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Summary
The various factors constraining the choice of synthetic polymer and natural gut strings for musical instruments
are discussed, including a newly-formulated constraint based on the internal damping of the string material. It
is shown that all these constraints can be summarised graphically in a design chart, and calibrated versions of
the chart are presented for monofilament strings of nylon, fluorocarbon and natural gut. Based on these charts,
detailed case studies are presented for the stringing of a lute and a harp. An explanation is suggested for why
harpists continue to favour gut over nylon.
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1. Introduction
A perennial problem for players and designers of stringed
musical instruments is how to choose the best set of strings
for a given instrument. This question has long been dis-
cussed, and the basic science underlying this question is
not new: see for example [1, 2, 3]. However, recent ex-
perimental measurements highlight a phenomenon which
may be familiar to some musicians, but which has not pre-
viously attracted scientific attention. If a plain nylon or gut
string is fitted to a plucked-string instrument and tensioned
just enough to begin to make a musical note, the sound is
muffled and unsatisfactory. As the string is tuned upwards,
the sound first becomes musically acceptable but rather
mellow, and then becomes progressively brighter until the
point where the string breaks. It will be demonstrated that
this perception of increasing brightness is largely the result
of a material damping effect: there is a roll-off frequency
above which the string overtones progressively become so
highly damped that they are no longer “musical”, and this
roll-off frequency rises dramatically as the string is tight-
ened.

In this paper the relevant results are reviewed, and a
design chart is constructed that encapsulates the damp-
ing roll-off as well as other aspects of practical stringing
choices. The main focus will be on plucked-string instru-
ments like the harp, guitar and lute. The issue of string
choice can be particularly pressing for period instruments
like the lute or vihuela, because the musician is not pre-
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sented with a ready-made choice in the form of sets of
strings selected by instrument makers or string manufac-
turers, in contrast to the situation for a modern guitar
or harp. The clearest results will be obtained for sets of
monofilament strings, such as plain nylon or gut strings
for a harp or lute. The rationale for over-wrapped strings
will become clear in the course of the discussion, but de-
tailed constructional choices for such strings will not be
explored.

When choosing strings, a musician is likely to be inter-
ested in questions of “loudness”, “tone quality” and “feel”.
All three concepts are decidedly slippery from the perspec-
tive of a scientist, but it is easy to identify physical corre-
lates that capture at least part of what each means. All will
play a role in the design charts to be presented here, and
in detailed case studies for the lute and the harp to be pre-
sented in Sections 4.2 and 4.3.

2. Background theory

2.1. Frequency and impedance
The linear theory of free vibration of a stretched string is
quite familiar, but key results needed in the later discus-
sion will be summarised here. Consider a string of circular
cross-section of diameter d and length L, under tension T
and made of material with Young’s modulusE and density
ρ. The nth natural frequency ωn = 2πfn satisfies

ω2
n ≈

T

m

nπ

L

2
+
EI

m

nπ

L

4
, (1)

where m = πd2ρ/4 is the mass per unit length, and the
second moment of area I = πd4/64. This result follows
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from the Rayleigh quotient (see for example [1]), and the
approximation sign arises because it has been assumed that
the corresponding mode shape is

un(x) = sin
nπx

L
, (2)

where 0 ≤ x ≤ L is the position variable along the
length of the string. A real string will deviate slightly from
this assumption because of end effects: coupling to a non-
rigid structure at both ends, and other effects of evanes-
cent fields arising from the detailed end boundary condi-
tions. Nevertheless, it has been shown previously [4, 5]
that Equation (1) holds up very well for real strings, espe-
cially at higher values of n which will be important in this
work.

The second term on the right-hand side of Equation (1)
arises from the non-zero bending stiffness of the string.
For realistic musical strings, the bending stiffness effect
is relatively weak so that the fundamental frequency (i.e.
n = 1) is always well approximated by neglecting this
term,

f2
1 =

ω2
1

4π2
≈ T

m

1
2L

2

. (3)

Two different musically-important effects are governed by
the influence of the bending term: inharmonicity of natural
frequencies, as shown by Equation (1), and the damping
behaviour as a function of frequency, to be discussed in the
next subsection. It is useful to introduce a non-dimensional
parameter to express the proportion of the potential energy
associated with this effect,

λ =
EI nπ

L

4

T nπ
L

2
+ EI nπ

L

4
≈ Eπ2d2n2

64ρL4f2
1 + Eπ2d2n2

, (4)

where the final expression makes use of Equation (3).
Using Equations (3) and (4) in Equation (1), the natural

frequencies can be expressed in the form

f2
n ≈ n2f2

1

1 − λ
. (5)

For sufficiently high mode numbers n the bending term
ceases to be a small perturbation. However, it will be ar-
gued shortly that, for musically-relevant natural frequen-
cies of strings of the kind to be discussed here, λ is always
quite small. It follows that

fn ≈ nf1(1 + λ/2), (6)

with

λ ≈ Eπ2d2n2

64ρL4f2
1

. (7)

It has been shown [6, 7] that the mechanical properties
of a nylon string depend significantly on the stress state
and history. In particular, the Young’s modulus increases

by roughly a factor of 3 between the unstressed state be-
fore it is fitted to the instrument and the state just before
it breaks. Similar results have recently been shown for
fluorocarbon strings [8], which are becoming increasingly
popular with musicians. Natural gut strings are also still
popular, especially with harpists, and for these it has been
found that no such “strain stiffening” effect occurs: within
the limits of accuracy of the measurements, a single value
of Young’s modulus is consistent with the results over the
entire stress/strain range [8]. However, all these strings, in-
cluding the gut strings, show significant frequency depen-
dence of Young’s modulus, as is normal for viscoelastic
materials. The value of E relevant to the equations stated
above is the high-frequency value called EB in the previ-
ous work [7, 8].

Two other parameters for vibrating strings should be
mentioned. First is the wave impedance

Z0 = Tm ≈ πd2ρLf1/2, (8)

which is an important contributory factor to the strength
of coupling between the string and the body of the in-
strument, and hence to the loudness of the played note.
A second quantity has been proposed by Firth [9, 10, 11]
as important to harpists: what he called “feel”, although
no doubt this simple quantity only captures part of what a
musician may understand by that term. Firth’s quantity is
defined as the plucking force necessary to produce a given
initial displacement. For a mid-point pluck, to produce a
small displacement δ the required force Fp is given by a
simple static equilibrium calculation as

Fp ≈
4Tδ
L

, (9)

so that the “feel” γ is

γ = Fp/δ ≈ 4T/L. (10)

2.2. Damping model

The other key ingredient needed for this study concerns
damping. There are three main physical mechanisms of
energy loss in a vibrating string: loss by coupling to the in-
strument body, viscous dissipation due to the surrounding
air, and viscoelastic loss within the material of the string.
All three effects can be estimated, leading to a model that
has been shown previously to give a good fit to measure-
ments [3, 4, 5]. That model will be fine-tuned in the light
of more extensive measurements now available, and then
an important conclusion will be drawn relating to the in-
fluence of damping on “brightness” of plucked strings and
hence on string selection.

