required for the calculation of the heatrelease terms in 2T-1S and 1T-2S (Sec. 4.3).

The acoustics dissipates mainly by radiation from the combustor’s open boundaries and slightly in the viscous-thermal boundary layer. Nonlinear damping effects, such as vortex roll-up at sharp changes to the cross-sectional area, are not included in the current study because this study focuses on the stability of infinitesimal perturbations. In this asymptotic analysis, acoustic dissipation in the viscous-thermal boundary layer is neglected because of its being of higher order. Physically, the acoustic viscous terms are negligible because (i) when the acoustic time is faster than the hydrodynamic time, the acoustic Reynolds number is very large and (ii) when the acoustic scale is longer than the hydrodynamics, the boundary layer scale is negligible. However, near the wall, these terms may be important and need modelling. Therefore, the viscous-thermal acoustic dissipation is modelled as a sink term in the acoustic energy equation proportional to p'_{ac}, in a similar manner to [280]. The acoustic radiation should be modelled by impedance boundary conditions, which makes the final eigenproblem nonlinear in the eigenvalue (Sec. 3.1.2).

4.3 Two-way coupling terms

The terms coupling the hydrodynamics to the acoustics depend on the multiple-scale limit considered (Tab. 2). Here, comments are made on the terms that are most relevant to thermoacoustics. On the one hand, the hydrodynamics is an acoustic energy source through the spatially averaged dilation of the flow in the 2T-2S limit, which acts as a dipole-like source. This tends to the classic unsteady heat release in the 2T-1S and 1T-2S limits, which acts as a monopole-like source (second to last row in Tab. 2). Physically, the unsteady heat release only partly contributes to the acoustic energy input in the 2T-2S limit. (The unsteady heat release is calculated by using the acoustic density, temperature and mixture-fraction equations.) On the other hand, the acoustics forces the hydrodynamic momentum via the nonlinear term $-1/\rho \nabla_{hyd} \cdot (\mathbf{p}_{ac} \otimes \mathbf{u}_{ac})_{ac}$ in the double space limits (2T-2S and 1T-2S, last row in Tab. 2). This term is known as the acoustic Reynolds stress [281], which, as opposed to the turbulent Reynolds stress, does not require closure because it is obtained from the acoustic solver. In the 1T-2S limit, the hydrodynamic momentum is forced through the acoustic pressure gradient that imposes a global acceleration.

In compact form, the coupled thermoacoustic problem (Fig. 6), governed by (112)-(118), reads

$$\mathbf{q} - \mathbf{T}(\mathbf{q}) = \mathbf{F},$$

(119)

where $\mathbf{T}(\mathbf{q})$ is the nonlinear thermoacoustic operator, and $\mathbf{F} = (\mathbf{F}_{ac \rightarrow hyd}, \mathbf{F}_{hyd \rightarrow ac})^T$.

4.3.1 Linearization

The linearization of the multiple-scale thermoacoustic model requires extra comments [161]. The hydrodynamic variables are assumed $\sim O(1)$ and the acoustic variables $\sim O(\varepsilon)$. Physically, the acoustics is regarded as a perturbation field on top of the hydrodynamic flow. Different multi-scale limits spawn different linear behaviours. The hydrodynamic variables are split as $\mathbf{q}_{hyd} = \mathbf{q}_{hyd} + \varepsilon \mathbf{q}_{hyd,1}$, where $\mathbf{q}_{hyd} \sim O(1)$ is the steady mean flow calculated from numerical simulations or experiments and $\mathbf{q}_{hyd,1}$ is the low-frequency large-scale coherent hydrodynamic structure. Therefore, the perturbation hydrodynamic vector, $\mathbf{q}_{hyd,1}$, and acoustic vector, \mathbf{q}_{ac}, are of the same order ε but act at different scales. When linearized, the thermoacoustic problem can be expressed in compact form as $\mathbf{q} = \mathbf{Lq}$, where

$$\mathbf{L} = \begin{bmatrix} \delta \mathbf{H} & \delta \mathbf{F}_{ac \rightarrow hyd} \\ \delta \mathbf{F}_{hyd \rightarrow ac} & \mathbf{A} + \delta \mathbf{F}_{hyd \rightarrow ac} \end{bmatrix}.$$

(120)

The Jacobian operator is the functional derivative of the thermoacoustic operator that is evaluated at the base flow \mathbf{q}_{hyd}. In the double-time limits, 2T-2S and 2T-1S, the linearized acoustic Reynolds stress, which is the term coupling the acoustics to the hydrodynamics, is neglected because of higher order. The linear dynamics are only one-way coupled because the coupling term $\delta \mathbf{F}_{ac \rightarrow hyd} = O(\varepsilon^2)$ is negligible in (120). This is because, when there are two time scales (the acoustic time being faster than the convective time), the acoustics are driven by the hydrodynamics but do not affect it. Physically, the influence of the acoustics averages to zero over the long time scale of the hydrodynamics. This is equivalent to one of the mechanisms described by Lieuwen [187] in which, if one considers perturbations convecting at uniform speed along a long flame such that there are many oscillations along the flame, most of the heat release perturbations cancel out, causing the flame to behave as a low pass filter. From this two-scale argument, a thermoacoustic instability is more likely to exist when the time scales are the same. In a classic picture of a thermoacoustic instability, the two time scales are indeed the same [282]. In fact, when only one time scale is modelled, as in 1T-2S, the thermoacoustic system is two-way linearly coupled because $\delta \mathbf{F}_{ac \rightarrow hyd} = O(\varepsilon)$, i.e., there is a non-trivial interaction between hydrodynamic and thermoacoustic stability. By using modal transformations, the resulting direct thermoacoustic eigenproblem is linear and reads

$$\sigma \mathbf{q} = \mathbf{Lq},$$

(121)
Table 2: Terms coupling hydrodynamics to acoustics, hyd → ac, and acoustics to hydrodynamics, ac → hyd. These terms depend on the multiple-scale limit: Double-time-double-space (2T-2S), double-time-single-space (2T-1S) and single-time-double-space (1T-2S). In 2T-1S $s_{hyd} = x_{ac}$, in 1T-2S $s_{hyd} = t_{ac}$. The numbers in the subscripts of Q_{R0} and Q_{R1} refer to the orders of the heat-release asymptotic expansion. Adapted from [161].

4.4 Discrete adjoint

The numerical discretization of (121) was performed by a finite element method [161], which is particularly convenient to calculate the adjoint system because the Jacobian is numerically available. The adjoint problem is obtained by translating the complex-conjugate transpose of (121)

$$
\sigma^{*} \hat{q}^{*} = L^H \hat{q}^{+}.
$$

(122)

Intrinsic sensitivity. The intrinsic sensitivity framework introduced in Sec. 3.3.5 is able to calculate the effect that a perturbation onto a subsystem has on the stability of the coupled system. The eigenvalue drift for an intrinsic perturbation $\varepsilon \Gamma$ reads

$$
\sigma_1 = \varepsilon \frac{\left[\hat{q}^{++}_{hyd}, \hat{q}^{++}_{ac} \right] \begin{bmatrix} \text{Hyd.} & \text{Ac.} \rightarrow \text{Hyd.} \\ \text{Hyd.} \rightarrow \text{Ac.} & \text{Ac.} \end{bmatrix} \left[\hat{q}_{hyd}, \hat{q}_{ac} \right]}{\langle \hat{q}^{+}, \hat{q}^{+} \rangle},
$$

(123)

where the mathematical expressions of the boxed subsystems are provided in (120). For example, the exact first order change of the thermoacoustic stability due to a perturbation applied to the acoustic subsystem that affects the hydrodynamic subsystem is $\sigma_1 = \varepsilon \frac{\partial \hat{q}^{++}_{hyd}}{\partial \hat{q}^{++}_{ac}} \frac{\langle \hat{q}^{+}, \hat{q}^{+} \rangle}{\langle \hat{q}^{+}, \hat{q}^{+} \rangle}$. As shown in [49], the physical cause of an intrinsic perturbation originates from weakly nonlinear interactions, which are listed in [283]. The small change induced by the nonlinear interactions is regarded as a local change in the underlying operator, which, at first approximation, is assumed proportional to the operator itself.

5 The thermoacoustic spectrum

The calculation of how eigenvalues change due to perturbations is the main subject of this review. It is, thus, important to gain insight on how the thermoacoustic spectrum changes with respect to the two key thermoacoustic parameters: The flame gain and time delay.

The configuration under investigation is a ducted flame [9] with a closed end at the inlet ($\partial \hat{p} / \partial x = 0$) and an open end at the outlet (Dirichlet $\hat{p} = 0$). The flame is placed at $x_f = 0.6$. As reported in [175], and rigorously shown in [284] with nondimensional analysis, the physical, qualitative behaviour of the spectrum (Fig. 7) is general for longitudinal configurations. The computations were performed with a quasi-one dimensional Helmholtz solver. For the operating point and other parameters the reader may refer to Tab. 3 of [175].

The first acoustic mode is a quarter-wave mode of the duct with nondimensional angular frequency of $\omega_{0, \tau=0} = 1$. Figure 7 shows the results of the parametric study by varying the flame gain as $n = [0 \rightarrow 1]$, and nondimensional time delay as $\tau = [0 \rightarrow 1]$. A spiral-like structure and curvilinear trajectories are observed. The centre of the star is the acoustic mode. Once n is increased from zero, the eigenvalues depart from the acoustic mode. These trajectories rotate counter clock-wise for increments of τ. Some trajectories protrude to the unstable semi-plane when the flame gain is greater than a critical value.

Extreme sensitivity. The marginal trajectories connected to the acoustic mode and defined by $0.32 < \tau < 0.33$ change directions suddenly (from left to right when increasing τ) after a critical value $\tau = 0.325$. Such a behaviour is a signature of extreme sensitivity of thermoacoustics: Physically, a small increment in the time delay may drastically change the stability of the combustor.

