Far from the Hearth
(Above) Martin Jones at West Stow, 1972 (with thanks to Ian Alister, Lucy Walker, Leonie Walker, and West Stow Environmental Archaeology Group); (Below) Martin Jones in a millet field, Inner Mongolia, 2010. (Photograph: X. Liu.)
Far from the Hearth
Essays in Honour of Martin K. Jones

Edited by Emma Lightfoot, Xinyi Liu & Dorian Q Fuller
Published by:

McDonald Institute for Archaeological Research
University of Cambridge
Downing Street
Cambridge CB2 3ER
UK
(0)(1223) 339327
info@mcdonald.cam.ac.uk
www.mcdonald.cam.ac.uk

© 2018 McDonald Institute for Archaeological Research
Far from the Hearth is made available under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (International) Licence:
https://creativecommons.org/licenses/by-nc-nd/4.0/

ISBN: 978-1-902937-87-8

Cover image: Foxtail millet field near Xinglonggou, Chifeng, China, photographed by Xinyi Liu, September 2014.

Edited for the Institute by James Barrett (Series Editor) and Anne Chippindale.
CONTENTS

Contributors vii
Figures viii
Tables xvi
Acknowledgements xx
Foreword xxi

Part I Introduction
Introduction: Far from the Hearth
Xinyi Liu, Emma Lightfoot & Dorian Q Fuller

Part II A Botanical Battleground
Chapter 1
The Making of the Botanical Battle Ground: Domestication and the Origins of the Worlds’ Weed Floras
Dorian Q Fuller & Chris J. Stevens

Chapter 2
The Fighting Flora: An Examination of the Origins and Changing Composition of the Weed Flora of the British Isles
Chris J. Stevens & Dorian Q Fuller

Chapter 3
A System for Determining Plant Macro Archaeological Remains
Victor Paz

Chapter 4
Phytoliths and the Human Past: Archaeology, Ethnoarchaeology and Paleoenvironmental Studies
Carla Lancelotti & Marco Madella

Chapter 5
Genetics and the Origins of European Agriculture
Terry Brown

Chapter 6
Martin Jones’ Role in the Development of Biomolecular Archaeology
Terry Brown, Richard P. Evershed & Matthew Collins

Part III The Stomach and the Soul
Chapter 7
‘Rice Needs People to Grow it’: Foraging/farming Transitions and Food Conceptualization in the Highlands of Borneo
Graeme Barker, Christopher O. Hunt, Evan Hill, Samantha Jones & Shawn O’Donnell

Chapter 8
How did Foraging and the Sharing of Foraged Food Become Gendered?
Cynthia Larbey

Chapter 9
Agriculture is a State of Mind: The Andean Potato’s Social Domestication
Christine A. Hastorf

Chapter 10
Archaeobotanical and Geographical Perspectives on Subsistence and Sedentism: The Case of Hallan Çemi (Turkey)
Manon Savard

Chapter 11
Rice and the Formation of Complex Society in East Asia: Reconstruction of Cooking Through Pot Soot- and Carbon-deposit Pattern Analysis
Leo Aoi Hosoya, Masashi Kobayashi, Shinji Kubota & Guoping Sun

Chapter 12
Food as Heritage
Gilly Carr, Marie Louise Stig Sorensen & Dacia Viejo Rose
Part IV Between Fertile Crescents 153

Chapter 13 From a Fertile Idea to a Fertile Arc: The Origins of Broomcorn Millet 15 Years On 155
 Xinyi Liu, Giedre Motuzaitė Matuzevičiute & Harriet V. Hunt

Chapter 14 A World of C₄ Pathways: On the Use of δ¹³C Values to Identify the Consumption of C₄ Plants in the Archaeological Record 165
 Emma Lightfoot, Xinyi Liu & Penelope J. Jones

Chapter 15 The Geography of Crop Origins and Domestication: Changing Paradigms from Evolutionary Genetics 177
 Harriet V. Hunt, Hugo R. Oliveira, Diane L. Lister, Andrew C. Clarke & Natalia A.S. Przelomska

Chapter 16 The Adoption of Wheat and Barley as Major Staples in Northwest China During the Early Bronze Age 189
 Haiming Li & Guanghui Dong

Chapter 17 When and How Did Wheat Come Into China? 199
 Zhijun Zhao
CONTRIBUTORS

GRAEME BARKER
Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK.
Email: gb314@cam.ac.uk

JAMES H. BARRETT
McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK.
Email: jhb41@cam.ac.uk

TERRY BROWN
Manchester Institute of Biotechnology, School of Earth and Environmental Sciences, University of Manchester, Manchester M1 7DN, UK.
Email: Terry.Brown@manchester.ac.uk

