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Abstract—Data-driven prognostics solutions underperform
under the conditions of limited failure data availability since
the number of failure data samples is insufficient for training
prognostics models effectively. In order to address this problem,
we present a novel methodology for generating real-valued
failure data which allows training datasets to be augmented
so that the number of failure data samples is increased. In
contrast to existing data generation techniques which duplicate
or randomly generate data, the proposed methodology is capable
of generating new and realistic failure data samples. To this
end, we utilised the conditional generative adversarial network
and auxiliary information pertaining to the failure modes. The
proposed methodology is evaluated in a real-world case study
involving the prediction of air purge valve failures in heavy
trucks. Two prognostics models are developed using gradient
boosting machine and random forest classifiers. It is shown
that when these models are trained on the augmented training
dataset, they outperform the best prognostics solution previously
proposed in the literature for the case study by a large margin.
More specifically, costs due to breakdowns and false alarms are
reduced by 44%.

I. INTRODUCTION

Prognostics involve predicting time to failure of equipment
or predicting the probability that a piece of equipment operates
without a failure up to some future time [1]. Prognostics are
typically random or unknown, hence they must be estimated
using expert knowledge, condition monitoring data and/or
event data relating to past failures. Despite their popularity,
the long-lasting problem with data-driven prognostics is that
they rely on large amounts of historical failure data to estimate
prognostics model parameters [2]. Nevertheless, historical
failure data are limited in real-world industrial scenarios
[3]. This makes it difficult for data-driven models to extract
degradation patterns and characterise system performance
from historical data for prognostics modelling [4]. Hence,
predictions produced by these models are associated with high
uncertainty and therefore introduce additional costs due to
under maintenance and over maintenance. The objective of
this paper is therefore to propose a methodology to generate
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real-valued failure data, and hence augment historical datasets
used for prognostics modelling to include an increased number
of failure data samples. This allows predictions produced by
data-driven prognostics models to be associated with minimal
error and uncertainty when real failure data are limited.

One of the main reasons for limited failure data availability
in industrial scenarios is the rare failures problem [3]. This
problem is caused by the infrequent occurrence of failures
under a single failure mode [3]. In most real-world scenarios
rare failures can be disastrous [3]. The majority of industrial
organisations are prepared to handle the consequences of
common failures as they are experiencing them regularly. On
the other hand, since rare failures are infrequent organisations
have much less experience with them, hence left exposed
defencelessly to suffer from the unexpected consequences
of these failures. Vehicle, aircraft and telecommunications
equipment maintenance are examples of industrial scenarios
that constantly facing major penalties due to the rare failures
problem [3], [4], [5].

When failure data are limited for data-driven prognostics,
the use of physical model-based and rule-based prognostics
solutions have been unsuccessful in most industrial scenarios
due to following: physical model-based prognostics require
the assumption or empirical estimation of physics parameters
which is difficult and expensive in industrial scenarios
[2]. Moreover, large amounts of historical failure data
are still required for validating physical models [2].
Rule-based prognostics involve obtaining domain knowledge
and converting it into rules which is also difficult in most
industrial scenarios [2]. More importantly, when the number
of rules increases rule-based prognostics solutions suffer from
the combinatorial explosion problem [2].

Existing techniques used to address the problem of
limited failure data availability for data-driven prognostics
include undersampling and oversampling. Unfortunately, these
techniques also have major shortcomings. Undersampling
discards potentially useful non-failure data samples, hence, for
instance, can degrade the discriminating power of a classifier
[5]. Since oversampling techniques including advanced
techniques such as the synthetic minority oversampling978-1-5386-8357-6/19/$31.00 c©2019 IEEE



technique (SMOTE) involve duplicating existing failure data
or randomly generating data, they do not introduce new and
realistic (i.e. real-valued) failure data samples. Hence, the
fundamental problem of limited failure data availability is not
addressed [3].

