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Partial differential equations (PDEs) are expressions involving an unknown function in many independent
variables and their partial derivatives up to a certain order. Since PDEs express continuous change, they
have long been used to formulate a myriad of dynamical physical and biological phenomena: heat flow, op-
tics, electrostatics and -dynamics, elasticity, fluid flow and many more. Many of these PDEs can be derived
in a variational way, i.e. via minimization of an ‘energy’ functional. In this globalized and technologically
advanced age, PDEs are also extensively used for modeling social situations (e.g. models for opinion for-
mation, mathematical finance, crowd motion) and tasks in engineering (such as models for semiconductors,
networks, and signal and image processing tasks).

In particular in recent years there has been increasing interest from applied analysts in applying the
models and techniques from variational methods and PDEs to tackle problems in data science. This issue
of the European Journal of Applied Mathematics highlights some recent developments in this young and
growing area. It gives a taste of endeavours in this realm in two exemplary contributions on PDEs on graphs
[1, 2] and one on probabilistic domain decomposition for numerically solving large-scale PDEs [3].

The graph framework Applied mathematics research on graphs in the context of data science starts
with the observation that many kinds of discrete data can be represented as a weighted graph or network.
This representation is convenient when developing data processing methods as it provides a mathematical
structure that one can work with. In 2012 a paper by Andrea Bertozzi and Arjuna Flenner kicked off a
boom in applied mathematics research on this topic [4]. In this paper the authors use graph versions of the
Ginzburg-Landau functional for data clustering, data classification and image segmentation. Minimization
of the classical continuum Ginzburg-Landau functional,

F (u) := ε

∫
Ω

|∇u|2 dx+
1

ε

∫
Ω

W (u) dx,

provides a model for phase separation. Here W (u) = u2(1 − u)2 is a double well potential with minima
at u = 0 and u = 1, and u describes the relative presence of the two phases {u ≈ 0} and {u ≈ 1} in the
domain Ω. When F is minimized under some suitable constraints on u (e.g. a mass constraint of the form∫

Ω
u dx = M) and for small values of the parameter ε, u will take values close to 0 and 1, with transitions

between those values occurring in small regions of width O(ε).
In [4] the graph functional

f(u) :=
∑
i,j∈V

ωij(ui − uj)2 +
1

ε

∑
i∈V

W (ui)

was introduced. This is a functional whose input argument u is a function on the nodes of a graph, instead
of on a continuum set Ω ⊂ Rn and which serves as a graph counterpart to F . Here V is the node set of the
graph, ωij is a nonnegative weight on the edge between nodes i and j in a finite, simple, undirected graph
and ui is the value of the function u on node i. In [4] this functional was used in combination with either a
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mass constraint or an additional data fidelity term of the form
∑

i: training data(ui − utraining
i )2 to cluster or

classify the nodes of a graph into two groups (‘phases’ where u ≈ 0 and u ≈ 1) based on the pairwise node
similarity encoded in the edge weights ωij . By treating the pixels of an image as nodes in a graph, data
classifcation can be used for image segmentation as well.

Interesting mathematical questions that could arise from such a model are:

1. Can we find graph analogues of properties of the continuum functional?

2. Is the continuum functional a limit of the graph functionals in some sense?

3. What can we say about the resulting algorithm and its usage for data analysis/image processing?

4. Are there other network problems that can be tackled by a PDE inspired approach?

5. Are there other PDE/variational systems that have interesting network analogues? And if the inspiring
PDEs are related, are their graph analogues related?

Some of these questions have been considered in the state-of-the-art literature, with some highlights
reported in the following.

1. Does f have similar properties to F? In [5] the authors proved that f Γ-converges [6, 7], when ε→ 0,
to the graph total variation functional

TV (u) :=
1

2

∑
i,j∈V

ωij |ui − uj |,

which has as domain the set of node functions u which take values in {0, 1}. This mirrors the well-
known continuum result [8, 9]. Moreover, for such {0, 1}-valued functions u, TV (u) reduces to the
graph cut [10] of the node partition V0 = {i : ui = 0}, V1 = {i : ui = 1}, i.e. the sum of the edge
weights ωij corresponding to edges that have one node in V0 and the other in V1.

2. Furthermore, when f or TV are defined on certain graphs for which a sensible continuum limit can
be defined, they Γ-converge to the continuum total variation in the continuum limit, e.g. on 4-regular
graphs obtained by ever finer discretisations of the flat torus [5] and on point clouds obtained by
sampling ever more points from an underlying subset of Rn [11, 12, 13]. In the latter context these
limit results can be interpreted as consistency results that show that the discrete model defined on the
samples is asymptotically consistent with a continuum model.