Intrinsic thermoacoustic modes (ITA). Figure 7 shows quasi-vertical trajectories, whose growth rate for small values of n is very negative and increases with n. The resonance angular frequency tends to $2\pi \cdot j/(2\tau)$ (with $j = 1, 3, 5, \cdots$) and the growth rate to $-\infty$ when n approaches zero [193]. The angular frequency corresponds to ITA resonance frequencies [9, 10], therefore these trajectories are labelled as ITA trajectories (in agreement with [285]). As shown in [175], the crossing from the unstable to the stable semi-plane of the trajectories is a function of only the time delay.

Exceptional points. As thoroughly explained in [247], the set of parameters and the relevant eigenvalue at which intrinsic and acoustic modes cross each other are an exceptional point: The eigenvalue is a branch-point solution of the characteristic function. The eigenvalue at this exceptional
point is two-fold defective, has infinite sensitivity to first-order perturbations and the behaviour in its neighbourhood can be described by a Puiseux series (see footnote 34).

6 Applications of SRS analysis without uncertainty

The philosophy of stability, receptivity and sensitivity (SRS) analysis of eigenvalues is summarized in Fig. 8. In Fig. 8a, the large black circles represent the unperturbed eigenvalues. The flame modes are stable, whereas the acoustic modes protrude toward the unstable semi-plane because of the thermoacoustic coupling. Together with the calculation of the corresponding eigenfunctions, this is the outcome of stability analysis. The smaller red circles represent the adjoint eigenvalues, which are the complex conjugate of the direct problem. The calculation of the corresponding adjoint eigenfunctions is the outcome of receptivity analysis. In Fig. 8b, the eigenvalues sightly change due to a small perturbation to the system. The calculation of this change, in particular of the dominant eigenvalue(s) (Fig. 8c), is the outcome of sensitivity analysis. Stability, receptivity and sensitivity analyses are presented and interpreted in this paper for different thermoacoustic problems and different perturbations. The exact calculation of the sensitivities to design parameters; external passive devices; and intrinsic perturbations (Sec.3.3) are presented in the following sections.

6.1 Direct and adjoint eigenfunctions

This section explains the physical meaning of the direct and adjoint eigenfunctions of open-ended duct acoustics with the heat release modelled by (i) an \(n - \tau \) response model, (ii) a diffusion flame and (iii) a premixed flame. The mean-flow Mach number is zero. The direct and adjoint mode shapes are shown in Fig. 9. The eigenfunction is the natural shape with which the system oscillates around the perturbed base state. To maximize observability, a sensor should be placed where the amplitude of the direct mode shape is larger. The adjoint eigenfunction is the receptivity to initial conditions or forcing to excite the corresponding eigenfunction. To maximize controllability, an actuator should be placed where the amplitude of the adjoint mode shape is larger.

First, the top row of Fig. 9 shows the acoustic velocity and pressure eigenfunctions, \(\hat{u} \) and \(\hat{p} \), respectively, which are modelled with an \(n - \tau \) model for the flame. The pressure is continuous, yet not smooth, at the flame’s location, whereas the velocity undergoes a discontinuity (Fig. 9a). This is because of the jump conditions (28), which physically represent the volume dilation due to the heat released by the flame. Moreover, open ends are modelled as Dirichlet boundary conditions for \(\hat{p} \), which become Neumann boundary conditions for \(\hat{u} \), as seen from the momentum equation (19c) for a zero mean flow. The adjoint pressure, \(\hat{p}^+ \), is the Lagrange multiplier of the energy equation, therefore it is the receptivity to energy sources, such as heat inputs. It inherits the discontinuity at the heat source location from \(\hat{u} \) and the boundary conditions from \(\hat{\rho} \). The adjoint velocity, \(\hat{u}^+ \), is the Lagrange multiplier of the momentum equation, therefore it is the receptivity to momentum sources, such as forces. The adjoint velocity is continuous, yet not smooth, at the flame’s location.

Figure 9b, the eigenfunctions of the mixture fraction of a ducted diffusion flame are shown. The corresponding acoustic variables are similar to Fig. 9a, therefore they are not shown. The mixture fraction eigenfunction has a wavy pattern, which is typical of fluid dynamic phenomena that are governed by convection-diffusion processes. The white line is the steady-flame position that corresponds to the stoichiometric line. The adjoint mixture fraction has high magnitude around the flame. This is because species injection affects the heat release only if it changes the gradient of \(\hat{Z} \) at the flame itself, which is achieved by injecting species around the flame. Its magnitude increases towards the tip of the flame.

Fig. 7: Locus of eigenvalues as the flame parameters are varied as \(n = [0 \rightarrow 1] \) and \(\tau = [0 \rightarrow 1] \) with increments of 0.05. Adapted from [175].
6.1 Helmholtz resonators

When the unsteady heat released by the flame is zero, the direct pressure is identical to the adjoint pressure, and the velocity is identical to the adjoint velocity (not shown), i.e. the acoustic system is self-adjoint. When the heat released by the flame is not zero, the direct and adjoint eigenfunctions are different from each other, i.e. the thermoacoustic system is non self-adjoint. Non-self-adjointness may have an important consequence on the optimal placement of Helmholtz resonators, which are passive devices used in industry to suppress thermoacoustic instabilities [286–292]. Importantly, Helmholtz resonators are typically placed where $\hat{p}\hat{p}^*$ is maximal (see half-wave resonators, e.g., [289, 293]). For an open-ended tube, this condition occurs at the centre of the tube. However, in a system that it is not self-adjoint, this is not exactly the linearly optimal location because, albeit the pressure is maximum around the centre of the tube, the system is more receptive before the flame’s location. Therefore, the best location to place the Helmholtz resonator is where the amplitude of $\hat{p}\hat{p}^*$ is maximum, which, in this case, is slightly upstream of the centre of the tube (Fig. 9a).

6.2 Sensitivity to design parameters

The direct and adjoint eigenfunctions of the open-ended duct of Sec. 6.1 are combined to obtain the sensitivity of the most unstable eigenvalue to small changes to some design parameters (Sec. 3.3), where the heat release is modelled by (i) an $n − \tau$ flame response, (ii) a diffusion flame and (iii) a premixed flame.

First, the case of the $n − \tau$ model is considered. The sensitivities are depicted in Fig. 10a as functions of the flame position. Any small increase from -1 in the reflection coefficients, R_d and R_f, makes the system more stable because less acoustic energy is reflected back into the tube. The sensitivity to the interaction index, n, has the smallest amplitude and shows that a second heat source in the second half of the duct will stabilize the system. However, the sensitivity to the time delay, τ, has a great impact on the eigenvalue drift. An increase in the time delay destabilizes the system if the flame is located in the first half of the duct before ≈ 0.4 [162].

Second, in Fig. 10b, the sensitivities of a ducted diffusion flame are shown as functions of the stoichiometric mixture fraction, Z_{stoi}, and the ratio between the fuel slot and the diameter of the duct, α. When Z_{stoi} and α are perturbed, \bar{Z} changes, which, in turn, changes the steady flame shape, hence the phase between the acoustic pressure and the heat release. The flame length increases as Z_{stoi} increases and as α decreases [158]. The sensitivities depend strongly on Z_{stoi} and α but are similar at similar values of the flame length.

Third, the eigenvalue sensitivities to the aspect ratio and acoustic location of a ducted premixed flame are shown in Fig. 10c. For fixed mean-flow velocity and disturbance phase velocity, the time delay in a premixed flame is proportional to the flame length. In this case, the sensitivity is discontinuous across the white lines, where, as shown by [160], the second eigenvalue becomes unstable (or vice versa).

These maps accurately quantify the first-order change

Fig. 8: (a) Spectrum and complex conjugate adjoint spectrum of a ducted flame (here a diffusion flame as an example). (b) Perturbed eigenvalues (small magenta squares) due to a small perturbation to the system. (c) The calculation of the eigenvalue shift is provided by sensitivity analysis.

Finally, a ducted premixed case is considered in Fig. 9c [160]. The flame wrinkling is provided by the flame front eigenfunction, f, where the dashed line is the steady conical solution. The adjoint flame front can be used to calculate the sensitivities, as explained in Sec. 6.2. However, the physical interpretation of the adjoint flame front in terms of receptivity is difficult because the flame front is a kinematic quantity with the G-equation model.
in the thermoacoustic stability due to changes of the design parameters. This information can be used for the design of stable combustors to prevent instabilities from occurring. If the technologist wishes to suppress an existing instability, Sec. 6.3 shows how to implement adjoint techniques for passive control with external devices.

6.2.1 Experimental validation

Rigas et al. [155] carried out experiments to validate some of the sensitivities obtained by adjoint-based analysis. They set up an open-ended vertical Rijke tube with a main electrical heater, which consisted of a gauze of wires placed at a quarter from the inlet. When the electrical power was larger than the damping, the first acoustic mode became unstable. The system exhibited hysteresis as the main power was increased/decreased (subcritical bifurcation). A second mesh of wires was used as a passive drag device with no power input. This device was attached to an automated height gauge at the top of the tube, which enabled it to be transversed with high accuracy. The raw pressure signal was sampled at high frequency with a condenser-type microphone. To obtain the growth rates and frequencies after the insertion of the drag device, the main heater power was set just below that of the Hopf point, i.e., where the system is linearly marginally stable. The system was then increased to the critical power with a step function. On the one hand, the growth rate was calculated as the slope of the logarithmic linear region of the absolute value of the Hilbert-transformed signal. On the other hand, the frequency was calculated as the mean of the time derivative of the phase in the logarithmic region of the absolute value of the Hilbert-transformed signal.
Fig. 10: Growth-rate (left column) and angular-frequency (right column) sensitivity. Top row: Sensitivities to the upstream (downstream) reflection coefficients, R_u (R_d), the flame index, n and time delay, τ, of a ducted generic flame for different positions of the flame’s location (adapted from [162] with permission from Elsevier). Middle row: Sensitivities to the design parameters α (fuel-to-air port ratio) and Z_{sto} of a ducted diffusion flame with the steady-flame length contours superimposed (values from 4 to 2 from bottom to top) (adapted from [158] with permission). Bottom row: Sensitivities to the flame aspect ratio and flame location of a ducted premixed flame. The maxima are marked by white lines, the minima are marked by black lines (Left: Reprinted with permission from Elsevier [160], Right: Data is courtesy of A. Orchini).

