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Biochemical Testing Concerns 

Once a mitochondrial disease is suspected, most testing protocols begin with assessing lactic acid, plasma or CSF amino acids and urine organic acids. Elevations of plasma lactic acid and certain amino acids (such as alanine, glycine, proline or threonine) or urinary organic acids (such as malate, fumarate or 3-methylglutaconic acid) may indicate mitochondrial dysfunction. 
Concerns regarding their sensitivity and specificity have been discussed previously, and they remain imperfect biomarkers in assessing mitochondrial dysfunction. However they continue to be routinely obtained since they are relatively inexpensive and may be used to guide the need for further testing.[1]  Some have reported that when collected properly and considered in the correct clinical context, elevations in lactate may selectively have specificity as high as  83-100%[2–4] although this is not always the case.[5]  Nonetheless, permanent urinary excretion of 3-methylglutaconic acid, if associated with a suggestive clinical picture, is usually a good indicator of PMD.[6]  FGF21 and GDF15 are cytokines more recently associated with mitochondrial dysfunction in cases of myopathy but also have less than optimal sensitivity and specificity, often being elevated in non-mitochondrial diseases including diabetes, hypothyroidism, overfeeding, sepsis and other genetic diseases.[2, 7–13] 

While evaluation of suspected mitochondrial disease now often quickly moves to molecular genetic testing, functional studies of the mitochondrial electron transport chain (ETC) are still important in many situations. However, in many centers they are no longer the first line test when mitochondrial disease is suspected.  Functional assays include ETC enzymology via spectrophotometry, measurement of the presence of selected protein components within complexes and super-complexes via western blots and blue-native gel electrophoresis, and oxygen consumption rates using various substrates and inhibitors. 

False positive results may be seen due to challenges in tissue processing and test application including improper tissue collection or handling, the impact of local anesthetic on results,[14]  and utilizing reference ranges intended for quadriceps muscle for muscle tissue collected from other sites.  ETC assays may have little to no margin between patient and control ranges and can also differ between different laboratories and make inter-laboratory comparison of test results extremely challenging. Multiple global health factors impact results, including exercise or the lack thereof, effects of chronic illness, and age of the patient.  Secondary and potentially reversible ETC functional defects have also been observed following limb immobilisation,[15] and in liver failure from non-mitochondrial causes.[16, 17]  ETC deficiency has been seen in ischaemia/reperfusion injury, sepsis and trauma.[18–20]

Even once these factors are seemingly accounted for, functional studies may lead to misdiagnoses and mistaken labels of a “possible” mitochondrial disease, because other genetic conditions may sometimes be associated with a secondary mitochondrial dysfunction.[21]  For instance, multiple ETC deficiencies and mtDNA depletion have been reported in Spinal Muscular Atrophy (SMA).[22]  Downregulated muscle mitochondrial biogenesis has been shown to underlie this mitochondrial dysfunction in SMA.[23]  Abnormal accumulation of very long-chain fatty acids in X-linked adrenoleukodystrophy (ALD) leads to a defect in mitochondrial respiration and biogenesis with chronic redox imbalance, which in turn is partly responsible for neurodegeneration.[24]  Other examples exist for Phelan-McDermid syndrome, Down syndrome, Zellweger syndrome, the rasopathies and a variety of other conditions.[25–30]   Mechanistic links for this secondary dysfunction have been described for very few of these disorders .[31]  Thus, evidence of biochemical dysfunction on functional testing cannot provide a conclusive diagnosis of mitochondrial disease. 