We propose a methodology that overcomes the
shortcomings of existing techniques by strategically generating
real-valued failure data. More specifically, after identifying
failure modes of the target equipment using failure mode
and effect analysis (FMEA), the proposed methodology
estimates a generative model that captures the semantic
features of a failure mode from real failure data samples.
Then it uses the generative model to generate new failure
data by sampling from a joint distribution of noise and
auxiliary information pertaining to the failure mode. In this
methodology, the utilisation of auxiliary information available
in the prognostics domain (e.g. operating environment
information, expert knowledge, maintenance records, physics
of failure and weather conditions) is explored for conditioning
the noise being added into the newly generated data samples.
The tool used for estimating the generative model is the
conditional generative adversarial network (CGAN) [6]. It is
an extension to the generative adversarial network (GAN)
which was recently introduced as a novel way to train deep
generative models in a minimax game [7]. The CGAN has
been highly successful in the image recognition domain for
generating real-valued images when the number of real image
samples is insufficient for training image recognition models
effectively [8].

Despite its success in the image recognition domain,
generating real-valued data for prognostics presents the
following domain-specific research challenges: (i) identifying
auxiliary information pertaining to failure modes in different
industrial scenarios that is useful for conditioning the noise;
(ii) converting different kinds of auxiliary information that are
in complex and different forms into an easily manipulated
form, so that they can be integrated into the data generation
process; (iii) quantifying the change in information availability
for data-driven prognostics due to the generated failure data
samples. The research presented in this paper takes the
first steps towards overcoming these challenges, and hence
developing a methodology for generating real-valued failure
data for data-driven prognostics under the conditions of limited
failure data availability.

The remainder of the paper is organised as follows: Sec.
II summarises relevant aspects of the theoretical background
of CGAN. Sec. III presents the mathematical formulation
of the problem of prognostics under the conditions of
limited failure data availability. The proposed methodology
for generating real-valued failure data is discussed in Sec. IV.
The methodology is evaluated in the Scania air purge valve
prognostics problem and results are presented in Sec. V. The
paper is concluded and future work is outlined in Sec. VI.

II. BACKGROUND

A. Generative Adversarial Network

The standard GAN can be used to generate data as
follows. First, a generative model is trained in an adversarial
training framework to generate data similar to the real data
distribution. The adversarial training framework allows a
model to estimate its parameters by competing with another
model (i.e. two-player minimax game) [7]. Then new data
samples are generated by using the generative model to sample
data from a data distribution containing random noise [7].

The GAN consists of two neural networks: a generator G
and a discriminator D. Given a dataset X with samples {x ∈
X}, the goal of a GAN is to estimate a generative model
that captures the generator distribution PG(x) that matches
the real data distribution Pdata(x). The GAN estimates this
generative model by first enabling it to sample data from PG
by transforming a prior noise variable z ∼ Pnoise(z) into a new
data sample G(z). Then the discriminator network D is used
to discriminate between whether the generated sample G(z)
is a real data sample (i.e. G(z) is sampled from the real data
distribution Pdata) or a fake data sample (i.e. G(z) is sampled
from the generator distribution PG). Thus, the discriminator
outputs a single scaler indicating the probability of whether a
given data sample is real or fake without knowing the sample
is generated by the generator. The generator G uses this scaler
as the feedback to minimise its loss function log(1−D(G(z)))
whilst the discriminator D tries to minimise the loss function
log(D(x)) to improve its discriminating power. Formally, the
value function V (G,D) of the minimax game for estimating
a generative model using the GAN is as follows:

min
G

max
D

V (D,G) = Ex∼pdata [logD(x)]

+ Ez∼noise[log(1−D(G(z)))]
(1)

B. Conditional Generative Adversarial Network

In the standard GAN, the generative model is trained
without conditioning the noise being added into generated data
samples [6]. Thus, the generation of real-valued data is not
guaranteed, since there is no control over the modes of data
being generated [6]. In the image recognition domain, this
issue is addressed by extending the GAN into the CGAN [6].
In contrast to the GAN, CGAN conditions the generator and
discriminator on auxiliary information [6]. This is done by
feeding a vector representation of auxiliary information into
the generator and discriminator neural networks as additional
inputs.