Mic linear region of the Hilbert-transformed signal. To measure the decay rate the main heater power was initially set just above the fold point, i.e., the first operating point in the hysteresis region at which the system has both a fixed point and a limit-cycle solution. The power was then decreased as a step function; the growth rate and frequency were measured as before. The sensitivity was calculated by finite difference between the experiments with/without drag device.

Figure 11 shows the experimental growth-rate sensitivities (circles) and the corresponding predictions from adjoint-based sensitivity analysis (black line), which are normalized by their inlet value for a better comparison. The prediction is in favourable agreement with the experimental data. The discrepancy towards the outlet is expected to be due to wall heat-transfer and boundary conditions, which were not modelled. In general, the predictions from sensitivity analysis are as good as the physical model adopted. Discrepancies with experimental data is due to the working assumptions made for the thermoacoustic model, not adjoint analysis. The experimental frequency drift was compared in [156, 294] with the predictions from adjoint sensitivity analysis. They found that adjoint-based frequency sensitivity was not satisfactorily in agreement with the experimental shift. This was due to the fact that the experiment had more complex physics than that captured by the model, for example, strong mean flow temperature gradients were present in the experiment.
but not in the model. This can be explained by observing that the eigenvalue is, at a first approximation, a function of the main-heater power, \(P \), the velocity at the drag device location, \(x_c \), and the mean-flow temperature, i.e.,

\[
\sigma = \sigma(P, \bar{U}(x_c), \bar{T}(x_c)).
\]

Interestingly, the mean-flow temperature is a function of the position of the drag device, \(x_c \), because after insertion of it the flow slows down and the heat transfer decreases, accordingly. Therefore, the temperature and the velocity are dependent variables, i.e., \(\bar{T} = \bar{T}(\bar{U}(x_c)) \). The total derivative of the eigenvalue with respect to a variation of the velocity caused by the drag device reads

\[
\left. \frac{d\sigma}{d\bar{U}} \right|_{x_c} = \frac{\partial \sigma}{\partial \bar{U}} + \frac{\partial \sigma}{\partial \bar{T}} \frac{d\bar{T}}{d\bar{U}}.
\]

Jamieson et al. [156, 157, 294] experimentally measured the total derivative (left-hand side of (125)) and compared it with the sensitivity \(\frac{\partial \sigma}{\partial \bar{U}} \) from adjoint-based sensitivity analysis [153] (the analysis of [153] was improved to include base-flow velocity perturbations by Aguilar [295]). The remaining term, \(\frac{\partial \sigma}{\partial \bar{T}} \frac{d\bar{T}}{d\bar{U}} \), is a leading-order cause of the discrepancy, which is large because differences in the mean-flow temperature markedly affect the acoustic natural frequency but not the growth rate [158, 198].

6.3 Sensitivity to passive devices

The case of a choked duct, which is relevant to aeronautical propulsion, with a premixed flame modelled by an \(n - \tau \) model is considered. This case is particularly relevant to aero-engines, where the nozzle guide vane downstream of the combustor’s exit is (nearly) sonic [296]. The inlet is an ideal open end, and the outlet choked condition is provided by Marble and Candel [214].

In a choked combustor the mean flow cannot be neglected because the outlet is sonic, therefore the acoustic density is one of the state variables (Fig. 12c). In the region upstream of the flame, the density (Fig. 12c) shows a similar behaviour to the pressure, which is scaled by \(1/c_w^2 \). However, downstream of the flame, the density contains the influence of both acoustic and entropy waves through Gibbs’ relation (26). Small entropy inhomogeneities appear in the downstream region because the acoustic fluctuations change the temperature upstream, while the mean heat release is constant in this model [212]. The entropy spots are accelerated through the nozzle and converted into indirect acoustic waves. With a moving flame front, the indirect acoustic wave is only \(\lesssim 0.6\% \) the incoming acoustic wave, but with the flame front at rest (\(u_s = 0 \)) the indirect acoustic wave is \(\approx 21\% \) the incoming acoustic wave. Therefore, the flame at rest produces louder indirect noise than the moving flame front.

As for the system’s receptivity, there exist adjoint entropy waves upstream and downstream of the flame in the Lagrange multipliers of both the energy equation (\(\beta^+ \) in Fig. 12b) and the continuity equation (\(\beta^+ \) in Fig. 12c). To produce a change in the generation of entropy waves through the unsteady flame speed, the energy equation should be forced upstream of the flame, as intuitively expected. Forcing the energy equation after the flame changes the intensity with which the entropy waves interact with the choked end.

By combining the direct and adjoint eigenfunctions, the sensitivities to external passive control devices are calcu-
Fig. 13: Sensitivity to passive devices in a choked combustor that generate feedback from pressure, velocity and density to the continuity, momentum and energy equation. Thick lines from discrete adjoint calculations, thin lines from continuous adjoint calculations, symbols from finite difference (benchmark solution). Dark (black and red) lines and circles for growth-rate sensitivity, light (blue and cyan) lines and squares for angular-frequency sensitivity. Adapted from [162] with permission from Elsevier.

Fig. 14: Sensitivity to feedback
from \(\rho \) to \(\rho \)
from \(\dot{\rho} \) to \(\dot{\rho} \)
from \(\dot{\rho} \) to \(\dot{\rho} \)
from \(\rho \) to \(\rho \)
from \(\dot{\rho} \) to \(\dot{\rho} \)
from \(\rho \) to \(\rho \)

6.4 Sensitivity to intrinsic physical mechanisms
A three-dimensional diffusion-flame dump combustor is modelled with the multiple-scale method of Sec. 4. The discretization is performed by a finite-element method with Taylor-Hood elements on an unstructured grid [161]. The nondimensional mean-flow temperature is shown in Fig. 14a. The intrinsic sensitivity (Sec. 3.3.5) is calculated. This enables the identification of the regions of the flow where the
hydrodynamic and acoustic subsystems are active and quantify how they affect the overall thermoacoustic stability.

When two-way coupled, the low-Mach number flow and acoustics become unstable. The angular frequency is close to the acoustic frequency; the instability is driven by acoustic effects because the unstable mode is primarily acoustic. In this stability framework, the hydrodynamics is simulated and two-way interacts with the acoustics (Secs. 3.3.5).

First, the spatial function

\[Re(\sigma_1) = Re(\hat{q}_{hyd}^H L_{12} \hat{q}_{ac}) \]

is analysed in the top panel of Fig. 14b, where \(L_{12} \) is the coupling operator from the acoustics to the hydrodynamics (top-right component of matrix (120)) through the acoustic pressure gradient (bottom-right term in Tab. 2). This formula quantifies how much a unit perturbation to the acoustic vector \(L_{12} \hat{q}_{ac} \) changes the thermoacoustic eigenvalue of the coupled system through the receptivity of the hydrodynamic physical process, \(\hat{q}_{hyd}^H \). The highest sensitivity straddles the recirculation region at the top left corner. Physically, the acoustics are acting as extra feedback momentum sources, enhancing the hydrodynamic sensitivity, which is, indeed, often close to the recirculation boundary [134]. Changes in the strength of the coupling from the acoustics to the hydrodynamics here will have the most influence on this mode, i.e., the mode is very sensitive to the coupling in this region. However, this is only one component of the intrinsic sensitivity and the coupling from acoustics to hydrodynamics is not the dominant mechanism. The maximum growth rate drift is \(Re(\sigma_1) \sim O(10^{-4}) \).

Secondly, the spatial function

\[Re(\sigma_1) = Re(\hat{q}_{ac}^H L_{21} \hat{q}_{hyd}) \]

is analysed in the bottom panel of Fig. 14b, where \(L_{21} \) is the coupling term from the hydrodynamics to the acoustics (bottom-left component of matrix (120)). This formula quantifies how much a unit perturbation to the hydrodynamic field \(L_{21} \hat{q}_{hyd} \) changes the thermoacoustic eigenvalue of the coupled system through the receptivity of the acoustic physical process, \(\hat{q}_{ac}^H \). The maximum value is \(Re(\sigma_1) \sim O(10^{-2}) \). The region of high sensitivity straddles the stoichiometric line, where most of the heat is released by the flame. This physically shows the most active physical mechanisms of instability: A small change in the coupling from hydrodynamics to acoustics causes a larger stability drift than a small change in the coupling from the acoustics to the hydrodynamics. In other words, small changes of the strength of the hydrodynamic feedback (i.e., coupling) greatly change the flame response to acoustic perturbations which, in turn, have significant influence on the thermoacoustic stability. In the limit of classic one-way coupled thermoacoustic models, this result is consistent with the diffusion-flame structural sensitivity and Rayleigh Index analysis of [158].

7 Applications of SRS analysis under uncertainty

In the previous section, SRS analysis was performed by assuming that the operating condition was exactly known. However, practical systems are affected by uncertainties in the operating conditions and parameters. It is paramount to quickly and accurately calculate the probability that a thermoacoustic system is unstable given uncertainties in the model parameters. The methods presented in this section enable the calculation of how uncertain values of the flame parameters, \(n \) and \(\tau \), affect the thermal eigenvalue. Adjoint methods will be exploited to calculate the eigenvalue drift with respect to random perturbations.

7.1 Forward uncertainty quantification

The input of the forward uncertainty quantification problem\(^{37}\) is the probability density function (PDF) of the model parameters (prior). The least biased PDF should be chosen\(^{38}\), i.e., the PDF that maximizes the information entropy. Jaynes [300] provides practical criteria for choosing the appropriate PDF. For example, when min/max values of the uncertain parameters are assumed to be known, the uniform distribution is the least biased PDF. Two different approaches are described. In the first approach (Sec. 7.2), the PDF of the growth rate is estimated by Markov-Chain-Monte-Carlo

\(^{37}\) For inverse uncertainty quantification and data assimilation the reader may refer to recent works in thermoacoustics and reacting flows [298, 299].

\(^{38}\) However, the PDF is often practically imposed by an educated guess originating from past experience.
(MCMC) sampling (or simply, Monte Carlo sampling) [278].