GILLY CARR
Institute of Continuing Education, University of Cambridge, Cambridge CB23 8AQ, UK.
Email: gcc20@hermes.cam.ac.uk

ANDREW C. CLARKE
McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK.
Email: acc68@cam.ac.uk

MATTHEW J. COLLINS
Natural History Museum of Denmark, University of Copenhagen, Copenhagen DK-1123, Denmark.
Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK.
Email: matthew.collins@snm.ku.dk

GUANGHUI DONG
MOE Key Laboratory of West China’s Environmental System, Lanzhou University, Lanzhou 730000, China.
Email: ghdong@lzu.edu.cn

RICHARD P. EVERSHEDE
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
Email: R.P.Evershed@bristol.ac.uk

DORIAN Q FULLER
Institute of Archaeology, University College London, London WC1H 0PY, UK.
Email: d.fuller@ucl.ac.uk

CHRISTINE A. HASTORF
Department of Anthropology, University of California-Berkeley, Berkeley, CA 94720, USA.
Email: hastorf@berkeley.edu

EVAN HILL
School of Natural and Built Environment, Queen’s University Belfast, Belfast BT7 1NN, UK.
Email: ehill08@qub.ac.uk

LEO AOI HOSOYA
Institute for Global Leadership, Ochanomizu University, Tokyo 112-8610, Japan.
Email: hosoya.aoi@ocha.ac.jp

CHRISTOPHER O. HUNT
School of Natural Sciences and Psychology, University of Liverpool, Liverpool L3 5UX, UK.
Email: c.o.hunt@ljmu.ac.uk

HARRIET V. HUNT
McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, CB2 3ER, UK.
Email: hvh22@cam.ac.uk

PENELOPE J. JONES
Menzies Institute for Medical Research, University of Tasmania, Sandy Bay, TAS 7050, Australia.
Email: Penelope.Jones@utas.edu.au

SAMANTHA JONES
School of Geosciences, University of Aberdeen, Aberdeen AB24 3FX, UK.
Email: samantha.jones@abdn.ac.uk

MASASHI KOBAYASHI
Hokuriku Gakuin University, I-11, Mitsukoji-machi, Kanazawa, Ishikawa Prefecture 920-1396, Japan.
Email: masashi@hokurikugakuin.ac.jp

SHINJI KUBOTA
Kanazawa University, Kakuma-cho, Kanazawa, Ishikawa Prefecture 920-1192, Japan.
Email: shinjikubota@hotmail.com

CARLA LANCELOTTI
CaSEs Research Group (Culture and Socio-Ecological Dynamics), Department of Humanities, Universitat Pompeu Fabra, Barcelona 08005, Spain.
Email: carla.lancelotti@upf.edu
Figures

Chapter 1
1.1 Wild barley spikelets (Hordeum spontaneum).
1.2 Seed size increase over time standardized to percentage change, comparing Southwest Asia and China.
1.3 Charts showing founder weed taxa over time and proportion of cereals in the plant assemblage.
1.4 A field of wheat in which weedy oats and wild barley appear to be rather better than the crop.

Chapter 2
2.1 Diagrammatic representation of seed-bank types — autumn sowing-tillage cycle.
2.2 Diagrammatic representation of seed-bank types — spring sowing-tillage cycle.
2.3 Relative presence and persistence of seed-bank types I–IV in the field after ard cultivation.
2.4 Relative presence and persistence of seed-bank types I–IV in the field after mouldboard plough cultivation.
2.5 Timeline of agricultural changes and number of introduced/reintroduced weed flora.

Chapter 3
3.1 Identification and determination of plant macro remains.
3.2 Diagram of determination process.

Chapter 4
4.1 Increase in phytolith studies in the last 15 years.

Chapter 5
5.1 The first ancient DNA sequences obtained from charred grain.

Chapter 7
7.1 Borneo, showing the location of the Kelabit Highlands and other locations.
7.2 Penan encampment in the Baram valley.
7.3 Kelabit longhouse at Pa’ Daleh, southern Kelabit Highlands.
7.4 Map showing key sites and locations in the Kelabit Highlands.
7.5 Oxcal plots of summed probabilities from archaeological and landscape sites.
7.6 Stratigraphic summaries of the cores and geoarchaeological sites.