More specifically, using auxiliary information vector Y with
samples {y ∈ Y }, the generator G in CGAN is modified
to generate data samples G(z|y) compared to G(z) in the
GAN. This means G generates a fake data sample G(z|y)
from the joint distribution of noise and auxiliary information
P (Z, Y ). Similarly, the discriminator is extended to D(x|y)
compared to D(x) in the GAN. Thus, the discriminator
tries to discriminate between real and fake data samples by
detecting whether a given sample is sampled from the joint



distribution of real data and auxiliary information P (X,Y ).
The feedback from the discriminator allows the generator to
condition noise on auxiliary information since it now needs to
generate fake data samples that fool the discriminator in two
cases: (i) when discriminating against real data samples; (ii)
when discriminating against other information related to the
prediction task.

III. PROBLEM FORMULATION

Before formulating the problem we introduce a method
for measuring the limited failure data availability. Prognostics
datasets become imbalanced when there is a limited number
of failure data samples [3]. This means there is a relatively
large number of non-failure data samples compared to the
failure data samples. The balance of a dataset can be measured
using the Shannon entropy, which calculates the average rate at
which the information is produced by a stochastic dataset [9].
Formally, for a dataset with N number of total data samples
and K number of classes with size C1 to CK , the normalised
Shannon entropy H ′ is given by (2). When H ′ gets closer to
0 the extent of the limited failure data availability problem
increases and conversely, when it gets closer to 1 the extent
of the problem decreases.

H ′ =
−
∑K
i=1

Ci

N log Ci

N

logK
(2)

t0 t1 t2 t3 t4 ... tP ...

Fault

... ... ...

Failure

tF ...

Prediction 
interval

...

Degradation 
period

Fig. 1. Diagram depicting key terms used for the problem formulation.

The problem of prognostics under the conditions of limited
failure data availability can be formulated using Fig. 1. When
a piece of equipment develops a fault, the fault grows in
magnitude causing a monotonic or nonmonotonic degradation
until failure. In order to predict the failure, starting from time
tP we observe condition monitoring data and/or event data
Xt ∈ R, t > tP . The data before time tP is known, that
is, we have a historical training dataset D = {Xt}tPt=1. C1

is a conditional statement which specifies the ideal prediction
interval for prognostics. It indicates how long before the failure
the prognostics model needs to predict it. The prediction
interval is determined with the help of a domain expert.

More importantly, the training dataset D has a limited
number of failure data samples. Hence, D satisfies the
following conditional statement C2 : 0 ≤ H ′ ≤ L, where H ′

is the normalised Shannon entropy of D and L is the highest
value of H ′ in which the existing prognostics solutions start
to underperform in an industrial scenario due to the limited
failure data availability.

The basic task is to learn a prediction procedure P1 that
predicts the possible future failures with minimal error and
uncertainty using the training dataset D whilst satisfying C1.
Thus, P1 is a function that maps a failure event sequence S
in D to a boolean prediction value which indicates whether
there will be a future failure. Hence, P1 : S → {0, 1}.

Using reliability theory P1 can be extended to the time
to failure prediction of equipment procedure P2 as follows:
calculate η.Γ( 1

β + 1) where η and β are the scale and shape
parameters of the Weibull distribution, and Γ is the gamma
function. Note that η.Γ( 1

β + 1) is the formulae for calculating
mean time to failure. Thus, the prediction procedure P2 is to
estimate η and β using failure event sequence S.

Using probability theory P1 can be extended to predicting
the probability that a piece of equipment operates without a
failure up to some future time prediction procedure P2 as
follows: calculate P (X|Y ), meaning for a given data sample
x ∈ X assign the probability y ∈ Y , where y is a label
that indicates whether the given data sample x contains a
degradation pattern pertaining to the failure mode that needs
predicting. Thus, the prediction procedure P3 is to estimate
P (X|Y ) using S and a classifier f(x) for the time period
tP +W , where W is the future time window that includes the
actual time of failure tF . This window is determined by the
minimum lead time required to plan and schedule maintenance
tasks, deploy maintenance engineers and perform maintenance.

