Compulsivity in obsessive-compulsive disorder and addictions

Martijn Figeea, Tommy Pattijb, Ingo Willuhna,c, Judy Luigjesa, Wim van den Brinka,d, Anneke Goudriaana,d, Marc N. Potenzae, Trevor W. Robbinsf, Damiaan Denysa,c

a Academic Medical Center, Department of Psychiatry, Amsterdam, the Netherlands
b Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands.
c The Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
d Amsterdam Institute for Addiction Research, Amsterdam, the Netherlands
e Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States; Department of Neurobiology, Yale University School of Medicine, New Haven, CT, United States; Child Study Center, Yale University School of Medicine, New Haven, CT, United States.
f Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom

Please address all correspondence to:
Damiaan Denys, M.D., Academic Medical Center, University of Amsterdam, Department of Psychiatry, Postbox 75867, 1070 AW Amsterdam, The Netherlands.
E-mail: d.denys@gmail.com

ABSTRACT

Compulsive behaviors are driven by repetitive urges and typically involve the experience of limited voluntary control over these urges, a diminished ability to delay or inhibit these behaviors, and a tendency to perform repetitive acts in a habitual or stereotyped manner. Compulsivity is not only a central characteristic of obsessive-compulsive disorder (OCD) but is also crucial to addiction. Based on this analogy, OCD has been proposed to be part of the concept of behavioral addiction along with other non-drug-related disorders that share compulsivity, such as pathological gambling, skin-picking, trichotillomania and compulsive eating. In this review, we investigate the neurobiological overlap between compulsivity in substance-use disorders, OCD and behavioral addictions as a validation for the construct of compulsivity that could be adopted in the Research Domain Criteria (RDoC). The reviewed data
suggest that compulsivity in OCD and addictions is related to impaired reward and punishment processing with attenuated dopamine release in the ventral striatum, negative reinforcement in limbic systems, cognitive and behavioral inflexibility with diminished serotonergic prefrontal control, and habitual responding with imbalances between ventral and dorsal frontostriatal recruitment. These frontostriatal abnormalities of compulsivity are promising targets for neuromodulation and other interventions for OCD and addictions. We conclude that compulsivity encompasses many of the RDoC constructs in a trans-diagnostic fashion with a common brain circuit dysfunction that can help identifying appropriate prevention and treatment targets.

Introduction

Compulsivity in obsessive-compulsive disorder (OCD) is related to the feelings of limited voluntary control and being compelled to perform repetitious, self-defeating behaviors (Denys, 2011; Robbins et al., 2011). Based on analogies between these compulsive characteristics of OCD and the cognitive and behavioral characteristics of substance-use disorders, some researchers have proposed to view OCD as a behavioral addiction (Holden, 2001; Denys et al., 2004), together with several other non-substance disorders, including pathological gambling, trichotillomania, skin-picking, compulsive eating, compulsive computer use, compulsive sexual behavior, and compulsive buying (Holden, 2001; Grant et al., 2006). The study of different aspects of compulsivity and their neural correlates in these disorders may help to test the behavioral-addiction paradigm and to define shared brain networks.

In OCD, compulsivity represents a key symptom. Although patients suffering from OCD may present with various types of obsessions and compulsions that may be accompanied by
other symptoms such as anxiety and depression, a compulsive drive with a perceived loss of control appears to be a crucial factor.

In addiction, two theories describe the development from initial (impulsive) drug use to chronic (compulsive) drug taking. One theory forwarded by Everitt and Robbins (2013) emphasizes the progression from initial action-outcome (reward-based) learning to stimulus-response (habitual) learning. Another theory forwarded by Koob and Le Moal (2005) emphasizes the transition from positively reinforced drug-taking (impulsive stage) to negatively reinforced (removal of aversive state) compulsive drug-use (compulsive stage). These theories are not mutually exclusive, but they do suggest different processes in the development of compulsivity.

In behavioral addictions, compulsivity is less well studied, especially compared to other relevant constructs such as impulsivity. On the 1st of May 2015, the search terms compulsivity and behavioral addiction resulted in 68 Pubmed listings, whereas the terms impulsivity and behavioral addiction resulted in 6268 listings.

Like impulsivity, compulsivity may be decomposed into various factors with a mainly cognitive, affective or motivational nature. First, compulsivity, as engagement in self-defeating repetitive behaviors, hints at impaired reward and/or punishment processing. Second, the diminished ability to stop or divert unwanted ideas and actions suggests the presence of cognitive and behavioral inflexibility. Third, habitual responding and diminished goal-directed control suggests excessive habit-learning. In this narrative review, we will study the neural overlap of these different aspects of compulsivity in OCD, substance-use disorders and behavioral addictions, including human imaging studies and animal models of compulsive behavior and associated neurotransmitters. Our goal is to use these data to define which neural processes are
central to compulsivity and to use this knowledge as a pathophysiological validation for the possible adoption of compulsivity in the Research Domain Criteria (RDoC; Insel et al., 2010; Casey et al. 2013).