Energy loss via the bridge to the instrument body will
vary strongly with frequency, especially at lower frequen-
cies, depending on the proximity of individual body reso-
nances [12]. However, a simple approximation to the en-
ergy loss at higher frequencies can be obtained using Sta-
tistical Energy Analysis, giving a loss factor η body [4]. Sub-
stituting typical numerical values for the high-frequency
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behaviour of musical instrument bodies reveals that this
loss mechanism is usually insignificant compared to the
other two mechanisms in the frequency range that will be
of interest here [4]. Examples of its effect will be shown in
Figures 2 and 3.

Energy loss due to viscosity in the surrounding air
can be estimated using a classical analysis going back to
Stokes. The associated loss factor is given by Fletcher and
Rossing [2] in the form

ηair ≈
ρa
ρ

2
√
2M + 1
M2

, (11)

where ρa is the density of air, and

M =
d

4
2πfn
ηa

, (12)

where ηa is the kinematic viscosity of air. Textbook values
will be used: ρa = 1.2 kg/m3 and ηa = 1.5 × 10−5 m2/s. In
the light of tests on many musical strings covering a wide
range of string gauges, it has been found that this formula
does not quite capture the variation with diameter to best
accuracy: it slightly underestimates the damping of thick
strings and overestimates that of thin strings. It has been
found that the measurements can all be approximated well
enough for the present purpose by applying an ad hoc cor-
rection factor (d + 0.2) to ηair, with the string diameter d
expressed in mm. Some examples will be shown in Sec-
tion 3, but it is not possible to reproduce the entire set of
results here: between them, the previous studies covered
20 strings of various materials, each tested at up to 8 dif-
ferent tuned frequencies [4, 5, 7, 8, 13, 14].

To see more clearly how this damping contribution
varies with frequency, it may be noted that for all the
strings and tuning frequencies under consideration here,
the value of M is fairly large so that

ηair ≈ (d + 0.2)
ρa
ρ

2
√
2

M
= (d + 0.2)

8
√
2ρa
ρd

ηa
2πfn

. (13)

The third damping mechanism will prove to be the most
important for the purposes of this investigation. Energy
loss from viscoelasticity in the string arises from the in-
fluence of bending stiffness. Young’s modulus becomes
a complex value E(1 + iηE ). An argument based on
Rayleigh’s principle [15] can be used to yield an expres-
sion for the associated loss factor of the nth string mode,
which takes a very simple form in terms of the parameter
λ introduced earlier,

η bend ≈ ληE . (14)

The total modal damping factor can finally be estimated
by

ηn ≈ η body + ηair + η bend. (15)

As described above, the contribution from η body is small
and can largely be ignored. From Equation (13), ηair varies

inversely with the square root of frequency, so it is dom-
inant at low frequency. On the other hand, from Equation
(7), λ ∝ n2 so that η bend dominates at sufficiently high fre-
quency. The result is a minimum of damping at an interme-
diate frequency, above which ηn increases rapidly with fre-
quency. It will be argued that this increase accounts for the
change in the sound of strings as they are tuned to different
frequencies, as described earlier. The damping model will
first be confirmed and illustrated with measurements.

3. Measured mechanical behaviour of
strings

Data collected in the course of previous projects [4, 7, 8]
can be combined to give a fairly comprehensive picture
of the mechanical behaviour of monofilament strings of
synthetic polymer or natural gut. Those earlier papers give
full details of the experimental methodology, including
the confidence limits associated with measurement errors.
Most of the strings were tested using a purpose-designed
measurement rig that included provision for control of
temperature and humidity, and an automated system for
monitoring and maintaining the string’s tuning. These tests
were conducted over a sufficiently long period that the
string’s plastic response at any given tuning level had time
to level off to a state that a musician would describe as
“settled”. The tests also took full account of the slight re-
duction in the string’s diameter under tension, but for the
purposes of the present work this effect is small enough
to be insignificant, and it will be ignored throughout this
paper.

It should be emphasised that all the tested strings were
regular commercial strings marketed for musical instru-
ments: the authors were not able to obtain detailed infor-
mation about the chemical composition despite asking the
manufacturers. So, for example, for strings described here
as “nylon” we do not know exactly which members of
the family of nylons were involved: indeed, evidence was
found that strings marketed as a homogeneous set for use
on the harp were not all made of the same precise material.
However, for the present purpose these uncertainties were
sufficiently small that they will turn out not to be signifi-
cant in the context of the “broad-brush” design charts to be
presented later. The behaviour of Young’s modulus at high
frequencies (EB in the earlier work) was found to be very
similar for all the nylon strings tested, and similar unifor-
mity was also found for the gut and fluorocarbon strings
tested.

Damping behaviour can be extracted from the string re-
sponse to wire-pluck excitation [4]. The string data col-
lected in connection with [4] is restricted to a small num-
ber of strings, but it has high quality because the response
was collected under laboratory conditions, from an ac-
celerometer on the bridge of the guitar to which the tested
strings were attached. The accelerometer gave excellent
high-frequency response data. The data associated with
[7, 8] covers a far wider range of strings. It was collected
using a pair of purpose-built test rigs, described in detail
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Figure 1. (Colour online) Spectrograms of pluck response of a
nylon string of length 0.5 m and unstretched diameter 1.20 mm,
tuned to (a) 174 Hz and (b) 403 Hz. Levels are plotted in dB
relative to the maximum in each case, to a depth of 40 dB. This
string was labelled “string 5” in the earlier study [7].

in [7]. The data quality is not as good because the pluck
responses were only collected as secondary material in the
course of tests primarily devoted to the mechanical and
thermal response of strings over a long timescale, but it
is sufficient for a thorough test of the proposed damping
model.

The first use of these results is to illustrate the underly-
ing phenomenon described earlier, in which the brightness
of the sound of a given string depends on its state of tun-
ing. Figure 1 shows spectrograms of the pluck response of
a nylon string of diameter 1.20 mm and vibrating length
0.5 m, which was labelled “string 5” in the earlier study
[7]. The plots show this same nylon string tuned to two
different frequencies, the lowest and highest used in the
testing sequence. At the higher tuning frequency, it can
clearly be seen that the decay rate at any given frequency
is much slower, and that the bandwidth containing identi-
fiable strong string overtone lines is much wider. It is no
surprise that the sound of this string was perceived as get-
ting progressively brighter as it was tuned higher.

Next, it is useful to show results to support the damping
model presented in Section 2.2. Figure 2 shows results for

damping factors of three different nylon strings fitted to a
guitar. Two of them are the thinnest and thickest strings
used in an earlier study (called “string 1” and “string 4”
there) [4]. The third string shown here is a section of very
thick harp string from the same original piece as “string
23a” in a different earlier study [7]. The two thinner strings
were tuned to the same frequency, but the thickest string
was tuned to a lower frequency than the thinner strings
to reinforce the main point to be learnt from these results
(and because the structure of the guitar would not tolerate
tuning such a heavy string to the same pitch).