Chapter 11
11.1 Burn mark above the waterline after experimental cooking of liquid-rich food.
11.2 The style of Jomon and Yayoi major cooking pots.
11.3 Removing excess water after boiling rice (Central Thailand).
11.4 Steaming stage of the yutori boil-and-steam rice-cooking method reconstructed with Yayoi pots.
11.5 Cooking pot styles of the Tianluoshan site.
11.6 Shift of proportions of cooking-pot styles in Hemudu culture.
11.7 TLS round-body pots characteristic soot and burn mark.
11.8 Layered burn deposits formed after experimental porridge cooking.

Chapter 12
12.2 An example of a ‘Mediterranean Diet’ meal.
12.3 A Guernsey occupation-era kitchen, complete with food-related objects.

Chapter 13
13.1 Locations of key millet sites across Eurasia.
13.2 Harriet Hunt visiting the Vavilov Herbarium, St Petersburg.
13.3 Martin Jones at a broomcorn millet field near Lanzhou, Gansu Province, western China.
13.4 Visiting millet sites in Gansu Province, western China.
Chapter 15
15.1 Martin Jones visiting the N.I. Vavilov Research Institute for Plant Industry, St Petersburg. 178
15.2 Barley exemplifies the complexity of inheritance of different segments of a domesticated crop’s genome. 183

Chapter 16
16.1 Distribution of prehistoric sites in the NETP and Hexi Corridor. 190
16.2 The actual yield percentage of the sites in the NETP and Hexi Corridor. 192
16.3 Sum of the actual yield percentage of the sites in the NETP and Hexi Corridor. 192
16.4 Carbonized plant seeds collected from Lijiaping Site. 194

Chapter 17
17.1 The potential routes for the spread of wheat into China. 205

Tables

Chapter 1
1.1 Presence/absence of a select roster of founder weeds. 14–15

Chapter 2
2.1 Common weeds within British archaeobotanical assemblages. 28–9

Chapter 3
3.1 Classifications of seeds based on preservation conditions. 40
3.2 Variables relevant in establishing the level of confidence of determination. 40

Chapter 4
4.1 Phytolith production and taxonomic specificity for the world’s major crops. 54

Chapter 6

Chapter 7
7.1 Radiocarbon dates from archaeological and palynological sites in the Kelabit Highlands. 84–5

Chapter 8
8.1 Published studies on remains of starchy plants during prehistoric hunter-gatherer periods. 100–101

Chapter 10
10.1 Archaeobotanical results from Hallan Çemi. 118–19

Chapter 14
14.1 List of edible plants found in Haryana and their photosynthetic pathways. 170–72

Chapter 16
16.1 Calibrated radiocarbon data in the Hehuang Basin and Hexi Corridor. 191
16.2 Charred seeds from the Lijiaping site, Linxia county, Gansu Province, China. 193

Chapter 17
17.1 Early wheat remains in last-century archaeological discoveries. 201
17.2 Early wheat remains with only relative ages. 202
17.3 Directly dated early wheat remains. 203
17.4 List of archaeological cultures in the Central Asian Steppe. 207
Acknowledgements

The initial idea of editing this volume grew out of a conversation between Xinyi Liu and Graeme Barker at St John’s College, Cambridge in June 2016. The editors subsequently discussed the provisional layout of the volume. By April of the following year, our list of agreed contributors was complete. Abstracts followed, and the chapters themselves soon after. First of all, the editors would like to pay tribute to our 36 authors, whose excellent work and timely contributions made it all possible.

For the last two-and-a-half years, the volume has been known as ‘Fantastic Beasts’ in order to keep it a secret from Martin. As we enter the final stage, we wish to extend our thanks to all who have ensured Martin remains blissfully unaware, including Lucy Walker, and we offer her our sincere thanks. We are extremely grateful to Harriet Hunt, Diane Lister, Cynthia Larbey and Tamsin O’Connell, who are kindly organizing the gatherings to mark Martin’s retirement and the publication of this volume.

With respect to the volume’s production, we would like to thank the McDonald Institute for Archaeology Research for financial support. The McDonald Monograph Series Editor James Barrett oversaw and encouraged all aspects of this project, and we offer him sincere thanks. We would also like to acknowledge the support of Cyprian Broodbank, not least for allowing us to host the workshop at the institute, but also for his encouragement throughout all phases of the volume’s implementation. Particular thanks must go to several key individuals: Anne Chippindale, Ben Plumridge, Emma Jarman, Simon Stoddart and Samantha Leggett. Finally, we are also grateful to the anonymous reviewers who recommended changes that have greatly enhanced the final version of this volume.

