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Preface

This dissertation is broadly describing predictability of returns on individual stocks in

international context. The first chapter covers required prerequisites for any study of

fundamental anomalies outside the US. The second chapter studies the predictability of

stock returns at an annual frequency. The last chapter then looks at possible profitability

of the predictability on liquid universe of stocks at monthly frequency.

In the first chapter, we study the role of the choice of a fundamental database on the

portfolio returns of a set of 74 fundamental anomalies. We benchmark Compustat by

comparing it to Datastream in the US and find systematic differences in the raw financial

statements across the databases. These differences only have a small effect on the returns

of anomalies when they are constructed on stock-months existing in both databases.

Different stock coverage across the databases, however, leads to large statistically and

economically significant disparities in the returns. Profitability anomalies yield negative

returns on the Datastream universe.

In the second chapter, we study statistical significance of 93 fundamental anomalies

published in academic journals in a multiple hypothesis setting. We generate a universe

of 48,387 data-mined fundamental strategies in order to overcome a problem of not being

able to observe strategies that were tried but not published. The multiple hypothesis tests

reveal that the number of significant anomalies heavily depends on the precise specification

of the tests. We show that the adjustment of standard errors on portfolio returns for

heteroskedasticity and autocorrelation is of first order importance and t-statistics on the

portfolio returns may not have critical values of the normal distribution.

In the third chapter, we study out-of-sample returns on 153 anomalies in equities docu-

mented in academic literature. We show that machine learning techniques that aggregates

all the anomalies into one mispricing signal are 4 times more profitable than a strategy

based on individual anomalies and survive on a liquid universe of stocks. The machine

learning also leads to 2 times larger Sharpe ratios with respect to the corresponding stan-

dard finance methods. We next study the value of international evidence for selection

of quantitative strategies that outperform out-of-sample. Past performance of quanti-

tative strategies in the regions other than the US does not help to pick out-of-sample

winning strategies in the US. Past evidence from the US, however, captures most of the

predictability within the other regions. The value of international evidence in empirical

asset pricing is therefore very limited.
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Chapter 1

Does the Source of Fundamental

Data Matter?

Most of the research in accounting and finance relies only on two databases, the Center

for Research in Security Prices (CRSP) and Compustat, since they are the most easily

available to academics. However, these databases are not as heavily used outside academia

and are not error-proof. Can these errors create significant biases across studies or are

the errors idiosyncratic and no cause for worry? We test this question by looking at the

performance of 74 fundamental anomalies published in finance and accounting journals

when they are constructed in the Compustat universe or alternatively in the Reuters

Datastream universe.1 We also test the role of trade data by comparing portfolio returns

on the anomalies constructed with individual stock returns from Datastream or CRSP

and fundamental signals constructed in Compustat.

The fundamental anomalies in this study describe characteristics related to individ-

ual stocks that can predict their future returns. No distinction is being made between

characteristics that are related to risk premia and variables that are related to mispricing

due to frictions or other market imperfections. The studied anomalies are, for example,

accruals of Sloan (1996), earnings over price of Basu (1977), composite equity issuance of

Daniel and Titman (2006), and R&D over Market Equity of Chan et al. (2001).

Another crucial aspect of the individual databases is the composition of the universe

of stocks there. Academic studies mostly focus only on common stocks listed on countries’

main exchanges, but this focus requires a classification by data vendors that is often wrong

in earlier years. Some databases might also suffer from incomplete coverage for the stocks

with low capitalization and the less frequently traded stocks. We study the implications of

these differences among the databases for quantitative strategies. CRSP and Compustat

are the primary source of data only in academia. Other data sources are more common in

the industry. It is not obvious if the academic findings using CRSP and Compustat hold

1We sometimes call the Compustat universe as CRSP and Compustat universe since Compustat does
not include trade data whereas Datastream contains both market and fundamental data. The fundamen-
tal sub-database in Datastream is called Worldscope and we denote it interchangeably as Datastream
throughout this text.
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on the other data sources. This study tries to provide quantitative evidence to bridge this

gap in knowledge.

We first study the fundamental anomalies on a sample of stocks in CRSP that can be

matched to fundamental data in both Datastream and Compustat. We start by compar-

ing the individual raw items on the financial statements that are required for constructing

the anomalies.2 We find that the items can substantially differ across the two databases.

There are some apparent patterns in the differences. They tend to cluster in areas where

the data vendors require specific methodologies to be applied. Some examples include the

treatment of short-term versus long-term debt, long-term leases, or financing items on cash

flow statements. These substantial differences in raw items, however, rarely translate to

differences in the portfolio returns on fundamental anomalies in the matched Datastream

and Compustat sample of firms. Average correlation between portfolio returns on the

anomalies created based on Datastream and portfolio returns on the anomalies created

based on Compustat is 95.9%. There are also no apparent economically significant differ-

ences between the returns on the anomalies across the two databases.

The discrepancies are, however, substantially larger once we move outside the matched

sample and construct anomalies on the full samples of companies in each fundamental

database. We partially explain this outcome by the lower coverage of stocks with lower

capitalization in Datastream in the earlier period, but some economically and statisti-

cally significant differences nonetheless remain.3 The discrepancies are huge when the

individual quantitative strategies are considered.4 41 of the 74 anomalies are significant

at the 5% level in CRSP plus Compustat and 39 in Datastream over the 1990 to 2016

period. There are, however, only 29 anomalies that are significant in both. Inference for

individual strategies thus suffers from large biases. The discrepancies are, however, much

smaller for grouped anomalies. The average return on all 74 fundamental anomalies is

almost identical among the two databases. Datastream and other alternative data sources

are thus safe to use in the aggregate analysis of returns on anomalies, especially when

micro-caps are excluded from the sample.

The fundamental coverage in Datastream significantly predicts expected returns on

stocks in CRSP. Stocks without the fundamental coverage significantly underperform

those with the coverage. The fundamental coverage effect on expected returns is closely

related to the number of analysts covering effect in Elgers et al. (2001). The underperfor-

mance of stocks without the fundamental coverage is especially channeled to stocks with

small operating profitability. Operating profitability anomaly yields substantially lower

returns in Datastream because the low profitability stocks are less likely to be covered

2This comparison was similarly performed in Ulbricht and Weiner (2005), who studied sample differ-
ences in fundamental variables in Datastream and Compustat in the US.

3Datastream covers 87.5% of the overall capitalization of stocks in Compustat in 1990, but this coverage
has increased to essentially 100% since 2005. The two databases, however, continue to cover different sets
of stocks labeled as common equity. The differences in returns on anomalies therefore remain substantial
even after 2005.

4We provide detailed results for each anomaly in the Appendix D.
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Does the Source of Fundamental Data Matter?

there. A value-weighted strategy shorting stocks without the fundamental coverage in

Datastream that are in the lowest profitability decile in Compustat yields 28% annually

over the 2000 to 2016 period.

There are three main sources of the differences in the returns on the anomalies. Firstly,

the imperfect coverage causes disparity in portfolio breakpoints across the databases.

Using breakpoints from NYSE, or all-but-microcaps universe of stocks with full coverage in

each region, elevates this problem. Secondly, the coverage of stocks within the population

quantiles may differ. Value-weighting limits this problem since it shifts the focus on

stocks that tend to have better coverage in all databases. Lastly, the databases may have

idiosyncratic differences due to errors and design choices. Examples include different

categorization of the individual securities and companies. These database-specific issues

are the hardest to minimize and require a tailored solution every time.

The large discrepancies in the returns before 2005 can have implications for interna-

tional studies. We show that the problems with coverage are also prevalent in Europe,

Japan, and Asia Pacific before 2000. Datastream is widely used in academic international

studies. Examples of studies that rely on Datastream include McLean et al. (2009), Hou

et al. (2011a), Titman et al. (2013), Watanabe et al. (2013), and Jacobs (2016).5 The

performance of individual strategies constructed on Datastream outside the US can be

connected to some biases as was documented in the US. It is therefore important to study

if the imperfect coverage is a source of some concerns and what mitigating approaches

can be taken. We simulate the effect of imperfect fundamental coverage in Japan and

Asia Pacific before 2000 on later sample where there was essentially full coverage. The

simulated imperfect coverage leads to the same conclusions as for the US and it can have

a large impact on measurement of performance of anomalies in the international setting.

We test two constructions of portfolios that should lower the discrepancies due to

fundamental coverage. Both of the methods shift the focus on larger capitalization stocks

where the bias is smaller. The first method discards all the micro-caps stocks with cap-

italization smaller than the bottom decile of the NYSE. The second uses the breakpoint

from the 1000 largest stocks in the region to construct the portfolios. We then use value-

weighted returns in both of them. The correlation of portfolios between the two databases

increases from 80.2% to approximately 86%., but substantial differences remain. There

are 11 significant signals in Compustat and 12 in Datastream, but only 6 of those are com-

mon across the two databases for the all-but-micro-caps universe of stocks. We conclude

that the choice of the fundamental database used can have a large impact on tests of indi-

vidual quantitative strategies, and researchers should be aware of this impact. Screening

out small cap stocks and value-weighting can nonetheless improve robustness of empirical

findings.

We next study the implications of the fundamental database choice for a selection

of independently significant signals. There is a large amount of recent literature that

5Fama and French (2012) and Fama and French (2017) use fundamental data from Datastream to fill
in gaps from Bloomberg, but similar patterns in coverage are also expected there.
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attempts to shrink the number of anomalies by finding those that are independently

significant after controlling for all the others.6 Here, we follow the methodology from

Green et al. (2017) and use Fama and MacBeth (1973a) regressions of individual stock

returns on rescaled fundamental characteristics and control for the false discovery rate.

The results are overwhelming in the US, as there is only one significant anomaly out of 8

in Compustat that is common between the two databases. Both databases thus lead to

very different discoveries. The differences in the US should translate to differences among

selected anomalies in different global regions. Jacobs and Müller (2017a) indeed show

that significant anomalies are very different across the global regions, and our analysis

thus explains this striking inconsistency. Any study attempting to distil which anomalies

are significant should therefore be aware that any selection procedure is very unstable and

is dependent on the imperfections of the underlying data.

The conclusions of our study are not unique to Datastream but apply to all sources

of historical fundamental data for international equities, given that none of them offers

perfect coverage of all listed stocks. Dai (2012) documents the gaps in coverage in FactSet

Fundamentals, Compustat Global, and Bureau Van Dijks international databases. Fama

and French (2012) note gaps in the Bloomberg database. We focus only on anomalies

created with fundamental data, but our conclusions are valid for trade data as well. Stocks

covered in Datastream in 1990 correspond to 91.5% of the overall capitalization of all the

stocks in CRSP, which is better than for fundamental data but is nowhere near perfect.

Ince and Porter (2006) have shown that the Datastream returns data has limitations,

and some adjustments need to be applied to limit its errors. We propose several new ways

to further limit the errors. We show that there are only a few discrepancies in returns

with respect to CRSP after 2000. We recommend that the returns before 1990 should be

winsorized at the 0.1% percentile and returns from 1990 to 1999 at the 0.01% percentile.

We also propose a new way to correct the returns when there are stale quotes at the time

of stock splits and other corporate events. Not implementing them can lead to erroneous

returns of several thousand percent.

