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Abstract

We present a sound and complete model theory for theories of β-reduction
with or without η-expansion. The models of this paper derive from structures
of modal logic: we use ternary accessibility relations on ‘possible worlds’ to
model the action of intensional and extensional lambda-abstraction in much
the same way binary accessibility relations are used to model the box operators
of a normal multi-modal logic.
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1 Introduction

We extend the method of [6] by which we interpret λ-terms compositionally on
‘possible world’ structures. The simplicity of the structures is striking, moreover,
they provide a surprising richness of interpretations of function abstraction and
application.

Our primary goal is to show how the models can differentiate between extensional
and intensional λ-equality, and provide semantic characterisation (i.e. completeness)
theorems for both. We shall then hint at how richer λ-languages can be interpreted.

We are very grateful to the input and suggestions of the referees of this journal paper and of its
previous incarnation as a conference paper at CiE 2012.
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The key idea in this paper is a class of models, presented in Section 2.2, although
an important syntactic consideration is required first in Section 2.1. These ideas
bear some similarity to the reduction models of [18] in that they get us as far
as λ-reduction only. Then, in Section 4 we use the results of the earlier sections to
provide a characterisation theorem for λ-equality (both with and without η-equality,
i.e. extensional and intensional).

2 The models, computation, logic

2.1 The language and logic

Definition 2.1. Fix a countably infinite set of variables.
Define a language Lλ of λ-terms by: t ∶∶= x ∣ λx.t ∣ t⋅t

λx binds in λx.t. For example, x is bound (not free) in λx.x⋅y.
We write t[x/s] for the usual capture-avoiding substitution. For example,

(λz.y)[y/x] = λz.x, and (λx.y)[y/x] = λz.x where z is an arbitrary fresh variable.
If x1 . . . xn is a sequence of variables and t1 . . . tn is an equally long sequence of
terms then we write t[xi/ti] for the simultaneous substitution in t of each xi by its
corresponding ti.

We write t[x∶−s] for the (unusual) non-capture avoiding substitution. For ex-
ample, (λx.x)[x∶−y] = λx.y, and (λx.y)[y∶−x] = λx.x

We now turn to λ-reduction. It is important for us to consider not merely the
relation of λ-reduction, but a relation of λ-reduction with assumptions. We therefore
need to define some basic, and familiar, rules of λ-reduction but allow for a set of
assumed additional reductions.

Remark 2.2. We shall define a basic relation on terms that follows the familiar
reduction rule of β-contraction (Definition 2.3). To help with the completeness the-
orem of Section 3 we will need to consider a conservative extension of the familiar
λ-calculus (Definition 2.5). To facilitate the proof that this extension really is con-
servative (Theorem 2.8), we present the λ-calculus in the non-axiomatic style of [12,
Def. 1.24].

Definition 2.3. Let Γ be a set of pairs of terms of Lλ. We define a reduction

relation Ð→Γ on terms of Lλ using Figure 1. A derivation is a sequence of terms
t1, . . . ,tn such that ti Ð→Γ ti+1 for each 1 ≤ i < n.

Remark 2.4. If Γ = ∅ then Ð→Γ is the familiar relation of untyped β-reduction.

Definition 2.5. Define L∗λ by: t ∶∶= x ∣ λx.t ∣ t⋅t ∣ t ∗ t
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Let x occur free only once in t. Let x1 . . . xn be any sequence of variables and t1 . . . tn

be any (equally long) sequence of terms.

(β) t[x∶−(λx.s)⋅r] Ð→Γ t[x∶−s[x/r]]
(ass) t[x∶−s[xi/ti]] Ð→Γ t[x∶−r[xi/ti]] (⟨s, r⟩ ∈ Γ)
(α) t[x∶−λy.s] Ð→Γ t[x∶−λz.s[y/z]]

The rule (ass) says that any (capture avoiding) substitution instance of s may be
replaced in any t, without worrying about variable capture, by its matching substi-
tution instance of r.1

Figure 1: λ-reduction for Lλ

Let x occur free only once in t. Let x1 . . . xn be any sequence of variables and t1 . . . tn

be any (equally long) sequence of terms.

(β) t[x∶−(λx.s)⋅r] Ô⇒Γ t[x∶−s[x/r]]
(ass) t[x∶−s[xi/ti]] Ô⇒Γ t[x∶−r[xi/ti]] ⟨s, r⟩ ∈ Γ

(α) t[x∶−λy.s] Ô⇒Γ t[x∶−λz.s[y/z]]
(β∗) t[x∶−(λx.s) ∗ r] Ô⇒Γ t[x∶−s[x/r]]
(sub) t[x∶−s⋅r] Ô⇒Γ t[x∶−s ∗ r]
(η∗) t[x∶−s] Ô⇒Γ t[x∶−λy.(s ∗ y)] (y not free in t)

Figure 2: λ-reduction for L∗λ

Definition 2.6. Let Γ be a set of pairs of terms of Lλ (not L∗λ). Define a reduction
relation Ô⇒Γ on terms of L∗λ using Figure 2. Again, a derivation is a sequence of
terms t1, . . . ,tn such that tiÔ⇒Γ ti+1 for each 1 ≤ i < n.

Remark 2.7. Notice that we do not allow terms unique to L∗λ to be assumptions
in derivations. This is because the paper is concerned with characterising reduction
and equality only in the more familiar language Lλ, and L∗λ is merely a means to
that end. Allowing assumed reductions for L∗λ causes problems for the Theorem 2.8.

Theorem 2.8. If t1 and t2 are terms of Lλ then t1 Ô⇒Γ t2 implies t1 Ð→Γ t1.
In other words Ô⇒Γ is conservative over Ð→Γ.

1So for example if ⟨x, λy.(x⋅y)⟩ ∈ Γ then Ð→Γ is a reduction relation allowing η-expansion: s

may be rewritten, inside any term t, to λy.(s⋅y) provided the lambda-operator λy does not bind in
s (although variables in s may be bound by abstractions in the wider context t.



Gabbay and Gabbay

Proof. Suppose that t1 Ô⇒Γ t2, where t1, t2 ∈ Lλ. We argue that any such deriva-
tion can be converted into a derivation that t1 Ð→Γ t2.

We first argue that any application of (η) or (sub) can be pushed after an appli-
cation of any other rule or eliminated entirely.

