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Abstract 

The Marsh Lane viaduct is a masonry railway bridge constructed during the 19th century nearby 
Leeds Central Railway Station. The bridge appears significantly damaged due to the increase of the 
operational train loads over the last decades and due to environmental effects. Due to this 
degradation, extensive repair was conducted in 2015. After this repair work, an extensive fibre 
optic sensor network was installed below three spans of the bridge to monitor surface strains at 
68 locations on the underside of the arch spans. The paper compares data collected from two 
monitoring periods, 16 months apart. Combining statistical analysis and signal processing 
techniques, the results show that local damage, as well as change in the global dynamic behaviour 
of the structure over time, can be effectively detected with the use of Fibre Bragg Grating sensors. 
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1. Introduction 

As the population grows, an increasing number of 
people rely on established transport and utilities 
networks. In particular, ageing masonry bridges 
comprise 50-60% of the European rail stock [1, 2]. 
The majority of these structures were built more 
than a century ago, before the enforcement of 
building codes, and their condition deteriorates 
with time due to the combined action of increased 
train loads, support movements, and 
environmental effects. Today, engineers are facing 
the challenge of maintaining these vital assets, 
while at the same time there is a limited capability 
to answer two important questions: (a) what is 
the current state, or performance, of the 
structure, and (b) how quickly is deterioration 
happening (Figure 1). 

 

Figure 1. Typical deterioration curve of an ageing 
structure 

The Finite Element Method (FEM), the most 
common choice for structural engineers to 
address these questions, may provide realistic 
results for the assessment of the existent stress 
fields of ageing masonry structures, with the 
condition that all the complex material 
parameters, structural arrangements, and loading 
conditions are well known. However, this is 
challenging to achieve in practice [3]. Masonry is a 
non-uniform, composite material, with low tensile 
strength and an inherently discontinuous nature. 
At the same time, due to the absence of 
monitoring data, there is no information on the 
deformation or loading histories of the structure. 

In order to address these challenges, the Center 
for Smart Infrastructure and Construction (CSIC) at 
the University of Cambridge, UK installed a long-
term Structural Health Monitoring (SHM) system 

with a network of Fibre Optic (FO) sensors in a 
damaged masonry rail bridge. The objective of this 
monitoring is to better understand the current 
serviceability state of the bridge, including the 
variation and magnitude of the strain distribution 
under typical loading, and evaluation of how the 
strain changes with time. Furthermore, CSIC 
collaborates with the Alan Turing Institute, UK and 
the Department of Mathematics, Imperial College 
London, UK to combine this technology with 
streaming statistical analysis for the development 
of real-time structural alert systems [4, 5]. 

The current study shows that over the last two 
years there has been a statistically significant 
amplification of the dynamic deformation of the 
bridge at specific locations, where the formation 
of new cracking has started. Furthermore, FO 
sensors appeared to be resilient and suitable for 
long-term monitoring of existing masonry 
structures. 

2. Description of the bridge 

The Marsh Lane Viaduct is located next to the 
Eastern entrance of Leeds Railway Station, in the 
centre of the city. The bridge was constructed 
between 1865 and 1869 [6]. Today it carries two 
electrified tracks with a traffic load that exceeds 
200 trains per day, ranging from typical passenger 
trains to multi-wagon freight trains. Figure 2 
shows the southern side of the investigated 
section of the bridge, which comprises the Arches 
37, 38 and 39.  

 

Figure 2. The southern side view of the Marsh Lane 
Viaduct in Leeds, UK 
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Figure 3. Plan view of the investigated section of the Marsh Lane Viaduct, showing the main damages 