This study is the first to evaluate the impact of not including delisting returns in

Datastream. Shumway (1997) showed that missing delisting returns in CRSP can have

a large impact on the returns on some anomalies, such as size. He proposed that the

missing performance related delisting returns in CRSP should be filled with -30% return.

We revisit his analysis after over 20 years and conclude that the role of missing delisting

returns is much smaller than originally documented. We find no economically significant

bias in the returns on anomalies from ignoring the missing delisting returns in CRSP.

Specifically, we note that omitting all delisting returns in CRSP leads to economically

similar returns on our set of fundamental anomalies relative to properly accounting them.

Missing delisting returns in Datastream therefore should not be a serious cause for a

worry.

6See, for example, Lewellen et al. (2015), Green et al. (2017), Feng et al. (2017), and Freyberger et al.
(2017) for evidence from the US and Jacobs and Müller (2017a) for international evidence.
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Does the Source of Fundamental Data Matter?

Our study is the closest to Ulbricht and Weiner (2005), who compared Compustat and

Datastream in the US. They focused mainly on summary statistics for individual items on

financial statements, while our study focuses on impacts for a large number of fundamental

strategies. The studies are thus similar only in the initial step. The imperfect coverage

of micro-caps in the US was also previously documented in Ulbricht and Weiner (2005),

but we extend this coverage to international evidence and provide a wide assessment of

the impacts of this imperfection. Our study is also related to Ince and Porter (2006) in

that we propose new quality screens to shrink errors in Datastream. Analysis in Schmidt

et al. (2017) is similar in scope in that they demonstrated how to screen fundamental

and return data from Datastream to construct risk factors for 23 countries. They have,

however, not focused on the role of imperfect fundamental coverage and their documented

screens of data have already been previously published in other studies such as Lee (2011)

and Griffin et al. (2010).

Our paper also broadly belongs to a class of studies investigating cross-sectional pre-

dictability of individual signals outside the US. See, for example, Chui et al. (2010),

Barber et al. (2013), McLean et al. (2009), Rouwenhorst (1998), Lam and Wei (2011),

Titman et al. (2013), and Watanabe et al. (2013).

We contribute to the academic literature in four ways. First, we propose new adjust-

ments for the data from Datastream that decrease the number of errors there. These can

be applied to similar databases facing the same problems. Secondly, we document that

missing delisting returns in Datastream are not creating serious biases when construct-

ing portfolios for a wide range of anomalies. This is one key takeaways of this study as

the delisting returns are not available in the international sample and any international

study therefore has to tacitly rely on this conclusion. Next, we provide robust evidence

that the choice of Compustat as the main database in most of the finance and account-

ing literature is not a source of serious concern due to possible idiosyncratic errors there.

This should be a key takeaway for practitioners and researchers interested in international

markets as they often rely on different sources of fundamental data. Finally, we document

the importance of coverage of listed stocks in fundamental databases. The coverage is

especially important in the international setting where there is no single database with

full coverage that spans a long time period. The partial coverage can lead to biased and

inconsistent results, especially for stocks with smaller capitalization. This outcome is the

main takeaway of our study and should serve as a caveat for international studies where

the fundamental data is important.

1.1 Data and Initial Adjustments

One of our sources for data on US stocks is the Merged CRSP/Compustat database from

Wharton Research Data Services (WRDS). The sample spans the 1963 to 2016 period

and contains all NYSE, Amex, and NASDAQ common stocks (CRSP share code 10 or

11). We adjust the returns for delisting following guidance in Shumway (1997) and Hou
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et al. (2017).7

Our second source of US data, and primary source for international data, is Reuters

Datastream (Worldscope). The database manual from 2007 states that: ”The total uni-

verse of companies contained on the database has grown from approximately 4,000 in

1987, to over 51,100 at March 2007. This includes 33,300 currently active companies in

developed and emerging markets, representing approximately 95% of global market cap-

italization.” It should thus provide a good comparison for CRSP/Compustat in the US

given its wide coverage. We source individual stocks in each country from both alive and

dead lists of stocks to limit survivorship bias. We filter the data following Ince and Porter

(2006), Lee (2011), and Griffin et al. (2010). The procedure includes manually checking

the names of the shares in the database for over 100 expressions that describe their share

class. We leave only the primary quotes of ordinary shares of companies with few excep-

tions where the fundamental data in Datastream is linked with other share classes.8 We

also exclude all Real Estate Investment Trusts (REIT) We require the return index (RI)

to be larger than 0.001 on the first day of the month for higher precision. All the returns

in this study are converted to US dollars. We set the RI to missing if the price on the

first day of the month is larger than $1 million. We delete daily returns for days when

the stock market was closed in a given country.

We use the classification of Fama and French (2017), sorting developed countries

into 4 groups: (1) North America (United States and Canada); (2) Europe (Austria,

Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the

Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom);

(3) Japan; and (4) Asia Pacific (Australia, New Zealand, Hong Kong, and Singapore). The

Datastream sample starts in 1990, where there was large enough coverage for the USA,

Europe, and Japan. The stocks in individual countries are from the largest exchange in

the given country with the exception of the US (NYSE, NASDAQ, and Amex) and Japan

(Tokyo and Osaka).

1.1.1 Merging Datastream and Compustat in the US

We need to create a merged database from Datastream and Compustat for further analy-

sis. Accordingly, we merge Datastream and CRSP on their main security level identifiers:

DSCD and PERMNO. We do this rather than directly merging Datastream fundamental

7Specifically, we use the return over the month if the delisting is on the last day of the month. The
relevant delisting return is then added as a return over the next month. Then, we use the delisting
return (DLRET) from the monthly file if it is not missing. If it is missing, then we use (1 + retcum) ∗
(1 +DLRETd)− 1, where retcum is the cumulative return in the month of delisting and DLRETd is the
delisting return from the daily file. Finally, we fill the gaps with (1 + retcum) ∗ (1 + DLRETavg) − 1,
where DLRETavg is the average delisting return for stocks with the same first digit of the delisting code
(DLSTCD). Hou et al. (2017) applies the average over the past 5 years, but we found this method to be
very noisy and a single large outlier had a huge impact on the average value.

8We closely follow the description in Griffin et al. (2010) regarding what shares are not common.
We also partially rely on the correct classification of stocks in CRSP, as we keep any stock that can be
matched to CRSP by CUSIP and filtered by relevant filters there. This selection procedure is not very
important in the current work, as stocks with fundamental coverage in Datastream are not plagued by
as many errors or missing categorization compared to those without.
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Does the Source of Fundamental Data Matter?

(Worldscope) and Compustat because it leads to a larger number of successfully matched

stocks in the two databases. This better match is due to the design of Datastream where

static data (for example industry classification or tickers) are separated from time-series

data (for example prices). Static data then includes only the latest available entries so

that if there are any changes over time, these changes are not recorded. The CRSP and

Compustat matching table in WRDS reflects the full history of changes. The fundamental

data is related to the company and not only to particular share issues so that changes

in the currently most relevant traded share class would cause a problem. DSCD is then

related to particular share issue and it is assigned when it enters the Reuters platform,

as is PERMNO in CRSP. Merging on DSCD and PERMNO thus leads to more precise

results. We then connect Datastream with Datastream fundamental (done automatically

by Reuters when downloading the data) and CRSP with Compustat (we use the Merged

CRSP/Compustat database from WRDS) in the second stage.

We first connect the databases by the 8 digit Committee on Uniform Security Iden-

tification Procedures ticker (CUSIP) and then check if it was successful by comparing

the exchange tickers and names in the two databases. We discard a few cases where

it is evident that the merge was not successful. We then merge on 6 digit CUSIP and

again manually check for the success of the merger. In the end, we get 130,000 merged

PERMNO-year observations out of approximately 250,000 in Compustat over the 1980

to 2016 period. See Panel A of Figure 1.1 for the number of firms in Datastream fun-

damental and Compustat and their merge success rate over time. It is evident from the

figure that less than half of all firms in Compustat were in the merged sample in 1980.

This level increased to approximately 95% in 2015. Panel B shows merge success rate

based on market cap of the stocks. The market cap of successfully merged stocks over

market cap of all stock in Compustat is higher than in Panel A suggesting the coverage

in Datastream was better for larger stocks.

1.1.2 Adjustments of Returns in Datastream

Ince and Porter (2006) provided the first systematic treatment of data quality in the

Datastream database. They suggested several adjustments to shrink the size of errors in

the database. These adjustments include discarding extreme returns that revert the next

month. They also note that dropping stocks with a price lower than $1 decreases the

errors, as the mistakes tend to cluster in stocks with a low price. We have at least one

decade worth of new data, so we revisit these issues.

Datastream provides stale prices when there is no trade during the day or when the

stock is no longer traded so that the price of the last trade is repeated until there is a

new trade. We thus delete all observations with stale prices at the end of our sample.

We implement a new way to fix returns and prices when there is an event that affects

the number of shares outstanding (e.g., stock split), but there are stale quotes of prices

at that time.9 We characterize this event by a concurrent daily return larger than 15%

9A natural reaction of price to the 1 to 10 split would be its decrease to 10% of the original price, but
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Panel A: Based on Number of Stocks.

Panel B: Based on Market Cap of Stocks.

Figure 1.1: Number of Stocks and Their Market Cap with Fundamental Coverage in
Compustat and Datastream over Time.
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Does the Source of Fundamental Data Matter?

(lower than -15%), an increase in the daily adjustment factor (Datastream variable AR)

by 15% (decrease by 15%), and zero volume (if Datastream variable UVO is missing). We

delete the latest observations of price with no trading and backfill the correct prices from

their first new quote if it arrives in less than 30 days after the event.

Following Ince and Porter (2006), we set as missing those monthly returns over 300%

that revert back over the next month. We only discard returns which we failed to correct

in our previously described procedure.10 This adjustment leads to closer returns with

respect to CRSP, and we have not found any way to improve it. We also set the RI to

missing if the daily return is larger than 500%. We set any monthly return larger than

2000% as missing. There is only one such case in CRSP, but there are many in DS for

the US.

Table 1.1 presents correlations between monthly returns in Datastream and CRSP

depending on the percent of observations winsorized and the minimum price of a stock at

the end of the previous month. We focus on three periods: 1980 to 1989, 1990 to 1999,

and 2000 to 2016. We expect that the quality of data will increase over time so that

lower adjustment amounts are needed. It is indeed the case and the most recent period

does not require any filters or adjustments with 99.6% correlation of the returns. The

most successful adjustment in the earliest period is winsorizing the highest and lowest

0.1% of all returns, or approximately 40 stocks, in a given month. We adjust only 0.01%,

or approximately 4 observations every month, in the 1990 to 1999 period. There is no

need for price filters in the latest period but limiting extreme returns on the stocks with

the lowest price helps in the earlier periods. To summarize, we start with adjustments

for large daily and monthly returns that revert back by first trying to fix them and then

discarding the rest. We then winsorize the resulting returns at different levels depending

on the period. Winsorization of the returns does not have a significant impact on our

findings but it helps to make the comparison across Datastream and Compustat more

robust since the results will not be as easily driven by few outliers.