Xinyi Liu, Emma Lightfoot and Dorian Fuller
August 2018
The 28-year term of Martin Jones as the first George Pitt-Rivers Professor of Archaeological Science witnessed, and in part created, a transformation in the fields of environmental and biomolecular archaeology. In this volume, Martin’s colleagues and students explore the intellectual rewards of this transformation, in terms of methodological developments in archaeobotany, the efflorescence of biomolecular archaeology, the integration of biological and social perspectives, and the exploration of archaeobotanical themes on a global scale. These advances are worldwide, and Martin’s contributions can be traced through citation trails, the scholarly diaspora of the Pitt-Rivers Laboratory and (not least) the foundations laid by the Ancient Biomolecules Initiative of the Natural Environment Research Council (1989–1993), which he chaired and helped create. As outlined in Chapter 6, Martin’s subsequent role in the bioarchaeology programme of the Wellcome Trust (1996–2006) further consolidated what is now a central and increasingly rewarding component of archaeological inquiry. Subsequently, he has engaged with the European Research Council, as Principal Investigator of the Food Globalisation in Prehistory project and a Panel Chair for the Advanced Grant programme. As both practitioner and indefatigable campaigner, he has promoted the field in immeasurable ways, at critical junctures in the past and in on-going capacities as a research leader.

The accolades for Martin’s achievements are many, most recently Fellowship of the British Academy. Yet it is as a congenial, supportive—and demanding—force within the Pitt-Rivers Laboratory that the foundations of his intellectual influence were laid. Here, each Friday morning, the archaeological science community would draw sticks to decide who would deliver an impromptu research report or explore a topical theme. Martin is among the most laid-back colleagues I have worked with, yet simultaneously the most incisive in his constructive criticism. As a provider of internal peer-review he was fearless without being unkind. The themed Pitt-Rivers Christmas parties were equally impactful—on one occasion Alice Cooper appeared, looking ever so slightly like our professor of archaeological science.

Martin’s roles as a research leader extended to several stints as head of the Department of Archaeology, chairing the Faculty of Archaeology and Anthropology and serving as a long-term member of the Managing Committee of the McDonald Institute for Archaeological Research. Having started his professional career as an excavation-unit archaeobotanist in Oxford, he was a long-standing proponent of the highly successful Cambridge Archaeological Unit. In the wider collegiate community, he is a Fellow (and was Vice-Master) of Darwin College and was the staff treasurer of the Student Labour Club. In all roles he fought valiantly and often successfully for the interests of his constituency. His capacity to fight for deeply held priorities while recognizing the value of diverse perspectives was of utmost importance. His nostalgic enthusiasm for the debate with archaeological science that was engendered by the post-processual critique is one signal of an underlying appreciation of plurality. His active support for the recent merger of the Divisions of Archaeology and Biological Anthropology, within our new Department of Archaeology, is another. As a scientist (Martin’s first degree, at Cambridge, was in Natural Sciences) he values the peer-reviewed journal article above all scholarly outputs, yet has authored as many highly regarded books as a scholar in the humanities. His Feast: Why humans share food has been translated into several languages and won Food Book of the Year from the Guild of Food Writers. He views academia and society as a continuum, campaigning for archaeobotanical contributions to global food security (e.g. by promoting millet as a drought-resistant crop) and working with world players such as Unilever to encourage archaeologically informed decisions regarding food products.

That Martin’s achievements and influence merit celebration is clear. That his colleagues and students wish to honour him is equally so. Yet does the McDonald Conversations series publish Festschriften? This is a semantic question. As series editor I am delighted to introduce a collection of important papers regarding the past, present and future of archaeobotany, representing its methodological diversity and maturity. That this collection concurrently pays respect to a treasured colleague is a very pleasant serendipity.

Dr James H. Barrett
Chapter 5

Genetics and the Origins of European Agriculture

Terry Brown

I first met Martin Jones on 21 March 1990 at a conference in Glasgow organized by the Natural Environment Research Council (NERC) as part of its ‘special topic’ in Biomolecular Palaeontology. This research programme, which had been set up a couple of years earlier, funded a series of projects in UK universities on what at the time were referred to as ‘fossil molecules’. When the special topic was planned, the emphasis had been on the use of long-lived biopolymers, derived from lipids and carbohydrates, as biochemical markers in the geological record. However, the research programme coincided with the explosion of interest in ancient DNA, engendered by the first demonstrations, by Erika Hagelberg, Catherine Hänni and others, of preserved DNA in archaeological bones (Hagelberg et al. 1989; Hänni et al. 1990). Thanks in large part to the perceptiveness of Geoffrey Eglinton, the Chairman of the Biomolecular Palaeontology steering group, the research programme expanded its objectives and funded three grants on ancient DNA, one of which Keri Brown and I were fortunate enough to receive. So on a cold and wet March day Keri and I, along with 70 other delegates, made our way to Glasgow. Exciting times! This was our first opportunity to meet other researchers interested in ancient biomolecules.

