International Symposium on the Ediacaran–Cambrian Transition (ISECT) 2017

15–29th June 2017, Newfoundland, Canada

Alex G. Liu1*, Jack J. Matthews2,3, Duncan McIlroy2, Guy M. Narbonne4, Ed Landing5, Latha R. Menon6, and Marc Laflamme7

1 Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK; *Corresponding author, E-mail: agscl2@cam.ac.uk
2 Department of Earth Sciences, Memorial University of Newfoundland, A1C 3X5, NL, Canada
3 Department of Geological Sciences and Geological Engineering, Queen’s University, K7L 3N6, Ontario, Canada
4 New York State Museum, Albany, NY 12230, USA
5 Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
6 Department of Chemical and Physical Sciences, University of Toronto Mississauga, L5L 1C6, Ontario, Canada

Research into the long-recognized ‘Cambrian Explosion’ of animal life (e.g., Lipps and Signor, 1992; Briggs, 2015) has, in recent decades, increasingly sought to resolve the interplay between evolutionary, geochemical and environmental changes that occurred over an extended Ediacaran to Cambrian transitional interval. This wider interval encompasses several significant geological events, including large-scale glaciations, supercontinental reorganization, global marine transgression, and perturbations in oxygen levels, other isotope proxies, and UV-B radiation (summarized in Narbonne et al., 2012; Meert et al., 2016). These events occurred contemporaneously with evolutionary developments including the radiation of macroscopic eukaryotes, the appearance of the extant animal phyla, the onset of burrowing and biological sediment processing, and the evolution of biominaleralization (e.g., Kouchinsky et al., 2012; Máñego and Buatois, 2016; Cunningham et al., 2017). Biological and geological phenomena are widely considered to have been linked during the Ediacaran to Cambrian transition (e.g., Canfield et al., 2017; Sperling et al., 2013; Boyle et al., 2014; Herringshaw et al., 2017; Shields, 2017), and their interaction across this interval is an area of considerable scientific interest. Stratigraphic correlation and subdivision of Ediacaran and Cambrian sections worldwide has been identified as a key objective in order to better understand the co-evolution of the Earth and life systems, and in recent years there have been substantial advances in discussions relating to this challenge (Narbonne et al., 2012; Peng et al., 2012; Landing et al., 2013b; Babcock et al., 2014; Xiao et al., 2016).

The island of Newfoundland in eastern Canada possesses several exceptional sedimentary successions from the palaeocontinents of Laurentia and Avalonia (Fig. 1). These successions are of relevance to debates surrounding both Ediacaran and Cambrian stratigraphy, and include the GSSP sections for the base of both the Cambrian and Ordovician systems (Brazier et al., 1994; Cooper et al., 2001). In recent years, significant progress has been made in understanding many of these sections. The mid-Ediacaran Gaskiers glaciation (as defined in its type region of eastern Newfoundland) is both well documented and temporally constrained. Late Ediacaran macrofossil assemblages are present throughout eastern Newfoundland, and their palaeoecology, palaeobiology, and relationships to other global fossil assemblages are becoming better understood (e.g., Narbonne, 2004; Darroch et al., 2013; Mitchell et al., 2015; Boag et al., 2016; Liu and Matthews, 2017). The gradual transition from matgrounds to mixgrounds is well documented, with the oldest known probable surface and vertical traces of locomotion (Liu et al., 2010; Menon et al., 2013), and then complex burrowing (McIlroy and Logan, 1999; Droser et al., 2002; Buatois et al., 2014), followed by the appearance of small shelly faunas and eventually trilobites elsewhere in the region (Landing et al., 1988, 2013b). Importantly the geochemistry, and often the geochronology, of these sections has been studied to enable their correlation with other sections globally (e.g., Myrow and Kaufman, 1999; Landing et al., 2013a; Pu et al., 2016). An international meeting in Newfoundland was proposed in order to visit and discuss these sections, building on the progress of recent field workshops in Morocco (Devaere et al., 2014), China (Xiao et al., 2014), South Australia (Palaeo Down Under 2, 2016) and Namibia (in conjunction with the 35th International Geological Congress; Xiao et al., 2017). A Newfoundland meeting was considered to be particularly timely given recent discussions on the distinguishing criteria and placement of the Ediacaran–Cambrian boundary (Landing et al., 2013b; Babcock et al., 2014; Geyer and Landing, 2017). Additionally, the year 2017 offered the opportunity to celebrate both the 50th anniversary of the discovery of Ediacaran macrofossils at Mistaken Point (Anderson and Misra, 1968), and the recent (July 2016) inscription of Mistaken Point Ecological Reserve (MPER) on the UNESCO World Heritage List (Thomas and Narbonne, 2016). This designation made MPER the first Precambrian fossil locality anywhere in the world to achieve this status on the basis of its palaeontological attributes.