1.1.3 Construction of Anomalies and Portfolios

To study the role of the source of the accounting information, we primarily focus on

the performance of fundamental anomalies. The main reason for this is that it is easy

to quantify their differences across databases and this is possible in a systematic way

across a large set of published studies. It should also be of the first order importance to

any quantitative investor. We have tried to study the largest set of published anomalies

possible. We have included all fundamental anomalies that we have found in the literature

and that could be implemented in both Compustat and Datastream.11 Specifically, we

if there has been no trade since the split, the old price is still displayed in Datastream. This outcome
results in an incorrectly displayed return of 900%.

10Specifically, we set as missing returns for two consecutive months if the return in the first was larger
than 300% and the overall return over the two months was lower than 50%.

11Some anomalies cannot be replicated with Datastream because it does not contain some needed
items. Examples are anomalies based on advertising expense.
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Table 1.1:
Quality of Returns in Datastream

The table shows the correlation between returns in Datastream and CRSP in the US
depending on the stock price at the end of the previous month and the fraction of returns
that are winsorized every month. We separately focus on 3 periods: 1980 to 1989, 1990
to 1999, and 2000 to 2016.

1980 - 1989 1990 - 1999 2000 - 2016

Winsorize All $.25+ $1+ $5+ All $.25+ $1+ $5+ All $.25+ $1+ $5+

None 0.930 0.946 0.961 0.970 0.966 0.972 0.987 0.992 0.996 0.996 0.996 0.996
.01% 0.937 0.950 0.962 0.971 0.973 0.978 0.989 0.992 0.995 0.995 0.996 0.996
.1% 0.953 0.960 0.968 0.976 0.961 0.976 0.987 0.991 0.977 0.979 0.984 0.994
1% 0.935 0.943 0.958 0.974 0.927 0.947 0.967 0.981 0.937 0.942 0.953 0.978

have tried to implement all fundamental anomalies documented in Harvey et al. (2016),

McLean and Pontiff (2016), and Hou et al. (2017). We considered 93 anomalies initially,

but excluded 19 that we failed to replicate within the original sample of the studies. The

final sample therefore constitutes 74 anomalies. We list only the remaining 74 anomalies

in our analysis.12 We have grouped the anomalies into 5 categories and our main analysis

then focuses only on these categories. The detailed results are provided in the Appendix D.

The groups are: accruals, profitability, value, investment, and intangibles. A detailed list

of anomalies is provided in Table A.1 in the Appendix A. A detailed description of how

we construct the anomalies is provided in the Appendix B.

We follow the original papers’ guidance on the sample construction of individual

anomalies. Most of the portfolios on the anomalies are equal-weighted except the cash-

based operating profitability of Ball et al. (2016), which is value-weighted. We construct

returns on zero-cost portfolios as returns on stocks in the top quintile of each signal minus

returns on the bottom quintile of each signal. The portfolios sorted on annual fundamen-

tal signals are rebalanced annually at the end of June every year, based on signals from

business year ending in the previous calendar year. We also follow the original studies in

direction of the anomalies and change sign for the signals where required so that all the

anomalies should yield positive returns.13

Some anomalies require the classification of industries, such as Hou and Robinson

(2006). The choice in the original papers is mostly with respect to Standard Industrial

Classification (SIC) industry classification. We apply third level Datastream classification,

which sorts industries into 19 groups instead for two main reasons. First, the coverage in

Datastream is not the same as that in Compustat and this would create a huge difference

for fundamental signals dependent on the industries if there are more than 100 industries.

Second, the industry classification in Datastream is available only from the static file,

which means that only the latest value is available. Variation over time for individual

firms between closely related SIC codes would thus again cause problems. We provide the

12The full list of the 93 anomalies is available in Appendix G.
13The code for creation of the anomalies has undergone a four eye consistency check relative to the

original studies. The discrepancies were further benchmarked with results in Hou et al. (2017).

10



Does the Source of Fundamental Data Matter?

transition between SIC classification and Datastream classification in the Appendix C.

1.1.4 Methodology for Testing Differences in Returns on the

Anomalies

We will now describe the tests used to compare returns on anomalies across two different

databases.14 We test significance of returns on individual anomalies with a simple t-test.

We adjust standard errors in the t-test for autocorrelation and heteroskedasticity as in

Newey and West (1987) with 12 lags. We then compare number of anomalies significant

at 5% level across the two databases. Differences in returns on individual anomalies over

the two databases are again tested with a t-test. One caveat here is that the differences

tend to be heavily significant even if the economic difference is negligible. The large

significance occurs when difference in returns over the two databases are consistent over

time, which leads to their small standard error. This arises, for example, for some anoma-

lies when delisting returns are omitted. A better indication of meaningful differences in

returns over the databases is economic significance (absolute difference in mean returns)

and comparison of size of t-statistics on the anomalies. Different t-statistics can lead to

different research inference when the anomaly is significant in one database but not in the

other.

We test significance of returns on groups of anomalies in panel linear regressions with

only intercept as explanatory variable. We use Driscoll and Kraay (1998) heteroskedas-

ticity and autocorrelation robust errors. The difference in returns of groups of anomalies

are again tested in panel setting where the dependent variable is returns on anomalies in

one database minus returns in the second database.

1.1.5 Role of Delisting Returns

One shortfall of Datastream, and most of the other sources of returns for equities, is

that it does not include the delisting return after the stock is removed from the ex-

change. Shumway (1997) showed that there could be a large bias in returns on portfolios

constructed from CRSP data due to missing delisting returns from performance related

delistings at the time of publication of his study. The missing delisting returns have cre-

ated an upward bias for returns on small cap stocks to the point that one half of size

anomaly could be explained by it.

There are several frequent reasons for delisting of a stock which can determine the

expected delisting return. Mergers and acquisitions are usually connected to positive

delisting returns since the buyer has to pay premium to buy publicly traded shares. Per-

formance related delisting can then lead to heavily negative return depending on success

of restructuring of the company. Shumway (1997) precisely showed that missing perfor-

mance related delisting returns in CRSP tend to be heavily negative when he tracked

the true delisting returns in an alternative database. He then suggested that the missing

14Alternatively, the same approach is also applies within one database but for across two different ways
of how to construct the portfolios.
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performance related delisting returns should be filled with -30%, which he estimated as

mean delisting return in his alternative dataset.15 Many authors have then adopted his

suggestion in the literature.

The quality of CRSP has increased since 1990s so that most of the delisting returns are

no longer missing. There are 20 680 delistings in CRSP, with just 2 742 of them missing

as of 2017. We revisit the role of missing delisting returns by investigating the returns on

portfolios based on our set of anomalies with various delisting return methodologies. We

do not opt for the alternative data source on delisting, as Shumway did, but we will rather

compare the returns on the portfolios with all the correct adjustments in CRSP and with

completely omitted delisting returns. The goal is to see if excluding the delisting returns,

as is tacitly done in Datastream, leads to systematic biases.

Table 1.2 provides the results for the 5 categories of fundamental anomalies.16 It is

apparent that there are some differences, but they are far smaller than what Shumway

(1997) suggested. They are not systematic in the sense that they would cluster in certain

types of anomalies, with the exception of some profitability anomalies that tend to short

stocks that go bankrupt with negative delisting returns. Omitting delisting returns then

leads to approximately 5% lower estimated returns on them. The differences are small

even for size and liquidity anomalies, where they are expected to be the largest. We can

therefore conclude that omitting delisting returns is not a cause for serious concern when

using Datastream, and other factors play a far larger role. This is a different conclusion

with respect to Shumway (1997), but it is hardly surprising. The average return over

all delistings that were performance related is very close to zero in our sample, which

is strikingly different from the -40% found in his study. His recommendation was to

substitute the missing delisting returns for performance reasons by -30% return, which

we do in our second comparison in the table.17 The difference in returns is again tiny and

the choice of how to adjust for delisting returns is thus not important.18

1.2 Similarity of Financial Statements

We start our comparison of Compustat and Datastream by looking at raw financial state-

ments. The corresponding items between fundamental databases should be very similar

as most of the items can be obtained without any adjustment directly from statements

15The most cautious approach for long-only portfolios would be to set the missing delisting returns
to -100% which would provide the most adverse conditions for portfolio returns possible. The situation
is, however, more complex for long-short portfolios since the performance related delistings could be
clustered in short leg of the portfolios. One example of such strategy is profitability related anomalies.

16The detailed results for each anomaly are provided in the Appendix D.
17Delistings for a performance reason have the delisting codes: 500, 520, 551 to 574, 580, and 584 in

CRSP.
18We have also tried several ways to interpolate the data on delistings from CRSP, but it did not lead to

any meaningful improvements relative to omitting the delisting returns. It is possible to sort delistings in
Datastream into several categories based on what is included in the names of the shares. Approximately
half of all delisted stocks have some indication added to their name, such as ’DELIST’ or ’MERGER’.
Matching relevant firms in CRSP and computing the average delisting return for the categories, however,
yields an average return that is close to zero.
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Table 1.2:
Impact of Omitting Delisting Returns in CRSP

The tables show returns and their corresponding t-statistics among portfolios created from
sorts on fundamental anomalies. We compare two ways of adjusting for delisting returns
with respect to our adjustment. The first one is with all delisting returns set equal to
zero and the second one follows Shumway (1997). We also show the correlation between
portfolios in the two comparisons. The list of anomalies is provided in Appendix A. The
source of fundamental data is Compustat. The portfolios are constructed by buying stocks
in the top quintile of the signal and shorting stocks in the bottom quintile of the signal.
The sample period is July 1963 to December 2016. The standard errors in t-statistics are
adjusted for autocorrelation and heteroskedasticity, as in Driscoll and Kraay (1998).

Our delisting Adjustment Versus No Delisting Our Delisting Adjustment vs Shumway (1997)

Corr Our No Delisting Diff Corr Our Shumway Diff

Accruals 0.998 0.53 (6.19) 0.54 (6.35) (3.16) 0.999 0.53 (6.19) 0.53 (6.12) (-1.89)
Intangibles 0.999 0.40 (4.23) 0.41 (4.32) (3.33) 1.000 0.40 (4.23) 0.40 (4.19) (-2.05)
Investment 0.999 0.48 (8.97) 0.48 (8.99) (0.88) 1.000 0.48 (8.97) 0.48 (8.96) (-1.70)
Profitability 0.999 0.38 (3.95) 0.36 (3.78) (-6.17) 1.000 0.38 (3.95) 0.38 (4.01) (3.30)
Value 1.000 0.66 (5.66) 0.66 (5.71) (2.03) 1.000 0.66 (5.66) 0.66 (5.66) (-0.00)
All 0.999 0.49 (9.07) 0.50 (9.15) (1.61) 1.000 0.49 (9.07) 0.49 (9.04) (-1.30)

provided by the companies in their regulatory filings. This, however, is not necessarily

the case. We show that specific methodologies chosen by the data vendors can lead to

large differences. We focus on reduced versions of the financial statements that include

only items that were used in the construction of signals for fundamental anomalies in

our reviewed literature. This is only a fraction of the variables, as there are 151 items

in financial statements in Datastream with wide coverage from 1995 and over 200 items

in Compustat. We focus only on the most important subset for the sake of brevity and

because it is often difficult to find close matches for the other variables.

