Characterisation of denatured states of sensory rhodopsin II by solution-state NMR
Yi Lei Tan¹, James Mitchell²,³, Judith Klein-Seetharaman²,⁴, Daniel Nietlispach¹*

¹Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, CB2 1GA, United Kingdom
²Biomedical Sciences Division, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
³Present address: School of Life Sciences, University of Nottingham, NG7 2UH, United Kingdom
⁴Present address: Department of Chemistry, Integrative Graduate Program in Quantitative Biosciences and Engineering, Colorado School of Mines, 1500 Illinois Street, Golden CO 80401

*To whom correspondence should be addressed: Daniel Nietlispach, Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, CB2 1GA, United Kingdom. Phone: +44 1223 766023, Fax: +44 1223 766002, Email: dn206@cam.ac.uk
Abstract

Sensory rhodopsin II (pSRII), a retinal-binding photophobic receptor from *Natronomonas pharaonis*, is a novel model system for membrane protein folding studies. Recently, the SDS-denatured states and the kinetics for reversible unfolding of pSRII have been investigated, opening the door to the first detailed characterisation of denatured states of a membrane protein by solution-state nuclear magnetic resonance (NMR) using uniformly 15N-labelled pSRII. SDS denaturation and acid denaturation of pSRII both lead to fraying of helix ends but otherwise small structural changes in the transmembrane domain, consistent with little changes in secondary structure and disruption of the retinal-binding pocket and tertiary structure. Widespread changes in the backbone amide dynamics are detected in the form of line broadening, indicative of µs-to-ms timescale conformational exchange in the transmembrane region. Detailed analysis of chemical shift and intensity changes lead to high-resolution molecular insights on structural and dynamics changes in SDS- and acid-denatured pSRII, thus highlighting differences in the unfolding pathways under the two different denaturing conditions. These results will form the foundation for furthering our understanding on the folding and unfolding pathways of retinal-binding proteins and membrane proteins in general, and also for investigating the importance of ligand-binding in the folding pathways of other ligand-binding membrane proteins, such as GPCRs.

Highlights

- We report detailed NMR studies on a denatured polytopic α-helical membrane protein
- SDS- and acid-denatured pSRII experience small structural changes in the TM domains
- Denatured pSRII undergoes widespread µs-to-ms timescale conformational exchange
- High-resolution structural differences between SDS vs. acid denaturation are shown
- Retinal influences the exchange equilibria amongst different conformations of pSRII

Keywords

Membrane proteins; Folding; Transmembrane helices; Chemical shifts; Backbone amides

Abbreviations

7TM Seven transmembrane
X_{SDS} Mole fraction of SDS
BEST Band-selective excitation short transient
c7-DHPC Diheptanoylphosphatidylcholine; 1,2-diheptanoyl-sn-glycero-3-phosphocholine
CD Circular dichroism
H-bond Hydrogen bond
HSQC Heteronuclear single quantum correlation
MRE Mean residue ellipticity
NMR Nuclear magnetic resonance
pK_a Negative base-10 logarithm of the acid dissociation constant
pSRII *Natronomonas pharaonis* sensory rhodopsin II
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>TM</td>
<td>Transmembrane</td>
</tr>
<tr>
<td>TROSY</td>
<td>Transverse relaxation optimised spectroscopy</td>
</tr>
<tr>
<td>TSP</td>
<td>Trimethylsilylproanoic acid</td>
</tr>
<tr>
<td>UV/vis</td>
<td>UV/visible</td>
</tr>
</tbody>
</table>
Introduction

Our understanding on the folding of membrane proteins lags behind that of soluble proteins due to challenges posed by the exposure of hydrophobic regions leading to aggregation during in vitro chemical denaturation and refolding experiments. While different folding models are accepted for soluble proteins, only the two-stage model based on studies with bacteriorhodopsin [1–9] and the long-range interactions model based on studies with mammalian rhodopsin [10–14] have been proposed so far for helical membrane proteins. Recently, sensory rhodopsin II (pSRII) has emerged as a new model system for membrane protein folding studies [15]. It is a retinal-binding seven transmembrane (7TM) helical membrane protein from the archaeon *Natronomonas pharaonis*, and functions as a repellent phototactic receptor to blue light via photoisomerisation of its all-trans retinal chromophore to the 13-cis conformation. This enables the archaeon to seek the dark when respiratory substrates are plentiful. Simulated thermal unfolding experiments suggest that pSRII is stabilised by a combination of mechanisms found for rhodopsin and bacteriorhodopsin [16], with a subset of helices breaking off early in the simulation and a core involving residues from other helices and loops remaining until late, suggesting the presence of a folding core. A systematic investigation of the structural features of SDS-denatured states and the kinetics for reversible unfolding of pSRII has shown that the protein is difficult to denature, and retains the equivalent of six out of seven transmembrane (TM) helices even in 30% SDS (0.998 X_{SDS}, where X_{SDS} denotes the mole fraction of SDS) while the retinal-binding pocket is disrupted in low SDS concentrations starting from 1.5% SDS (0.834 X_{SDS}) [15]. By extensively characterising SDS-denatured states and the kinetics of unfolding and refolding pSRII from SDS-denatured states, we have demonstrated pSRII as a new model membrane protein which is suitable for protein folding studies. Refolding of pSRII has a unique folding mechanism that differs from those of bacteriorhodopsin and bovine rhodopsin. While refolding of SDS-denatured bacteriorhodopsin with bound retinal adheres to two-state folding kinetics [17,18], the refolding kinetics of the equivalent retinal-bound state of SDS-denatured pSRII showed clear deviations from the two-state folding regime [15]. pSRII and bacteriorhodopsin can both also be refolded from the SDS-denatured apo protein state devoid of retinal chromophore [15,17]. On the other hand, refolding of bovine rhodopsin remains elusive even from partially denatured states [19].

More experimental studies are needed to understand the folding pathway of membrane proteins, particularly how and when secondary and tertiary structure elements are being formed. Retinal-binding 7TM helical proteins such as bacteriorhodopsin, mammalian rhodopsin and now pSRII are excellent models for membrane protein folding studies, since the retinal chromophore acts as a natural reporter of the retinal-binding pocket and thus, the tertiary structure. Herein, we report in-depth characterisation of pSRII under denaturing conditions by NMR spectroscopy. Solution-state NMR offers distinct advantages in providing structure and dynamics information at atomic resolution for highly-populated ground states as well as transient minor populations in bio-macromolecules [20,21]. A range of NMR methods are available for studying protein folding events which occur at different timescales and for probing the properties of low-population folding intermediates, hence yielding detailed insights into folding landscapes, misfolding, aggregation and function [22–28]. Comprehensive studies on the denatured states of full-length polytopic α-helical
membrane proteins are scarce [29], and have mostly been limited to sparsely-labelled samples [30–33] or fragments of polytopic α-helical membrane proteins [34–36]. Insights on unfolding pathways and unfolded states could only be derived from a small subset of amino acids or chemical groups in the protein. Multiple challenges are involved in detailed NMR studies on protein folding, including (1) the requirement of uniformly-labelled denatured membrane protein samples which remain resistant against sample degradation and aggregation over several days to enable multi-dimensional NMR studies, (2) successfully assigning a high proportion of NMR resonances due to potential challenges posed by spectral overlap, and (3) studying a heterogeneous ensemble of unfolded structures with different backbone dynamics and conformational exchange occurring at different timescales.

In this paper, we describe the characterisation of SDS-denatured pSRII and acid-denatured pSRII by means of 1D and 2D solution-state NMR. Small changes in the chemical environment of backbone amides were detected, consistent with previous results showing that denatured pSRII retains most of its helical content and remains embedded in detergent micelles [15]. Changes in backbone amide dynamics, specifically increased observation of conformational exchange on the μs-to-ms timescale, was an important feature of SDS- and acid-denatured pSRII. This paper presents one of the very few [29] detailed backbone NMR studies on a full-length, denatured polytopic α-helical membrane protein, thereby providing high-resolution molecular insights on differences in the unfolding pathways under different denaturing conditions. Since the absence of native retinal-protein interactions in denatured states enables the backbone amides to sample different conformations, it is further proposed that the formation of native retinal-protein interactions during protein folding might influence the equilibrium amongst different conformations sampled by the backbone amides, and, in turn, the protein folding landscape.

Results

Structural changes during SDS denaturation of pSRII initiated from helix C

Backbone amide chemical shifts are sensitive to hydrogen bonds (H-bonds) and secondary structures of proteins [37,38]. Chemical shift changes can therefore be used to deduce structural information and changes in H-bonding. The denaturation of pSRII in increasing concentrations of SDS was investigated by recording 2D [1H,15N] BEST-TROSY spectra and monitoring changes in the backbone amide chemical shifts.

To understand whether backbone amide chemical shifts are determined by the mole fraction of SDS (X_{SDS}) or the absolute concentration of SDS, 2D [1H,15N] BEST-TROSY spectra of pSRII were recorded at 308 K in 1% SDS + 0.45% c7-DHPC and in 2% SDS + 0.90% c7-DHPC, both of which correspond to 0.769 X_{SDS} but with different molar concentrations of c7-DHPC and SDS (Figure S1). The retinal chromophore remained attached under both conditions, indicating that both conditions were below the unfolding transition, which previously was determined to be ~ 0.81 X_{SDS} in the presence of 0.5% c7-DHPC [15]. Virtually identical chemical shifts were observed in both spectra, indicating that chemical shifts are determined by X_{SDS}. The peak intensities were slightly lower in 2% SDS + 0.90% c7-DHPC due
to higher detergent concentrations, leading to higher viscosity, slower molecular tumbling
and broader linewidths.