One can observe that prediction procedure P1 is already
satisfied by either P2 or P3 (i.e. P2 and P3 already predict
whether there will be a future failure). Thus, the objective
of prognostics under the conditions of limited failure data
availability is to perform prediction procedures P2 and P3

when training dataset D satisfies the conditional statement
relating to the limited failure data availability C2.

IV. PROPOSED METHODOLOGY

Fig. 2 shows a flowchart of the proposed methodology
for generating real-valued failure data in industrial scenarios
that face the problem of limited failure data availability for
prognostics modelling.

A. Phase 1: Identify the Failure Mode and Baseline
Prognostics Performance

1) Perform FMEA or use expert knowledge to identify the
failure mode of the target equipment: FMEA is performed to
identify the failure mode of the target equipment in order to get
an understanding of what condition monitoring and/or event
data need to be captured for prognostics. One can also use the
literature for this purpose since for the majority of industrial
equipment failure modes are already known and presented in
the existing literature.

2) Obtain a historical dataset consists of condition
monitoring and/or event data pertaining to the failure mode:
Once the failure mode is identified, condition monitoring
and/or event data pertaining to the failure mode are captured
from the target equipment. Condition monitoring data include
measurements related to the health condition of the equipment.
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Fig. 2. Flowchart of the proposed methodology for generating real-valued failure data for prognostics under the conditions of limited failure data availability.

They can be captured from supervisory control and data
acquisition (SCADA) systems or deploying internet of things
sensors. Event data include information related to previous
failures of the equipment which can be captured from
inspection records, maintenance work-orders, repair and
replacements records.

3) Identify the state of the art prognostics solutions used for
predicting the failure mode and record their performance as
the baseline: If previous researchers have already attempted
to develop prognostics solutions for predicting failure of the
target equipment under the identified failure mode, the best
set of solutions currently available are used as the baseline.
If no previous work has been done, expert knowledge and
the process of elimination is used to identify the state of the
art prognostics solutions from a set of solutions implemented
using various statistical and machine learning algorithms. The
best performance the state of the art solutions can achieve on
the historical dataset with a limited number of failure data
samples is recorded as the baseline prognostics performance.

The prognostics performance is measured using precision
and recall. The standard evaluation metrics such as accuracy
and error rate are not suitable for evaluating prognostics
models when failure data are limited since they will be biased
to the negative class (i.e. non-failure data class) regardless
of the positive class (i.e. failure data class) leads to the
poor performance [10]. Precision and recall, however, are
not affected by the majority class [10]. The precision is the
fraction of correctly predicted failures among all the predicted
instances that include actual failures and false alarms. The
recall is the fraction of correctly predicted failures among all
the actual failures. This means higher the precision lower the
false alarms (i.e. lower the false positive rate), and higher
the recall lower the undetected failures (i.e. lower the false
negative rate).

B. Phase 2: Identify Auxiliary Information and Convert into
an Easily Manipulated Form for Generating Real-valued
Failure Data

1) Use expert knowledge to identify auxiliary information
pertaining to the failure mode: Table I outlines different kinds
of auxiliary information available in the prognostics domain.
The challenge is to identify pieces of auxiliary information that
are useful for generating real-valued failure data in different
industrial scenarios. In the proposed methodology, expert
knowledge provided in the literature and obtained from on-site
maintenance engineers is used to identify auxiliary information
that may potentially be useful for generating real-valued failure
data. Then phase two and three are iteratively performed in
order to identify the ideal set of auxiliary information that
leads to the satisfactory prognostics performance.

