Are brain weights estimated from scaling relationships suitable for comparative studies of animal cognition?
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Abstract
What is the cognitive significance of variation in brain size? This question is simply put, but hard to answer, and remains one of the most enduring questions in comparative ethology. Understanding the causative links between variation in brain size and structure, and cognition requires reliable data on both neural and behavioral traits. A recent study by Horschler et al. (2019) demonstrated the potential of citizen science and domestic dogs to provide unprecedented behavioral datasets that can be used to tackle this question. However, data on brain weight is harder to source. To test the link between performance in various cognitive tasks and variation in brain size, the authors instead relied on data for body weight, which was transformed into ‘estimated brain weight’ using the allometric scaling relationship between brain and body size, an approach that can be found in other papers which lack sufficient neuroanatomical data. Here, I describe some probable limitations of this approach and suggest that such transformations provide no benefit to the analyses and should be avoided.

























Main text
Two enduring questions in comparative cognitive ethology concern the relationship between brain size and structure, and different aspects of cognition: i) does performance vary independently across different cognitive tasks, or is there some ‘general’ cognitive mechanism that explains variation across all tasks? (e.g. Deaner et al. 2006; MacLean et al. 2012; Reader et al. 2011) And ii) does brain size predict cognitive performance? If so, which measure? Whole brain size or specific components? Corrected for body size or not?  (e.g. Deaner et al. 2007; MacLean et al. 2014; Benson-Amram et al. 2016).
	
These questions have most frequently been probed using interspecific data, an approach that faces the challenge of designing behavioral tests that provoke natural responses across large numbers of species that may be ecologically and morphological divergent. Results from this kind of study do not paint a consistent picture of the relationship between different measures of brain size and cognition, and it is often difficult to pin down sources of noise and the true signal of an association (Logan et al. 2018). Recently, Horschler et al. (2019) provided a novel take on these questions, developing the extreme intraspecific phenotypic diversity observed among breeds of domestic dog as a model of cognitive evolution. This approach has the significant advantage of greater ease of standardizing tasks, and the ability to draw on the enthusiasm of dog owners as a huge source of data. The latter, harvested through the Dognition project (Stewart et al. 2015) allowed the authors to accumulate a dataset of performance in 10 cognitive tasks for over 7,000 ‘purebred’ individuals representing 74 breeds, a sample size that far exceeds comparable studies. Horschler et al. report that performance in specific tasks linked to executive function are predicted by absolute brain weight. They also infer that their results support a model of domain-specific cognition because the same association is not found for all tasks.

However, because many traits scale with body size, to make a specific link between cognition and absolute brain size, reliable data on brain and body weight are both needed to rule out the possibility that body size alone provides comparable or greater explanatory power than brain size.  Excluding cross-bred individuals, data on brain and body weight are available for 26 breeds (Bronson 1979), but these include only 20 of the 74 breeds included in the behavioral dataset, whereas body weight is available for all breeds from alternative sources. To include task data for all breeds, Horschler et al. therefore ‘estimated’ brain weight from the brain~body allometric scaling relationship reported by Bronson (1979) and used these estimated weights to test for brain~task associations. They are not alone in adopting this extrapolation approach where data on neural traits is often limited relative to other variables (e.g. Herculano-Houzel and Kaas 2011; Herculano-Houzel 2019). This use of data has obvious limitations, for example it is impossible to test for trait associations that are independent of the predictor variable, or to test for the importance of allometric and non-allometric variation (e.g. the association with absolute brain weight or relative brain size/encephalization). However, these potential problems have received little discussion. 