• Suppose we have the following derivation segment:

t[x∶−s]
(η∗)

Ô⇒Γ t[x∶−λy.(s ∗ y)]Ô⇒Γ t[x∶−λy.(s′ ∗ y)]

where s′ is derived from s by an application of any rule, then we may easily
swap the rule applications:

t[x∶−s]Ô⇒Γ t[x∶−s
′]

(η∗)

Ô⇒Γ t[x∶−λy.(s′ ∗ y)]

• The cases where t′[x∶−s] is derived from t[x∶−s] is similar. For example:

t[z∶−r[x∶−s]]
(η∗)

Ô⇒Γ t[z∶−r[x∶−λy.(s ∗ y)]]
(ass)

Ô⇒Γ t[z∶−r′[x∶−λy.(s ∗ y)]]

may be replaced, given that Γ contains only terms from Lλ,2 by:

t[z∶−r[x∶−s]]
(ass)

Ô⇒Γ t[z∶−r′[x∶−s]]
(η∗)

Ô⇒Γ t[z∶−r
′[x∶−λy.(s ∗ y)]]

There are also the following three special cases:

t[x∶−s⋅r]
(η∗)

Ô⇒Γ t[x∶−λy.(s ∗ y)⋅r]
(β)

Ô⇒Γ t[x∶−s⋅r]
becomes
t[x∶−s⋅r]

t[x∶−s ∗ r]
(η∗)

Ô⇒Γ t[x∶−λy.(s ∗ y) ∗ r]
(β∗)

Ô⇒Γ t[x∶−s ∗ r]
becomes

t[x∶−s ∗ r]

t[x∶−s]
(η∗)

Ô⇒Γ t[x∶−λy.(s ∗ y)]
(α)

Ô⇒Γ t[x∶−λz.(s ∗ z)]
becomes

t[x∶−s]
(η∗)

Ô⇒Γ t[x∶−λz.(s ∗ z)]

• By a similar reasoning it follows that (sub) can be pushed in front of any other
rule, with the exception of the special case of the derivation segment

t[x∶−λy.s⋅r]
(sub)

Ô⇒Γ t[x∶−λy.s ∗ r]
(β∗)

Ô⇒Γ t[x∶−s[y/r]]
2And so the application of (ass) cannot depend on the preceding application of (η∗).
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which may be replaced by:

t[x∶−λy.s⋅r]
(β)

Ô⇒Γ t[x∶−s[y/r]]

It follows that any derivation may be replaced by a derivation where the last appli-
cation is an instance of (η) or (sub), if either appears in the derivation at all. Since
(η) and (sub) introduce an instance of ∗, if t2 ∈ Lλ then no instances of (η) or (sub)
occur in the derivation. Furthermore, since t1 ∈ Lλ it follows that the derivation
contains no instances of (β∗) or occurrences of ∗. This implies that t1 Ð→Γ t2.

2.2 Frames and interpreting λ-terms

Given Theorem 2.8 we will work with L∗λ.

Definition 2.9. If W is a set, write P(W ) for the set of subsets of W .

An intensional frame F is a 4-tuple (W,●,○, H) where:

−W a set of worlds,

− ● and ○ are functions from W ×W to P(W ) such that ● ⊆ ○.

−H ⊆ P(W ).

Remark 2.10. Subsets of W will serve as denotations of λ-terms (Definition 2.13)
and H ⊆ P(W ) (‘H’ for ‘Henkin’) plays a similar role to the structure of Henkin
models for higher-order logic [2, 11, 19]. This makes our completeness results possible
and is a famous issue for second- and higher-order logics: powersets are too large
and for completeness results to be possible we must cut them down — at least when
we quantify. This is why in Definition 2.13, the binders restrict quantification from
P(W ) down to H.

The reader familiar with modal logic can think of ● and ○ as ternary ‘accessibility
relations’ R● and R○ such that R●w1w2w3 if and only if w3 ∈ w1 ●w2 (and similarly
for R○). We can also think of ● and ○ as non-deterministic ‘application’ operations,
but note that intensional frames are not applicative structures — an applicative
structure would map W ×W to W , whereas in the case of intensional frames, W ×W

maps to P(W ).

Definition 2.11. Let F = (W,●,○, H) be an intensional frame and S1, S2 ⊆ W

and w ∈ W . Then the functions ● and ○ induce functions from W × P(W ) and
P(W ) × P(W ) to P(W ) by: w ● S = ⋃{w ● w′ ∣ w′ ∈ S} and S1 ● S2 = ⋃{w1 ● w2 ∣
w1 ∈ S1, w2 ∈ S2} (and similarly for ○).
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Definition 2.12. Suppose F = (W,●,○, H) is a frame. A valuation (to F ) is a map
from variables to sets of worlds (elements of P(W )) that are in H. v will range over
valuations.

If x is a variable, h ∈H, and v is a valuation, then write v[x ↦ h] for the valuation
mapping x to h and mapping y to v(y) for any other y.

Definition 2.13. Define an denotation of t inductively by:

[[x]]v = v(x) [[t⋅s]]v = [[t]]v ● [[s]]v [[t ∗ s]]v = [[t]]v ○ [[s]]v

[[λx.t]]v = {w ∣ w ○ h ⊆ [[t]]v[x↦h] for all h ∈H}

Remark 2.14. By elementary set theory: [[λx.t]]v = ⋂h∈H{w ∣ w ○ h ⊆ [[t]]v[x↦h]}
We are particularly interested in frames where the denotation of every λ-term is a

member of H. This is because Definition 2.13 interprets λ as a kind of quantifier over
all members of H. β-reduction is then valid analogously to universal instantiation
in first order logic (∀x.Fx ⊧ Ft),3 and so requires that every possible instantiation
(i.e. every term denotation) is a member of H.

Remark 2.15. Consider the definition of application and abstraction in a graph
model with carrier set P(A) (Scott semantics), where ↦∶ Pfin(A) × A ↦ A is an
arbitrary injective map and v ∶ V ar ↦ P(A) is an arbitrary environment:

X ● Y ={α ∣ (∃a ⊆fin A) s.t. a ↦ α ∈X and a ⊆ Y } (X, Y ⊆ A)
[[λx.t]]v ={a ↦ α ∣ α ∈ [[t]]v[x↦a]} (t a lambda term)

={a ↦ α ∣ (∀h ∈ P(A)){a ↦ α} ● h ⊆ [[t]]v[x↦h]}

Very roughly speaking (our construction is more general), the above definitions of
application and abstraction in graph models are abstracted in this paper as follows,
where H is a fixed subset of P(A):

● ∶H ×H ↦H =any linear map in both arguments

[[λx.t]]v ={α ∣ (∀h ∈H){α} ● h ⊆ [[t]]v[x↦h]}

where v ∶ V ar ↦ H is an H-environment. This semantics is of perhaps of additional
interest because it does not codify the step functions of continuous semantics.

Lemma 2.16. 1. If x is not free in t, then for any h ∈H, [[t]]v = [[t]]v[x↦h].
2. [[t[x/s]]]v = [[t]]v[x↦[[s]]

v ]

3Perhaps a better analogy would be ∀x.(F x → Gx) ∧ F t ⊧ Gt, where conjunctions corresponds
to ⋅ and the quantified expression corresponds to a λ-term.
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Proof. Both parts follow by easy inductions on t.

Definition 2.17. A frame is faithful when for every v and every t ∈ Lλ, [[t]]v ∈H.
That is, a frame is faithful when H contains the interpretation of every λ term in
Lλ independently of v.