TABLE I
DIFFERENT KINDS OF AUXILIARY INFORMATION AVAILABLE IN THE

PROGNOSTICS DOMAIN

Sources of Epistemic Uncertainty Expert Knowledge
Operating environment information Equipment similarity information
Equipment stress level information Empirically validated rules

Weather conditions Known failure thresholds

Maintenance Text Records Physics of Failure
Inspection records Differential equations

Repair and replacement records Stochastic differential equations

2) Convert auxiliary information into an easily manipulated
form for generating real-valued failure data: Auxiliary
information pertaining to the failure modes is in complex
and different forms. For example, text entries of maintenance
records, differential equations of physics of failure and
meteorological data representing weather conditions. Thus,
the challenge is to convert this information into an easily
manipulated form in order to enable them to be integrated
into the data generation process for conditioning the noise.



In the proposed methodology, auxiliary information is
converted into vector representations. This can be further
explained using the following example. Imagine that there is a
set of equipment that has failed under the same failure mode.
During the past degradation periods of this set of equipment,
the maintenance engineers have taken measurements of their
stress levels at regular intervals. We can use this stress level
information to generate real-valued failure data by informing
the CGAN that a newly generated failure data sample may
contain the patterns in historical stress level data the equipment
had during their past degradation periods. Thus, the noise
being added to the generated data samples is conditioned
on stress level information related to the past failures of the
equipment.

In order to integrate stress level information into the data
generation process, we first convert it into an abstract form.
This allows equipment-specific information to be generalised
to all the equipment that has failed under the failure mode that
needs predicting. For instance, if the stress level information
of equipment is recorded as the surface temperature of
equipment A,B and C increased from 40 to 80 Celsius, once
converted into the abstract form this information becomes
some variable X increases. Thus, specific terms such as
equipment A,B and C, surface temperature and numerical
thresholds are removed. Then the abstracted information
is converted into the statistical form by representing it as
some continuous variable C. The continuous variable C
can be converted into a distribution between some values
y0 and y1. Finally, this distribution can be represented as
a vector Y containing some values {y ∈ Y |y0 < y <
y1, and y increases}.

C. Phase 3: Generate Real-valued Failure Data by
Conditioning Noise on Auxiliary Information and Evaluate

1) Structure historical data: As shown in Fig. 3, the
historical data obtained in phase one is divided into three
datasets: (i) training dataset (referred to as the original training
dataset) which includes data for training prognostics models;
(ii) validation dataset which is used for hyperparameter tuning;
(iii) testing dataset which is used to evaluate prognostics
models on previously unseen data.

The objective of generating real-valued failure data is to
augment the original training dataset so that the number of
failure samples available for training prognostics models is
increased. To this end, as shown in Fig. 3 we first divide the
original training dataset into two subsets containing failure
data (referred to as the training failure data subset) and
non-failure data (referred to as the training non-failure data
subset). The training failure data subset is used to estimate
a generative model that captures the semantic features of the
failure mode using noise and auxiliary information vectors.
After the dataset containing real-valued failure samples is
generated, it is combined with the two subsets to obtain
the augmented training dataset. The validation and testing
datasets are left unchanged for hyperparameter optimisation
and comparative evaluation of prognostics models.

Historical data

Original training dataset Validation dataset Testing dataset

Training 
non-failure 
data subset

Augmented training dataset Validation dataset Testing dataset

Generated 
failure 
dataset

Training 
failure 

data subset

Auxiliary 
information 

vector
Noise 
vector

Pr
od

uc
es

Generate real-valued failure data

Fig. 3. Diagram depicting how historical data are structured in the proposed
methodology. The original training dataset is augmented by integrating
generated real-valued failure data samples. The validation and testing
datasets are left unchanged for hyperparameter optimisation and comparative
evaluation of prognostics models.

2) Define the CGAN architecture and estimate a generative
model: Following from the theoretical background discussed
in Sec. II, the CGAN architecture implemented for our
methodology is presented in Fig. 4. In the proposed
methodology, the generator and discriminator are two artificial
neural networks (ANN). As denoted by number 1 in the
figure, first the noise vector Z is combined with the auxiliary
information vector Y into the joint distribution P (Z, Y ). This
is then used as the input to the generator ANN. Then as
denoted by the number 2, data samples in the training failure
data subset X are combined with the auxiliary information
vector Y into the joint distribution P (X,Y ). This is used as
the input to the discriminator ANN.

