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Abstract

The sample frequency spectrum (SFS), or histogram of allele counts, is an important summary statis-
tic in evolutionary biology, and is often used to infer the history of population size changes, migrations,
and other demographic events affecting a set of populations. The expected multipopulation SFS under
a given demographic model can be efficiently computed when the populations in the model are related
by a tree, scaling to hundreds of populations. Admixture, back-migration, and introgression are common
natural processes that violate the assumption of a tree-like population history, however, and until now
the expected SFS could be computed for only a handful of populations when the demographic history is
not a tree. In this article, we present a new method for efficiently computing the expected SFS and linear
functionals of it, for demographies described by general directed acyclic graphs. This method can scale
to more populations than previously possible for complex demographic histories including admixture.
We apply our method to an 8-population SFS to estimate the timing and strength of a proposed “basal
Eurasian” admixture event in human history. We implement and release our method in a new open-source
software package momi2.

1 Introduction

All natural populations undergo evolutionary processes of migration, size changes, and divergence, and the
history of these demographic events shape their present genetic diversity. Thus, inferring demographic his-
tory is of central concern in evolutionary and population genetics, both for its intrinsic interest (e.g., in dating
the out-of-Africa migration of modern humans (Schaffner et al., 2005; Gutenkunst et al., 2009)) and also for
biological applications (such as distinguishing the effects of natural selection from demography (Beaumont
and Nichols, 1996; Boyko et al., 2008)). However, genetic sequence data and the space of possible demo-
graphic models are both very high dimensional objects, leading to numerous statistical and computational
challenges when inferring demographic history from genetic data.

The joint sample frequency spectrum (SFS) is the multidimensional histogram of mutant allele counts
in a sample of DNA sequences, and is a popular summary statistic which lies at the core of hundreds of
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empirical studies in population genetics; e.g., see Wakeley and Hey (1997); Griffiths and Tavaré (1998);
Nielsen (2000); Gutenkunst et al. (2009); Coventry et al. (2010); Gazave et al. (2014); Gravel et al. (2011);
Nelson et al. (2012); Excoffier et al. (2013); Jenkins et al. (2014); Bhaskar et al. (2015); Jouganous et al.
(2017). Recently, progress has also been made on theoretical fronts to characterize statistical properties of
SFS-based inference. In particular, studies of identifiability (Myers et al., 2008; Bhaskar and Song, 2014)
and the rate of convergence (Terhorst and Song, 2015; Baharian and Gravel, 2018) have been carried out.

Demographic history can be inferred by fitting the observed value of the SFS to its expected value in
a composite likelihood framework. The expected SFS can be efficiently computed when the demographic
history is a tree, and in previous work we developed a method momi to compute the SFS of hundreds of
populations related by a tree (Kamm et al., 2017). However, natural populations are often related by a more
complex history that is not tree-like, as gene flow (the exchange of migrants between populations) adds extra
edges to the topology associated with the demographic history. In this case, computing the expected SFS
is much more computationally demanding, and existing methods for computing the exact expected SFS can
scale to only a handful of populations (Gutenkunst et al., 2009; Jouganous et al., 2017).

In this article, we extend our previous algorithm momi to handle discrete (or pulse) migration events
between populations, in which case demographies are described by general directed acyclic graphs (DAGs).
Our new method momi2 can compute the exact expected SFS with admixture for more populations than
previously possible, and uses novel insights from a stochastic process known as the Lookdown Construction
(Donnelly and Kurtz, 1996; Donnelly et al., 1999). In addition, momi2 utilizes automatic differentiation
(Corliss et al., 2002; Bhaskar et al., 2015) to compute gradients of the SFS, which we use to efficiently
search the parameter space during optimization. Finally, momi2 can efficiently compute linear functionals
of the SFS, which we exploit to compute the expected values of a number of standard population genetic
summary statistics under complex demography.

The rest of this paper as organized as follows. In Section 2 we provide some background and survey
related work. Section 3 describes our method, first with an illustrative example in Section 3.1, and then with
formulas and pseudocode in Section 3.2. Finally, in Section 4, we apply our method to an 8-population SFS,
including ancient and contemporary human populations, to estimate the timing and strength of a proposed
“basal Eurasian” admixture event in human history. The Appendix contains all proofs, an analysis of the
computational complexity of our method, and additional details of the application to ancient DNA.

2 Background

Suppose a sample of n = (n1,… , n) haploid genomes have been sampled from  “demes” or populations.
The positions in the genome where the samples are not all identical are called segregating sites. In most
organisms mutations are rare; most sites are not segregating. It is therefore reasonable to assume, as we do
from now on, that each position in the genome has experienced at most a single mutation in its history, and
that each individual can be labeled as having the “ancestral” or “derived” (mutant) allele at each segregating
site. In population genetics, this simplifying assumption is known as the infinite sites model.

The sample frequency spectrum (SFS) is a -dimensional array [fx] ∈ ℤ(n1+1)×⋯×(n+1) whose entry
fx counts the number of segregating sites with exactly x copies of the derived allele and n − x copies of
the ancestral allele, where x = (x1,… , x) ∈ ℕ

0 with 0 ≤ xd ≤ nd for each d = 1,… ,. Note we
only consider segregating sites with 2 alleles, so f0 = fn = 0 by definition. Compared to the full data set
(i.e., the complete genetic sequences of all n = n1 +⋯ + nd genomes), the SFS [fx] is a compressed, low-
dimensional summary which nevertheless preserves much of the signal about the various population size
changes, divergence times, and admixture events that occurred over the course of the populations’ history.



3

2.1 Demographic events

The expected multipopulation SFS can be obtained by integrating over random genealogies formed by a
backwards-in-time stochastic process known as the structured coalescent (Kingman, 1982; Takahata, 1988;
Notohara, 1990). Before getting to the technical details, we first review the basic dynamics of this process
in order to build intuition for how the data have power to infer population splits, size changes, and gene flow
events. See Durrett (2008) for a more detailed introduction.

Informally, the topology and branch lengths of genealogies are affected by a demographic history in two
ways:

1. Two lineages may not coalesce into a common ancestor until they reside in the same population, and
the time until this occurs is affected by migration patterns and population split times.

2. At any particular point in time, two members within the same population are more likely to have
a common parent if the population size is small; so, for example, residents of a small village will
typically be more closely related than residents of a large city.

Regarding the second point, we define the scaled effective population size �(t) such that the rate at which
any two lineages find a common ancestor at time t is 1∕�(t). Under the simplest random mating model (the
Wright Fisher model, cf. Durrett (2008)), the census population size exactly equals T �, where T is the
number of generations per unit time; more generally, � scales with the number of breeding individuals in the
population. Thus, estimating � allows us to infer size change events such as bottlenecks, exponential growth,
and population crashes.

If we could observe the true distribution of genealogies, then we could directly infer demographic history
from the waiting times between coalescence events, following the principles listed in items 1 and 2 above.
However, since genealogies are never directly observed, wemust make inferences about demographic history
indirectly using mutation data.

2.2 Likelihoods and the site frequency spectrum

Consider a genomewithL positions andmutation rate �
L
per position per generation. So at any given position

in the genome, mutations arise on the tree there as a Poisson point process with rate �
L
. The chance of 2 or

more mutations at a single position is O( 1
L2
), and taking the limit L → ∞ we arrive at the aforementioned

infinite sites approximation (Kimura, 1969; Durrett, 2008), which assumes that each segregating site was
caused by a single mutation, so that each allele may be labeled as ancestral or derived.

The observed segregating sites are not independent, because trees at neighboring positions are correlated.
Unfortunately, even in the simplest case of a single population with constant size, an analytic expression for
the likelihood of mutation data at a set of linked (non-independent) sites is not known (Bhaskar et al., 2015).
Therefore, SFS data are generally used with composite likelihood methods. Recall that fx is the total number
of segregating sites with derived allele count pattern x = (x1,… , x). Define �x =

1
�
E[fx], i.e., �x is the

expected frequency of x per unit mutation rate. Equivalently, �x is the expected branch length subtending x
leaves in a random coalescent tree (i.e., with x1 descendants in population 1, x2 in population 2, and so on).
A commonly used composite likelihood is the Poisson random field model (Sawyer and Hartl, 1992), which
assumes that the total number of segregating sites is Poisson with rate �∑x �x, and that the patterns at the
observed sites are independent with sampling probabilities proportional to �x; this yields a log-likelihood of

̂ ∝ ‖f‖1 log(�‖�‖1) − �‖�‖1 +
∑

x
fx log

�x
‖�‖1

, (1)

where ‖f‖1 ∶= ∑

x fx and ‖�‖1 ∶=
∑

x �x. Demographic history can then be inferred by searching for the
parameter values that maximize ̂.
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2.3 Existing work and our contribution

The composite log-likelihood ̂ in (1) requires us to compute �x, the expected branch length subtending x.
Let G be a random genealogical tree sampled under the demography, and Lx(G) be the total length of all
branches in G subtending x, so that

�x = E[Lx(G)] = ∫G
Lx(G) dℙ(G). (2)

The integral (2) is difficult since the support of G is at least as large as the number of labeled binary trees
with n leaves, a quantity which grows faster than exponentially in the sample size n. Consequently, a number
of different methods have been proposed for evaluating (or approximating) the integral (2). Sampling-based
methods include Markov chain Monte Carlo (Griffiths and Tavaré, 1997; Nielsen, 2000), importance sam-
pling (Stephens and Donnelly, 2000; De Iorio and Griffiths, 2004), simulation (Excoffier and Foll, 2011;
Excoffier et al., 2013), and ABC (Wegmann et al., 2010). The main advantage of these methods is their
flexibility: since, as mentioned above, computing the likelihood of the data is trivial conditional on G, these
methods can be used on a rich class of models. However, the high dimension of �x makes it impractical to
compute by sampling unless is small. In particular, since the support of x grows like O(n), Monte Carlo
methods will assign zero mass to configurations that are actually observed in the data.

A second approach, implemented in the software )a)i (Gutenkunst et al., 2009), computes �x by numer-
ically solving PDEs arising from the Wright-Fisher diffusion (Ewens, 2004), which is dual to the coalescent
process described above. For populations, this involves numerically solving a-dimensional integral. The
initial )a)i method in Gutenkunst et al. (2009) could handle up to  = 3 populations; subsequent improve-
ments (Lukić and Hey, 2012; Jouganous et al., 2017) extended this to = 4 and then = 5 populations by
using spectral representations or alternative basis functions for solving the PDEs.