The probability that the mode is unstable is therefore provided by the measure of the portion of the growth-rate PDF in the unstable semi-plane. This is pictorially shown by the intersection of the shaded unstable semi-plane and the PDF of the eigenvalue in Fig. 15b, which, mathematically reads \[\mathcal{P}(Re(\sigma) > 0) = \int_0^\infty PDF\{Re(\sigma)\}dRe(\sigma). \] (128)

The second approach (Sec. 7.3) is based on the calculation of the stability margin in the parameters' space, i.e., the locus of parameters such that the system is marginally stable, i.e., \(Re(\sigma(n, \tau)) = 0 \), which is calculated by expanding the eigenvalue using adjoint perturbation theory (Sec. 3.3). The probability that the mode is unstable is the measure of the intersection between the PDF of the parameters and the stability margin. The side to choose is the unstable one. This corresponds to the shaded area in Fig. 15a, labelled \(E_u \) in the following definition

\[\mathcal{P}(Re(\sigma) > 0) = \int_{E_u} PDF\{\mathbf{p}\}d\mathbf{p}, \] (129)

where \(\mathbf{p} \) is the vector of parameters, which, here, are \(n \) and \(\tau \). If another PDF of the parameters is chosen, the probability that the mode is unstable can be straightforwardly calculated from (129), which makes this method versatile and computationally cheap.

7.2 Adjoint-based Monte-Carlo methods

This method is applied to the 19-burner annular combustor described in [163, 221]. First, different standard deviations to the uniform distributions of the flame parameters are imposed to calculate the probabilities that the mode is unstable. The results are shown in Tab. 3. When the standard deviations are smaller than 2.5%, the first-order adjoint method provides accurate predictions, although it becomes less accurate for larger deviations. However, the second-order adjoint method provides accurate predictions of the probability up to standard deviations of 10%, matching satisfactorily the benchmark solution by costly finite-difference methods (MC). Fig. 16a shows the scattering of the eigenvalues via Monte Carlo simulations (dark black circles), second-order adjoint method (light blue circles) and surrogate algebraic models obtained by the active subspace method \(^{40} \) (white-circles) [163, 278, 301]. The scatterings are obtained by imposing a uniform probability distribution between \(\pm 0.1n, \pm 0.1\tau \), which represents the uncertainties of the flame parameters (last row of Tab. 3). The PDFs of the perturbed growth rates are depicted in Fig. 16b. The PDF shape is satisfactorily estimated by the second-order adjoint method.

40This method, as applied to uncertainty quantification with adjoints, is explained in [163]. The directions in the parameters space along which the eigenvalue changes the most are calculated by singular value decomposition of the covariance matrix, which is calculated by MCMC integration. These directions are used to algebraically approximate the response surface, i.e. how the eigenvalue changes with the parameters, with nonlinear regression.

\[39\] This quantity is sometimes referred to as the risk factor [278].

\[40\] This method, as applied to uncertainty quantification with adjoints, is explained in [163]. The directions in the parameters space along which the eigenvalue changes the most are calculated by singular value decomposition of the covariance matrix, which is calculated by MCMC integration. These directions are used to algebraically approximate the response surface, i.e. how the eigenvalue changes with the parameters, with nonlinear regression.
Fig. 16: (a) Scattering of the eigenvalues calculated by standard Monte Carlo method (dark-black circles), Monte Carlo method with adjoint equations (light-blue circles) and Monte Carlo method with a surrogate algebraic model with adjoint equations (white circles). The unperturbed eigenvalue is denoted by a white square. (b) Estimates of the PDFs as histograms of the growth rates of panel (a). Units are dimensional as in the original paper [163], to which the reader is referred for more details.

7.3 Monte-Carlo free methods

This method is demonstrated for the turbulent swirled combustor designed and built at EM2C laboratory [302,303]. A three-dimensional Helmholtz solver is employed [167].

This axisymmetric combustor (Fig. 17a) consists of a cylindrical plenum, a convergent duct with a swirler, and a cylindrical combustion chamber. A mixture of methane and air is injected upstream of the plenum. The operating condition ‘B’ of [303] is considered in this study. More details can be found in [304] (configuration C03), who estimated the acoustic damping for accurate stability calculations. The flame transfer function gain, $|\text{FTF}|$, and phase, $\phi \equiv \angle \text{FTF}$, (see Sec. 2.3), are affected by experimental uncertainties, $\Delta |\text{FTF}|$ and $\Delta \phi$. The uncertain flame transfer function, thus, reads

$$\text{FTF}(\omega, \Delta |\text{FTF}|, \Delta \phi) = \frac{\text{FTF}(\omega) \exp(i\phi(\omega))(1 + \Delta |\text{FTF}|) \exp(i\Delta \phi).}{\text{FTF}_{\text{measured}}(\omega)} \quad (130)$$

Note the $\Delta |\text{FTF}|$ is defined as a relative measurement error while $\Delta \phi$ is considered an absolute measurement error. The flame gain and phase are extracted from the measured flame describing function of flame B in [304] with the smallest forcing amplitude. For the eigenvalue to be expanded in power series, the flame transfer function has to be differentiable with respect to its parameters. Therefore, the data has been fit by a rational function [167]. The thermoacoustic system is unstable with the corresponding eigenfunction shown in Fig. 17b. A relative error for the gain of $\Delta |\text{FTF}| = \pm 10\%$

Fig. 17: (a) Turbulent swirled combustor under investigation [302]. (b) Thermoacoustic eigenfunction calculated with a Helmholtz solver. (c) Stability margins calculated by first-order and second-order adjoint methods with no Monte Carlo sampling. The white line is calculated by Monte Carlo sampling for reference. The rectangular represents the uniform PDF of the flame transfer functions parameters. The shaded area is the set of parameters corresponding to positive growth rates. Adapted from [164,167].
8 Applications of SRS analysis to optimization

Adjoint-based sensitivity analysis (Sec. 3.3) provides the gradient of the eigenvalue with respect to all the thermoacoustic parameters. The gradient information can be embedded in an optimization routine to find the local extremum of a cost functional. Two examples of stabilization of thermoacoustic instabilities via optimization are presented. In the first example, the instability is suppressed by passive devices (Helmholtz resonators, which are acoustic dampers), which are optimally placed and tuned in the combustor [172]. In the second example, the instability is suppressed by modifying the shape of the combustor [173]. Both examples are applied to annular combustors.

8.1 Optimal placement and tuning of acoustic dampers

A two-step optimization algorithm for the optimal placement and tuning of dampers in annular combustion chambers was proposed by [172]. The optimization algorithm was applied to a simplified two-dimensional rotationally symmetric annular combustor with twelve burner-flame sectors (a simplified model of the annular combustor of [200]). The optimization algorithm had two steps:

- Placement of the acoustic dampers. The effect that the placement of several dampers has on the stability is accurately calculated for different possible configurations by using multi-parameter perturbation theory (Sec. 3.3). As summarized in Figure 18, the placement of dampers in sectors 1, 5, and 9 provides strongest stabilization considering both the first and second order azimuthal modes. This is in agreement with the positioning rule [305], i.e. the optimal arrangement of dampers is achieved by evenly distributing them within a sector spanning half the circumferential wavelength of the considered mode (and rotating any of these dampers by half of this wavelength has no effect);

- Tuning of acoustic damper coefficients. This is achieved by an iterative gradient-based method. In each iteration step, first the optimal direction in parameter space to tune the dampers is estimated by the multi-parameter perturbation theory. Once the direction is found, the problem is reduced to a single-parameter perturbation to compute the step size to be taken in that direction with second-order perturbations. The stabilization of the annular combustor was achieved after 45 iterations.

8.2 Shape optimization

The authors of [173] stabilized a thermoacoustic annular configuration by optimizing the geometry of the sectors of the combustor by a wave approach (Sec. 2.2.3) combined with a flame response model (Sec. 2.3). First, they calculated the adjoint-based sensitivity of the unstable modes to small changes in the geometry, whose shape was parametrized.

Secondly, the gradient information was embedded in an optimization routine based on a steepest descent method. The cost functional to minimize was defined as the sum of the growth rates in a given frequency range. Figure 19 shows the application of shape optimization to a sector of annular combustor. It was found that only small changes in the areas are required to stabilize the longitudinal mode, with wave number \(n = 0 \), and the azimuthal unstable modes, with wave number \(n \neq 0 \). Physically, the optimization procedure modifies the configuration such that the pressure fluctuations are sufficiently out of phase with respect to the heat released by the flame, so that the Rayleigh criterion (Eqn. 2) becomes negative.

9 Combining Bloch theory with adjoints: The inclination rule in annular combustors

In annular combustors with discrete rotational symmetry, the eigenfunctions can be represented as Bloch waves [168,169], for example, the acoustic pressure eigenfunctions read

\[
\hat{\rho} = \exp(ib\phi)\psi_b(\phi),
\]

(131)

where \(\phi \) is the azimuthal coordinate, \(b \) is the Bloch wavenumber and \(\psi_b(\phi) \) is a periodic function of the azimuthal coordinate, i.e. \(\psi_b(\phi) = \psi_b(\phi + \frac{2\pi}{N}) \), where \(N \) denotes the degree of rotational symmetry of the unperturbed annular combustor. In the MICCA combustor, \(N = 16 \). By
Fig. 19: (a) The black (dashed) line denotes the original unstable annular combustor (a cross section of a sector is shown). The red (solid) line shows the optimized combustor. (b) Eigenvalue trajectories from the original unstable configuration (black squares) to the stabilized configuration (red circles). n indicates the wave number of the mode. Adapted from [173]. Units are dimensional as in the original paper, to which the reader may refer for details.

