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Introduction

This is the first of a series of preprints providing detailed statements and proofs of the
results announced in sections 16–17 of [9]. Here we state and prove the structure theorem
for real plectic mixed Hodge structures, describe the extension groups, and show that
the singular cohomology of a Hilbert modular variety carries a canonical plectic mixed
Hodge structure.

Subsequent papers will deal with plectic Deligne cohomology of Shimura varieties, the
plectic polylogarithm sheaf and arithmetic applications.

1 I-filtrations

1.1 I-prefiltrations

(1.1.1) Let I be a locally finite lattice; i.e., I is a poset, and for every i, j ∈ I:

(i) the inf and sup i ∧ j and i ∨ j exist;

(ii) {k ∈ I | i < k < j} is finite.

We view I as a category, with one morphism from i to j whenever i ≤ j.
Let C be an abelian category, X ∈ obC. Denote by subX the category of subobjects of
X. We assume subX has arbitrary colimits.

(1.1.2) Definition. An (increasing) I-prefiltration on X is a functor

F : I → subX.

We usually write FiX instead of F (i). A decreasing I-prefiltration is an Iop-prefiltration
(usually written F iX).
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The I-prefiltered objects (X,F ) of C form a category preFilI(C). Say that f : (X,F )→
(X ′, F ′) is strict if

∀i ∈ I, f(FiX) = f(X) ∩ F ′iX ′.

Say that the sequence in preFilI(C)

0→ (X ′, F ′)
f−−−−→ (X,F )

g−−−−→ (X ′′, F ′′)→ 0

is exact if

(i) the underlying sequence 0→ X ′
f−→ X

g−→ X ′′ → 0 is an exact sequence in C, and

(ii) f and g are strict.

Condition (ii) is equivalent to the exactness of the sequence

0→ FiX
′ → FiX → FiX

′′ → 0.

for every i ∈ I. This definition makes preFilI(C) into an exact category.

(1.1.3) Let I1, . . . , Ir be locally finite lattices, and I =
∏r
α=1 Iα with the product

ordering: i ≤ j ⇐⇒ (∀α) iα ≤ jα. Suppose that (αF )α are Iα-prefiltrations on X. We
define an I-prefiltration F =

⋂
α αF on X by

FiX =
⋂
α

αFiαX.

(1.1.4) Pedantic note: we are considering filtrations as functors whose values are sub-
objects, rather than isomorphism classes of subobjects. Therefore certain constructions
which follow, involving sums or intersections of subobjects, will only be well-defined up
to unique isomorphism.

1.2 I-filtrations

(1.2.1) Definition. (i) A weak I-filtration on X is an I-prefiltration F which commutes
with finite limits (i.e. ∀i, j ∈ I, Fi∧jX = FiX ∩ FjX).

(ii) An I-filtration on X is an I-prefiltration F such that:

for every finite nonempty subset J = {j0, . . . , jn} ⊂ I, the sequence

· · · →
⊕

α<β<γ

Fjα∧jβ∧jγX →
⊕
α<β

Fjα∧jβX →
⊕
α

FjαX →
∑
α

FjαX → 0

(1.2.1.1)
is exact.

The maps in (1.2.1.1) are the alternating sums of the inclusions. (Observe that condition
(ii) implies that F commutes with finite limits.)
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(1.2.2) For J = (j0, . . . , jn) a finite family in I, let K•(J) = K•(X,F, J) denote the
(homological) complex (1.2.1.1), with

∑
α FjαX in degree −1. Suppose that j0 = j1

and J∗ = (j1, . . . , jn). Then K•(J
∗) ⊂ K•(J) and the quotient K•(J)/K•(J

∗) is easily
seen to be acyclic. Hence, if (1.2.1.1) is exact for every finite subset of I, it is exact for
every finite family in I. Standard simplicial arguments show also that the condition is
independent of the ordering of J .

Every filtration in the usual sense is automatically a Z-filtration:

(1.2.3) Proposition. Suppose I is totally ordered. Then any I-prefiltration is an I-
filtration.

Proof. It suffices to check that for any finite filtration (in the usual sense)

0 = F−1X ⊂ F0X ⊂ · · · ⊂ FnX = X

the sequence

· · · →
⊕

0≤i<j<k≤n
FiX →

⊕
0≤i<j≤n

FiX →
⊕

0≤i≤n
FiX → X → 0

is exact. Filtering this complex termwise by F , and applying the spectral sequence of a
filtered complex, it is enough to prove it when 0 = Fm−1X ⊂ FmX = X for some m. In
this case the complex becomes

· · · →
⊕

m≤i<j<k≤n
X →

⊕
m≤i<j≤n

X →
⊕

m≤i≤n
X → X → 0

which is acyclic (it is the chain complex with coefficients in X for the standard simplex).

(1.2.4) Let I = I1 × · · · × Ir as in (1.1.3). Suppose that (αF )α are weak Iα-filtrations
on X. Then by definition F =

⋂
α αF commutes with finite limits, hence is a weak

I-filtration. Conversely:

(1.2.5) Proposition. Let F be a weak I-filtration on X, where I =
∏r
α=1 Iα. Then

there exist unique weak Iα-filtrations αF such that F =
⋂
α αF .

Proof. Simply define

αFj =
∑

i=(i1,...,ir)∈I
iα=j

Fi.

(1.2.6) In particular, every weak Zr-filtration is the intersection of r Z-filtrations.

Weak Z2-filtrations were considered in [2, X,§2], where they were called bifiltrations.
(What is called there an M -filtration coincides with our notion of weak I-filtration.)
Moreover one has:
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(1.2.7) Proposition. Any weak Z2-filtration is a Z2-filtration.

Proof. By the above, F = G ∩H for Z-filtrations G, H. Replacing X by the subobject
lim−→
i

FiX we may assume thatX = lim−→
m∈Z

GmX. Let J = {jα = (mα, nα) | 0 ≤ α ≤ r} ⊂ Z2

be a finite subset, with m0 ≤ m1 · · · ≤ mr. Consider the modification of the complex
(1.2.1.1):

K̃(X,F, J) =
[
· · · →

⊕
α<β<γ

Fjα∧jβ∧jγX →
⊕
α<β

Fjα∧jβX →
⊕
α

FjαX → X
]

with X in homological degree −1. For F to be an I-filtration is equivalent to this
complex being acyclic in degree ≥ 0. Let G̃ be the truncated filtration on X:

G̃pX =


X (p > mr)

GpX (m0 ≤ p ≤ mr)

0 (p < m0)

which induces a (finite) filtration on FjX and therefore on the complex K̃(X,F, J). By
the spectral sequence for a filtered complex, it is enough to show that for each p, the
associated graded grG̃p K̃(X,F, J) is acyclic in degree ≥ 0. For this, compute:

grGp Fm,nX =

{
0 (m < p)

grGp HnX (m ≥ p)

and if α < β then Fjα∧jbX = GmαX ∩ Hnα∧nβX and so grG̃p K̃(X,F, J) equals, for
m0 < p ≤ mr,

· · · →
⊕

ω≤α<β<γ
grGp Hnα∧nβ∧nγX →

⊕
ω≤α<β

grGp Hnα∧nβX →
⊕
ω≤α

grGp HnαX → X

(1.2.7.1)
where ω is the least α such that mα ≥ p. For p = m0 it equals

· · · →
⊕

α<β<γ

Gm0Hnα∧nβ∧nγX →
⊕
α<β

Gm0Hnα∧nβX →
⊕
ω≤α

Gm0HnαX → Gm0X

(1.2.7.2)
and for p /∈ [m0,mr] it is zero.

Let J ′ be the family (nα)1≤α≤r. Then (1.2.7.2) is just the complex K̃(Gm0X,H, J
′)

which is acyclic in degree ≥ 0 by (1.2.3). Moreover grGp HnX = H̄ngrGp X where H̄ is

the induced filtration on grGp X. (We are using [4, (1.1.9)], which states that the two
different ways of inducing a filtration on subquotients give the same answer.) So (1.2.7.1)
is the complex K̃(grGp X, H̄, J

′
≥ω) where J ′≥ω = (nα)ω≤α≤r, hence by (1.2.3) it is acyclic

in degree ≥ 0.
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(1.2.8) If r > 2, it is not the case that every weak Zr-filtration is a Zr-filtration. (The
proof above, taking now H to be a weak Zr−1-filtration, breaks down at the last step.)
The simplest counterexample is: take for X a 2-dimensional vector space Kx⊕Ky, and
put on it the weak Z3-filtration which is the intersection of the Z-filtrations F , G, H
with F0X = G0X = H0X = 0, F2X = G2X = H2X = X and F1X = Kx, G1X = Ky,
H1X = K(x+ y).

