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Introduction 

It is not the intention of this paper to review in great detail all that is known of the 

“alternative complement pathway”.  There have been several reviews in recent years 

(Bexborn et al 2008; Lachmann 2009; Nilsson and Nilsson-Ekdahl 2012; and 

Harrison 2017;) the last of which in particular goes  into the subject in great detail.  

However, there does appear to remain a degree of misunderstanding of some 

aspects of this pathway particularly in the role of the “tickover” which is still frequently 

shown in diagrams of the alternative pathway as its activating event – which, as is 

discussed below, it is not.  The intention of this paper is to look again at what the 

alternative pathway is and what it does and to suggest that it should be regarded in a 

different light from the classical and lectin pathways, serving in large part as an 

amplification mechanism for all ways of activating the complement system – a 

conclusion similarly reached by Harrison (2017). 

 

History 

What became known as the alternative complement pathway originated with the 

work of the Pillemer laboratory when the first paper on “the properdin system and 

immunity” was published in 1954.  This work gave rise to a series of some fourteen 

papers followed by immense controversy which are comprehensively reviewed by 

Lepow (1980).  It is perhaps just worthwhile with hindsight to look at this early work 

in outline again.  The Pillemer group used zymosan, a preparation of yeast cell walls 

that is pure carbohydrate, as a complement activator.  It was already then known 

that treating human serum at 37oC with zymosan depleted it of what was then called 

“C’3”, which then described all the components needed after C1, 4 and 2 to produce 

lysis.  Treating guinea pig serum with zymosan does remove all C3 (in its 

contemporary sense) so that the resulting reagent, known as “R3”, can be used to 

generate EAC142 when added, in the presence of calcium, to antibody-coated 

erythrocytes.  This is not the case with human serum where the R3 reagent seems to 

exhaust Factor B rather than C3 and the human “R3” does contain appreciable 

amounts of C3.  When used to treat antibody-coated erythrocytes in the presence of 

calcium and magnesium human R3 gives rise to the intermediate EAC1423bi.  None 

of this this was known in the 1950s since C3, the first complement to be isolated as a 

protein, was not described until 1960 (Müller-Eberhard and Nilsson 1960).   

 



3 
 

The observation that formed the basis of the work on properdin was that when 

zymosan was incubated with human serum at 17oC, it removed a component (to 

which the name properdin was given) which was necessary for zymosan to produce 

an R3 reagent at 37oC.  Properdin was subsequently purified by Pensky et al in 1968 

by which time it had also been discovered that there were other components 

required for the fixation of properdin to zymosan to take place.  These were 

recognised as being similar to the classical complement components C1, C4 and C2.  

Looking back at these experiments with the hindsight of over sixty years, it does 

seem to be the case that at 17oC there is a reaction that allows covalent binding of 

C3b to zymosan where it may bind some Factor B (the C2-like component of the 

properdin pathway), and that this then allows the binding of properdin to C3b or 

C3b(B).  The exact nature of the reaction that allows the C3 fixation is still not wholly 

clear.  Pillemer and his group used a resin to deplete cations and showed that they 

needed to restore only magnesium, rather than calcium, in order for this reaction to 

work.  If this resin removed all calcium, then one can exclude the classical pathway 

as being involved.  Otherwise it certainly would be activated, since human serum 

contains antibodies to the many carbohydrate determinants that are found on 

zymosan.  Total absence of calcium would also exclude involvement of much of the 

lectin pathway (which was quite unknown at that time) since the C-type lectins - 

mannose binding lectin, and the collectins - also require calcium for their activity.  On 

the other hand, it is now known that ficolins are another group of proteins that can 

activate the lectin pathway.  These are not C-type lectins but use fibrinogen-type 

recognition domains which, generally, do not require calcium for binding their ligands 

(Garlatti et al 2010).  It is therefore quite plausible that this reaction at 17oC which 

allows the covalent fixation of C3 onto zymosan is mediated by the lectin pathway 

using ficolins.  Furthermore, the discovery by Yaseen et al (2017) that MASP-2, the 

principal enzyme involved in lectin pathway activity going via C4 and C2, can itself 

produce sufficient cleavage of C3 to activate the alternative pathway, provided 

another route by which lectin pathway activation can interact directly with the 

alternative pathway.  It is quite likely, therefore, that what Pillemer was observing 

was due, in part at least, to lectin pathway activation.  It is also possible that it is the 

“protected surface” property of zymosan – its capacity of allowing bound C3b to bind 

Factor B in preference to Factor H – that allows some C3 fixation to occur.  However, 

the C3b amplification loop does not work well at 17oC and in order to get appreciable 
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C3 fixation by such a mechanism one would anticipate the need for a much higher 

temperature.   