Folded pSRII (0 X_{SDS}) showed wide chemical shift dispersion [39,40]. The dispersion
remained equally wide in the presence of increasing X_{SDS} (Figure 1a), indicating that many
backbone amides still experience unique chemical environments under denaturing
conditions. This supports the results from our previous circular dichroism experiments,
which show that large portions of helical structure are preserved across all X_{SDS} studied [15].

The trajectories of peak movements in titrations monitored by chemical shift changes
provide insights on protein-ligand interactions. Linear changes in resonance positions in the
titration plot indicate the presence of only two states, the free and the bound states, in fast
exchange on the chemical shift timescale with each other. Secondary interactions (e.g.
alternative ligand binding site) and conformational changes during the titration lead to non-
linear changes in resonance positions, because the protein would be expected to interact
differently with the ligand compared to the primary interaction [41,42]. An overlay of
[1H,15N] BEST-TROSY spectra recorded in 0–0.990 X_{SDS} (0–30% SDS in 0.5% c7-DHPC) shows
that increasing X_{SDS} led to progressive changes in chemical shifts (see arrows in Figure 1b).
Many backbone amides showed non-linear changes in resonance position with increasing
X_{SDS} (Figure 1c), and these residues were found to spread across all seven TM helices (Figure
1d). This suggests that in addition to the SDS-free and SDS-bound states, many backbone
amide environments sample alternative states which are attributable to small but
widespread conformational changes across the TM helical bundle as backbone amides
interact with SDS and as the protein denatures in the presence of high X_{SDS}. The extent at
which peak movements deviate from linearity depends on the relative populations of the
different fast-exchanging states present. This indicates that the number of residues with
alternative states presented in Figure 1d is likely to be an underestimation, as very minor
populations of alternative states would not be readily detectable with this method.

To obtain a systematic understanding on the structural changes of pSRII upon exposure to
SDS, the combined chemical shift difference ($\Delta\delta(^1\text{H},^{15}\text{N})$; see Materials and Methods)
relative to pSRII in 0 X_{SDS} was calculated for each observable backbone amide resonance
across different X_{SDS} (Figure 2a). In general, $\Delta\delta(^1\text{H},^{15}\text{N})$ increased with increasing X_{SDS}, with residues near the ends of helices showing greater $\Delta\delta(^1\text{H},^{15}\text{N})$. This suggests that the ends of
helices were unwinding slightly (fraying) whereas the helical content in the protein core was
preserved, consistent with the observed high preservation of helical content across the wide
range of X_{SDS} previously reported in our CD studies [15].

To determine how the retinal-binding pocket is disrupted during SDS denaturation, residues
which constitute the retinal-binding pocket are identified by taking a 3 Å cut-off around the
retinal chromophore (Figure 2b). These residues are listed in Table 1, and are consistent
with the retinal-binding pocket residues identified in the X-ray crystallography study by
Royant et al [43,44]. In 0–0.625 X_{SDS} (0–0.5% SDS in 0.5% c7-DHPC), residues in the retinal-
binding pocket had $\Delta\delta(^1\text{H},^{15}\text{N}) < 0.1$ ppm and experienced little perturbation of the
surrounding chemical environment, with the exception of Trp-178, which is located near the
extracellular end of helix F and reports on slight unravelling of helix ends. Starting from Trp-
76 in the middle of helix C at ≥ 0.625 X_{SDS} (0.5% SDS in 0.5% c7-DHPC), residues with
\(\Delta \delta (^{1}H, ^{15}N) > 0.1 \text{ ppm} \) gradually spread across helix C (Trp-76, Thr-79, Ile-83) and helix D (Val-108, Met-109) with increasing \(X_{\text{SDS}}\). These observations suggest loosened packing of helices C and D against the retinal-binding pocket even before the unfolding transition, which was previously determined to be \(\sim 0.81 \ X_{\text{SDS}}\) in the presence of 0.5% c7-DHPC [15]. From 0.728 \(X_{\text{SDS}}\) (0.8% SDS in 0.5% c7-DHPC) onwards, \(\Delta \delta (^{1}H, ^{15}N) > 0.1 \text{ ppm}\) also appeared on helix G (Phe-208, Gly-209) at one helical turn away from the site of retinal attachment (Lys-205), whereas Lys-205 showed \(\Delta \delta (^{1}H, ^{15}N) < 0.1 \text{ ppm}\) across all \(X_{\text{SDS}}\). This suggests that the site of Schiff base attachment and nearby residues experience small changes to backbone H-bonding and secondary structure beyond the unfolding transition (> 0.81 \(X_{\text{SDS}}\)). In summary, SDS denaturation leads to disruption of the retinal-binding pocket, initiating with disrupted packing against the retinal chromophore at helices C and D before the unfolding transition, followed by small changes in helix G near the site of retinal attachment both before and beyond the unfolding transition (Figure 2c).

Chemical shift changes can be attributed to progressive changes in micelle-protein interactions with increasing SDS concentration and/or protein structural changes due to changes in H-bonding and secondary structure during protein denaturation.

\(\Delta \delta (^{1}H, ^{15}N)\) increased linearly with respect to \(X_{\text{SDS}}\) at low \(X_{\text{SDS}}\) (Figure 3a(ii)) for 135 out of 190 residues (71.1%) which were assignable up to \(\geq 0.728 \ X_{\text{SDS}}\) (0.8% SDS in 0.5% c7-DHPC), as exemplified by Val-101. Most of these residues are distributed in the TM region (Figure 3b). This suggests that the chemical shift changes at low \(X_{\text{SDS}}\) experienced by these backbone amides are attributable to gradual changes in micellar environment as SDS is being integrated into SDS/c7-DHPC mixed micelles. We propose that the slope of the linear correlation of \(\Delta \delta (^{1}H, ^{15}N)\) against low \(X_{\text{SDS}}\) is a measure for the sensitivity of a given backbone amide towards changes in micellar environment. The distribution of different slopes across pSR11 shows good consistency with \(\Delta \delta (^{1}H, ^{15}N)\) (Figure 2a) for most helical residues (Figure S3), suggesting that (1) protein structural changes induced by SDS-mediated denaturation (which give rise to non-linearity in \(\Delta \delta (^{1}H, ^{15}N)\) vs. \(X_{\text{SDS}}\)) are small compared to progressive changes in chemical environment induced by changes in micelle composition (which give rise to linear correlations of \(\Delta \delta (^{1}H, ^{15}N)\) vs. \(X_{\text{SDS}}\) in low \(X_{\text{SDS}}\)), and/or (2) protein structural changes induced by SDS-mediated denaturation are localised to very few specific residues concentrating mostly at the edges of the helices.

Structural changes due to protein denaturation are expected to affect how backbone amides interact with the surrounding micellar environment. These are reflected as deviations from linearity in the linear correlation between \(\Delta \delta (^{1}H, ^{15}N)\) and \(X_{\text{SDS}}\). The residue-specific point of denaturation is therefore assumed to be the lowest \(X_{\text{SDS}}\) at which deviation from linearity arises in the \(\Delta \delta (^{1}H, ^{15}N)\) vs. \(X_{\text{SDS}}\) graph. This allows the two main contributions towards chemical shift changes, namely changes in mixed micelle composition vs. protein structural changes due to protein denaturation, to be distinguished. Residues which became unobservable (see below) at lower \(X_{\text{SDS}}\) than the onset of non-linearity were omitted from this analysis. Residues deviating from linear \(\Delta \delta (^{1}H, ^{15}N)\) vs. \(X_{\text{SDS}}\) relationships at 0.769 \(X_{\text{SDS}}\) (1.0% SDS in 0.5% c7-DHPC) mostly clustered at the extracellular half of helix C (Figure 3c).

Other notable residues which showed early deviation from linearity included Tyr-51 on helix B and Asp-75 on helix C, both of which are H-bonded to the internal water network in the folded state, and Lys-205, to which the retinal is attached via a protonated Schiff base. This
likely suggests that key inter-helical water-mediated H-bonds and the retinal-binding pocket are beginning to be disrupting before the unfolding transition. Residues deviating from linear Δδ(^1H,^15N) vs. X SDS relationships starting from 0.834 X SDS (1.5% SDS in 0.5% c7-DHPC) were clustered in the middle portion of helix D. Residues showing the onset of a non-linear Δδ(^1H,^15N) vs. X SDS relationship at even higher X SDS were mostly distributed at micelle/solvent interfaces or in solvent-accessible regions. Overall, these results suggest that protein structural changes due to SDS denaturation initiate at the extracellular half of helix C and spread across to helix D followed by residues at micelle interfaces and solvent-accessible regions. This is consistent with the proposed sequence of structural changes in pSRII based on the aforementioned chemical shift analysis (see above).