(1.2.9) Proposition/Definition. The exact category FilI(C) of I-filtered objects in C

is closed under finite sums; it is closed under arbitrary sums if they exist in C.

(1.2.10) Proposition. Let

0→ (X ′, F ′)→ (X,F )→ (X ′′, F ′′)→ 0 (1.2.10.1)

be an exact sequence in preFilI(C), and assume that F ′′ is an I-filtration. If one of F ,
F ′ is an I-filtration, then so is the other.

Proof. F is an I-filtration on X if and only if K̃(X,F, J)) is acyclic in degree ≥ 0 for all
J . Applying the functor K̃(−,−, J) to the exact sequence (1.2.10.1) we obtain an exact
sequence of (homological) complexes

0→ K̃(X ′, F ′, J)→ K̃(X,F, J)→ K̃(X ′′, F ′′, J)→ 0

By assumption, Hi(K̃(X ′′, F ′′, J)) = 0 from which the result follows.

(1.2.11) Let F be an I-filtration on X, i ∈ I and I≤i = {j ∈ I | j ≤ i}. Then F
induces both an I-filtration and an I≤i-filtration on FiX.

On an arbitrary subobject X ′ ⊂ X, F induces a weak I-filtration, but in general this
need not be an I-filtration.

1.3 Associated graded objects

(1.3.1) Definition. Let X be an object of C, F an I-prefiltration on X. Define for
i ∈ I

F<iX =
∑
j<i

FjX, grFi X :=
FiX

F<iX

(assuming that the sum exists).

(1.3.2) Definition. An I-prefiltration F on X is bounded below if there exists j ∈ I
such that FiX 6= 0 implies i > j. It is exhaustive if lim−→

i∈I
FiX = X. It is finite if it is

bounded below and

(i) there exists k ∈ I such that FkX = X; and
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(ii) wts(X,F ) : = {i ∈ I | grFi X 6= 0} is finite.

The elements of wts(X,F ) will be called the weights of F .

(1.3.3) Proposition/Definition. Let X =
⊕

i∈I X(i) be an I-graded object of C, and
set FiX :=

⊕
j≤iX(j). Then F is an I-filtration, satisfying grFi X = X(i). It is finite

if and only if J = {i | X(i) 6= 0} is finite and there exists j ∈ I with j < inf J . An
I-filtration of this type is said to be splittable .

Proof. For k ∈ I define F (k) : I → subX(k) by

F
(k)
i X(k) =

{
X(k) if i ≥ k
0 otherwise.

Let J = {j0, . . . , jn} ⊂ I, ordered so that jα ≥ k ⇐⇒ 0 ≤ α ≤ m. Then
K(X(k), F (k), J) is

· · · →
⊕

0≤α<β<γ≤m
X(k)→

⊕
0≤α<β≤m

X(k)→
⊕

0≤α≤m
X(k)→ X(k)

which is exact, hence F (k) is an I-filtration on X(k). As (X,F ) =
⊕

(X(k), F (k)), F is
an I-filtration on X. The rest follows immediately from the definitions.

(1.3.4) Remark. If f =
∑
fi :

⊕
X(i) →

⊕
Y (i) is a graded morphism of I-graded

objects, then it is easy to see that the morphism of associated I-filtered objects is strict.

(1.3.5) Proposition. Let

0→ (X ′, F ′)→ (X,F )→ (X ′′, F ′′)→ 0

be an exact sequence of I-filtered objects of C. Then for every i the sequence

0→ grF
′

i X
′ → grFi X → grF

′′
i X ′′ → 0

is exact.

Proof. Let i ∈ I, and let {jα} ⊂ I be any finite subset such that jα < i for all α. We
then have a long exact sequence

· · · →
⊕
α<β

Fjα∧jβX →
⊕
α

FjαX → FiX → FiX/
∑
α

FjαX → 0

and similarly for X ′ and X ′′. Since 0→ F ′jX
′′ → FjX → F ′jX

′ → 0 is exact for every j,
we have the corresponding exactness for Fi/

∑
α Fjα . Passing to the direct limit over all

such finite subsets {jα} gives the exactness for grFi .

For an object Y of C, let [Y ] ∈ K0C denote the class of Y in the Grothendieck group of
C.
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(1.3.6) Theorem. Let F be an I-filtration on X, bounded below and exhaustive.

(i) If F is finite, [X] =
∑

i[grFi X].

(ii) If grFi X = 0 for every i ∈ I, then X = 0.

(iii) Assume that C is semisimple. Then (X,F ) is splittable.

Proof. Since F is bounded below, replacing I by a suitable sublattice we may assume
that the lattice I has a minimal element.

(i) Let us show by induction that for every i, [FiX] =
∑

j≤i[grFj X]. Let {jα} = {j ∈ I |
j < i}, which is finite since I is locally finite and bounded below. By definition of grF

and since F is an I-filtration, we have a (finite) long exact sequence

· · · →
⊕
α<β

Fjα∧jβX →
⊕
α

FjαX → FiX → grFi X → 0 (1.3.6.1)

giving an equality in K0C

[FiX] = [grFi X] +
∑
α

[FjαX]−
∑
α<β

[Fjα∧jβX] + · · · .

By induction we may assume that for every j < i, [FjX] =
∑

j′≤j [grFj′X]. Then the
equality becomes

[FiX] = [grFi X] +
∑
α

∑
j≤jα

[grFj X]−
∑
α<β

∑
j≤jα∧jβ

[grFj X] + · · · .

= [grFi X] +
∑
j<i

(
#{α | jα ≥ j} −#{(α < β) | jα, jβ ≥ j}+ . . .

)
[grFj X]

and the parenthesised sum equals 1.

(ii) The exact sequence (1.3.6.1) (which does not require F to be finite) and induction
shows that FiX = 0 for all i, and so X = 0 as F is exhaustive.

(iii) Choose for each i a splitting FiX = X(i)⊕
∑

j<i FjX, so that by induction FiX =∑
j≤iX(j). Write X̃ =

⊕
X(i), F̃iX̃ =

⊕
j≤iX(i). Then the obvious map f : (X̃, F̃ )→

(X,F ) is surjective (as F is exhaustive) and is strict. Therefore ker f = (Y,G) is
I-filtered, by (1.2.10). Since f is an isomorphism on associated gradeds, by (1.3.5)
grGi Y = 0 for every i and Y = 0, and therefore X =

⊕
X(i).

(1.3.7) Proposition. Let F be a finite weak I-filtration on X. Let Y = FjX for some
j ∈ I, with the filtration induced from F . Then

wts(Y, F ) = {i ∈ wts(X,F ) | i ≤ j}.

Proof. if i ≤ j then obviously grFi Y = grFi X. If i 6≤ j, then i ∧ j < i, and FiY = Fi∧jY
so grFi Y = 0.
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(1.3.8) From now on, we assume all (pre-)filtrations to be finite.

1.4 Opposed filtrations

(1.4.1) Let F •, G• be decreasing (resp. increasing) I-prefiltrations on X. Consider the
Iopp × I-prefiltration (well-defined up to unique isomorphism)

F ∩G : (i, j) 7→ F iX ∩GjX.

and (grij,F∩GX)i,j the associated graded.

(1.4.2) Definition. F and G are opposed I-filtrations if

(i) F ∩G is an Iopp × I-filtration; and

(ii) i 6= j =⇒ grij,F∩GX = 0.

The terminology is justified by the following theorem. We assume that either (a) C is
semisimple, or (b) for every nonzero X in C, the class [X] ∈ K0C is nonzero.

(1.4.3) Proposition. (i) Let (F,G) be opposed I-filtrations on X, and set X(i) =
F iX ∩GiX. Then X =

⊕
iX(i) and

F iX =
∑
k≥i

X(k), GiX =
∑
k≤j

X(k).

In particular, F and G are splittable I-filtrations.

(ii) The category of triples (X,F,G), where (F,G) are opposed I-filtrations on objects
X of C, is equivalent to the category of finitely I-graded objects of C.

Proof. (i) Since F ∩G is an Iopp × I-filtration, by (1.3.6)

[F i ∩GjX] =
∑
i′≥i
j′≤j

[gri
′
j′,F∩GX] =

∑
i≤k≤j

[grkk,F∩GX]. (1.4.3.1)

Therefore
[F i ∩GjX] = 0 if i � j (1.4.3.2)

and
[Fi ∩GiX] = [grii,F∩GX].