The objective of the generator G is to fool the discriminator
D into believing that a generated failure data sample is real.
Thus, as denoted by the number 3 in Fig. 4, the generator
produces a generated data sample G(z|y) by conditioning the
noise on auxiliary information. More specifically, the generator
aims to minimise its loss function log (1−D(G(z|y))). The
objective of the discriminator D is to detect whether a given
data sample is real or fake. Thus, as denoted by the number
4, the discriminator produces a probability D(x′|y) indicating
how much it believes the given data sample x′ is real or
fake. More specifically, the discriminator tries to minimise its
loss function log(D(x′|y)). At the end of the training, the
generator is capable of generating new failure data samples
that the discriminator cannot discriminate as real or fake. Thus,
the generator ANN (i.e. estimated generative model) has now
captured the semantic features of the failure mode and hence
can be used for generating real-valued failure data.

3) Generate real-valued failure data and augment the
original training dataset: A new noise vector and the
previously used auxiliary information vector are used as inputs
to the estimated generative model for generating real-valued
failure data. More specifically, given the joint distribution of
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Fig. 4. Diagram depicting the architecture of the conditional generative
adversarial network implemented for the proposed methodology.

noise and auxiliary information vectors as input, the generative
model can predict a set of real-valued failure data samples.
Once the real-valued failure data samples are generated, they
are combined with the original training dataset to obtain the
augmented training dataset as shown in Fig. 3.

4) Quantify the change in prognostics performance
compared to the baseline: The change in performance is
quantified by comparing the baseline precision and recall to
the precision and recall obtained when prognostics models are
trained on the augmented training dataset and evaluated on the
testing dataset.

V. SCANIA CASE STUDY

A. The Problem of Scania Air Purge Valve Prognostics

Scania heavy trucks are popular for their customisability
since the customers are provided with the ability to choose
from a wide range of options for customising trucks to match
to their specific requirements [11]. The number of axels, power
take-off position, engine power, fuel type are examples of
customisable options. Moreover, Scania trucks are used for
different purposes (e.g. long haulage, construction work and
garbage collection) [11]. This diversity presents a challenge
for the planned maintenance of trucks, hence a prognostics
solution that predicts failures in individual trucks with minimal
error and uncertainty is required [11].

The air dryer is part of the air processing system that
provides compressed air for the critical components of heavy
trucks such as air brakes, air suspension and gearbox. It
removes water vapour from compressed air to prevent moisture
and condensation from interfering with critical components.
This process of removing water vapour from compressed air
is called air purging. Air dryer uses an air purge valve (APV)
(see Fig. 5) to automatically purge compressed air. These
valves can degrade in performance due to crack, hence cause
compressed air to be leaked from the air processing system.
APV failures often result in the complete immobilisation of
vehicles since there is insufficient amount of compressed air
in the truck for performing its critical functions [11].

Scania provided a dataset that contains data collected from
80000 heavy trucks from five European markets [11]. The
positive class in the dataset represents trucks with APV

Fig. 5. Image of an air dryer with the air purge valve marked in red.

failures. The prognostics problem is modelled as a binary
classification task in which the challenge is to predict whether
a truck faces an APV failure in near future. According to
Scania, the estimated cost of an undetected APV failure is
AC500 (CFN ), and the estimated cost of a false alarm is AC10
(CFP ) [11]. CFN is due to the cost of an undetected APV
failure that causes a breakdown of a truck. CFP is due to
the unnecessary checks that need to be done by a mechanic
due to false alarms. The objective is to reduce the total cost
of breakdowns and false alarms. Let m be the number of
undetected APV failures and n be the number of false alarms,
then the total cost of breakdowns and false alarms TCost is
given by the following:

TCost = mCFN + nCFP (3)

The correct prediction of APV failures needs to be given
priority over the false alarms since the undetected failures
result in a larger penalty (i.e. AC500 compared to AC10). Hence,
as shown in (4) using the prediction procedure P3 defined in
Sec. III, we formulate the Scania APV prognostics problem as
an optimisation problem. Thus, the objective of the problem of
Scania APV prognostics is to minimise TCost whilst optimising
P3 to predict the optimal value pair for m and n with minimal
error and uncertainty. Hereinafter, we refer to TCost to as the
prognostics performance.

minimise
P3

TCost = mCFN + nCFP

subjected to m ≥ 0,

n ≥ 0,

CFN = 500,

CFP = 10.