The discrete symbols in the plot show the measured
points, while the various lines indicate the theoretical com-
parison. The separate contributions to the total damping ηn
are shown: values for the loss factor η body associated with
energy transfer to the guitar body are included in this plot,
calculated as explained in earlier work [4]. The plot con-
firms the earlier statement that this contribution is small
enough that it can be ignored for the purposes of this study.

To calculate η bend, a value for the loss factor ηE was
needed. As has already been remarked, the real part of
the Young’s modulus E for nylon strings has been shown
to vary significantly with both frequency and stress state.
However, careful examination of the damping results sug-
gested that a good fit was given to all measurements by
assuming that the imaginary part remained constant, inde-
pendent of stress. Furthermore, the frequency dependence
can be ignored at the high frequencies relevant here, in the
kHz range: as can be seen in Figures 2 and 3, a satisfac-
tory fit to the measurements was given by this approxi-
mation. In terms of the usual terminology of the theory of
viscoelasticity (see for example [16]),E = E +iE where
E varies with stress but E does not. A simple fit to the
results for EB in Figure 10 of [7] gives

E ≈ 4.5 + 39σ GPa, (nylon), (16)

where σ is the stress expressed in GPa, while the damp-
ing results are consistent with a value E = 0.25 Gpa.
The result is that ηE = E /E varies with stress, falling
from approximately 0.04 to 0.02 as stress increases over
the range tested here.

The solid curves in Figure 2 show the combined loss
factor ηn for each string predicted according to the analysis
of Section 2.2, and it is immediately clear that each curve
follows the trend of the measured data points remarkably
well. This confirms the damping model developed in Sec-
tion 2.2, and also illustrates the pattern implied by that
model. Damping is relatively high at low frequency, falls
to a minimum around the frequency where ηair and η bend

are equal, then rises rapidly at higher frequencies so that
there is an effective roll-off frequency above which string
modes have damping that is too high to sound “musical”.
The thinnest string has this roll-off around 13 kHz, the
middle string has it around 7 kHz, but for the thick string
all modes have a higher loss factor than the plotted points
for the thinner strings, and it was only possible to deter-
mine values up to about 1.5 kHz. It will come as no sur-
prise that this thick string produced a thoroughly unsatis-
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Figure 2. (Colour online) Loss factor as a function of frequency
for three different nylon strings of vibrating length 0.65 m fit-
ted to the same guitar body. Black: string of diameter 0.50 mm
tuned to 327.5 Hz; green: string of diameter 0.96 mm tuned to
327.5 Hz; magenta: string of diameter 1.68 mm tuned to 131 Hz.
Discrete points: measured results; dotted lines: loss factor η body;
dashed lines: loss factor ηair; dash-dot lines: loss factor η bend;
solid lines: combined loss factor ηn.
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Figure 3. (Colour online) Loss factor as a function of fre-
quency for four fluorocarbon strings of vibrating length 0.625 m,
mounted on a lute. Black: string of diameter 0.88 mm tuned to
130 Hz; red: string of diameter 1.22 mm tuned to 97 Hz; blue:
string of diameter 1.33 mm tuned to 86 Hz; magenta: string of di-
ameter 1.57 mm tuned to 73 Hz. These strings will be discussed
in Section 4.2. The format is similar to Figure 2. Discrete points:
measured values; dotted lines: loss factor η body; dashed lines: loss
factor ηair; dash-dot lines: loss factor η bend; solid lines: combined
loss factor ηn.

factory sound on the guitar: more a muffled thud than a
ringing guitar-like note.

For the two thinner strings, which produced acceptable
musical sounds, it can be seen that the data points run out
at roughly the same value of ηn ≈ 10−3. In the light of
Equation (14), this suggests that the useful bandwidth of
a given plucked string might be associated with a thresh-
old value of λ, since the material loss factor ηE is fixed

for a given string and tuning. Of course there is not a
crisply-defined threshold for damping, but for the purposes
of a design criterion with the right order of magnitude, a
threshold value λ ≈ 0.05 will be used in the subsequent de-
velopment: the appropriateness of this choice will be con-
firmed later in the light of the two case studies in Sections
4.2 and 4.3. The chosen value justifies a statement made
earlier in connection with Equations (6) and (7), that for
musically-relevant string resonances the value of λ is al-
ways small.

The full set of results for other nylon strings and for
fluorocarbon and gut strings cannot be reproduced here
because of space constraints, but plots similar to Figure 2
have been examined for every tested case. A suitably cali-
brated version of the proposed damping model was found
to give a satisfactory fit for each material, over the full
range of string diameters and tensions. Four examples for
fluorocarbon strings are shown in Figure 3: these strings
were fitted to a lute and tuned to their normal playing
pitches, and will form part of a case study of lute stringing
in Section 4.2. Note that for the present purpose, the im-
portant aspect of these results is the high-frequency damp-
ing trend, leading to the effective roll-off frequency. The
three thinnest strings give an excellent fit in this region.
The thickest string gives a less clear scatter of points with
higher damping, somewhat similar to what was seen in
Figure 2. This plot was produced using fitted values for
the Young’s modulus of fluorocarbon strings as a function
of stress similar to the results for nylon shown in Equa-
tion (16),

E ≈ 3.2 + 41σ GPa, (fluorocarbon). (17)

For the imaginary part of Young’s modulus, as was found
for nylon, a constant value gives a satisfactory fit: E =
0.18 Gpa.

For gut strings the corresponding fitted model is sim-
pler: fixed values E = 6 Gpa, ηE = 0.04 are appropri-
ate. It may be remarked that the gut strings did not gener-
ally give measured results as clean as those shown here
for nylon and fluorocarbon strings. The trend is always
clear, but the individual points usually show more scat-
ter relative to the predicted curves. This scatter is proba-
bly a direct consequence of the construction of gut strings.
The twisting and polishing processes are carried out by
hand, on each length of string individually. Some varia-
tion of detailed structure along the length of the string
is bound to occur, and this may lead to spatial variation
in the complex Young’s modulus. That variation will in-
teract with the different mode shapes of the string over-
tones, and the two different polarizations of vibration in
each mode, to produce variation in the modal loss fac-
tors. Indeed, if the detailed distribution of Young’s mod-
ulus was known, the Rayleigh’s principle argument could
be applied mode by mode to predict these variations in
damping, in a similar way to earlier predictions of modal
variations in damping factor: see for example the results
for composite plates [17].
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Table I summarises the values of E and E obtained
for the three materials, together with the correspond-
ing bulk density values used here. The earlier studies of
harp strings found differences between the bulk densi-
ties of the thinner and thicker monofilament nylon strings
tested [7, 13], and between the thinner (monofilament)
and thicker (wound) fluorocarbon strings [8, 14]. The bulk
density values shown in Table I are representative of the
measured values for the thinner nylon and fluorocarbon
harp strings, and were selected as being appropriate for
the string diameters common to other instruments. For the
construction of the string design charts to be shown here,
however, the exact values of the material bulk densities
are not particularly important; what matters is the rela-
tive difference between the densities of the three materi-
als, with fluorocarbon having a significantly higher density
than natural gut or nylon.