Using a basis of Bloch waves, it can be shown that the auxiliary matrix Y in Eqn. (88) is equal to the identity matrix. When the same perturbation, ϵ, is applied to any number of burners, the operator derivative in sector n is either identical in all perturbed burners, or $N_{0,1} = 0$ in the unperturbed burners. It can be shown that due to Bloch periodicity, the matrix that defines the auxiliary eigenproblem of the semi-simple eigenvalue in Eqn. (88) reads [171]

\[
X_1 = \langle \hat{p}^+(0), N_{0,1}\hat{p}(0) \rangle_{(0)} \sum_{n \in \text{per}} \left[\frac{1}{\exp(i2bn\frac{2\pi}{N})} \exp(i2bn\frac{2\pi}{N}) \right] \chi
\]

where (0) represents a reference sector. Matrix χ is Hermitian, therefore its eigenvalues are real. Therefore, regardless the number of the perturbed burners, the phase of $\langle \hat{p}^+(0), N_{0,1}\hat{p}(0) \rangle_{(0)}$ is the same as that of the eigenvalues of X_1 (modulo phase shift of π if the eigenvalues of χ are negative). The matrix χ depends on the distribution pattern of the perturbed burners only, and it can be argued that the Bloch wavenumber b is equivalent to the azimuthal mode order. Hence, $\sum_{n \in \text{per}} \exp(i2bn\frac{2\pi}{N})$ is the second coefficient of the Fourier transform of the burner arrangement pattern. Such a first-order splitting theory has analogies with the C_{2n}-criterion of [273, 274] and the weakly nonlinear analysis of [277].

The above rationale can be generalized to predict the first-order eigenvalue drift for different perturbations of the burners. An interesting case is obtained when two separate sets of burners are perturbed in different ways such that the average FTF perturbation is zero. For these perturbations, it can be proven that the eigenvalue splits in opposite directions, which is numerically demonstrated in the MICCA combustor [202, 219] solved by a Helmholtz solver (Sec. 2.2.3). The eigenvalue trajectories are shown in Fig. 20 for increasing values of the perturbation parameter. Despite the variation of the eigenvalues being nonlinear, the first-order theory predicts the two degenerate eigenvalues to split precisely in opposite directions. It is therefore impossible to make a certain combustor more stable by applying this type of perturbation: If the growth rate of one of the split eigenvalues is decreased, as a consequence, the growth rate of the other split eigenvalue is increased.

10 Weakly nonlinear analysis

Just after the Hopf bifurcation, in the linearly unstable region, oscillations grow in amplitude and saturate at low (large) amplitudes in super-(sub-)critical bifurcations. Generally, it is of interest to (i) identify if the Hopf bifurcation is super- or sub-critical; and (ii) estimate the amplitude of the oscillations in the vicinity of the Hopf bifurcation. Weakly nonlinear analysis is a method to achieve objectives (i) and (ii) without performing fully nonlinear simulations. (Eigenvalue analysis of a fixed point can only identify when the Hopf bifurcation occurs.) Weakly nonlinear analysis is a method based on an asymptotic expansion of the governing equations with respect to a perturbation parameter in the vicinity of a marginally stable point. The weakly nonlinear analysis of fluid systems of [106] was applied and extended by [181] in thermoacoustics to analyse the subcritical bifurcation of a ducted heat source. By weakly nonlinear analysis, the dynamics of the perturbed states are calculated by (i) applying a slow-manifold reduction with the method of multiple scale (or, equivalently, the method of averaging); (ii) expanding the equations at the desired order; (iii) projecting the equations onto the marginally stable adjoint eigenfunction. The temporal evolution of the amplitude and frequency of the oscillation, which are generally obtained by solving a nonlinear PDE, are reduced to the Stuart-Landau equation [182, 183], which is a first order ODE. Adjoint methods play a crucial role at step (iii) of the above procedure, where the set of inhomogeneous linear equations that stem from the perturbation expansion is solved by solvability conditions. This way, the Landau coefficients, which govern the amplitude evolution, are uniquely determined. In a ducted heat source, Orchini et al. [181] showed that at least a fifth order expansion is necessary to satisfactorily predict the amplitude in the bi-stable region of a subcritical thermoacoustic bifur-
Fig. 20: (a) Pressure eigenfunction of the first plenum-dominant azimuthal mode of the MICCA combustor computed with a Helmholtz solver. (b) Symmetry breaking perturbation pattern under consideration. The FTF of the burners with the same colours is perturbed by the same amount. The orange colour represents positive perturbations, whereas the white colour represents negative perturbations. The average perturbation to the FTF is zero. (c) Eigenvalue trajectories due to the symmetry breaking perturbation pattern (b). The star denotes the two-fold semi-simple (degenerate) eigenvalue; different colours indicate the eigenvalue splitting due to the symmetry breaking perturbation; cross and plus symbols denote calculations from adjoint analysis; and black lines/symbols denote the exact solution. Third-order adjoint analysis favourably captures the actual eigenvalue splitting. For the inclination rule, it is not possible to stabilize an annular combustor (at first order) by applying an azimuthal perturbation with zero average. The units are physical for a better comparison with the experimental data of [202, 219]. Adapted from [171].

Fig. 21: Weakly nonlinear analysis at third order (black thick line), fifth order (red line) and numerical continuation of the fully nonlinear equations (circles). Solid and dashed lines indicate stable and unstable solutions, respectively. (a) Bifurcation diagram of the amplitude of the oscillations at the resonant frequency. (b) Frequency shift of the oscillations with respect to the marginally stable frequency. Adapted from [181] with permission.

11 Sensitivity of limit cycles: Adjoint Floquet analysis

The calculation of the stability of limit cycles is provided by Floquet analysis, which is a form of eigenvalue analysis on the linearized Poincaré map. An adjoint-based method to calculate the first order sensitivity of the stability and the period of a limit cycle is proposed.

The nonlinear thermoacoustic problem is cast in compact form as a dynamical system

\[\frac{dq}{dt} = Lq + \mathcal{N}(q), \]

(133)

where \(q \) is the state vector, \(L \) is the linear part of the equations, and \(\mathcal{N}(q) \) is the nonlinearity. Let \(\tilde{Q} \) be a \(\tau \)-periodic solution of (133), such that \(\tilde{Q}(t + \tau) = \tilde{Q}(t) \). Robust numerical procedures to compute limit cycles in high dimensional systems can be found in [307–309], among others. The objective is to investigate the stability of the periodic solution, \(\tilde{Q}(t) \), by calculating the evolution of small perturbations on the periodic attractor. The state vector is expanded as \(q(t) = \tilde{Q}(t) + \epsilon y(t) \), where \(\epsilon \ll 1 \) is the arbitrary perturbation parameter and \(y(t) \) is the time-dependent perturbation. From Floquet theorem [168], the time dependent perturba-
tion can be expressed as

\[y(t) = \hat{y}(t) \exp(\sigma_F t), \quad (134) \]

where \(\hat{y}(t+T) = \hat{y}(t) \), and \(\sigma_F \in \mathbb{C} \) is the Floquet exponent\(^\text{41}\). On introducing the normalized temporal variable \(\tilde{t} = t/T \) to avoid secular effects, the linearized problem around the periodic solution, \(\hat{Q} \), reads

\[\frac{1}{T} \frac{d\hat{y}}{d\tilde{t}} + \sigma_F \hat{y} = L\hat{y} + J\hat{y}, \quad (135) \]

where \(J = \partial N / \partial Q \) calculated at \(\hat{Q} \) is the (now time-dependent, periodic) Jacobian. To define the discrete adjoint operator, a temporal inner product is defined

\[\langle a, b \rangle \equiv \int_0^1 a^\dagger b \, d\tilde{t} \quad (136) \]

where \(a \) and \(b \) are generic vectors. By applying a similar procedure as described in Sec. 3.3, the adjoint Floquet problem, which is denoted by \(^* \), is derived and reads

\[\frac{1}{T} \frac{d\hat{y}^*}{d\tilde{t}} - \sigma_F^* \hat{y}^* = L^H\hat{y}^* + J^H\hat{y}^*, \quad (137) \]

where \(^* \) denotes the complex conjugate.

11.2 Floquet-exponent sensitivity

A generic perturbation, \(\varepsilon \delta H \), is imposed to the unperturbed equations (133) such that the perturbed periodic solution\(^\text{42}\) is governed by

\[\frac{1}{T} \frac{dQ}{d\tilde{t}} = \dot{Q} + \mathcal{N}(Q) + \varepsilon \delta H. \quad (138) \]

By considering a sufficiently small perturbation, \(\varepsilon \delta H \), the periodic variables are linearized as \(Q = Q + \varepsilon \delta Q \) and the period as \(T = T + \varepsilon \delta T \). The evolution of the first-order perturbation of the base flow is governed by

\[\frac{1}{T} \frac{d\delta Q}{d\tilde{t}} - L\delta Q - J\delta Q = \delta T \frac{dQ}{dT} + \delta H. \quad (139) \]

The Floquet pair is linearized as \(\hat{\delta y} = \hat{\delta y} + \varepsilon \delta \hat{y} \) and \(\sigma_F = \hat{\sigma}_F + \varepsilon \delta \sigma_F \). The perturbed Floquet equation becomes

\[\frac{1}{T} \frac{d\hat{\delta y}}{d\tilde{t}} - \delta T \frac{d\hat{\delta y}}{dT} + \hat{\delta y} + \delta \sigma_F \hat{\delta y} = L\delta \hat{y} + J\delta \hat{y} + \left(\frac{\partial J}{\partial Q} \right) \hat{\delta y} + \delta \hat{H}, \quad (140) \]

where \(\delta \hat{H} \) is a generic small perturbation that acts only on the Floquet dynamics. To isolate \(\delta \sigma_F \), which is the quantity that needs to be determined in sensitivity analysis, the adjoint base-flow is invoked. Its governing equation reads\(^\text{43}\)

\[\frac{1}{T} \frac{dQ^+}{d\tilde{t}} + Q^+ H + Q^+ J + t^H(\hat{\delta} y^+, \hat{\delta} y) = 0, \quad (141) \]

where \(f(\hat{\delta} y^+, \hat{\delta} y) \) is a sesquilinear operator defined such that \(\langle \hat{\delta} y^+, \left(\frac{\partial J}{\partial Q} \right) \hat{\delta} y \rangle = \langle \hat{\delta} y^+, \hat{\delta} y \rangle \). The adjoint initial conditions are defined as \(\hat{\delta} y^+(0) = 0 \) and \(\hat{Q}^+(0) = 0 \). (Both adjoint variables are 1-periodic with respect to the normalized time \(\tilde{t} \).) Finally, the first-order drift of the Floquet exponent is expressed as

\[\delta \sigma_F = \langle \hat{\delta} y^+, \hat{\delta} y \rangle = \langle \hat{\delta} y^+, \hat{\delta} y \rangle + \langle \hat{\delta} y^+, \hat{\delta} y \rangle + \delta \hat{H} \rangle, \quad (142) \]

where the terms with \(\delta T \) are related to the base-flow sensitivity, whereas the term with \(\delta \hat{H} \) is related to the sensitivity of the Floquet exponents for a frozen base flow. \(\delta T \) can be calculated by the Fredholm alternative, which provides a solvability condition as explained in the next section.