The third approach for computing �x, which includes our method, integrates over the sample allele fre-
quencies “backwards-in-time”, exploiting conditional independence relationships to reduce computation.
This involves considering the alleles of the sample’s ancestors at different points in the demographic history,
and integrating out these random variables via inference algorithms for probabilistic graphical models (Pearl,
1982; Felsenstein, 1981; Lauritzen and Spiegelhalter, 1988; Koller and Friedman, 2009). Bryant et al. (2012)
and Chen (2012) computed the SFS for finite- and infinite-sites models using this backward-in-time approach
under the coalescent. De Maio et al. (2015) and Kamm et al. (2017) substantially lowered the computational
burden of this approach by replacing the coalescent with the continuous-time Moran model (Durrett, 2008), a
stochastic process which induces the same sampling distribution as the coalescent, but using a much smaller
state space. However, until now these Moran-based approaches have been limited to analyzing tree-shaped
demographies without admixture between populations.1

The main contribution of this paper is to extend our previous Moran-based method (Kamm et al., 2017)
to allow for demographies defined on general directed acyclic graphs (DAGs), thus allowing for admixture
between populations. We describe and implement an algorithm for computing the expected infinite-sites
SFS under the multipopulation Moran model with size changes, exponential growth, population splits, and
point admixture events (i.e., instantaneous migration “pulses”). This substantially enlarges the space of
demographies for which the expected SFS can be accurately computed.

Additionally, our algorithm computes not only individual SFS entries, but also linear functionals of the
expected SFS. Specifically, our method computes rank-1 tensor products of the SFS in the same time as a
single entry (general linear functionals are sums of these rank-1 products). A number of widely-used statistics
in population genetics can be expressed as SFS functionals, and to our knowledge our method is the first to
compute expectations of these statistics under complex demography.

1A reviewer noted that Jouganous et al. (2017) also employ a Moran-based model with discrete and continuous admixture,
however, as noted above, their method of solution is completely different from ours.
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Symbol Description Reference
 Sampled populations are {1,… ,} §2
n # of samples per population (n1,… , n) "
fx # of sites with x derived and n − x ancestral alleles "
� Mutation rate §2.2
�x Expected branch length with x descendants, 1

�
E[fx] "

 Population graph Figure 2a
v A vertex in , corresponding to a population §3.2
�v time between top and bottom events of v "
�v(t) scaled population size of v at t ∈ [0, �v] "
nv # of samples with ancestry in v "
X(t)
v # of derived alleles in v at time t "

X(t)S Vector of allele counts (X(t1)
v1 ,… , X(tk)

vk ) at S = {v1,… , vk} "
Xv,XS Shorthand for X(0)

v ,X(0)S respectively "
 Event tree Figure 2b
E A join, split or leaf event in  "
KE Populations we are keeping track of at E "
lE,tx,z Conditional likelihood ℙ(XLeaves(E) = z ∣ X(t)KE = x) Eq. (4)
�Ez E[branch length at/below KE with z descendants] Eq. (5)
lE,tx , �E Shorthand for lE,tx,z , �Ez respectively when z fixed "
ntot The total number of sampled lineages∑

d=1 nd Appendix A.1
v,t,(i) Label and allele of the ith lineage in v at t ∈ [0, �v] "
v,t (v,t,(1),v,t,(2),…) "
E,t (v1,t1 ,… ,vk,tk) where KE = {v1,… , vk} and t = (t1,… , tk) "
X(t)
v,m the # derived among the 1st m lineages in v, t. (Note: X(t)

v ≡ X(t)
v,nv) "

Table 1: Notation. Rows in the second part of the table are only used for proofs in the Appendix and may be
ignored in the main text.

We demonstrate our method by using it to infer the history of eight human subpopulations that have un-
dergone multiple admixture events. We complement our theoretical contributions with an open-source,
user-friendly software implementation that will enable practitioners to deploy our method. The software
uses automatic differentiation (Corliss et al., 2002; Bhaskar et al., 2015; Maclaurin et al., 2015) to compute
derivatives of the SFS, leading to efficient optimization and parameter inference. Our package, called momi2,
is available for download at https://github.com/popgenmethods/momi2.

3 Method

In this section, we describe the algorithm implemented in momi2 for computing the expected SFS under
complex demographies. We begin in Subsection 3.1 with an illustrative example that highlights the novel
aspects of our work. Then in Subsection 3.2 we provide pseudocode for our algorithm, and state the formulas
used by our algorithm as Propositions. The proofs of these Propositions, and the proof for the correctness
of our algorithm, requires substantial additional notation, and we defer this to Appendix A.2. For ease of
reference, the symbols we use are summarized in Table 1.

https://github.com/popgenmethods/momi2
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Figure 1: An example of a 3-population Moran model. The bottom of the graph corresponds to the present
and the top to the past. Population 2 receives admixture from population 3 after splitting from population 1.
Other features of the demography include archaic samples in population 1, and various size changes along
the edges of this demography. Lineages bearing the ancestral (derived) allele are shown in red (blue). The
derived allele arises as the blue star (⋆) in the population immediately ancestral to population 4. The red
circles (∙) and blue stars represent one potential configuration of the allelic states of the ancestors to the
sample; our method integrates over all potential configurations in order to calculate the likelihood. Arrows
pointing to the right (→) represent reproduction events in the forward-time Moran model. The black arrow
pointing to the left (←) at event 6 is a migration event from the population at node 7 to the population at
node 5 (again in the forward-time sense).
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(a) A demographic history with lookdown Moran model. µv
0 is the number of derived alleles (blue

stars) at the bottom of population v. The observed configuration is x = (µ1
0, µ

2
0, µ

3
0) = (1, 1, 0). The

coalescent is in solid lines.
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(b) The DAG G. Each vertex v corresponds to
a population, with a path from v to w i↵ w has
ancestry in v.

1

2
3

4,7

5,6

5,7

8

(c) The event tree T . Each internal v corresponds
to a join or split event, and is labeled by a subset
of contemporaneous populations.

Figure 2: Summary of important notation and data structures. (TODO: change the pulse so there
is positive time between the split and join) (TODO: make the non-ancestral alleles have
empty filling)

Algorithm 1 defines a dynamic program (DP) over `v,0
µ , ⇠v, using equations (1), (2), (3), (4), (5), (6)

to be defined shortly. For appropriate inputs the DP computes the SFS:

Theorem 1. For polymorphic x = (x1, . . . , xD) 6= 0,n and leaf population d 2 {1, . . . , D}, let exd
=

(0, . . . , 1, . . . , 0) 2 R(nd+1) have 1 at coordinate xd and 0 elsewhere. Then

⇠x = DP(ex1
, . . . , exD ).

We now present the formulas used by Algorithm 1, in a series of lemmas that also prove Theorem 1.
We start with a formula to compute ⇠v from `v,0

µ and the partial SFS at the child events CT (v).

Lemma 1. For v 2 V (T ) and w =
S

CT (v) = {w 2 V (G) | w 2 w0,w0 2 CT (v)},

⇠v = ⇠w +
X

v2v\w

nvX

k=1

fv
nv

(k)`v,0
kev

(1)

(b)
Figure 2: The populationDAG (a) and event tree  (b) corresponding to the demography shown in Figure 1.
(a) Each vertex in  corresponds to a collection of alleles in Figure 1. (b) The corresponding event tree  is
a junction tree of the DAG in ; each vertex of  corresponds to a set of vertices from .
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3.1 Example

Consider the model depicted in Figure 1. This model has 3 sampled (leaf) populations, related as follows.
Populations 1 and 2 are sisters, with Population 3 an outgroup to them; however a pulse of migrants from 3
to 2 occurs after the split between populations 1 and 2.

At the leaves, we observe (n1, n2, n3) = (2, 2, 1) samples, with (X1, X2, X3) = (1, 1, 0) copies of the
derived (blue star) allele. We wish to compute the expected number of mutations with pattern (X1, X2, X3);
to do this, we will integrate over the unobserved variables (X4, X5, X6, X7, X8)which represent allele counts
at certain internal positions within the demography. The random variables X1,… , X8 are related to each
other by the DAG  in Figure 2a, with an edge from population v to w if alleles may pass directly from v
into w.

In the realization of Figure 1, the hidden blue allele counts are (X4, X5, X6, X7, X8) = (3, 2, 0, 0, 0). The
blue mutation occurs in the edge aboveX4, spreading to 3 of the lineages. One copy of the blue allele moves
on to X1, while 2 copies move on to X5. However, due to the admixture, X2 only inherits 1 blue allele from
X5, inheriting a red allele from the 2 red alleles at X6.

Under the infinite-sites assumption described above, the mutation observed at this site arose at a single
point in the genealogical tree depicted in Figure 1. To compute the expected number of mutations with
(X1, X2, X3) = (1, 1, 0), we may condition on the population (i.e., the edge in Figure 1) on which it arose:

�1,1,0 =
1
�
E[# mutations with (X1, X2, X3) = (1, 1, 0)]

= 1
�

8
∑

v=1

nv
∑

i=1
E[# mutations in population v yielding Xv = i]

× ℙ(X1 = 1, X2 = 1, X3 = 0 ∣ mutation at v with Xv = i). (3)
We call 1

�
E[# mutations at v with Xv = i], the “truncated SFS”; this only concerns events within a single

population and can be computed using the method momi1. We refer the interested reader to Kamm et al.
(2017) for further details.

The second term ℙ(X1 = 1, X2 = 1, X3 = 0 ∣ mutation at v with Xv = i) gives the conditional likelihood
of observing the data given a mutation and its allele count at population v. In momi1, we computed this term
in the case where  is a tree without admixture using the sum-product (also known as belief propagation)
algorithm (Felsenstein, 1981; Koller and Friedman, 2009).

The main result of this work is to extend our previous dynamic program to the case where  is given by a
DAG due to admixture. We will use a dynamic program that is essentially a kind of junction tree algorithm
(Koller and Friedman, 2009). This algorithm works by decomposing a DAG graph into a tree in such a way
that vertices in the tree correspond to collections of nodes in the original graph. Belief propagation is then
applied to the tree decomposition.