observed under the arches (in red) and the installed fibre optic sensors network  

Bridge dimensions and damages are discussed in 
detail in Acikgoz et al. [7]. Figure 3 shows the plan 
view of the bridge that summarizes the main 
damages in the arches. Arch 37 is the most 
damaged arch, followed by 38 and 39. The most 
severe damages are concentrated over the 
relieving arches at the centre of the piers due to a 
spreading mechanism that forces the relieving 
arch keystone to descend and the walls to bow 
outwards [7]. For this reason, Network Rail, the 
owner of the bridge, conducted in 2015 an 
extensive repair by filling in the relieving arches 
with concrete and installing steel ties to arrest 
transverse movements of the piers and the 
spandrel walls, as shown in Figure 4. This 
mechanism is observed in both piers between 
Arches 37-38 and Arches 38-39, although in the 
first case masonry degradation is more intense. 
Furthermore, over the 37/38 pier, there are 
symmetric transverse cracks in the arches at the 
level of the top of the backing, where the backfill 
level starts (see Figure 4). According to [7], these 
separation cracks are related to the out-of-plane 
rocking response mechanism of the pier. In 
addition, a longitudinal crack along the Arch 37 
develops below the northern trail of the bridge.  

 

 

Figure 4. Northern view of the pier between 
Arches 38 and 39. 
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3. Sensing System 

The idea of making sensors out of optical fibres is 
not new and goes back at the late 70s [8]. 
However, it was not until the optical 
telecommunications boom of 2000 and the rapid 
expansion of the Internet that Fibre Optic (FO) 
sensors began to attract the interest of the 
scientific and industrial sectors. During the first 
decade of the millennium, there were limited 
practical applications in the field of SHM [9]. 
Nevertheless, over the last decade there have 
been several successful examples such as the 
monitoring of geotechnical structures, dams, 
pipelines, and bridges [10, 11]. 

Today, FO sensors are used to measure 
mechanical strain, pressure, and temperature, 
among other quantities, and can be divided in two 
main categories; quasi-distributed and distributed 
sensors [8]. The first category is mainly 
represented by Fibre Bragg Grating (FBG) sensors. 
In an FBG, tiny diffraction gratings inside the fibre 
core filter a specific wavelength of light and reflect 
it back to the source. The wavelength of the 
reflected light shifts in proportion to temperature 
and strain changes. In the second category of FO 
sensors, the whole cable works as a sensor by 
studying changes in the spectrum of 
backscattered light within the fibre. The main 
advantage of FO technology is that, using only a 
few cables, it is possible to cover large areas with 
multiple high performance sensors.  

In order to assess the performance of the bridge 
and the effectiveness of the 2015 retrofitting 
intervention, Network Rail collaborated with CSIC 
in Cambridge University for the installation of an 
FBG sensors network underneath Arches 37 and 
38. This was the first FBG deployment in a 
masonry rail bridge [7]. One of the objectives of 
this short-term installation was to test the 
efficiency of the system and better plan a 
permanent monitoring system with FBGs, which 
was subsequently installed in November 2017. 

The long-term monitoring system shown in Figure 
3 comprises: 

- 47 FBG strain sensors in the longitudinal 
direction, at the North and South sides of Arches 
37, 38 and 39 

- 17 FBG strain sensors in the transverse direction, 
at the East and West sides of Arches 37 and 38 

- 4 FBG sensors attached to steel wires that 
connect the springings of Arch 37 and Arch 39, 
measuring relative horizontal displacement of the 
top of the piers 

- 5 FBG sensors calibrated to measure 
temperature, distributed over different locations 
in the bridge. 

For these 73 sensors, four custom designed arrays 
of FBGs were used. Each one of the four cable 
arrays has a Germanium doped single mode silica 
fibre with 20 FBG sensors distributed every one 
meter. The cables are fixed on the bricks using 
precision machined aluminium clamps, which 
appear as small squares in Figure 3. The clamps 
along the longitudinal direction are denoted with 
the letter A, numbered from West to East (A1-A9), 
and in the transverse direction with the letter T, 
numbered from North to South (T1-T7). The FBGs 
are located between the clamps, measuring 
relative strain between two fix points. 

The wavelength of the backscattered light is 
sensitive to strain and temperature change. In this 
study, only the dynamic deformation of the bridge 
at the instance of train loading is considered, 
where the temperature fluctuation is marginal. In 
that case, the change in strain, Δε, at the location 
of the FGB sensor is given by 

𝛥𝜀 =
𝜆−𝜆𝜊

𝜆𝜊

1

1−𝜌
  , (1) 

where λο is the original transmitted wavelength, 
which is constant for each FBG sensor, λ is the 
instant measured wavelength that changes with 
strain variation, and ρ=0.23 is the photo-elastic 
constant. 