For all three materials, at low stress levels where the
damping effect will turn out to be most important, ηE is
around 0.04. This coincidence of values is very conve-
nient, because it means that if the same threshold value of
λ is used for all three materials, that will correspond to es-
sentially the same values of modal damping factor for the
string modes. This will allow directly comparable string
design charts to be presented for the three materials, in
the next section. Furthermore, it was noted earlier that λ
also governs the degree of inharmonicity of a string. This
means that design guidelines based on a threshold value
of λ will set a limit on inharmonicity as well as damp-
ing. Both damping and inharmonicity have been associ-
ated in earlier literature with the perceptual discrimination
of “warmth” versus “brightness”. The damping roll-off af-
fects the spectral centroid, and there is a well-established
correlation of perceived brightness with variation in spec-
tral centroid [18]. Quite separately, the perceptual conse-
quences of inharmonicity have been investigated in liter-
ature extending back at least as far as the classic work of
Fletcher et al. [19]. The fact that both effects are governed
by the same parameter may give a new perspective on rel-
evant perceptual questions, as will be discussed further in
Section 5.

4. A design chart for string selection

4.1. Development of the chart

The criterion of a threshold value of λ can be expressed in
graphical form. From Equation (4), it can be seen that the
value of λ for a given material depends on three parame-
ters relevant to string choice: d, f1 and L. However, the
expression for λ can be written in terms of two combina-
tions of them,

α = Lf1, β = d/L. (18)

The parameter α is a natural one to bring in, since if bend-
ing stiffness is ignored, α remains constant as a given
string on a guitar, say, is fingered in different positions.
Using Equation (3), α ≈ c/2 where c is the wave speed on

Table I. Best-fitted material properties for the three string mate-
rials. For calculating E for nylon and fluorocarbon, the value of
σ should be expressed in GPa.

Material E (GPa) E (GPa) ρ (kg/m3)

Nylon 4.5 + 39σ 0.25 1070
Fluorocarbon 3.2 + 41σ 0.18 1800
Natural Gut 6.0 0.24 1320
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Figure 4. (Colour online) Contours of λ for nylon strings, plot-
ted at intervals of 0.01 up to 0.1. Discrete symbols show results
for strings previously mentioned: for each column of points the
lowest symbol shows the value for n = 1, then above it values
for n = 10, 20, 30 . . . Squares: string of diameter 0.50 mm tuned
to 327.5 Hz, plotted in black in Figure 2; circles: string of di-
ameter 0.96 mm tuned to 327.5 Hz, plotted in green in Figure 2;
diamonds: string of diameter 1.68 mm tuned to 131 Hz, plotted
in magenta in Figure 2; stars: string of diameter 1.20 mm as in
Figure 1, tuned to a range of frequencies between 174 Hz and
403 Hz.

the string. For material of a given density, its value deter-
mines the stress:

σ = 4ρα2. (19)

It is straightforward to draw a contour map of λ in the
(α, nβ) plane, noting that for nylon or fluorocarbon, E is
a function of α through Equations (16), (17) and (19). An
example is shown in Figure 4, for nylon strings. Contours
of λ have been plotted at intervals of 0.01 up to the value
0.1. Beyond that value the string overtones will surely be
too highly damped to be of interest: recall that the sug-
gested threshold value is 0.05, in the middle of the plotted
range.

Points corresponding to particular strings can be calcu-
lated and added to the plot, but because of the presence
of n in the quantity plotted on the y-axis, a given string
gives a point for every relevant overtone. These overtones
all have the same value of α, so they make a regular verti-
cal column in the plot. Points are included here for the four
nylon strings for which results have already been shown.
The open symbols show the three strings from Figure 2,
while the stars show the string from Figure 1, at all the
tunings tested. The two cases plotted in Figure 1 were the
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Figure 5. (Colour online) Design chart for nylon strings. Solid
curves: contours of equal tension in steps of 10 N up to 300 N;
dashed magenta curves: contours of impedance Z0 at values
0.08, 0.2, 0.4, 0.8 Ns/m; black curves: damping threshold for
L = 0.65 m (dashed) and L = 0.5 m (dash-dot); vertical lines:
indications of breaking stress, see text. Discrete points mark all
tested nylon strings. Square, circle, diamond: strings from Fig-
ure 2 as shown in Figure 4; stars: all strings and tested frequen-
cies from [7, 13].

leftmost and rightmost of the set. For each string, the low-
est plotted symbol shows the fundamental n = 1, and then
to indicate the pattern without cluttering the plot with too
many points, symbols are plotted above it for n = 10, 20,
30. . .

To interpret the plot, consider first the thinnest string of
the set in Figure 2, indicated by square symbols towards
the right-hand side of Figure 4. Locating the contour cor-
responding to λ = 0.05, it can be seen that the closest
square symbol to that contour marks the value n = 50, so
the prediction is that this string should have about 50 over-
tones with damping lower than the chosen threshold. The
middle string from Figure 2 is indicated by circular sym-
bols, and because this string had the same length and the
same tuning as the thinnest string, they appear at the same
value of α. However, the circular symbols are wider apart,
and the λ = 0.05 contour passes between the two sym-
bols marking n = 20 and 30. So for this string, roughly
25 overtones should have damping below the threshold.
Comparing the two, the prediction is that the bandwidth
of lightly-damped string modes should be roughly twice
as big for the thinner string. Looking at where the plot-
ted points run out in Figure 2, this prediction matches the
observations quite well.

The thickest string from Figure 2 is indicated in Fig-
ure 4 by diamond symbols, towards the left-hand side. For
this string, even the symbol corresponding to n = 10 lies
above the λ = 0.05 contour, so the prediction is that this
string should have very few lightly-damped overtones. Re-
call that the criterion underlying this plot captures only the
damping due to viscoelasticity: for a very thick string like
this, the damping due to air viscosity takes over at low
frequency while the viscoelastic loss is still quite high, so
that in fact the model predicts that this string should have

no modes at all with low damping. That is exactly what the
measurements in Figure 2 revealed.

This criterion based on damping can now be incorpo-
rated into a design chart for string selection. For a given
string on a given instrument, the desired values of L and
f1 will be known, and the task is to select a string material
and gauge d. It is possible to summarise all the constraints
on string selection into a single chart with α = Lf1 on
the horizontal axis and d on the vertical axis. The string
tension T = πd2σ/4 = πρd2α2. This means that for a
given material, contours of equal tension can be plotted in
the chart, as illustrated for nylon in Figure 5. Note that the
values of tension shown here will be somewhat inaccurate
because they are based on the unstretched linear density of
the string, whereas the actual linear density of the stretched
string is a little lower [7, 8]. However, this is a small effect
and it makes no significant difference to the broad-brush
argument underlying the design chart presented here.