19 residues (10.0%) showed linear correlation of Δδ(^1H,^15N) against the absolute concentration of SDS as exemplified by Leu-159 (Figure 3a(ii)), suggesting non-specific interaction of non-micellar SDS with these backbone amides. With the exceptions of Asn-105 on helix D and Trp-171 on helix F, most of such residues were located in the loop regions (2 residues) and C-terminal tail (8 residues), or were located in the TM region and facing outwards toward the detergent micelle (7 residues) (Figure 3b).

There were 36 assignable residues which did not show obvious correlations against X SDS or the absolute concentration of SDS, suggesting complex changes in chemical environment with increasing SDS concentration. These residues were mostly distributed in the TM region of helices A, B and G, and faced the surrounding detergent environment (Figure 3b).

Tryptophan side-chain indoles which face the detergent micelle (Trp-9 and Trp-24 on helix A) experienced greater changes in chemical environment while Trp side-chains which face the protein core generally experienced little changes, consistent with the protein remaining embedded in a micellar environment and incorporation of SDS into the micelles (see Supplementary Information).

Altogether, the above detailed analysis of chemical shift changes provides insights into the heterogeneous nature of protein-micelle interactions and how such interactions change with increasing SDS concentrations and protein denaturation.

pSRII shows increased conformational exchange in SDS-denatured states

Line broadening could be caused by conformational exchange at the intermediate (μs-to-ms) exchange timescale [41] or slower molecular tumbling attributable to an increase in micelle size. Aggregation is unlikely to be the cause of peak broadening, because aggregation was shown to take more than 6 h at 35 °C (308 K) (Figure S2; see Supplementary Information) and NMR experimental time was limited to 6 h. The range of X SDS for which detailed analyses were made in this study (0–0.870 X SDS; 0–2.0% SDS in 0.5% c7-DHPC) is below the reported concentration of SDS required for the formation of cylindrical micelles [45], and hence it is assumed that increase in micelle sizes and decrease in rotational correlation times are minor. It is also assumed that chemical exchange with water molecules is negligible due to the scarce presence of water molecules in the micellar environment and hydrophobicity of detergent acyl chains.
Peak intensities generally decreased with increasing X_{SDS} due to conformational exchange between different backbone amide conformations occurring at the intermediate (μs-to-ms) exchange timescale. This resulted in additional line broadening, as evidenced by most residues being no longer observable in $\geq 0.870 X_{SDS}$ (2.0% SDS in 0.5% c7-DHPC) (Figure 1a). Like in the folded state, residues in the C-terminal tail of pSRII remained significantly more flexible than the rest of the protein across all X_{SDS}, as evidenced by the strong intensities of these peaks. The large differences in peak intensities between TM vs. C-terminal residues indicate that the TM helices are likely to have remained embedded in SDS/c7-DHPC mixed micelles across all X_{SDS} while there is little/no stable interaction of the C-terminal tail with detergent micelles, as previously mentioned. The very sharp and intense signals of the C-terminal residues are dominated by fast internal motions taking place on a ps-to-ns timescale. Such motions are highly sensitive to slight changes in viscosity and overall correlation time, as evidenced by the decrease in signal intensities of the C-terminal residues at high molar concentrations of SDS (> 100 mM or 3.0% SDS [45]).

Short sample lifetimes (see Supplementary Information) and low experimental sensitivity limited the utilisation of NMR spin relaxation experiments. Hence, intensity ratios were used as proxy to report on increases in linewidth. The intensity ratio (I/I_0) of each residue at different X_{SDS} were obtained by expressing the normalised peak intensities as a ratio of the peak intensities at 0 X_{SDS}. Larger I/I_0 represents the dominance of faster ps-to-ns local dynamics, whereas smaller I/I_0 indicates increased conformational fluctuations on the μs-to-ms timescale [46].

In the absence of SDS, the TM helices of pSRII are well-ordered, with some loop regions experiencing motions on the ps-to-ns timescale and a small number of residues in the protein core undergoing μs-to-ms helix motions [39]. In the presence of SDS, most micelle-embedded residues had $I/I_0 < 1$, which decreased with increasing X_{SDS} until the peaks became unobservable (Figure 4a), suggesting widespread transition from a well-ordered protein to one undergoing conformational fluctuations on the μs-to-ms timescale. At 0.625 X_{SDS}, most residues with $I/I_0 > 1$ were solvent-exposed or located at the micelle/solvent interface (Figure 4b), corresponding to increased fast-timescale motions and the lack of conformational exchange in the presence of SDS when compared to the folded state. Two residues within the retinal-binding pocket, namely Trp-76 in the middle of helix C and Val-203 in the middle of helix G, retained fast local dynamics ($I/I_0 > 1$) and remained in the fast exchange regime in low X_{SDS}. In 0.834 X_{SDS} (just above the unfolding transition), there was a marked decrease in the number of residues with $I/I_0 > 1$, indicating that pSRII denaturation is characterised by a general transition towards conformational fluctuations occurring on the μs-to-ms timescale, including residues in solvent-exposed regions and micelle/solvent interfaces. In 0.870 X_{SDS} in which pSRII is denatured (hydrolysed Schiff base), observable residues in the retinal-binding pocket were mostly clustered on helix D and showed $I/I_0 > 1$ (Figure 4b). This indicates that the extracellular half of helix D exhibited a lack of μs-to-ms timescale conformational fluctuations and showed faster local dynamics in high X_{SDS} than in 0 X_{SDS}, possibly suggesting that the extracellular half of helix D becomes partially unfolded (helix unwound) during SDS denaturation.
The number of observable residues decreased with increasing X_{SDS}, indicating augmented signal broadening due to conformational exchange with rates similar to the NMR timescale. Residues which were unassigned at 0.400 and 0.625 X_{SDS} were assumed to either be significantly overlapped with other peaks or intractable due to large chemical shift changes. Thr-80 on helix C, which packs against C9–C12 at the middle of the retinal polyene chain in folded pSRII (Figure 5a–b), was the first residue that became unobservable starting from 0.769 X_{SDS}. In 0.834 X_{SDS} (just above the unfolding transition), unobservable residues were concentrated amongst the cytoplasmic halves of helices C, E, F and G, and between the extracellular halves of helices A and B and between helices F and G. The chi-squared test (Table 2) shows that residues which became unobservable at 0.769 X_{SDS} and 0.834 X_{SDS} were significantly populated in helical regions ($P = 0.026$). Amongst such helical residues, there was significant preference for residues which face inwards towards the protein core ($P = 0.003$) (Figure 5c). Unobservable residues within the retinal-binding pocket include Met-15 from helix A, Ala-47 from helix B, Thr-79 and Ile-83 from helix C, and Gly-207 and Phe-208 from helix G (Figure 5b), all of which are located near the Schiff base, packing against Lys-205 and up to C13–C14 of the retinal polyene chain. Peak disappearance is hypothesised to indicate loosening of inter-helical packing, which was initiated from the cytoplasmic side, likely amongst helices C, E, F and G, and propagated towards the Schiff base.

Residues which became unobservable at 0.870 X_{SDS} were spread across the entire protein (Figure 5a). The slight bias in the distribution of such residues toward the extracellular side could be because many residues in the cytoplasmic side have already disappeared at lower X_{SDS}. The chi-squared test showed no significant difference in the distribution of unobservable residues between helical vs. loop residues or helical residues which face inwards (towards the protein core) vs. outwards (towards the detergent micelle) (Table 2 & Figure 5c). Retinal-binding pocket residues which are within one helical turn away from the Schiff base, including Asp-201, Thr-204, Lys-205, Val-206 and Gly-209, became unobservable at 0.870 X_{SDS} (Figure 5b). This further supports the notion that residues surrounding the Schiff base were amongst residues which were disrupted at higher X_{SDS} when the Schiff base is being hydrolysed.

Several residues which became unobservable at 0.834 X_{SDS} and 0.870 X_{SDS}, including Tyr-51 from helix B, and Asp-201 and Thr-204 in helix G, were H-bonded to internal water molecules in folded pSRII, suggesting that the water network was also being progressively disrupted with increasing X_{SDS}, consistent with our interpretation from chemical shift analysis.

In summary, pSRII denaturation was characterised by widespread increase in backbone amide conformational exchange on the μs-to-ms timescale, initiating from the cytoplasmic halves of helices C, E, F and G and propagating across the protein. Gradual disruption of the retinal-binding pocket began at 0.728 X_{SDS} with conformational exchange at Thr-80 which packed against the middle (C9–C12) of the retinal polyene chain, followed by several residues from helices A, B, C and G which packed against C13–C14 of retinal and Lys-205. The Schiff base and neighbouring residues in helix G were disrupted at higher X_{SDS} compared to the rest of the retinal-binding pocket, as these residues in helix G showed prominent μs-to-ms timescale conformational exchange at ≥ 0.870 X_{SDS}. In the denatured state (≥ 0.870 X_{SDS}), residues in helix D were noted to show fast local dynamics while most residues
showed pronounced conformational exchange at the μs-to-ms timescale. The decrease in the number of observable residues highlights the inherent challenges in obtaining high-resolution structural and dynamics information by NMR, especially for molecular processes with comparable timescales to the NMR timescale.