Ancient DNA from charred grain

The final hour of the Glasgow conference was given over to a discussion session, about which I remember very little, except that at various points I contributed a comment that came to my mind. Every time I said something the person sitting in front of me turned around, nodded and smiled, which I found very encouraging as I had spent most of the day feeling rather nervous and overwhelmed by the great names (Svante Pääbo, Brian Sykes and others) who were in the audience.

At the end of the session the gentleman in front introduced himself as Martin Jones, senior lecturer in archaeology at Durham University, but shortly to move to a ‘new job’ at Cambridge. Martin asked me if I thought I could get DNA from the ‘carbonized grains that archaeobotanists study’. I had no idea what these grains were, but those were the heady days of ancient DNA when anything was possible, so of course I said yes. Martin looked excited and asked if Keri and I would like to come over to Durham to discuss a possible project with him.

At Durham, Martin showed me some carbonized emmer grains. My heart did sink rather as they did not look promising as sources of DNA, but Keri had recently had some success in detecting DNA in cremated bone, so the fact that these grains had clearly been exposed to high temperatures did not seem an immediate reason to become gloomy. More importantly, over lunch, Martin gave me a synopsis of the origins and spread of agriculture, a topic that was completely new to me. Although I had been a plant geneticist in my pre-ancient DNA lifetime, my interests now were firmly fixed on bones, and the grant Keri and I had been awarded was intended to lay the groundwork for genetic studies of artiodactyl evolution by developing methods for DNA extraction from fossil horse bones (heady days indeed). In one hour, Martin reset my research agenda and stimulated my subsequent lifelong interest in single versus multiple domestications, trajectories of agricultural spread, the development of sustainable agriculture and the role of food in human society. I was totally hooked.

The next thing was to get some money to study the DNA that we both knew just had to be present in carbonized grain. We decided that the first thing was to stop referring to the grains as ‘carbonized’, as this implied complete conversion to carbon and hence no DNA. Martin suggested that ‘charred’ would be a better term. The NERC Biomolecular Palaeontology programme was no longer accepting new proposals, so we submitted our grant to the Science-Based Archaeology committee of the Science and Engineering Research Council (SERC). This was not as daunting as it might have been, as Martin was a member of this committee and so knew what was likely to interest
them. My contribution to the application was devising primers for polymerase chain reactions (PCRs) that would amplify three short segments of the wheat genome and describing a few standard methods for plant DNA extraction that we would tweak to deal with ‘inhibitors’. Martin wrote the rest of the proposal and produced a masterly argument that the benefits of being able to study DNA in charred wheat and barley grain were so immense that the grants panel would be foolish not to invest the meagre sum we were requesting simply on the basis that we could not provide any evidence at all that we could get DNA from these grains. I then went on study leave for six months at Washington State University in the USA. I heard that SERC had one of its periodic cash-flow problems, so there would be a 12-month delay before any new grants could begin. Martin’s message a few days later that we had got the grant delighted me, though his reference to ‘SERC being on ice’ rather puzzled my American colleagues.

Successful research requires both a good project design and a good person to do the work. With regard to the latter, Martin and I struck gold. Among the applicants for the RA position was a recent graduate from Kings College London called Robin Allaby. Robin’s enthusiasm and innovation were exactly what we needed for this project. In those days, the now routine methods for the clean-up of ancient DNA extracts and optimization of very short PCRs for ancient DNA amplification were in their infancy. Starting from that almost zero knowledge base, Robin designed a system based on amplification of a short region of the multi-copy glutenin genes and carried out the first successful PCRs with ancient DNA from charred grain, using spelt wheat from the Iron Age hillfort at Danebury (Allaby et al. 1994; Fig. 5.1).

Figure 5.1. The first ancient DNA sequences obtained from charred grain. The two sequences DANEB1 and DANEB2 were obtained by Robin Allaby from charred spelt wheat from Danebury, dated to the second half of the first millennium BC. The sequences are compared with the most similar of six sequences for modern glutenin genes that were known at the time, with dots indicating identities. Ancient DNA aficionados will note that most of the dissimilarities are C to T changes, which we now know to be damage artefacts typical of ancient DNA. (After Allaby et al. 1994, with permission.)

DANEB1 GATACGGTGGGCTTATGCAGACCGTCCCAAAATCTGTTTTGCAAAGCTCCAATTGCTCCTTGCTTATCCAGCTTCT
5(X) ...

DANEB1 TTTTGTTTGGCAACCTGGCCCTTTTCCAAACCCGATTGGTTCTCTCTGTGCTTATCCAGCTTCT
5(X) ...