Table 1.3 shows the time series averages of cross-sectional Pearsons and Spearman’s

correlations between items in the two databases. We also specify how we construct the

corresponding items in Datastream in the last column. Some transitions can be done

directly by simply matching items, but others have to be done by more complicated trans-

formations. There are some visible patterns in the discrepancies between the databases.

First, variables in the current working capital that are part of accruals tend to differ a

great deal. Next, there are differences in the classification of leases in Property Plant and

Equipment and the classification of long-term versus short-term debt. This is due to the

different methodologies of data vendors and their interpretations of the raw statements

provided by companies. Other notable differences are among the items in financing cash

flows. This is again due to different methodologies by the vendors. To conclude, there

are some notable differences across the databases that could create a systematic bias for

the fundamental signals constructed from them.
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Table 1.3:
Variables from Compustat Mapped onto Datastream

The table shows all fundamental variables that were required for construction of our
fundamental anomalies. We first specify their name in Compustat and then document how
we construct them in Datastream. We also show Pearson’s and Spearman’s correlation
coefficients between variables in the two databases in our merged sample. The sample
spans from January 1989 to December 2016.

P
earson

S
p

earm
an

BALANCE SHEET
ASSETS
Current Assets

Cash and Short-Term Investments CHE 0.619 0.990 WC02001
Short-Term Investments IVST 0.556 0.764 WC02008

Receivables - Total RECT 0.770 0.984 WC02051
Inventories - Total INVT 0.824 0.972 WC02101
Current Assets - Other - Total ACO 0.804 0.964 WC02149 + WC02140

Prepaid Expenses XPP 0.912 0.911 WC02140
Current Assets - Total ACT 1.000 1.000 WC02201
Non-Current Assets

Long-Term Investments IVAO 0.866 0.745 WC02258 + WC02250
Property Plant and Equipment - Total (Net) PPENT 0.993 0.997 WC02501

Property Plant and Equipment - Total (Gross) PPEGT 0.997 0.998 WC02301
Property Plant and Equipment Buildings at Cost FATB 0.997 0.993 WC18376
Property Plant and Equipment Leases at Cost FATL 0.771 0.754 WC18381

Investment and Advances - Equity IVAEQ 0.941 0.846 WC02256
Intangible Assets - Total INTAN 0.994 0.966 WC02649

Goodwill GDWL Set equal to 0
Assets - Total AT 0.982 1.000 WC02999

LIABILITIES AND SHAREHOLDERS’ EQUITY
Current Liabilities

Debt in Current Liabilities DLC 0.961 0.953 WC03051
Account Payable/Creditors - Trade AP 0.884 0.993 WC03040
Current Liabilities - Other - Total LCO 0.952 0.991 WC03066 + WC03054

+ WC03063 + WC03061
Accrued Expenses XACC Set equal to 0
Income Taxes Payable TXP 0.937 0.860 WC03063

Current Liabilities - Total LCT 1.000 0.999 WC03101
Long-Term Liabilities

Long-Term Debt - Total DLTT 0.985 0.988 WC03251
Liabilities - Other LO 0.633 0.892 WC03273 + WC03262

Liabilities - Total LT 0.998 0.998 WC03351
Minority Interest - Balance Sheet MIB 0.763 0.791 WC03426

Shareholders’ Equity
Preferred/Preference Stock (Capital) - Total PSTK 0.816 0.898 WC03451
Retained Earnings RE 0.994 0.990 WC03495

Shareholders’ Equity - Total SEQ 0.995 0.999 WC03501 + WC03451

Common/Ordinary Equity - Total CEQ 0.995 0.998 WC03501
Deffered Revenue Current DRC Set equal to 0
Deffered Revenue Long-Term DRLT 0.307 0.683 WC03262
Preferred Stock Redemption Value PSTKRV 0.877 0.914 Set equal to PSTK
Preferred Stock Liquidating Value PSTKL 0.878 0.914 Set equal to PSTK

1.3 Performance of Anomalies in the Same Sample

The previous section has suggested some large differences in financial statements across

the two databases. We will now investigate whether these differences translate into returns
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Table 1.3 Continued

P
earson

S
p

earm
an

INCOME STATEMENT
Revenue - Total REVT Set equal to SALE

Sales/Turnover (Net) SALE 0.999 0.999 WC01001
Cost of Goods Sold COGS 0.990 0.969 WC01051
Selling, General and Administrative Expenses XSGA 0.989 0.982 WC01101

Research and Development Expense XRD 0.986 0.983 WC01201
Earnings Before Interest, Taxes & Depreciation OIBDP 0.963 0.983 WC01151 + WC01250
Depreciation and Amortization - Total DP 0.989 0.992 WC01151
Earnings Before Interest and Taxes OIADP 0.925 0.971 WC01250
Interest and Related Expense XINT 0.885 0.993 WC01251
Pretax Income PI 0.994 0.992 WC01401
Income Taxes - Total TXT 0.997 0.995 WC01451
Income Before Extraordinary Items IB 0.995 0.990 WC01551

CASH FLOW STATEMENT
Indirect Operating Activities
Operating Activities - Net Cash Flow OANCF 0.990 0.996 WC04860
Investing Activities

Capital Expenditures CAPX 0.976 0.992 WC04601
Investing Activities - Net Cash Flow IVNCF 0.990 0.994 - WC04870
Financing Activities

Purchase of Common and Preferred Stock PRSTKC 0.981 0.967 WC04751
Sale of Common and Preferred Stock SSTK 0.928 0.960 WC04251
Cash Dividends DV 0.998 0.992 WC04551

Dividends on Common Stock DVC 0.987 0.985 WC05376
Long-Term Debt - Issuance DLTIS 0.946 0.944 WC04401
Long-Term Debt - Reduction DLTR 0.915 0.948 WC04701
Net Changes in Current Debt DLCCH WC04821

Financing Activities - Net Cash Flow FINCF 0.987 0.991 WC04890

OTHER ITEMS
Book Value per Share BKVLPS 0.921 0.982 WC05476
SIC Industry Classification SIC WC07023
Earnings per Share EPSPX 0.956 0.983 WC05210
Earnings per Share after Extraordinary Items EPSPI 0.942 0.987 WC05230
Employees EMP 0.937 0.992 WC07011
Net Income NI Set equal to IB
Preffered Dividends in Arrears DVPA Set equal to 0
Treasury Stock - Preferred TSTKP Set equal to 0

on the anomalies that are constructed from them. We start with a comparison within

the sample of stocks that can be matched between the two databases in this section and

follow with full samples in the individual databases in the next one.

We test the differences in two settings. First, we compare the similarities in the funda-

mental signals themselves, and then we turn to the returns on portfolios created based on

them. Panel A of Table 1.4 first looks at time series average of cross-sectional correlations

between signals created from either Compustat or Datastream. Pearson’s correlations
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can be very low for some signals, but the similarity in rankings based on the signals are

much higher, with an average Spearman’s correlation of 93.9%. This is mainly caused

by outliers where few observations can completely dominate the correlations. The signals

tend to have large tails and non-normal distribution so ranks are better at capturing the

dependence structure.

Table 1.4:
Datastream versus Compustat in the Common Sample

The tables shows returns and their corresponding t-statistics among portfolios created
from sorts on fundamental anomalies. We consider 3 cases for the comparison. First, we
compare portfolios created with CRSP & Compustat or with just Datastream in Panel
A. We then decompose the overall difference in Panel B by using CRSP returns for both
sources of fundamental data or Compustat fundamental signals for both sources of data
on returns. We also show the correlation between the two cases. The list of anomalies is
provided in Appendix A. The source of fundamental data is either Compustat (CS) or
Datastream (DS). The portfolios are constructed by buying stocks in the top quintile of the
signal and shorting stocks in the bottom quintile of the signal. The sample period is July
1990 to December 2016. The standard errors in t-statistics are adjusted for autocorrelation
and heteroskedasticity, as in Driscoll and Kraay (1998).

Panel A: Compustat with CRSP or Full Datastream

Signals Portfolios

Pears Corr Spear Corr Corr CT DS Diff

Accruals 0.917 0.934 0.950 0.60 (4.87) 0.59 (4.90) (-1.28)
Intangibles 0.809 0.881 0.909 0.51 (3.49) 0.51 (3.08) (-0.01)
Investment 0.905 0.960 0.977 0.37 (5.54) 0.36 (5.49) (-1.02)
Profitability 0.837 0.951 0.964 0.01 (0.05) 0.00 (0.02) (-0.36)
Value 0.707 0.972 0.994 0.64 (3.44) 0.62 (3.31) (-2.50)
All 0.841 0.939 0.959 0.45 (6.07) 0.44 (5.96) (-1.24)

Panel B

CRSP Returns Compustat Signals

Corr CT DS Diff Corr CT DS Diff

Accruals 0.957 0.60 (4.87) 0.60 (4.91) (-0.92) 0.990 0.60 (4.86) 0.60 (4.84) (-1.21)
Intangibles 0.912 0.51 (3.49) 0.51 (3.03) (0.02) 0.998 0.51 (3.50) 0.50 (3.51) (-0.79)
Investment 0.982 0.37 (5.54) 0.36 (5.54) (-1.20) 0.994 0.36 (5.54) 0.36 (5.47) (-0.05)
Profitability 0.969 0.01 (0.05) 0.00 (0.02) (-0.37) 0.995 0.01 (0.06) -0.00 (-0.01) (-1.09)
Value 0.995 0.64 (3.44) 0.62 (3.35) (-2.17) 0.997 0.64 (3.42) 0.63 (3.38) (-1.47)
All 0.963 0.45 (6.07) 0.44 (6.00) (-1.01) 0.994 0.45 (6.07) 0.44 (5.98) (-1.34)

The rest of Panel A presents the discrepancies in the returns of the portfolios created

either with CRSP and Compustat or with Datastream only. Panel B then decomposes the

differences in the returns of the portfolios into two components created either by differ-

ences in returns (Compustat signals) or differences in signals (CRSP returns) across the

two data sources. We do this by matching the fundamental signals from both Compustat

and Datastream with the returns from CRSP. Alternatively, we take the fundamental sig-

nals from Compustat and merge them with the returns from either CRSP or Datastream.

We then create portfolios and compare their returns. The table shows that there are some

discrepancies for some signals, but they do not lead to any systematic biases. The lowest
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differences are in the value category, with a 99.5% average correlation occurring between

the portfolios in this category. The largest differences are for intangibles. It is evident

that the returns from both CRSP and Datastream provide almost identical portfolios

for the same fundamental signals. This is documented by their average correlation of

99.4%. There are no strong systematic differences across the anomalies. The differences

in quantitative portfolios between the two databases are therefore mainly due to distinct

fundamental signals in each of them.

One thing to notice is that the average return on profitability anomalies is not posi-

tive for the joint sample of stocks from Datastream and Compustat. We will cover this

discrepancy in greater detail in a Section 1.6.1 later.