 

What generated controversy was, largely, the claims that properdin was a major 

player in innate immunity to viruses, bacteria and tumours.  There is some dispute 

whether Pillemer made these claims in quite the way it was reported in the popular 

press at the time (see the discussion by Colten quoted in Lachmann (2006)but these 

claims certainly raised the profile of the properdin system and also, probably, 

encouraged the scepticism.  The major sceptic was Robert Nelson who in 1958 

published “an alternative mechanism for the properdin system” having previously 

presented his criticisms at meetings.  Nelson’s view was that basically the properdin 

experiments were simply demonstrating the activity of the classical pathway that 

involved antibodies and classical pathway components.  His experiments were, 

however, done in large part on guinea pig serum which, as already mentioned, is not 

an entirely good analogue for human serum with regard to reactions with zymosan 

and certainly what Nelson described would have required the presence of calcium.  

In retrospect, therefore, his criticisms do not look as potent as they were considered 

at the time.   

 

Properdin was shown to act as a stabiliser of the alternative pathway convertase 

C3bBb (Fearon and Austen 1975) and as such has an important physiological role.  

Properdin deficiency is associated with meningococcal infections, as are so many 

other complement deficiencies.  Moreover, it is now established that properdin, as it 

occurs in plasma, reacts only with C3b (Harboe et al 2017) in spite of more recent 

claims (Hourcade et al 2006; Kemper et al 2010) that properdin may act as a 

recognition molecule and therefore could act as an initiator of the complement 

alternative pathway along the lines originally postulated by Pillemer.  However, larger 

polymers of properdin do have some capacity of this type.  These polymers can be 

found in properdin purified from plasma where they are an artefact, as was first 

shown by Farries et al (1987).  However, it has more recently been shown that 

properdin made by recombinant techniques (Ali et al 2014) has similar properties to 

the artefactual properdin polymers and this recombinant properdin has been shown 

to be a powerful stimulant of complement activity by stabilising the C3 convertase.  

Whether properdin found at extravascular sites in vivo, possibly made by 
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polymorphs, may contain or comprise these larger polymers is unknown and it is 

therefore still unclear whether these larger properdin polymers can occur in vivo. 

 

Evolutionary History  

In contrast to its discovery history, in evolutionarily terms the alternative pathway can 

be considered to form the oldest part of the complement system (see Lachmann 

2009 for a more detailed account).  A C3 like molecule can be found in insects and a 

Factor B-like protein in echinoderms.  In these invertebrates the invading micro-

organisms presumably supplied the enzymes needed to cleave C3 and Factor B.  In 

vertebrates with a pumped circulation which contains a wide variety of protease 

inhibitors the remainder of the alternative pathway evolved (see Figure).  

Interestingly, echinoderms were also shown to be able to activate the C3 like 

molecule through analogues of lectin pathway components (Fujita, 2002) indicating 

that a form of  invertebrate lectin pathway by far antedates the classical pathway 

activation route. The appearance of the latter somewhat paralleled the evolutionary 

rise of antibodies, the most potent inducers of classical pathway activation.The 

classical pathway seems to have developed in vertebrates largely by gene 

duplication to provide a feed-in to the alternative pathway particularly from the 

humoral adaptive immune system; and the vertebrate lectin pathway to allow 

activation of the classical pathway using lectins recognising pathogen associated 

carbohydrate determinants and thus providing a further feed-in from the innate 

immune system. 

 

The renaissance of the Alternative Pathway 

The renaissance of the alternative pathway following the controversies of the 1950s 

and early ‘60s came from a quite different direction which was the demonstration that 

there were various ways of activating complement that did not involve the early 

classical pathway components.  Gewurz et al (1968) showed that 

lipopolysaccharides could consume what had been known as C’3 - which by that 

time was known to be all the components from C3 to C9 - without consuming C1 and 

C4.  It was shown that precipitates made with guinea pig IgG1 antibodies (Sandberg 

et al 1970) or with rabbit Fab’2 (Reid 1971) had similar properties.  In 1971, Frank et 

al showed that C4-deficient guinea pig complement was able to be activated using 

suitable activators.  These findings made it amply clear that there was a mechanism 
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of activating the complement system that did not require C1, C4 and C2 and this 

renewed the study of what other components were involved in this pathway.  It had 

already been found that these showed analogy to the classical pathway components.  

There was a C2-like (heat labile) protein which was demonstrated as a novel protein 

by Boenisch and Alper 1970 and who named it glycine-rich beta glycoprotein (GBG).  

A similar protein was described by Götze and Müller-Eberhard in 1971 and was 

called by them C3 proactivator and again by Goodkofsky and Lepow in 1972, from 

what had been the Pillemer laboratory, who called it Factor B by analogy with the 

original Pillemer nomenclature and this name was finally adopted.  There was also a 

C4-like (hydrazine sensitive) protein which was known as properdin Factor A and 

this was demonstrated by Müller-Eberhard and Götze in 1972 to be C3 itself.  A C1-

like component was isolated by Alper and Rosen (1971) who called it glycine-rich 

beta glycoproteinase (GBGase) and the following year by Müller-Eberhard and 

Götze (1972) who called it C3PA convertase.  This protein was subsequently called 

Factor D.   