From Equation (8), the string impedance can be ex-
pressed as Z0 = πρd2α/2 and so impedance can also be
indicated on this chart. The set of magenta dashed curves,
falling towards the right, shows some selected contours of
equal impedance. If one wished to select a set of strings
with constant impedance, in the interests of equal loud-
ness, these lines indicate the trend that should be followed.

Discrete symbols have been added to Figure 5 to in-
dicate previously-studied nylon strings. Stars show the
strings from [7], each appearing as an approximately hor-
izontal row of stars showing the different tested tunings.
Open symbols correspond to those in Figure 4, for the
three strings whose properties were shown in Figure 2.
The vertical lines give an indication of the ultimate break-
ing stress of nylon strings. The solid line marks the highest
value of α for which a string survived the sequence of test-
ing described in [7] without breaking. But nylon does not
break immediately if this threshold is exceeded: what hap-
pens instead is that the string never stops creeping (and
thus requiring to be re-tuned), and eventually it will fail.
But many musical instruments are fitted with nylon strings
requiring a higher value of α: the most extreme the au-
thors have been able to find for an instrument in regular
professional use is the top string of the 8-string “Brahms
guitar” developed by luthier David Rubio in collaboration
with guitarist Paul Galbraith [20, 21]: the original version
of this guitar has a top string of length 630 mm, tuned to
440 Hz (A4), giving the value of α shown by the dashed
vertical line.

Now the damping criterion can be added. Because the
vertical axis depends on d rather than on β as in Figure 4,
the length L will make a difference. For a given value of
L, it is easy to take each value of α and use the expres-
sion for λ to calculate the threshold value of d for which
a string of that length would have a specified number of
overtones with damping lower than the chosen value. For
the purpose of plotting something that gives a good indi-
cation of practical limits, the lines shown here correspond
to requiring 10 overtones with λ < 0.05. This leads to
the rising curving lines in Figure 5. The dashed line is for
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L = 0.65 m, the length of the guitar strings shown by the
open symbols, while the dash-dot line is for L = 0.5 m,
the string length for the rig in which all the strings with
star symbols were tested. It is reassuring to see that the
two earlier examples of strings giving unsatisfactory sound
both lie above the relevant lines in this plot: the diamond
corresponding to the thickest string shown in Figure 2 lies
above the L = 0.65 m line, and the left-most star for the
string with diameter 1.2 mm, corresponding to Figure 1a,
lies just above the L = 0.5 m line.

To understand what this chart shows, it is helpful to look
at the schematic version plotted in Figure 6. For any given
instrument, the mechanical structure will impose an upper
limit on string tension. Practical considerations of play-
ing any plucked-string instrument enforce a lower limit on
tension. The string needs to be below its yield stress, or
at least to be not too far above that limit so that it survives
for long enough to be useful. Finally, the damping criterion
must be satisfied. The result is that the string needs to be
chosen from within a region of the plot like the one shown
shaded here, bounded by these various limiting conditions.
For a given value of α, varying the gauge results in moving
along a vertical line within this region. Moving upwards
will increase the tension and the impedance. However, es-
pecially if the value of α is fairly low, it also results in
moving closer to the curve giving the trend of the damping
limit. So, in very broad terms, a thicker string will tend to
be louder but less bright. Conversely, a thinner string will
have lower tension and impedance, and so be quieter but
brighter-sounding.

Corresponding charts can be plotted for the other string
materials for which mechanical properties are available.
Figure 7 shows the pair of charts for fluorocarbon strings.
These are qualitatively similar to the charts for nylon, but
with subtle differences in the shapes and positions of the
curves that will be shown to have musical consequences in
Sections 4.2 and 4.3. Figure 8 shows corresponding plots
for plain gut strings, and now the curves are quite differ-
ent. The lines in Figure 8a are straight rather than curved,
and this results in the damping threshold lines in Figure 8b
also being straight. The explanation lies in the “strain stiff-
ening” effect discussed earlier. The curvature in the lines
for the two synthetic polymer materials is a direct result
of the variation of E with α. Gut has a strain-independent
value of E, and for that case it can be deduced directly
from Equation (4) or (7) that the contours of λ are straight
radial lines as seen in Figure 8a. That in turn produces
straight lines in Figure 8b.

Both sets of plots include points for individual strings
similar to those shown for the case of nylon. Figure 7b in-
cludes points for all fluorocarbon strings and tunings tested
in [8]. One of these strings was selected to include in 7a,
the one with closest match of d to the 1.20 mm string cho-
sen for Figure 4. The vertical line in Figure 7b marks the
highest value of α for which a fluorocarbon string survived
the test programme described in [8] without breaking. The
authors have no information about the use of such strings
on instruments with higher values of α: but this is not
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Figure 6. (Colour online) Schematic version of design chart for
nylon strings as in Figure 5.
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Figure 7. (Colour online) Variation of λ and design chart for
fluorocarbon strings, in the same format as Figures 4 and 5
and with identical scales to those figures. Stars: all fluorocarbon
strings and tested frequencies from [8, 14].

surprising since the plot reveals that fluorocarbon breaks
at a lower value of α than nylon, so for instruments re-
quiring extreme values of α, nylon is likely to be chosen
in preference to fluorocarbon. Similarly, Figure 8b shows
stars for all the gut strings and tunings tested in [8], and
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Figure 8. (Colour online) Variation of λ and design chart for gut
strings, in the same format as Figures 4 and 5 and with identical
scales to those figures. Stars: all gut strings and tested frequencies
from [8, 14].

the string with the closest d value to 1.20 mm has been
selected to show in Figure 8a. The solid vertical line in
Figure 8b again marks the highest value of α for which a
string survived the test programme, and the dashed vertical
line marks the value corresponding to the highest string of
the harp which will be studied shortly. To unpack the sig-
nificance of all these charts, two case studies of practical
string selection will now be presented.

4.2. Case study: the lute

String choice can be a particularly tricky issue for pe-
riod instruments. There is some guidance from histori-
cal sources about the choice of stringing, but this typi-
cally dates from before the availability of precise mea-
suring equipment, and so the guidance is purely qualita-
tive. The lute is a case in point. Lutes began to appear
in European music and art around about the 15th century,
and the instrument continued to be played until about the
time of Bach, gradually evolving in form: see for example
[22]. The instrument has undergone a revival in the last 50
years or so. A case study to “reverse engineer” a particular
choice of stringing for an 8-course lute will be presented
here. This style of lute is typical of the late 16th century,
the time of Dowland. A lute of this kind would originally
have been strung with plain gut strings, but the set exam-

Table II. The string materials and nominal diameters (in mm) for
the 8-course lute string set, tuned in G based on A 440 Hz, and
with string length 0.625 m. ‘N’: Nylon string; ‘F’: Fluorocarbon
string.