Neurocognitive factors

Reward processing

Compulsivity in OCD and addiction may in part be explained by dysfunctional brain reward systems, driving the development of a restricted behavioral repertoire at the cost of healthy rewarding actions and a relative failure to switch to more adaptive, goal-directed behaviors. Indeed, patients with OCD displayed attenuated reward anticipation activity in the ventral striatum compared to controls (Figee 2011 and 2014), which matches blunted reward anticipation signals of the ventral striatum in alcohol (Wrase et al., 2007), nicotine (Martin-Söelch et al., 2003; Bühler et al., 2009) and cannabis dependence (van Hell et al., 2010), in a behavioral addiction like pathological gambling (Reuter et al., 2005; de Greck et al., 2010; Balodis et al., 2012; Choi et al., 2012), and in binge-eating disorder (Balodis et al., 2013).

However, not all studies of substance-use disorders and behavioral addictions show this pattern. For example, mixed findings were reported in cocaine dependence (Balodis and Potenza, 2015) and pathological gambling (Van Holst et al., 2010 and 2012). Blunted striatal responsiveness in OCD is paralleled by increased striatal activity in response to symptom-provoking stimuli (Menzies et al., 2007; Rotge et al., 2008), which appears to be analogous to ventral striatal hyperactivation associated with disorder-specific stimuli in drug addiction (Wrase et al., 2007; Diekhof et al., 2008; Kühn et al., 2011). Similar findings have been observed in some (Hollander et al., 2005; van Holst et al., 2012), but not all (Potenza et al. 2003) studies of pathological
gambling and may also hold true for food consumption and weight gain (Stice et al., 2010). This suggests that the ventral striatum may be less responsive when recruited for healthy reward processing due to its bias toward drugs in addiction, and due to its bias to disease-specific stimuli in OCD and behavioral addictions. Importantly from a treatment perspective, effective deep-brain stimulation (DBS) for OCD has been related to a normalization of anticipatory reward responses in the ventral striatum (Figee et al, 2014).

It should be noted that there are also diverging reward-processing findings. First, some studies showed no blunted striatal reward anticipation in OCD (Jung et al., 2011; Choi et al., 2012), or blunted reward anticipation only in prefrontal regions (Kaufmann et al., 2013). Second, a more generalized pattern of diminished activity in both prefrontal and striatal areas during reward anticipatory as well as outcome phases is usually found in drug addiction (Hommer et al., 2011) and binge-eating disorder (Balodis et al., 2013). These conflicting data do not challenge a common reward hypothesis of compulsivity, but hint at some heterogeneity of reward processing. Patients with OCD may have primarily difficulties in estimating the value of a potential rewarding situation rooted in striatal dysfunction, whereas in substance-use disorders and behavioral addictions, outcome-related or consummatory aspects of reward processing in the medial prefrontal cortex may also impaired.

In summary, compulsivity in OCD and addictions is related to impaired reward processing in the ventral striatum, which may in part mediate compulsive behaviors at the cost of healthy rewarding actions.
Punishment sensitivity

Individuals engaged in compulsive behaviors may be less capable of noticing its self-damaging consequences, which suggests impairment of neural processes underlying harm avoidance and sensitivity to punishment. Although studies in OCD confirm dysfunctional processing of punishments, the results are diverging, with brain activity during monetary loss anticipation in OCD patients being either normal (Figee et al., 2011) or increased in the medial prefrontal cortex (Kaufmann et al., 2013), or decreased in the ventral striatum (Jung et al., 2011). The latter finding suggests decreased striatal sensitivity to punishment in OCD, which matches with decreased striatal loss-anticipation signals in pathological gambling (Choi et al., 2012) but not in alcohol addiction (van Holst et al., 2014). The study by Choi et al (2012) also found that pathological gamblers and OCD patients share decreased loss-anticipation signals in the insula. The insula is involved in the mediation of bodily interoceptive signals for processing negative cues, and this region has also been associated with drug craving (Naqvi et al., 2007). Therefore, we speculate that insula dysfunction may be involved in compulsivity in OCD and addictive behaviors contributing to a diminished ability to foresee the negative consequences of compulsive actions.

Animal models have arguably provided more convincing links between compulsive drug-seeking and impaired punishment-sensitivity. Compulsive drug-seeking in these models is oftentimes operationalized by pairing an operant drug-seeking response that eventually leads to drug access with the delivery of an aversive event (e.g., foot shock), aiming at modeling the human symptom of seeking access to a drug despite the knowledge of negative consequences. Importantly, similar to humans, only a subset of animals allowed access to drug in this model develops compulsive drug seeking (Pelloux et al., 2007 and 2012; Deroche-Gamondet et al., 2004;
Vanderschuren and Everitt 2004). Exclusively in these “addicted” animals, prolonged cocaine self-administration was shown to permanently impair long-term depression (LTD) in the ventral striatum (Kasanetz et al., 2010), thus potentially cementing rigid, compulsive drug seeking by eradicating synaptic plasticity in a brain region central to reward-related learning. In addition, pyramidal neurons in the prefrontal cortex that project to the ventral striatum have been shown to be hypoactive in animals that seek cocaine despite foot-shock punishment, but less so in animals sensitive to punishment (Chen et al., 2013). Conversely, compensating for this hypoactivity, optogenetic stimulation significantly prevented compulsive cocaine seeking, whereas optogenetic inhibition significantly increased compulsive cocaine seeking (Chen et al., 2013).