DANEB1 CCGTGCACCGCAGCTGCTGACCTCCCTGCCCTTTATTAAAGCTTACCACTTTCAAAATCTGTTTTGCAAAGCTCCAATTGCTCCTTGCTTATCCAGCTTCT
5(X) ...

DANEB1 CACCCACAAACACCGAGCA
5(X)

DANEB2 GATACGGTGGGCTTATGCAGACCGTCCCAAAATCTGTTTTGCAAAGCTCCAATTGCTCCTTGCTTATCCAGCTTCT
SILIENTT.............................

DANEB2 TTTTGTTTGGCAACCTGGCCCTTTTCCAAACCCGATTGGTTCTCTCTGTGCTTATCCAGCTTCT
SILIENTT.............................

DANEB2 CCGTGCACCGCAGCTGCTGACCTCCCTGCCCTTTATTAAAGCTTACCACTTTCAAAATCTGTTTTGCAAAGCTCCAATTGCTCCTTGCTTATCCAGCTTCT
SILIENTT.............................

DANEB2 ACCCACAAACACCGAGCA
SILIENT

Single versus multiple origins of agriculture

Following the Danebury project, the next stages in the study of charred grain in my own lab were carried out with Martin’s indirect, rather than direct, involvement. With typical self-sacrifice, Martin had taken on the role of Chairman of the Steering Committee of the NERC Ancient Biomolecules Initiative (ABI), which funded virtually all of the biomolecular archaeology carried out in the UK during the mid 1990s, during that crucial period when the subdiscipline became established as a leading part of science-based archaeology. As Chairman of the Steering Group, Martin was barred from making applications to the ABI himself, as either principal or co-investigator, and we therefore
had to shelve plans to continue our work on ancient DNA. Instead, the two grants that I received from the ABI were joint with Glynis Jones of Sheffield, another archaeobotanist with whom I have enjoyed a productive and lengthy collaboration.

Despite Martin’s involvement in the ABI, he and I did not stop working together, and my ideas about biomolecular archaeology continued to benefit from Martin’s insights and encouragement. During this period—the mid-1990s—our discussions increasingly moved away from ancient DNA to the events which occurred during the origins of agriculture. At this time there was a growing movement, led by Daniel Zohary and others, in support of a model in which the apparent simplicity of this domestication scenario, and in particular with the corollary, as I saw it, that the early version of a crop would have to be kept isolated from wild populations of that plant, to avoid cross-hybridization which would lead to the crop losing the domestication traits and reverting to the wild phenotype. Martin suggested that fixation of the domestication traits might occur only when early farmers moved away from areas where the wild plants were abundant. This ‘edge effect’ would certainly allow the domestication traits to become fixed quite rapidly, but implied that there was a preceding period during which early farmers were cultivating plants within the range of the wild population, those early cultivated forms having a wild ‘pre-domesticated’ phenotype. Martin also described to me a variety of ways in which humans could intervene in the life histories of their wild food plants to make these more productive, by weeding, soil improvement and so on, during stages before more sophisticated cultivation practices emerged. I gradually became convinced that the transition from gathering to agriculture had been a complex process, with many centuries elapsing between the first interventions into the growth of wild plants and the final emergence of a fully domesticated crop, and with the possibility of parallel processes, involving the same or different crops, occurring at the same time in different parts of the Fertile Crescent.

Having become convinced that agriculture emerged via a protracted and dispersed process, I was galvanized by a report in Science in November 1997, from Francesco Salamini’s group at the Max Planck Institute in Cologne, that suggested quite the opposite (Heun et al. 1997). Using state-of-the-art genotyping methods, Salamini’s group had acquired data on the genetic diversity of a large collection of einkorn landraces and wild accessions, and shown by phylogenetic and population genetic analyses that all cultivated einkorns derived from a single domestication event that took place in the Karacadag mountains of southeast Turkey, well within the natural range of wild einkorn. Although careful not to extrapolate beyond the origins of cultivated einkorn, the paper provided clear support for a rapid and localized origin of agriculture in southwest Asia, and the final statement of the paper, that ‘one single human group may have domesticated all of the primary crops in the region’, was quickly taken up by commentators and popular-science writers.

The notion that an enlightened group of humans invented agriculture 10,000 years ago captured the popular imagination. A suggestion by Martin, Robin and me, published in Science in January 1998, that the earliest archaeobotanical evidence for einkorn cultivation was not in Turkey, but 800 km to the south at Jericho, Netiv Hagdud, Gilgal and Aswad (M. Jones et al. 1998), was swatted down rather offhandedly by Salamini in a response that I still do not fully understand, but which seemed to say that we were perfectly correct but it didn’t matter because the genetics cannot be wrong. As a geneticist I was much less confident of the pre-eminence of my discipline as a tool for answering complex questions.