In the early 1970s these laboratories were of the opinion that this alternative pathway 

would have an initiation rather like the classical pathway and it was speculated that 

this would start, by analogy with the classical pathway, with the activation of Factor D 

from a precursor form (Fearon et al 1979).  The Müller-Eberhard laboratory (Vallota 

et al 1974; Schreiber et al 1976a and b) believed that the initiation event involved a 

novel initiating factor which was a naturally occurring analogue of C3 nephritic 

factors, which had first been described by Spitzer et al (1969).  However, neither of 

these hypotheses turned out to be correct.  There is a zymogen form of Factor D but 

normal serum always contains active Factor D and the activation of the zymogen 

probably occurs largely extra-vascularly near the site of synthesis of Factor D, which 

is largely by adipocytes.  It has recently been demonstrated that the enzyme that is 

largely concerned in this activation is MASP-3 (Dobó et al 2016), one of the enzymes 

of the lectin pathway, and the only one that is resistant to inhibition by C1 inhibitor 

(Zundel et al 2004) and therefore has a prolonged active half-life in vivo.  The 

initiating factor turned out not to exist at all.  Nephritic factors, contrary to the 

vigorous claims of the “La Jolla group” (i.e. Müller-Eberhard and co-workers), are 

indeed immunoglobulins and they are a curious set of autoantibodies to the 

alternative pathway C3 convertase which cause major activation of the complement 
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system.  It is still unknown what causes them to be formed.  They are, however, IgG, 

as first suggested by Thompson (1972), who identified them particularly with IgG3, 

and this was subsequently proven by showing that they pass the placenta (Davis et 

al 1977) and by Scott et al (1978) and Daha and van Es (1979) who showed that 

Fab and Fab’2 fragments of these antibodies retained their biological activity.  Scott 

et al (1981) further showed that these antibodies were unusual in that they are rather 

larger than normal IgG; that this increase in size is due to increased glycosylation; 

and that removal of the carbohydrate with mild periodate treatment causes them to 

lose their biological activity. These “original” nephritic factors will, when purified as 

IgG and added to normal human serum, cause conversion of the C3 in the serum to 

iC3b and subsequently to C3dg and C3c. This reflects the findings in patients with 

these nephritic factors who have C3dg (known earlier as alpha 2D globulin) present 

in their plasma. These effects result from their property of powerfully stabilising the 

alternative pathway C3 convertase (Daha et al 1976).  In more recent years, a new 

definition for nephritic factors was adopted which classifies as nephritic factors all 

antibodies that show some stabilisation of the alternative pathway convertase.  The 

great majority of these do not convert C3 in normal human serum and their biological 

significance is less secure.  One always has to bear in mind that antibodies to C3 

breakdown products occur in response to complement fixation of all kinds and these 

antibodies are known as immunoconglutinins (Coombs et al 1961) so one must 

always be certain that such antibodies are the cause of the complement activation 

rather than its result.   

 

The Alternative Pathway as a purely rate governed reaction 

The recognition that the alternative pathway was quite different from the classical 

pathway – and subsequently from the lectin pathway as well - in having no initiating 

event at all again came from quite different studies.  In 1967, Alper and his 

colleagues in Boston first studied a patient who had powerful continuous 

complement activation in vivo with conversion of C3 to C3b and of Factor B to Bb 

(Alper et al 1970).  It was at that time quite unknown what was the matter with him 

and the possibility of his abnormality being Factor I deficiency was discussed when 

Chester Alper and I met at the 17th Protides of the Biological Fluids meeting in 1969, 

Factor I having been discovered in 1966 as an enzymatic component of plasma that 

was required to convert C3b (which had been found not to react with bovine 
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conglutinin) to another C3 breakdown product, C3bi, that would do so (Lachmann 

and Müller-Eberhard 1968).  The Boston patient, TJ, did turn out to be Factor I 

deficient and this was the cause of the continuous activation of his alternative 

pathway.  It was subsequently shown (Nicol and Lachmann 1973) that exactly the 

same situation could be produced in vitro by the depletion of Factor I from normal 

human serum using purified Fab2’ antibodies.  When such depleted serum is 

warmed up, there is immediate and virtually complete conversion of C3 to C3b.  

From these observations came the realisation that the alternative pathway is a rate-

governed reaction where two competing pathways act upon C3b.  One, 

subsequently found to involve Factor H as well as Factor I (Whaley and Ruddy 

1976), leads to the breakdown of C3b to iC3b and destroys the possibility of 

feedback, whereas the other is the C3b feedback cycle where C3b combines with 

Factor B and is acted upon by Factor D and gives rise to C3bBb, the alternative 

pathway C3 convertase (see Figure 1).  