Course Pitch (Hz) String 1 String 2

1 392.0 0.475 N Not present
2 293.7 0.52 N As string 1
3 220.0 0.725 N As string 1
4 174.6 0.900 N As string 1
5 130.8 0.91 F As string 1
6 98.0 1.25 F 0.775 N (196.0 Hz)
7 87.3 1.40 F 0.875 N (174.6 Hz)
8 73.4 1.60 F 0.925 N (146.8 Hz)

ined here consists of synthetic polymer strings, intended
to produce a similar sound and feel to gut.

The particular set studied here is offered commercially
for this purpose [23], without any explanation of the ra-
tionale behind the choices. The details of string length,
gauge, tuning and material are given in Table II. The
strings are a mixture of nylon and fluorocarbon, and at first
glance the underlying logic is not obvious. However, by
plotting them on the design charts for nylon and fluoro-
carbon it will emerge that the choice is entirely rational.

Figure 9a shows the nylon design chart as in Figure 5,
with various relevant points added. The three open sym-
bols are the same as in the earlier plots, for orientation.
The three star symbols show the top three strings of a typ-
ical modern classical guitar, which are usually of plain ny-
lon. The remaining symbols, plotted as filled squares of
various kinds for nylon and filled circles of various kinds
for fluorocarbon, correspond to the set of lute strings. The
full set has been plotted here, including the ones that are
in fact fluorocarbon. In a similar way, Figure 9b shows
the design chart for fluorocarbon as in Figure 7b, with the
same full set of points for the lute strings. In both plots, the
damping threshold curve has been plotted for two values
of L: 625 mm, the open string length of the particular lute
tested (solid lines), and 312.5 mm, the length at the octave
(dashed lines). Lutes of this period usually have no more
than 12 frets, so the dashed lines mark the shortest relevant
length. Armed with all this information, the string choices
will be discussed, starting from the highest string.

The top string of the lute lies to the right of the vertical
line in Figure 9a, whereas the top string of the classical
guitar lies to the left of it. It is indeed the case that gui-
tar top strings rarely break, whereas the top string of the
lute has a finite lifetime before it breaks through progres-
sive creep and eventual necking to failure. This top string
is traditionally a single string, but all the remaining strings
of the lute come in pairs called “courses”. It can be seen
in the plot that the 2nd, 3rd and 4th courses (all in nylon)
have essentially the same tension, around 30 N. There is
some historic evidence for choosing strings of equal ten-
sion in instruments of this period (for example it is recom-
mended by Mersenne in Harmonie Universelle [24]), so
this choice is obviously deliberate. Note that in an instru-
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Figure 9. (Colour online) Design charts for (a) nylon; (b) fluoro-
carbon as in Figures 5 and 7, annotated to illustrate case study of
lute stringing. Black curves: damping threshold for L = 0.625 m
(solid), L = 0.3125 m (dashed). Empty square, circle, diamond:
as in Figure 5; stars: top three strings of a typical set of classical
guitar strings; star-in-square: nylon strings for top four courses
of lute; star-in-circle: fluorocarbon strings for 5th course of lute;
plus-in-circle: fluorocarbon strings for courses 6, 7, 8 of lute;
plus-in-square: nylon strings for octave strings of courses 6, 7,
8 of lute.

ment like the lute where all strings have equal length, equal
tension automatically means “equal feel” from Equation
(10). The top string has somewhat higher tension, perhaps
to raise its impedance to compensate somewhat for the re-
duction in loudness as a result of being single, or perhaps
to increase the feel for a similar reason. The contour lines
for impedance show that the first and second courses have
similar values of impedance. As an aside, the top three
strings of the classical guitar (stars) show a rather simi-
lar pattern in this chart to the top three courses of the lute.

The 5th course, shown as a star-in-circle symbol,
presents a problem for nylon strings. If a nylon string at
this value of α was chosen with a gauge to give it the same
tension as courses 2, 3 and 4, it would lie close to the solid
curve indicating the damping roll-off for the open string
length. This would lead to a very unsatisfactory sound.
But the designer of the set of strings investigated here has
taken the sensible decision to switch to fluorocarbon for
this course. The corresponding symbol in Figure 9b falls
on the dashed curve, but lies well short of the solid curve.

This has been made possible by the subtle difference of
shape between the limit curves for nylon and fluorocarbon,
having its origin in the higher density and slightly different
Young’s modulus behaviour of fluorocarbon (see Table I).
The chosen gauge of the fluorocarbon strings for the 5th
course has resulted in essentially the same tension as the
nylon strings for the higher-frequency courses, as can be
seen by counting the contour lines in the two plots. How-
ever, the charts reveal that the impedance of this fluoro-
carbon string is rather greater than that of the higher nylon
courses.

For the three bass courses of the lute, even fluorocarbon
strings suffer from the problem of high damping. The three
strings are plotted as plus-in-circle symbols: all three lie
near or beyond the solid curve in the fluorocarbon dia-
gram, although it can be seen that the gauges have been
chosen to continue the constant-tension pattern. To deal
with this problem, standard lute stringing uses a trick. In-
stead of having two strings in unison, as was the case for
the other courses, the second string of each pair is tuned
an octave higher: these octave strings are indicated by the
plus-in-square symbols, and the string set specifies nylon
for these strings at approximately the same tension as the
other strings. The player plucks the two strings simulta-
neously, with the result that the bass string gives the de-
sired fundamental frequency component, while the octave
string (which lies below the solid curve) is able to give ac-
ceptable brightness to the tone by contributing a spread of
higher overtones.

In summary, the designer of this string set has done an
excellent job by mixing the two different string materials.
The only detail one might question is whether the three oc-
tave bass strings might have been specified in fluorocarbon
(with suitably modified gauges) rather than nylon, to give
them a little extra brightness. But even here, the decision
may have been deliberate: a player probably does not want
the octave string in a bass course to sound too prominently,
because that might impair the illusion of a combined string
sound with both low frequency components and bright-
ness at higher frequencies. As a final comment on this case
study, it should be noted that the damping roll-off predic-
tions based on the chosen threshold value λ = 0.05 are in
very good general agreement with the subjective impres-
sions of a player.

4.3. Case study: the harp
A sharply contrasting case study in string choice is given
by the harp. Again, this discussion is an exercise in reverse
engineering: the information to be shown here is based on
the chosen set of gauges for either nylon or gut strings on
a particular pedal harp. There is an interesting issue to be
explained. Many harpists, especially in Europe and North
America, prefer gut strings, on grounds of “sounding bet-
ter”. They tend to regard nylon strings as only suitable
for beginners. But virtually all classical guitarists have
switched from gut to nylon strings, the only exceptions be-
ing those specifically choosing to play period instruments
in an authentic style. A possible explanation for this dif-
ference of opinion will be suggested in this section.
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Figure 10. (Colour online) Design charts for (a) nylon; (b) gut
as in Figures 5 and 8, annotated to illustrate the case study
of harp stringing. Dashed curves: damping threshold for L =
0.2, 0.4, 0.6, 0.8, 1.0 m, in alternating colours. Squares: selected
stringing for a particular harp, with colours that alternate in the
same pattern as the damping threshold curves (see text for de-
tails).