3. Minimization of f is in practice (approximately) achieved either by solving a gradient flow equation of
Allen-Cahn type,

dui
dt

= −
∑
j∈V

ωij(ui − uj)−
1

ε
W ′(ui)

(plus additional terms coming from a mass constraint or fidelity term) or by a graph version of the
threshold dynamics (or MBO) scheme [14]:

uk+1 =

{
0, if ũ(τ) < 1

2 ,

1, if ũ(τ) ≥ 1
2 ,

where ũ(t) solves

{
dũi

dt = −
∑

j∈V ωij(ũi − ũj),
ũ(0) = 0.

In the (spectral) graph theory literature [10, 15] (∆u)i :=
∑

j∈V ωij(ui − uj) is known as the unnor-
malised or combinatorial graph Laplacian of u. The equations above can also be formulated and solved
with normalised versions of the graph Laplacian.

On a given graph, these equations can be solved quickly and accurately, for example by using a
truncated spectral decomposition based on the eigenfunctions of the graph Laplacian in combination
with a convex splitting scheme in the case of the graph Allen-Cahn equation [4, 16].
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The construction of the underlying graph in the first place can pose a significant computational prob-
lem, especially when the number of data points (and thus nodes in the graph) is very large. Matrix
completion techniques such as the Nyström extension [17, 18] and fast eigenvalue computation algo-
rithms such as the Rayleigh-Chebychev algorithm [19] make such computations feasible.

This graph Ginzburg-Landau method has found many applications, for example in data clustering and
classification and image segmentation [4, 16, 20] and has also been extended to deal with clustering
and classification into more than two classes [21, 22, 23, 24, 25]. Recent papers prove convergence of
the graph Allen-Cahn algorithm (both the spectrally untruncated and truncated versions) and extend
the method to non-smooth potentials and hypergraphs [26, 27].

This shows that such PDE driven techniques can provide fast approximative alternatives to combina-
torial problems whose exact solution is too computationally complex.

4. Another example of such a problem is the computation of a maximum cut in graphs, i.e. to find a
partition of the node set into two sets such that the sum of the edge weights corresponding to edges
with one node in each set is maximal. If the graph is bipartite, this corresponds to partitioning the
node set according to the bipartite structure. The exact solution of this classical problem is known
to be computationally unfeasible for large graphs. Work currently in preparation introduces a fast
approximate solution method for this problem using an adaptation of the graph Ginzburg-Landau
functional f [28].

5. The continuum counterparts of both the graph Allen-Cahn equation and graph MBO scheme from
point 3. can be viewed as approximating mean curvature flow [29, 30, 31, 32, 33]. This suggests that
graph curvature and graph mean curvature flow are interesting concepts to consider as well. In [34]
the authors introduced both. The graph curvature of a node set S is given by

κi :=

{∑
j∈Sc ωij , if i ∈ S,

−
∑

j∈S ωij , if i ∈ Sc,

and the related graph mean curvature flow has a variational formulation along the lines of [35, 36, 37]
which leads to a time discrete evolution of node subsets S (given an initial set S0),

Sn+1 ∈ argminŜF(Ŝ, Sn),

where

F(Ŝ, Sn) :=
∑

i∈S,j∈Sc

ωij +
1

ðt
∑
i∈Ŝ

disd
n
i .

Here ðt > 0 is the time step, di is the degree of node i and sdni is the signed graph distance from node
i to the boundary of node set Sn. In [34] the authors started studying the very interesting question
wether the graph Allen-Cahn equation, graph MBO scheme and graph mean curvature flow are as
intimately connected as their continuum counterparts, but establishing such connections is still mostly
an open problem.

Other current work studies a graph version of the Ohta-Kawasaki functional [38], which was originally
introduced as a variational model for pattern formation in diblock copolymers [39].

The research on these novel methods has shown that new PDE-inspired graph procedures can efficiently
(approximately) solve complex graph problems, while at the same time offering fertile ground for proving
theoretical connections between the various graph problems (inspired by similar connections their continuum
counterparts have) and between the graph problems and their continuum analogues.

Paper [1] relates to question 2. above. Its authors apply similar ideas to those in [11, 12, 13] to prove a
consistency result for empirical risk minimization. If a function u : D → {0, 1} acts as a classifier for points
that are sampled from D ⊂ Rn according to a distribution ν, its empirical risk is

R(u) :=

∫
D×{0,1}

|u(x)− y|dν(x, y).
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In [1] the authors prove a consistency result for regularized empirical risk functional, which consists of empir-
ical risk regularized by a graph total variation term. They also find different regimes for the regularization
parameter associated with the total variation term which relate to the notions of overfitting and underfitting
of the data.