1.4 Performance of Anomalies in Separate Samples

We now turn to problems with distinct samples that emerge when Datastream and Com-

pustat are not matched. That is, we look at differences across the two databases if

portfolios are created solely from the data in each of them. We first start with the US

and then widen the scope to international markets in the next section.

Table 1.5 compares the performance of the fundamental anomalies in the two databases

without restriction on their joint coverage. We first focus on the case when there are

no further filters on the universe of stocks and then try to test if the differences are

smaller with some filters. The average return for all the anomalies is practically the same

in Datastream and Compustat. The average return is, however, not similar across all

the categories. The returns on profitability anomalies drop the most with their average

return going from 0.36% to -0.01% monthly and the average t-statistic on individual

anomalies going from 1.41 to 0.35. The t-statistic on returns of all profitability anomalies

goes from 1.43 to -1.09. The difference between returns in Compustat and Datastream

is significant at 1% level. The changes in other categories are statistically significant

only for Intangibles, but changes in individual anomalies can be substantial in all the

groups. A large difference is, for example, in operating profitability over assets, which

would yield 0.93% monthly according to Compustat but only -0.10% monthly according

to Datastream. This difference is significant at the 0.05% level.

43 of the anomalies have a difference in the mean returns that is significant at the

5% level. There are 41 significant anomalies with Compustat and CRSP and 39 with

Datastream. This is the same as in the common sample, but there are only 29 anomalies

that are significant in both databases. Thus, one-quarter of all the anomalies cannot be

consistently replicated across the two databases. This leads us to conclude that both

databases can convey substantially different results due to their different coverage and

classification of stocks when one considers individual anomalies. The differences are,

however, much smaller if one focuses on groups of anomalies.

We next try to look at a reduced set of stocks that would suffer from smaller disparities.

Figure 1.1 has documented that the coverage on Datastream was not ideal in earlier
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periods, especially for small stocks. Reuters provides different depths of fundamental

coverage for companies in Datastream. Smaller companies that do not meet certain

criteria are available only with a reduced set of items on their financial statements and

all anomalies thus cannot be constructed for them. The Worldscope manual reports

that $100 million market capitalization is the required threshold for the full coverage in

some regions. This could be binding, especially historically. There are also differences

in the way that Datastream and Compustat treat financial firms. The financial firms in

Datastream have a special template for their financial statements, which is comprised of

items that are different relative to industrial firms. This could lead to problems, as some

signals cannot be constructed for them. Another important factor, which we consider, is

time, as the coverage in Datastream has improved steadily.

We therefore provide results for a restricted sample that contains only non-financial

stocks with capitalization over $100 million and that spans the 2000 to 2016 period. The

$100 million capitalization requirement is very similar to discarding the stocks with a size

lower than the bottom decile in the NYSE, which has been widely used throughout the

literature.19 We then construct the fundamental signals on this reduced sample but create

portfolios only from July 2010. Specifically, we censor all fundamental information from

the time when the capitalization was lower than $100 million and before 2000 so that

the signals are constructed only using a similar information set. This leads to samples in

Compustat and Datastream that are very similar in size, and there are no obvious biases

across capitalization quintiles in Datastream.

It is evident that the similarity of portfolios has increased, with the average correlations

between returns increasing from 80.2% to 90.3%, but the differences remain substantial

for some anomalies. 90.3% is still substantially smaller than 95.9% for stocks matched in

the common sample, which implies that the classification of stocks in individual databases

can have a substantial impact. The large difference in operating profitability over assets

has virtually disappeared and would yield a 0.51% monthly average return according

to Compustat and 0.44% according to Datastream. There are still 14 anomalies with

differences in returns across the two databases that are significant at the 5% level. Signif-

icant anomalies again differ across the two databases. There are 6 significant anomalies

with Compustat and 8 with Datastream, but only 4 of those are common across the two

databases.

1.4.1 What Drives the Differences?

We now study in more detail whether the missing fundamental coverage for stocks with

smaller market capitalization can explain the discrepancy in the profitability of anomalies

across the two databases. Figure 1.2 maps the proportion of stocks within a given size

quintile in CRSP that has fundamental coverage in Datastream. We also include the

lowest size quintile in Compustat for comparison. It is evident that the coverage has been

very uneven over time and for different size quintiles. The smallest half of stocks suffered

19See, for example, Hou et al. (2017) and Green et al. (2017).
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Table 1.5:
Datastream versus Compustat in Their Own Full Samples

The table shows the returns and their corresponding t-statistics among portfolios created
from sorts on fundamental anomalies. We compare portfolios created with CRSP &
Compustat or with just Datastream for either all available stocks or for a reduced sample.
The full sample starts in July 1990 and ends in December 2016. The reduced sample
begins in July 2010 and omits all financial stocks or those with capitalization under $100
million. We also show correlation between the two cases. The list of anomalies is provided
in Appendix A. The portfolios are constructed by buying stocks in the top quintile of
the signal and shorting stocks in the bottom quintile of the signal. The standard errors
in t-statistics are adjusted for autocorrelation and heteroskedasticity, as in Driscoll and
Kraay (1998).

Full Samples Cap over $100 million & No Financial & 2010+

Corr CT DS Diff Corr CT DS Diff

Accruals 0.762 0.56 (4.39) 0.62 (5.05) (1.03) 0.883 0.08 (0.79) 0.10 (0.94) (0.47)
Intangibles 0.714 0.41 (2.55) 0.58 (3.48) (3.81) 0.852 0.06 (0.61) 0.04 (0.42) (-0.42)
Investment 0.815 0.49 (6.89) 0.46 (6.36) (-0.92) 0.909 0.17 (2.14) 0.15 (1.85) (-0.85)
Profitability 0.841 0.36 (2.11) -0.01 (-0.04) (-6.66) 0.915 0.36 (2.96) 0.26 (1.99) (-2.45)
Value 0.899 0.64 (3.95) 0.63 (3.39) (-0.24) 0.968 0.35 (2.05) 0.40 (2.34) (2.63)
All 0.802 0.50 (7.26) 0.48 (6.41) (-0.63) 0.903 0.19 (2.69) 0.18 (2.56) (-0.55)

from insufficient fundamental coverage until 2000, and the full coverage only occurred

around 2010.20

Figure 1.3 further maps a smoothed histogram of the market cap of stocks with fun-

damental coverage in Compustat and Datastream in 1990 and 2015. It is apparent that

the insufficient coverage in Datastream was throughout the whole distribution in 1990

but has virtually disappeared by 2015. There is thus no simple rule regarding how to

discriminate based on size to eliminate all the differences in returns on the anomalies.

Table 1.6 tries to explain the differences in returns on anomalies across the two

databases. We focus on the full samples without restrictions. We regress the difference

in returns on the average cross-sectional quantile of the size of stocks in the respective

portfolios. The quantiles are taken with respect to all the stocks in CRSP or Datastream.

We also regress the differences in returns on differences in average size. The regression is

a simple pooled OLS with standard errors clustered on time periods and anomalies. Both

size and difference in size are significant at the 5% level, both individually and jointly.

The table thus documents that size is indeed important in explaining the differences and

returns on anomalies that are more prevalent in larger stocks, which tend to differ less

across the two databases.

1.4.2 Sources of Bias in the Portfolio Returns

There would be no problems with the imperfect fundamental coverage if the stocks would

be omitted randomly. The problem is that the coverage is not random, as documented

20Note that the proportion for some quintiles in Datastream is larger than 100% in 2010s. This is
due to different classification of common stocks in Datastream. There are therefore more stocks with
fundamental coverage in Datastream than there are common stocks in CRSP.
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Figure 1.2: Fraction of Stocks in CRSP with Fundamental Coverage in Compustat or
Datastream in a Given Size Quintile.

Figure 1.3: Histogram of Market cap of Stocks with Fundamental Coverage in Compustat
and Datastream.
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Table 1.6:
Explaining the Difference in Returns across Datastream and Compustat

The table shows the results from regressions of differences in the returns of portfolios from
alternative databases. The portfolios are created from sorts on fundamental anomalies
constructed with data from either CRSP and Compustat or with just Datastream. We
then regress the monthly returns from Datastream minus the returns from Compustat on
size in Compustat or the difference in size across the two databases. The size is measured
as the mean cross-sectional quantile of the size of stocks in the portfolio with respect
to the full universe of US stocks at the beginning of each month. The list of anomalies
is provided in Appendix A. The portfolios are constructed by buying stocks in the top
quintile of the signal and shorting stocks in the bottom quintile of the signal. The sample
period is July 1990 to December 2016. The standard errors in regressions are clustered
at time and anomaly effects.

I II III

Intercept -1.48 -0.06 -1.44
(-3.44) (-0.67) (-3.25)

Size 2.69 2.79
(3.35) (3.42)

Difference in Size -1.26 -1.37
(-2.19) (-2.50)

R2 0.0038 0.0016 0.0056

earlier. There are three main sources of the biased returns on portfolios, and we will now

cover them in detail.

Firstly, breakpoints on the portfolios are biased since the covered sample of stocks

is not randomly sampled from the full population of stocks. The breakpoints are there-

fore valid only for a given database and not for the full population of the stocks or for

other databases. The weighted average of stock returns for a subpopulation bounded by

incorrectly specified breakpoints is biased if the bias in breakpoints is related to stock

returns. That is, if the biased breakpoints cause omission or addition of stocks with dif-

ferent average return with respect to what subpopulation average for the given portfolio

is. We will show that the likelihood of the fundamental coverage in Datastream depends

on company size and number of analysts following among other factors. Both size and a

number of analysts following has been linked in the literature to stock returns, see Banz

(1981) and Elgers et al. (2001).21 Interactions between the anomalies and the variables

driving the coverage is a source of another bias. Fama and French (1992) and Fama and

French (2015), for example, document interactions of size and book to value, investments,

and profitability. Bias coming from inappropriate breakpoints can be minimized by using

breakpoint from all-but-microcaps subpopulation of the stocks where there are only mild

21The size premium is almost non-existent since 1990 after accounting for all the biases. The main
source of bias is bid-ask spread jump as analyzed in Asparouhova et al. (2010) that is present for equal-
weighted returns. Asparouhova et al. (2010) propose ways how to limit the bias. Equal-weighting is
nonetheless followed in this study to provide results mimicking the reviewed academic anomalies research
where the bid-ask jump issue is always ignored.
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coverage issues.

Secondly, imperfect coverage for stocks within a given subpopulation bounded by cor-

rect breakpoints can be a source of more bias. Suppose that it is possible to precisely

specify population breakpoints and the bias discussed in the previous paragraph is com-

pletely dissolved. Non-random sampling could still cause problems if the likelihood of

stocks omission is related to their expected returns. The argument for the bias is es-

pecially strong for interaction effects with size. Smaller stocks tend to be more illiquid

and harder to trade in a significant quantity which limits the arbitrage opportunity. Any

anomalies due to market frictions should therefore be stronger for the small cap stocks

which creates interaction effects with size and problems with the non-random sampling.

Lastly, idiosyncratic differences across the databases can be a source of some bias.

Classification of industries and treatment of static and time-series information are good

examples. This aspect of the bias can be minimized only through specific treatment in

the individual cases.