So in case (b), we deduce F i ∩ GiX ∼−→ grii,F∩GX. In case (a) we obtain the same
isomorphism by splitting the filtration F ∩G.

Now let J = {j1, . . . , jn} ⊂ I. The sequence⊕
α<β

(F jα ∩Gjα)X ∩ (F jβ ∩Gjβ )X →
⊕
α

X(jα)→ X
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is exact by condition (ii), and if α 6= β

(F jα ∩Gjα)X ∩ (F jβ ∩Gjβ ) = F jα∨jβX ∩Gjα∧jβX = 0

by (1.4.3.2). Therefore ⊕
k∈J

X(k) ∼−→
∑
k∈J

X(k)

and so ⊕
i≤k≤j

X(k) ↪−→(F i ∩Gj)X

and by (1.4.3.1) this is an isomorphism.

(ii) follows from (i).

2 Plectic Hodge structures

2.1 Pure plectic Hodge structures over C

(2.1.1) All vector spaces in this section will be assumed to be finite-dimensional.

We denote the natural generators of Zr as 1j (1 ≤ j ≤ r).
If n = (nj) ∈ Zr, write |n| =

∑r
j=1 nj .

If W is a Zr-filtration on X, we define the simple filtration sW associated to W by

sWwX =
∑
|n|≤w

WnX.

The inclusions WnX ⊂W|n|X induce an isomorphism⊕
|n|=w

grWn X
∼−→ grsWw X. (2.1.1.1)

(2.1.2) If F , F̄ are decreasing Zr-prefiltrations, and n ∈ Zr, say that (F, F̄ ) are n-
opposed if (F •, F̄n−•) are Zr-opposed filtrations.

(2.1.3) Definition. (i) An unmixed plectic C-Hodge structure is a Z2r-graded C-vector
space V =

⊕
p,q∈Zr V

p q.

(ii) V is pure of plectic weight n ∈ Zr if V p q = 0 unless p+ q = n.

(iii) V is pure of simple weight w ∈ Z if V p q = 0 unless
∣∣p+ q

∣∣ = w.

(2.1.4) For each p, q ∈ Zr we write C(p, q) for the unmixed plectic Hodge structure over
C of dimension 1 and degree (p, q).
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(2.1.5) Every unmixed plectic C-Hodge structure V has:

• a Z-grading V =
⊕

w∈Z V(w), where each V(w) is pure of simple weight w ∈ Z, and

• a Zr-grading V =
⊕

n∈Zr V(n), where each V(n) is pure of plectic weight n

and V(w) =
∑
|n|=w V(n). We shall refer to these as the gradings by plectic and simple

weight, respectively.

(2.1.6) Let V be an unmixed plectic C-Hodge structure. Define decreasing Z-filtrations
Fj , F̄j (1 ≤ j ≤ r) by

F pj V =
⊕
pj≥p

V p q, F̄ qj V =
⊕
qj≥q

V p q

and Zr-filtrations FJ , F̄J (for J ⊂ {1, . . . , r} and Jc the complementary subset)

F
a
JV =

⋂
j /∈J

F
aj
j V ∩

⋂
j∈J

F̄
aj
j V =

⊕
p′j≥aj (j /∈J)

q′j≥aj (j∈J)

V
p′q′

J , F̄J = FJc .

Set F = F∅, F̄ = F̄∅.

(2.1.7) If V is pure of plectic weight n, then for every J , (FJ , F̄J) are n-opposed, since

F
a
JV ∩ F̄

n−a
J V = V p′q′ with (p′j , q

′
j) =

{
(aj , nj − aj) (j /∈ J)

(nj − aj , aj) (j ∈ J)

(2.1.8) Conversely, if (F, F̄ ) are n-opposed filtrations on V , then by (1.4.3)

V =
⊕
p+q=n

F pV ∩ F̄ qV

is a plectic Hodge structure of plectic weight n.

(2.1.9) If V is a pure plectic C-Hodge structure of simple weight w ∈ Z, then it is still
the case that V p q = F pV ∩ F̄ qV whenever

∣∣p+ q
∣∣ = w. Conversely, suppose that (F, F̄ )

are decreasing Zr-prefiltrations on a vector space V and that for some w ∈ Z,

V =
⊕
|p+q|=w

F pV ∩ F̄ qV.

Then V is a plectic Hodge structure which is pure of simple weight w, and F , F̄ are the
associated Zr-filtrations.
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(2.1.10) The unmixed plectic C-Hodge structures form a C-linear semisimple Tan-
nakian category, which is equivalent to RepC(G2r

m ). The plectic weight is given by
the character of Grm ⊂ G2r

m , and the simple weight by the character of Gm diagonally
embedded. Its simple objects are the C(p, q).

2.2 Pure plectic R-Hodge structures

(2.2.1) Let V be an R-vector space, and VC =
⊕
V p q an unmixed plectic Hodge struc-

ture on VC = V ⊗R C. The following conditions are equivalent:

(i) ∀(p, q), V p q = V qp.

(ii) ∀j, F̄j = complex conjugate of Fj .

(iii) ∀J, F̄J = complex conjugate of FJ .

We say that V is a real unmixed plectic Hodge structure (or unmixed plectic R-Hodge
structure) if these hold.

(2.2.2) The unmixed plectic R-Hodge structures form an R-linear Tannakian category,
equivalent to RepR(Sr), where S = RC/RGm. The gradings by plectic and simple weight
are given in the same way as in (2.1.10).

(2.2.3) We define an unmixed plectic R-Hodge structure over R to be an unmixed plectic
Hodge structure over R, together with r commuting involutions τj ∈ AutR(V ) satisfying

τj(F
p
i ) =

{
F̄ pi if i = j

F pi otherwise.

These form a Tannakian category, equivalent to the category of representations of the
group (SoZ/2Z)r, where the nonzero element of Z/2Z acts on S by complex conjugation.

2.3 Mixed structures

(2.3.1) In this and the following section, all vector spaces will be over a field k of
characteristic zero. In preparation for the theory of mixed plectic R-Hodge structures,
we first review some of Deligne’s theory for usual mixed Hodge structures [4, 5], and
discuss its plectic variant.

(2.3.2) Recall from [5] that if V is a finite dimensional vector space over k, the following
structures are equivalent:
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(a) Three filtrations (F •, F̄ •,W•) which are opposed ; i.e.,

grWn F
pV ∩ grWn F̄

qV = 0 if p+ q = n+ 1

and grWn V =
⊕
p+q=n

grWn F
pV ∩ grWn F̄

qV

(b) A bigrading V =
⊕
V pq
F , plus a nilpotent endomorphism ∂ of V satisfying

∂(V pq
F ) ⊂

⊕
p′<p, q′<q

V p′q′

F ;

(c) A representation ρ : G → GL(V ), where G = G2
m n U , and U is the pro-unipotent

group whose Lie algebra is freely generated by elements ∂ab of bidegree (a, b), a < 0
and b < 0.

(2.3.3) The dictionary (a) =⇒ (b) is given by

F pV =
⊕
p′≥p

V p′q
F , WnV =

⊕
p+q≤n

V pq
F (2.3.3.1)

F̄ q =
⊕
q′≥q

V pq′

F̄
, V pq

F̄
= (exp ∂)V pq

F (2.3.3.2)

and in the other direction by setting

V pq
F = (F pV ∩Wp+qV ) ∩ (F̄ qV ∩Wp+qV +

∑
i≥0

F̄ q−i ∩Wp+q−i−1) (2.3.3.3)

V pq
F̄

= (F̄ qV ∩Wp+qV ) ∩ (F pV ∩Wp+qV +
∑
i≥0

F p−i ∩Wp+q−i−1) (2.3.3.4)

from which it follows that
V pq
F̄
⊂ V pq

F +
∑

p′<p,q′<q

V p′q′

F

and that there is a unique endomorphism ∂ as in (b) satisfying (exp ∂)V pq
F = V pq

F̄
.

These constructions give rise to equivalences of abelian categories [4, 5], and in particular
it follow that a morphism of trifiltered structures (a) is automatically strictly compatible
with the filtrations.

(2.3.4) Let G• be the convolution of the filtrations F̄ • and W•:

GqV =
∑
n

F̄n+qV ∩WnV.