While most backbone amides experienced predominantly conformational exchange on the μs-to-ms timescale leading to line broadening (Figure S4a), the backbone amides of Val-17 and Phe-98 each had two resonances in 0.728–0.834 X_{SDS} (Figure S4b), indicating slow exchange between two backbone conformations. A shift in the relative populations of these two conformations could be seen between 0.728 and 0.834 X_{SDS}. In $≤ 0.870 X_{\text{SDS}}$, all backbone amide peaks of Val-17 and Phe-98 showed decreased intensities, indicating a transition from slow exchange towards intermediate exchange as the peaks became increasingly broadened and eventually unobservable. From 0.909 X_{SDS} onwards, several other backbone amides were also found to undergo slow exchange between at least two conformations, as evidenced by difficulties in assigning several peaks in the glycine region of the spectrum due to big chemical shift changes (Figure S4c). While limited conclusions could be drawn due to the small number of residues involved and difficulties with resonance assignment, the above observations reflect different modes of backbone amide conformational exchange at different X_{SDS}, and highlight the heterogeneous nature of the ensemble of denatured states.

Decreased peak intensities were also observed with increasing X_{SDS} for most tryptophan side-chain indoles, indicating that side-chains are also increasingly dominated by μs-to-ms timescale conformational motions (see Supplementary Information).

Acid-denatured pSRII shows disrupted water network and uncoupling of the helical bundle

To compare the mechanisms of acid denaturation vs. SDS denaturation of pSRII, 2D [$^{1}H, ^{15}N$] BEST-TROSY spectra were recorded for pSRII at progressively lower pHs (pH 6.0, pH 4.7, pH 3.7, pH 2.6, pH 2.0) in the presence of 0.5% c7-DHPC (Figure 6a). $Δ\delta(^{1}H, ^{15}N)$ at acidic pHs were measured relative to chemical shifts at pH 6.0. Larger $Δ\delta(^{1}H, ^{15}N)$ were observed across all residues with decreasing pHs. $Δ\delta(^{1}H, ^{15}N)$ were generally small, with $Δ\delta(^{1}H, ^{15}N) < 0.1$ ppm at pH 4.7 and pH 3.7 for most TM residues (Figure S5). Residues at the ends of helices consistently showed larger $Δ\delta(^{1}H, ^{15}N)$ than TM residues. These results indicate that mildly acidic pHs led to only very small changes in H-bonding and secondary structure, consistent with our previous biophysics studies showing no differences in helical content between folded pSRII at pH 6.0 and pSRII denatured at pH 2.0 [15]. Several residues spanning three helical turns at the cytoplasmic end of helix D facing helix E showed $Δ\delta(^{1}H, ^{15}N) > 0.1$ ppm at pH 4.7, while residues in other helices with $Δ\delta(^{1}H, ^{15}N) > 0.1$ ppm were within one turn from helix ends (Figure S5a). Only two residues within the retinal-binding pocket had $Δ\delta(^{1}H, ^{15}N) > 0.1$ ppm: Thr-80 on helix C (pH 4.7 and pH 3.7) and Met-15 on helix A (pH 3.7) (Figure S5b). This indicates that there is minimal disruption of the retinal-binding pocket and the tertiary structure of pSRII at pH 4.7 and pH 3.7, consistent with the samples remaining orange in colour after one week at room temperature (Figure 6b).
Acid denaturation also led to increased conformational exchange on the μs-to-ms timescale, as an increasing number of residues became broadened and unobservable (Figure 6c). Residues which became unobservable at pH 4.7 were located in the extracellular half, including Trp-76, Thr-79, Met-109 and Trp-178 within the retinal-binding pocket, an extensive stretch of helix C, and Val-206 and Gly-207 on helix G (Figure 6d). This suggests increased μs-to-ms timescale conformational exchange around the Schiff base and within the retinal-binding pocket. At pH 3.7, almost the entire helix C became unobservable, suggesting concerted changes in backbone dynamics across the entire helix. More residues within the retinal-binding pocket disappeared, including Ala-47 on helix B, Ile-83 on helix C, Gly-112 on helix D, Thr-204, Lys-205 and Phe-208 on helix G, indicating further loosening of the retinal-binding pocket and the Schiff base attachment site. It must be noted that many residues which became unobservable at pH 4.7 or pH 3.7 are H-bonded to the internal water-mediated H-bond network in the crystal structure of pSRII (PDB 1H68; [43]) (Figure 6d). This suggests that acid denaturation leads to disruption of the internal water-mediated H-bond network. It can be inferred that the abolishment of key H-bonds uncouples key residues from each other, thus enabling the backbone amides to sample different conformations on a μs-to-ms timescale.

At pH 2.6 and pH 2.0, most TM residues became unobservable, indicating widespread μs-to-ms timescale conformational exchange across the entire protein and suggesting that the TM helices are moving relative to each other as interhelical H-bonds which hold the helical bundle together in the folded state become disrupted. Moreover, the samples appeared pale yellow in colour (Figure 6b), indicative of complete Schiff base hydrolysis and disruption of the retinal-binding pocket, and consistent with changes in the UV/vis absorption profile of the retinal chromophore and increase in tryptophan fluorescence intensity due to disruption of tertiary structure as reported in our previous studies [15]. Pronounced precipitation was observed after a week (Figure 6b), suggesting extensive exposure of aggregation-prone surfaces and/or decreased protein stability in the acid-denatured states.

In summary, acid denaturation of pSRII was characterised by disruption of the internal water network and uncoupling of helix C from the rest of the helical bundle, as evidenced by μs-to-ms timescale conformational exchange across almost the entire helix C, while chemical shift changes in the TM region remained very small.

Discussion

High-resolution NMR studies on full-length denatured membrane proteins are scarce in the literature. This likely reflects the challenges in studying a heterogeneous ensemble of denatured structures with different backbone dynamics and conformational exchange on different timescales. This paper presents detailed NMR studies on the structural and dynamics changes in different denatured states of pSRII by probing for changes in chemical shifts and peak intensities of backbone amides and tryptophan side-chain indoles (see Supplementary Information) under different denaturing conditions (SDS denaturation and acid denaturation).

Structural and dynamics changes upon the loss of retinal during denaturation
Under denaturing conditions in which the retinal chromophore gets liberated, SDS denaturation and acid denaturation both led to small chemical shift changes in the TM region (Figures 2 & S5), indicative of little changes in secondary structure. Decreases in peak intensities were prominent across the seven TM helices (Figures 4–6), suggesting increased µs-to-ms timescale conformational exchange across pSRII backbone amides as a consequence of tertiary structure disruption.

It could therefore be inferred that the structure of the retinal-binding pocket and the dynamics of TM backbone amides are tightly linked to the presence of the all-trans retinal chromophore. This tight coupling is likely reflective of the close-fitted structural arrangements within the retinal-binding pocket in the folded state [47,48], in which native retinal-protein interactions impose strong constraints on the backbone motions of the TM helices. As these constraints become relaxed and eventually abolished while the chromophore is being liberated during denaturation, the backbone amides become free to sample different conformations in the denatured states while at the same time remaining constrained within their α-helical environments.

As demonstrated in our previous study, prolonged absence of all-trans retinal during SDS denaturation over the course of 72 h gradually reduces the refolding yield due to increase in aggregation and possible concomitant loss of the retinal-binding pocket conformation that is capable of rebinding retinal [15]. This suggests that different denatured conformations, some of which are prone to aggregation, readily exchange amongst each other, and that the energy barriers between these different conformations are small. However, the energy barrier for disaggregating denatured pSRII is large, making the aggregation of denatured pSRII de facto irreversible [15].

We assume that the retinal chromophore might influence the folding energy landscape by perturbing the equilibria amongst different backbone conformations of denatured pSRII or even the apo-protein state. Formation of the Schiff base via covalent linkage to Lys-205 and other native retinal-protein interactions during protein folding could, for example, stabilise particular conformations to favour folding and the generation of the native chromophore. Hypotheses on the possible influence of the retinal chromophore on protein folding has already emerged from studies on bovine rhodopsin by Sakamoto and Khorana [49]. The kinetics and the extent of retinal-binding during the regeneration of bacteriorhodopsin from bacterioopsin have also been studied using UV/vis spectroscopy [1,50–53], circular dichroism [50,54], tryptophan fluorescence [51,53,55] and calorimetry [56]. Future studies on the structure and dynamics of the apo-protein are expected to yield more detailed insights on the roles of the retinal chromophore in the folding of pSRII and other retinal-binding proteins, and potentially open new avenues for investigating the importance of ligand-binding in the folding of other ligand-binding membrane proteins (e.g. GPCRs).

Different unfolding pathways of pSRII

There are notable differences between SDS- and acid-mediated denaturation, as evidenced by differences in the locations of structural changes and in the distribution of residues which
became too broad for observation due to the presence of extensive μs-to-ms exchange (Figure 7). The dependence of unfolding pathways on solvent conditions is presumably due to different retinal-protein interactions being disrupted and different denatured conformations being preferentially stabilised. That different solvent conditions give rise to different unfolding pathways has been shown previously in a study by Malmendal et al., where mapping the unfolding processes of bovine α-lactalbumin in SDS, acid, GdmCl, TFE and heat by 1D 1H NMR combined with principal component analysis (GPS-NMR) showed that these denaturants move the protein away from the folded state in different directions [57], hence indicating different unfolding pathways. Further investigation into the properties of detergent micelles and high-resolution studies on protein-detergent interactions under different solvent conditions will also be valuable in future studies of denatured states and unfolding/folding pathways.