The 4-channel sm130 Optical Sensing Interrogator 
of Micron Optics, Inc. that is used in this study 
offers up to 1 kHz sampling rate per sensor and 2-
3 micro-strain (εμ) resolution. The interrogator is 
continuously acquiring data, but is triggered to log 
only strains from train passage. The interrogator is 
permanently installed under Arch 37, inside the 
outdoor cabinet shown in Figure 5. The cabinet is 
equipped with 110 Watt heater and two fans 
controlled by thermostats, to protect the 



IABSE Symposium 2019 Guimarães: Towards a Resilient Built Environment - Risk and Asset Management 
March 27-29, 2019, Guimarães, Portugal 

5 

equipment from humidity and extreme 
temperatures. The interrogator is connected to a 
laptop with a router, which transmits remotely 
daily data to the CSIC server at the Department of 
Engineering, University of Cambridge, through a 
4G internet connection. The data are shared with 
the Alan Turing Institute through an SFTP (Secure 
File Transfer Protocol) connection between CSIC 
and Department of Mathematics, Imperial College 
servers.  

 

Figure 5. Current view of the data acquisition 
system 

4. Signal Processing 

Figure 6 presents a typical dynamic response of 
the sensor “37NA6A7” under train loading, 
meaning the longitudinal sensor between clamps 
A6 and A7 at the North side of Arch 37 (see Figure 
3). The signal corresponds to the most common 
passenger train type, the British Rail Class 185, 
with three carriages and typical bogie weight 33.4 
tons. Positive values correspond to relative tensile 
strain, and negative to relative compressive strain. 
The Class 185 3-carriage train represents 
approximately 50% of the data. Another 20% 
corresponds to Class 155 with 2 carriages and 
typical bogie weight 19.2 tons. The rest 30% 
represents other passenger trains with four or 
more carriages (e.g. Classes 222, 144) or multi-
wagon freight trains. 

It was noted that each train type has a specific 
signature signal per sensor depending on the 
class, number of carriages and direction. The 

trains heading East are using the North trail, 
causing the North side of the bridge to deform 
more, whereas the trains heading West (entering 
Leeds station) are using the South trail, loading 
more the South side of the bridge. 

A code in MATLAB was developed to post-process 
the signals and automatically group the loading 
events based on train type and direction. This 
permits direct comparison of the dynamic 
response of the bridge at 68 locations for the 
exact same train loading over time. For instance, 
in Figure 6 the typical response of the 37NA6A7 
sensor for the 3-carriege Class 185 train in July 
2016 (red line) is compared with the response at 
the same location, same train, speed and direction 
in November 2017 (black line). Although the 
majority of the sensors presented identical signals, 
few locations, like the 37NA6A7, presented a 
significant amplification of the dynamic 
deformation. 

 

Figure 6. Change in the dynamic deformation of a 
damaged area of the bridge between July 2016 

and November 2017    

The algorithm applies cross-correlation techniques 
to find time lags between similar signals, for 
instance, signals from the same sensor location in 
Arches 37 and 39 (e.g. cross-correlation between 
keystone sensors 37NA4A5 and 39NA4A5). Given 
that the distance between the arches is known, 
the time lag corresponds to a specific train speed 
and direction. 

The number of positive and negative peaks 
corresponds to a specific number of carriages and 
the relative distance between the positive peaks 
corresponds to the relative distance between train 
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axles, which is characteristic for each train class. 
For the train direction and class identification a 
simple peak analysis in MATLAB is giving reliable 
results for the majority of the train events. A small 
percentage of events where the train speed over 
bridge was not constant (e.g. train was stopping or 
accelerating) or when two trains were passing 
over the bridge simultaneously, were separated 
from the typical response signals. 