Furthermore, it was shown that pharmacological inactivation of the prefrontal cortex, but not the orbitofrontal cortex, increased compulsive drug-seeking in animals with limited access to cocaine in a conditioned suppression model (Limpens et al., 2014). However, inconsistent results were reported by a lesion study that targeted the anterior cingulate, prefrontal, infralimbic, orbitofrontal and anterior insular cortices without altering compulsive drug-seeking (Pelloux et al., 2013). This indicates that prefrontal cortical, top-down inhibitory control over limbic–striatal mechanisms of drug-seeking behavior do not necessarily control all aspects of compulsive drug-seeking, but it may nonetheless be implicated in conditioned suppression and shock suppression after compulsivity has developed. In contrast, Pelloux et al. (2013) report that lesions of a projection region of the prefrontal cortex, the basolateral amygdala, did increase compulsive drug-seeking. Interestingly, inactivation of the connected central nucleus of the amygdala induced robust resistance to punishment in rats with prolonged access to cocaine (Xue et al., 2012). Finally, inactivation of sensorimotor striatal areas that are not directly connected to the
above-described limbic neural substrates can also lead to inhibition of compulsive drug seeking (Jonkman et al., 2012).

In summary, compulsive drug seeking may be associated with dysfunctional neural processing of punished behavior in ventral corticostriatal pathways, with some evidence suggesting similar impairments underlying compulsivity in OCD and pathological gambling.

Negative reinforcement

Compulsive behaviors may be performed to avoid aversive or anxiety-inducing outcomes. Indeed, a prominent theory in addiction research emphasizes the increasingly important role of negative reinforcement when drug taking becomes more compulsive over time (Koob 2015). In many patients drug taking is initially driven by its pleasurable effects, however over time their motivation seems to shift increasing the role of negative reinforcement that accompanies the development of compulsive drug use. Negative reinforcement that can drive drug use includes removal of an aversive state, whether this is physical withdrawal symptoms or a negative emotional state such as anxiety, stress or depression. There are even addicted patients who report never to have experienced pleasure and for who negative reinforcement like relief of stress or coping with negative emotions was their main drive throughout the course of drug use (Heilig et al. 2010; Kennett et al 2013). Recruitment of anti-reward brain systems associated with aversive or stress-like states may underlie negative reinforcement in compulsive drug use. An important region implicated in these anti-reward systems is the extended amygdala (bed nucleus stria terminalis, BST) and more recently also the lateral habenula. Adaptations of these systems persist during and often beyond drug abstinence creating a condition of chronic dysphoria and increasing the risk relapse in a (compulsive) attempt to self-medicate this unwanted condition.
(Koob 2005; Vollstädt-Klein 2010). In addition, medial prefrontal-amygdala circuits involved in fear conditioning have also been implicated in persistent drug-seeking behavior (Peters et al., 2009). Similarly, in chronic problem gambling, excessive responses in the amygdala and insula may be linked to craving elicited by gambling pictures (Goudriaan et al., 2010), suggesting that negative reinforcement circuits could also have a role in compulsivity in behavioral addiction.

In many OCD patients negative reinforcement is an important drive of their compulsions from the start of the disorder. Traditionally, OCD is viewed as an anxiety disorder and for many patients the need to reduce anxiety or stress contributes to the persistence of the compulsions as supported by experiments that show decreases in anxiety or discomfort when patient are allowed to execute compulsive behavior after being exposed to symptom provoking situations (Rachman, et al 1976). However, contrary to findings in drug addiction, brain anti-reward systems such as the BST or lateral habenula have not yet been directly linked to OCD. Nevertheless, schedule-induced polydipsia in rats, which might model aspects of human compulsivity, is associated with changes in the firing behavior of BST neurons (Welkenhuysen et al., 2013). In addition, the BST is currently being investigated as a DBS target for OCD (Nuttin et al, 2013), although effective ventral striatal DBS for OCD did not affect BST-related contextual anxiety (Baas et al, 2014). Also note that not all OCD patients report anxiety or stress and that negative reinforcement may contribute differently to the compulsions of OCD patients. In some cases of OCD, compulsive behaviors may start with anxiety and harm avoidance but gradually evolve into more habitual or impulsive responding with progression of the disease (Kashyap et al. 2012). In other cases, OCD may develop first as a propensity to compulsive behaviors, followed by anxiety and obsessive thoughts in response to these compulsive urges (Robbins et al., 2011). In line with the latter notion, structural and functional imaging studies in OCD and case-studies of acquired OCD after
Brain injuries have often failed to demonstrate clear pathology of the limbic system such as found in anxiety disorders, but rather indicate that compulsivity may primarily stem from basal ganglia-prefrontal dysfunction (Whiteside et al., 2004; Radua et al., 2010; Figee et al., 2013).