SDS denaturation of pSRII led to large chemical shift changes at the ends of helices, and progressive chemical shift changes around the retinal-binding pocket beginning from helices C and D before the unfolding transition, followed by small changes in helix G near the site of retinal attachment beyond the unfolding transition (Figures 2 & 7). These chemical shift changes suggest that the retinal-binding pocket collapses gradually with increasing \(X_{SDS} \), whereas Schiff base hydrolysis and loss of the retinal chromophore in high \(X_{SDS} \) only leads to limited structural changes in helix G and the rest of the helical bundle. While the ends of helices unravel, the helical content in the TM region is largely preserved.

In comparison, the secondary structure content is even more highly preserved in acid-denatured pSRII than in SDS-denatured pSRII, as evidenced by the small chemical shift changes observed under acidic conditions that were mostly restricted to the ends of helices (Figures 7 & 55). This is consistent with the results of our previous CD studies, in which we found that there were no changes in alpha-helicity (MRE at 222 nm) even after pSRII has been maintained at pH 2.0 for 19 h [15].

The disruption of inter-helical interactions, assessed by a pronounced decrease in peak intensities or peak disappearance indicative of increased μs-to-ms timescale conformational exchange, initiates from the cytoplasmic interface of helices C, E, F and G and spreads across the protein during SDS denaturation. The extracellular half of helix D shows faster local dynamics than in 0 \(X_{SDS} \), which suggests that this region is partially unfolded. This change in helix D is reminiscent of the extracellular side of helix D in SDS-solubilised bacteriorhodopsin becoming partially accessible to bulk water due to denaturation, as assessed by laser-induced oxidative labelling and mass spectrometry [58].

In acid denaturation, helix C is the first helix to be uncoupled from the helical bundle, with peaks disappearing across almost the entire helix C at pH 3.7. Several residues which are H-bonded via the internal water network also exhibited μs-to-ms timescale motion in acid-denatured pSRII (Figures 6–7), thus further supporting the disruption of the retinal-binding pocket and the internal water network. Interestingly, the above observations are strongly reminiscent of the loss of connectivity between helices C and G in the light-activated states of pSRII, in which movements (relative to the ground state) of the side-chains of Asp-75 and Lys-205 in the early K intermediate [59] and in the signalling M intermediate [60] provide a mechanism for the disordering and displacement of the water molecule Wat-402. Wat-402
is located between and H-bonded to the Schiff base (Lys-205), Asp-75 and Asp-201 in the ground state structure [43]. These structural changes lead to the abolishment of key H-bonds with the central water cluster, thereby uncoupling helices C and G from each other during light activation.

Acidic pH leads to protonation of ionisable groups and changes in electrostatic interactions. Residues which have ionisable side-chains and are located near/within the retinal-binding pocket include the Schiff base counterion Asp-75 (pKa = 3.4 in phosphatidylcholine-reconstituted wild-type pSRII [61] and DDM-solubilised pSRII [62,63]), Asp-193 (pKa = 6.4 [64]) and Asp-201 (pKa = 1.2 [63]). Taking into account the pH range explored and the changes in peak intensities observed in this study, it is evident that progressive lowering of the pH from 6.0 to 2.0 leads to the protonation of Asp-75.

Protonation of Asp-75 is hypothesised to lead to the disruption of the H-bond network bridging Wat-402, the Schiff base (Lys-205), Asp-75 and Asp-201 [43]. Changes in dynamics occur as this H-bond network becomes progressively disrupted at decreasing pHs, as evidenced by the backbone amide of Asp-75 becoming unobservable at pH 4.7, that of Lys-205 becoming unobservable at pH 3.7 while that of Asp-201 remains observable at both pH 4.7 and pH 3.7. On the other hand, local structural changes at backbone amides are very small, as evidenced by the small chemical shift changes (< 0.05 ppm) experienced by Asp-201 and Lys-205. The lack of structural and dynamics changes at Asp-201 in mildly acidic pHs is consistent with its low pKa and concomitant lack of change in protonation state during the pH titration. While the proton release group Asp-193 is also H-bonded to the water network, its high pKa suggests that this residue may already be partially protonated at pH 6.0, and is unlikely to be the main driver behind the changes observed during acid denaturation.

Summary

Using solution-state NMR, we have studied the denaturation of pSRII using SDS and acidic pH. This paper presents one of the very few [29] detailed backbone NMR studies on a full-length, denatured membrane protein, and has shed insights on differences in the unfolding pathways under different denaturing conditions. SDS denaturation leads to fraying of helix ends, small structural changes within the binding pocket, and μs-to-ms timescale conformational exchange that initiates from the cytoplasmic side of helices C, E, F and G and propagates across to most of the 7TM helices except for the extracellular half of helix D, which shows fast local dynamics that could suggest at least partial unfolding. Acid denaturation leads to fraying of helix ends but otherwise very limited structural changes, and μs-to-ms timescale conformational exchange that initiates from helix C and propagates across the internal water-mediated H-bond network and all 7TM helices. Based on the widespread μs-to-ms timescale conformational exchange in pSRII backbone amides under the denaturing conditions explored (high χ_{SDS} and acidic pHs), it is further proposed that the all-trans retinal chromophore might influence the folding energy landscape by perturbing the equilibria amongst different conformations sampled by the backbone amides in the absence of native retinal-protein interactions.
Once again, we emphasise pSRII as a model protein which is highly suitable for membrane protein folding studies. It is hoped that the high-resolution molecular insights on the denatured states of pSRII presented in this paper could pave the way for furthering our understanding on the folding and unfolding pathways of other retinal-binding proteins and membrane proteins in general, and also for investigating the importance of ligand-binding in the folding pathways of other ligand-binding membrane proteins, such as GPCRs.

Materials and Methods

Materials
SDS (electrophoresis grade) and 50% (w/v) hydroxylamine hydrochloride were purchased from Sigma-Aldrich. Diheptanoylphosphatidylcholine (c7-DHPC) was purchased from Anatrace.

Protein expression and purification
Natronomonas pharaonis sensory rhodopsin II (pSRII) was expressed in *E. coli* Tuner(DE3)LacI cells (Novagen) and purified in 50 mM sodium phosphate pH 6.0, 50 mM NaCl, 0.05% (w/v) sodium azide (NaN₃) and 2% (w/v) c7-DHPC as described previously [40]. Protein concentration was measured using a molar extinction coefficient of 48000 M⁻¹ cm⁻¹ for the native retinal chromophore absorbing at 498 nm, or 49390 M⁻¹ cm⁻¹ for absorbance at 280 nm [65].

1D ¹H NMR
1D ¹H NMR spectra were measured using a Bruker AvanceIII AV800 equipped with 5 mm TXI CryoProbe (HCN/z). Pulse sequences were 1D spin echo. Water suppression was achieved using a 3-9-19 180° WATERGATE sequence. All spectra were recorded at 308 K, with 512 complex data points (51.2 ms), 512 scans, and a spectral width of 10000 Hz. Selective suppression of detergent signals was achieved using a Gaussian Q5 cascade with duration of 5 ms followed by purging by gradient pulses.

2D ¹H,¹⁵N NMR
All 2D [¹H,¹⁵N] BEST-TROSY experiments were recorded with samples of ¹⁵N-labelled pSRII in 50 mM NaH₂PO₄/Na₂HPO₄, 50 mM NaCl, 0.5% c7-DHPC with varied pH and SDS concentrations, at 308 K. All spectra were recorded on a Bruker AvanceIII AV800 spectrometer equipped with a 5 mm TXI CryoProbe (HCN/z), with 512 × 128 complex points, spectral width of 2777.78 Hz in the indirect dimension (t₁max = 46.08 ms) and acquisition time of 51.2 ms. Frequency discrimination in the ¹⁵N dimension was achieved using P/N-type coherence order selection combined with axial peak shifting by one-half the spectral width. Solvent suppression was not required due to the utilisation of amide-selective ¹H pulses for magnetisation transfer.

Details of the sample concentrations and the number of scans for each reported spectrum are shown in Table 3.

Data analysis
Chemical shift differences were calculated as:
\[\Delta \delta (^{1}H, ^{15}N) = \sqrt{\Delta \delta (^{1}H)^2 + \frac{\Delta \delta (^{15}N)^2}{6}} \]

(1)

Intensity ratios were calculated as:

\[
\frac{I}{I_0} \text{(intensity ratio)} = \frac{\text{Peak intensity at } n X_{SDS}}{\text{Peak intensity at } 0 X_{SDS}}
\]

(2)

SDS-PAGE

SDS-PAGE analysis of pSRII at different SDS concentrations was performed on a 12% polyacrylamide gel at 90 V for 15 min followed by 180 V for 40 min. 2× Native loading dye containing 62.5 mM Tris-HCl, pH 6.8, 25% (v/v) glycerol, 0.01% (w/v) bromophenol blue [66] was used for the analysis of aggregation states in denatured protein samples. PageRuler prestained protein ladder (10–180 kDa) (Thermo Fisher Scientific) was used as molecular weight markers. Protein bands were visualised using the Pierce™ Silver Stain Kit (Thermo Fisher Scientific) according to the manufacturer’s instructions.