Remark 2.18. Definition 2.17 is not ideal. A semantic characterisation of faith-
fulness — as a condition on H, ● and ○ — is desirable. We cannot present such a
charactersiation in this paper except in the special cases of theories of β-equality
which we defer until 5.1 of Section 5. In spite of this, the structures characterised
by 2.17 are informative because they allow us to break down λ-abstraction into a
quantification over worlds with a ternary accessibility relation; the denotations of
λ-terms then become simply sets of worlds. On this analysis the domain of quan-
tification for λ-abstraction — the actual set of denotations of λ-terms — is H, a
subset of the set of all possible denotations P(W ). This is a common pattern, for
example in topological semantics for modal logics and for intuitionistic logic the set
of denotations, the analogue of H, is the set of all open subsets of the domain rather
than the powerset itself. It is then no accident that H will reveal further signif-
icance: it will be useful later in characterising the difference between extensional
and intensional λ-calculus (see Remark 3.18). Unlike in the modal case, we offer
no general way in this paper of characterising H beyond simply saying that it must
contain [[t]]v for each valuation v and term t. For a considerably more complex
characterisation of H in topological terms see [8].

Lemma 2.19. If we interpret Ô⇒Γ as subset inclusion then all the rules of Figure 2
are sound for faithful intensional frames.

Proof. By routine calculations from the definitions. We show only (β) and (η∗) here,
the others are equally straightforward.

[[λx.t⋅s]]v

= [[λx.t]]v ● [[s]]v Definition 2.13

= ⋂h∈H{w ∣ w ○ h ⊆ [[t]]v[x↦h]} ● [[s]]v Definition 2.13

⊆ {w ∣ w ○ [[s]]v ⊆ [[t]]v[x↦[[s]]
v]} ● [[t]]v [[s]]v ∈H

⊆ {w ∣ w ● [[s]]v ⊆ [[t]]v[x↦[[s]]
v]} ● [[t]]v ● ⊆ ○

⊆ [[t]]v[x↦[[s]]
v ] Definition 2.11

= [[t[x/s]]]v Lemma 2.16

[[t]]v ⊆ ⋂h∈H{w ∣ w ○ h ⊆ [[t]]v ○ h} Definition 2.11

= ⋂h∈H{w ∣ w ○ h ⊆ [[t ∗ x]]v[x↦h]} x not free in [[t]]v

= [[λx.(t ∗ x)]]v Definition 2.13
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2.3 Soundness

Definition 2.20. −A model M is a pair ⟨F, v⟩ where F is a faithful intensional
frame and v is a valuation on F such that v(t) ∈H ∈ F for every t.

−A frame F is Γ-sensitive if [[t]]v ⊆ [[s]]v for every v and every ⟨t, s⟩ ∈ Γ.

−A model ⟨F, v⟩ is Γ-sensitive if F is Γ-sensitive.

Remark 2.21. We could have defined a model as a pair ⟨F, v⟩ where F is a (possibly
not faithful) frame and v is a valuation on F such that [[t]]v ∈ H ∈ F for every t.
But since the completeness theorem 3.12 holds for the stronger notion of a model
we shall use that. Intuitively a Γ-sensitive frame or model can be thought of as
giving ⟨t, s⟩ ∈ Γ the meaning that however the variables of t and s are interpreted,
t’s denotation is a subset of s’s.

Remark 2.22. This paper approaches lambda calculus from the angle of modal
logic and so we retain the ‘normal’ practice of describing the model theory in terms
of frames and models: a frame is sufficient to fix the interpretation of the closed
terms, and a model interprets the open terms (e.g. as in [10]. This also matches the
‘normal’ practice in the model theory of first order logic of distinguishing a structure
from a model – a structure together with a variable assignment – as in [3]. This
differs from the ‘normal’ terminology for lambda calculus which would use the term
‘model’ to refer to our frames (e.g. in [1]).

Lemma 2.23. ● and ○ are monotone. That is, h1 ⊆ h2 implies h ● h1 ⊆ h ● h2 and
h1 ● h ⊆ h2 ● h for any h, and similarly for ○.

Proof. By the pointwise definitions of ● and ○. For example:

h ● h1 = ⋃{w ●w1 ∣ w ∈ h and w1 ∈ h1} Def. 2.11
⊆ ⋃{w ●w1 ∣ w ∈ h and w1 ∈ h2} if h1 ⊆ h2

Lemma 2.24. If [[s]]v ⊆ [[r]]v for all v on some faithful F , then for any v on F

[[t[x∶−s]]]v ⊆ [[t[x∶−r]]]v

Proof. By induction on t.

− If t is a variable the result is easy.

− If t is t1⋅t2 or t1 ∗ t2 then the result follows from the induction hypothesis and
the monotonicity of ● and ○ (Lemma 2.23).
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− If t is λxt′, then t[x∶−s] is λx.t′[x∶−s]. And so:

[[λx.t′[x∶−s]]]v = ⋂h∈H{w ∣ w ○ h ⊆ [[t′[x∶−s]]]v[x↦h]} Def. 2.13

⊆ ⋂h∈H{w ∣ w ○ h ⊆ [[t′[x∶−r]]]v[x↦h]} Ind. Hyp
= [[λx.t′[x∶−r]]]v Def. 2.13

And the argument is similar if t is λy.t′ for y ≠ x

Theorem 2.25. tÔ⇒Γ s implies [[t]]v ⊆ [[s]]v in all Γ-sensitive (faithful) models
M .

Proof. Theorem 2.19 entails that each rule of Figure 2 holds in all models, and by
definition, if ⟨t, s⟩ ∈ Γ then [[t]]v ⊆ [[s]]v for all v in any Γ-sensitive model. The
result then follows by Lemma 2.24.

3 Completeness for λ-reduction

Ultimately, we wish to show that if t /Ð→Γ s then there is a Γ-sensitive model M

(Def. 2.20) where [[t]]v /⊆ [[s]]v. We first show that t /Ô⇒Γ s implies such an M

exists if t, s ∈ Lλ, and then we appeal to Theorem 2.8.

First we form the languages Lλc
,L∗λc

by adding infinitely many new constant
symbols c1, c2 . . . to Lλ and L∗λc

. Since the language is countable we can enumerate
its terms t1, t2 . . . , which may contain the new constants, and the new constants
alone c1, c2 . . . . We describe a one-one function f from terms to constants.

f(ti) = cj where j is the least number such that j > i and cj does not
occur in ti nor is the value under f of any tk for k < i.

Thus f is a one-one function that assigns a distinct ‘fresh’ constant to each term of
the language, so f(t) is a constant that ‘names’ t. These play the role of witness
constants in the construction of the canonical frame in Theorem 3.8. The f(t) also
help us carry out inductions on the size of λ-terms, as t[x/f(s)] is smaller than λx.t

even if t[x/s] might not be.