(4)

B. Limited Failure Data Availability for Scania APV
Prognostics

Scania dataset is divided into training and testing datasets.
The training dataset contains 60000 data samples and the
testing dataset contains 16000 data samples. Out of the 60000
training samples only 1000 belongs to the positive class. This
imbalance ratio of 1000:59000 between positive and negative
classes means that the positive class only covers 1.6% of
the entire training dataset, whereas the negative class covers
98.4%. Thus, the Scania dataset is considered as a highly
imbalanced dataset in the literature [12].

Using the method introduced in Sec. III, we measure the
extent of the problem of limited failure data availability. In this



case, the number of positive samples C1 and negative samples
C2 are 1000 and 59000 respectively. The number of classes
K is 2. The normalised Shannon entropy H ′ of the Scania
dataset is therefore 0.08 which indicates a highly imbalanced
dataset, thus the extent of the limited failure data availability
problem is high.

C. The State of the Art of Scania APV Prognostics

There are a few solutions already proposed in the literature
for addressing the problem of Scania APV prognostics. Table
II summarises the top three prognostics solutions currently
proposed in the literature. Except the solution proposed in [11],
other two solutions were developed during the 15th Intelligent
Data Analysis (IDA 2016) competition. The testing dataset
was not provided to the authors of [12] and [13] during the
competition, and hence the results presented within these two
publications are the prognostics performance obtained when
the solutions were evaluated on the training dataset. However,
the publishers of Scania dataset later published the prognostics
performance of these two solutions when they were evaluated
on the testing dataset [11]. Thus, the results summarised in
Table II are the performance achieved when all the three
solutions were evaluated on the testing dataset.

In the remainder of this section, we show that using
the proposed methodology for generating real-valued failure
data for prognostics under the conditions of limited failure
data availability, one can obtain a far better prognostics
performance than all the existing solutions.

TABLE II
PROGNOSTICS PERFORMANCE (TCOST ) OBTAINED BY TOP THREE

SOLUTIONS AVAILABLE IN LITERATURE FOR SCANIA APV PROGNOSTICS

Rank TCost
(AC)

Undetected
Failures

False
Alarms

Solution
Reference

Performance
Reference

1 9920 9 542 [12] [11]
2 10900 12 490 [13] [11]
3 11430 12 543 [11] [11]

D. Generating Real-valued Failure Data for Scania APV
Prognostics

In this section, a discussion on how the three phases of the
proposed methodology are applied to address the problem of
limited failure data availability in Scania industrial scenario is
presented.

1) Phase 1: Identify the failure mode and baseline
prognostics performance: Since the failure mode is previously
identified and a dataset is already provided by Scania, we
start with identifying the state of the art algorithms used
for prognostics modelling in the Scania dataset. The random
forest (RF) classifier-based prognostics solutions have been
previously successful in predicting Scania APV failures (e.g.
[11] and [12]). The gradient boosting machine (GBM) is
another popular classifier for developing classification-based
prognostics solutions [14]. We implemented two prognostics
solutions using the GBM and RF classifiers. When trained

on the original training dataset and evaluated on the testing
dataset, these solutions have obtained prognostics performance
TCost of AC10750 and AC11090 respectively.

The baseline performance used in this work is the
prognostics performance achieved by rank one in Table II (i.e.
TCost of AC9920). This is the best performance achieved in the
previous literature for the Scania APV prognostics [11].

2) Identify auxiliary information and convert into an easily
manipulated form for generating real-valued failure data:
Similarity analysis is used in the prognostics research for
predicting failures in asset fleets by allowing similar assets
to share data between each other [15]. In our work, similarity
analysis is employed for a different purpose. We group similar
trucks with APV failures in the training dataset and use these
groups as auxiliary information to direct the data generation
process.