In summary, compulsivity in addictions and OCD may in part be driven by negative reinforcement, i.e. avoidance of dysphoria, stress or anxiety, with underlying abnormalities in brain anti-reward and anxiety circuits, such as BST, amygdala and medial prefrontal cortex.

Cognitive and behavioral flexibility

Cognitive and behavioral inflexibility represent core features of compulsivity in OCD (Chamberlain et al., 2006; Menzies et al., 2007), substance-use disorders (Izquierdo and Jentsch 2012; Ersche et al., 2008; van Holst et al., 2011) and some behavioral addictions (Goudriaan et al., 2006; Vanes et al., 2014). Contingency-related flexibility refers to the adaptation of behavior or cognitive strategies after positive or negative contingencies. Contingency-related flexibility has been linked to the orbitofrontal cortex (OFC) (Bechara et al., 2000). Abundant evidence implicates abnormalities of the OFC in OCD, such as decreased OFC volume and increased OFC symptom-related activity. Probabilistic reversal-learning tasks tap into the construct of contingency-related flexibility, and OCD patients compared to controls demonstrate defective OFC recruitment during these tasks (Remijnse et al., 2006; Chamberlain et al., 2008; Freyer et al., 2011). Similarly, substance-use disorders have been associated with reduced OFC volume (Franklin et al., 2002), OFC hyperactivation during drug taking and dysfunctional reversal-learning OFC responses (Izquierdo and Jentsch 2012). Moreover, a study directly comparing OCD and stimulant-dependent individuals showed that compulsive symptom scores were significantly correlated with reduced orbitofrontal connectivity in both groups (Meunier et al.,
Finally, diminished reversal-learning speed along with dysfunctional OFC responses during reversal-learning have also been found in individuals with pathological gambling (de Ruiter et al., 2009; Vanes et al., 2014).

Cognitive flexibility can also be measured with attentional set-shifting tasks in which attention is required to switch between multiple stimuli or tasks, requiring activation of the ventrolateral prefrontal cortex (Hampshire and Owen, 2006). Impaired set-shifting may promote perseveration and compulsive actions (Stalnaker et al., 2009). Set-shifting is found to be impaired in adult patients with OCD (Watkins et al., 2005; Chamberlain et al., 2006) and in pediatric OCD, which was associated with decreased frontostriatal activation (Britton et al., 2010). Comparable set-shifting impairments have also been found in individuals with gambling problems (Goudriaan et al., 2006; Odlaug et al., 2011; but see: Boog et al., 2014). On the other hand, set-shifting was intact in individuals with compulsive buying (Derbyshire et al., 2014). Finally, impaired set-shifting was also reported in individuals with opioid- (Ornstein et al., 2000) and stimulant- (Woicik et al., 2011) use disorders.

The neural correlates of behavioral flexibility have also been widely studied in animals using reversal-learning as well as attentional set-shifting tasks. Results from these studies confirm that corticostriatal circuits comprising the OFC, medial prefrontal cortex and striatum are implicated in behavioral flexibility (Clarke et al., 2008; Izqueirido and Jentsch 2012). Furthermore, these models suggest that reversal-learning impairments may be linked specifically to dysfunction of serotonin in the OFC (Clarke et al., 2004, 2005, 2007) and dysfunction of dopamine in the striatum (Clarke et al., 2011), with selective serotonin reuptake inhibition (citalopram) rescuing behavioral flexibility via normalization of the OFC serotonergic tone (Barlow et al., 2015).
In summary, cognitive and behavioral inflexibility appear to be shared aspects of compulsivity in OCD and addictions reflecting corticostriatal dysfunction, in particular impaired serotonergic top-down control of orbitofrontal and ventrolateral prefrontal cortices.

Habit learning

Habits can be defined as automatic, inflexible behaviors performed regardless of their consequences. Although it has long been speculated that habits may be a hallmark of OCD, excessive habits were first demonstrated in animal models of addiction in association with defective goal-directed behaviors that are mediated by frontostriatal mechanisms (Everitt and Robbins 2005; Everitt et al., 2008). These animal studies suggest a gradual progression from hedonic to habitual drug use over time associated with a shift from recruitment of ventral to more dorsal regions of the striatum (e.g., Belin and Everitt, 2008; Willuhn et al., 2012). One imaging study in humans suggested some indirect support for this ventral to dorsal shift by showing increased cue-induced activity in the ventral striatum in social drinkers and increased cue-induced activity in the dorsal striatum in heavy drinkers (Vollstädt-Klein et al., 2010). The first study directly investigating habits in addicted humans confirmed the presence of an imbalance between goal-directed and habitual control and between ventral and dorsal frontostriatal recruitment (Sjoerds et al., 2013). Patients with alcohol dependence compared to healthy controls showed a decrease in goal-directed learning associated with decreased activity in the ventromedial prefrontal cortex and the anterior putamen and an increase in habit learning associated with increased activity in the posterior putamen. Moreover, ventromedial prefrontal cortex activation (goal-directed learning) was negatively associated with alcohol dependence duration. Excessive habit learning was also demonstrated in OCD (Gillan et al., 2011). However,
contrary to addiction, recent neuroimaging data do not support a ventral to dorsal transition underlying habit formation in OCD, but rather hyperactivation of the ventral striatum (caudate) leading to impaired goal-directed control over behavior (Gillan et al., 2014). In accordance with a shared dysfunction of these motivational brain systems in various disorders of compulsivity, lower gray-matter volumes of the caudate and medial orbitofrontal cortex were associated with excessive habit formation in OCD patients as well as in individuals with stimulant addiction and individuals with binge-eating (Voon et al., 2014).