Definition 3.1. Define a reduction relation Ô⇒f
Γ

on terms of of L∗λc
by setting

tÔ⇒
f
Γ

s if tÔ⇒Γ s and using the rule:

(con)
t[x/s] Ô⇒f

Γ
t[x/f(s)]

t[x/f(s)] Ô⇒f
Γ

t[x/s]
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In other words, Ô⇒f
Γ

extends Ô⇒Γ with the rule (con), which makes t and its
corresponding f(t) inter-reducible.

Remark 3.2. Simply extendingÔ⇒Γ by insisting that {⟨t, f(t)⟩, ⟨f(t), t⟩} ⊆ Γ for
every t is not equivalent to defining Ô⇒f

Γ
as we have done above. For example,

consider the individual variable x: if f(x) is c and ⟨x, c⟩ ∈ Γ then by (ass), tÔ⇒Γ c

for any t.

Lemma 3.3. If t Ô⇒
f
Γ

s and neither s nor t contain any of the new constants
c1, c2 . . . , then tÔ⇒Γ s.

Proof. f is defined in terms of an enumeration such that r always precedes f(r).
Thus if we repeatedly substituting each instance of f(r) with r in a derivation,
eventually all will be eliminated. But then instances of (con) depending on become
trivial reductions rÔ⇒

f
Γ

r which can be removed without affecting the rest of the
derivation. Certainly the first and final terms t and s are unaffected as they never
contained any f(r) in the first place.

Definition 3.4. If t is a term let wt = {s ∣ tÔ⇒
f
Γ

s}. Thus wt is the closure of t

under Ô⇒f
Γ
.

Definition 3.5. Define the canonical λ-frame Fλ = ⟨Wλ,●λ,○λ, Hλ⟩:

Wλ = {wt ∣ t ∈ L∗λc
} Hλ = {{w ∣ t ∈ w} ∣ w ∈Wλ and t ∈ Lλc

}

wt ●λ ws = {w ∈Wλ ∣ t⋅s ∈ w} wt ○λ ws = {w ∈Wλ ∣ t ∗ s ∈ w}

Definition 3.6. Given Fλ = ⟨Wλ,●λ,○λ, Hλ⟩, and a term t of L∗λ, let ∥t∥ = {w ∈
Wλ ∣ t ∈ w}. Note that Hλ = {∥t∥ ∣ t ∈ Lλc

}

Remark 3.7. Given (sub) it is easy to see that ●λ ⊆ ○λ. Frames where the converse
does not hold are easy to construct (for example, Figure 3).

Theorem 3.8. Let Fλ be the canonical intensional λ-frame (Definition 3.5), let
v(x) = ∥x∥ for any variable x, and extend v so that v(c) = c for any constant c.
Then for any term t ∈ Lλc

, [[t]]v = ∥t∥.

Proof. By induction on t we show that w ∈ ∥t∥ (i.e. t ∈ w) iff w ∈ [[t]]v.

− t is a variable x. Then ∥x∥ = v(x) = [[x]]v by the definition of v.

− t is t1⋅t2. Then t1, t2 ∈ Lλc
.

Suppose t1⋅t2 ∈ w, and consider the worlds wt1
and wt2

in Wλ. If s1 ∈ wt1
and

s2 ∈ wt2
then by Definition 3.4, t1 Ô⇒

f
Γ

s1 and t2 Ô⇒
f
Γ

s2. Thus t1⋅t2 Ô⇒
f
Γ

s1⋅s2
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and s1⋅s2 ∈ w. Then by the definition of ●λ we have that w ∈ wt1
●λwt2

. Furthermore,
wt1
∈ ∥t1∥ and so by the induction hypothesis, wt1

∈ [[t1]]v. Similarly wt2
∈ [[t2]]v.

Hence w ∈ [[t1⋅t2]]v by Definition 2.13.

Conversely, suppose that w ∈ [[t1⋅t2]]v. Then there are ws1
, ws2

such that ws1
∈

[[t1]]v and ws2
∈ [[t2]]v and w ∈ ws1

●λ ws2
. By the induction hypothesis ws1

∈ ∥t1∥
and ws2

∈ ∥t2∥. Then s1 Ô⇒
f
Γ

t1 and s2Ô⇒
f
Γ

t2. Furthermore, by the construction
of ●λ, s1⋅s2 ∈ w and hence by (cong) t1⋅t2 ∈ w.

− t is λx.s. s ∈ Lλc
.

Suppose λx.s ∈ w1. Suppose that w3 ∈ w1 ○λ w2, and that w2 ∈ h for some h ∈ Hλ,
then h = ∥r∥ for some term r. By (ζf) we have that rÔ⇒

f
Γ

c and cÔ⇒
f
Γ

r for some
c ∈ Lλc

. So h = ∥c∥ and c ∈ w2. By the construction of ○λ, λx.s ∗ r ∈ w3 and so
s[x/c] ∈ w3 by (β∗), i.e. w3 ∈ ∥s[x/c]∥. Since s[x/c] ∈ Lλc

, it follows by the induction
hypothesis that ∥s[x/c]∥ = [[s[x/c]]]v. Furthermore by Lemma 2.16 [[s[x/c]]]v =
[[s]]v[x↦[[c]]

v ]. But by the definition of v, [[c]]v = ∥c∥, and so w3 ∈ [[s]]v[x↦∥c∥]. But
h = ∥c∥ so w3 ∈ [[s]]v[x↦h]. Thus w1 ∈ {w ∣ ∀h ∈Hλ.w ○λ h ⊆ [[s]]v[x↦h]} = [[(λx.s)]]v .
Hence, ∥λx.s∥ ⊆ [[(λx.s)]]v

Conversely, suppose that λx.s ∉ wr for some r. Let y be a variable not free in r

or s and consider the worlds wy and wr∗y. If s[x/y] ∈ wr∗y then r ∗ yÔ⇒
f
Γ

s[x/y],
so λy.(r ∗ y) Ô⇒f

Γ
λy(s[x/y]) by (ξ). But by our choice of y, (η) entails that

r Ô⇒
f
Γ

λy.(r ∗ y). So r Ô⇒
f
Γ

λy.s[x/y], which contradicts our initial supposition
that λx.s ∉ wr, therefore s[x/y] ∉ wr∗y. In other words wr∗y ∉ ∥s[x/y]∥. But
s[x/y] ∈ Lλc

, so by the induction hypothesis wr⋅y ∉ [[s[x/y]]]v. Since [[y]]v = ∥y∥,
it follows by Lemma 2.16 that wr⋅y ∉ [[s]]v[x↦∥y∥]. But clearly wr∗y ∈ wr ○λ wy, so

it follows that wr ∉ {w ∣ ∀h ∈ Hλ.w ○λ h ⊆ [[s]]v[x↦h]}. By the semantics of λy.s

this means that wr ∉ [[(λy.s)]]v . Hence, since every w ∈ Wλ is wr for some r,
[[(λx.s)]]v ⊆ ∥λx.s∥.