We illustrate our algorithm using the example demography in Figure 2b. We call the tree decomposition 
an event tree, because each internal node corresponds to either an admixture or split event.2 We construct the
event tree  , and compute the conditional likelihoodsℙ(X1 = 1, X2 = 1, X3 = 0 ∣ mutation at v with Xv = i),
as follows:

1. We initially start with a collection of 3 singleton sets of leaf populations: {{1}, {2}, {3}}. For v =
1, 2, 3, we also keep track of conditional likelihoods of the data beneath v; since we are at the leaves,

2We omit certain graph preprocessing steps (moralization and triangulation) from the general junction tree algorithm which are
not necessary in our setting.
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these are simply the Kronecker delta functions

ℙ(Xv = i ∣ Xv = j) = �i,j =

{

1, if i = j,
0, if i ≠ j.

2. Going back in time, the first event is the admixture of populations 5 and 6 into 2. To process this event,
we remove the set {2} and replace it with {5, 6}; the current collection of sets becomes {{1}, {3}, {5, 6}}.
We make the new set {5, 6} the parent of the removed set {2} in  .

In addition, we compute [ℙ(X2 ∣ X5 = i, X6 = j)]i,j , the conditional likelihood of the data
beneath {5, 6} given the allele counts X5, X6. We obtain this by applying Lemmas 1 and 2 to the
previous conditional likelihood [ℙ(X2 ∣ X2 = i)]i. Specifically, we apply Lemma 1 to “lift” the
conditional likelihood at population 2 to the time point immediately below the admixture event; then,
we apply Lemma 2 to obtain ℙ(X2 ∣ X5, X6), the conditional likelihood at {5, 6} immediately above
the admixture event.

3. The next event has the alleles from 6 splitting off from population 3. To process this event, we merge
the clusters containing the relevant populations ({5, 6} and {3}); then we remove 3,6 and replace them
with their parent population 7, to obtain {5, 7} as the parent cluster of {5, 6} and {3} in  . After this
stage, our collection of sets becomes {{1}, {5, 7}}.

To obtain ℙ(X2, X3 ∣ X5, X7), the conditional likelihood of the data at the leaves beneath {5, 7},
we apply Lemma 3 to ℙ(X3 ∣ X3) and ℙ(X2 ∣ X5, X6). Lemma 3 computes the conditional likelihood
at a split event when the children fall into separate clusters beneath the split (in this case, the child
clusters are {3} and {5, 6}).

4. The next event is similar, with populations 1 and 5 merging into population 4. After combining the
clusters {1} and {5, 7}, removing the merged populations 1 and 5, and adding in their parent 4, we are
left with the collection {{4, 7}}.

Similar to previous steps, we compute ℙ(X1, X2, X3 ∣ X4, X7), the conditional likelihood of the
data at the leaves beneath {4, 7}, by applying Lemma 1 to “lift” the conditional likelihoodsℙ(X1 ∣ X1)
and ℙ(X2, X3 ∣ X5, X7) to the point immediately below the split event, and then apply Lemma 3 to
compute the conditional likelihood at a split event above two independent clusters ({1}, {5, 7}).

5. The final event has populations 4 and 7 merging into population 8. We replace the cluster {4, 7} with
its parent cluster {8} at the root of  .

To compute ℙ(X1, X2, X3 ∣ X8) from the child likelihoods ℙ(X1, X2, X3 ∣ X4, X7), we first apply
Lemma 1 to lift the likelihoods immediately below the split event, and then apply Lemma 4, which
computes the conditional likelihood at the parent of a split when the children belong to the same cluster
({4, 7} in this case).

Finally, at each cluster {v1, v2,…} in  with leaves {l1, l2,…}, we have computed ℙ(Xl1 , Xl2 ,… ∣
Xv1 , Xv2 ,…), the conditional likelihoods at the leaves beneath {v1, v2,…}. But to apply equation (3), we
need ℙ((X1, X2, X3) = (1, 1, 0) ∣ mutation at v with Xv = i). This is given by

ℙ((X1, X2, X3) = (1, 1, 0) ∣ mutation at v with Xv = i)

=

⎧

⎪

⎨

⎪

⎩

ℙ((X1, X2, X3) = (1, 1, 0) ∣ X4 = i, X7 = 0), if v = 4,
ℙ((X1, X2, X3) = (1, 1, 0) ∣ X8 = i), if v = 8,
0, else,
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since we assume that each site experiences at most a single mutation in its history, and the only way derived
alleles are observed in leaf populations 1,2 is if the corresponding mutation occurs in population 4 or 8.
Remark. The observant reader may have noticed that in Figure 1, population 8 has only n8 = 5 alleles,
despite its children having n4 + n7 = 7 > 5 alleles in total. This is due to the fact that there are only 5 alleles
at the leaves, so there are at most 5 ancestors in any population at any point; thus, when populations 4 and 7
merge into population 8, we can drop two of the tracked lineages. To show this formally, we use a stochastic
process called the lookdown construction, which is a version of the Moran model with a countably infinite
number of lineages. However, this analysis requires a great deal of additional notation and is not essential to
the remainder of the text, so we defer it to Appendix A.1.

3.2 Algorithms and formulas

We now describe the algorithm to construct the event tree  . We assume that the population graph  has
two types of topological events:

1. Population split: two child populations u, v split from each other; their parent population isw. Looking
backward in time, u, v merge and become the population w.

2. Population admixture: a single child population u, inherits from exactly two parent populations v,w,
with the probability that an allele comes from v (w, respectively) being p (1 − p, respectively).

Note that more complicated events, such as trifurcating splits or symmetric pulse migrations, may be ex-
pressed as a succession of these 2-way split and admixture events.

We provide pseudocode to construct the event tree  in Algorithm 1. In words, we initially start with 
equal to a collection of singleton sets corresponding to the leaves of . Processing each split or admixture
eventE back in time, we merge all blocks containing the child population(s) ofE. Then we remove the child
population(s) from this merged block, and add in the parent population(s). Within  , the new merged block
is the parent of the blocks removed at this stage.

We now describe Algorithm 2, the dynamic program to compute the joint SFS. We need a bit more nota-
tion. For population v, let nv be the number of samples with ancestry in v; we will be keeping track of nv
lineages within population v. Let �v denote the amount of time between the top and bottom events of v, and
let �v(t) denote the scaled population size of v at time t ∈ [0, �v] above the base of v. Let 0 ≤ X(t)

v ≤ nv be
the allele count within the nv lineages of v at time t above its bottom, so X(0)

v = Xv in our earlier notation.
At event E in  , let KE = {v1,… , v

|KE |} be the corresponding block of populations in . We define the
conditional likelihood at E as

lE,tx,z = ℙ(XLeaves(E) = z ∣ X(t)KE = x) (4)
where X(t)KE = (X

(t1)
v1 ,… , X

t
|KE |

v
|KE |

) is the vector of allele counts in populations KE at times t, and XLeaves(E) is
the observed data at the leaves beneath E.

In addition, we define the “partial SFS”
�Ez =

∑

v descended from KE

E[branch length in v with XLeaves(E) = z] (5)

as the expected branch length at or below KE subtending z leaves. (Here, the expectation is with respect to
branch lengths in the coalescent tree relating the samples.) Note that �Root( )z gives the desired final result,
and corresponds to equation (3) in the previous subsection.

For the remainder of the subsection, we will fix XLeaves() = z, and drop the dependence on z in lE,tx,z and
�Ez . Algorithm 2 defines a dynamic program (DP) over the conditional likelihoods lE,0x and partial SFS �E .
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Algorithm 1 Construct event tree 
1: procedure EVENTTREE()
2:  ← {{l} ∶ l ∈ Leaves()} ⊳ State variable containing current set of tracked populations
3: V ( )← {} ⊳ Vertices of 
4: ( )← {} ⊳ Edges of 
5: for events E in BackInTimeEvents() do
6: if E is split then
7: w1, w2 ← ChildPopulations(E)
8: v← ParentPopulation(E)
9: K1 ← block in  containing w1
10: K2 ← block in  containing w2
11: KE ← K1 ∪K2 ⧵ {w1, w2} ∪ {v}
12:  ←  ⧵ {K1, K2} ∪ {KE}
13: V ( )← V ( ) ∪ {KE}
14: if K1 ≠ K2 then
15: ( )← ( ) ∪ {KE → K1, KE → K2}
16: else
17: ( )← ( ) ∪ {KE → K1}
18: end if
19: else if E is admixture then
20: w← ChildPopulation(E)
21: v1, v2 ← ParentPopulations(E)
22: K ′ ← block in  containing w
23: KE ← K ′ ⧵ {w} ∪ {v1, v2}
24:  ←  ⧵ {K ′} ∪ {KE}
25: V ( )← V ( ) ∪ {KE}
26: ( )← ( ) ∪ {KE → K ′}
27: end if
28: end for
29: return V ( ), ( )
30: end procedure

The DP takes input vectors l1,… ,l corresponding to the leaf populations Leaves() = {1,… ,}. If the
inputs l1,… ,l are set to indicator vectors corresponding to the observed counts X1,… , X, the DP of
Algorithm 2 will return the corresponding SFS entry, as stated in the theorem below:
Theorem 1. If (X1,… , X) ≠ 0,n, then

� = DP(eX1 ,… , eX
),

where eXi
= (0,… , 1,… , 0) ∈ ℝni+1 denotes the vector with 1 at coordinate Xi and 0 elsewhere.

We now present the formulas used by Algorithm 2, in a series of lemmas also used to prove Theorem 1. We
start with a formula to “lift” ℙ(… ∣ … , X(0)

v ,…) up to ℙ(… ∣ … , X(�v)
v ,…). That is, this formula transforms

a likelihood conditioned on X(0)
v , the allele count at the bottom of v, into a likelihood conditioned on X(�v)

v ,
the allele count at the top of v.
Lemma 1 (Lifting). Let E be a split or admixture event with corresponding block KE , v ∈ KE be a popu-
lation within this block, and x, t be vectors of allele counts and times for the populations in KE . Then, for
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Algorithm 2 Dynamic program to compute the SFS �
1: procedure DP(l1,… ,l) ⊳ li = eXi

∈ ℝni+1

2: for event E in DepthFirstSearch( ) do
3: if KE = {d} is leaf then
4: lE,0 ← ld

5: else if E is split event then
6: lE,0 ← Lemmas 1 and 2
7: else if E is join event then
8: if |ChildEvents(E)| = 1 then
9: lE,0 ← Lemmas 1 and 4
10: else if |ChildEvents(E)| = 2 then
11: lE,0 ← Lemmas 1 and 3
12: end if
13: end if ⊳ Computed the conditional likelihood lE,0
14: �E ← (10) ⊳ Computes �E the partial SFS
15: end for
16: return �Root( ) ⊳ Return partial SFS at the root event
17: end procedure

x(k) = x − kev, the conditional likelihood of E is

lE,tx =
nv
∑

j=0

[

eQ
(nv) ∫ �v0

1
�v(t)

dt
]

kj
lE,t−�vevx(j)+jev

, (6)

where Q(n) ∈ ℝ(n+1)×(n+1) is the transition rate matrix of the Moran model with n lineages; in particular,
Q(n) = (q(n)ij )0≤i,j≤n and

q(n)ij =

⎧

⎪

⎨

⎪

⎩

−i(n − i), if i = j,
1
2 i(n − i), if |j − i| = 1,
0, else.