1.4.3 Portfolio Constructions Limiting the Discrepancies

Is there any way to decrease the differences by choosing an appropriate methodology?

This is not very important in the US, but it is of first order importance for international

studies since Datastream is the most widely used database there. Figure 1.4 showed that

there is a lower discrepancy in coverage for larger stocks. Specifically, the coverage for the

1000 largest stocks is very similar across the databases. We will now look at procedures

that filter the universe of stocks based on their size to lower the bias.

Table 1.7 presents the returns and t-statistics for value-weighted portfolios constructed

on a all-but-microcaps universe or with portfolio breakpoints from the largest 1000 stocks.

The all-but-microcaps universe is defined by stocks with a capitalization larger than that

of the smallest decile at the NYSE. The logic behind the first adjustment is to truncate the

whole distribution of stocks and discard the part where the difference is the largest. This

should not cause any serious problems for measurement of profitability for implementable

and scalable strategies as the small stocks constitute only a very small proportion of

the overall capitalization of the whole market and it is advocated, for example, in Hou

et al. (2017). The second adjustment then again shifts the focus to all-but-microcaps

but does not discard the other stocks. The breakpoints based on the largest 1000 stocks

and value-weighting guarantees that the largest stocks will dominate the returns of the

portfolios. The use of breakpoints on all-but-microcapss is very similar to the use of NYSE

breakpoints, which has been applied in many studies and is advocated, for example, in

Fama and French (2017).

Both methods lead to significant improvement in the correlation of portfolios across the

two databases and provide very similar results. The average correlation has increased from

80.2% to approximately 86%. The discrepancy for the returns on profitability anomalies is

now much lower as well, and the average absolute difference in the t-statistics on individual

anomalies decreased to almost one third. The difference in the inference on significance
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of individual anomalies remains substantial nonetheless. There are 11 significant signals

in Compustat and 12 in Datastream, but only 6 of those are common across the two

databases for the all-but-microcaps universe of stocks. There are 9 significant signals in

Compustat and 9 in Datastream, but only 6 of those are common across the two databases

for breakpoints based on the 1000 largest stocks. This is an even larger difference in

relative terms with respect to considering all the stocks.

Table 1.7:
Portfolio Constructions Reducing the Discrepancy between Databases

The table shows the returns and their corresponding t-statistics among portfolios created
from sorts on fundamental anomalies. We compare the portfolios created with CRSP &
Compustat or with just Datastream for either the all-but-microcaps universe of stocks
or for the full sample of stocks with breakpoints from the largest 1000 stocks. The full
sample includes all available stocks while the all-but-microcaps universe is restricted to
stocks with capitalization larger than that of bottom decile at NYSE. We also show the
correlation between the two cases. The sample starts in July 1990 and ends in December
2016. The list of anomalies is provided in Appendix A. The value-weighted portfolios
are constructed by buying stocks in the top quintile of the signal and shorting stocks
in the bottom quintile of the signal. The standard errors in t-statistics are adjusted for
autocorrelation and heteroskedasticity, as in Driscoll and Kraay (1998).

All-but-microcaps VW Breakpoints from 1000 Largest Stocks VW

Corr CT DS Diff Corr CT DS Diff

Accruals 0.858 0.23 (2.16) 0.22 (2.03) (-0.27) 0.868 0.21 (2.10) 0.22 (2.11) (0.29)
Intangibles 0.762 0.17 (2.41) 0.26 (2.98) (2.38) 0.778 0.21 (3.14) 0.23 (2.73) (0.54)
Investment 0.851 0.26 (3.31) 0.23 (2.89) (-0.89) 0.854 0.22 (2.99) 0.21 (2.62) (-0.65)
Profitability 0.869 0.24 (2.06) 0.17 (1.34) (-1.26) 0.875 0.22 (2.39) 0.15 (1.42) (-1.51)
Value 0.948 0.19 (1.09) 0.23 (1.27) (1.14) 0.942 0.19 (1.03) 0.20 (1.09) (0.49)
All 0.857 0.22 (3.02) 0.22 (2.99) (0.32) 0.863 0.21 (2.96) 0.20 (2.79) (-0.44)

1.5 Implications for Studies of International Markets

We have shown that fundamental coverage in Datastream in the US is not complete and

this can have a large consequence on the measurement of performance of the anomalies.

We will now focus on its coverage in different countries, as it is often the first database

that researchers go to for international data. The US evidence serves as a great testing

ground because it includes a large number of stocks, and its implications should be valid

elsewhere as well. It is thus important to study imperfections in the coverage, as they

could lead to biased estimates in these studies.

1.5.1 Fundamental Coverage Around the Globe

Figure 1.4 presents a fraction of stocks with fundamental coverage depending on the size

quintile in Japan, Europe, and Asia Pacific. It is evident that the imperfect coverage

is as much present internationally as it is in the US. We next look for support of this

imperfect fundamental coverage in Datastream and guidance regarding what patterns to

expect from its manual. The Worldscope’s manual states that: ”In 1987, Worldscope
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established a second research center in Shannon, Ireland, to maintain and develop the

database. In 1995, Worldscope established a third major research and data collection

center in Bangalore, India. A fourth major research and data collection center in Manila,

Philippines was added with Primark’s 1999 acquisition of the Extel company database....

Today, the database operations group, which supports the Worldscope database, employs

over 500 people mainly located in 3 collection centers located in Bangalore (India), Shan-

non (Ireland), and Manila (The Philippines).” It is thus very likely that the quality of

data has been changing over time as new research centers have been established. We

show precisely this in Figure 1.4. The coverage in Australia, New Zealand, Hong Kong,

and Singapore was very uneven until 2001 and is close to 100% after that. Similarly,

in Japan, Datastream fully covered only companies with large capitalization until 1998.

The coverage is not complete in few European countries even as of 2017, but companies

outside the lowest size quintile are generally fully covered from 1997. This is partly due to

the inclusion of stocks outside the primary trading venue in each stock exchange. These

stocks tend to be very illiquid and have only tiny market capitalization. They are thus

not a source of serious concern, as any quantitative investor would exclude them from

their investment universe anyway.

1.5.2 Determinants of the Coverage

We have shown that the dependence of fundamental coverage on the market cap of in-

dividual stocks can have an impact on the measurement of performance of individual

anomalies in the case of the US. Are there any other confounding variables that a re-

searcher should be aware of? The Worldscope manual from 2007 describes its content

coverage in the following way: ”A fully detailed analysis is required for all companies

within the following countries: the United Kingdom, and the U.S. For all other countries,

fully detailed analysis is required if any of the following criteria is fulfilled:

• Company is a constituent of the, FTSE ALL World, Dow Jones Global, MSCI

World, MSCI EMF, S&P Global, S&P/Citigroup or a selected local index.

• Company has 5 or more broker estimates.

• Company has a market capitalization of greater than 100 million dollars (exception

Japan, China & Taiwan).

• Legacy companies from Extel database22.”

This description suggests that the number of analysts following can have a role very similar

to size if it is related to expected returns on individual stocks. Elgers et al. (2001) show

that this is indeed the case. Constituency in the indexes is more difficult to measure, but

it is usually closely connected to size, which will capture most of its effect.

22The Extel database was acquired by Worldscope in 1999 and covered stocks in Asia.
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Panel A: Europe.

Panel B: Japan.

Panel C: Asia Pacific.

Figure 1.4: Fraction of Stocks with Fundamental Coverage in Datastream in a Given Size
Quintile.
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Table 1.8 presents logit regressions predicting fundamental coverage with the size

quantile and analyst followings in individual countries

Fundamental Coverageit = β0 + β11{Sizeit > $100M}

+ β21{Analysts Followingit ≥ 5}+ β3Size Quantileit

+ β4(Size Quantileit − Size Quantile$100M
t )1{Sizeit > $100M}+ εit. (1.1)

where Fundamental Coverageit is equal to one when the given stock i has fundamental

information in Datastream in month t and zero otherwise. 1{Sizeit > $100M} is a

dummy that is equal to one when market cap of the stock i in month t is larger than 100

million US Dollars and zero otherwise. 1{Analysts Followingit ≥ 5} is a dummy equal

to one when number of analysts following the company i in month j in I/B/E/S is larger

than or equal to 5 and zero otherwise. Size Quantileit describes cross-sectional quantile

(0 to 1) of market capitalization of the stock i relative to all the stocks in country of its

listing in month t. (Size Quantileit − Size Quantile$100M
t )1{Sizeit > $100M} captures

change in slope of the cross-sectional market cap quantile when the market cap is larger

than 100 million US Dollars. Cross-sectional market capitalization quantile of stock with

100 million US Dollars Size Quantile$100M
t is subtracted from Size Quantileit so that

1{Sizeit > $100M} retains its interpretation and is not distorted by the possible kink

in predictive impact of Size Quantileit. The regressions are separately estimated on all

available stocks in Datastream in each individual country in 1990 to 2002 period and

2003 to 2016 period. The fundamental coverage is worse in the earlier period. Change in

coefficients in the later period helps illuminate if the problems with imperfect coverage

improved for the more recent data.

Coefficients from the fitted regressions should not be interpreted as having a causal

relationship. There are unobserved characteristics that can determine both the explana-

tory variables and the dependent variable. One such example is constituency of a given

stock in global indexes which leads to larger attention by both analysts and providers

of fundamental data. The pooled panel regressions should merely answer the question

whether there is a potential for problems with confounded variables. All the standard

errors in the reported t-statistics are HAC robust.

β0 is proportional to unconditional coverage. That is, the higher it is, the better the

fundamental coverage for stocks of all sizes. It has increased from the 1990-2002 period

to the 2003-2016 period for almost all the regions, and the increase has been substantial

for the US and countries in the Asia Pacific, as would be expected from the previous

graphs. β1 then captures the discrete change in coverage at approximately $100 million.

It is insignificant or close to zero almost everywhere, with the exception of the US in

the earlier period. This documents that the coverage of the stocks has indeed been only

selective and not full in the US. On the other hand, the quantiles of size and more than 4

analysts following are significant almost everywhere. This means that both of them can

lead to spurious results if the effect under study is somehow related to them. The size
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quantile tends to have a lower effect after the $100 million threshold, as is evident from

a mostly insignificant β3 + β4 measuring slope on on size for stocks with capitalization

larger than $100 million.

Table 1.8:
Predicting Fundamental Coverage

The table reports the estimated coefficients and corresponding t-statistics for the stock-month level logit
regression of fundamental coverage on its explanatory variables

Fundamental Coverageit = β0 + β11{Sizeit > $100M}+ β21{Analysts Followingit ≥ 5}
+ β3Size Quantileit + β4(Size Quantileit − Size Quantile$100Mt )1{Sizeit > $100M}+ εit

where Fundamental Coverageit is equal to one when the given stock i has fundamental information
in Datastream in month t and zero otherwise. 1{Sizeit > $100M} is a dummy that is equal to one
when market cap of the stock i in month t is larger than 100 million US Dollars and zero otherwise.
1{Analysts Followingit ≥ 5} is a dummy equal to one when number of analysts following the company
i in month j in I/B/E/S is larger than or equal to 5 and zero otherwise. Size Quantileit describes
cross-sectional quantile (0 to 1) of market capitalization of the stock i relative to all the stocks in country
of its listing in month t. (Size Quantileit − Size Quantile$100Mt )1{Sizeit > $100M} captures change
in slope of the cross-sectional market cap quantile when the market cap is larger than 100 million US
Dollars. We also report the Nagelkerke et al. (1991) R2 index to measure goodness of fit. The standard
errors in the reported t-statistics are HAC robust. The regression results are estimated on sample either
from 1990 to 2002 or from 2003 to 2016.