5. Statistical Analysis 

This study presents results from statistical analysis 
of the dynamic strain variation per sensor location 
over time. In particular, mean value and standard 
deviation of the positive and negative peaks of the 
response for each sensor location has been 
calculated for 95 records in July 2016 during the 
first FO sensors deployment, and 62 records in 
November 2017, 148 records in March 2018 and 
116 records in June 2018, during the second 
(permanent) FO sensors deployment. Performing 
a statistical analysis for all trains, including 
passenger and multi-wagon freight trains, resulted 
in a big dispersion of data, which does not permit 
for direct comparison over time. However, if the 
analysis is performed for a specific train type and 
direction, as discussed in the previous section, 
then the dispersion of data (standard deviation) 
drops significantly.  

Figure 7 presents mean value and standard 
deviation of the maximum (positive/tensile) and 
minimum (negative/compressive) relative strains 
for 42 sensor locations that the 2016 and 2017-18 
deployments had in common. The statistical 
analysis is performed for the Class 185 3-carriege 
train, heading East, which is the reason why 37N 
and 38N longitudinal sensors under the North trail 
recorded bigger strains compared to 37S and 38S 
longitudinal sensors under the South trail. The 
bold black line represents the dynamic 
deformation of the bridge in July 2016, whereas 
the green, blue and red lines corresponds to 
November 2017, March and June 2018.  

While the response is similar in most locations, 
the analysis reveals that there is a significant 
amplification of the dynamic deformation of the 
bridge at the sensor locations inside the boxes 
with dashed blue line, shown in Figures 3 and 7, 
between the first and the second installation, 
which are more than 16 months apart. In 
particular there is a 100% increase in 37NA6A7, 
and a 50% in 37NA7A8 and 38NA2A3. These 
sensors are located next to the most damaged 
pier between Arches 37 and 38, at the location of 
the transverse separation cracks. In addition, this 
significant increase happened in the locations that 
present the biggest anomaly; meaning that they 
deform much more compared to symmetric 
locations in the same or neighbouring arch.  

 

 

Figure 7. Mean value and standard deviation of the maximum and minimum peaks of FBG signals (see 
Figure 6) for 42 sensors underneath Arches 37 and 38, for the Class 185 3-carriege train that is heading East, 

exiting Leeds Station 
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Figure 8. Mean value and standard deviation of the maximum and minimum peaks of FBG signals (see 
Figure 6) for 42 sensors underneath Arches 37 and 38, for the Class 185 3-carriege train that is heading 

West, entering Leeds Station. 

 

Figure 9. Cracks observed near sensor 37NA7A8 

Figure 8 presents the same results for the Class 
185 train, this time heading West, which explains 
why the south longitudinal sensors, 37S and 38S 
recorded bigger strains compared to the north 
longitudinal sensors, 37N and 38N. Again, similar 
anomalies are observed for the sensors 37SA7A8 
and 38SA2A3 next to the damaged pier shown 
inside the green dashed boxes in Figures 3 and 8. 
At these locations, the increase of the dynamic 
deformation is again 50%. Furthermore, both the 
tensile and compressive relative strain in the 
south keystone sensor 37SA4A5 at the most 
damaged arch (Arch 37) appears significantly 
increased. 

Statistical analysis for the second most common 
train, Class 155 with two carriages (not shown 
here), presented identical results. 

These results are matching with the formation of 
new micro-cracking in bricks, as shown in Figure 9. 
Although micro-cracking in bricks is observed in 
various locations in the bridge, the intensity is 
much larger near the sensors that presented the 
biggest increase of the compressive relative strain, 
such as the sensor 37NA7A8 presented in Figure 9.  

6. Conclusions 

The study presents a SHM monitoring system with 
the use of a FBG network to assess long term the 
performance of an ageing railway bridge. The 
system records the dynamic deformation of the 
bridge at 68 location for every train passage. 
Through the combination of signal processing 
techniques and statistical analysis it is possible to 
monitor changes in strain distribution over time, 
which are in excellent agreement with the 
observed damages. Furthermore, due to the high 
resolution of the sensors, these changes can be 
detected at a very early stage.  

The permanent FO system proved to be resilient 
over the last year that it is in use. Long-term 
monitoring, combined with structural analysis 
modelling will further assess the effectiveness of 
the 2015 retrofitting intervention, and can be the 
base for the development of real-time streaming 
structural alert systems for ageing railway bridges.   
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