Inappropriate habitual and repetitive responding in experimental animals resulting, for instance, from defective feedback mechanisms can be assessed in instrumental-learning tasks such as the so-called “signal-attenuation” procedure (Joel and Avisar, 2001). In this particular task, rats are trained to withhold lever pressing in response to signals that previously indicated food but have now been extinguished (signal attenuation). Importantly, in line with the therapeutic efficacy in OCD patients (Fineberg et al., 2012), selective serotonin reuptake inhibitors have been found to reduce the expression of compulsive-like behavioral responding in this task (Joel and Doljansky, 2003; Joel et al., 2004). In terms of the underlying brain circuits mediating compulsive-like responding in the signal-attenuation task, the OFC and basal ganglia nuclei such as the subthalamic nucleus and globus pallidus appear crucial (Albeda and Joel, 2012).

In summary, habitual behaviors that are performed regardless of their consequences may be central to compulsivity in OCD and addictions, reflecting imbalances between ventral and dorsal frontostriatal recruitment.
Frontostriatal connectivity

In line with a general dysregulation of the frontostriatal network in compulsivity, resting-state functional imaging studies have consistently demonstrated excessive functional connectivity between the striatum and the prefrontal cortex in OCD patients (Harrison et al., 2009 and 2013; Sakai et al., 2011; Figeé et al., 2014) and positive correlations with disease severity (Harrison et al., 2009). Similarly, opioid dependence is associated with increased frontostriatal connectivity (Upadhyay et al., 2010), and a study in cocaine users found this frontostriatal hyperconnectivity to be positively correlated with compulsive aspects of drug use (Hu et al., 2015). Thus, excessive frontostriatal connectivity may be a common neural substrate of compulsivity in OCD and substance-use disorders. Importantly, frontostriatal connectivity may be normalized with DBS of the ventral striatum and with repetitive transcranial magnetic stimulation (rTMS) of the medial prefrontal cortex. Moreover, these normalizations also correlate with obsessive-compulsive symptom improvement (Figeé et al., 2014; Dunlop et al., 2015). Preliminary evidence suggests that the effects of DBS and rTMS in individuals with substance-use disorders depend on similar changes in frontostriatal connectivity (de Ridder et al., 2011; Valencia-Alfonso et al., 2012).

Neurotransmitters

Dopamine

Results from studies assessing dopamine are in accordance with the reward circuitry as a potential link between compulsivity in OCD and addictions. Receptor-binding studies indicate hyperactivity of the striatal dopaminergic system in OCD, with decreased striatal availability of dopamine D1 receptors (Olver et al., 2009) and D2-like receptors (Denys et al., 2004; Perani et
al., 2008) in patients versus controls, which is also found in individuals with substance-use disorders (Volkow et al., 2009) and in some studies with obese patients (Wang et al., 2001; Volkow et al., 2008; de Weijer et al., 2011). In addicted individuals, low levels of dopamine D$_2$-like receptors are related to greater craving responses (Volkow et al., 2009) and speculatively, low levels of dopamine D$_2$-like receptors in OCD could drive compulsions to overcome feelings of anxiety and discomfort. In line with this hypothesis, OCD patients display excessive ventral striatal activity related to loss avoidance (Jung et al., 2011).

The acute reinforcing effects of drugs of abuse have been linked to activation of the mesolimbic dopamine system (Koob and Volkow, 2010). Imaging studies in humans have convincingly shown the presence of dopamine release in the ventral striatum after smoking (Brody et al., 2009) and stimulant use (Volkow et al., 1995), with mixed results for alcohol and cannabis use (Bossong et al., 2009; Heilig et al., 2010; Kuepper et al., 2013) and negative findings for heroin (Daglish et al., 2008). Dopamine release in the ventral striatum is important for focusing on potential alerting and rewarding environmental stimuli that can be used for modulation of behavior by reinforcement-related learning (Schultz, 1998). Chronic drug-induced dopaminergic hyperactivity could compromise dopaminergic responsiveness to natural rewards. Indeed, amphetamine-induced D$_2$-like-receptor displacement, mimicking natural dopamine release, is attenuated in drug addiction (Volkow et al., 1997 and 2012; Martinez et al., 2012) and probably also in obese patients (van de Giessen et al., 2012). In OCD patients, the only amphetamine-challenge imaging study to date revealed no significant blunting of dopamine release (Denys et al., 2013), although plasma investigations suggest attenuated apomorphine-induced dopamine release in some patients (Pichot et al., 1996; Brambilla et al., 1997). In pathological gambling, increased rather than diminished dopamine release was demonstrated
recently (Boileau et al., 2014). In addition to impaired natural reward sensitivity, attenuated dopamine release may also reduce sensitivity for drug rewards resulting in compulsive drug taking and drug seeking (Berridge et al., 2007; Robinson and Berridge, 2008; Rothkirch et al., 2012; Volkow et al., 2011) or even habitual use as an automatic response to internal or external stimuli (Everitt et al., 2008). Medial-caudate-dopamine-depleted monkeys were impaired in their ability to reverse stimulus-reward associations (Clark et al., 2011). In stimulant-dependent humans, dopaminergic enhancement with the dopamine D2-like agonist pramipexole reversed abnormal perseverative responding and associated caudate dysfunction; however, no perseverative abnormalities or pramipexole-induced changes were observed in OCD patients (Ersche et al., 2011). No molecular imaging studies are currently available that have tested the role of dopamine specifically with habit paradigms.