 

The C3-tickover 

It was apparent on looking at this model that there had to be a mechanism to provide 

a miniscule amount of C3b, or some analogous protein, present at all times so that 

simply removing Factor I (or Factor H) could activate the pathway. This was given 

the name of the “C3 tickover” (Lachmann and Nicol 1974; Lachmann and Halbwachs 

1975) by analogy with a car engine that has to be ticking over before pressing the 

accelerator causes the car to move.  At the time, it was thought that small amounts 

of C3 conversion to C3b by a variety of enzymes, including other complement 

enzymes, would be the cause.   

 

The whole idea was greatly resisted by the La Jolla group when it was first presented 

to the Coronado Complement workshop in 1973 and they continued to publish about 

an initiating factor for some years thereafter. However, in 1981 Pangburn et al 

suggested, without actually mentioning the tickover hypothesis, that the initial C3 

product might be a spontaneous hydrolysis product breaking the internal thioester 

bond and that this product, iC3, was capable of reacting in both the breakdown and 

amplification loops.  This is an attractive and plausible idea though very difficult to 

prove.  The essence of the tickover is that there are tiny amounts of either C3b or 

iC3 present at all times which do not themselves cause complement activation and 
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presumably are rapidly converted to iC3b and iC3i; and which can allow complement 

activation in the absence of other complement pathway activity 

 

The Protected Surface 

The “protected surface” phenomenon described by Fearon and Austen (1977) is 

certainly the essential mechanism for giving rise to alternative pathway activation in 

the absence of the activity of the other complement pathways.  This term describes 

the phenomenon whereby C3b bound on certain surfaces is relatively resistant to 

binding Factor H while continuing to bind Factor B normally thereby promoting the 

C3b amplification loop.  These protected surfaces were typically carbohydrates 

lacking sialic acid (Kazatchkine et al 1979) but these are by no means the only 

products to do this.  Zymosan, as used by Pillemer and everybody else ever since, is 

a canonical protected surface as is particulate inulin and as is bacterial 

lipopolysaccharide of the smooth variety.  In the case of inulin, it is of particular 

interest that soluble inulin does not have a protected surface effect suggesting that it 

does need to be an insoluble surface.  Smooth lipopolysaccharides containing 

carbohydrates may well be the most important in vivo activator by this mechanism 

and Gram negative infections acting in this way may be of considerable importance 

in a number of diseases.  The “rough” endotoxin - Lipid A - binds C1q and activates 

the classical pathway (Lachmann and Nicol 1974) so that endotoxins may recruit the 

alternative pathway by two complementary mechanisms.  

 

There are other protected surfaces that are important during complement activation. 

One of these is IgG. C3b, or presumably iC3, bound to IgG is protected as shown by 

Sissons et al (1979) and by Reiter and Fishelson (1989).  This is important in 

allowing the classical pathway to feed efficiently into the C3b feedback loop.  

Furthermore, as shown by Meri and Pangburn (1990) in an important but seldom 

quoted paper, C3 bound covalently to the classical pathway convertase, C4b2b, is 

also protected and this enables it efficiently to give rise to a C5 convertase as well as 

potentially stimulating feedback.  This property seems not to be shared by C3b 

bound to the alternative pathway convertase, C3bBb, and this would explain the 

greatly increased lytic efficiency of the classical pathway over the alternative 

pathway.  No other explanation for this phenomenon had ever really been adduced.   
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That it is necessary for C3 to be bound onto an insoluble surface for the activation of 

the alternative pathway (Nilsson and Nilsson Ekdahl 2012) is true for activation via 

the protected surface but is not necessary for activation by the depletion of Factor I 

or Factor H or the addition of nephritic factors to serum in vitro all of which can 

activate the C3 feedback loop to exhaustion entirely in the fluid phase.   

 

Factor H deficiency produces a somewhat similar phenotype to Factor I deficiency 

although other Factor I co-factors do allow the production of iC3b from C3b.  This 

has important consequences because the reaction of iC3b with CR3 on neutrophils 

is an essential mechanism for complement-mediated immunopathology. This occurs 

in Factor H deficiency but not in Factor I deficiency (Rose et al 2008). 

 

It therefore is probably accurate to regard the C3b amplification and feedback loops 

as an amplification mechanism for all forms of complement activation, be it by the 

classical pathway or by the lectin pathway or by the presence of nephritic factors, 

and that it is only the protected surface phenomenon which gives it status as an 

autonomous pathway of complement activation in-vivo. It is the protected surface 

rather than the tickover which should be shown as “initiating” activation by the 

alternative pathway. 

In vivo there are likely to be many situations where the recruitment of the 

amplification loop via the classical pathway or the lectin pathway are as important.  
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