Horschler et al. acknowledge that they cannot formally rule out that the associations they find are with body, not brain weight, but suggest several lines of evidence to bolster their conclusion that absolute brain size predicts differences in executive function among dog breeds. First, they reanalyze their data using raw body weight and suggest that the models have reduced significance and higher Akaike Information Criteria (AIC) scores, indicating a poorer fit to task performance than estimated brain weight. Second, they used a second trait, cranial depth, to predict brain weight and conclude that the results are similar to those obtained with body weight derived estimates. They also correctly argue that the tight correlation between brain and body weight make it difficult to tease apart the independent effects of these traits even when data are available. Nevertheless, their data provide an opportunity to explore whether using data extrapolated from scaling relationships is a reasonable approach. I reanalyzed Horschler et al.’s data (Table S1) step-by-step using the same analytical methods as the original study (EMMREML; Akdemir and Godfrey 2015), with additional allometric analyses using SMATR (Warton et al. 2012). Specifically, I ask i) what is the size of data error introduced using extrapolated data? ii) Does adding multiple ways of deriving trait estimates add independent data? iii) Do analyses on small, but real, datasets of brain weight support the conclusions of those from large, but estimated, datasets? And iv) Does any of this really matter?

A first source of potential error is uncertainty in the brain~body scaling relationship. Bronson (1979) did not report what regression method was used, but reanalyzing the logged trait data with Standardised Major Axis (SMA), Major Axis (MA) and Ordinary Least Squares (OLS) regressions all produce similar results (Table S2). In each case the confidence intervals of the scaling exponent (slope) overlap, and the percentage of variance in brain weight explained by body weight is high (R2 = 0.919). However, R2 values are properties of the regression not individual data points. Using each method to predict estimated brain weights shows that error for some breeds is still high. On average, the absolute error, expressed as a percentage of the observed brain weight, is ~5.3%, but ranges from under or overestimates of 0.3%-13.9%. This error directly relates to deviation from the scaling relationship, a common measure of relative brain size or encephalization. Given deviation from scaling relationships can vary across taxonomic scales, in other datasets where the range of variation is greater, this source of error is likely increased.

Adding a second approach to deriving estimated brain weights is potentially a way to bootstrap the data. Horschler et al. did so by estimating brain weight from a dataset of cranial depth (Boyko et al. 2010). While the authors did not state that these estimates are independent of body weight, it is useful to consider the interdependencies of these data. Cranial depth is itself associated with variation in body weight (t19 = 10.4, p < 0.001) and multiple regression analysis of Bronson’s data show that cranial depth is potentially more strongly associated with body weight (t9 = 2.078, p = 0.067) than brain weight (t9 = -1.690, p = 0.127). Using the small subset of breeds where all three traits are available, average and maximum errors in estimated brain weights derived from cranial depth (mean = 6.0%, max = 16.9%) are similar to body weight derived estimates (mean = 6.7%, max = 16.1%). The absolute error produced by both predictors are also significantly correlated (t10 = 2.434, p = 0.035, R2 = 0.372). Hence, estimated brain weights from cranial depth are unlikely to be independent of body weight and introduce comparable levels of error. Regardless, by compressing the variation in this way, it is possible that the significance of some associations in downstream analyses could be affected. 

In the original study, the case for an association with brain weight is bolstered by reduced significance and model fit when body weight is used in place of estimated brain weight. Given that estimated brain weights are linear derivatives of variation in body weight, it is initially surprising that the results obtained for both traits differ at all. However, Horschler et al. ran their models using raw weights, whereas the transformation is based on a linear regression from a log-log plot. When the tests for an association between each of the 10 tasks and estimated brain/body weight are repeated using log-transformed weight data, the results obtained for estimated brain and actual body weight are identical (Table S3). This illustrates that i) the difference in results reported in the original study is merely a consequence of the curvilinear relationship between raw brain and body weights, and ii) transforming predictor variables to obtain pseudo-data on a second trait adds no additional information.