Of the three of us, Robin was the one who was most convinced that the data analysis in the einkorn paper, and in the following papers from Salamini’s lab on barley and tetraploid wheats (Badr et al. 2000; Özkan et al. 2002), which reached similar conclusions, were flawed. Robin embarked on a heroic series of computer simulations of increasing sophistication, which showed that a crop derived from two or more parallel domestications can appear to have a single origin, if events such as gene flow within the crop are not taken into account when the genetic data from landraces are analysed. As Robin was doing this work, Martin and I explored further the genetic and archaeological evidence in support of different models for agricultural origins, in a series of reviews and book chapters (Jones & Brown 2000; 2007; M. Jones et al. 1996) that culminated in a 2009 article in Trends in Ecology and Evolution (Brown et al. 2009), in which we brought together various strands of research to argue that the transition from hunting-gathering to agriculture in the Fertile Crescent should be looked on as a protracted and multi-regional process, and that ‘we should view the first attempts by humans to manage their wild plant resources as the initial step on a lengthy and unbroken path that continues today
with our scientifically informed programmes of crop improvement’.

The adaptation of crops to new environments

At the same time as we were arguing for a protracted origin of agriculture, Martin and I were also exploring new ideas regarding the spread of agriculture away from the Fertile Crescent and into Europe and Asia. We became interested in the idea that phylogeographic methods that had been developed to study, for example, the past expansion of plant populations out of glacial refugia might be applied to the spread of a crop during the Early Neolithic. We were not so much interested in the trajectories of spread, as those had been mapped in some detail from the more conventional archaeological record, but we wondered whether those trajectories were accompanied, and possibly influenced, by genetic adaptation of the crop plants to the new environments to which they were taken.

Initially these were just speculations, but in 2002 I saw an opportunity to put together a grant application that would allow us to test our ideas. Martin had begun a nascent collaboration with the crop geneticists at NIAB, a plant science institute in Cambridge. During the summer of 2002, Mim Bower, one of Martin’s postdocs, visited Manchester with Huw Jones and Lydia Smith of NIAB to talk about new project ideas. Specifically, they were interested in ‘bere’, a type of barley grown in Orkney, which was thought to have been brought to northern Scotland by the Vikings. NIAB had the equipment and expertise for high throughput genotyping of multiple crop accessions, so would I be interested in applying phylogeographic methods to test the hypothesis that bere originated in Scandinavia? The short answer was no; at that time I was not particularly turned on by the bere question (though more recently I have returned to it in collaboration with Peter Martin of Orkney College). However, I was interested in a more ambitious project in which we used NIAB’s genotyping skills to obtain data from barley from across Europe, to address some of the questions Martin and I had been discussing. This would be a large project, and to fund it we would need a larger-than-normal NERC grant. We brought Glynis Jones and Mike Charles of Sheffield into the discussions, and wrote a four-partner consortium grant, somewhat mischievously entitled ‘The Domestication of Europe’, which we submitted to NERC in 2003. Initially it seemed a very long shot, as NERC only awarded two or three such grants per year, and we were uncertain if biomolecular archaeology would be sexy enough in competition with grants addressing climate change, volcanoes, tsunami and suchlike. But all of our ideas fell into place, the reviewers were tough but fair and our responses robust and, thanks to Martin, ‘professorial’ in the way they were phrased. To cut a long story short, we got the grant.