11.3 Period sensitivity

The governing equation of the base-flow perturbation (139) is a linear inhomogeneous differential equation, which has a solution if the Fredholm alternative is satisfied, i.e., the right-hand side must be orthogonal to the kernel of the homogeneous adjoint equation. The homogeneous adjoint equation is provided by (141) by setting \(f(\hat{\delta} y^+, \hat{\delta} y) = 0 \). The adjoint base-flow solution therefore is a linear combination of a particular solution, \(\rho \), and the homogeneous solution, \(h \), \(Q^+ = \rho + Q^h \). The Fredholm alternative provides the first-order drift in the period due to a small perturbation \(\delta H \) such that Eqn. (139) is fulfilled. This is mathematically achieved by projecting Eqn. (140) onto \(Q^h \), i.e.

\[\langle Q^h, \delta T \frac{dQ}{dT} + \delta H \rangle = 0, \]

which implies

\[\delta T \frac{dQ}{dT} = -\frac{\langle Q^h, \delta H \rangle}{\langle Q^h, \frac{dQ}{dT} \rangle}. \quad (143) \]

When \(\delta T \) is substituted back into (142), the Floquet-exponent drift is calculated with respect to any linear perturbation \(\delta H \) and \(\delta \hat{H} \). Note that if the base flow is unperturbed, i.e. \(\delta H = 0 \), then \(\delta T = 0 \). Equation (142) is the general equation for the first-order (non-degenerate) Floquet-exponent drift due to linear perturbations acting on a periodic attractor both at base-flow and linearized levels.

\(^{41}\)\(\hat{\mu} = \exp(\sigma_F \dot{\tilde{t}}) \) is the Floquet multiplier. The Floquet exponents are non-unique because \(\exp(\sigma_F \dot{\tilde{t}}) = \exp(\sigma_F \tilde{t} + 2\pi in) \), where \(n \) is an integer, whereas the Floquet multipliers \(\mu \) are unique.

\(^{42}\)It is assumed the perturbed periodic solution is still periodic, i.e., it does not bifurcate to another solution.

\(^{43}\)The equation can be derived by defining a Lagrangian that constrains the base flow equations and perturbation Floquet equations. The derivation is left out for brevity.
12 Conclusions

One of the objectives of gas turbine manufacturers is to design linearly stable thermoacoustic systems and make them operate in safe operating conditions. Thermoacoustic systems have many parameters but the quantities of interest, for example the unstable modes, are usually only very few. Calculating how the stability changes because of perturbations or modifications to the system is one of the central problems in thermoacoustics. First, it is shown that adjoint methods are accurate and versatile design tools for thermoacoustics and, in general, multi-physical problems. The appeal of adjoint techniques applied to thermoacoustics is that, in very few calculations, one can predict accurately how the growth rate and frequency of thermoacoustic oscillations are affected either by all possible passive control elements in the system, or by all possible changes to its design parameters. The versatility of adjoint methods is shown by tackling a great variety of problems, which are often encountered in industrial applications, such as longitudinal and annular combustors modelled with flame responses and reduced-order models for the flame dynamics. Adjoint methods can be applied to most of the solution methodologies in thermoacoustics: Helmholtz solvers, wave approaches, Galerkin methods and multiple-scale methods.

Secondly, the concept of intrinsic sensitivity is shown to reveal physical insight in the active physical mechanism in thermoacoustics. The method was applied to a dump combustor, the mean flow of which was calculated by large eddy simulation. The intrinsic sensitivity shows that the hydrodynamics greatly influences the overall thermoacoustic stability’s sensitivity straddling the flame, which means that the active physical mechanism is due to the Rayleigh criterion. Intrinsic sensitivity is a general framework, which can be applied to problems where different physical phenomena are at play.

Thirdly, it is shown that model and parameter uncertainties can greatly affect the stability calculations. This review recommends evaluating the uncertainty of stability calculations to estimate the confidence, or degree of belief, in our calculations. The probability that combustors are unstable given uncertainties in the flame transfer functions are calculated by two adjoint methods. The first is an adjoint Monte-Carlo method, which is applied to an annular combustor and a turbulent swirl dump combustor. By implementing the adjoint code, the number of nonlinear eigenproblems solved is reduced by a factor equal to the number of Monte Carlo samples which, in this case, is 10,000. The second method is Monte-Carlo free, which is applied to a longitudinal combustor. Adjoint methods enable the calculation of the stability margin, with which it is possible to evaluate the uncertainty on the stability for free.

Fourthly, Bloch wave theory can reduce the number of computations in rotationally symmetric annular combustors by a factor equal to the number of sectors. An application of adjoint methods combined with Bloch wave theory is reviewed to determine the effect of symmetry-breaking perturbations in an annular combustor (in this case the MICCA combustor). Because of the inclination rule, which is analytically derived, it is not possible to stabilize an annular combustor (at first order) by applying a perturbation to the annulus with zero mean.

Fifthly, the gradient information is embedded in optimization routines to find (i) the optimal placement of acoustic dampers to stabilize an unstable annular combustor, and (ii) the optimal area and length dimensions to design a stable sector of an annular combustor. Key to the gradient-based optimization process is the implementation of the adjoint code, which provides the gradient of the quantity of interest, i.e. the eigenvalue, with respect to the quantities that the technologist wishes to change.

Finally, moving onward from linear analysis, adjoint equations are deployed to predict the amplitude of a limit cycle by weakly nonlinear analysis. An adjoint Floquet method is proposed to calculate the sensitivity of nonlinear periodic solutions.

The application of adjoint methods to industrial configurations can make a step change in the way that design is performed. The tools are ready for eigenvalue and linear analysis, however adjoint equations have great potential in other applications in thermoacoustics and reacting flows (Sec. 12.1).

12.1 Current and future directions

- Modelling. To fully take advantage of the versatility and robustness of adjoint methods, it is important to remind that the results from adjoint analysis are as good as the physical model. Indeed, the accuracy of the eigenvalue drifts predicted by the adjoint-based sensitivity framework depends strongly on the accuracy of the thermoacoustic models adopted. Effort to develop accurate thermoacoustic models should, of course, be continued, for example, to include sprays, evaporation and imperfectly premixed flames of real aero-engines.

- Nonlinearity and unsteadiness. Thermoacoustic systems can be highly nonlinear and display periodic, quasi-periodic and chaotic oscillations. Most, but not all, techniques reviewed in this paper are applied to eigenvalue sensitivity of fixed points. The proposed theoretical framework (adjoint Floquet analysis) can be used to calculate the sensitivity of periodic orbits to predict the effect of external passive devices or design parameters, accordingly. Floquet analysis will be necessary in subcritical bifurcations, where the thermoacoustic system may have self-sustained large oscillations despite the eigenvalue being stable. When oscillations become chaotic, adjoint methods become notoriously unstable because of the butterfly effect. Methods to stabilize the calculation of adjoint systems in chaotic oscillations are in constant development. Covariant Lyapunov analysis [310] and shadowing methods with automatic differentiation [252] offer potential ways to tackle chaotic thermoacoustic systems.

- Physics-informed data driven methods. Because thermoacoustic systems are extremely sensitive to pertubations, the time accurate prediction of their nonlinear evo-
olution is challenging. To improve the accuracy of design tools, such as reduced-order models, algorithms from Bayesian inference and machine learning [298] can be used to (i) optimally calibrate an uncertain model on the fly, given data from sensors or flame images; (ii) identify deficiencies in the model; (iii) assimilate data from experiments to improve the state estimation to capture extreme events, such as sudden bifurcations or the occurrence of instabilities. Adjoint methods enable the calculation of the above by statistically constrained optimization [299]. In particular, ad-hoc experimental campaigns should be run to provide machine learning and data assimilation algorithms with training data, such as flame images, pressure from sensors, etc.

- **Industrial applications.** Because adjoint-based techniques are versatile, they can be implemented in industrial design tools by creating the adjoint of a thermoacoustic code. The effort of implementing the adjoint code pays off because manufacturers will be able, among others, to (i) compute the optimal passive change of the system’s parameters and boundary conditions given an operating condition; (ii) find the optimal set of operating conditions to make the system work in the stable regime given some constraints, such as the geometry (constrained optimization); or calculate the optimal passive feedback mechanism in an elaborate thermoacoustic network and position to suppress a thermoacoustic oscillation; and (iii) evaluate the uncertainty of design tools to better inform the design decision process. Furthermore, adjoint methods can help identify the optimal location where to place a sensor and actuator in active feedback control [205, 210, 311]. The sensor should be placed where the direct eigenfunction has largest magnitude, the actuator should be placed where the adjoint eigenfunction is greatest. New strategies through fuel injection can be devised utilizing the adjoint flame field.

Adjoint methods help design safer, quieter and cleaner combustors both for power generation and propulsion.

Acknowledgements

The author wholeheartedly thanks J. P. Moeck, J. Aguilar, A. Orchini, G. Mensah, A. Bottaro, G. Ghirardo, V. Citro, C. F. Silva and A. Giusti for painstakingly reading, and commenting on, a draft of this manuscript. Comments from G. Rigas and discussions with M. P. Juniper are gratefully acknowledged. The author is thankful to J. M. Foale for proofreading a draft of this manuscript. The author gratefully acknowledges support from the Royal Academy of Engineering Research Fellowships and the visiting fellowship of the Technical University of Munich – Institute for Advanced Study, funded by the German Excellence Initiative and the European Union Seventh Framework Programme under grant agreement n. 291763. Part of the results shown in this review were sponsored by the European Research Council through project ALORS 2590620. Data kindly provided by colleagues is acknowledged in the relevant figure captions.

References

[15] Emmert, T., Bomberg, S., Jaensch, S., and Polifke, W.,

[201] Camporeale, S. M., Bari, P., David, R., Bottaro, A., Campa, G., Camporeale, S. M., Guas, A., Favier, J., Bargiacchi, M., Bottaro, A., Cosatto, E., and Mori,

chianics. Blackie & Son Limited.