[bookmark: _GoBack]Nevertheless, the results reported in Horschler et al. do strongly suggest that performance in some cognitive tasks is predicted by body weight, or a closely correlated trait such as brain weight. To test whether the error introduced by the transformation is sufficient to alter the results, and to confirm an association between executive function and absolute brain weight, I reanalyzed the task performance data using Bronson’s actual brain and body weights, using unlogged values following Horschler et al. While this limits sample size to 15-20 breeds, this is actually more than is available for the cranial depth dataset. Of the six tasks that Horschler et al. report as being significantly associated with estimated brain weight, I find only three (‘watching.mean’, ‘notwatching.mean’ and ‘memory vs. pointing’) that are associated with brain weight using Bronson’s data at a nominal significance threshold of p<0.05, before correcting for multiple tests (Table S4A). The drop in sample size can explain most of the omissions. However, I also find one case (‘cunning’) where an association with body weight persists without a significant association with brain weight, and for two of the three tasks associated with brain weight an association with body weight is also found. Examining these three tasks further, I find differences in AIC values of above 2 (a common threshold for supporting one model over another (Burnham and Anderson 2002)) in favor of an association with body weight over brain weight for two tasks (‘watching.mean’ ΔAIC = 3.201; ‘notwatching.mean’ ΔAIC 5.039). For one task (‘memory vs pointing’) the association with brain weight (χ2 = 4.780, p = 0.029) is stronger than with body weight (χ2 = 3.22, p = 0.0723), which is also reflected in the AIC values (ΔAIC = 1.230, in favor of brain weight). However, the significance of both the association between body weight and ‘cunning’, and the association between brain weight and ‘memory vs pointing’ are vulnerable to correction for multiple testing. Results obtained using log-transformed weight data produce similar results, but ΔAIC values are lower and are not above the threshold for accepting one model over the other (Table S4).

These results suggest that the evidence of a specific association with brain weight is limited due to co-linearity between brain and body weight. With limited data, multiple regressions lack sufficient power as high variance inflation factors mean the standard errors of the regression parameters increase, with knock on effects on the test statistics. Indeed, when multiple regressions are run for the three tasks associated with brain and body weight, neither association remains for two of the three tasks (Table S5). For ‘notwatching.mean’ there is a significant association with body, not brain weight, and for both ‘watching.mean’ and ‘notwatching.mean’ the sign of the association with brain mass is reversed (Table S5). An alternative approach is to remove the effects of body weight from both task performance and brain weight before regressing the residual variance. This two-step regression, while not ideal, provides a test of whether correlations between both dependent variables are independent of body weight. Removing the effects of body weight from both traits should reveal any signal of co-variance between task and brain weight data, if variation around the task~body weight regression is caused by variation in brain weight, independently of variation in body weight. However, the results provide no evidence that this is the case for any of the three highlighted tasks (‘watching.mean’ t15 = -0.048, p = 0.962; ‘notwatching.mean’ t15 = -0.243, p = 0.811; ‘memory vs. pointing’ t14 = -1.092, p = 0.293). Note, that because the effects of body size have been removed from both variables this is not a test for an association with relative brain size., 

One possible caveat is that Bronson’s data is unreliable, perhaps due to sampling individuals that are not representative of breed means. Although sample size per breed is generally quite large, for some breeds less than 10 individuals were used and sex-specific means were not reported. Horschler et al. used more robust estimates of body weight from the Canine Behavioral Assessment and Research Questionnaire (C-BARQ, Hsu and Serpell 2003), so to test whether error in Bronson’s dataset is a concern I compared body weights from these two datasets. Although the data are strongly correlated (t19 = 17.874, p < 0.001, R2 = 0.948), the slope of the regression is significantly different from one (r = 0.500, p = 0.021, 95% confidence intervals of the slope = 0.786-0.978), meaning deviation between the two datasets increases with body weight. This is confirmed by a significant association between C-BARQ body weights and the weight difference between the two datasets (t19 = 2.777, p = 0.006, R2 = 0.348). I subsequently identified two breeds, Great Danes and Standard Schnauzers, which are in the task datasets and which appear to be undersized in Bronson’s dataset when compared to the healthy range of adult body weights for both sexes, as reported by the American Kenel Club (www.akc.org). Removal of these breeds from the dataset do not alter the conclusions drawn from the tests above (Table S4B).