To process event E, we first use Lemma 1 to lift up the conditional likelihoods at the child populations, up
to the time ofE. We then apply one of Lemma 2, Lemma 3, or Lemma 4, to obtain the conditional likelihood
at E from the lifted child likelihoods, depending on whether E is an admixture or split event, and whether
the child populations of E fall into a single cluster or two independent clusters.

We first consider admixture events; Lemma 2 describes how to compute the conditional likelihood in
this case. Let the child population be w and the parent populations be v1, v2. Each of the nw lineages in
w independently inherits from v1 with probability q1, or from v2 with probability q2 = 1 − q1. So the
number of lineages inheriting from v1 is Binomial(nw, q1). Then, given that m1 alleles are inherited from v1
and m2 = nw − m1 inherited from v2, the particular alleles inherited from v1 or v2 are chosen by sampling
without replacement.
Lemma 2 (Admixture event). Let E be an admixture event, with child populationw and parent populations
v1, v2. Let E′ be the child event in  . Suppose each lineage in w comes from v1 with probability q1, and
from v2 with probability q2 = 1 − q1. For KE the population cluster at E, let x∩ be a vector of allele counts
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on KE ⧵ {v1, v2}. Then the conditional likelihood of allele counts x∩ + x1ev1 + x2ev2 at E is given by

lE,0x∩+x1ev1+x2ev2
=

nw
∑

xw=0
lE

′,�wew
x∩+xwew

∑

m1,m2∶
m1+m2=nw

(

nw
m1

)

qm11 q
m2
2

∑

j1,j2∶
j1+j2=xw

(x1
j1

)(nv1−x1
m1−j1

)

(nv1
m1

)

(x2
j2

)(nv2−x2
m2−j2

)

(nv2
m2

) . (7)

We next consider a split eventE, with parent population v and child populationsw1, w2. We first consider
the case where E has 2 distinct children in  , i.e., w1, w2 fall into 2 distinct blocks beneath E. Denote
the corresponding child events as E′1, E′2 respectively. Then the conditional likelihood at E is given by a
convolution of the conditional likelihoods at E′1, E′2, as described in Lemma 3:
Lemma 3 (Population split, 2 clusters). LetE be a split event with parent population v and child populations
w1, w2. Suppose E has 2 child events E′1, E

′
2, with corresponding blocks KE′1 , KE′2 , where w1 ∈ KE′1 , w2 ∈

KE′2 . Let x−1 be allele counts on KE′1 ⧵ {w1} and x−2 be allele counts on KE′2 ⧵ {w2}. Then the conditional
likelihood at E is

lE,0x−1+x−2+xvev =
∑

x1,x2∶
x1+x2=xv

(nw1
x1

)(nw2
x2

)

(nv
xv

) l
E′1,�w1ew1
x1ew1+x−1

l
E′2,�w2ew2
x2ew2+x−2

. (8)

Next, consider the case where the child populations w1, w2 fall into the same cluster beneath E, so that
E has just one child event, say E′. The next lemma describes how to obtain the conditional likelihood at E
from the conditional likelihood at E′. This involves summing over the dimensions corresponding to w1, w2
within the conditional likelihood lE′,�w1ew1+�w2ew2 . In addition, note that we may have nv < nw1 +nw2 (recall
nv is the number of samples with ancestry in v). That is, after mergingw1, w2 backwards in time, we may be
keeping track of more alleles than originally sampled, allowing us to “drop” some extraneous non-ancestral
lineages, as illustrated in the root population of Figure 1. Formally, let yx∩ be the vector whose i-th entry is
the likelihood at E conditional on there being a total of i derived alleles in the child populations w1 and w2,
and also conditional on the vector of allele counts x∩ in the other populations. If B ∈ ℝ(nw1+nw2+1)×(nv+1)

is a matrix whose (i, j)th entry is the probability of sampling without replacement j alleles in the parent
population v out of the total of i alleles segregating in child populations w1 and w2, then the conditional
likelihood lE at E satisfies the equation

yx∩ = BlE ,
leading to the following lemma.
Lemma 4 (Population split, 1 cluster). Let E be a population split with exactly one event E′. Denote the
corresponding population clusters asKE andKE′ . Denote the parent population as v, the child populations
as w1, w2. Let x∩, yx∩ and B be defined as in the preceding paragraph:

yx∩i =
∑

j,k∶
j+k=i

(nw1
j

)(nw2
k

)

(nw1+nw2
i

)
l
E′,�w1ew1+�w2ew2
jew1+kew2+x∩

= ℙ(XLeaves(E) ∣ X
(�w1 )
w1 +X

(�w2 )
w2 = i,X∩ = x∩)

Bi,j =

(nv
j

)(nw1+nw2−nv
i−j

)

(nw1+nw2
i

)
.

Then the conditional likelihood at E is given by

lE,0kev+x∩
= [B+yx∩]k, (9)

with B+ denoting the Moore-Penrose pseudoinverse of B.
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Finally, having computed the conditional likelihoods at event E, we wish to compute the partial SFS �E
at the event. This is given by the recursive formula in Lemma 5, which involves the conditional likelihood
at E, the expected number of mutations arising within each parent population v, and the partial SFS at the
child events.
Lemma 5. For an event E, define the partial ordering E′ ≺ E if E′ occurs beneath E in the event tree, and
let Knew

E = KE ⧵
(

∪E′≺EKE′
)

be the populations newly formed at E (i.e., formed by a population split or
admixture at E). For v ∈ Knew

E , let fv(k) be the truncated SFS in population v,

fv(k) =
1
�
E[#mutations at v with Xv = k],

which can be computed by the formulas in Kamm et al. (2017). Then the partial SFS at E is given by

�E =
∑

v∈Knew
E

nv
∑

k=1
fv(k)l

E,0
kev

+

⎧

⎪

⎨

⎪

⎩

0, if E is leaf event,
�E′ , if ChildEvents(E) = {E′},
�E

′
1
∏

d∈Leaves(E′2)
ld0 + �

E′2
∏

d∈Leaves(E′1)
ld0 , if ChildEvents(E) = {E′1, E

′
2}.

(10)

3.3 Normalizing constant and other linear functionals

To compute the probability �z
‖�‖1

of a mutation having observed allele counts z, we need not just �z, but also
the normalizing constant ‖�‖1 = ∑

z �z the expected total branch length.
Computing ‖�‖1 directly is inefficient because of the O(∏

d=1 nd) possible entries z. Instead, we can useAlgorithm 2 to compute ‖�‖1, and many more statistics of the SFS, in the same time as a single entry:
Theorem 2. For �d ∈ ℝnd+1, d ∈ {1,… ,}, the tensor dot product of the SFS � against �1 ⊗⋯⊗ � =
[�1z1 ⋯�z]z1,…,z is

� ⊙ (�1 ⊗⋯⊗ �) =
∑

z1,…,z

�z1,…,z�
1
z1
⋯�z

= DP(�1,… , �) −

( 
∏

d=1
�d0

)

DP(e0,… , e0) −
( 
∏

d=1
�dnd

)

DP(en1 ,… , en).

Theorem 2 says that for any rank-K tensor A ∈ ℝ(n1+1)×⋯×(n+1) with A = ∑K
k=1 a

(k)
1 ⊗⋯⊗ a(k) ,

� ⊙ A =
∑

z
�zAz =

K
∑

k=1
� ⊙ (a(k)1 ⊗⋯⊗ a(k) )

can be computed inK calls to DP(�1,… , �).3 In particular, the expected total branch length ‖�‖1 is given
by

‖�‖1 =
∑

z
�z = � ⊙ (1⊗⋯⊗ 1)

= DP(1,… , 1) − DP(e0,… , e0) − DP(en1 ,… , en)

3The calls to DP(e0,… , e0) and DP(en1 ,… , en ) only need to be computed once for all statistics.
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with 1 the vector with 1 at every coordinate.
Beyond the applications we explore here, we expect this result to be useful in related settings. A number of

population genetic statistics can be expressed as f ⊙A, including Watterson’s estimator �̂W of the mutation
rate (Watterson, 1975), Fay and Wu’sH statistic for positive selection (Fay and Wu, 2000), and Patterson’s
f2, f3, f4 statistics for assessing topology (Patterson et al., 2012). Theorem 2 allows us to compute their
expected values E[f ⊙A] = ��⊙A, and to construct test statistics from the deviance f ⊙A− ��⊙A under
an appropriate null model.

An even wider class of population genetic statistics can be written as nonlinear functions of SFS-tensor
products like g( 1

�
f⊙A1,

1
�
f⊙A2,…); this class includes Tajima’sD statistic for selection (Tajima, 1989), the

FST statistic for population structure (Holsinger andWeir, 2009), and Patterson’sD statistic for introgression
(Patterson et al., 2012). These statistics may be viewed as plug-in estimators for g(�⊙A1, �⊙A2,…), which
we can compute with Theorem 2. Note that these estimators are biased due to the nonlinear function g, but
the bias can be estimated via block jackknife, and will typically be small since 1

�
f ⊙ A → � ⊙ A almost

surely as the number of independent SNPs grows.
Another interesting linear statistic of the SFS that can be computed with Theorem 2 is E[TMRCA], the

expected time of the most recent common ancestor. In particular, let d be any leaf population; for simplicity
assume d is sampled at the present (i.e. d is not archaic). Then

E[TMRCA] =
∑

z1,…,z

�z1,…,z
zd
nd

= � ⊙

(

1⊗⋯⊗
(

zd
nd

)

zd∈{0,…,nd}
⊗⋯⊗ 1

)

.

