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SUMMARY
We report a deep-phenotyping study undertaken over 7 years in a participant with Down syndrome (DS) who was non-demented at baseline but who developed dementia after 5 years. Multi-modal neuroimaging, including three serial scans of [11C]-PiB-PET, four structural MRI, as well as a [18F]-AV1451 scan, were interpreted alongside detailed neuropsychological assessments over the study period. We showed, for the first time in a person with DS, that beta-amyloid accumulation preceded the onset of dementia, which in turn corresponded to the topography of tau within temporo-parietal cortices. These observations highlight the potential for deep-phenotyping imaging to elucidate the substrates of cognitive decline in DS. 




1. INTRODUCTION
Down Syndrome (DS) is the most common neurodevelopmental disorder caused by the presence of trisomy 21 (1:800 live births). The extra copy of amyloid precursor protein (APP) gene on chromosome 21 is associated with a 4-5 fold overexpression of APP that results in increased cerebral accumulation of its proteolytic product of beta-amyloid (Aβ) 1. Consequently, AD pathologies (i.e. Aβ and neurofibrillary tau tangles) and comorbid dementia is highly prevalent in people with DS by the fifth decade 2. Clarifying the neuropathological substrates that underpin cognitive decline may help identify suitable therapeutic interventions and optimisation of clinical trials. Until now, data on the longitudinal trajectories of amyloid accumulation, tau pathology and brain atrophy over multiple time-points remains scarce. We report a deep-phenotyping case-study undertaken over 7 years (4 time-points) in a participant with DS who was non-demented at baseline but who developed clinical dementia after 5 years. Multi-modal neuroimaging modalities, including three serial scans of [11C]-PiB-PET, four structural MRI, as well as a [18F]-AV1451 scan, were interpreted alongside in-depth cognitive assessments over the study period.

2. METHODS
2.1. Clinical assessment and cognitive profile
The participant enrolled into the study when he was 48 years old in 2010. His cognitive function was assessed using the CAMCOG, a validated tool for assessing cognitive decline in DS. He was also assessed using the Cambridge Examination for Mental Disorders of Older people with Down’s Syndrome and Others with Intellectual Disabilities (CAMDEX-DS) informant interview, a neuropsychological assessment battery designed for diagnosing dementia in accordance with the International Classification of Diseases-10 (ICD-10) criteria for dementia in DS 3. The studies that he was part of were all approved by the National Research Ethics Committee of East of England and the Administration of Radioactive Substances Advisory Committee. 
	
2.2. Multi-modal imaging 
2.2.1. Structural MRI 
[bookmark: OLE_LINK28][bookmark: OLE_LINK29]From baseline to time-point 3, the participant underwent anatomical MRI scans on a Siemens Verio 3T scanner with 12-channel head coil (Siemens AG, Erlangen, Germany) using the 3D T1-Weighted magnetization-prepared, rapid gradient echo pulse sequence with the following acquisition parameters: repetition time / echo time / inversion time / flip angle = 2300 ms / 2.98 ms / 900 ms / ﻿9 degrees, 256 x 240 x 176 matrix dimensions and  1 x 1 x 1 mm3  voxel size. At time point 4 in 2017, structural MRI was obtained on the GE PET-MR scanner due to his involvement in the NIAD study: a BRAVO-T1 sequence with similar slice thickness of 1 mm. To extract reliable thickness estimates, images were automatically processed with the longitudinal stream 4. Specifically, an unbiased within-subject template space and image is created using robust, inverse consistent registration 5. Several processing steps, such as skull stripping, Talairach transforms, atlas registration as well as spherical surface maps and parcellations are then initialized with common information from the within-subject template, significantly increasing reliability and statistical power 4,6. The T1-MPRAGE data were processed using the longitudinal pipeline of Freesurfer to obtain measurements of mean cortical thickness in 34 ROIs per hemisphere, based on the Desikan-Killiany parcellation scheme 7. Global cortical thickness was calculated as the average across 34 ROIs. Additional measures of interest include the volumes of lateral ventricles, hippocampus, total grey and white matter, and total volume of hypointensities on T1 (as a proxy of white matter lesions 8). In addition, PetSurfer was used to segment additional regions, such as the cerebral CSF, pons, skull and air cavities to facilitate partial volume correction of PET data 9. Each PET data was registered to the resulting template, and partial volume correction was performed in PetSurfer, consistent with our previous methodology 10.