Paper [2] is related to question 5. above. It proposes a graph version of the game p-Laplacian [40] as
an interpolation between the graph (2-)Laplacian and the graph ∞-Laplacian when 2 ≤ p ≤ ∞ and as
an interpolation between the graph 1-Laplacian and the graph 2-Laplacian when 1 ≤ p < 2. It proves
the existence and uniqueness of game p-harmonic functions with given Dirichlet ‘boundary’ conditions on a
subset of the nodes and relates the graph game p-Laplacian to a tug-of-war game. It also shows the results
of numerical experiments in which the graph game p-Laplacian is used for semi-supervised segmentation,
clustering and image inpainting.

Numerical solution of large-scale PDEs When developing algorithms for data-driven applications the
scalability of computational methods is essential. In the context of partial differential equations domain
decomposition methods are used to divide a large domain into several smaller subdomains in such a way
that the solution to the equation on the full domain can be found (or approximated) via the solutions on the
subdomains [41, 42, 43, 44, 45, 46]. The initial equation restricted to the subdomains defines a sequence of
new local problems which are computationally cheaper to solve. A principal motivation behind this principle
is the formulation of PDE solvers which can be easily parallelised. As an example, let us consider a coercive,

Ω2Γ1Γ2Ω1

Figure 1: Overlapping domain decomposition. Example setup from [44].

elliptic and self-adjoint differential operator L and the boundary-value problem

Lu = f in Ω, u = 0 on ∂Ω,

for Ω ⊂ Rn, with n > 1 and f sufficiently nice. The basic Schwarz alternating algorithm [44] to solve this
equation is, starting with an initial guess u0 for the solution, we iterate for k = 0, 1, . . ., for subdomains
Ω1,Ω2 with interfaces Γ1,Γ2 as in Figure 1:

Luk+1
1 = f, in Ω1,

uk+1
1 = uk|Γ1

on Γ1,

uk+1
1 = 0 on ∂Ω1 \ Γ1,
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and

Luk+1
2 = f, in Ω2,

uk+1
2 = uk|Γ2 on Γ2,

uk+1
2 = 0 on ∂Ω2 \ Γ2,

and the iterate uk+1 on the whole domain defined by

uk+1(x) =

{
uk+1

2 (x) if x ∈ Ω2,

uk+1
1 (x) if x ∈ Ω \ Ω2.

Under certain conditions it can be shown that the iterates converge to the true solution u on Ω. Now, the
idea is to distribute the solution of the two subproblems on Ω1 and Ω2 to two processors and compute uk1
and uk2 in parallel, exchanging information of the solution on the interfaces of the two subdomains between
the two processors after every iteration.

In [3] the authors review a particular class of domain decomposition methods which is called probabilistic
domain decomposition (PDD), pioneered by Acebron et al. in [48]. The main idea is to use a stochastic rep-
resentation of the PDE (via the so-called Feynman-Kac formula), then compute the solution in a few sampled
points on the interfaces between the subdomains via Monte Carlo, and then use an efficient deterministic
PDE solver for the solution of the PDE on each subdomain with fixed boundary conditions coming from
the previously computed Monte Carlo simulation. This probabilistic setup renders a parallelisation strategy
for solving PDEs that shows very good scalability properties. Indeed, since the solutions of the PDE on the
subdomains are completely independent of each other the PDD method can solve the subproblems fully in
parallel and hence does not require communication between processors. Also, the choice of the PDE solver
on each subdomain is flexible and so can potentially be executed very efficiently. The paper [3] also serves
as an introduction to the concept of PDDs and their various usage areas in data-driven applications.

Conclusion The contributions in this issue are examples of modern research topics in partial differential
equations that arise in data-driven applications. They nicely show the various facets of this topic, from PDEs
as inspiration for and tools to prove consistency of graph based data processing methods to the development
of efficient and scalable numerical methods for solving PDEs for large-scale and high-dimensional data. We
believe we are only at the beginning of this exciting and important new area of research. The increasing
number of open questions in all areas of data science will make mathematical frameworks, like the one
provided by PDEs, more and more attractive. PDEs and variational methods have an important role to
play in finding answers to these questions and in the development of adaptive, rigorous and efficient data
processing and machine learning methods.
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