A Local Smith form of nonlinear eigenproblems

Matrix $N(\sigma)$ can be decomposed around an eigenvalue σ_0 in local Smith form as

$$P(\sigma)N(\sigma)Q(\sigma) = D(\sigma),$$ \hfill (144)
where P and Q are invertible analytic matrix functions, and D is an analytic diagonal matrix of the form

$$D(\sigma) = \begin{bmatrix} (\sigma - \sigma_0)^{m_1} & \cdots & (\sigma - \sigma_0)^{m_g} \\ \vdots & \ddots & \vdots \\ (\sigma - \sigma_0)^{m_g} & \ddots & I \\ 0 \cdots 0 \\ \end{bmatrix},$$

(145)

where $d = N - \text{rank}(N(\sigma))$, with N being the dimension of the vector space. Matrix D is the local Smith form of N at σ_0; m_1, \ldots, m_g are the partial multiplicities; the number of partial multiplicities is the geometric multiplicity, g, and $\sum_{i=1}^g m_i$ is the algebraic multiplicity. An eigenvalue is semi-simple if $m_i = 1$ with $i = 1, \ldots, g$, which becomes simple if $g = 1$. Otherwise the eigenvalue is defective. The j-th column of Q is the eigenvector associated with the j-th diagonal element of D, the root of which is the eigenvalue. The local Smith decomposition generalizes the modal decomposition for defective NEPs.

B More on adjoint equations

Some extra remarks on adjoint equations are described for the reader who wishes to delve more into the matter.

B.1 Adjoint equations of nonlinear time-dependent systems

This review paper is mostly focused on frequency-based approaches. For completeness, the adjoint equations of a generic nonlinear dynamical system are derived and discussed. Let $x \in \mathbb{R}^N$ be the state vector (e.g., fluid variables at grid points or nodes, etc.); $p \in \mathbb{R}^M$ be the parameters’ vector (e.g., boundary shape, Reynolds number, Flame Transfer Functions, geometric parameters, etc.); and $J(x, p)$ be the cost functional such that $J : \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}$. The state vector is the solution of a system of partial differential equations with relevant initial and boundary conditions. The spatial derivatives are numerically discretized and encapsulated in the operator F. The time is continuous. In so doing, the dynamical system is governed by a set of ordinary differential equations, which can be cast as

$$F(x, x, p, t) = 0, \quad (146)$$

$$g(x(0), p) = 0, \quad (147)$$

where F is a nonlinear implicit operator that depends on the parameters p, and g is a nonlinear function that sets the initial conditions.

The objective of sensitivity analysis is to calculate the gradient of the quantity of interest, J, with respect to the parameters

$$\frac{dJ(x, p)}{dp} = \frac{\partial J}{\partial p} + \frac{\partial J}{\partial x} \frac{dx}{dp}$$

(148)

A Lagrangian functional is defined

$$\mathcal{L} = J(x, p) - \langle q^+, F(x, x, p, t) \rangle - \mu^T g(x(0), p), \quad (149)$$

where $q^+ \in \mathbb{R}^N$ and $\mu \in \mathbb{R}^N$ are the as-yet-unknown Lagrangian multipliers; $x \equiv \frac{dx}{dt}$; and

$$\langle a, b \rangle \equiv \frac{1}{T} \int_0^T a^T b \, dr \quad (150)$$

is an inner product, where a and b are arbitrary vectors in \mathbb{R}^N. Although not necessary (further simplifications follow in the next sections), the cost functional is considered in the form of a time average over $[0, T]$

$$J(x, p) = \frac{1}{T} \int_0^T J(x, p) \, dr. \quad (151)$$

Because of the constraints (146)-(147), it follows that

$$\frac{dL}{dp} = \frac{dJ}{dp}. \quad (152)$$

Therefore, the total derivative of the Lagrangian reads

$$\frac{dL}{dp} = \frac{1}{T} \int_0^T \left(\frac{\partial J}{\partial p} + \frac{\partial J}{\partial x} \frac{dx}{dp} \right) \, dr + \frac{1}{T} \int_0^T q^+ \left(\frac{\partial F}{\partial p} + \frac{\partial F}{\partial x} \frac{dx}{dp} + \frac{\partial F}{\partial x} \frac{dx}{dp} \right) \, dr +$$

$$- \mu^T \left(\frac{\partial g}{\partial p} + \frac{\partial g}{\partial x} \frac{dx(0)}{dp} \right), \quad (153)$$

which, after some re-arrangement and integration by parts, reads

$$\frac{dL}{dp} = \frac{1}{T} \int_0^T \frac{\partial J}{\partial p} \, dr +$$

$$- \frac{1}{T} \int_0^T \left(- \frac{\partial J}{\partial x} + q^+ \frac{\partial F}{\partial x} - \frac{q^+}{dr} \frac{d}{dr} \left(f^+ \frac{\partial F}{\partial x} \right) \right) \, dx \, dr +$$

$$- \frac{1}{T} \int_0^T q^+ \frac{\partial F}{\partial p} \, dr - \mu^T \left(\frac{\partial g}{\partial p} + \frac{\partial g}{\partial x} \frac{dx(0)}{dp} \right). \quad (154)$$

54
The objective is to calculate the gradient information \(\frac{d\mathcal{L}}{dp} \) without calculating \(\frac{dx}{dp} \) for any \(t \in [0, T] \). By defining the following conditions

\[
q^+T(0) = 0,
\]
(155)
\[
\mu^T = \frac{1}{T} q^+T(0) \frac{\partial F}{\partial x} \bigg|_0 \left. \left(\frac{\partial g}{\partial x(0)} \right) \right]^{-1},
\]
(156)
\[
\frac{\partial \tilde{\mathcal{J}}}{\partial x} = q^+T \frac{\partial F}{\partial x} - q^+T \frac{d}{dt} \left(\frac{\partial F}{\partial x} \right) - \frac{dq^+}{dt} \frac{\partial F}{\partial x}.
\]
(157)

the sensitivity of the quantity of interest can be calculated from (154) as

\[
\frac{d\mathcal{L}}{dp} = \frac{d\mathcal{J}}{dp} = \frac{1}{T} \int_0^T \left(\frac{\partial \tilde{\mathcal{J}}}{\partial p} - q^+T \frac{\partial F}{\partial p} \right) dt + \frac{1}{T} q^+T(0) \frac{\partial F}{\partial x} \bigg|_0 \left. \left(\frac{\partial g}{\partial x(0)} \right) \right]^{-1} \frac{\partial g}{\partial p}.
\]
(158)

B.1.1 Simplifications

In many cases, the nonlinear dynamical system is explicit

\[
\mathcal{F}(x, x, p, t) = \dot{x} - \mathcal{F}(x, p, t),
\]
(159)

and initial conditions of the form of

\[
g(x(0), p) = x(0) - x_0 = 0.
\]
(160)

The adjoint system simplifies to

\[
q^+T(0) = 0,
\]
(161)
\[
\mu^T = \frac{1}{T} q^+T(0),
\]
(162)
\[
\frac{\partial \tilde{\mathcal{J}}}{\partial x} = -q^+T \frac{\partial F}{\partial x} - \frac{dq^+}{dt}.
\]
(163)

If the quantity of interest is not an integral quantity but is a function evaluated only at the end of a time window, \(T \), i.e. \(\mathcal{J} = \mathcal{J}(x(T), p) \), the adjoint system further simplifies to

\[
q^+T(T) = \frac{\partial \mathcal{J}}{\partial x(T)},
\]
(164)
\[
\mu^T = \frac{1}{T} q^+T(0),
\]
(165)
\[
0 = q^+T \frac{\partial F}{\partial x} + \frac{dq^+}{dt}.
\]
(166)

The adjoint equation (166) becomes homogeneous and the gradient of the quantity of interest becomes the initial condition for the adjoint equations. Finally, if the parameters of interest are the initial conditions \(p = x_0 \), then (158) simplifies to

\[
\frac{d\mathcal{L}}{dx_0} = \frac{d\mathcal{J}}{dx_0} = \frac{\partial \mathcal{J}(T)}{\partial x_0} = \frac{1}{T} q^+T(0).
\]
(167)

A necessary condition for optimality is that the Lagrangian is stationary with respect to first-order perturbations, i.e. \(\frac{d\mathcal{L}}{dx_0} = 0 \).

B.2 More remarks on adjoint equations

- **Labels.** In functional analysis and linear algebra, adjoint operators are also known as dual or back projection operators;

- **Adjoint models are anti-causal.** In the time domain, the adjoint system is anti-causal because it evolves backward in time. This is because the initial condition is prescribed at the end of the integration, \(t = T \) (e.g., Eqn. (164)), i.e. the adjoint variables carry information on the sensitivity of an output to inputs. Adjoint equations are always linear by definition, i.e. they are dual to the tangent equation. They are defined with respect to the Jacobian of the direct system, which, in nonlinear systems, depends on the direct solution (which can be stored or check-pointed to save storage). In the frequency domain, the anti-causality of the adjoint equations results in a modal transformation with opposite sign, i.e. \(q(x, t) = \tilde{q}(x) \exp(\sigma t) \) and \(q^+(x, t) = \tilde{q}^+(x) \exp(-\sigma^t) \).