Far-UV CD spectroscopy

To avoid strong UV absorbance by NaN₃, NaN₃ was first removed from small aliquots (100 µl) of pSRII stock solutions by concentrating and diluting 3 times in a 0.5 ml centrifugal filter unit (10-kDa cutoff) (Merck Millipore) using a total of ~1.5 ml of 50 mM sodium phosphate pH 6.0, 50 mM NaCl, 0.1% (w/v) c7-DHPC. CD spectra were recorded at 25 °C by scanning between 194 and 250 nm on an Aviv 410 spectrometer (Aviv Biomedical Inc.) using a 1×1 mm cuvette. Each sample contains ~0.17 mg/ml protein in a volume of 400 µl, measured 2 h after exposure to unfolding buffer. CD spectra of the buffer solutions were subtracted from the sample spectra and smoothed using a window width of 11 and a degree of 2. Spectra were reported as the average of 3 scans. Data for each experimental condition were reported as the average of 3 independent samples.

Molar residue ellipticity (MRE; [\(\theta\)]) was calculated as:

\[
[\theta] = \frac{\theta}{10 \times l \times c \times n}
\]

(3)

where \(\theta\) is the observed ellipticity (millidegrees), \(l\) the path length (cm), \(c\) the protein concentration (M) and \(n\) the number of peptide bonds, taken as 246 for pSRII.

Calculations

The mole fraction of SDS (\(X_{SDS}\)) was calculated as the bulk detergent composition in solution.

\[
X_{SDS} = \frac{[\text{SDS}]}{[\text{SDS}]+[c7-DHPC]}
\]

(4)
References

[45] Y. Croonen, E. Gelade, M. Van Der Zegel, H. M. Van der Auweraer, Vandendriessche, F.C. De Schryver, M. Almgren, Influence of salt, detergent concentration, and temperature on the fluorescence quenching of 1-methylpyrene in sodium dodecyl

[61] M. Iwamoto, Y. Sudo, K. Shimono, T. Araiso, N. Kamo, Correlation of the O-
intermediate rate with the pKa of Asp-75 in the dark, the counterion of the Schiff base of *pharaonis* phorborhodopsin (sensory rhodopsin II), Biophys. J. 88 (2005) 1215–1223. doi:10.1529/biophysj.104.045583.

<table>
<thead>
<tr>
<th>Helix</th>
<th>Residue</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Met-15</td>
</tr>
<tr>
<td></td>
<td>Phe-22</td>
</tr>
<tr>
<td>B</td>
<td>Leu-40</td>
</tr>
<tr>
<td></td>
<td>Ile-43</td>
</tr>
<tr>
<td></td>
<td>Ser-44</td>
</tr>
<tr>
<td></td>
<td>Ile-46</td>
</tr>
<tr>
<td></td>
<td>Ala-47</td>
</tr>
<tr>
<td>C</td>
<td>Tyr-73</td>
</tr>
<tr>
<td></td>
<td>Trp-76</td>
</tr>
<tr>
<td></td>
<td>Thr-79</td>
</tr>
<tr>
<td></td>
<td>Thr-80</td>
</tr>
<tr>
<td></td>
<td>Ile-83</td>
</tr>
<tr>
<td>D</td>
<td>Val-108</td>
</tr>
<tr>
<td></td>
<td>Met-109</td>
</tr>
<tr>
<td></td>
<td>Ala-111</td>
</tr>
<tr>
<td></td>
<td>Gly-112</td>
</tr>
<tr>
<td>E</td>
<td>Phe-127</td>
</tr>
<tr>
<td></td>
<td>Gly-130</td>
</tr>
<tr>
<td></td>
<td>Ala-131</td>
</tr>
<tr>
<td></td>
<td>Phe-134</td>
</tr>
<tr>
<td>F</td>
<td>Trp-171</td>
</tr>
<tr>
<td></td>
<td>Tyr-174</td>
</tr>
<tr>
<td></td>
<td>Pro-175</td>
</tr>
<tr>
<td></td>
<td>Trp-178</td>
</tr>
<tr>
<td>G</td>
<td>Asp-201</td>
</tr>
<tr>
<td></td>
<td>Leu-202</td>
</tr>
<tr>
<td></td>
<td>Val-203</td>
</tr>
<tr>
<td></td>
<td>Thr-204</td>
</tr>
<tr>
<td></td>
<td>Lys-205</td>
</tr>
<tr>
<td></td>
<td>Val-206</td>
</tr>
<tr>
<td></td>
<td>Gly-207</td>
</tr>
<tr>
<td></td>
<td>Phe-208</td>
</tr>
<tr>
<td></td>
<td>Gly-209</td>
</tr>
</tbody>
</table>

Residues in the retinal-binding pocket, identified by taking a 3 Å cut-off around the retinal chromophore
Table 2:

<table>
<thead>
<tr>
<th></th>
<th>0.769 & 0.834 Χ_{SDS}</th>
<th>0.870 Χ_{SDS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helical vs. Loop</td>
<td>P = 0.026 ()</td>
<td>*P = 0.093</td>
</tr>
<tr>
<td>Inward-facing vs. Outward facing (helical residues only)</td>
<td>*P = 0.003 (**)</td>
<td>*P = 0.481</td>
</tr>
</tbody>
</table>

P-values from chi-squared test on the distribution of residues which have become unobservable at different Χ_{SDS}

Table 3:

<table>
<thead>
<tr>
<th>Figure</th>
<th>Χ_{SDS} (% SDS)</th>
<th>[c7-DHPC] (%)</th>
<th>pH</th>
<th>[pSRII] (μM)</th>
<th>No. of Scans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig S1</td>
<td>0.769 (1.0%)</td>
<td>0.5</td>
<td>6.0</td>
<td>94</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>0.769 (2.0%)</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figs 1–5, S2–4, S6</td>
<td>0</td>
<td>0.400 (0.2%)</td>
<td>6.0</td>
<td>83</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>0.625 (0.5%)</td>
<td></td>
<td></td>
<td>94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.728 (0.8%)</td>
<td></td>
<td></td>
<td>94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.769 (1.0%)</td>
<td></td>
<td></td>
<td>94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.834 (1.5%)</td>
<td></td>
<td></td>
<td>83</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>0.870 (2.0%)</td>
<td></td>
<td></td>
<td>94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.893 (2.5%)</td>
<td></td>
<td></td>
<td>94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.909 (3.0%)</td>
<td></td>
<td></td>
<td>83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.971 (10%)</td>
<td></td>
<td></td>
<td>83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.985 (20%)</td>
<td></td>
<td></td>
<td>83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.990 (30%)</td>
<td></td>
<td></td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Figs 6, S5</td>
<td>0</td>
<td>4.7</td>
<td>112</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data acquisition parameters for NMR experiments on ^{15}N-pSRII in different Χ_{SDS} and at different pHs

All samples contained 10% D_{2}O and TSP as internal chemical shift reference. All spectra were recorded at 308 K. Signal intensities were scaled according to number of scans and protein concentration prior to analysis.
Figure legends

Figure 1: X_{SDS}-dependence of 2D [^{1}H, ^{15}N] BEST-TROSY spectral quality for pSRII in 0–0.990 X_{SDS} (0–30% SDS in 0.5% c7-DHPC)
All spectra were recorded with \sim 90 µM ^{15}N-labelled pSRII, on an 800 MHz spectrometer at 308 K, with 240 scans. All samples contained TSP as internal chemical shift reference. (a) Overlay of 2D [^{1}H, ^{15}N] BEST-TROSY spectra of pSRII in 0 (black), 0.625 (red), 0.870 (teal), 0.971 (blue) and 0.990 (magenta) X_{SDS} (0%, 0.5%, 2.0%, 10% and 30% SDS in 0.5% c7-DHPC). (b) Expanded view showing peak shifts of the glycine residues (boxed region in panel a) in 0–0.990 X_{SDS} (0–30% SDS in 0.5% c7-DHPC). Chemical shift changes are represented using arrows next to each peak. (c) Example of non-linear changes in resonance positions for Ser-44 in 0–0.909 X_{SDS} (0–3% SDS in 0.5% c7-DHPC). Resonances in different X_{SDS} are coloured according to the colour scheme in panel b. (d) Backbone amides with non-linear changes in resonance positions are represented as blue spheres on the solution-state NMR structure of pSRII (PDB 2KSY), showing widespread conformational exchange across the protein.

Figure 2: Chemical shift changes of pSRII backbone amides at different X_{SDS}, suggesting fraying of helix ends and progressive disruption of the retinal-binding pocket
$\Delta \delta (^{1}H, ^{15}N)$ are mapped onto the solution-state NMR structure of pSRII (PDB 2KSY). (a) Residues are coloured from blue to red according to $\Delta \delta (^{1}H, ^{15}N)$ values, showing greater structural changes at the ends of helices than around the retinal-binding pocket and suggesting fraying of helix ends with increasing X_{SDS}. Unassigned residues are coloured white. (b) Surface representation (wired mesh) of the retinal-binding pocket (residues within 3 Å of retinal) coloured according to $\Delta \delta (^{1}H, ^{15}N)$ values. Residues with $\Delta \delta (^{1}H, ^{15}N) > 0.1$ ppm are shown using stick representation, suggesting progressive disruption of the retinal-binding pocket. (c) Extracellular view of pSRII. Retinal-binding pocket residues with $\Delta \delta (^{1}H, ^{15}N) > 0.1$ ppm at 0.769 X_{SDS} are shown using stick representation.