Two field excursions were offered prior to the ISECT symposium. The first involved a 6-day trip (15–20th June 2017) to the west coast of Newfoundland to explore Cambrian to Ordovician stratigraphy, palaeontology and geochemistry. The field trip was designed and run by Svend Stouge, Gabriella Bagnoli and Duncan McIlroy, and was focused on the Laurentian margin. The trip specifically focused on the Humber Zone of the Appalachian Orogen, which includes multiple
sections spanning the Cambrian–Ordovician boundary interval in platform and base of slope settings. The GSSP at Green Point in Gros Morne National Park was visited, and encouraged lively discussion of the sedimentology of the beds containing the zonal index conodont Iapetognathus fluctivagus (Cooper et al., 2001).

The second pre-meeting trip was a 4-day excursion (17–20th June 2017) to view the middle Ediacaran (~582–560 Ma; Pu et al., 2016) geology and palaeobiology of the Avalon Peninsula, led by Alex Liu, Guy Narbonne, and Jack Matthews. The visited sections document a broadly shallowing-upwards succession from deep-marine to fluvial facies, and included: the type section of the Gaskiers Formation and an associated cap carbonate horizon at Harbour Main; Ediacaran macrofossil assemblages of the Conception and St. John’s Groups at St. Shott’s and Mistaken Point Ecological Reserve; and the gradual shallowing of the sequence into marginal and fluvial deposits of the Signal Hill Group at Ferryland. Participants discussed the palaeoenvironmental interpretation of the sections; the utility of the Gaskiers event as a means to subdivide the Ediacaran System; the duration and severity of the Gaskiers event; and the palaeobiology of the earliest assemblages of the Ediacaran macrobiota, in light of recent palaeoecological, morphological, taphonomic and phylogenetic studies (e.g., Mitchell et al., 2015; Liu, 2016; Dececchi et al., 2017; Dufour and McIlroy, 2017; Kenchington and Wilby, 2017). This trip also highlighted newly discovered fossil-bearing surfaces and surface textures.

The symposium itself took place at Memorial University of Newfoundland, St. John’s, from 20th–22nd June 2017, and consisted of 64 oral presentations, 70 poster presentations, and a public keynote lecture by Prof. Andrew Knoll. On the 21st June, voting members and corresponding members of the Cambrian Subcommission held a meeting to discuss the progress of the various ICS Working Groups active in Cambrian stratigraphy. The Ediacaran Subcommission held a meeting on the 22nd June, involving 12 voting members and 32 corresponding members, to discuss strategies to divide the Ediacaran System, with a particular focus on the boundaries for proposed Second and Terminal Ediacaran stages. ISECT 2017 also marked the beginning of formal activities to subdivide the Ediacaran System into series-level divisions. Further details of these meetings will be communicated to the respective subcommissions as part of their annual newsletters/reports.

Awards for the best student poster and best student presentation were sponsored by the International Subcommission on Ediacaran Stratigraphy (ISES), and were awarded to Felicity Coutts of the University of Adelaide for her poster entitled “Growth and development of the Ediacaran fossil Parvancorina from the Flinders Ranges of South Australia”, and to Frankie Dunn of the University of Bristol for her talk entitled “The chronicles of Charnia: morphology and morphogenesis in an iconic Ediacaran taxon”. A selection of presentations from the meeting was recorded, and is available to watch online at www.palaeocast.com/isect/.

June 2018
Following the ISECT meeting, further field excursions departed to explore the Ediacaran successions of the Bonavista Peninsula (23rd–26th June), and the Ediacaran–Cambrian of the Burin, Bonavista and Avalon peninsulas (23rd–29th June). The Bonavista trip (led by Alex Liu, Jack Matthews and Duncan McIlroy) was the first major international fieldtrip to the Trinity Facies diamictite (a probable Gas-kiers equivalent; Normore, 2011; Pu et al., 2016), the Ediacaran macrofossils and marine strata of the Catalina Dome (cf. Hofmann et al., 2008), and shallow marine to terrestrial late Ediacaran facies of the Musgravetown Group. Discussions revolved around new radiometric dates for these sections; their correlation to other Ediacaran sections in Newfoundland; and the palaeoecology of frondose Ediacaran macrofossils.