1990 - 2002 2003 - 2016

β0 β1 β2 β3 β4 + β3 R2 β0 β1 β2 β3 β4 + β3 R2

Australia -1.87 0.21 2.12 2.92 4.01 0.40 1.35 -0.22 1.72 3.12 -1.69 0.08
(-26.38) (1.16) (9.74) (14.69) (2.82) (23.64) (-1.10) (4.20) (13.77) (-1.49)

Austria 0.71 0.45 0.59 -0.15 1.12 0.06 -0.69 -0.09 2.74 5.06 0.71 0.31
(2.00) (1.12) (1.77) (-0.14) (0.50) (-1.54) (-0.17) (2.75) (3.57) (0.33)

Belgium -1.00 -0.61 2.44 4.69 0.02 0.31 -1.40 -0.30 0.41 7.90 3.09 0.43
(-3.37) (-1.39) (3.96) (4.95) (0.01) (-4.14) (-0.55) (0.64) (7.01) (1.58)

Canada -2.11 0.35 1.24 4.25 3.99 0.45 0.60 -0.10 1.15 6.53 1.18 0.17
(-28.16) (2.33) (8.74) (14.56) (4.94) (6.50) (-0.68) (4.63) (9.68) (2.21)

Denmark 0.06 -0.55 1.76 4.04 -1.70 0.16 0.96 -1.04 2.13 7.31 -1.83 0.15
(0.26) (-1.12) (4.39) (5.07) (-0.68) (3.10) (-1.61) (3.11) (6.02) (-0.83)

Finland 0.38 -0.95 1.20 3.13 -0.05 0.10 0.69 -0.86 1.94 6.54 -1.77 0.15
(1.05) (-2.27) (3.33) (2.61) (-0.02) (1.39) (-1.34) (2.78) (3.64) (-0.81)

France -0.36 -0.59 2.09 2.73 -0.26 0.16 -0.52 -0.23 1.26 5.46 1.45 0.27
(-2.88) (-3.65) (9.74) (7.48) (-0.42) (-4.79) (-1.18) (3.54) (14.06) (1.71)

Germany 0.50 -0.43 1.58 1.92 0.82 0.10 -1.26 -1.18 1.71 7.80 3.07 0.45
(2.79) (-2.21) (6.73) (3.65) (1.28) (-14.00) (-5.64) (3.86) (19.87) (2.98)

Greece -0.46 -0.24 1.82 3.36 1.25 0.17 1.19 0.03 0.56 3.78 1.51 0.09
(-2.11) (-1.00) (5.08) (5.87) (1.12) (4.63) (0.06) (1.43) (3.73) (0.72)

Hong Kong -1.85 -0.25 0.27 3.31 6.27 0.19 1.00 -0.10 2.01 3.02 -0.36 0.07
(-9.02) (-1.89) (1.86) (9.09) (6.71) (5.59) (-0.69) (6.37) (7.88) (-0.57)

Ireland -1.45 -0.63 1.00 8.41 -0.17 0.44 1.40 -1.14 0.18 3.45 2.20 0.04
(-4.52) (-1.01) (1.56) (7.12) (-0.08) (2.00) (-1.96) (0.26) (1.93) (1.14)

Italy -0.08 -0.06 2.17 2.83 1.15 0.19 -0.98 -0.21 1.49 7.67 0.67 0.28
(-0.22) (-0.24) (6.04) (3.28) (1.12) (-3.24) (-0.61) (2.13) (8.87) (0.37)

Japan 0.03 -0.73 2.20 5.41 3.14 0.20 3.39 0.15 1.51 0.75 -1.53 0.01
(0.39) (-10.46) (6.48) (20.97) (12.98) (33.64) (0.96) (6.66) (2.06) (-3.12)

Netherlands -0.24 -1.06 2.74 3.31 0.04 0.32 -0.90 -2.75 1.61 12.05 -1.91 0.34
(-0.79) (-2.38) (9.24) (3.45) (0.04) (-2.75) (-3.39) (3.11) (7.32) (-1.32)

New Zealand -2.91 0.14 1.92 4.86 -4.26 0.48 0.69 0.04 0.76 2.41 5.47 0.16
(-9.30) (0.30) (5.87) (7.10) (-1.82) (3.00) (0.07) (0.93) (3.71) (2.07)

Norway 0.34 -0.15 2.18 2.40 -0.45 0.14 0.99 -0.49 1.97 3.46 -0.75 0.10
(1.59) (-0.52) (4.82) (3.78) (-0.28) (3.22) (-1.56) (4.84) (3.73) (-0.67)

Portugal -1.48 -0.12 2.44 5.02 -1.54 0.36 -0.42 0.74 -0.11 5.10 3.64 0.38
(-8.52) (-0.29) (4.79) (7.05) (-0.88) (-1.28) (0.90) (-0.07) (3.88) (0.64)

Singapore -0.69 -0.55 0.71 1.95 6.14 0.13 2.02 -0.42 1.79 1.58 3.38 0.04
(-2.10) (-3.00) (3.31) (3.51) (3.92) (6.51) (-1.78) (2.70) (2.40) (2.28)

Spain -0.06 -0.72 1.83 2.43 1.81 0.23 -1.02 1.36 2.27 6.06 -4.59 0.33
(-0.14) (-1.78) (4.74) (2.26) (1.45) (-2.00) (2.22) (3.47) (4.24) (-2.20)

Sweden -0.36 -0.36 3.01 3.43 0.04 0.23 0.38 -0.56 1.03 6.31 -1.21 0.19
(-2.52) (-1.39) (6.44) (7.08) (0.04) (2.92) (-1.98) (2.05) (11.78) (-1.18)

Switzerland -0.37 -0.75 1.66 3.51 0.76 0.19 1.71 0.37 1.23 2.81 -1.49 0.05
(-1.34) (-2.52) (5.76) (4.75) (0.67) (3.43) (0.62) (2.12) (1.95) (-0.60)

UK 0.17 0.16 0.68 2.88 -0.31 0.11 0.68 -0.48 0.53 3.71 0.87 0.09
(2.31) (1.28) (4.56) (11.10) (-0.61) (9.88) (-3.94) (3.33) (14.81) (1.96)

USA -0.33 0.57 1.09 1.87 1.35 0.22 1.22 -0.40 0.56 4.57 0.74 0.05
(-6.83) (10.68) (15.11) (12.93) (5.25) (15.66) (-5.23) (7.09) (12.00) (4.00)
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1.5.3 Impact on Selection of Individually Significant Signals

We will now test the effect of imperfect fundamental coverage in international markets.

Figure 1.4 showed that fundamental coverage in Datastream in Japan and Asia Pacific

has changed to essentially 100% after 2000. These markets can therefore serve a testing

ground for the impact of missing fundamental coverage. It is possible that the evidence

documented so far is valid only in the US and it is therefore important to provide evidence

in the other regions where often used as the primary source of fundamental information.

Table 1.9 tests the impact of imperfect fundamental coverage in Japan and Asia Pacific.

Logit regressions estimating probability of no fundamental coverage for a given stock are

fitted over the periods where the coverage was only partial, that is, July 1990 to July 1998

in Japan and July 1990 to July 2000 in Asia Pacific. The specification of regressions is

the same as in equation (1.1). The fitted specification in Japan with 0.288 pseudo R2 is

Fundamental Coverageit = −0.83(0.10) + 0.10(0.08)1{Sizeit > $100M}

+ 2.00(0.39)1{Analysts Followingit ≥ 5}+ 5.02(0.32)Size Quantileit

− 1.56(0.35)(Size Quantileit − Size Quantile$100M
t )1{Sizeit > $100M}. (1.2)

The fitted specification in Asia Pacific with 0.481 pseudo R2 is

Fundamental Coverageit = −3.29(0.11)− 0.26(0.10)1{Sizeit > $100M}

+ 1.16(0.11)1{Analysts Followingit ≥ 5}+ 4.99(0.22)Size Quantileit

+ 0.91(0.75)(Size Quantileit − Size Quantile$100M
t )1{Sizeit > $100M}. (1.3)

We then predict the probability of no coverage for each stock in the period where the

coverage was perfect, that is, July 2000 to December 2016 in Japan and July 2002 to

December 2016 in Asia Pacific. We randomly discard stocks from the sample with perfect

coverage according to the fitted probability of no coverage. The goal is to simulate what

would happen if the imperfect fundamental coverage remained after 2000. Portfolios are

then formed on the remaining sample of stocks that survived. The portfolios are created

from different random samples. Average monthly returns over 10 random draws are then

used in the analysis to add robustness. The portfolios on random subsample (Partial

category in the table) are finally compared with the original full coverage sample (Full

category).

There are statistically and economically significant differences for both individual and

grouped anomalies in both Japan and Asia Pacific. The partial coverage portfolios yield

one third lower returns than the full sample portfolios in Japan. There are 6 anomalies

with significant differences in returns in Japan and 11 in Asia Pacific. There are 12

significant anomalies on the full sample in Japan, 7 on the partial sample, and 6 on both

samples. There are 35 significant anomalies on the full sample in Asia Pacific, 32 on the

partial sample, but only 26 on both samples.

The imperfect historical coverage in international markets has implications for returns

on portfolios there in the very same way as in the US as argued in Section 1.4.2. Our study
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Table 1.9:
Effect of the Imperfect Coverage Outside the US

The table shows returns and their corresponding t-statistics among portfolios created from
sorts on fundamental anomalies. The probability of a stock having fundamental coverage
in Datastream is estimated with logit model as in table 1.8 over July 1990 to July 1998 in
Japan and July 1990 to July 2000 in Asia Pacific. The stocks are then randomly sampled
from their full population with the fitted coverage probability over July 2000 to December
2016 in Japan and July 2002 to December 2016 in Asia Pacific. Portfolios on anomalies
are created from the sampled stocks. Portfolio returns on anomalies created based on all
the stocks (Full category) are compared with returns on portfolios created on the random
subsample (Partial category). The partial category is based on mean monthly returns
from 10 random draws of the stocks. The list of anomalies is provided in Appendix A.
The equal-weighted portfolios are constructed by buying stocks in the top quintile of the
signal and shorting stocks in the bottom quintile of the signal. The standard errors in t-
statistics are adjusted for autocorrelation and heteroskedasticity, as in Driscoll and Kraay
(1998).