A conceptual way to view the formula (2.3.3.3) is to observe that the filtrations (F •, G•)
on the filtered space (V,W•) are 0-opposed: for every p, n ∈ Z one has

WnV = (F pV ∩WnV )⊕ (G−p−1V ∩WnV )
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giving a splitting of the filtration F •:

F pV ∩G−pV ∼−→ grpFV. (2.3.4.1)

Since on grpFV the filtrations induced by F̄ • and W• are (−p)-opposed, they induce a
grading on grpFV , hence via the splitting (2.3.4.1) they induce a bigrading on V , which
is the bigrading by the V pq

F .

(2.3.5) The equivalence of (b) and (c) is formal, and admits the following simple gen-
eralisation:

(2.3.6) Proposition. Let r be a positive integer. The following categories are equiva-
lent:

(i) Repk G
r.

(ii) The category of triples (V, (V pq), (∂j)), where

V =
⊕
p,q∈Zr

V p q

is a Z2r-graded k-vector space of finite dimension, and (∂j)1≤j≤r are commuting
endomorphisms of V such that for each j,

∂j(V
p q) ⊂

∑
a,b>0

V p−a1j ,q−b1j (2.3.6.1)

(2.3.7) If V is a representation of Gr, define the plectic Hodge numbers of V to be
dp q(V ) = dimV p q (p, q ∈ Zr).

(2.3.8) The simple objects of Repk G
r are the 1-dimensional representations V =

k(p, q) (p, q ∈ Zr) with V = V p q = k, ∂j = 0.

(2.3.9) Write S = {1, . . . , r}. Let V be a representation of Gr. For each J ⊂ S let
∂J =

∑
j∈J ∂j , and define

V
p q

J :=(exp ∂J)V p q ⊂ V p q +
∑
p′<p

q′<q

V p′q′ (2.3.9.1)

giving a family (V ∗∗J )J of Z2r-gradings of V , indexed by subsets J ⊂ S.

Conversely, given gradings V =
⊕

p,q V
p q

J for all J ⊂ S there exists at most one family

of nilpotent operators (∂J)J of negative degree for which V
p q

J = (exp ∂J)V p q for every
J and (p, q).
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(2.3.10) The representation V of Gr now carries several filtrations:

• The plectic weight filtration W•, a Zr-filtration given by

WnV =
∑
p,q∈Zr
p+q≤n

V
p q

? (n ∈ Zr) (2.3.10.1)

(where, for each (p, q), V
p q

? can be any of the V
p q

J ).

• The associated simple weight filtration sW•:

sWnV =
∑
p,q∈Zr

|p+q|≤n

V
p q

? (n ∈ Zr) (2.3.10.2)

• For each J ⊂ S, a Zr-filtration F •J given by

F
a
JV =

∑
p,q∈Zr

pj≥aj (j /∈J)
qj≥aj (j∈J)

V
p q

J . (2.3.10.3)

Write F̄ •J = F •Jc , F
• = F •∅ .

• For each j ∈ S, Z-filtrations F •j , F̄ •j given by

F pj V =
∑

p′,q′∈Zr
p′j≥p

V
p′q′

J for any J with j /∈ J

F̄ qj V =
∑

p′,q′∈Zr
q′j≥q

V
p′q′

J for any J with j ∈ J. (2.3.10.4)

(The condition (2.3.6.1) ensures that the first two filtrations are indeed independent of
J .) By definition, for every J , W• ∩ F •J is a Z2r-filtration on V .

(2.3.11) The filtrations (2.3.10.3) and (2.3.10.4) determine one another by (1.2.5), since

FJ =
⋂
j /∈J

Fj ∩
⋂
j∈J

F̄j .

If r = 1 we simply have F1 = F = F∅ = F̄{1}, F̄1 = F̄ = F{1}.

(2.3.12) If π : U → V is any morphism of representations of Gr, then as π commutes
with the ∂j , we have π(U

p q

J ) ⊂ V
p q

J , and therefore π is strictly compatible with all the

filtrations. If V =
∑
Vα is a sum of subrepresentations then V p q =

∑
V
p q
α , F •j V =∑

F •j Vα.
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(2.3.13) The associated graded objects grW∗ V and grsW∗ V are then what we have called
(for k = C) unmixed plectic Hodge structures, and they are canonically isomorphic by
(2.1.1.1).

(2.3.14) From (2.3.10.3) one sees that for each J ⊂ S, there is an increasing Zr-
prefiltration GJ , complementary to FJ , given by

GJp =
⊕
p′ 6≥p

V
p′q′

J .

Write Gp = G∅p. (Note that in general GJ is not even a weak Zr-filtration.)

(2.3.15) For J ⊂ S and p, q ∈ Zr, let σJ(p, q) = (a, b) where

(aj , bj) =

{
(pj , qj) if j /∈ J
(qj , pj) if j ∈ J

(2.3.16) Proposition. (i) Let p+ q = n. Then

V p q = (F pV ∩WnV ) ∩
(
(F̄ qV ∩WnV ) + (GpV ∩W<nV )

)
.

(ii) Let J ⊂ S, and (a, b) = σJ(p, q). Then

V
p q

J = (F
a
JV ∩WnV ) ∩

(
(F

b
JcV ∩WnV ) +

∑
a′+b′<n
a′ 6≥a

V σJ (a′b′)
)
. (2.3.16.1)

Proof. (i) We have

W<nV = (F pV ∩W<nV )⊕
∑

p′+q′<n

p′ 6≥p

V p′q′

and by (2.3.9.1)

F̄ qV ∩W<nV =
∑

p′+q′<n

q′≥q

V
p′q′

S ⊂
∑

p′+q′<n

p′ 6≥p

V p′q′ = GpV ∩W<nV

and
V p q ⊂ V p q

S +
∑

p′+q′<n

p′ 6≥p

V p′q′ ⊂ (F̄ qV ∩WnV ) +
∑

p′+q′<n

p′ 6≥p

V p′q′

Recall (cf. [4, (1.2.9)]) a simple lemma from linear algebra:

If A, B, U are subspaces of a vector space V such that U = (A ∩ U) ⊕ (B ∩ U)
then (A+ U) ∩ (B + U) = (A ∩B)⊕ U .
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Apply this with U = W<nV , A = F pV ∩WnV , B = (F̄ qV ∩WnV )+(GpV ∩W<nV ). Then
A∩U = F pV ∩W<n and B ∩U = Gp∩W<n, so by (2.3.14), the conditions are satisfied.
Therefore, letting X = A ∩ B be the right-hand side of (i), this gives X ∩W<nV = 0
and (X +W<nV )/W<nV = (grWn V )pq. As V p q ⊂ X this implies X = V p q.

(ii) follows by applying the symmetry σJ to (i).

(2.3.17) It follows that from the filtrations ((Fj)j ,W ) one may recover the subspaces

V
p q

J , and hence the action of GS , inductively by the formula (2.3.16.1). More precisely
(cf. [5, (1.1.1)]), the map dJ is the automorphism of V given as the composite a−1

J a:

V =
⊕

V p q ∼−−→
a

grW∗ V =
⊕

(grWp+qV )p q ∼←−−
aJ

⊕
V
p q

J = V (2.3.17.1)

They may equally be recovered from the filtrations ((Fj)j , sW ) by the following variant
of the previous proposition (whose proof is the same):

(2.3.18) Proposition. (i) Let
∣∣p+ q

∣∣ = w. Then

V p q = (F pV ∩ sWwV ) ∩
(
(F̄ qV ∩ sWwV ) + (GpV ∩ sWw−1V )

)
.

(ii) Let J ⊂ S, and (a, b) = σJ(p, q). Then

V
p q

J = (F
a
JV ∩ sWwV ) ∩

(
(F

b
JcV ∩ sWwV ) +

∑
|a′+b′|<w
a′ 6≥a

V σJ (a′b′)
)
.

(2.3.19) Let V ∈ ob Repk G
r. Define subspaces

RJ(V ) =
⊕

pi=qi=0 (i/∈J)
pi, qi<0 (i∈J)

V p q

R(V ) =
∑
J⊂S

RJ(V ).

Write Rj(V ) = R{j}(V ) =
∑

a,b>0 V
−a1j ,−b1j . The definitions imply:

(2.3.20) Proposition. R(V ) is a subobject of V , and V 7→ R(V ) is an exact endofunc-
tor of Repk G

r.

(2.3.21) Lemma. Assume r > 1. If V = W<0V and R(V ) = 0, then

Q(V ) :=
⋂
i

F̄ 0
i V +

⋂
j 6=i

F 0
j V

 = F 0V ⊕ F̄ 0V.
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Proof. Observe first that Q(V ) ⊃ F 0V + F̄ 0V , and that F 0V ∩ F̄ 0 = 0 since V = W<0V .