Recent evidence from animal models implicates dopamine D1-like receptors and NMDA receptors underlying compulsive-like responding in signal-attenuation tasks (for review, see Albeda and Joel 2012). Comparable to the signal-attenuation procedure measuring inappropriate repetitive behavioral responses, compulsive-like behavioral responses may also be provoked by repeated challenges with dopaminergic agents. For instance, repeated exposure to the dopamine D2-like-receptor agonist quinpirole is found to robustly induce repetitive checking behavior (Szechtman et al., 1998) and more recently in a novel instrumental-learning task (Eagle et al., 2014), the latter allowing for further determination of the cognitive processes that might underlie this checking behaviour. These models stress the importance of dopamine transmission in the development and expression of compulsive-like behaviour. For example, the dopamine D2–like-receptor antagonist sulpiride has been found to remediate quinpirole-induced compulsive-like behaviour (Eagle et al., 2014). Lesioning and DBS studies have indicated that quinpirole-induced
repetitive checking involves the ventral striatum and subthalamic nucleus (Mundt et al., 2009; Winter et al., 2008b), whereas in control subjects (vehicle-treated animals) lesions of the ventral striatum and the OFC were found to induce different aspects of repetitive checking (Dvorkin et al., 2010). Finally, quinpirole-induced compulsive lever pressing correlated with diminished dopamine signaling in the ventral tegmental area, which was proposed to reflect lower base-line dopamine burst firing and higher stimulus-driven dopamine activity as a characteristic of compulsivity (Sesia et al., 2013).

In summary, despite some outcome variability these data convincingly stress the importance of dopaminergic mesolimbic, corticostriatal and basal ganglia pathways in perseverative responding and compulsive checking.

Serotonin

OCD is associated with decreased presynaptic serotonin transporter availability in thalamic and midbrain-pons regions, along with increased postsynaptic serotonin (5-HT$_{2A}$) receptor availability in cortical areas, indicating diminished serotonergic input into fronto-subcortical circuits (for review, see Figee et al., 2010). Müller & Homberg (2015) suggest that diminished reactivity of the serotonergic system is also involved in the transition to compulsive drug use since studies have shown that carriers of the short allele of the serotonin transporter gene (5-HTTLPR S-allele carriers) are more likely to exhibit alcohol and drug (e.g., mostly cocaine) dependence (Enoch et al., 2012). The same serotonin transporter gene is arguably the best-supported risk variant for OCD, though this relates to the long (high-expressing function) alleles instead of the short alleles associated with addiction (Walitza et al., 2014).
Animal studies have highlighted specific involvement of the 5HT$_{2C}$ receptor in modulating compulsive-like responding in signal-attenuation tasks (Flaisher-Grinberg et al., 2008). In addition, rats that compulsively seek cocaine show decreased serotonin utilization in several forebrain regions including ventral and dorsal parts of both the prefrontal cortex (PFC) and the striatum, as well as in the amygdala (Pelloux et al., 2012). This compulsive drug seeking was reversed by the facilitating of serotonin transmission using a serotonin reuptake inhibitor or a 5-HT$_{2C}$-receptor agonist. Vice versa, serotonin depletion and 5-HT$_{2C}$-receptor antagonist were sufficient to produce compulsive drug seeking in rats without prolonged drug-access (Pelloux et al., 2012).

GABA

It has been suggested that the development of compulsive drug taking is mediated by impaired GABA-ergic inhibition of drug-related dopamine release (Goodman et al., 2008; Vlachou and Markou, 2010). Indeed, GABA$_B$-agonizing agents are able to inhibit reinforcing effects of drugs and are promising treatment candidates for addictions (Filip et al., 2015). Impairment of GABA-ergic systems has also been found in OCD; e.g., decreased plasma GABA (Russo et al., 2013) and decreased GABA in the medial prefrontal cortex as measured with proton magnetic resonance spectroscopy (MRS; Simpson et al., 2012). Moreover, similar to the potential efficacy of GABA-agonizing agents for addictions, recent animal models indicate that selective GABA release in the striatum may explain the efficacy of DBS for OCD (Burguiere et al., 2013; Xie et al., 2014).