Functional mitochondrial studies do serve several key roles. As genetic testing remains imperfect, biochemical testing may help to better elucidate the degree of mitochondrial dysfunction and potentially define the pathogenicity of genetic variants of uncertain significance (VUS). Functional tests can also provide further evidence when genomic studies identify a pathogenic mutation in a single allele for an autosomal recessive condition with a compatible clinical phenotype and there is a concern that a second pathogenic disease allele may not have been identified by exome sequencing.[32] 


Genetic Testing Concerns 
The advent of rapid, relatively low cost NGS technologies has allowed for a genetic diagnosis to be made in many more patients with PMD.  Accurate genetic diagnosis allows physicians and affected families to better understand the condition and for the provision of appropriate genetic counseling. For some disorders where the natural history is better known, clinicians and families can more accurately predict the disease course and provide appropriate clinical management and preventative care.[33]  

However, genetic testing in mitochondrial disease remains limited by aspects of tissue specificity of mutations in mtDNA, heteroplasmy, lack of understanding of the entire genome, VUS findings and an ever-growing list of nuclear disease genes. In the absence of functional testing, pathogenicity can only be assigned to genetic variants that have previously been observed to cause the same or highly similar phenotype in an unrelated family.[34]

Testing mtDNA and tissue specificity
MtDNA can now be accurately sequenced in its entirety for a relatively low cost.  However, mtDNA heteroplasmy, with a varied distribution of point mutations or deletions in various post-mitotic tissues (e.g. muscle or brain), may lead to difficulties with diagnosis when assessing rapidly dividing tissues such as blood, where levels of mutated mtDNA may be extremely low.  NGS has improved sensitivity so that it is now possible to detect levels of heteroplasmy of less than 5% in blood DNA. However, testing in blood cannot accurately determine mtDNA copy number or mtDNA deletions in a majority of cases.

In patients with suspected mitochondrial disease, the finding of low level heteroplasmy of a pathogenic mtDNA mutation does little to assist the clinician in determining if the mutation is clinically relevant and if so, how the prognosis is affected.  Low level heteroplasmy in blood does not exclude a pathogenic level of heteroplasmy in another tissue, especially if the patient’s symptoms are primarily muscle or brain related.  In disorders that have been well characterized with clear heteroplasmy:phenotype relationships (e.g. MERRF m.8344G>A, MELAS m.3243A>G, NARP m.8993T>C/G) the finding of low level heteroplasmy (< 5 %) in blood is not always likely to be associated with neurological disease; however, assessment in other tissues is still recommended if the phenotype is compatible.  

Incidental findings of mtDNA mutations at low level heteroplasmy are not uncommon, especially since ~ 1/200 asymptomatic people may carry a low level heteroplasmic pathogenic mtDNA variant in blood.[35–37]  Such variants are now even detected in patients tested by WES in whom mitochondrial disease may not have been strongly on the differential diagnosis list.  It is quite easy to mistakenly attribute clinical relevance to low-level heteroplasmic mtDNA mutations due to a clinician’s anchoring and confirmation bias even though it may not be the actual cause of a given patient’s constellation of medical problems. 

Assessing mtDNA in other tissues such as muscle, liver or urinary epithelial cells may help when pathogenic mutations are not detected in blood or only low levels of a pathogenic mutation are found. MtDNA point mutation heteroplasmy analysis in urine provides another non-invasive, reliable and relatively inexpensive methodology that has been validated against skeletal muscle heteroplasmy, although testing is not available on a clinical basis in all regions.[38]  Some mtDNA point mutations and large-scale or multiple deletions may only be detected in muscle or liver in some patients. Long-range PCR is the preferred method for detecting deletions as Southern blot analysis lacks sufficient sensitivity to detect low levels of heteroplasmic deletions.  Southern blot analysis remains useful for clarifying the type of rearrangement in patients with duplicated or deleted mtDNA.[39]  Interpretation is complicated, as normal aging may lead to a low level of multiple mtDNA deletions in tissues including muscle, and accumulation of mtDNA deletions may be accelerated in other muscle disorders, particularly sporadic inclusion body myositis.