2.2.2. [11C]-PiB and [18F]-AV1451 imaging
[11C]-PiB data were acquired in three-dimensional (3D) mode on a GE Advance scanner. Before [11C]-PiB injection, a 15-minute transmission scan using rotating 68Ge rod sources was acquired to correct for photon attenuation. [11C]-PiB was produced with high radiochemical purity (>95%) and specific activity (>150 GBq/umol). [11C]-PiB was injected as a bolus (median= 545 MBq, interquartile range = 465-576MBq) through an antecubital venous catheter, and data were acquired for 90 min after injection in 58 frames (18 x 5, 6 x 15 seconds, 10 x 30 seconds, 7 x 1 minute, 4 x 2.5 minutes, and 13 x 5 minutes). For each frame, sonogram data were reconstructed using the PROMIS 3D filtered back projection algorithm into a 128 x 128 x 35 image array with a voxel size of 2.34 x 2.34 x 4.25mm 3. The dynamic PET images were realigned with statistical parametric mapping and averaged. The resultant mean images were co-registered to Freesurfer-processed T1 data for quantification in Freesurfer ROIs using PetSurfer, with the cerebellum as the reference region. Tau deposition was quantified in vivo using [18F]-AV-1451 on a GE SIGNA PET/MR scanner. Standardized uptake value ratio (SUVR) for [18F]-AV-1451 was calculated for data 75 – 105 minutes post-injection (185 MBq) with the cerebellum as the reference region. Images (6 × 5 minutes; 2.0 × 2.0 × 2.8 mm3) were reconstructed using OSEM (16 subsets, 6 iterations; no smoothing), with a low dose CT scan acquired on a GE Discovery 690 PET/CT used for attenuation correction of the head. 

3. RESULT
Throughout the course of the study, the participant was seen 4 times (2010, 2013, 2015, 2017). The participant was enrolled into the study with a diagnosis of mild cognitive impairment (MCI). Clinically, he had a history of depressive symptoms without any behavioural problems. On his initial assessment (2010), he scored 94/109 on the CAMCOG (Table 1). Baseline [11C]-PiB scans revealed elevated Aβ accumulation, most pronounced in the bilateral precuneus and striatum. Structural MRI revealed no signs of severe atrophy with a medial temporal lobe atrophy score of 1 (Fig 1). At the third visit in 2015, the patient was confirmed to have clinical dementia. During this period, behavioural changes emerged, such as a lack of enthusiasm, increased tendencies for verbal repetition and stubbornness. Memory impairments were also noted, which included an increased difficulty with remembering the locations of items and content of conversations, and the time of day. Language was also affected, evidenced by an increased difficulty with keeping up with ordinary conversation and word-finding difficulties alongside an overall slowing in thinking. The onset of the dementia was preceded by a sharp Aβ accumulation, from 0.35 [11C]-PiB BPND at baseline (2010) to 0.45 [11C]-PiB BPND at T2 (2013), before Aβ reached a plateau at T3 (2015; [11C]-PiB BPND = 0.45; Fig 2). Relative to the baseline [11C]-PiB scan, increased Aβ burden at T2 and T3 was observed in fronto-parietal cortices with relative sparing of the temporal lobe (Fig 3A). Of note, the fastest rate of annualised Aβ accumulation was estimated to be 0.1 BPND (Fig 3B). Similarly, structural MRI revealed progressive neurodegeneration, indicated by increased ventricular enlargement, and progressive atrophy in the hippocampus, total grey and white matter volumes, global cortical thickness (Fig 2). Visual inspection of the [18F]-AV1451 at T4 revealed two main observations: (i) a stereotypical pattern of elevated tau deposition, characterised by predominant binding in the bilateral precuneus and temporo-parietal cortices (Fig 1); (ii) in contrast to the often-reported striatal pattern of [11C]-PiB signal in DS, this region was relatively spared of [18F]-AV1451 binding (Fig 1).

4. DISCUSSION	
In this deep-phenotyping case-study of an adult with DS, we reported a sharp increase in Aβ burden that preceded the onset of clinical dementia and pronounced decline in memory and language functions, which, in turn, mapped onto the topography of tau deposition within the temporo-parietal cortex. To the best of our knowledge, this is the first in vivo demonstration of progressive Aβ accumulation during the process of dementia conversion from MCI. The close mapping between AD pathologies and clinical decline further demonstrates the potential utility for deep-phenotyping studies to elucidate the temporal relationships between in vivo pathological AD markers in DS.