Lemma 3.9. If v1, v2 are any valuations on a frame F that such that

1. v1(x) = v2(x) for any variable x that occurs free in t,
2. v1, v2 are extended so that v1(c) = v2(c) for any constant c that occurs in t,

then [[t]]v1 = [[t]]v2 .

Proof. By an easy induction on t.

Lemma 3.10. If there is a valuation v on a frame F such that {[[t]]v ∣ t ∈ Lλ} =H,
then F is faithful. Hence the canonical frame Fλ is faithful.
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Proof. Suppose there is such a v, then we must show that for any valuation v′ and
any term t ∈ Lλ that [[t]]v

′
∈H. By the definition of a valuation, [[x]]v

′
∈H for any

variable x. So if [[t]]v
′
∉H then by Lemma 3.9

[[t]]v[x1↦[[x1]]
v′ ...xn↦[[xn]]v

′
] ∉H

where x1 . . . xn are the free variables of t. Now, by assumption, v is such that every
h ∈ H is [[s]]v for some s. It follows then that we can choose s1 . . . sn such that
[[si]]v = v[xi ↦ [[xi]]v

′
], and so:

[[t]]v[x1↦[[s1]]
v ...xn↦[[sn]]v] ∉H

This entails, by Theorem 2.16 that [[t[xi/si]]]v ∉ H. But this contradicts the as-
sumption that {[[t]]v ∣ t ∈ Lλ} =H.

Lemma 3.11. Fλ is Γ-sensitive.

Proof. We must argue that for ⟨t1, t2⟩ ∈ Γ and any v, [[t1]]v ⊆ [[t2]]v. Let x1 . . . xn

be the free variables of t1 and t2. Then v(xi) is some ∥si∥ ∈Hλ.
Let v′ be a valuation extended such that v′(r) = ∥r∥ for for any variable or

constant r (i.e. v′ meets the condition of Theorem 3.8). Then:

[[t1]]v = [[t1]]v
′[x1↦[[x1]]

v...xn↦[[xn]]v] Lemma 3.9

= [[t1]]v
′[x1↦∥s1∥...xn↦∥sn∥]

= [[t1]]v
′[x1↦[[s1]]

v′ ...xn↦[[sn]]v
′
] Theorem 3.8

= [[t1[xi/si]]]v
′

Lemma 2.16
= ∥t1[xi/si]∥ Theorem 3.8

and similarly for t2. But t1[xi/si] Ô⇒Γ t2[xi/si] by (ass), and so ∥t1[xi/si]∥ ⊆
∥t2[xi/si]∥ and so [[t1]]v ⊆ [[t2]]v.

Theorem 3.12. tÔ⇒Γ s if and only if [[t]]v ⊆ [[s]]v for all Γ-sensitive models.4

Proof. The left-right direction is Theorem 2.25.
If t /Ô⇒Γ s then s ∉ wt in Fλ. Therefore ∥t∥ /⊆ ∥s∥ and so by Theorem 3.8 there

is a valuation v such that [[t]]v /⊆ [[s]]v on the canonical frame Fλ. Furthermore, by
Lemmas 3.10 and 3.11, Fλ is faithful and Γ-sensitive.

Corollary 3.13. If t and s are terms of Lλ then t Ð→Γ s if and only if [[t]]v ⊆ [[s]]v

for all Γ-sensitive models.

4Equivalently: tÔ⇒Γ s if and only if [[t]]v ⊆ [[s]]v for any valuation v on any Γ-sensitive frame.
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Proof. Using Theorem 2.8 and the assumption that t and s are terms of Lλ we get
that t Ð→Γ s if and only if tÔ⇒Γ s

Definition 3.14. An extensional frame is an intensional frame where ● = ○, we
may define them simply as a triple ⟨W,●, H⟩. Similarly an extensional model is
a pair ⟨F, v⟩ where F is an extensional frame.

Corollary 3.15. Let Γ = {⟨x, λy.(x⋅y)⟩}. Then tÔ⇒Γ s if and only if [[t]]v ⊆ [[s]]v

for any faithful extensional model.

Proof. For the left-right direction it is a simple matter to apply the reasoning of
Theorem 2.25. For the right-left direction it is enough to note that:

t[x∶−s ∗ r]
(ass)

Ô⇒Γ t[x∶−λy(s⋅y) ∗ r]
(β∗)

Ô⇒Γ t[x∶−s⋅r]

so in the construction of the canonical frame Fλ of Theorem 3.8, ●λ = ○λ.

Remark 3.16. An extensional frame satisfies η-expansion. An intensional frame is
like an extensional frame except with an additional ‘outer’ application function ○.
We interpret λ in terms of the outer function and application in terms of the inner
function ● to block η-expansion (Definition 2.13). η-expansion will prove useful
in constructing models of λ-equality in Section 4. Other authors have also noted
reasons to include η-expansion in models [13].

Remark 3.17. Given 3.15, we can say that λ-reduction with η-expansion is complete
for extensional frames.

Remark 3.18. Notice also a crucial purpose served by H in the completeness proof.
Any subset of a frame is a potential denotation of a λ-term, and H may be seen
as listing the subsets that actually are denotations of λ-terms. We have used this
distinction to characterise intensional λ-reduction.

We took an (intensional) set of λ-reductions Γ (in Lλ) and we extended it using ∗
to help us interpret λ (Definition 2.5 and Theorem 2.8). Then, when we constructed
the frame (Definition 3.5) for Γ we left out of H the denotations depending explicitly
on ∗. We obtained a frame which is sensitive to all the reductions of Γ, in the
original language Lλ, but where the interpretation of λ still depends on ∗ which is
not mentioned in Γ (Theorem 3.8).

As we shall see, this provides a simple characterisation of intensional and ex-
tensional λ-abstraction. Abusing notation somewhat: extensional λx.t is something
that maps objects h in the domain to t(h); intensional λx.t is something maps ob-
jects h in the domain and also some in a hidden domain to t(h). Furthermore, the
‘hidden’ objects are the denotations of terms in L∗λ that require ∗.
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y

A solid arrow passing from w1 through w2 to w3 represents that w3 ∈ w1 ●w2, and
a dotted arrow represents that w3 ∈ w1 ○w2. H can be set as P(W ) and v(y) is as
indicated. Then the two worlds on the left (unfilled) both are in [[λx.(y⋅x)]]v and
[[λx.(y ∗ x)]]v, but only one is in [[y]]v.

Figure 3: A counterexample to η-reduction in an intensional model where W contains
4 worlds.

3.1 η-reduction

As already noted, if x is not free in t, then [[t]]v ⊆ [[λx.(t ∗ x)]]v in any intensional
frame. That is, η-expansion is satisfied by any frame, but what about η-reduction?
Figure 3 gives an example of a simple frame where [[y]]v /⊆ [[λx.(y⋅x)]]v (and since
● ⊆ ○, also [[y]]v /⊆ [[λx.(y ∗ x)]]v).