Suppose V is unmixed (i.e., the action of Gr factors through G2r
m ). Then all the F pj , F̄ qj

are sums of some of the V p q, so in the expression for Q(V ), intersection is distributive
over sum, and therefore

Q(V ) =
∑
J⊂S

⋂
j /∈J

F̄ 0
j V ∩

⋂
i∈J

⋂
j 6=i

F 0
j V


The term J = ∅ equals F̄ 0. The term J = {i} equals⋂

j 6=i
F 0
j V ∩ F̄ 0

j V =
∑

pj , qj≥0 (j 6=i)

V p q =
∑

pj=qj=0 (j 6=i)

V p q

since V = W<0V . This is contained in F 0V + F̄ 0V , since R{i}(U) = 0. The term J = S
equals F 0V . If 1 < #J < r then

⋂
i∈J
⋂
j 6=i F

0
i V = F 0V . So the conclusion holds for V

unmixed.

For the general case, consider any nontrivial subobject 0 6= U ( V . By the previous
Proposition, R(U) = 0 = R(V/U) = 0, so by induction we may assume that the con-
clusion of the Lemma holds for Q(U) and Q(V/U). Let π : V → V/U be the canonical
map. Then as π compatible with all the filtrations (2.3.12), we have π(Q(V )) ⊂ Q(V/U).
Moreover

F̄ 0
i V +

∑
j 6=i

F 0
j V =

∑
qi≥0

V
p q

{i} +
∑

pj≥0 (j 6=i)

V
p q

{i}

and also for U . Since U
pq

J = U ∩ V p q

J , we get

U ∩ (F̄ 0
i V +

∑
j 6=i

F 0
j V ) = F̄ 0

i U +
∑
j 6=i

F 0
j U.

Therefore Q(U) = U ∩Q(V ). We thus have a commutative diagram with exact rows:

0 −−−−→ Q(U) −−−−→ Q(V )
π−−−−→ Q(V/U)

‖
⋃

‖

0 −−−−→ F 0U ⊕ F̄ 0U −−−−→ F 0V ⊕ F̄ 0V
π−−−−→ F 0(V/U)⊕ F̄ 0(V/U) −−−−→ 0

and so by the 5-lemma, equality holds in the middle.

(2.3.22) Lemma. Let I, J ⊂ S be disjoint, and define

PI,J(V ) =
∑

i∈I,j∈J

∑
pi,qi,pj ,qj<0

V p q.

Then the sum of the inclusions

RI(V )⊕RJ(V )⊕ PI,J(V )→ V

is injective.

Proof. This follows immediately from the definitions.
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2.4 The structure theorem

(2.4.1) In this section we define a category which encapsulates the linear algebra data
(2.3.10) arising from representations of Gr. The main theorem (2.4.7) states that this cat-
egory (which is the plectic analogue of the category of vector spaces with three opposed
filtrations) is equivalent to Repk G

r.

(2.4.2) Define a k-linear category Crk as follows: its objects are tuples (V, (F •j )j , (F̄
•
j )j ,W•),

where:

• V is a finite-dimension k-vector space.

• F •j , F̄ •j (1 ≤ j ≤ r) are decreasing filtrations on V , and W• is an increasing
Zr-filtration on V .

subject to the condition:

• For each n ∈ Zr, there is a Z2r-grading

grWn V =
⊕
p+q=n

(grWn V )pq

such that for every J ⊂ S and a ∈ Zr,

grWn F
a
JV =

∑
p,q∈Zr

pj≥aj (j /∈J)
qj≥aj (j∈J)

(grWn V )pq. (2.4.2.1)

where F •J is defined as in (2.3.11).

The morphisms of Crk are k-linear maps compatible with all of the filtrations.

It is convenient to define a futher category C
r,wk
k : the definition is the same as for Crk

except that W is only required to be a weak Zr-filtration. It obviously contains Crk as a
full subcategory.

If V is an object of Crk we define

dp q(V ) = dim(grWp+qV )p q

(2.4.3) Remark. It is not enough in the definition of Crk to require merely that grW• Fj
and grW• F̄j are given by the grading of grWV (since the formation of FJ from (Fj , F̄j)
does not a priori commute with passage to grW• ).

(2.4.4) From the definition and (1.2.11), if V is an object of Crk then so is every WnV
with the induced filtrations. By (1.3.7), if V 6= Wn then the plectic weights of WnV
form a proper subset of those of V .
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(2.4.5) Let V be an object of Crk and a, b ∈ Zr. Define an object V ′ = V (a, b) of the
same category, given by the following data: the underlying vector space is V , and the
filtrations are given by

F pj V
′ = F

p+aj
j V, F̄ qj V

′ = F̄
q+bj
j V, WnV

′ = Wn−a−bV

Then V 7→ V (a, b) is an autoequivalence of Crk.

If J ⊂ S we may define another object µJV of Crk as follows: its underlying space is V
with the same weight filtrations, and the Hodge filtrations are given by

F pj (µJV ) =

{
F pj V (j /∈ J)

F̄ pj V (j ∈ J)
, F̄ pj (µJV ) =

{
F̄ pj V (j /∈ J)

F pj V (j ∈ J)
.

(2.4.6) The construction (2.3.10) defines a functor Φ: Repk G
r → Crk, which is obvi-

ously faithful. We denote the image under Φ of k(p, q) (2.3.8) by the same symbol. From
the definitions, Φ(V ⊗k(p, q)) = Φ(V )(p, q), and the dimensions dp q for V and Φ(V ) are
the same.

(2.4.7) Theorem. The functor Φ is an equivalence of categories.

(2.4.8) Corollary. (i) Let V be an object of Crk. Then the weak Zr-filtrations F •J are
Zr-filtrations, the weak Z2r-filtrations F •J ∩W• are Z2r-filtrations.

(ii) The category Crk is abelian, and has tensor product and internal Hom functors,
induced by the usual ones on Veck. The morphisms in Crk are strictly compatible with
all the filtrations in (i).

(2.4.9) First we show that Φ is fully faithful. Let U , V be representations of Repk G
r

and f : Φ(U) → Φ(V ) a morphism in Crk. Consider the decompositions U =
⊕
U
p q

J ,

V =
⊕
V
p q

J from (2.3.17). These depend only on the filtrations, and since f is compatible

with the filtrations, the definitions imply that f(U
p q

J ) ⊂ V p q

J . Then the maps (2.3.17.1)
fit into a commutative diagram:

U =
⊕
Up q ∼−−−−→

a
grW∗ U =

⊕
(grWp+qU)p q ∼←−−−−

aJ

⊕
Up q = U

f

y gr(f)

y f

y
V =

⊕
V p q ∼−−−−→

a
grW∗ V =

⊕
(grWp+qV )p q ∼←−−−−

aJ

⊕
V p q = V

So f commutes with every dJ = a−1
J a, and therefore by (2.3.6) f is a morphism in

Repk G
r.

(2.4.10) We now show that Φ is essentially surjective. The proof is in several steps. If
V has a single plectic weight — in other words, V = grWn V for some n — then V has

the bigrading
⊕

p+q=n(grWn V )p,q, hence comes from a representation of Grm. The proof

will proceed by induction on the number of plectic weights of V .
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(2.4.11) The main inductive step is the following: let n = a+ b, and V = WnV be an
object of Crk such that grWn V is 1-dimensional of degree (a, b). Assume that U = W<nV
is in the essential image of Φ. In paragraphs (2.4.12)–(2.4.18) we will show that V is as
well.

(2.4.12) Replacing V by the twist V (−a,−b) from (2.4.5), we will assume that a = b =

n = 0. For technical reasons we will merely assume that V ∈ C
r,wk
k .

(2.4.13) According to the equivalence (2.3.6) we have a decomposition U =
⊕
Upq

together with commuting endomorphisms (∂Uj ) of U , satisfying (2.3.6.1). To extend the

action of Gr from U to V is equivalent to giving a subspace V 00 ⊂ V complementary to
U , together with commuting extensions ∂Vj of ∂Uj to V , satisfying (2.3.6.1).

(2.4.14) Lemma. Suppose R(U) = 0. Then V is isomorphic in C
r,wk
k to k(0, 0) ⊕ U ,

so in particular lies in Crk and is contained the essential image of Φ.