Figure 3: Linear correlation of $\Delta \delta (^{1}H, ^{15}N)$ against X_{SDS} and the absolute concentration of SDS
(a) Examples of linear relationships (i) between $\Delta \delta (^{1}H, ^{15}N)$ of Val-101 and X_{SDS}, and (ii) between $\Delta \delta (^{1}H, ^{15}N)$ of Leu-159 and the absolute concentration of SDS ([SDS]) in %. The fitted equations and goodness-of-fit (R^2) of the linear regressions are shown in the bottom right corners of (i) and (ii). In (i), Val-101 shows deviation from linearity of $\Delta \delta (^{1}H, ^{15}N)$ against X_{SDS} from 0.870 X_{SDS} (2% SDS in 0.5% c7-DHPC) onwards, suggesting that protein denaturation leads to changes in how the backbone amide of Val-101 interacts with surrounding micellar SDS. In (ii), Leu-159 shows linear relationship between $\Delta \delta (^{1}H, ^{15}N)$ and [SDS] up to 2% SDS in 0.5% c7-DHPC (0.870 X_{SDS}), beyond which the signal intensity drops below the noise level. (b) Residues are coloured according to their correlations against X_{SDS} or [SDS]. (c) Residues are coloured according to the range of X_{SDS} in which a linear relationship between $\Delta \delta (^{1}H, ^{15}N)$ and X_{SDS} was observed.

Figure 4: Intensity ratios at different X_{SDS}
(a) Residues with $I/I_0 > 1$ are shown as lime spheres, and residues with $I/I_0 < 1$ are coloured purple. Solvent-exposed regions of folded pSRII in 0 X_{SDS}, determined from NMR signal attenuation in the presence of the soluble spin label reagent gadoteridol [40], are shaded in pale blue. (b) Extracellular view of pSRII, highlighting the observation of residues
in the extracellular half of helix D in the SDS-denatured state (0.870 X_{SDS}; 2.0% SDS in 0.5% c7-DHPC). Residues are coloured according to I/I_0 values, the retinal chromophore and residues with $I/I_0 > 1$ are shown as sticks, and the retinal-binding pocket is represented as wired mesh.

Figure 5: Resonances undergoing pronounced loss of intensity at different X_{SDS}

(a) Residues with intensities that drop below the noise level at 0.769, 0.834 and 0.870 X_{SDS} are shown as red, yellow and cyan spheres, respectively. Residues which remain observable at $\geq 0.893 X_{\text{SDS}}$ are coloured in blue. (b) Surface representation (wired mesh) of the retinal-binding pocket (residues within 3 Å of retinal) coloured according to X_{SDS} at which the backbone amide resonance becomes unobservable due to excessive broadening, and residues which become unobservable at 0.769–0.870 X_{SDS} are shown using stick representation. (c) Extracellular and cytoplasmic views of pSRII, showing a greater proportion of inward-facing helical residues amongst the residues that experience prominent intensity losses at 0.769 and 0.834 X_{SDS}.

Figure 6: Acid denaturation of pSRII

(a) 2D [1H, 15N] BEST-TROSY spectra of pSRII at different acidic pHs. All spectra were recorded at 800 MHz (1H) at 308 K with 240 scans. All samples contained $\sim 90 \mu$M 15N-pSRII and TSP as internal chemical shift reference. (b) Photos of $\sim 90 \mu$M 15N-pSRII at different acidic pHs after one week at room temperature. (c) Residues which became unobservable at pH 4.7 and pH 3.7 are shown as red and yellow spheres, respectively. Residues which became unobservable at pH 2.6 are coloured cyan. Residues which remained observable at pH 2.0 are coloured blue. (d) Residues which are H-bonded to the internal water-mediated H-bond network are shown as sticks on the crystal structure of pSRII (PDB 1H68) and coloured according to the pH at which the residue became unobservable due to prominent loss of signal intensity. The H-bonds in the internal water network are shown as grey dashed lines. Water molecules are shown as spheres, with internal water molecules coloured blue.

Figure 7. Summary models for SDS and acid denaturation of pSRII

Folded pSRII in c7-DHPC at pH 6.0 has seven well-ordered transmembrane helices (blue rods) and an all-trans retinal chromophore (black sticks) that is covalently attached to helix G via a Schiff base linkage to Lys-205. SDS denaturation leads to slight unwinding of helix ends (blue-to-white gradients at the ends of helices), but otherwise small changes in secondary structure. In low X_{SDS} where the retinal chromophore remains present, the cytoplasmic side of helices C, E, F and G undergo μs-to-ms timescale conformational exchange (red colour), and structural changes can be detected within the binding pocket (cyan colour). Above 0.834 X_{SDS}, Schiff base hydrolysis occurs, the retinal chromophore is lost, and most of the 7TM helices undergo μs-to-ms timescale conformational exchange except for the extracellular half of helix D, which shows fast local dynamics (lime colour). Acid denaturation leads to very minimal changes in secondary structure. In mildly acidic pHs, the retinal chromophore remains present and most of helix C experiences μs-to-ms timescale conformational exchange. At pH 2.6 and below, Schiff base hydrolysis occurs, the retinal chromophore is lost, and all 7TM helices undergo μs-to-ms timescale conformational exchange.
(a) (i) \[\Delta \delta^{(1}H,^{15}N) \] vs. \(x_{\text{SDS}} \)

\[y = 0.2529x - 0.0569 \]

\(R^2 = 0.9966 \)

(ii) \[\Delta \delta^{(1}H,^{15}N) \] vs. [SDS] (%)

\[y = 0.0626x + 0.0626 \]

\(R^2 = 0.9977 \)

(b) Structure images showing the positions of Val-101, Leu-159, Asn-105, Trp-171, Lys-205, and Tyr-51.

(c) Linearity of \(\Delta \delta^{(1}H,^{15}N) \) against \(x_{\text{SDS}} \):

- Up to 0.728 \(x_{\text{SDS}} \) (0.8% SDS)
- Up to 0.769 \(x_{\text{SDS}} \) (1% SDS)
- Up to 0.834 \(x_{\text{SDS}} \) (1.5% SDS)
- Linear at 0.870 \(x_{\text{SDS}} \) (2% SDS)
- Unassigned
- No obvious linear relationships
Folded pSRII
in c7-DHPC, pH 6.0

Partially denatured

Fully denatured

- SDS
- Acidic pH

- Structural change within retinal-binding pocket
- μs-to-ms timescale conformational exchange
- Fast local dynamics
Supplementary Information

Characterisation of denatured states of sensory rhodopsin II by solution-state NMR
Yi Lei Tan¹, James Mitchell²³, Judith Klein-Seetharaman²⁴, Daniel Nietlispach¹*

¹Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, CB2 1GA, United Kingdom
²Biomedical Sciences Division, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
³Present address: School of Life Sciences, University of Nottingham, NG7 2UH, United Kingdom
⁴Present address: Department of Chemistry, Integrative Graduate Program in Quantitative Biosciences and Engineering, Colorado School of Mines, 1500 Illinois Street, Golden CO 80401

*To whom correspondence should be addressed: Daniel Nietlispach, Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, CB2 1GA, United Kingdom. Phone: +44 1223 766023, Fax: +44 1223 766002, Email: dn206@cam.ac.uk
Our previous study [1] shows that SDS-denatured pSRII is susceptible to aggregation if left exposed to SDS for durations of hours to days. To understand how spectral quality is affected by pSRII denaturation and aggregation at 35 °C, time-dependent changes were studied in 2D [1H, 15N] BEST-TROSY spectra of pSRII in 0.834 X_{SDS} (1.5% SDS in 0.5% c7-DHPC) (Figure S2a) and in 1H NMR spectra of pSRII in 0.971 X_{SDS} (10% SDS in 0.5% c7-DHPC) (Figure S2b). Both samples showed complete retinal Schiff base hydrolysis and became pale yellow in colour (absorbance $\lambda_{\text{max}} = 390$ nm) after 21 h. Comparison of the BEST-TROSY and 1H spectra over time showed very small decrease in peak intensities within 6 h of initial exposure to SDS, while a more pronounced decrease in peak intensities was observed from 6 h onwards, indicative of aggregation. This is further supported by the decrease in α-helical content determined from changes in MRE at 222 nm measured by circular dichroism and by the appearance of oligomeric bands observed by SDS-PAGE from 6 h onwards at 35 °C (Figures S2c–d). Hence, NMR spectra were monitored for a maximum of 6 h to minimise the effects of aggregation on spectral quality. Changes in MRE at 222 nm measured by circular dichroism also showed that unfolding occurred to the same extent at both 25 °C and 35 °C (Figure S2c), thus indicating that the studies reported in this paper are comparable against our previous biophysical measurements [1].