We can characterise η-reduction syntactically easily enough:

Definition 3.19. Let η−η−η− = {⟨λx.(y⋅x), y⟩}.

Then tÔ⇒η−η−η− s is the relation we want. Furthermore, we can use the complete-
ness theorem 3.12 to describe a class of models for which this relation is complete:

Definition 3.20. A frame is η-reductive when ⋂h′∈H{w ∣ w ○h′ ⊆ h●h′}⊆h for any
h.

Theorem 3.21. tÔ⇒η−η−η− s iff t ⊆ s in all η-reductive models.

Proof. It is straightforward to verify that t Ô⇒η−η−η− s implies that [[t]]v ⊆ [[s]]v in
all η-reductive models. Conversely, if t /Ô⇒η−η−η− s then [[t]]v /⊆ [[s]]v in the canonical
model for η−η−η−:

⋂
h′∈Hλ

{w ∣ w ○ h′ ⊆ ∥t∥ ● h′} = ∥λx.(t⋅x)∥ ⊆ ∥t∥

since each h ∈H is ∥t∥ for some t.
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4 Equality

Definition 4.1. Let βββ = {⟨t, λx.t⋅x]⟩ ∣ t ∈ Lλ}.

Corollary 4.2. When restricted to Lλ, Ô⇒βββ is the familiar relation of (intensional)
λ-equality, and by Theorem 3.12 is complete for βββ-sensitive models.

Remark 4.3. Corollary 4.2 is itself not so significant as it only tells us half the story
about what these models look like, and does not tell us if there are any non-trivial
ones. Of course, given independent nontriviality proofs for λ-equality,5 we can use
Theorem 3.12 to conclude that there are nontrivial βββ-sensitive models. This section
is concerned with producing a purely semantic characterisation of βββ-sensitivity. In
fact, in characterising βββ-sensitivity, we can complete Definition 2.17 and provide a
semantic characterisation of faithfulness.

The strategy we shall employ is as follows. First we introduce some shorthands
to stand in for constructions involving λ-expressions, so for example K⋅z will stand
in for (λxλy.x)⋅z. This will allow us to work with certain complex λ-expressions
as if they are free of the symbol λ. Then, for each t we describe a new term [x]t,
constructible only out of application and the new shorthands (effectively the familiar
combinator abstraction of [12, p.26], but extended to a language that includes the
λ-operator). Then, with the help of the completeness theorem 3.12, we describe
conditions in which a model (or frame) entails that [[t[x/s]]]v = [[[x]t⋅s]]v. It then
turns out that [[[x]t]]v ⊆ [[λx.t]]v and we thereby obtain models of β-expansion.

Definition 4.4. Define the following shorthands:

K=λxy.x

C =λxyz.((x⋅z)⋅y))
S =λxyz.((x⋅z)⋅(y⋅z))

Definition 4.5. − Say that an instance of λ in a term t is free if it is not part of
an occurrence of K, C, S in t.

−When defining or proving a property of a term t, we write ‘by induction on

(l, d)’ to describe an induction on the pair (l, d), lexicographically ordered, where
d is the number of occurrences of ⋅ in t and l is the number of occurrences of λ in
t that are free.6

5Nontriviality follows syntactically from the Church-Rosser property [12, Ch. A2], the cut-
elimination theorem of [5]; and it follows semantically from Scott’s famous model Dω [12, Ch. 16],
among others.

6More loosely, if we were to treat K, C, S as constants in t (i.e. not containing λ at all), then
l would be the number of occurrences of λ in t.
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Definition 4.6. For any t ∈ Lλ, define [x]t by induction on (l, d):

1. [x]x is (S⋅K)⋅K

2. [x]r is K⋅r if x is not free in r.

3. [x](s⋅r) is (S⋅[x]s)⋅[x]r

4. [x]λz.s is C⋅[z][x]s

Without loss of generality we assume that x and z are distinct in (4).

Lemma 4.7. If t ∈ Lλ then [x]t ∈ L∗λ and (1) is well defined, (2) contains no free
instances of λ, and (3) contains no free occurrences of x.

Proof. By induction on (l, d).

− If t is atomic or of the form s⋅r or s ∗ r then the result is easily proved.

− If t is λz.s then by the induction hypothesis [x]s is well defined and contains no
free occurrences of λ. So the induction hypothesis applies again and the same may
be said of [z][x]s. It then follows easily that the properties (1), (2) and (3) hold for
[x]λz.s.

Lemma 4.8. Suppose t ∈ Lλ and let variable v not occur in t, then [x](t[y/v]) =
([x]t)[y/v]

Proof. By induction on (l, d).

− If t is x then x[y/v] = x and so

[x]x = (S⋅K⋅)K Def. 4.6
= ([x]x)[y/v] y ∉ (S⋅K⋅)K

− If t is y then y[y/v] = v and [x]y =K⋅y. So:

[x]v = K⋅v Def. 4.6
= (K⋅y)[y/v] y ∉K

= ([x]y)[y/v]

−The case where t is K, C, S or some variable other than x or y is similar.

− If t is s⋅r or s ∗ r then the result follows easily by the induction hypothesis.

− If t is λz.s, then we may assume that z is not x, then

[x](t[y/v]) = C⋅[z][x](s[y/v]) Def. 4.6
= C⋅([z][x]s)[y/v] ind. hyp, Lemma 4.7
= (C⋅[z][x]s)[y/v] y ∉C

= ([x]t)[y/v]
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Theorem 4.9. If t ∈ Lλ, then for any M = ⟨F, v⟩, [[[x]t ∗ s]]v ⊆ [[t[x/s]]]v

Proof. By induction on (l, d).
We appeal to known facts about β-reduction and Theorem 3.12 (complete-

ness).

− t = x. Then [x]t ∗ s is ((S⋅K⋅)K)⋅s, and it is easy to show that that

((S⋅K⋅)K) ∗ sÔ⇒∅ s

So the result follows by Theorem 3.12.

−The argument is similar for the case where t is a variable y ≠ x or K, C, S. We
appeal to the easily shown fact that:

(K⋅t) ∗ sÔ⇒∅ t

− t = t1⋅t2. Then

((S⋅[x]t1) ∗ [x]t2)⋅s Ô⇒∅ t1[x/s]⋅t2[x/s]
= (t1⋅t2)[x/s]

and the result follows as above.