Proof. Choose elements xJ ∈ F 0
JV \ F

0
JU which have the same image in grW0 V = V/U .

Then

xJ − xI ∈ U ∩ (F
0
I V + F

0
JV ) ⊂ U ∩

⋂
j /∈I∪J

F 0
j V ∩

⋂
j∈I∩J

F̄ 0
j V =

⋂
j /∈I∪J

F 0
j U ∩

⋂
j∈I∩J

F̄ 0
j U.

In particular, for any i,

xS − x∅ = (xS − x{i}) + (x{i} − x∅) ∈ F̄ 0
i U +

⋂
j 6=i

F 0
j U

and so by Lemma (2.3.21) xS−x∅ ∈ Q(U) = F 0U ⊕ F̄ 0U . Applying this instead to µJV
as in (2.4.5) we obtain the relation, for any J ⊂ S:

xJ − xJc ∈ F 0
JU ⊕ F

0
JcU.

Write xJ − xJc = yJ − yJc where yJ ∈ F 0
JU . and set x′J = xJ − yJ = x′Jc . We claim

x = x′J is independent of J . Assuming this, then for any J , x ∈ F aJV if and only if all
aj are ≤ 0, and so x defines an isomorphism k(0, 0)⊕U ' V . As HomCkr

(k(0, 0), U) = 0
(since any morphism is strictly compatible with W ) x is unique up to a scalar multiple.

To prove the claim, we have x′J = x′Jc ∈ F
0
JV ∩ F

0
JcV , and⋂

j /∈J

F 0
j U 3 x′J − x′∅ = x′Jc − x′∅ ∈

⋂
j∈J

F 0
j U

and therefore x′J − x′∅ ∈ F
0U . Likewise,

x′J − x′S = x′Jc − x′S ∈
⋂
j /∈J

F̄ 0
j U ∩

⋃
j∈J

F̄ 0
j U = F̄ 0U
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and so since x′S = x′∅,

x′J − x′∅ = x′J − x′S ∈ F 0U ∩ F̄ 0U = {0}.

(2.4.15) In the general case, since R(U) is a subrepresentation of U , we may consider
the space V/R(U) together with the filtrations induced from (Fj), W . Assuming the
truth of the following lemma, the proof of previous lemma applied to V/R(U) then shows
that there exists, up to scalar multiplication, a unique family (xJ) ∈

∏
J F

0
JV , such that

for every I and J , xJ − xI ∈ R(U).

(2.4.16) Lemma. V/R(U) together with the induced filtrations is an object of Cr,wkk .

Proof. First we check that the Zr-prefiltration on V/R(U) induced from W commutes
with finite limits; in other words, that for every m, n we have (WmV +R(U))∩ (WnV +
R(U)) = Wm∧nV ∩R(U). If m ≥ 0 or n ≥ 0 then as V = W0V this is trivial. Otherwise,
since W commutes with finite limits and W0V = V , we have WmV = Wm∧0V ⊂
W<0V = U and likewise for n, and so we are reduced to the equality Wm(U/R(U)) ∩
Wn(U/R(U)) = Wm∧n(U/R(U)), which holds by (2.3.10.1) since U/R(U) ∈ Repk G

r.

We then need to verify the condition (2.4.2.1). For n < 0 it is equivalent to the same
condition for U/R(U), which holds since U/R(U) ∈ Repk G

r. For n 6≤ 0 we have
Wn(V/R(U)) = Wn∧0(V/R(U)) and n ∧ 0 < n, hence grWn (V/R(U)) = 0. It remains

to consider n = 0. As grW0 (V/R(U)) is 1-dimensional of degree (0, 0), (2.4.2.1) can be
written as

F
a
J (V/R(U))

{
⊂ U/R(U) if some aj > 0

6⊂ U/R(U) otherwise
(2.4.16.1)

Now by the same condition for V , if all aj ≤ 0 then F
a
JV 6⊂ U , so certainly F

a
J (V/R(U)) 6⊂

U/R(U). Otherwise suppose say that a1 > 0. It is enough to show that F 1
1 V +F̄ 1

1 V ⊂ U .
But F 1

1 V = F (1,−N,...,−N)V for N sufficiently large, and if this were not in U we would
have F (1,−N,...,−N)grW0 V 6= 0, which is impossible as grW0 V is purely of degree (0, 0).

(2.4.17) Let dUJ = exp ∂UJ = exp
∑

j∈J ∂
U
j . Extend dUJ to an automorphism dVJ of V by

requiring that xJ = dVJ (x∅). Let

yJ = xJ − x∅ ∈ R(U) ∩
⋂
j /∈J

F 0
j U = RJ(U).

In terms of the decomposition V = kx∅ ⊕ U , we have matrix representations:

dVJ =

(
1 0
yJ dUJ

)
, dVI ◦ dVJ =

(
1 0

yI + dUI (yJ) dUI d
U
J

)
.
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(2.4.18) Suppose I ∩ J = ∅. Then

xI∪J − xJ ∈ R(U) ∩
⋂
j∈J

F̄ 0
j U ∩

⋂
j /∈I∪J

F 0
j U = dUJ (RI(U))

so for some ξ ∈ RI(U), xI∪J−xJ = dUJ ξ. Likewise, for some η ∈ RJ(U), xI∪J−xI = dUI η.
Now

(dUJ − 1)ξ =
∑
n≥1

1

n!
(∂NJ )nξ ∈ PI,J(U)

and similarly (dUI − 1)η ∈ PI,J(U). Write

yI∪J = (xI∪J − xJ) + yJ = ξ + yJ + (dUJ − 1)ξ

= (xI∪J − xI) + yI = yI + η + (dUI − 1)η.

Then by Lemma (2.3.22) both right hand expressions are decompositions in RI(U) ⊕
RJ(U)⊕ PI,J(U), and so ξ = yI , η = yJ , and (dUJ − 1)ξ = (dUI − 1)η. Therefore

yI∪J = yI + dUI (yJ) = yJ + dUJ (yI)

or equivalently, dVI∪J = dVI ◦dVJ = dVJ ◦dVI . If we write dV{j} = exp ∂Vj then [∂V{i}, ∂
V
{j}] = 0.

Now y{j} ∈ Rj(U) and ∂Uj (Rj(U)) ⊂ Rj(U), so since y{j} = (exp ∂Vj − 1)(x∅), one has

∂Vj (x∅) =
∂Uj

exp ∂Uj − 1
(y{j}) ∈ RJ(U).

Therefore the commuting family of maps (∂Vj ) satisfies (2.3.6.1), and thus V is in the
image of Φ. This completes the proof of the step (2.4.11).

(2.4.19) We now consider a general V ∈ obCrk, and proceed by induction on the size
of the set wts(V,W ) of plectic weights of V . If V has only one plectic weight then V
is in the image of Φ. We may therefore assume by induction and (2.4.4) that for every
n ∈ Zr for which WnV 6= V , WnV is in the image of Φ. There are two cases:

(i) Suppose that T = wts(V,W ) contains s > 1 maximal elements n(α) (1 ≤ α ≤ s).
Then for every n ∈ T , WnV is in the essential image of Φ. The complex K̃(V,W, {n(α)})
of vector spaces (1.2.1.1) is exact since W is a Zr-filtration. Let V ′ be the cokernel in
Repk G

r of the map

K̃2 =
⊕
α<β

Wn(α)∧n(β)V →
⊕
α

Wn(α)V = K̃1.

Then V ′ has the same underlying vector space as V . For every n with n ≤ n(α), some
α, one has WnV

′ = WnV by construction, so grWn V
′ = grWn V for all n ∈ T . By (2.3.12)

the Hodge filtrations on V ′ are given by

F •j V
′ =

∑
α

F •jWn(α)V ⊂ FjV.
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Therefore (grWn V
′)p q ⊂ (grWn V )p q for every (p, q), and so equality holds. Therefore

F •j V = F •j V
′ and hence V = V ′ is in the essential image of Φ.

(ii) Otherwise, V has a unique maximal plectic weight n, so V = WnV and grWn V 6= 0,
and by induction U = W<nV is in the essential image of Φ. Let {xα | 1 ≤ α ≤ N} be
a basis for grWn V adapted to the grading (2.4.2.1). Let π : V → grWn V be the quotient,

and Vα = π−1(kxα). Then with the induced filtrations, Vα is in Crk and satisfies the
hypotheses of (2.4.11), so is in the essential image of Φ. The kernel of the vector space
surjection

⊕
Vα → V is the sum-zero subspace (UN )Σ=0. Then taking V ′ to be the

cokernel in Repk G
r of (UN )Σ=0 →

⊕
Vα the same argument as in (i) shows that V =∑

Vα is also in the essential image of Φ.