To see this, note that TMRCA is proportional to the expected number of mutations hitting an arbitrary lineage
in d, and if a mutation has configuration z = (z1,… , z) derived copies, then the chance of hitting the
lineage is zd

nd
(Zeng et al., 2006).

4 Application

We tested our method on a demographic inference problem in human genetics that is currently of inter-
est. Lazaridis et al. (2014) showed that genetic variation in present-day Europeans suggests an admixture
model involving three ancestral meta-populations: Ancient North Eurasian (ANE), Western Hunter Gath-
erers (WHG), and Early European Farmers (EEF). They also showed that EEF contains ancestry from a
source that is an outgroup to all non-African populations, and yet shares much of the genetic drift common
to non-African populations; they dubbed this ancestry component as “Basal Eurasian” ancestry. Later work
(Lazaridis et al., 2016) showed that Basal Eurasian ancestry is shared by ancient and contemporary Middle
Eastern populations, and is correlated with a decrease in Neanderthal ancestry, implying that Basal Eurasian
ancestry contains lower levels of Neanderthal admixture when compared with non-Basal ancestry. The re-
sults from Lazaridis et al. (2014, 2016) were based on several related methods for modeling covariances in
population allele frequencies, most notably qpGraph and qpAdm (Patterson et al., 2012; Haak et al., 2015).
These methods are computationally efficient, and are robust to ascertainment bias and misspecification of
the population size history; however, they are unable to infer the timing of demographic events.

We applied momi2 to estimate the strength and timing of basal Eurasian admixture into early European
farmers, and the split time of the basal Eurasian lineage. To do this, we built a demographic model relat-
ing 12 samples from 8 populations, shown in Figure 3. These samples consisted of the Altai Neanderthal
(Prüfer et al., 2014); the 45,000 year old Ust’Ishim man from Siberia (Fu et al., 2014); 3 present-day pop-
ulations (Mbuti, Sardinian, Han) with 3, 2, and 2 samples respectively; and 3 ancient samples representing
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Figure 3: Inferred model and bootstraps for the 11 population demography described in Section 4. The
y-axis is linear below 5 × 104, then follows a logarithmic scale above 5 × 104. In the foreground (blue
branches) is our point estimate from maximum composite likelihood; in the background (gray branches,
with transluscent pulse arrows) are 300 nonparametric bootstraps. Population sampling times are indicated
by open circles; note demographic events may still involve populations below their sampling times, as in the
case of Loschbour. The nonparametric bootstrap estimates were created by splitting the data into 100 equally
sized contiguous blocks, resampling these blocks with replacement, and refitting the model.

the European ancestry components identified by Lazaridis et al. (2014): a 7,500 year old sample from the
Linearbandkeramik (LBK) culture (representing EEF), an 8,000 year old sample from the Loschbour rock
shelter in Luxembourg (representing WHG), and the 24,000 year old Mal’ta boy (“MA1”) from Siberia (rep-
resenting ANE). After data cleaning, our dataset consisted of 2.4 × 106 autosomal transversion SNPs. See
Appendix A.4 for more details about the data.

To construct the topology of the model in Figure 3, we first obtained a tree by neighbor joining (Saitou and
Nei, 1987), then added 3 extra admixture events reflecting prior knowledge, as well as a recent Neanderthal
population decline starting at the Mbuti-Eurasian split. We inferred split times, population sizes (including
the Neanderthal decline), and admixture times and proportions by maximizing a composite likelihood ,
given by the product of the likelihoods at every SNP:

 =
∏

s∈SNPs
ℙ(zs) (11)
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Parameter Estimate Bias SD 2.5% 97.5%
NLosch 1.92e+03 14.1 185 1.57e+03 2.27e+03
NMbu 1.73e+04 −255 1.86e+03 1.6e+04 1.92e+04
N(Mbu,Losch) 2.91e+04 −270 2.34e+03 2.7e+04 3.21e+04
t(Mbu,Losch) 9.58e+04 −1.48e+03 9.32e+03 9.19e+04 1.03e+05
NHan 6.3e+03 −17.1 400 5.71e+03 6.91e+03
N(Han,Losch) 2.34e+03 −70.2 372 2.13e+03 2.7e+03
t(Han,Losch) 5.04e+04 −171 2.75e+03 4.71e+04 5.43e+04
t(Ust,Losch) 5.15e+04 −79.4 2.47e+03 4.85e+04 5.47e+04
N(Nean,Losch) 1.82e+04 −216 1.59e+03 1.7e+04 1.99e+04
t(Nean,Losch) 6.96e+05 −7.6e+03 5.74e+04 6.49e+05 7.58e+05
tNean→Eurasian 5.68e+04 −279 3.04e+03 5.38e+04 6.01e+04
pNean→Eurasian 0.0296 −2.82e−05 0.00252 0.0251 0.0349
NNean 86.9 −3.33 19.8 76.7 105
t(MA1,Losch) 4.49e+04 98.2 2.36e+03 4.11e+04 4.87e+04
NLBK 75.7 −685 629 4.12 1.9e+03
t(LBK,Losch) 3.77e+04 543 2.59e+03 3.22e+04 4.23e+04
pBasal→EEF 0.0936 −0.0122 0.0366 0.0485 0.174
tBasal→EEF 3.37e+04 7.46e+03 1.01e+04 1.08e+04 4.11e+04
t(Basal,Losch) 7.98e+04 −706 1.37e+04 6.74e+04 1.01e+05
NSard 1.5e+04 −1.28e+04 6.53e+04 8.58e+03 8.9e+04
t(Sard,LBK) 7.69e+03 −1.69e+03 1.64e+03 7.51e+03 1.24e+04
N(Sard,LBK) 1.2e+04 1.32e+03 1.99e+03 7.33e+03 1.45e+04
tGhostWHG→Sard 1.23e+03 −2.93e+03 3.1e+03 597 1.06e+04
pGhostWHG→Sard 0.0317 −0.00223 0.0151 0.00631 0.0618
t(GhostWHG,Losch) 1.56e+03 −1.32e+04 1.07e+04 964 3.49e+04

Table 2: Estimated parameters of the demography in Figure 3, along with nonparametric bootstrap estimates
of the bias and standard deviation, and 95% bootstrap quantiles. We use (A,B) to denote the ancestor of A
and B; tv andNv to denote the height and size at vertex v; and tA→B and pA→B to denote respectively the time
and strength of an admixture arrow from A to B.

where ℙ(zs) ∝ �zs and was computed by momi2. The low coverage of the MA1 sample and the deep diver-
gence of theNeanderthal samplemay cause bias in SFS entries where only these samples contain derived alle-
les; we thus excluded these entries and corrected the normalizing constant appropriately (see Appendix A.4).

We used automatic differentiation to compute the gradient ∇ log, which we used to search for the op-
timum of log. We constructed nonparametric bootstrap confidence intervals by splitting the genome into
100 equally sized blocks, resampling these blocks to create 300 bootstrap datasets, and re-inferring the de-
mography for each bootstrap dataset. We also used 300 parametric bootstraps to assess how well we could
infer the demography under simulated data; for each parametric bootstrap dataset, we used msprime (Kelle-
her et al., 2016) to simulate ten 300 Mb chromosomes from our initial point estimate, and re-inferred the
demography. The nonparametric bootstrap was used for all confidence intervals reported below.

Our inferred demography, along with nonparametric bootstrap re-estimates, are shown in Figure 3 and
Table 2. Our parametric bootstrap estimates are shown in Figure 4. We inferred a pulse of 0.094 (95% CI of
0.049-0.174) from the ghost Basal Eurasian population to EEF ancestry (LBK), substantially less than the
0.44 inferred by (Lazaridis et al., 2014). This admixture was inferred to occur 33.7 kya (95% CI of 10.8-
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Figure 4: Parametric bootstraps for the demography inferred in Figure 3. The inferred demography (blue
tree) was used to simulate 300 bootstrap replicates. Re-running our method on each replicate produced a
new inferred demography which is plotted in gray.

41.1 kya), shortly after the Loschbour-LBK split at 37.7 kya (95% CI of 32.2-42.3 kya). The split time of
the ghost Basal Eurasian lineage from other Eurasians was inferred at 79.8 kya (95% CI of 67.4-101 kya).
Other parameters were broadly in line with previous estimates, such as a Mbuti-Eurasian split of 96 kya, a
Han-European split of 50 kya, a Neanderthal split of 696 kya, and Eurasians deriving 0.03 of their ancestry
from Neanderthal (Terhorst et al., 2017; Green et al., 2010; Meyer et al., 2016).

Inferring the optimal demography from start to finish took 2.5 hours on a laptop with 4 CPU cores, and
used 2 GB RAM. The 300 bootstraps were run separately on a high-performance computing cluster. To our
knowledge, no other method can infer this demographic model using the full SFS. The moments software
package (Jouganous et al., 2017) is capable of computing the SFS for up to 5 populations, less than the 8 pop-
ulations here, though it can scale to more individuals per population than momi2. While the fastsimcoal2
software package (Excoffier et al., 2013) is capable of handling demographies of this size and larger, it doesn’t
compute the full, exact SFS, and also does not include an option for the ascertainment scheme we use here
(excluding mutations private to Neanderthal and MA1).

We also used ourmodel to produce estimates of the humanmutation rate, whichwe estimated as 1.22×10−8
per base per generation, with a bootstrap-quantile 95% CI of (1.12, 1.32) × 10−8, closely matching previous
estimates of the human mutation rate (Scally, 2016). To obtain this estimate, we compared the observed
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(a) (b)
Figure 5: Standard and lookdown Moran models. (a) illustrates the standard Moran model, with copying
in both directions; (b) illustrates the lookdown Moran model, with copying always from left to right. The
sample genealogy (i.e., the lineages ancestral to present day samples) is in solid. The law of the genealogy is
the coalescent under both models, and so the present-day samples of the two models are equal in distribution.

nucleotide diversity with that expected under the inferred demography, adjusting by the empirical transition
to transversion ratio (Appendix A.4). Estimating the mutation rate was possible here because we did not use
a prespecified mutation rate to estimate the model in Figure 3, instead using the known ages of the Ust’Ishim,
LBK, Loschbour, and MA1 samples to calibrate dates.

A Appendix

A.1 Model and notation

In this section, we formally define the stochastic process underlying ourmodel, and introduce some additional
notation needed for the proofs in Section A.2.