In summary, estimating a large dataset of brain weights from the scaling relationship between brain and body weight in a smaller sample adds no new meaningful information beyond raw body size, and can ignore substantial non-allometric variation. Reanalysis of the task data using actual brain weights suggest that while Horschler et al.’s data strongly suggest an association between some cognitive tasks and a general measure of size, it is premature to conclude that there is a specific association with brain weight.

A pertinent question is, however, does this really matter? Behavior stems from the nervous system, so if a behavioral trait is linked to body size it is perhaps not an unreasonable leap of logic to ascribe that association to variation in brain size or a closely correlated neural trait rather than somatic weight. However, making this assumption prohibits a true test of the hypothesized link between cognition and specific neural traits, and by extension inhibits our ability to understand how the neural basis of cognitive traits evolve. It is possible, for example, that any relationship with brain or body size is indirect, and is shaped by auto-correlation with a third, unknown trait. For example, perhaps large breeds are trained more? Or are more perceptive to visual cues? Or perhaps certain breeds experienced correlated selection pressures for body size and behavioral traits whose neural basis is independent of total brain size or cognition?  Horschler et al.’s unique dataset allows them to control for some potential confounding factors, including the effects of training, perceptual ability and the ‘functional role’ of breeds (for example in hunting, herding, or as toy breeds). In general, they exclude these co-variates as potential explanations of the association between task performance and brain/body weight. 

However, Horschler et al. do report one task (‘memory vs pointing’) that shows an association with brain/body weight that is likely mediated by a stronger association with breed group. Notably, this is the only task for which I find a tentative evidence for a stronger association with Bronson’s (1979) brain weight than body weight. This result is potentially consistent with previous evidence that variation in some specific behavioral traits is correlated with aspects of body weight or other life history traits in domestic dogs (Careau et al. 2010), and demonstrates the potential difficulties of inferring a direct functional link between absolute brain size and cognition, based on body weight data. 

Beyond the co-variates considered in the original study, other plausible contributing factors still remain. For example, small dog breeds have altered life histories with reduced prenatal growth (Wayne 1986) and lower metabolic rates (Jimenez et al. 2016), which could be associated with altered brain ontogenies or physiologies that affect cognitive performance independently of brain size. Although some data suggest brain structure is conserved across dog breeds (Thames et al. 2010), that data is limited in scope and other reports indicate changes in brain morphology that are associated with body size (Roberts et al., 2010; Schmidt et al. 2014). Similarly, with only two data points (Jardim-Messeder et al. 2017) it is premature to conclude that neural densities are invariant across dog breeds of different body sizes. Hence, covariance between behavioral traits and brain weight could still plausibly be the result of indirect interactions mediated by a other factors that are associated with body size. Of course, this would also be the case if specific associations with brain weight had been detected. However, finding evidence of a tighter relationship with brain size rather than body size at least provides initial evidence of a link between variation in neural traits and cognitive performance. 

The decision of whether or not to accept that a link between body weight and cognition implies a link between absolute brain weight and cognition is ultimately down to personal interpretation of the statistical analyses. Regardless, such an argument could be made without the data transformation. In my view, Horschler et al.’s conclusions may indeed prove correct, but as yet they are not fully supported by their data. Nevertheless, Horschler et al. showcase the great potential of utilizing dog breeds, and other domestic animals, as models for understanding cognitive evolution.  To make the most of this opportunity, data quality and quantity must be equal across traits of interest, including hard to measure traits like brain size, structure and cellular composition.  More generally, the analyses presented here suggest that the practice of extrapolating a large dataset of ‘estimated’ trait values from scaling relationships in a smaller dataset is not constructive and should be avoided.  
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