2.5 Real mixed plectic Hodge structures

(2.5.1) We define a mixed plectic C-Hodge structure to be an object of any of the
equivalent categories in Theorem (2.4.7), with k = C.

(2.5.2) We may then define the categories of mixed plectic R-Hodge structures and
mixed plectic R-Hodge structures over R in exactly the same way as (2.2). Specifically,
a mixed plectic R-Hodge structure is a finite-dimensional real vector space V , together
with

(i) decreasing Z-filtrations F •j (1 ≤ j ≤ r) on VC = V ⊗R C; and

(ii) a Zr-filtration W on V

such that (VC, (Fj), (F̄j),W ) is a mixed plectic C-Hodge structure. A mixed plectic R-
Hodge structure over R is a mixed plectic R-Hodge structure (V, (Fj),W ) together with
r commuting involutions τj ∈ AutR(V ) satisfying

τj(F
p
i ) =

{
F̄ pi if i = j

F pi otherwise.

(2.5.3) These objects form R-linear Tannakian categories R–HSr, R–HS+
r respectively

(with the obvious morphisms). They are equivalent to the categories of real represen-
tations of the groups GrR and (GR o Z/2Z)r respectively, where GR is the real form of G
which is denoted M in [5, §2].

(2.5.4) There are plectic Tate Hodge structures R(n) (n ∈ Zr) in both categories. The
underlying vector space is (2πi)|n|R, and the plectic Hodge structure is the unique one
for which

R(n)C = (grW−2nR(n))−n,−n.

In R–HS+
r , the real Frobenius τj acts as (−1)nj .

In the next section we compute the Ext-groups in these categories.
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3 Extensions

3.1 Extensions in the category Crk

(3.1.1) Let (V, (Fj)j , (F̄j)j ,W ) be an object in Crk. Let 1 be the unit object of Crk. We
will give an explicit complex computing RHomCrk

(1, V ).

(3.1.2) We will need the results and methods of [1]. In particular, we start from the
more-or-less well-known quasi-isomorphism (in the derived category of k-vector spaces)
for the case r = 1:

RHomC1
k
(1, V ) ∼−→

[
F 0W0V ⊕ F̄ 0W0V

(x,y)7→x−y−−−−−−−→W0V

]
. (3.1.2.1)

(3.1.3) In [1] this is proved for R-Hodge structures, and the formulation is slightly
different. As we will use the same argument below for general r, we spell it out here.

(3.1.4) Let Γ̃(V ) = [Γ̃0(V )→ Γ̃1(V )] be the complex on the right-hand side of (3.1.2.1).
The functors Γ̃i : C1

k → Veck are exact, since the morphisms in C1
k are strictly compatible

with the filtrations. There is a canonical isomorphism of functors

HomC1
k
(1,−) ∼−→ ker(d : Γ̃0 → Γ̃1) (3.1.4.1)

which takes f : 1 = k(0, 0)→ V to (f(1), f(1)) ∈ ker(d).

(3.1.5) Extend Γ̃ to a functor C(C1
k)→ C(Veck), where C(−) is the category of chain

complexes. It is easily seen to have the following properties:

(i) Γ̃ takes quasi-isomorphisms to quasi-isomorphisms.

(ii) If K• ∈ C(C1
k) is bounded below (resp. above) then so is Γ̃(K•).

Therefore it descends to a functor Γ̄ : D(C1
k) → D(Veck), which preserves boundedness

conditions. The isomorphism (3.1.4.1) gives by derivation a map

RHomC1
k
(1,−)→ Γ̄(−).

This is an isomorphism of functors. To see this, it is enough to know that for an object
V ∈ C1

k, it induces an isomorphism on H i. We have already seen this for H0, and the
usual argument for Hodge structures (cf. [1, Lemma 1.8]) shows that it is an isomorphism
on H1. Since C1

k = Repk G and G is the semidirect product of Gm and a free prounipotent
group, H i = 0 for i > 1.
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(3.1.6) Define for any I ⊂ S = {1, . . . , r} and any J ⊂ I the space

Γ̃I,J(V ) =
⋂

j∈I\J

F 0
jW0V ∩

⋂
j∈J

F̄ 0
jW0V

and set Γ̃I(V ) =
⊕

J⊂I ΓI,J(V ). These are functors C̃rk → Veck, and since the morphisms
in Crk are strictly compatible with the filtrations, they are exact.

(3.1.7) We may then define a multidimensional complex indexed by {0, 1}r, with Γ̃I(V )
placed in degree (ε1, . . . , εr) where I = {j | εj = 0}. The differentials in the i-direction
are

di : Γ̃I(V )→ Γ̃I\{i}(V ), (xJ)J⊂I 7→ (yJ)J⊂I\{i}

where yJ = xJ − xJ∪{i}.

(3.1.8) Let Γ̃•(V ) be the associated simple complex. It is a functor from Crk to C(Veck),
the category of chain complexes of k-vector spaces, and so extends to a functor Γ̃ : C(Crk)→
C(Veck). If r = 1, this agrees with the functor considered in (3.1.4).

(3.1.9) Lemma. (i) There is a functorial isomorphism HomCrk
(1, V )→ H0(Γ̃•(V )).

(ii) Γ̃ takes quasi-isomorphisms to quasi-isomorphisms.

Proof. (i) In degrees 0 and 1, Γ̃•(V ) is

⊕
J

F
0
JW0V →

⊕
i∈S

⊕
J⊂S\{i}

 ⋂
j /∈J∪{i}

F 0
jW0V ∩

⋂
j∈J

F̄ pjW0V


which shows that H0(Γ̃•(V )) =

⋂
j F

0
j V ∩ F̄ 0

j V ∩W0V = Hom(1, V ).

(ii) Taking cones, it is enough to check that if K• ∈ C(Crk) is acyclic, then so is Γ̃(K•).
This holds since every FJ ∩W is a Z2r-filtration with respect to which morphisms in Crk
are strict (2.4.8).

(3.1.10) By (ii) and the exactness of Γ̃I , just as in the case r = 1, the functor Γ̃ descends
to a functor Γ̄ on derived categories, preserving boundedness conditions.

(3.1.11) Theorem. The map of functors RHomCrk
(1,−) → Γ̄ induced by (3.1.9)(i) is

an isomorphism.

Proof. It is enough to show that for any simple object of Crk, the map induces isomor-
phisms on H∗. Consider the external tensor product � : C1

k × · · · × C1
k → Crk. The

simple object k(p, q) is isomorphic to �k(pi, qi). Let us prove the isomorphism of H∗ for

V = �Vi, for any Vi ∈ C1
k (1 ≤ i ≤ r). But Γ̃(V ) is then simply the tensor product of

the complexes Γ̃(Vi), and by the Künneth formula for cohomology of Gr,

RHomCrk
(1,�Vi) =

⊗
RHomC1

k
(1, Vi).
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So the result follows from (3.1.2.1).

3.2 Extensions of mixed plectic Hodge structure

(3.2.1) Let V be a mixed plectic R-Hodge structure. Then the filtrations Fj , F̄j are
complex conjugate, and W is real. Therefore we may define a complex conjugation c on
the complex Γ̃(VC) by:

c : Γ̃I,J(VC)→ Γ̃I,I\J(VC), x 7→ (−1)r−#I x̄

and set
Γ̃R(V ) = Γ̃(VC)c=1.

If r = 1 then Γ̃R(V ) = [F 0W0VC
d−→ W0V (1)], with d given by (twice) the projection

VC = V ⊕ V (1)→ V (1) onto the imaginary part.

As passing to c-invariants is exact, we obtain a functor Γ̄R on the derived category, and
one obtains:

(3.2.2) Corollary. There is a canonical isomorphism of functors

RHomR–HSr(R(0),−) ∼−→ Γ̄R(−)

(3.2.3) Likewise, let V ∈ R–HS+
r . Then the real Frobenii τj act on Γ̃R(V ). Let Γ̃+

R (V )
be the invariants under the groups they generate. In the same way we obtain a functor
Γ̄+
R on the derived category of R–HS+

r and an isomorphism

RHomR–HS+
r

(R(0),−) ∼−→ Γ̄+
R (−).

(3.2.4) Let us compute the Ext-groups for plectic Tate mixed Hodge structures. Now
R(n) = �jR(nj) is the external tensor product of the Tate objects R(nj) in the category
R–HS of (usual) R-Hodge structures. Therefore

RHomR–HSr(R(0),R(n)) '
⊗

RHomR–HS(R(0),R(nj))

Using the well-known formulae for the Ext-groups in R–HS and R–HS+, we see at once
that if some nj is < 0, then RHomR–HSr(R(0),R(n)) = 0. Otherwise it has exactly one
non-vanishing cohomology group ExtdR–HSr(R(0),R(n)) ' R in degree d = #{j | nj > 0}.