So began one of the most enjoyable phases of my research career. Shortly after we began the project, Wayne Powell took over as Director of NIAB, and identified our project as one of the most interesting things that NIAB was doing at that time. Our regular consortium meetings, with Martin, Wayne, Glynis and Mike tossing ideas to and fro across the table, were stimulating in the extreme, and the data generated at NIAB, Cambridge and Sheffield came together into a splendid synthesis of dating, archaeobotany and genetics. My own strand at Manchester, on ancient DNA, was less successful, but I had the compensation of coordinating the writing of several of the papers that emerged from the project. The most interesting of these, from my viewpoint, was the work led by Huw Jones on sequence diversity of the Ppd-H1 gene, one of the central genes involved in the barley flowering-time response (H. Jones et al. 2008). Wild plants in the Fertile Crescent flower early in the year, so seeds can be produced before the weather gets hot and the plants die. Some types of cultivated barley, on the other hand, have a mutated version of Ppd-H1 that knocks out the flowering-time response, so these plants do not flower until later in the year, a benefit in northern Europe where the growing season is longer. Huw showed that landraces are distributed on a north–south cline across Europe, early-flowering plants with the wild-type version of Ppd-H1 predominating in the north and late-flowering plants with the mutant gene in the south. As the mutant gene appeared to be absent in wild barley, the implication was that the mutation giving rise to the late-flowering phenotype occurred in the crop somewhere in Europe, correlating perhaps with the apparent pause that occurred as agriculture moved northwards across the Hungarian plain. Huw and I drafted a Nature paper, but before we had time to circulate this to the other consortium members, Huw typed Ppd-H1 in a new set of wild barleys that he had obtained from the Vavilov Institute. A small number of these, mainly from elevated regions of the Zagros Mountains, contained the mutant version of the gene. If anything, this made the story even more intriguing, the implication becoming that the late-flowering version of barley spread to northern Europe not during the Neolithic, but at some later period, and possibly not via Anatolia, as was the case with the Neolithic spread of agriculture, but along a trajectory to the north of the Black Sea. Late flowering can therefore be looked on as an innovation that occurred well
after agriculture had become established in Europe, further emphasizing the unbroken nature of the crop improvement carried out by humans from the earliest interventions into the life histories of wild plants through to the present day.

The multidisciplinary approach to the human past

Over the last 20 years, genetic approaches, using both modern and ancient DNA, have assumed centre stage as a means of addressing a variety of archaeological questions. This is particularly true with work on human DNA, where extensive analysis of genotypes and genome sequences from modern human populations, supplemented in recent years with an explosion of ancient genomic data, has resulted in a rich narrative of the trajectories of human evolution and migration since the Palaeolithic. This has led to equally intense debate about some of the conclusions emerging from these genetic studies, in particular the occasional divergence between these conclusions and the interpretation of the past as revealed by archaeological research. An underlying theme is the extent to which there is productive discussion between geneticists and archaeologists, as suggested by Volker Heyd, who has written that ‘rather than simply handing over samples and advising on chronology, and instead of letting the geneticists determine the agenda and set the messages, we should teach them about complexity in past human actions and interactions’ (Heyd 2017, 357). Volker’s frustrations were prompted by two ancient DNA studies of Bronze Age Eurasian populations, but the lack of interaction between archaeologists and geneticists studying human DNA is arguably more general: one recent paper that uses ancient human DNA to infer the demographic structure of early farmers in the Near East cites a single book (admittedly a very good one) as a token reference to the vast archaeological literature on agricultural origins.

There has also been a huge proliferation of genetic studies of crop origins and evolution since Salamini’s ground-breaking work and since our own initial studies of the evolution of the flowering-time phenotype in cultivated barley. But those of us working in this area, whether geneticists or archaeologists, are much less aware of a divide between the contributions that our differing approaches are making to the growing development of knowledge and ideas. Studies of crop origins are revealing complex relationships between cultivated and wild populations of barley and wheat, and similar conclusions are being drawn for rice, maize and other crops from areas of the world other than the Fertile Crescent. The conclusions of these studies are, however, tempered by reference to archaeobotanical data and to the results of broader archaeological research, and many of the papers that are published have a multidisciplinary authorship. The same is true of the burgeoning work that is being done on Ppd-H1 and other genes involved in the annual circadian cycles of crops, as well as on genes underlying adaptations to environmental challenges such as drought and high temperature. Plant geneticists look on these genes as the key players in breeding programmes aimed at generating new varieties of crops that are resilient to future climate change. In order to understand how to manipulate these genes to tackle climate change, crop geneticists are increasingly examining how the genes evolved in the past, during and after the initial domestication of the crop. The multidisciplinary nature of this work ensures that the information provided by archaeology on the past development of agriculture is informing present-day attempts to breed crops to combat future climate change.

For me, the multidisciplinary debate that has accompanied my research activities over the last 30 years has been stimulating, challenging and hugely enjoyable. Central to this debate has been Martin Jones, whose own views on the importance of multidisciplinarity, not just in studies of early agriculture but in all areas of biomolecular archaeology, has influenced an entire generation of researchers. Martin has therefore been one of those pivotal figures who has driven his research fields forward not just through the generation and interpretation of data, but also by guidance and direction as to how research should be carried out. In this way, his influence goes far beyond those subjects in which he has been directly interested, and extends now to the growing areas of research populated by his past students and postdocs, and by his academic colleagues.

References

Heun, M., R. Schäfer-Pregl, D. Klawan, R. Castagna, M. Accerbi, B. Borghi & F. Salamini, 1997. Site of einkorn...