- **Adjoint codes are reverse differentiation codes.** The adjoint code can be regarded as a case of differentiation algorithms in reverse mode. Some example of direct/adjoint algorithms are: Truncation/zero padding, matrix multiplication/conjugate-transpose matrix multiplication, derivative/negative derivative, convolution/cross-correlation;

- **Adjoint solutions are Lagrange multipliers.** In constrained optimization, the adjoint solutions are the Lagrange multipliers of the governing equations in the constrained functional (Eqn. (149)). Thus, the adjoint variables provide the gradient of the quantity of interest, or cost functional, with respect to the variables of the system. The gradient information can be combined with gradient-based optimization algorithms (e.g., steepest descent/ascent, conjugate gradient, etc.);

- **Adjoint models are not physical models per se.** Although adjoint solutions have a physical interpretation as Lagrange multipliers in constrained optimization, adjoint equations can be defined without any cost functional: Only a bilinear form is required (and, of course, the identification of the correct spaces in the continuous approach). When working in complex spaces, instead of a bilinear form a sesquilinear form

\[\text{\footnote{Sometimes referred to as the terminal condition.}}\]
that defines an inner product is commonly used45. Therefore, adjoint equations do depend on the definition of the bilinear/ sesquilinear form, which means that an adjoint model is not a physical model per se46. See Sec. 3.2 for more details;

- **Adjoint solutions enforce solvability conditions.** In linear algebra, for an inhomogeneous non-invertible linear system to have a solution, the known vector has to be orthogonal to the solution of the homogeneous adjoint system (solvability condition, or compatibility condition, or Fredholm alternative);

- **Adjoint solutions and Green’s functions.** The i-th component of the adjoint solution is the value of the cost functional when the direct solution is the i-th Green’s function;

- **Testing an adjoint code.** In the time domain, the adjoint system must pass the dot-product test. This test requires the tangent equation, or a finite-difference approximation of it, and checks that at each time step $\mathbf{q}^+(t) \cdot \mathbf{q}(t) = \text{constant} \pm \text{tol}$, where tol is a numerical tolerance, as it ought to be47. In the frequency domain, the first test is to check that the spectrum of the adjoint system is the complex conjugate of the spectrum of the original system. The second test is to check that the $\partial N/\partial \mathbf{q}$-orthogonality condition, or the bi-orthogonality conditions of linear eigenproblems, hold. Both in time and frequency domains, the adjoint code must pass the Taylor test. With respect to a parameter, p_0, that is perturbed as $p_1 = p_0 + \epsilon$

$$\mathcal{J}(p_1) = \mathcal{J}(p_0) + \epsilon \left. \frac{d\mathcal{J}}{dp} \right|_{p_0} + O(\epsilon^2), \quad (168)$$

the test is passed if

$$\frac{\mathcal{J}(p_1) - \mathcal{J}(p_0) - \epsilon \left. \frac{d\mathcal{J}}{dp} \right|_{p_0}}{\epsilon} \sim O(\epsilon), \quad (169)$$

where $\mathcal{J}(p_1)$ is calculated by re-running the code, and $\left. \frac{d\mathcal{J}}{dp} \right|_{p_0}$ is calculated by the adjoint code. In other words, the left hand side of Eqn. (169), which is the relative error, is a straight line with respect to the perturbation, ϵ. The same test applies to the eigenvalue, σ, as the quantity of interest. Higher order adjoint codes can be checked by truncating the Taylor expansion (168) to higher order. An example of a successful Taylor test for first- and second-order adjoint eigenvalue perturbations is shown in Fig. 22.

To delve into the mathematics of adjoint equations, the following readings are suggested: [256, 257, 312–319].

![Fig. 22: An example of a successful Taylor test for first (circles) and second-order (squares) adjoint eigenvalue perturbations in a 19-burner annular combustor. Data is nondimensionalized by the modulus of the unperturbed eigenvalue. Reprinted from [165] with permission from Elsevier.](image)

B.3 Regularity of the continuous adjoint function in strong and weak forms

Given two Banach spaces B_1 and B_2 and the linear mapping $T: B_1 \to B_2$, the problem is to find $x \in B_1$ such that $T(x) = f$ for a given $f \in B_2$. In particular, the calculation of the sensitivity of the solution x is the goal. An adjoint method can be used to obtain such a sensitivity. Adjoint methods require the introduction of the adjoint of the operator T, which is formally defined as:

Given two Banach spaces B_1, B_2 and their dual space B_1^*, B_2^*, the adjoint (also called dual) of the operator $T: B_1 \to B_2$ is the mapping between the dual spaces $T^*: B_2^* \to B_1^*$ satisfying $\forall (x,y^+) \in (B_1,B_2^*) : \langle y^+,T(x) \rangle_{B_1^*B_2} = \langle (T^*(y^+),x) \rangle_{B_1^*B_1}$ with $\langle \cdot,\cdot \rangle$ denoting the duality pairing.
This definition is then used to introduce the adjoint equation:

Find \(y^+ \in B^*_1 \) such that \(T^+(y^+) = g \) with \(g \) carefully chosen to obtain the desired sensitivity.

Because of the definition of the adjoint of an operator, the adjoint equation is an equality in \(B^*_1 \). This space might lack sufficient regularity to make a numerical estimation very difficult. For example, if \(T : H^2(\Omega) \rightarrow L^2(\Omega) \), then \(T^+ : L^2(\Omega) \rightarrow H^{-2}(\Omega) \) and an adjoint equation has to be interpreted as an equality in \(H^{-2}(\Omega) \); where \(\Omega \) is a bounded open domain in \(\mathbb{R}^n \), \(H^k(\Omega) \) is a Sobolev space of degree \(k \) equipped with 2-norm; and \(L^2 \) is the space of square Lebesgue integrable functions. In principle, the adjoint equation must be solved as an equality in the distribution sense. On the other hand, when the direct problem is studied in weak formulation, its adjoint equations are obtained simply by interchanging the arguments of the sesquilinear form (trial and test functions) that defines the direct equation. The adjoint function is the test function, for example in finite element methods. Consequently, the definition of its adjoint does not require the introduction of an adjoint operator as defined above. Therefore, in problems formulated in weak form, the direct and adjoint solutions have the same degree of regularity, meaning that the adjoint solution does not live in the dual space of the direct solution.

C An adjoint-based interpretation of thermoacoustic stability criteria

The same assumptions made in the subsection “Helmholtz equation” (Sec. 2.2.3) are invoked here. The direct and adjoint eigenvectors are decomposed as

\[
[u(x,t), p(x,t)] = [\hat{u}, \hat{p}] \exp(i\sigma t), \quad (170)
\]

\[
[u^+(x,t), p^+(x,t)] = [\hat{u}^+, \hat{p}^+] \exp(-i\sigma^* t). \quad (171)
\]

With these modal transformations, in the time domain, the direct and adjoint eigenvectors rotate in the same direction in the complex plane, i.e., their angular frequencies have the same sign (and are equal to each other). The nondimensional momentum and energy equations for one-dimensional acoustics read

\[
\sigma \hat{u} + \frac{\partial \hat{p}}{\partial x} = 0, \quad (172)
\]

\[
\sigma \hat{p} + \frac{\partial \hat{u}}{\partial x} = \hat{q}. \quad (173)
\]

The heat-release rate, \(\hat{q} \), is assumed to be in feedback with the state variables so that the problem is closed. For simplicity, \(\rho = 1, \gamma \rho = 1 \) and the factor \((\gamma - 1) \) was encapsulated in \(\hat{q} \). The continuous adjoint equations, which are defined with respect to a sesquilinear form \(\langle f, g \rangle \equiv \int_0^1 f^* g \, dx \), read

\[
-\sigma^* \hat{u}^+ + \frac{\partial \hat{p}^+}{\partial x} = 0, \quad (174)
\]

\[
-\sigma^* \hat{p}^+ + \frac{\partial \hat{u}^+}{\partial x} = \hat{q}. \quad (175)
\]

The heat release rate is perturbed as \(\hat{q} + \delta \hat{q} \), where \(|\delta \hat{q}| \sim O(\varepsilon) \). From Eqn. (101), the first-order eigenvalue drift reads

\[
\sigma_1 = \langle \hat{p}^+, \delta \hat{q}^+ \rangle, \quad (176)
\]

where the denominator of (101) was normalized to unity. If the heat source is localized at \(x = x_f \) (with a Dirac delta), then the eigenvalue drift is a function of \(x_f \)

\[
\sigma_1 = \hat{p}_f^+ \delta \hat{q}_f, \quad (177)
\]

which in polar representation reads

\[
\sigma_1 = |\hat{p}_f^+| |\delta \hat{q}_f| \exp(-i\theta_{\hat{p}_f^+}) \exp(i\theta_{\delta \hat{q}}), \quad (178)
\]

where

\[
\theta_{\hat{p}_f^+} \equiv \text{atan2}(\text{Im}(\hat{p}_f^+), \text{Re}(\hat{p}_f^+)), \quad (179)
\]

\[
\theta_{\delta \hat{q}} \equiv \text{atan2}(\text{Im}(\delta \hat{q}), \text{Re}(\delta \hat{q})), \quad (180)
\]

are the arguments of the adjoint pressure and heat-release rate perturbation, respectively. The real part of \(\sigma_1 \) provides the growth-rate drift, i.e., the change in the linear stability

\[
\text{Re}(\sigma_1) = |\hat{p}_f^+| |\delta \hat{q}_f| \cos(\theta_{\delta \hat{q}} - \theta_{\hat{p}_f^+}). \quad (181)
\]

Equation (181) has a physical interpretation. Assuming that \(\delta \hat{q}_f \) is imposed where \(\hat{p}_f^+ \neq 0 \), first, \(\text{Re}(\sigma_1) \) is maximum when \(\theta_{\delta \hat{q}} - \theta_{\hat{p}_f^+} = \pm 2(k - 1)\pi \), where \(k \) is a positive integer. This physically signifies that when a perturbation to the heat release is in phase with the adjoint phase, the system’s stability is maximally destabilized. Second, \(\text{Re}(\sigma_1) \) is minimum when \(\theta_{\delta \hat{q}} - \theta_{\hat{p}_f^+} = \pm (k + 1)\pi \). This physically signifies that when a perturbation to the heat release is in antiphase with the adjoint pressure, the system’s stability is maximally stabilized. Third, \(\text{Re}(\sigma_1) \) is zero when \(\theta_{\delta \hat{q}} - \theta_{\hat{p}_f^+} = \pm (2k + 1)\pi/2 \). This physically signifies that when a perturbation to the heat release is in quadrature with the adjoint pressure, the system’s stability is unaffected.

(Note that we could have used the adjoint modal transformation and sesquilinear form without the complex conjugate (Sec. 3.2) because the complex conjugate is not mandatory in the definition of the adjoint problem for the calculation of the eigenvalue drift. The results discussed would still be valid by taking into account that, without complex conjugate, the adjoint eigenvector rotates in time in the direction opposite the direct eigenvector.)