MtDNA copy number analysis for mtDNA depletion is also not yet routinely measurable by NGS or accurately quantifiable or always represented in blood.  Such testing may become viable and cost effective via whole genome sequencing (WGS) or other NGS approaches in the near future.  Currently, the most widely used approach if mtDNA depletion is suspected is to perform a quantitative real-time PCR assay, preferably in an affected tissue, although unaffected tissue (e.g. skeletal muscle in POLG-related Alpers-Huttenlocher syndrome) may still demonstrate a significant, albeit clinically silent, mtDNA depletion. Interpretation of mtDNA copy number data is critically dependent on appropriate age and tissue matched normal control ranges,[40] which can be difficult to obtain, thereby limiting applicability.  Results may be equivocal even when normal control ranges are available. To complicate matters, mtDNA depletion has been identified in non-mitochondrial diseases including desminopathies, Parkinson disease, age-related changes in paraspinal muscles and as a consequence of antiretroviral therapy.[41–45]

Heteroplasmic variants
As mtDNA has a higher mutation rate than the nuclear genome, many individuals have rare or private mtDNA polymorphisms.  Determining the pathogenicity of these polymorphisms remains challenging.  Interpreting the genetic results in the light of clinical and laboratory findings and the family history may be helpful, but still may not provide a conclusive answer. MtDNA haplotyping may assist in establishing pathogenicity,[46] and the same mutation arising independently several times and co-segregating with clinical features may support a causal role.[47]  

Even when pathogenicity is suspected, phenotypic variability remains pronounced. This is the case for many of the less common or novel pathogenic mutations in the mt-tRNA genes.  Distinguishing novel pathogenic mutations from benign polymorphisms remains difficult.  Research based testing to interrogate the pathogenicity of heteroplasmic mutations – via single fibre and/or transmitochondrial cybrid studies – remains costly and labour intensive,[48] and is not possible for most patients. 

Testing nuclear genes
Since the mitochondrial genome only encodes 13 mitochondrial proteins (and 24 tRNA and rRNA genes required for the intramitochondrial synthesis of these 13 proteins), nuclear genes encode almost the entire mitochondrial proteome.   New genes impacting mitochondrial function and leading to human disease continue to be discovered. Many of the known disease-causing genes may be tested via gene panels and whole exome sequencing (WES) although the ability to detect a clearly pathogenic mutation in suspected PMD is imperfect, with a reported diagnostic yield ranging from 25-75%, dependent upon study design.[49–53]      

WGS is beginning to be utilized beyond research-based testing but our current understanding remains limited. Many ongoing WGS analyses are restricted to assessing variants in the approximately 2% of the genome that represents the exome, owing to a very limited understanding of the consequences of sequence variants in other regions (promoters, deep intronic regions and other non-coding regions).  Much of what the genome holds in regard to causing primary mitochondrial disease remains to be seen.   This lack of a complete understanding of and the inability to meaningfully analyze variants in all the genomic elements involved in mitochondrial function greatly contributes to our inability to make genetic diagnoses in 100% of cases with suspected PMD. 

Using current approaches, many suspected cases, both pediatric and adult, may still remain without a genetic diagnosis following WES or WGS.[54, 55]  This figure will decrease as sequencing quality, bioinformatic analysis, and our ability to interpret variants throughout the genome improves. In addition, supplementary approaches such as RNA sequencing of the transcriptome and proteomics and metabolomics approaches are proving helpful in increasing the genetic diagnosis rate.[5, 55]

Nuclear gene variants
It is now well known that when analysing large numbers of genes by WES or WGS, tens of thousands of coding sequence variants will be identified in any given individual.  Even after bioinformatic filtering of common benign polymorphisms, hundreds of putative significant variants remain. Interpreting these variants constitutes a huge challenge.  In practice, one or more VUS is routinely identified. A multi-disciplinary team approach is necessary for optimal interpretation, bringing together clinical, biochemical, histological and genetic expertise. In the case of known mitochondrial disease genes, concordance with clinical and biochemical features can be complicated by weak genotype-phenotype correlation and the continuing widening of phenotype associated with a particular gene as more cases are identified. Further studies, including RNA sequencing or protein functional studies, may be necessary although these follow-up studies are often only available in a research setting.