Figure 10 shows versions of the nylon and gut design
charts, with points marked for the top 35 strings of the cho-
sen harp (a Russian-made Elysian Cecilia 46 pedal harp).
The string lengths and gauges used are shown in Table III.
The lower notes of this harp used metal overwound strings,
outside the scope of these design charts. A distinctive fea-
ture of the harp, of course, is that each string has a dif-
ferent length. This means that each string strictly needs it
own version of the damping roll-off curve. In an attempt
to show the pattern sufficiently clearly, a set of curves has
been plotted for string lengths 0.2, 0.4, 0.6, 0.8 and 1.0 m,
covering the range of the actual string lengths. The curves
are plotted in alternating colours, and the discrete symbols
for the individual strings switch colour in the same pat-
tern, as the string length passes the values corresponding
to these plotted curves. (The two strings longer than 1 m
are shown with black symbols.) What is revealed in both
plots is that the string choice has stuck rather close to the
damping threshold used in these calculations, over the en-
tire range: the symbol colours change in a manner that is
approximately synchronised with the plotted curves.

The other conspicuous feature of these plots is that the
string tension increases steadily from treble to bass over

Table III. String lengths and diameters for the harp string sets.
Strings are numbered according to the harp convention, and the
corresponding notes on the piano scale are given. The gut string
gauges are from Bowbrand’s “Pedal Light” range [25]. The ny-
lon string gauges are based on Bowbrand’s “Pedal Nylon” range,
with scaling adjustments to provide a better comparison with the
gut “Pedal Light” range, which uses slightly thinner strings for
some notes than the “Pedal Standard” gut range. Fluorocarbon
(“Carbon”) gauges are suggested, based on the scaling approach
described in the text.

String Note Length Gut Nylon Carbon
(mm) (mm) (mm) (mm)

00 G7 73 0.41 0.40 0.35
0 F7 81 0.43 0.41 0.37
1 E7 87 0.45 0.43 0.39
2 D7 95 0.47 0.47 0.40
3 C7 103 0.50 0.50 0.43
4 B6 113 0.55 0.56 0.47
5 A6 122 0.60 0.62 0.51
6 G6 133 0.64 0.66 0.55
7 F6 144 0.66 0.69 0.57
8 E6 154 0.68 0.72 0.58
9 D6 169 0.72 0.75 0.62
10 C6 182 0.76 0.79 0.65
11 B5 197 0.80 0.82 0.69
12 A5 213 0.85 0.84 0.73
13 G5 231 0.88 0.88 0.75
14 F5 250 0.92 0.94 0.79
15 E5 272 0.95 0.99 0.81
16 D5 293 1.00 1.05 0.86
17 C5 315 1.05 1.10 0.90
18 B4 341 1.10 1.14 0.94
19 A4 367 1.15 1.18 0.98
20 G4 397 1.20 1.25 1.03
21 F4 433 1.25 1.32 1.07
22 E4 468 1.30 1.36 1.11
23 D4 507 1.35 1.42 1.16
24 C4 550 1.45 1.47 1.24
25 B3 599 1.55 1.55 1.33
26 A3 653 1.65 1.72 1.41
27 G3 714 1.75 1.79 1.50
28 F3 775 1.80 1.81 1.54
29 E3 843 1.85 1.90 1.58
30 D3 907 1.90 1.97 1.63
31 C3 965 2.00 2.01 1.71
32 B2 1018 2.05 2.06 1.76
33 A2 1067 2.20 2.20 1.88

the entire range of the instrument, reaching tensions far
higher than those seen earlier for the guitar, let alone for
the lute. The tensions approach the 300 N limit of the con-
tours plotted here. It may have been noted in the earlier
plots, Figures 5, 7b and 8b, that the test points for the ear-
lier studies [7, 8] ceased at about the same tension. This is
not a coincidence: the test rig for those earlier studies was
designed with harp strings in mind, with a load cell set up
for a force measurement limit of 300 N.

As a result of these two features of the stringing choices,
the harp explores the region of the design charts where
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the nylon and gut results are most different. The straight
lines of the gut chart give a little more “headroom” than
the curves of the nylon chart, and this may be the key to
harpists’ preference for gut strings. Figure 11 gives direct
comparisons for several important quantities between the
nylon and gut stringings, shown as the two solid lines in
each plot. The first subplot shows the string impedance,
as a function of string number (harp strings are numbered
from highest to lowest, starting with the highest strings
being labelled 00 and 0, then 1, 2, 3 etc.). The values for
nylon and gut follow a similar trend, but the nylon strings
have consistently lower values across the whole range. The
string impedance rises dramatically towards the bass end
of the instrument, since both mass per unit length and ten-
sion have been chosen to increase as the strings get longer.
Harp strings are certainly not selected with an eye to con-
stant impedance, to result in constant loudness: as is shown
by the contour lines of impedance in Figure 10, that would
require tension to decrease, not increase, for the longer
strings.

The clue to this apparently perverse choice may come
in the second subplot of Figure 11: the increasing tension
for longer strings means that the “feel” only varies rather
slowly across the range of the instrument. From Equa-
tion (10), longer strings require higher tension to maintain
“feel” at similar values. As with the impedance, the gut
and nylon strings follow similar trends in this plot, with
nylon having consistently lower values.

The remaining subplots show two different views of the
predicted damping roll-off frequency, according to the cri-
terion used in all calculations here. The first of these plots
shows the number of string overtones passing the thresh-
old test, while the second turns this number into a fre-
quency bandwidth by using the relevant fundamental fre-
quencies. A clear difference is seen between nylon and gut:
the gut strings have a significantly wider bandwidth than
the nylon strings, across the entire range. The reason is the
increased “headroom” mentioned above. The attempt to
limit the variation of “feel” has forced the use of very high
tensions, and this inevitably runs the danger of approach-
ing uncomfortably close to the damping roll-off threshold.
Nylon suffers from this problem to a greater extent than
gut, and so these results strongly suggest that gut strings
will sound brighter than nylon strings over the entire range
of the harp. This is true even though the gauges of the ny-
lon strings have been chosen to give lower tension than the
gut strings: a compromise has been struck between loud-
ness and brightness.

This observation seems a strong candidate for explain-
ing players’ continued preference for gut strings, despite
the disadvantages of higher cost and higher sensitivity to
changing environmental conditions [8]. Figure 9a shows
why guitarists can afford to make a different choice. The
plain nylon strings of a classical guitar do not fall in the
region of the design chart where there is such a big differ-
ence between gut and nylon, and so they opt for the con-
venience and practicality of synthetic strings. They some-
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Figure 11. (Colour online) For the harp stringing as in Figure 10,
variation with string number of (a) impedance Z0; (b) feel γ; (c)
number of overtones with damping lower than chosen threshold;
(d) damping threshold as in (c), expressed as bandwidth. Blue:
nylon strings; red: gut strings; dashed black: fluorocarbon strings,
with diameters scaled from gut as described in text.

times opt for fluorocarbon rather than nylon, especially for
the 3rd string, just as the charts suggest.