The Burin–Avalon–Bonavista peninsulas trip (leaders Ed Landing, Paul Myrow and Guy Narbonne, with Luis Buatois, Gabriela Mángano, Brittany Laing, Romain Gougeon and Alan Jay Kaufman) provided two middle-Ediacaran-age stops that showcased deep-water biotas of the Avalonian fauna near Spaniard’s Bay, before emphasizing the unconformably overlying terminal Ediacaran–Cambrian, siliciclastic-dominated shelf successions on the Avalonia palaeocontinent. Epeirogenic (trans-tensional) activity that defined elongate (NNE-trending) syndepositional basins and uplifts in Avalonia were illustrated by successions in the Burin and Avalon peninsulas—with particular emphasis given over several days to the basal Cambrian GSSP section and lowest Cambrian (Terreneuvian Series) sequences on the Burin Peninsula. The latter successions show the diversification of metazoan burrowing organisms, and feature representative successions of the oldest known Cambrian biomineralized organisms (“Ladatheca” cylindrica and overlying Watsonella crosbyi zones). A number of volcanic ashes that have been dated or are under study in the lowest Cambrian–traditional middle Cambrian were shown to comprise important geochronologic brackets through the fossiliferous Avalonian Cambrian. The trip emphasized the stratigraphic and biostratigraphic evidence indicating that temperate-latitude Avalonia was latitudinally and biotically distinct from tropical West Gondwana by the terminal Ediacaran (e.g., Landing et al., 2013a, b). A PDF of this field trip guide (165 p., 49 fig.) has appeared as Geological Survey of Newfoundland and Labrador Open File NFLD/3323 and complements Landing and Westrop (1998).

Since the pre-conference fieldtrip to the Ediacaran of the Avalon Peninsula was quickly over-subscribed, the organizing committee offered an additional one-day field trip to the Mistaken Point Ecological Reserve – focused on the palaeontology of the iconic ‘D’ and ‘E’ surfaces, the trace fossil bed, and the juvenile fronds of Pigeon Cove – on 23rd June.

The ISECT meeting and field excursions provided participants with opportunities to visit multiple key sections of interest to the subdivision and correlation of the Ediacaran and Cambrian systems, and offered a forum for the sharing and discussion of palaeobiological, geochemical and geochronological data pertaining to these intervals. 141 delegates attended the meeting or participated in at least one field excursion (Figs. 2 and 3). The ISECT meeting was sponsored by Memorial University of Newfoundland, the ISES, and the Geological Survey of Newfoundland and Labrador. The organizing committee consisted of Alex Liu (Chair), Duncan McIlroy, Jack Matthews, Latha Menon, Marc Laflaumme, Ed Landing and Guy Narbonne.

Figure 2. Participants on the Avalon Peninsula pre-meeting field excursion, visiting the Mistaken Point Ecological Reserve World Heritage Site. Standing from left: Ben Yang, Robert Taerum, Hao Yun, Luoyang Li, Wendy Taylor, Breandán MacGabhann, Malgorzata Moczydłowska, Ilya Bobrovskiy, Andrew Knoll, Michael Streng, Ulf Linneman, Emma Arvestal, Jochen Brocks, Chris Caran, Rachel Wood. Seated from left: Dongjing Fu, Tao Dai, Wei Liu, Jian Han, Pengju Liu, Jennifer Hoyal Cuthill, Olaf Elicki, Sebastian Willman, Alex Liu, Diego García-Bellido, Kathleen Taerum, Frankie Dunn, Katie Maloney, Jack Matthews, Guy Narbonne.
References


Figure 3. Participants on the Burin–Avalon–Bonavista Peninsula post-meeting field excursion, at Fortune Head, overlooking the basal Cambrian GSSP. Standing from left: Pavel Parkhaev, Tim Topper, Michael Streng, Emma Arvestål, Wei Liu, Tao Dai, Funghcen Zhao, Guoxiang Li, Ed Landing, Michael Steiner, Gui Narbonne, Luoyang Li, Diego García-Bellido, Tais Dahl, Ulf Linnefmann, Olaf Elicki, Gabriela Mángano, Romain Gougeon, Maoyan Zhu, Paul Myrow, Glenn Brock, Brittany Laing. Bottom from left: Anne-Sofie Ahn, Emily Smith, Aihua Yang, Tuning Yang, Pengju Liu, Ben Yang, Hao Yun, Luis Buatois, Dongjing Fu, Xinglian Yang, Alan J. Kaufman. Not shown: Jin Peng, Shanchi Peng, Kendra Power.