Themain stochastic process we use is the lookdown construction of theMoranmodel (Donnelly and Kurtz,
1996; Donnelly et al., 1999), a variant of the Moran model where copying only occurs in one “direction”
(as in Figure 5). We will make use of certain conditional independence properties that result from this one-
way copying. However, we note that there is a simple coupling between the lookdown and standard Moran
models, and these two models generate data with the same distribution.

We now describe our lookdown model in more detail. Within each of the leaf populations we consider a
countably infinite number of lineages, each with a unique label in ℤ+. We arbitrarily assign the (n1,… , n)
sampled lineages to the lowest labels {1, 2,… , ntot}, where ntot ≡ ∑

d=1 nd , and arbitrarily assign the re-
maining unsampled lineages to labels {ntot + 1, ntot + 2,…}. Each lineage extends infinitely backwards in
time, and at each admixture event, each lineage randomly chooses the parent population it extends into. In
addition, each lineage has an allele, which changes through time due to mutation and copying events.

Similar to the usual Moran model, copying between a pair of lineages in population v occurs at rate 1
�v(t)

,
where �v(t) is the scaled population size of v. However, copying only occurs in one direction, from lineages
with lower labels to lineages with higher labels (Figure 5). So if two lineages are labeled i and j respectively,
with i < j, then the copying event i → j occurs at rate 1

�v(t)
, whereas the reverse copying event i ← j never
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happens (has rate 0). By contrast, in the standard (non-lookdown) Moran model, both i → j and i ← j
copying events happen at rate 1

2�v(t)
. However, under both models, two lineages going backwards in time

coalesce at rate 1
�v(t)

, as in the coalescent. Thus, the sample genealogies under both models follow the same
multipopulation coalescent distribution.

Denote the labeled lineages in population v, and their alleles at height t, by
v,t = (v,t,(1),v,t,(2),…)

where v,t,(i) = (labelv,(i), allelev,t,(i)) ∈ ℤ+ × {0, 1} is a pair, consisting of the ith lowest label at v,
along with its corresponding allele at height t ∈ [0, �v). Note that we have ordered the lineages by their
labels, so that labelv,(i) < labelv,(i+1). Also note that we measure the time t from the bottom of v, so that
allelev,0,(i) denotes the ith allele at the bottom of v, and allelev,�v,(i) the ith allele at the top of v.

Let X(t)
v,m =

∑m
i=1 I{v,t,(i) derived} denote the number of derived alleles among the lowest m lineages at v, t.

Let nv = ∑

d⪰v nd be the number of samples in leaves below v. During computation, we will only need to
keep track of the lowest nv lineages in v, so we denoteX(t)

v ≡ X(t)
v,nv to be the number of derived alleles among

the first nv lineages at v, t.
Finally, for an event E with KE = (v1,… , vk) the corresponding block of populations in Algorithm 1,

let t = (t1,… , tk) be a corresponding set of times within each population v1,… , vk. We define E,t =
(v1,t1 ,… ,vk,tk) as the labeled alleles at each of (v1, t1),… , (vk, tk).

A.2 Proofs

For the reader’s convenience, theorem statements are reproduced from the main text before each proof. The
following two lemmas will be useful for several of the proofs below:
Lemma 6. The distribution of E,t is invariant to finite permutations of the labels within any population
v ∈ KE . Furthermore, the labels are independent of the alleles.

Proof. By construction, none of the lineages within the populations in KE are ancestral to each other. Thus
the sample genealogy of any finite subsample of the lineages is the multipopulation coalescent, because going
backwards in time, coalescence (copying) between each pair of lineages occurs at rate 1

�w(s)
at vertex w time

s. The invariance to permutation, and independence of alleles and labels, follows from the coalescent.
Lemma 7. For event E and population u ∈ KE , let  ⊂ {nu + 1, nu + 2,…} be a (possibly random)
collection of integers greater than nu, and let X

(tu)
u, be the number of derived lineages in {u,tu,(i)}i∈ . Then

XLeaves(E) is conditionally independent of X
(tj )
u, the allele counts on , given X(t)KE the allele counts on the

first nv1 ,… , nvk lineages of KE = {v1,… , vk}.

Proof. Integrate over E,t,nv ≡ {v,tv,(i)}v∈KE ,1≤i≤nv the first (nv1 ,… , nvk) labeled alleles within KE , and
u,tu, = {u,tu,(i)}i∈ the labeled alleles at :

ℙ(XLeaves(E) ∣ X
(t)
KE
, Xtu

u,) = E[ℙ(XLeaves(E) ∣E,t,nv ,u,tu,) ∣ X
(t)
KE
, X(tu)

u, ]

= E[ℙ(XLeaves(E) ∣E,t,nv) ∣ X
(t)
KE
, X(tu)

u, ]

= E[ℙ(XLeaves(E) ∣E,t,nv) ∣ X
(t)
KE
]

= ℙ(XLeaves(E) ∣ X
(t)
KE
)
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with the second equality because higher lineages cannot copy to lower lineages (so XLeaves(E) ⟂ u,tu, ∣
E,t,nv), and the third equality because of the exchangeability and independence from Lemma 6 (so given
X(t)KE , the alleles of E,t,nv are ordered by a uniform permutation independent of X(tu)

u, , and the labels of
E,t,nv are independent of X(t)KE , X

(tu)
u, ).

A.2.1 Proof of Theorem 1

Theorem 1. If (X1,… , X) ≠ 0,n, then

� = DP(eX1 ,… , eX
),

where eXi
= (0,… , 1,… , 0) ∈ ℝni+1 denotes the vector with 1 at coordinate Xi and 0 elsewhere.

Proof. Lemmas 2–4 give formulas for the partial likelihoodlE,0x using terms likelE′,t′x′ , whereE′ ∈ Children(E)
and E is an admixture, 2-cluster split, or 1-cluster split, respectively. The terms lE′,t′x′ in turn can be com-
puted from the partial likelihoods lE′,0x′ using Lemma 1; then Lemma 5 provides a formula for �E in terms
of lE,0 and the partial SFS �E′ .

Algorithm 2 traverses the event tree  in a depth-first search, applying Lemmas 5,1,2,4,3 to compute
lE,0x , �E at each event E from their values at the children of E. The input to Algorithm 2 are the likelihoods
l{d},0 at the leaves, and the output is the partial SFS �Root( ) at the root.

Thus, since
l{d},0 = [ℙ(Xd ∣ Xd = i)]0≤i≤nd = eXd

,

it follows that DP(eX1 ,… , eX
) = �Root( ) = �.

A.2.2 Proof of Lemma 5

Lemma 5. For an event E, define the partial ordering E′ ≺ E if E′ occurs beneath E in the event tree, and
let Knew

E = KE ⧵
(

∪E′≺EKE′
)

be the populations newly formed at E (i.e., formed by a population split or
admixture at E). For v ∈ Knew

E , let fv(k) be the truncated SFS in population v,

fv(k) =
1
�
E[#mutations at v with Xv = k],

which can be computed by the formulas in Kamm et al. (2017). Then the partial SFS at E is given by

�E =
∑

v∈Knew
E

nv
∑

k=1
fv(k)l

E,0
kev

+

⎧

⎪

⎨

⎪

⎩

0, if E is leaf event,
�E′ , if ChildEvents(E) = {E′},
�E

′
1
∏

d∈Leaves(E′2)
ld0 + �

E′2
∏

d∈Leaves(E′1)
ld0 , if ChildEvents(E) = {E′1, E

′
2}.

(10)

Proof. Without loss of generality assume � = 1. Then �E is the expected number of mutations at or below
KE with observed counts XLeaves(E). We split �E into two parts: the mutations within Knew

E = KE ⧵
(

∪E′′′≺EKE′
) (i.e. the populations formed by a split or join atE); and the mutations that occur in ∪E′≺EKE′ ,

the populations that arise strictly below E.
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The first part, of mutations at the new populations of E, is given by
∑

v∈Knew
E

nv
∑

k=1
fv(k)l

E,0
kev
,

since fv(k) is the expected number ofmutations arising at vwithXv = k, andlE,0kev
= ℙ(XLeaves(E) ∣ Xv = k).

For the second part, of mutations strictly below E, we split into three cases: either E is a leaf event, or E
has a single child event, orE has two child events. In the first case, ifE is a leaf event, then no mutations can
occur below E. In the second case, if E has a single child event E′, then the expected number of mutations
strictly below E is simply �E′ by definition.

Finally, if E has two child events E′1, E′2, then E′1 and E′2 share no leaves, so a mutation underneath E′1will have no derived alleles in Leaves(E′2) and vice versa. Thus, the number of mutations strictly below E
is

�E
′
1

∏

d∈Leaves(E′2)
ld0 + �

E′2
∏

d∈Leaves(E′1)
ld0 .

A.2.3 Proof of Lemma 1

Lemma 1 (Lifting). Let E be a split or admixture event with corresponding block KE , v ∈ KE be a popu-
lation within this block, and x, t be vectors of allele counts and times for the populations in KE . Then, for
x(k) = x − kev, the conditional likelihood of E is

lE,tx =
nv
∑

j=0

[

eQ
(nv) ∫ �v0

1
�v(t)

dt
]

kj
lE,t−�vevx(j)+jev

, (6)

where Q(n) ∈ ℝ(n+1)×(n+1) is the transition rate matrix of the Moran model with n lineages; in particular,
Q(n) = (q(n)ij )0≤i,j≤n and

q(n)ij =

⎧

⎪

⎨

⎪

⎩

−i(n − i), if i = j,
1
2
i(n − i), if |j − i| = 1,
0, else.

Proof. Define a “quasi-lookdown” Moran model ∗, which is identical to , except within the nv lowest
lineages of v, where we allow copying in both directions at rate 1

2�v(t)
(as in the non-lookdownMoran model).