Since no information that can be used to group trucks (e.g.
mileage, purpose, etc.) is provided with the Scania dataset,
we use clustering to identify natural groupings of trucks with
APV failures. We first create a subset D′ that contains only
the failure data samples in the training dataset (i.e. training
failure data subset). Then k-means and hierarchical clustering
algorithms are used to identify the natural groupings in D′.
Fig. 6 shows the t-SNE projection of the clusters generated
by k-means and hierarchical clustering algorithms. It can be
observed that all the data samples (i.e. trucks with APV
failures) in the training failure data subset D′ are grouped into
two distinct clusters by both clustering algorithms. Thus, the
following abstract piece of auxiliary information is identified:
there are two groups of trucks with APV failures. Hence, the
data generation process can be directed using the following
condition: a newly generated data sample representing a truck
with APV failure should belong to one of two groups.
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y
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Fig. 6. The t-SNE projection of natural groupings of trucks with APV
failures. It can be observed there are two groups of trucks with APV failures
in the training dataset.

In order to convert abstracted auxiliary information into a
vector representation, we choose the class labels generated by
the k-means algorithm since it has obtained the best silhouette
score which indicates the quality of clustering. The class labels
that represent the two groups with natural numbers 1 and 2 is
a vector of natural numbers Y = {y ∈ N|1 ≤ y ≤ 2}.

3) Phase 3: Generate real-valued failure data by
conditioning noise on auxiliary information and evaluate:
In order to estimate a generative model that captures the



semantic features of APV failures in Scania heavy trucks,
we use the CGAN architecture previously presented in Fig.
4. The generator G and discriminator D are artificial neural
networks. The auxiliary information vector Y is the vector
representation of class labels obtained in the previous phase.
The training failure data subset X is D′. The noise vector
Z is Gaussian noise. Using these parameters as inputs to
the CGAN architecture, we estimate the generative model for
generating real-valued APV failure data by conditioning noise
on auxiliary information.

Then the original training dataset is augmented to include
the generated real-valued failure data samples. In this instance,
we generated 2000 failure data samples and therefore the
positive and negative sample ratio in the augmented training
dataset is 3000:59000 compared to the 1000:59000 in the
original training dataset. Moreover, the normalised Shannon
entropy H ′ is now increased from 0.08 to 0.2.

Fig. 7 shows reliability-based confusion matrixes obtained
for GBM and RF classifier-based prognostics solutions when
trained on the augmented training dataset and evaluated on the
testing dataset. The prognostics performance TCost achieved
by the GBM and RF classifier-based prognostics solutions are
AC5550 and AC6050 respectively. Compared to the performance
obtained by the best prognostics solution previously proposed
in the literature (the baseline), this is a 44% (GBM) and 39%
(RF) reduction of costs due to breakdowns and false alarms.
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Fig. 7. Reliability-based confusion matrixes depicting the prognostics
performance of two prognostics solutions when trained on the augmented
training dataset and evaluated on the testing dataset.

VI. CONCLUSION AND FUTURE WORK

In this paper, the research work conducted by the authors
for taking first steps towards developing a methodology that
generates real-valued failure data for prognostics under the
conditions of limited failure data availability is presented. This
methodology integrates the conditional generative adversarial
network, existing failure data, noise and auxiliary information
pertaining to the failure modes for generating new and realistic
failure data samples. Thus, allows predictions produced
by data-driven prognostics solutions to be associated with
minimal error and uncertainty when real failure data are
limited.

We intend to further develop the initial version of the
methodology proposed in this paper. More specifically, future
research involves addressing the following challenges: (i)
adapting the methodology into industrial scenarios with other
kinds of historical data; (ii) identifying other kinds of auxiliary
information, and how to convert and integrate them into the
real-valued failure data generation process; (iii) developing an
application criteria that outlines in industrial scenarios with
what characteristics the methodology is suitable to be applied.
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