Glutamate
Glutamatergic signaling is important for prefrontal top-down control over striatal dopamine (Arnsten et al., 2009). Converging evidence suggests aberrant frontostriatal glutamatergic signaling in OCD (Wu et al., 2012). Moreover, electrophysiological animal work indicates that the efficacy of ventral striatal DBS for OCD may depend on restored glutamatergic OFC control over striatal regions (McCracken et al., 2007; Yan et al., 2013), which might also explain the anti-compulsive effects of glutamatergic agents such as ketamine (Rodriguez et al., 2013). It was recently hypothesized that glutamatergic frontostriatal changes may also be critical for the transition of regular to compulsive drug use (van Huijstee and Mansvelder, 2015) and glutamatergic agents are promising interventions for the treatment of substance-use and gambling disorders (Pettorruso et al., 2014).

Discussion

We reviewed the symptomatic, neurocognitive, and neurotransmitter overlap of compulsivity in OCD, substance-use disorders and behavioral addictions, to determine the processes that are central to compulsivity. First, the available data suggest that compulsivity in OCD and addictions are related to impaired reward and punishment processing in the ventral striatum and associated attenuated dopamine release, and with negative reinforcement in limbic and anti-reward systems, which may at least partly explain the presence of repetitive self-defeating behaviors. Second, compulsivity in OCD and addictions entails cognitive and behavioral inflexibility, which may be rooted in a shared impairment of ventromedial prefrontal top-down regulation, along with prefrontal serotonergic defects and excessive dopamine and glutamate signaling. Finally, habitual responding regardless of its consequences is an aspect of compulsivity that might be related to imbalances between ventral and dorsal frontostriatal recruitment.
The Research Domain Criteria (RDoC) project does not cite compulsivity as one of its dimensional constructs or domains. However, features of compulsivity are grouped together within the RDoC positive valence system (i.e., reward processing and habits), and other aspects of compulsivity can be recognized within the negative valence and cognitive control domains. The current review suggests that compulsivity encompasses many of the RDoC constructs in a trans-diagnostic fashion with a shared dysregulation of frontostriatal circuits. The important question that remains to be answered in the future is whether compulsivity should be regarded one of the mono-dimensional building blocks of a new functional classification system or whether compulsivity can be better regarded as a combination of different one-dimensional constructs, which can be found in various DSM-5 diagnostic categories.

Apart from the reviewed similarities between compulsivity in OCD and addictions, there are also many differences that may have contributed to their classification in separate categories in DSM-5 (American Psychiatric Association, 2013; Potenza et al., 2009). In contrast, similarities between pathological gambling and substance addictions led to the re-classification of gambling and substance-use disorders in an addictions category in DSM-5 (American Psychiatric Association, 2013; Potenza et al., 2006; Petry, 2006). Among the many differences between OCD and addictions are pharmacological treatments for the disorders, with selective serotonin-reuptake inhibitors showing efficacy for OCD but not for addictions, and opioid-receptor antagonists showing efficacy for multiple addictions (Potenza et al., 2009) but generally not for OCD where opioid agonists rather than antagonists may have some efficacy (Goldsmith et al., 1999; Koran et al., 2005; Khazaal et al., 2006). However, certain OCD features like compulsivity may represent important trans-diagnostic domains that may be targeted in treatment efforts for both OCD and addictions.
In pathological gambling, there has been reported high levels of (self-reported and behavioral) compulsivity that may be responsive to OCD-like interventions (Blanco et al., 2009), although this possibility warrants additional investigation. For further investigation of neurobiological features of compulsivity in OCD and addictive disorders, data-driven approaches and psychometric compulsivity measures may be particularly useful, for example using new compulsivity scales like the Dutch Dimensional Obsessive Compulsive Scale (DDOCS; in press) or the DSM-5 obsessive–compulsive spectrum scale (Le Beau et al, 2013). As an example of data-driven approaches, data-driven approaches may be particularly useful. For example, a factor structure derived from principal-components analysis assessing impulsivity-related measures in healthy and addicted individuals identified self-reported compulsivity as linking to measures of reward and punishment sensitivity (Meda et al., 2009). This factor grouping has been replicated in an independent college-gambling sample (Ginley et al., 2014) and linked to cocaine addiction (Hyatt et al., 2012), a familial history of alcoholism (Yarosh et al., 2014) and changes in drinking behaviors among college students (Dager et al., 2014). Importantly, this self-reported compulsivity factor has been linked to left insular/inferior-frontal-gyral activation during successful response inhibition (DeVito et al., 2013), blunted ventral-striatal activation and activation of the ventral tegmental area during reward processing (Andrews et al., 2011; Patel et al., 2013) and dorsal caudate reward activation differing in current versus remitted cocaine users (Hyatt et al., 2012). These findings support the notions that compulsivity and sensitivities to reward and punishment are associated and that these in turn are linked to neurobiological constructs implicated in addictions. Such studies should also be undertaken in OCD to determine if similar or distinct findings are observed. Another approach warranting consideration involves the identification of latent classes. Such an approach was recently used to define classes of
obsessive-compulsive features that differed in quality and quantity and were linked to pathological gambling at diagnostic and genetic levels (Scherrer et al., 2015). The extent to which such latent classes relate to drug addictions warrants additional investigation.