−The argument is similar for the case where t = t1 ∗ t2

− If t is λy.r, then choose a variable z that does not occur in r or s. Now, s and
[x]s contain fewer free instances of λ than t (Lemma 4.7), so given Theorem 3.12
we may apply the induction hypothesis as follows:

[[(C⋅[y][x]r)⋅s]]v ⊆ [[λz.(((C⋅[y][x]r)⋅s) ∗ z)]]v Thrm 2.25

⊆ [[λz.(([y][x]r⋅z)⋅s)]]v Thrm 3.12
⊆ [[λz.([x]r[y/z]⋅s)]]v Ind. Hyp.
⊆ [[λz.(t[y/z, x/s])]]v Ind. Hyp.
= [[λy.(t[x/s])]]v

Definition 4.10. A frame is λ-complete when for any h1, h2, h3 ∈H

1. h1 = ([[K]]v ● h1) ● h2

2. (h1 ● h3) ● (h2 ● h3) = (([[S]]v ● h1) ● h2) ● h3

3. ⋂h∈H{w ∣ (h1 ● h) ● h2} = ([[C]]v ● h1) ● h2
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A model ⟨F, v⟩ is λ-complete if F is.

Remark 4.11. Notice that no h ∈H can be empty if F is a non-trivial λ-complete
frame. For if ∅ ∈ H then for any h ∈ H, h = ([[K]]v ● h) ● ∅ = ∅, so then H = {∅}
and [[t]]v = [[s]]v = ∅ for any t, s and v.

We could have equivalently defined λ-complete frames by requiring that, for any v

[[x]]v = [[(K⋅x)⋅y]]v, [[(x⋅z)⋅(y⋅z)]]v = [[((S⋅x)⋅y)⋅z]]v, [[λz.((x⋅z)⋅y)]]v = [[(C⋅x)⋅y]]v

and so on. But 4.10 is preferable as its form is less dependent on the syntax. Since
K, S and C are closed terms, we could even go further and replace [[K]]v , [[S]]v

and [[C]]v with purely semantic expressions using Definition 2.13.

Theorem 4.12. For any λ-complete ⟨F, v⟩, if t ∈ Lλ then [[t[x/s]]]v ⊆ [[[x]t⋅s]]v.

Proof. Again, we proceed by induction on (l, d).

− t = x. Then x[x/s] = s and it is not hard to see that the definition of lambda
completeness (4.10) implies that [[s]]v = [[((S⋅K)⋅K)⋅s]]v.

−The argument is similar for the case where t = y ≠ x or t is K, C, S.

− t = t1⋅t2. Then:

[[(t1⋅t2)[x/s]]]v = [[t1[x/s]]]v ● [[t2[x/s]]]v

⊆ [[([x]t1⋅s)]]v ● [[([x]t2⋅s)]]v Ind. Hyp.
= ([[[x]t1]]v ● [[s]]v) ● ([[[x]t2]]v ● [[s]]v)
= (([[S]]v ● [[[x]t1]]v) ● [[[x]t2]]v) ● [[s]]v Def 4.10
= [[((S⋅[x]t1)⋅[x]t2)⋅[[s]]v]]v Def. 2.13
= [[([x]t1⋅t2)⋅s]]v Def. 4.6

and the result follows as above.

− Suppose t is λy.r. Let z be chosen so that it does not occur in t or s. Then using
Lemma 2.24:

[[λy.(r[x/s])]]v = [[λz.(r[y/z, x/s])]]v

⊆ [[λz.([x](r[y/z])⋅s)]]v Ind. Hyp.

= [[λz.(([x]r)[y/z]⋅s)]]v Lemma 4.8

⊆ [[λz.(([y][x]r⋅z)⋅s)]]v Ind. Hyp.

⊆ [[(C⋅[y][x]r)⋅s]]v Def. 4.10
= [[([x]λy.r)⋅s]]v Def. 4.6

Corollary 4.13. If t ∈ Lλ then [[t[x/s]]]v = [[λx.t⋅s]]v for any λ-complete model
⟨F, v⟩.
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Proof. Since ● ⊆ ○ we have that [[λx.t⋅s]]v ⊆ [[λx.t∗s]]v, and so Theorem 4.9 entails
that [[λx.t⋅s]]v ⊆ [[t[x/s]]]v.

And conversely:

[[t[x/s]]]v ⊆ [[[x]t⋅s]]v Thrm 4.12
⊆ [[λx.([x]t ∗ x)⋅s]]v Thrm 3.12, Lemma 2.24, Lemma 4.7
⊆ [[λx.t⋅s]]v Thrm 4.9

We now have a means of characterising β-equality semantically.

Corollary 4.14. If t, s ∈ Lλ then, t Ô⇒βββ s iff [[t]]v ⊆ [[s]]v for all λ-complete
models ⟨F, v⟩.

Proof. By 4.13 if ⟨t, s⟩ ∈ βββ then [[t]]v ⊆ [[s]]v in all λ-complete frames. Furthermore
if t /Ô⇒βββ s then [[t]]v /⊆ [[s]]v in the canonical model for βββ. It is not hard to verify
that the canonical frame is λ-complete.

Corollary 4.15. A frame is λ-complete iff it is βββ-sensitive

Definition 4.16. A frame is fully extensional when h = ⋂h′∈H{w ∣ w ○h′ ⊆ h ●h′}
for all h ∈H. A model ⟨F, v⟩ is fully extensional when F is.

Remark 4.17. Looking at Definition 2.13 h = [[t]]v implies ⋂h′∈H{w ∣ w ○ h′ ⊆
h ● h′} = [[λx.(t⋅x)]]v for x ∉ t. So if a frame is fully extensional then, for any t and
any v, [[t]]v = [[λx(t⋅x)]]v for x not free in t. This implies, by reasoning similar to
Corollary 3.15, that ● = ○.

Definition 4.18. Let ηηη = {⟨λx.(y⋅x), y⟩, ⟨y, λx.(y⋅x)⟩} and let βηβηβη = βββ ∪ ηηη.

Theorem 4.19. If t, s ∈ Lλ then, tÔ⇒βηβηβη s iff [[t]]v ⊆ [[s]]v for all fully extensional
λ-complete models ⟨F, v⟩.

Proof. It is straightforward to verify (see Remark 4.17) that tÔ⇒βηβηβη s implies that
[[t]]v ⊆ [[s]]v in all fully extensional, λ-complete models. Conversely, if t /Ô⇒βηβηβη s

then [[t]]v /⊆ [[s]]v in the canonical model for βηβηβη, it is not hard to show that it is
λ-complete and fully extensional.

Definition 4.20. Say that a frame is combinatorially complete when for any
h1, h2, h3 ∈H

1. h1 = ([[K]]v ● h1) ● h2

2. (h1 ● h3) ● (h2 ● h3) = (([[S]]v ● h1) ● h2) ● h3
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This is the familiar notion of combinatory completeness as used in characterisa-
tions of lambda models in terms of combinatory algebras (e.g. see [12, p.228]). We
now get the following result.

Theorem 4.21. A fully extensional frame (model) is λ-complete if it is combinato-
rially complete.

Proof. Again, given Theorem 3.12 we argue partially syntactically. First note that
the first two conditions of Definition 4.10 are met if F is combinatorially complete.