For nuclear VUS, variant prioritisation following bioinformatic analysis[56–58] and database interrogation (e.g. 1000 Genomes,[55] ClinVar,[59] ExAC/gnomAD,[60] Medical Genome Reference Bank, MITOMAP,[61] MSeqDR,[62]), as well as classification using the American College of Medical Genetics (ACMG) criteria,[34] a search of known attributes of the affected gene and its transcriptional/translational products can inform an approach toward confirmation of pathogenicity. 

The simplest approach for ascribing conditional pathogenicity is investigating segregation of a variant with disease in family members. This may be difficult when considering multisystemic mitochondrial diseases that can display high levels of phenotypic heterogeneity for the same gene or variant.[63]  If familial segregation information is inconclusive or cannot be obtained, investigating larger cohorts of phenotypically similar patients for the same genotype may provide support for pathogenicity. As mentioned above, this may be difficult in the absence of a consistent genotype-phenotype correlation and additionally in the setting of a rare disease. In any case, segregation data must be accompanied by empirical evidence of a functional defect, requiring a synthesis of clinical tests and laboratory experiments to establish a pathological basis for the VUS. This may require a research laboratory with specialist interests in the gene or disease in question and can be aided by the availability of patient-derived tissue samples or cell lines for investigations.

Validation of VUS pathogenicity is determined by the nature of the variant in question (missense, nonsense, splicing, indel, copy number variation, structural variant, etc.), the affected gene and its associated function and the biological/pathological relevance. Experimental evidence supporting pathogenicity (in addition to clinical presentation, phenotype/genotype correlation and theoretical evidence) could include imaging studies, biomarker measurements, or functional approaches in patient-derived tissue and cell lines or model organisms.

Functional biochemical testing in muscle or other tissues may help better ascertain the relevance of selected VUS and remains a necessary tool in some patients. Interpreting VUS remains an ongoing challenge although there are guidelines on how to better categorize these.[34]     These are important considerations for accurate diagnosis and counselling of patients with PMD disorders, particularly at a time when reproductive choice has been expanded to include preimplantation genetic diagnosis and more recently mitochondrial donation.  

mtDNA VUS
Novel mtDNA variants pose unique challenges for clinical correlation and interpretation given the challenges of performing functional validation studies, broad heterogeneity of PMD clinical phenotypes, and unknown threshold effects necessary for a given variant to manifest disease in particular organs.  However, additional information at both bioinformatic and clinical levels can be readily attained to further understand the potential functional impact of a given mtDNA variant. 

[bookmark: _GoBack]Several readily available bioinformatics tools now exist that can be used to efficiently gather information about novel mtDNA variants.  For example, mvTool,[64] hosted on the Mitochondrial Disease Sequence Data Resource (MSeqDR[62]), provides population level frequency data for mtDNA variants, a compilation of in silico variant pathogenicity predictor tools, and a collection of expert curated pathogenicity data from multiple sources including MITOMAP[61] and HmtDB.[65]
Guidelines and recommendations for mtDNA variants curation have also been developed by an expert panel to aid clinicians and molecular geneticists in proper interpretation. (Standards and guidelines for mitochondrial DNA variant interpretation. [Elizabeth M. McCormick et al.. Human Mutation 2018 (accepted; under revision)]

Valuable information may also be gained from pursuing diagnostic testing of the mtDNA variant in question in multiple tissues from both the proband and family members, although this is not always possible due to family preferences and insurance restrictions.  A higher level of heteroplasmy in more clinically symptomatic tissues provides strong supporting evidence for the likely pathogenicity of a given mtDNA variant. 

Traditionally, the gold-standard definitive study to assess pathogenicity of a heteroplasmic mtDNA mutation was to generate a transmitochondrial cell line, by fusion of an enucleated patient cell with a rho zero cell lacking mtDNA, to determine whether a biochemical defect is transferred with the patient mtDNA.[66] 
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