Harpists are also showing a growing enthusiasm for
fluorocarbon strings, saying that they “sound more like
gut”. The analysis presented here sheds light on this claim.
This choice of string material is sufficiently new that there
is not yet a well-established choice of string gauges for the
harp. Results are shown here for a particular choice. Start-
ing from the specification of the gut strings, string diam-
eters d for fluorocarbon can be chosen by scaling the gut
values by a factor 0.86, which is the square root of the den-
sity ratio of the two materials. That has the result of giving
the two sets of strings the same mass per unit length, and
hence the same tension. It follows that the impedance and
the feel will be identical (at least in this limited sense of
the word “feel”).

The dashed lines in Figure 11 show the results of this
choice. The lower two subplots show that the fluorocarbon
strings consistently beat nylon strings in terms of damp-
ing roll-off. The values fall quite close to those for the gut
strings, and for the lower strings they even beat them. It
seems that fluorocarbon strings, with this choice of gauges,
should indeed sound “more like gut”, and for the lower-
frequency strings they should actually sound brighter than
gut. Of course, one would not in fact want to use fluor-
ocarbon for the highest strings of the harp: nylon would
still be used on grounds of strength. However, there is no
problem with brightness of nylon for the highest strings:
all three curves show a bandwidth which exceeds the lim-
its of human hearing, so that in practice the bandwidth will
be determined by the details of the player’s pluck gesture.
There might even be advantages in the higher damping of
nylon if there is a danger of harshness in these highest
notes.
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5. Discussion and Conclusions

The choice of string materials and gauges for musical in-
strument use is influenced by several factors. There are
limits on tension arising from practical considerations of
strength and playability, and there is an upper limit on
stress so that the string does not break. These are very fa-
miliar, but it has been shown here that there is also a less
familiar limit arising from the influence of material damp-
ing. For the particular case of monofilament strings of a
given material, it has been shown that all these factors can
be represented in a single design chart. Such charts give a
synoptic view, shedding new light on the selection process.
It must be emphasised again that all the “limits” shown in
these charts should be regarded as approximate. The in-
tention is to show trends to guide the process of selecting
a coherent set of strings for an instrument, not to show
ultra-precise numerical values. Ultimately, the musician’s
ears are still the most important item of test equipment.

Examples of the design charts have been shown for ny-
lon, fluorocarbon and natural gut strings and, based on
these charts, detailed case studies for the stringing of a
lute and a harp have been presented. In both cases, the
selection process has been shown to be significantly in-
fluenced by the new limit associated with damping. This
has given possible explanations for two observations: why
many harpists still prefer gut over nylon whereas classi-
cal guitarists have almost universally switched from gut to
nylon, and why fluorocarbon strings are gaining in popu-
larity over nylon in certain contexts because they are said
to sound more like gut.

The damping limit has been expressed in terms of a
threshold value of the parameter λ, defined in Equation
(4), quantifying the influence of the string’s bending stiff-
ness. Interestingly, the same parameter governs the extent
of inharmonicity in the string’s overtones, also associated
with the effect of bending stiffness. The fact that these two
effects are directly connected in this way may have percep-
tual significance, and it may shed new light on some previ-
ously published perceptual experiments relating to inhar-
monicity. Järveläinen et al. [26] used synthesised tones to
establish perceptual thresholds for the timbral effects of
inharmonicity. They concluded that the inharmonicity ef-
fect should be clearly audible in standard classical guitar
strings, especially the 3rd and 6th strings. But a later study
by the same group [27] used manipulated sounds based on
“authentic guitar sounds”, and reached a different conclu-
sion: they state that inharmonicity should be barely audible
in classical guitar sounds.

This second study differed from the first in how the
damping of the string overtones was modelled. The ref-
erence does not give very much detail, but it seems clear
that the authors were not aware of the direct linkage be-
tween inharmonicity and damping behaviour. The results
presented here suggest that it might be worthwhile to carry
out a new perceptual test employing synthesised guitar-
like or harp-like tones for strings of different materials
and different gauges. The object of the test would be to

establish the threshold of perception for a change in the
value of λ, taking into account both the inharmonicity and
the damping effect. Such a test would yield results of di-
rect applicability to musical strings of the kind discussed
here. Rather than being restricted to strings on a particular
instrument by manipulating measured sounds, the results
should generalise to strings of a given type in any musical
context.

The detailed results presented in this work have all re-
lated to monofilament strings of synthetic polymer or nat-
ural gut. But a few comments can be added in relation to
the other main types of musical string: monofilament metal
strings, and metal-overwrapped strings with either metal
or polymer cores. The methods used here would carry
across directly to monofilament metal strings, but the loss
factor ηE for relevant metals such as piano wire usually has
a value at least an order of magnitude smaller than those
seen earlier for polymeric materials. Valette has presented
measurements on metal strings [3] which demonstrate that
the damping model still works well, but such strings do
not exhibit a “damping roll-off” in the sense explored in
this work: the total loss factor ηn at high frequency never
falls below ηE whatever happens, and so modal damping
is always low enough to be “musically acceptable”.

Overwrapped strings are more complicated, and de-
tailed analysis lies outside the scope of this article. The
rationale of overwrapped strings is to increase the mass
per unit length while limiting the effects of bending stiff-
ness. Various details of the construction of such strings
contribute to the sound they make: the choice of core
material and of wrapping material(s), the relative thick-
nesses of core and wrapping, and the details of the wrap-
ping procedure all play a role. Valette [3] has shown di-
rect evidence that the tightness of the windings of a metal-
wrapped string can have a large effect on the damping be-
haviour, because tight windings introduce a new damping
mechanism associated with dry friction, whereas an open
winding eliminates this effect.

Initially tight windings will loosen a little as the core
stretches under tension, particularly with polymer-cored
strings. This suggests that the sound of the string will
change a little as the string stretches and settles. However,
this is not the only mechanism for the sound of wrapped
strings changing over time. It is very familiar to guitarists
that new strings lose their “twang” as they age. Convinc-
ing evidence has been shown that suggests a mechanism
for this change: dirt and grease from the player’s fingers
gradually penetrates between the windings of the string,
changing the damping behaviour [28]. It has been shown
that this effect can be represented within a damping model
of the kind used here by an increase in the effective value
of ηE , exactly as one would guess from the mechanism just
described [29]. That brings the string-ageing phenomenon
into contact with the earlier discussion in this article: the
change in sound of an ageing guitar string results from
a gradual decrease in the damping roll-off frequency, not
because λ is changing but because the effective threshold
value of λ falls as ηE increases.
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