Now we argue that if a frame F is combinatorially complete, then for any v,

[[(x⋅z)⋅y]]v = [[((C⋅x)⋅y)⋅z]]v

Given soundness (Theorem 2.25) and known facts about combinators (e.g. [12,
p.25]), if F is combinatorially complete then [[(x⋅z)⋅y]]v = [[((C′⋅x)⋅y)⋅z]]v for some
particular complex expression C′ given in terms of S and K.7 Moreover, since F is
fully extensional, i.e. [[λx(t⋅x)]]v = [[t]]v for any t ∈ Lλ, then

[[C′]]v = [[λxyz.((C′⋅x)⋅y)⋅z]]v = [[λxyz.((x⋅r)⋅y)]]v = [[C]]v

and so [[(x⋅z)⋅y]]v = [[((C′⋅x)⋅y)⋅z]]v = [[((C⋅x)⋅y)⋅z]]v.
So if F is combinatorially complete then:

[[λz.((x⋅z)⋅y)]]v ⊆ [[λz.(((C⋅x)⋅y)⋅z)]]v by the above

⊆ [[(C⋅x)⋅y]]v as F is fully extensional

and so the third condition of 4.10 is met.

5 Faithfulness

The completeness result 4.15 relates λ theories to faithful λ-complete frames. Faith-
fulness was defined in 2.17 partially syntactically: a faithful frame is one that has a
denotation h ∈H for every λ-term t.

It is natural to seek a characterisation of faithfulness that does not require explicit
reference to the syntax, i.e. a purely semantic one. Can we provide a description,
only in terms of H and R, of structural properties a frame must have in order that
there is an h ∈ H to be the denotation of each λ-term? The difficulty lies in the
denotation of λ-terms of the form λx.s. We might know what must hold of H for it
to include the denotation of s, but what of λx.s? λx acts like a kind of quantifier

7C′ is (S⋅((B⋅B)⋅S))⋅(K⋅K)) where B is short for (S⋅(K⋅S))⋅K.
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which binds in s. So the denotation of λx.s depends not just on s but on the
denotations of s for all possible interpretations of x (assuming it is free in s).

What we have just described is an instance of the more general problem of
syntax-free interpretations of quantification and binding (and substitution). We can
solve the problem here for the the special case of a syntactic theory of λ-equality
(i.e. a βββ-sensitive, or λ-complete, theory):8

Theorem 5.1. If an intensional frame F is λ-complete and also for any S1, S2 ⊆
P(W ):

1. [[K]]v, [[S]]v , [[C]]v ∈H (for some/any v),
2. if S1, S2 ∈H then S1 ● S2 ∈H.
3. if S1 ∈H then ⋂h∈H{w ∣ S ○ h ⊆ S1 ○ h} ∈H (i.e. [[λy(x ∗ y)]]v[x↦S1] ∈H),

then F is faithful.

Proof. First notice that condition (1) is independent of v as K, S and C are all closed
terms. Also note that by Definition 2.17, a frame is faithful when it guarantees an
interpretation in H for every term of Lλ (i.e. terms not containing ∗). Condition (2)
states that H is closed under ●. Condition (3) says that if [[x]]v ∈ H then so is
[[λy(x ∗ y)]]v. Given closure under ● this condition (3) could be replaced by the
condition that [[λxy(x ∗ y)]]v ∈H.

We must argue that for any valuation v, [[t]]v ∈ H for all t ∈ Lλ. We do so by
induction on t.

− t is a variable x. Then [[t]]v ∈H by the definition of valuations 2.12.

− t is s⋅r.Then the result follows by condition (2) and the induction hypothesis.

− t is λx.s. Then by the induction hypothesis [[r]]v ∈ H for every subterm r of
s. Now [x]s contains no free occurrences of x and is a concatenation, by the ⋅
symbol, only of instances of K, S, C and subterms of s. So by conditions (1), (2)
[[[x]s]]v ∈ H. But then by condition (3) and Lemma 2.16.2, [[λx.([x]s ∗ x)]]v ∈ H.
Finally, given λ-completeness we may conclude from Theorems 4.9 and 4.12.1 that
[[[x]s ∗ x]]v = [[s]]v and so [[λx.s]]v ∈H

Corollary 5.2. If an extensional frame F is λ-complete and the three conditions
of 5.1 hold, then F is faithful.

8The mathematical designs of this paper, combined with those of [5, 7], give rise to a more
general solution for λ-reduction in [8].
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Remark 5.3. It is easy to verify that the converses of 5.1 and 5.2 hold. More-
over, for the case of a fully extensional frame, we know from 4.21 that combinator
completeness implies λ-completeness. It is then not hard to see that the conditions
of 5.1 become instances of the definition of a syntax-free model of the λ-calculus.
For example [12, p.237], condition (3) corresponds to the so-called (although not by
[12]) Meyer-Scott axiom.

6 Further work

The methods used here resemble those behind the models of λ-calculus constructed
by Engeler, Meyer, Plotkin and Scott (e.g. in [4, 14] and in [1, §18-19]) which are
the basis of graph models.

The frames presented here have the components W , ● and H. Both ● and W have
an analogue in graph models, and the differences between them and their analogues
are not of great significance: it is not hard to associate each graph model with an
equivalent extensional frame (see Remark 2.15). The analogue of H in graph models
is that denotations are drawn from the powerset of the domain (the analogue of W ).
The fact that in the models and frames of this paper H can be something other
than P(W ) is significant. The completeness theorem 3.12 shows this, for it implies
that every consistent λ-theory can be associated with a frame, and yet as shown by
Salibra [17] there are λ-theories for which there are no graph models.

The models of this paper separate expansion and reduction for both β− and
η− as distinct semantic properties of a model. Interestingly, β-reduction and η-
expansion are natural features of the models (there is independent evidence that
this is natural [13]). η-expansion arises from λ-abstraction and application being
defined over the same underlying function ●. If we use two underlying functions ●
and ○ instead, where ● ⊆ ○, so that λ abstracts over ○ and application applies ●, then
we obtain models free from η-expansion.

We could also reverse this ‘trick’ so that λ abstracts over the ● and application
applies ○, and thus obtain models free from β-reduction. This may sound perverse
but recall that meta-programming languages — languages that can suspend their
own evaluation and/or quote their own syntax — are devoted to switching off β-
reduction in a controlled manner, and the connections to modal logic have already
been noted, where possible worlds correspond to deeper or shallower levels of suspen-
sion or quoting (see MetaML [15] and CMTT [16, 9]). This suggests the possibility
of models for a variety of interacting λ-operators over a hierarchy of underlying
application relations.

Finally, further work is needed in improving the semantic characterisations, in
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terms of ● and ○, of frames that are Γ-sensitive for interesting Γ. For example, can
we provide a helpful semantic characterisation of theories that contain the schema
of η-reduction? We can do it in terms of H by specifying that, for any S ∈ H,

⋂h∈H{w ∣ w ○ h ⊆ S ● h} ⊆ S, but it would also be interesting to look for conditions
on ● and ○ alone that correspond to this, independently of H.
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