So passing to invariants under the τj , one sees that ExtdR–HS+
r

(R(0),R(n)) ' R if each

nj is either zero or is odd and positive (with d as before), and vanishes otherwise.

3.3 Hilbert modular varieties

(3.3.1) Let F be a totally real field of degree r > 1, with ring of integers o, and Σ =
Hom(F,R) the set of real embeddings. Let X be a (complex, smooth, connected) Hilbert
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modular variety. Thus X = Γ\HΣ for a (sufficiently small) subgroup Γ ⊂ SL2(o) acting
on r copies of H, the complex upper half-place. In this section we will construct a mixed
plectic R-structure on H∗(X,R), compatible with the usual mixed Hodge structure,
which is in some sense canonical (for example, one easily can show that it is preserved
by Hecke operators).

(3.3.2) We first review the cohomology of X. For further details, see [7] for the topolog-

ical and [6, Ch. III] for the Hodge theory. Let X
j−→ X be the minimal compactification

of X. Its boundary is a finite set Y of points of X; let i : Y −→ X be the inclusion,
and ν = #Y . One has the usual long exact sequence of boundary cohomology (with
coefficients in a field E of characteristic zero, say):

· · · → Hn
c (X,E)

ρn−→ Hn(X,E)
σn−→ Hn(Y, i∗Rj∗E)→ . . . (3.3.2.1)

Write Hn
! (X,E) = im(Hn

c (X,E)→ Hn(X,E)) for the interior cohomology.

The boundary cohomology was computed by Harder [7, 8], together with the maps ρn,
σn, using the Borel-Serre compactification. For each y ∈ Y , the Borel-Serre boundary
component is a bundle over a real torus isogenous to o∗⊗Z (R/Z), with fibre isogenous
to o⊗Z (R/Z). Its rational cohomology is

(R•j∗Q)y '
∧•
Z o
∗ ⊗Z (Qe0 ⊕Qer)

with en in degree n. Moreover the maps ρn, σn have the property:

• For r < n ≤ 2r − 1, ρn is injective.

• For r ≤ n < 2r − 1, σn is surjective.

• The image of σ2r−1 has codimension 1.

In particular, by Poincaré duality one has that Hn
! (X,Q) = Hn(X,Q) for 0 < n < r,

and for r ≤ n ≤ 2r − 2 there is an exact sequence

0→ Hn
! (X,E)→ Hn(X,E)→ Hn(Y, i∗Rj∗E)→ 0.

(3.3.3) Suppose from now on that E ⊂ R. Then the exact sequence (3.3.2.1) is an
exact sequence of mixed E-Hodge structure. The Hodge structure on the boundary
cohomology is [6, §III.7]

(Rnj∗E)y =

{∧n
Z o
∗ ⊗Z E(0) (0 ≤ n ≤ r − 1)∧n−r

Z o∗ ⊗Z E(−r) (r ≤ n ≤ 2r − 1)
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(3.3.4) The interior cohomology is pure, and is a direct sum of two parts. The first
of these (denote H∗A in [7]) comes from algebraic classes associated to the r standard
line bundles Lι (ι ∈ Σ) on X. Their cohomology classes ξι belong to H2

! (X,Q(1)). The
E-subalgebra generated by {(2πi)−1ξι} is the sub-E-Hodge structure

H∗A(X,E) ' (E ⊕ E(−1))⊗Σ
deg<2r.

of H∗! (X,E) (where E(−1) is in degree 2).

(3.3.5) The second part is the cuspidal cohomology Hr
cusp(X,E). It has dimension 2r

times the dimension of the space of holomorphic cusp forms of weight (2, . . . , 2) for
Γ, and for E = R can be interpreted as relative Lie algebra cohomology for gl2(R)Σ.
As explained in [9, §2], there is a tensor product decomposition of the Lie algebra
cohomology which puts on Hr

cusp(X,R) a canonical pure plectic R-structure, of plectic
weight (1, . . . , 1).

(3.3.6) The real boundary cohomology can be given a canonical plectic Hodge structure,
as a sum of copies of R(0, . . . , 0) and R(−1, . . . ,−1).

(3.3.7) The algebraic part H∗A also carries a canonical plectic Hodge structure, for which
ξι (which is represented by a (1, 1)-form on the ι-th copy of H) is of Hodge type (1ι, 1ι).
So H2m

A (X,R) is pure of simple weight 2m but has several plectic weights.

(3.3.8) The “Manin-Drinfeld principle” shows that Hr
cusp(X,Q) is (uniquely) a direct

factor of Hr(X,Q) (not just of the interior cohomology), and thus the mixed Hodge
structure on X is completely determined by the extension of the boundary cohomology
by H∗A.

(3.3.9) In many degrees this is enough to put a canonical plectic Hodge structure on
Hn(X,R). The cases n = 0, 2r are trivial, and in degree 1 ≤ n < r, Hn(X,R) =
Hn

! (X,R) so has a canonical plectic pure R-Hodge structure. In odd degrees n with
r < n < 2r− 1, Hn(X,R) equals the boundary cohomology, so therefore has a canonical
plectic Hodge structure. The same holds for n = 2r − 1 because of the exact sequence

0 = H2r−1
! (X,R)→ H2r−1(X,R)→

⊕
y∈Y

R(−r) Σ−→ R(−r) = H2r
c (X,R)→ 0.

(3.3.10) To describe the mixed Hodge structure completely, it therefore suffices to con-
sider the following possible extensions: if r is even

0→ Hr
A(X,R)→ Hr(X,R)/Hr

cusp(X,R)→ R(−r)ν → 0 (3.3.10.1)

and for r
2 < n < r

0→ H2n
! (X,R) = H2n

A (X,R)→ H2n(X,R)→
∧2n−r
Z o∗ ⊗Z R(−r)ν → 0. (3.3.10.2)
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(3.3.11) Theorem. The extensions (3.3.10.1), (3.3.10.2) are (uniquely) split, with the
exception of degree 2r− 2, when the class of the extension is described in (3.3.13) below.

For r = 2 this was proved by Caspar [3], using Eisenstein cohomology. The general case
(which is proved the same way) will be found in the forthcoming PhD thesis of C. Da-
videscu. It follows that in these degrees, apart from 2r − 2, Hn(X,R) carries a unique
(unmixed) plectic R-Hodge structure for which these sequences are exact sequences in
R–HSr.

(3.3.12) In degree 2r − 2 the extension may be written (after fixing an orientation
∧r−10∗/(torsion) ' Z) as

0→
⊕

ι : F→R
R(1)→ H2r−2

? (X,R)(r)→ Hom(o∗,Z)⊗Z R(0)→ 0

where H2r−2
? = H2r−2 if r 6= 2, and H2

? = H2/H2
cusp. The ι-component of the direct

sum is generated by ∧α 6=ιξα. The extension is determined by the pushouts to these
components, for each ι : F → R:

0→ R(1)→ Eι → Hom(o∗,Z)⊗Z R(0)→ 0.

The extension class of Eι is an element of

Hom(o∗,Z)⊗Z Ext1
R–HS(R(0),R(1)) = Hom(o∗,R).

(3.3.13) Theorem. The image of the class of Eι in Hom(o∗,R) is a non-zero rational
multiple of the regulator homomorphism u 7→ log |ι(u)|.

(3.3.14) The subspace of cohomology generated by ∧α 6=ιξ is isomorphic, as plectic
Hodge structure, to the Tate object R(−n) with nα = 1 (α 6= ι), nι = 0. The boundary
cohomology in degree (2r − 2) is a sum of copies of R(−1, . . . ,−1). To give a canonical
plectic mixed R-Hodge structure on H2r−2(X,R), it therefore is enough to show that
each extension Eι comes from a unique extension of plectic Hodge structures

0→ R(1ι)→ Eι → Hom(o∗,Z)⊗Z R(0)→ 0.

But the Künneth formula gives

Ext1
R–HSr(R(0),R(1ι)) = Ext1

R–HS(R(0),R(1))
⊗
α 6=ι

HomR–HS(R(0),R(0)) ' R

and so the forgetful map Ext1
R–HSr(R(0),R(1ι)) → Ext1

R–HS(R(0),R(1)) is an isomor-
phism; so Eι lifts to a unique element of R–HSr.
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