Although chemical shift changes can be plotted against ligand concentration in protein-observed NMR ligand titration studies and parameters including binding affinity can be extracted from saturation ligand-binding curves [2,3], this approach proved to be challenging for studying SDS denaturation and acid denaturation of pSRII because of various reasons. Firstly, it is expected that SDS would integrate into c7-DHPC micelles to form mixed micelles rather than engage in specific ligand-binding interactions with backbone amides. Secondly, protein structural changes due to denaturation would lead to deviations from the smooth hyperbolic saturation ligand-binding curve as the denatured states interact with the surrounding detergent micelle in a different manner compared to the folded state. Finally, the absence of data points at high X_{SDS} and low pHs due to resonances becoming unobservable with excessive line broadening prevents the observation of the plateau of the binding curve for many residues, and hence attempts at fitting such curves would be inaccurate.

The prominence of intermediate timescale exchange in SDS-denatured and acid-denatured pSRII has limited the extent of quantitative data interpretation to a rather simplified and qualitative treatment of the NMR titration data in this paper. It has also precluded the utilisation of more quantitative methods such as 2D NMR lineshape analysis [4] and principal component analysis [5,6] for analysing chemical shift changes of pSRII, because of the reliance of such methods on identifying the end-point of the titration. Altogether, the limitations in NMR data quality and results interpretation emphasise the challenges underlying high resolution structural studies on membrane protein folding.
Changes in chemical shifts and peak intensities for tryptophan side-chains of pSRII in SDS

Side-chains are exposed to different chemical environments compared to backbone amides (Figure S6a), and are directly involved in inter-helical interactions, H-bond networks and protein-retinal packing. Monitoring changes in tryptophan side-chain indoles by NMR therefore provides extra probes for tertiary structure changes.

Like the backbone amides, pSRII tryptophan side-chain indole resonances showed complex chemical shift changes during denaturation mediated by different X_{SDS} (Figure S6b). Non-linear changes in resonance positions were observed for all tryptophan side-chain indole resonances, suggesting fast exchange between different side-chain conformations. Alternative peaks were observed for Trp-9 and Trp-24, both in helix A, starting from 0.870 X_{SDS} (2% SDS in 0.5% c7-DHPC), indicating that conformational exchange between different side-chain conformations transitioned from the fast exchange regime to the slow exchange regime beyond the unfolding transition.

Side-chain $\Delta \delta(^1H,^{15}N)$ correlated with the locations of the tryptophan residues (Figure S6c). Trp-76 and Trp-171, which pack directly against the retinal, showed the smallest $\Delta \delta(^1H,^{15}N)$ that correlated linearly against X_{SDS} only up to 0.728 X_{SDS}, indicating early onset of structural changes within the retinal-binding pocket starting from > 0.728 X_{SDS}. Trp-60 and Trp-178 both showed bigger $\Delta \delta(^1H,^{15}N)$ that correlated linearly against X_{SDS}. This likely reflects their greater accessibility to SDS as Trp-60 is located in the B/C loop while Trp-178 is located near the extracellular end of helix F. Trp-9 and Trp-24, both of which face the detergent micelle, experienced the largest $\Delta \delta(^1H,^{15}N)$. $\Delta \delta(^1H,^{15}N)$ of Trp-24 correlated linearly against X_{SDS} up to 0.769 X_{SDS} (1% SDS in 0.5% c7-DHPC) but correlated linearly against the absolute concentration of SDS in 0.834–0.909 X_{SDS} (1.5–3.0% SDS in 0.5% c7-DHPC) (Figure S6d). This suggests that the side-chain of Trp-24 interacts with micellar SDS in low X_{SDS} but interacts with non-micellar SDS above the unfolding transition. Compared to those of other tryptophan side-chains, $\Delta \delta(^1H,^{15}N)$ of Trp-9 did not correlate very well against X_{SDS} or the absolute concentration of SDS, possibly suggesting that Trp-9 interacted with both micellar and non-micellar SDS.

Consistent decreases in peak intensities were observed with increasing X_{SDS} for most tryptophan side-chain indoles (Figure S6e), indicating that side-chain motions are becoming increasingly dominated by µs-to-ms timescale motions. Only Trp-24 side-chain indole initially became more flexible than it was in 0 X_{SDS}. Since Trp-24 is located around one helix turn away from the cytoplasmic end of helix A, this observation could reflect slight unravelling at the end of helix A. Beyond 0.834 X_{SDS}, the alternative conformations of Trp-9 and Trp-24 side-chain indoles showed increased fast exchange with further increases in X_{SDS} (Figures S6b & S6e). This highlights the heterogeneous nature of the denatured states ensemble.

Summarising the above, tryptophan side-chains generally experienced little changes in their chemical environment, consistent with the protein remaining embedded in a micellar environment. Only side-chains which face the detergent micelle experienced greater changes in chemical environment due to incorporation of SDS into the micelles. Side-chain motions became increasingly dominated by µs-to-ms timescale motions in increasing X_{SDS}.

Supplementary references

Supplementary figures

Figure S1: 2D $[^1\text{H}, ^{15}\text{N}]$ BEST-TROSY spectra recorded in 0.769 X_{SDS} with different molar concentrations of SDS and c7-DHPC
Spectra were recorded with 94 µM 15N-pSRII on an 800 MHz spectrometer at 308 K, with 240 scans. All samples contained TSP as internal chemical shift reference.
Figure S2: (a) 2D [1H,15N] BEST-TROSY spectra recorded for 83 μM 15N-pSRII in 0.834 X_{SDS} (1.5% SDS in 0.5% c7-DHPC) for increasing amount of time. All spectra were recorded on an 800 MHz spectrometer at 308 K, with 240 scans. (b) 1H NMR of backbone amides and side-chain NH groups for 83 μM pSRII in 0.971 X_{SDS} (10% SDS in 0.5% c7-DHPC) for 10 min, 5.3 h or 21.3 h. All spectra were recorded at 308 K with 512 scans, and processed by apodization of the FID using a squared sine window function shifted by 90° followed by an exponential line broadening of 1 Hz. All NMR samples contained TSP as internal chemical shift reference. (c) Silver-stained 12% SDS-PAGE showing increased aggregation of pSRII with increasing X_{SDS} over prolonged unfolding times (0 min, 2 h, 6 h, 24 h). Lane 1, molecular weight marker; lanes 2–3, 0 X_{SDS} (0.5% c7-DHPC); lanes 4–7, 0.728 X_{SDS} (0.8% SDS + 0.5% c7-DHPC); lanes 8–11, 0.870 X_{SDS} (2.0% SDS + 0.5% c7-DHPC); lanes 12–15, 0.971 X_{SDS} (10% SDS + 0.5% c7-DHPC). (d) Circular dichroism (MRE at 222 nm) for 7 μM (0.2 mg/ml) pSRII in 0.971 X_{SDS} (10% SDS + 0.5% c7-DHPC) at 25 °C or 35 °C for up to 6 h.
Figure S3: Residues with linear correlation between $\Delta \delta^{(1\text{H},^{15}\text{N})}$ and X_{SDS}
Residues are coloured according to the slope of the linear correlation.
Figure S4: Examples of residues showing changes in conformational exchange regime with increasing X_{SDS}

Resonances of interest are marked with dots at the center of the peak. Chemical shift changes are represented using black arrows. (a) Met-117 shows intermediate timescale exchange in $> 0.834 X_{\text{SDS}}$. (b) Conformers A and B of Val-17 backbone amide show transition from fast exchange in 0 X_{SDS} to slow exchange in 0.728–0.870 X_{SDS} to intermediate exchange in $> 0.870 X_{\text{SDS}}$. Conformer C dominates in $> 0.893 X_{\text{SDS}}$, and shows transition from fast exchange to intermediate exchange in $> 0.985 X_{\text{SDS}}$. (c) Several backbone amides show slow timescale conformational exchange and large chemical shift changes in high X_{SDS}, leading to difficulties with resonance assignment.
Figure S5: Chemical shift changes of pSRII at pH 4.7 and pH 3.7
\(\Delta \delta(^1H, ^{15}N) \) (relative to chemical shifts at pH 6.0) at (a) pH 4.7 and (b) pH 3.7 are mapped onto the pSRII structure. Residues are coloured from blue to red according to \(\Delta \delta(^1H, ^{15}N) \) values, showing greater structural changes at the ends of helices than in the transmembrane region. Unassigned residues are coloured white.
Figure S6: 2D [1H, 15N] BEST-TROSY of tryptophan side-chain indoles

(a) Tryptophan side-chains are shown as sticks, with the indole N atoms shown as spheres. (b) Expanded view of the tryptophan side-chain indole region from an overlay of 2D [1H, 15N] BEST-TROSY spectra recorded in different χ_{SDS}. Chemical shift changes are indicated by black arrows, with large shift changes represented using dashed lines. Alternative conformations (labelled as b and c) are observed for Trp-9 and Trp-24 side-chain indoles. Inset shows chemical shift changes for Trp-178 side-chain indole. (c & e) χ_{SDS}-dependence of $\Delta\delta$(1H, 15N) (c) and I/I_0 (e) for tryptophan side-chain indoles. (d) Linear dependence of Trp-24 against (i) χ_{SDS} and (ii) absolute concentration of SDS. The fitted equations and goodness-of-fit (R^2) of the linear regressions are shown in the bottom right corners of (i) and (ii).