Of clinical interest, the patient’s transition from a prodromal phase of dementia to dementia was preceded by a sharp increase in Aβ burden (2010 – 2013). As shown in Fig 1A, some regions showed low binding that stayed low (e.g. entorhinal cortex, fusiform gyrus, parahippocampal cortex), whereas others were already close to plateau at baseline and therefore did change further, but some regions were captured during the transition, mostly encompassing frontal and parietal cortical regions. These data showed that the maximum rate of change was 0.1 [11C]-PiB BPND per year. One caveat to this estimate, however, is that amyloid accumulation in DS may occur at a more aggressive rate than in the general population. In keeping with hypothetical models of sporadic AD 11, our data support the notion that the dynamic phase of rapid A deposition in DS occurs precedes the onset of clinical dementia, and little change in Aβ deposition is expected after that. This follows that earlier interventions, ideally in the prodromal phase of DS, are urgently needed to reap the maximum therapeutic potential of drugs that target the Aβ pathways.

We also observed a contrasting pattern of trajectories between Aβ accumulation and various indices of neurodegeneration. Over the course of the study, the progressive accumulation of Aβ paralleled with ventricular enlargement, volume loss in hippocampus, total GM volume, as well as cortical thinning. This coupling between amyloid and neurodegeneration is broadly consistent with our previous work on a larger cohort of DS 12. In the absence of further Aβ accumulation at T3, we also speculate about the neuropathological substrates underpinning the worsening atrophy and cognitive decline between T3 and T4, with hyperphosphorylated tau implicated as the prime suspect. The spatial distribution of tau – particularly the elevated [18F]-AV1451 binding in the temporo-parietal cortices, is congruent with the stereotypical pattern in sporadic AD 13,14 and has been shown to correlate with brain atrophy 15–17.  

Another observation concerns the longitudinal WMH accumulation, which increased from 1087.4 mm3 to 1330.4 mm3 over the study period. While this trajectory is not as rapid compared to previously reported estimates in samples of elderly people (i.e. Rotterdam Scan Study) 18,  the role of cerebrovascular disease in DS has not been studied in-depth and future research should determine the clinical significance of WMH in DS.

A key limitation of this case-study is the lack of [11C]-PiB imaging during the preclinical phase, as the patient was already diagnosed with MCI upon enrolment. As such, the possibility that the dynamic phase of Aβ accumulation could have occurred earlier could not be excluded 19. Further larger scale studies, including our ongoing work in NiAD (Neurodegeneration in Aging Down Syndrome) study with PET imaging of [18F]-AV1451 (tau) and [11C]-PiB (Aβ) will help disentangle the time course and differential contributions of AD pathologies across the full spectrum from the earliest preclinical stages.

In summary, this brief report demonstrates the utility for deep-phenotyping designs to improve our understanding of the disease course, and highlight the potential for multi-modal imaging to elucidate the interactions amongst AD neuropathologies in driving cognitive dysfunction. Further replication of these findings would inform future studies and therapeutic trials for which the DS population is a prime candidate.








TABLE AND FIGURES
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Table 1. Raw scores achieved in different functional areas evaluated in the CAMCOG across 7 years. Scores collected over 4 time points. * TX = No corresponding brain scan data. Maximum score is shown in the last column for each area.  
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Fig 1. Trajectory of structural atrophy, Aβ accumulation over 3 timepoints and tau deposition at time-point 4. Top Row: Across the time-points, structural MRI revealed progressive reductions in cortical thinning (e.g. precuneus; yellow  red voxels). Middle Row: Peak regions of amyloid accumulation were distributed in posterior regions, such as the precuneus. Over the course of study, the spatial extent of amyloid increased to encompass temporal regions. Bottom Row: At T4, [18F]-AV1451 scan showed a stereotypical pattern of AD tau distribution that involved the bilateral precuneus and temporo-parietal cortices. 
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Fig 2. Progressive accumulation of Aβ was accompanied by generalised neurodegeneration: lateral ventricular enlargement and atrophy of total GM, hippocampus, WM. WMH volumes also increased over the follow-up. Abbreviations: Aβ = amyloid, GM = grey matter, WM = white matter, WMH = white matter hypointensities.
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Fig 3. Regional distribution of Aβ accumulation from baseline to 59 months. A: Heatmap of [11C]-PiB BPND across the cortex. B: Annualized rate of Aβ accumulation in cortical regions.
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