For an event E with populations KE = (v1, v2,…) and corresponding times t = (t1, t2,…), let X(t)KE =
(X(t1)

v1 , X
(t2)
v2 ,…) be the corresponding allele counts. Next, define X⪯E,t = {Xs

KE′
}(E′,s)⪯(E,t) as the sample

path of allele counts below E, t, where (E′, s) ⪯ (E, t) if either E is above E′, or E = E′ and s ≤ t
component-wise. It will suffice to show ℙ(X⪯E,t) = ℙ∗(X⪯E,t), because then for t = �vev + t−v,
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lE,tkev+x−v
=

nv
∑

j=0
ℙ(X

(t−v)
KE

= jev + x−v ∣ X
(t)
KE
= kev + x−v)l

E,t−v
jev+x−v

=
nv
∑

j=0
ℙ∗(X(t−v)KE

= jev + x−v ∣ X
(t)
KE
= kev + x−v)l

E,t−v
jev+�−v

=
nv
∑

j=0

[

eM
(nv) ∫ �v0

1
�v(t)

dt
]

kj
lE,t−vjev+�−v

as desired.
ℙ(X⪯E,t) = ℙ∗(X⪯E,t) follows from a coupling argument. Let⪯E,t = {E′,s}(E′,s)⪯(E,t) the sample

path of belowE, t. We canmap the partial sample paths of∗
⪯v,t onto those of⪯v,t as follows: moving

from the bottom to the top of v, whenever a lower label is copied over by a higher label, swap the labels of
the lineages above the copying. Then the relabeled sample path has the same distribution as the lookdown
construction, since the allele with the higher label is always copied over, and the rate of copying between pairs
of lineages is 1

�v(t)
. Since this relabeling also leaves X(t)

v unchanged, we have ℙ(X⪯E,t) = ℙ∗(X⪯E,t).

A.2.4 Proof of Lemma 2

Lemma 2 (Admixture event). Let E be an admixture event, with child populationw and parent populations
v1, v2. Let E′ be the child event in  . Suppose each lineage in w comes from v1 with probability q1, and
from v2 with probability q2 = 1 − q1. For KE the population cluster at E, let x∩ be a vector of allele counts
on KE ⧵ {v1, v2}. Then the conditional likelihood of allele counts x∩ + x1ev1 + x2ev2 at E is given by

lE,0x∩+x1ev1+x2ev2
=

nw
∑

xw=0
lE

′,�wew
x∩+xwew

∑

m1,m2∶
m1+m2=nw

(

nw
m1

)

qm11 q
m2
2

∑

j1,j2∶
j1+j2=xw

(x1
j1

)(nv1−x1
m1−j1

)

(nv1
m1

)

(x2
j2

)(nv2−x2
m2−j2

)

(nv2
m2

) . (7)

Proof. First note that XLeaves(E) = XLeaves(E′) and

lE,0x∩+x1ev1+x2ev2
= ℙ(XLeaves(E) ∣ X

(0)
KE
= x∩ + x1ev1 + x2ev2)

=
nw
∑

xw=0
ℙ(XLeaves(E) ∣ X

(0)
KE
= x∩ + x1ev1 + x2ev2 , X

(�w)
w = xw)ℙ(X

(�w)
w = xw ∣ X

(0)
KE
= x)

=
nw
∑

xw=0
ℙ(XLeaves(E) ∣ X

(0)
KE
= x∩ + x1ev1 + x2ev2 , X

(�w)
w = xw)

×
∑

m1,m2∶
m1+m2=nw

(

nw
m1

)

qm11 q
m2
2

∑

j1,j2∶
j1+j2=xw

(x1
j1

)(nv1−x1
m1−j1

)

(nv1
m1

)

(x2
j2

)(nv2−x2
m2−j2

)

(nv2
m2

)

by sampling nw alleles in w from nv1 , nv2 alleles in v1, v2, which are exchangeable by Lemma 6.
Next, consider the nv1 + nv2 − nw highest alleles of v1, v2, and let  ⊂ {nw + 1, nw + 2,…} be their

relative positions withinw. Then we conclude the proof by noting thatXLeaves(E) = XLeaves(E′) and applying
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Lemma 7, to get
ℙ(XLeaves(E) ∣ X

(0)
KE
= x∩ + x1ev1 + x2ev2 , X

(�w)
w = xw)

= ℙ(XLeaves(E′) ∣ Xv1 = x1, Xv2 = x2,X
(�wew)
K ′
E

= x∩ + xwew)

= ℙ(XLeaves(E′) ∣ X
(�w)
w, = x1 + x2 − xw,X

(�wew)
K ′
E

= x∩ + xwew)

= ℙ(XLeaves(E′) ∣ X
(�wew)
K ′
E

= x∩ + xwew)

= lE,0xcap+xwew .

A.2.5 Proof of Lemma 4

Lemma 4 (Population split, 1 cluster). Let E be a population split with exactly one event E′. Denote the
corresponding population clusters asKE andKE′ . Denote the parent population as v, the child populations
as w1, w2. Let x∩, yx∩ and B be defined as in the preceding paragraph:

yx∩i =
∑

j,k∶
j+k=i

(nw1
j

)(nw2
k

)

(nw1+nw2
i

)
l
E′,�w1ew1+�w2ew2
jew1+kew2+x∩

= ℙ(XLeaves(E) ∣ X
(�w1 )
w1 +X

(�w2 )
w2 = i,X∩ = x∩)

Bi,j =

(nv
j

)(nw1+nw2−nv
i−j

)

(nw1+nw2
i

)
.

Then the conditional likelihood at E is given by

lE,0kev+x∩
= [B+yx∩]k, (9)

with B+ denoting the Moore-Penrose pseudoinverse of B.

Proof. Let X∩ = X(0)KE −X
(0)
v ev = X(0)KE′ −X

(0)
w1ew1 −X

(0)
w2ew2 be the vector of allele counts on KE ∩ KE′ attimes 0. Then note that

yx∩i =
∑

j,k∶
j+k=i

(nw1
j

)(nw2
k

)

(nw1+nw2
i

)
l
E′,�w1ew1+�w2ew2
jew1+kew2+x∩

=
∑

j,k∶
j+k=i

ℙ(X
(�w1 )
w1 = j, X

(�w2 )
w2 = k ∣ X

(�w1 )
w1 +X

(�w2 )
w2 = i,X∩ = x∩)l

E′,�w1ew1+�w2ew2
jew1+kew2+x∩

= ℙ(XLeaves(E) ∣ X
(�w1 )
w1 +X

(�w2 )
w2 = i,X∩ = x∩)

with the second equality following from exchangeability (Lemma 6) and the third equality fromXLeaves(E) =
XLeaves(E′).
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Next note that
ℙ(XLeaves(E) ∣ X

(�w1 )
w1 +X

(�w2 )
w2 = i,X∩ = x∩)

=
nv
∑

j=0
ℙ(X(0)KE = jev + x∩ ∣ X

(�w1 )
w1 +X

(�w2 )
w2 = i,X∩ = x∩)

× ℙ(XLeaves(E) ∣ X
(0)
KE
= jev + x∩, X

(�w1 )
w1 +X

(�w2 )
w2 = i)

=
nv
∑

j=0

(nv
j

)(nw1+nw2−nv
i−j

)

(nw1+nw2
i

)
ℙ(XLeaves(E) ∣ X

(0)
KE
= jev + x∩, X

(�w1 )
w1 +X

(�w2 )
w2 = i)

with the second equality again due to exchangeability (Lemma 6).
Define  ⊂ {nv + 1, nv + 2,…} so that {1,… , nv} ∪  are the indices in v of the first nw1 , nw2 alleles in

w1, w2. Then because X(0)
v, = X

(�w1 )
w1 +X

(�w2 )
w2 −X(0)

v and Lemma 7,

ℙ(XLeaves(E) ∣ X
(0)
KE
, X

(�w1 )
w1 +X

(�w2 )
w2 ) = ℙ(XLeaves(E) ∣ X

(0)
KE
, X(0)

v,) = ℙ(XLeaves(E) ∣ X
(0)
KE
)

and thus

yx∩i =
nv
∑

j=0

(nv
j

)(nw1+nw2−nv
i−j

)

(nw1+nw2
i

)
lE,0jev+x∩

=
nv
∑

j=0
Bijl

E,0
jev+x∩

so letting l′ = [lE,0jev+x∩
]0≤j≤nv ∈ ℝnv+1, we have yx∩ = Bl′ and therefore l′ = B+yx∩ .

A.2.6 Proof of Lemma 3

Lemma 3 (Population split, 2 clusters). LetE be a split event with parent population v and child populations
w1, w2. Suppose E has 2 child events E′1, E

′
2, with corresponding blocks KE′1 , KE′2 , where w1 ∈ KE′1 , w2 ∈

KE′2 . Let x−1 be allele counts on KE′1 ⧵ {w1} and x−2 be allele counts on KE′2 ⧵ {w2}. Then the conditional
likelihood at E is

lE,0x−1+x−2+xvev =
∑

x1,x2∶
x1+x2=xv

(nw1
x1

)(nw2
x2

)

(nv
xv

) l
E′1,�w1ew1
x1ew1+x−1

l
E′2,�w2ew2
x2ew2+x−2

. (8)

Proof. Notice that

lE,0x−1+x−2+xvev =
∑

x1,x2∶
x1+x2=xv

ℙ(X
(�w1ew1 )
KE′1

= x−1 + x1ew1 ,X
(�w2ew2 )
KE′2

= x−2 + x2ew1 ∣ X
(0)
KE
= x−1 + x−2 + xvev)

× l
E′1,�w1ew1
x1ew1+x−1

l
E′2,�w2ew2
x2ew2+x−2

=
∑

x1,x2∶
x1+x2=xv

(nw1
x1

)(nw2
x2

)

(nv
xv

) l
E′1,�w1ew1
x1ew1+x−1

l
E′2,�w2ew2
x2ew2+x−2

with the first equality from the Markov property of the Moran process, and the second equality following
from the exchangeability of the nv alleles at vertex v (Lemma 6).
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A.2.7 Proof of Theorem 2

Theorem 2. For �d ∈ ℝnd+1, d ∈ {1,… ,}, the tensor dot product of the SFS � against �1 ⊗⋯⊗ � =
[�1z1 ⋯�z]z1,…,z is

� ⊙ (�1 ⊗⋯⊗ �) =
∑

z1,…,z

�z1,…,z�
1
z1
⋯�z

= DP(�1,… , �) −

( 
∏

d=1
�d0

)

DP(e0,… , e0) −
( 
∏

d=1
�dnd

)

DP(en1 ,… , en).

Proof. Below, we will prove DP(l1,… ,l) is a multilinear function of the input vectors l1,… ,l. The
result immediately follows from this, because then
� ⊙ (�1 ⊗⋯⊗ �) =

∑

z≠0,n
�z�

1
z1
⋯�z

=
∑

z≠0,n
DP(�1z1ez1 ,… , �zez)

= DP(
n1
∑

z1=0
�1z1ez1 ,… ,

n
∑

z=0
�zez) − DP(�10e0,… , �0 e0) − DP(�1n1en1 ,… , �nen)

= DP(�1,… , �) − DP(�10e0,… , �0 e0) − DP(�1n1en1 ,… , �nen).