Finally, compulsivity and its associated frontostriatal dysfunction appear to be common targets for neuromodulation in OCD, drug addiction, pathological gambling, binge-eating, and compulsive shopping (Protasio et al., 2015). For example, DBS of the ventral striatum is able to improve compulsivity in OCD via a reduction of frontostriatal overconnectivity (Figeë et al., 2014) with similar changes suggested for DBS in addiction (Valencia-Alfonso et al., 2012). Likewise, cortical neuromodulation (e.g., rTMS of the medial prefrontal cortex) may change compulsivity in OCD and addiction through similar frontostriatal connectivity changes (Dunlop et al., 2015; de Ridder et al., 2011; Kravitz et al., 2015). Therefore, future studies of compulsivity and its neural correlates have great potential to advance neuromodulation for psychiatry.

Taken together, these findings suggest that trans-diagnostic measures of compulsivity warrant additional study in substance and behavioral addictions, as well as in OCD and other conditions (skin-picking, trichotillomania, binge-eating/obesity, compulsive shopping, compulsive sexual behaviors, problematic Internet use), with the hope that such studies may identify appropriate targets for prevention and treatment initiatives.
Role of Funding Sources

This work was supported in part by the NIH (P20 DA027844), the Connecticut State Department of Mental Health and Addictions Services, and the Yale Gambling Center of Research Excellence grant from the National Center for Responsible Gaming. The NIH, the Connecticut State Department of Mental Health and Addictions Services, and the National Center for Responsible Gaming had no role in the content or writing of the manuscript or the decision to submit the paper for publication.

Disclosures

Dr. Potenza has received financial support or compensation for the following: has acted as consultant and/or advisor for Somaxon, Boehringer Ingelheim, Lundbeck, Ironwood, Shire, INSYS, and RiverMend Health; has received research support from the National Institutes of Health, Veterans Administration, Mohegan Sun Casino, the National Center for Responsible Gaming, Forest Laboratories, Ortho-McNeil, Oy-Contral Pharma/Biotie Therapies, GlaxoSmithKline, and Psyadon Pharmaceuticals; has participated in surveys, mailings or telephone consultations related to drug addiction, impulse control disorders, and other health topics; has consulted for law offices and the federal public defender’s office on issues related to impulse control disorders; provides clinical care in the Connecticut Department of Mental Health and Addiction Services Problem Gambling Services Program; has performed grant reviews for the National Institutes of Health and other agencies; has acted as guest editor for journal sections and journals; has given academic lectures in grand rounds, CME events, and other clinical and scientific venues; and has generated books or book chapters for publishers of mental health texts.
Reference List

Figee M, Booij J, Denys D. Molecular imaging of Obsessive compulsive disorder in: Shenton M E., Turetsky B I., editors. Understandig Neuropsychiatric
Disorders: Insights from Neuroimaging. S.l.: Cambridge University Press; 2010

Müller CP, Homberg JR. The role of serotonin in drug use and addiction. Behav Brain Res. 2015 Jan 15;277:146–92.

Petry NM. Addiction. 2006 Sep;101 Suppl 1:152-60. Should the scope of addictive behaviors be broadened to include pathological gambling?

Schultz W, Tremblay L, Hollerman JR. Reward processing in primate orbitofrontal

Sesia T, Bizup B, Grace AA. Evaluation of animal models of obsessive-compulsive
disorder: correlation with phasic dopamine neuron activity. Int J

Simpson HB, Shungu DC, Bender J Jr, Mao X, Xu X, Slifstein M, Kegeles LS.
(2012) Investigation of cortical glutamate-glutamine and γ-aminobutyric acid
in obsessive-compulsive disorder by proton magnetic resonance spectroscopy.
Neuropsychopharmacology, 37(12), 2684-92.

Sjoerds, Z., de Wit, S., van den Brink, W., Beekman, A. J., Penninx, B. W. J. H., &
Veltman, D. J. (2013). Behavioral and neuroimaging evidence for overreliance
on habit learning in alcohol-dependent patients. Translational Psychiatry,
3:e337.

Stalnaker TA, Takahashi Y, Roesch MR, Schoenbaum G. Neural Substrates of
Cognitive Inflexibility after Chronic Cocaine Exposure. Neuropharmacology.

responsivity to food predicts future increases in body mass: Moderating

Szechtman H., Sulis W., Eilam D (1998) Quinpirole induces compulsive checking
behavior in rats: a potential animal model of obsessive-compulsive disorder
(OCD) Behav Neurosci 112:1475–1485.

Van Huijstee AN, Mansvelder HD. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction. Front Cell Neurosci. 2015 Jan 20;8:466.

Walitza S, Marinova Z, Grünblatt E, Lazic SE, Reimschmidt H, Vloet TD, Wendland JR. Trio study and meta-analysis support the association of genetic variation at
the serotonin transporter with early-onset obsessive-compulsive disorder.