We now show DP(l1,… ,l) is a multilinear function of l1,… ,l. We start by showing that if event
E has leaf populations Leaves(E) = (d1,… , dL), then lE,t is a multilinear functions of ld1 ,… ,ldL . We
show this by induction over (E, t). The base case, where t = 0 and E is a leaf with KE = {di}, is trivially
true because lE,0 = ldi .

For the next case, we note that (6), (7), and (9) express lE,t as a tensor product of lE′,t′ with a matrix,
where (E′, t′) ≺ (E, t) and Leaves(E) = Leaves(E′). lE

′,t′ is a multilinear function of ld1 ,… ,ldL by
induction, hence lE,t is also.

Similarly, (8) expresses lE,0 as a product of lE′1,t1 and lE
′
2,t2 , where lE

′
i ,ti is a multilinear function of

{lk ∶ k ∈ Leaves(E′i )} by induction, and furthermore Leaves(E′1) ∩ Leaves(E′2) = ∅ and Leaves(E′1) ∪
Leaves(E′2) = Leaves(E). Thus lE,0 is a multilinear function of ld1 ,… ,ldL .

Thus, each of the operations (6), (7), (8), (9) in Algorithm 2 preserves multilinearity of lE,t , and thus each
lE,t is a multilinear function of its leaf vectors by induction. Finally, a similar induction argument shows that
each �E is a multilinear function of {lk ∶ k ∈ Leaves(E)}, since (10) expresses �E as a sum of multilinear
functions by induction.

A.3 Computational complexity

Computing the SFS �z via Algorithm 2 involves keeping track of the partial likelihoods lE,0x,z at each event
E. For a dataset with s unique observations z, the array of partial likelihoods for every z and every hidden
state x at event E is lE,0 = (lE,0x,z )x,z a tensor with s∏v∈KE

(nv + 1) = O(s
∏

v∈KE
nv) = O(sn|KE |) total

entries (where n = ∑
d=1 nd).We now consider the time cost of each operation in Algorithm 2. We start by considering the “universal

constants” that depend only on nv, and not on the parameters of the demography or the number of SNPs.
Next, we consider terms that need to be computed once per demography, but don’t depend on the number of
SNPs. Finally, we consider those terms that need to be recomputed once for each SNP and each demography.
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Population Individuals Alleles kya
Mbuti 3 6 0
Han 2 4 0
Sardinian 2 4 0
Loschbour 1 2 7.5
LBK (Stuttgart) 1 2 8
MA1 (Mal’ta) 1 1 24
Ust’Ishim 1 2 45
Altai Neanderthal 1 2 50

Table 3: Populations and samples used for the example application in Section 4. We only used 1 random
allele for MA1 due to low coverage. The ages of the samples are given in thousands of years ago (kya).

Proposition 1. For a population graph  with corresponding event tree  , let |V | be the number of vertices
(populations) in the graph, and let Madmix be the number of admixture events. Then, for a dataset with n
samples and s unique observations, computing the likelihoods of d different demographies with the same
topology ( and  ) but different parameters (sizes, pulse strengths, branch lengths), has a computational
complexity of

O

(

|V |n3 +Madmix(n5 + dn4) + d|V |n2 + ds
∑

E∈
n|KE |+1

)

.

Proof. In Lemma 1, we compute the matrix exponential of (6) as eQ(nv) ∫
�v
0

1
�v(t)

dt = UeΣ ∫
�v
0

1
�v(t)

dtU−1 where
U are the eigenvectors in the decomposition Q(nv) = UΣU−1; this eigenvalue decomposition costs O(n3v).Similarly, in Lemma 4 we compute the pseudoinverse of (9) as B+ = V Σ−1UT for SVD B = UΣV T ; this
SVD also costsO(n3v). Both the eigenvalue decomposition and the SVD are universal for all demographic pa-
rameters, and computed at most once per population v, which contributes an overall complexity ofO(|V |n3).

The innermost sum of (7) in Lemma 2 is also universal, and costs O(n5w) to compute for all possible
values of x1, x2, xw, m1, leading to the term O(Madmixn5). However, the middle sum of this equation is not
universal, since it depends on q1, q2. While not universal, this middle sum only needs to be computed once
per demography, and does not depend on the number of SNPs; in particular, computing it for all values of
x1, x2, xw costs O(n4w) per demography, contributing an overall complexity of O(Madmixdn4). Similarly, the
term f vnv(k) in (10) of Lemma 5 is computed once per demography, and costs O(n2v) (Kamm et al., 2017),
contributing a complexity of O(d|V |n2).

Finally, we consider the terms that need to be recomputed for every SNP and every demography. Equa-
tions (6), (7), (8) of Lemmas 1, 2, 3, respectively, each cost O(n|KE |+1) per SNP, since they express lE,0x,z
as a sum of O(n) terms. Similarly, equation (9) of Lemma 4 costs O(n|KE′ |+1), since we compute lE,0x,z as
a product of an O(n) × O(n) matrix B+ with a tensor yx∩ containing O(n|KE′ |−1) entries; yx∩ is itself com-
puted by summing over all O(n|KE′ |) entries of lE′,�w1ew1+�w2ew2x,z . Altogether, this contributes a complexity
of ds∑E n

|KE |+1.

A.4 Application supplement

A.4.1 Data

Table 3 gives the populations and samples we used for our example application in Section 4. All samples
except for MA1 were taken from the SGDP dataset (Mallick et al., 2016). We added on the additional low-
coverage MA1 sample (Raghavan et al., 2014) to represent the Ancient North Eurasian (ANE) component
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of European ancestry. Due to the low coverage of MA1, we only sampled a single random allele from it at
each site, using a GATK pileup (McKenna et al., 2010) and restricting ourselves to reads with quality ≥ 30.

We ascertained SNPs at SGDP filter level 1, then used the genotype calls at filter level 0 at the ascertained
SNPs. When ascertaining SNPs, we limited ourselves to sites that were polymorphic among the samples
excluding MA1 and Neanderthal. We excluded MA1 during ascertainment due to its low coverage. We also
excluded the Neanderthal sample during ascertainment because it had substantially fewer new mutations
than expected based on its age; it was unclear whether this was due to changes in the mutation rate on that
lineage since its deep split with modern humans, or whether this was an artifact of the SNP calling strategy
used by SGDP. We used Theorem 2 to correct the normalizing constant of the SFS due to excluding MA1
and Neanderthal during ascertainment; in particular, we normalized the SFS by the total branch length of
the subtree excluding MA1 and Neanderthal.

To avoid biases in ancient DNA caused by deamination (Dabney et al., 2013), we removed all transi-
tions (i.e. A↔G and C↔T mutations), keeping only the transversions. We used Chimp as a proxy for the
ancestral allele, removing all sites where the Chimp allele was missing. After data cleaning, we were left
with 2,444,888 autosomal transversion SNPs that were segregating among the samples excluding MA1 and
Neanderthal.

A.4.2 Model fitting procedure

We fit the model in Figure 3 in an iterative fashion, adding populations in one at a time and re-estimating
the parameters. We started with a tree including the 4 populations Mbuti, Loschbour, Han, and Ust’Ishim,
with no admixture events. This initial model had 8 parameters: the population sizes at the Han, Mbuti, and
Loschbour leaves, the population size at the Eurasian and human ancestor (the Ust’Ishim leaf was set to the
ancestral Eurasian population size), and the times that the Han, Ust’Ishim, and Mbuti populations diverged
from Loschbour.

We next added in the Neanderthal population, with an admixture event from Neanderthal to the Eurasian
ancestor. We added parameters for theNeanderthal-human split time, theNeanderthal-Eurasian introgression
tie and strength, the ancestral Neanderthal-human population size, and a Neanderthal population exponential
decline rate starting at the Eurasian-Mbuti split, following results from Prüfer et al. (2014).

We followed by adding on the MA1 sample, adding a single parameter for its split time (we fixed its
population size to be the ancestral Eurasian population size). We then added the LBK early farmer, adding
4 parameters for its divergence time, Basal Eurasian admixture time and strength, and the split time of the
Basal Eurasian lineage. Finally, we added in a Sardinian population, along with parameters for its population
size, its split time, and admixture times and strength from the Loschbour WHG.

At each step, we re-estimated all parameters using the L-BFGS-B optimization algorithm, maximizing
the multinomial composite likelihood (11). For the final few models (adding in LBK and then Sardinian) we
initialized each estimation with a stochastic gradient descent before finishing with L-BFGS-B.

A.4.3 Mutation rate estimation

We used the within-population nucleotide diversity to estimate the mutation rate. The nucleotide diversity is
the number of sites where 2 random alleles (drawn without replacement) differ. The empirical value of the
nucleotide diversity in population i is

�̂i =
∑

s∈SNPs
2
x(s)i (ni − x

(s)
i )

ni(ni − 1)
=
∑

x
2
xi(ni − xi)
ni(ni − 1)

fx,
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while the expected value of the nucleotide diversity per unit mutation rate is

�i =
1
�
E[�̂i] =

∑

x
2
x(s)i (ni − x

(s)
i )

ni(ni − 1)
�x.

This yields a mutation rate estimate �̂i for each population, given by �̂i = �̂i
�i
. We then averaged over �̂i to

obtain our combined estimate �̂ = 1

∑
i=1 �̂i. To obtain the per-site mutation rate we need to divide by the

number of bases L after our data cleaning process. We approximated this as follows:
1. At SGDP filter level 1, there are about 2.13 × 109 sites per individual.
2. Multiply this by 0.93 due to excluding the sex chromosomes.
3. Multiply this by 0.32 due to only using transversions.
4. Multiply by 0.93 to account for excluding sites missing the Chimp allele.
5. Finally, multiply 1.1 to account for using genotype calls at filter level 0. The inflation in the number of

sites here is because we are using a stricter filter to ascertain SNPs (SGDP filter level 1) than we are
to call genotypes at the SNPs (SGDP filter level 0). In particular, we need to account for SNPs where
the sample has a heterozygous genotype at filter level 0, but has a missing genotype at filter level 1;
these genotypes are counted as heterozygotes in the SFS, and we need to adjust the number of bases
L to account for this.

The latter 2 factors (accounting for sites missing the Chimp allele and for adding in genotype calls at filter
level 0) we estimated by observing how the number of heterozygotes per individual changed after these data
cleaning steps.
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