Japan Asia Pacific

Corr Full Partial Diff Corr Full Partial Diff

Accruals 0.829 0.08 (0.74) 0.04 (0.34) (-1.13) 0.764 1.11 (3.66) 0.99 (3.90) (-1.19)
Intangibles 0.844 0.15 (2.72) 0.05 (0.92) (-2.54) 0.744 0.84 (3.13) 0.57 (2.99) (-1.79)
Investment 0.843 0.10 (1.54) 0.06 (0.84) (-1.50) 0.763 0.70 (4.76) 0.77 (5.14) (0.90)
Profitability 0.841 0.13 (1.75) 0.18 (1.85) (0.97) 0.762 -0.22 (-0.57) 0.04 (0.14) (1.93)
Value 0.876 0.47 (3.31) 0.38 (2.30) (-1.17) 0.799 0.77 (3.66) 0.97 (3.81) (2.55)
All 0.845 0.18 (3.16) 0.13 (2.10) (-2.07) 0.766 0.70 (4.20) 0.71 (4.42) (0.21)

is therefore overwhelmingly showing that there could be a huge bias when looking at the

performance of individual quantitative strategies in international markets in periods of

imperfect fundamental coverage. The bias can completely distort the statistical inference

and lead to findings of patterns that are only its artifacts. The simple remedies of focusing

on universe of stocks that excludes microcaps proposed earlier can correct for a part of

the bias, but they cannot control for all of it.

1.5.4 Impact on Selection of Independently Significant Signals

The analysis so far has focused on returns on portfolios. We will now show that the same

caveats apply in regression setting as well. We follow the methodology from Green et al.

(2017) to identify independently significant signals. Table 1.10 presents anomalies that

are significant in Fama and MacBeth (1973a) panel regressions of individual stock returns

on rescaled anomalies.23 All the signals are pooled in the regressions, as follows:

ri,t = β0 +
M∑
j=1

βjxi,j,t−1 + εi,t. (1.4)

for a given month t and number of signals M . xi,j,t−1 is the signal for anomaly j and

stock i that was available just before the start of month t. Raw fundamental signals are

transformed into cross-sectional quantiles among all the stocks in a given region before

23The approach is covered in more detail in Section 2.4.
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the regressions are run to limit the effect of outliers. We also remove binary variables and

signals where the variance inflation factor is higher than 7.24 We consider simple ordinary

least squares (OLS) regressions (E) and the value-weighted weighted least squares (WLS)

regression (V). The weight in the value-weighted WLS regression is proportional to market

cap of individual stocks in each cross-section and should therefore limit the effect of small

capitalization stocks. The regressions use all stock-month observations from July 1963

to December 2016 in the US and from July 1990 to December 2016 elsewhere. All the

standard errors are HAC adjusted, as in Newey and West (1987), with 12 lags. We

present the results for all the available stocks (All) and the restricted all-but-microcaps

stocks with sizes larger than the bottom decile in the NYSE (Large). U stands for all

signals found to be significant while A stands for those that remain significant after a

correction for a false discovery rate (FDR) at 5%.

The FDR correction is very important since one would tend to find one significant

signal in 20 individual tests even if all of them are insignificant in reality. The FDR

adjustment follows Benjamini and Yekutieli (2001) and proceeds by first sorting p-values

from the smallest to the largest so that p1 ≤ p2 . . . ≤ pi . . . ≤ pM . FDR adjusted p-values

are determined with backward induction where pFDRM = pM
∑

1≤j≤M
1
j

and

pFDRi = min

{
pFDRi+1 , pi

M

i

∑
1≤j≤M

1

j

}
(1.5)

The adjusted p-values pFDRi are then significant with an FDR of 5% if they are smaller

than 5%.

The results for the US look staggering. There is only one common signal out of the

8 that is significant with FDR adjustment for Compustat for the full universe of stocks

and OLS regressions. This does not change for all-but-microcaps stocks, with one in 5

signals being common. Value-weighting helps as it selects only one significant signal that is

common across all the specifications for both the databases. The one commonly significant

anomaly is the earnings predictability of Francis et al. (2004), which is surprisingly not

related to any commonly used factor. Omitting FDR correction does not change the

inference and there are still huge differences. This suggests that it is virtually impossible

to select independently significant signals in the same country using different datasets.

The difference in the selected anomalies across the databases in the US then translates

to large discrepancies for the international sample. It is apparent that some of the signals

are common for the regions, but the variability is again great. Jacobs and Müller (2017a)

conducted a similar exercise in international markets and found only a few signals that

would be significant across all the regions. Our analysis here suggests that this result is a

consequence of the imperfect coverage of Datastream in the individual regions. It serves

as an important caveat that the population of stocks in individual regions and its coverage

by data vendors has a substantial impact on research findings and anyone working with

24The exclusion of signals is done iteratively, and we primarily discard signals that would not be
significant for any specification in the US.
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international data should be aware of it.

Table 1.10:
Independently Significant Signals

The table shows signals that independently predict the returns on individual stocks in
different regions. We measure predictability by significance of coefficients in the Fama and
MacBeth (1973a) regressions. We regress the returns on past quantiles of fundamental
signals across all stocks in the given region and month. We then focus on the t-statistics
on the time-series mean of these coefficients. We report all signals with t-statistics larger
than 2 (U) and those with p-values smaller than 5% after adjusting the original p-values for
FDR (A). The regressions are either equal-weighted (E, standard OLS) or value-weighted
(V, WLS with weights given by market cap). We compare the selected signals for CRSP &
Compustat with those for Datastream for either the all-but-microcaps universe of stocks
or for the full sample of stocks. The full sample (All) includes all available stocks, while
the all-but-microcaps universe (Large) is restricted to stocks with capitalizations larger
than that of bottom decile of the NYSE. The sample starts in July 1990 and ends in
December 2016. The list of anomalies is provided in Appendix A.

Compustat Datastream

USA USA Europe Japan Asia Pacific

All Large All Large All Large All Large All Large

E V E V E V E V E V E V E V E V E V E V

EPr A A A A A A A A A A A A - - U - U - U -
CBOP A U U U U U A U A - A U - - U - - - - -
NOA - U U U A U A U A - - - - - U - A - - -
SP U U A U A - U - A - - - - - U - A - - -
RDM A - A - U - U - A - U - A - U - - - - -
ChNOA A - A - - - U - A U U U - - - - - - - -
PY U - A - A - - - U - U - - - - - - - - -
BM A - - - U - - - A A A A - - - - A U U U
WWI U - - - A - - - U - - - - U - U A - - -
CM - - - - A - - - - - U - - - - - A - - -
OL A U U U - - - - - - - - - - - - - - - -
SaGr A - U - - - U - - - - - U - - - - - - -
GriI U - - - A - - - - - - - - - - - - - - -
GrLTNOA A - - - - - - - - - - - - - - - U - - -
AT - - - - A - - - - - - - - U U U - - - -
CEI5Y - - - - - - U - A U A - - - U - U U U U
ChGMChS U - U - - - - - - - U - - - - - A - - -
EP - - - - - U - U A - U - - - - - U - - -
NEF - - - - U - - - U - - - - - - - A - - -
SuGr - - - - - - - - A - U - U - - - - - - -
Acc U U - - - U - U U - - - - - - - U - - -
ChNNCOA U U U U - - - - U - - - - - - - - U U U
POA U - U - - - U - - - - - - - - - - - U U
NPY U - - - U - U - - - - - - - - - - - - -
AGr U - - - U - - - U - - - - - - - - - - -
ICh U - - - U - - - - - - - - - - - - - - -
ES - - - - - U - U - - - - - - - - - - - -
OC U - - - - - - - - - - - - - - - - - - -
TAN U - - - - - - - - - - - - - - - - - - -
ChNCOL U - - - - - - - - - - - - - - - - - - -
ChFL U - - - - - - - - - - - - - - - - - - -
FSc - - - - U - - - - - - - - - - - - - - -
HR - - - - U - - - - - - - - - - - - - - -
Lvrg - - - - U - - - - - - - - - - - - - - -
ChCOL - - - - U - - - - - - - - - - - - - - -
ChPPEIA - - - - - U - - U - - - - - - - - - - -
EM - - U - - - - - - - - - U - - - - - - -
ChiAT - - - - - - - - U U U U - - - - - - - -
NOACh - - - - - - - - U - - - U - - - - - - -
TXFIN - - - - - - - - U - - - - - - - - - - -
AL - - - - - - - - U U - - - - - - - - - -
EC - - - - - - - - - - - - U - - - - - - -
IR - - - - - - - - - - - - U - - - - - - -
OPtE - - - - - - - - - - - - - - - - - U U U
ChNNCWC - - - - - - - - - - - - - - - - - U - U
ICBE - - - - - - - - - - - - - - - - - U U U
CDI - - - - - - - - - - - U - - - - - - - -
HI - - - - - - - - - - - - - - - - - - - U
NDF - - - - - - - - - - - - - - - - - - - U
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1.6 Fundamental Coverage and Expected Returns

We have shown that fundamental coverage in Datastream is related to variables that are

themselves related to expected returns on stocks. We will now study if the fundamental

coverage is itself related to the expected returns. Negative relationship of the fundamental

coverage to size of the stocks suggests that stocks with fundamental coverage have lower

returns than those without (see Banz (1981)). The positive relationship to the number

of analysts following, however, suggests that it is the other way around (see Elgers et al.

(2001)). The predictive power of the fundamental coverage is therefore not immediately

obvious.

Table 1.11 shows profitability of a strategy that buys stocks in CRSP that have the

fundamental coverage in Datastream and shorts those that do not. We define stocks

without the fundamental coverage as those for which we cannot construct book-to-market

ratio as defined in Fama and French (1992). The sample spans July 1990 to December

2016. The strategy yields significantly positive returns for both equal-weighted and value-

weighted returns. The significance is even higher once the returns are adjusted for the

five Fama-French factors (Fama and French (2015)). The increase in significance is due to

SMB factor capturing the effect of size that goes in the opposite direction than the effect

of the fundamental coverage. The significantly positive mean returns remain even for

the all-but-microcaps universe of stocks, defined as stocks with capitalization larger than

that of bottom decile of the NYSE. The table also shows minimum and average number

of stocks in CRSP without the fundamental coverage in each month. The average number

of stocks is over 500 even for the all-but-microcaps universe and the results are therefore

based on a large sample of stocks.

The relative underperformance of stocks without fundamental coverage is in line with

underperformance of stocks with small number of analysts following. The similarity is

hardly surprising since we have previously shown that the number of analysts is one of

the criterion for the decision whether to provide the fundamental coverage in Datastream.

The similarity can also be strengthened by the fact that Thompson Reuters owns both the

database for analysts’ forecasts (I/B/E/S) and the fundamental database (Worldscope in

Datastream), although it has not been the case historically. The decision whether to cover

a given firm can therefore be interconnected in both databases. The theoretical reasoning

for no coverage can be very similar across the databases as well. The analysts are less

likely to cover stocks that are underperforming and have small growth potential since

they have only limited resources at their disposal. They therefore try to channel these

resources at firms that attract the most investor’s attention. The coverage in Datastream

is also likely to prioritize stocks with large investors attention to successfully compete

with other data vendors.

The underperformance can also be connected to a backfilling bias in that firms that

outperform in the long-term are eventually added to the fundamental database along with

the full history of their financial statements. The entries in the database then appear to
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be there historically even it was not the case at the time. The underperforming firms are

more likely to never be added, especially if they are soon delisted. The profitability of

the strategy is therefore probably only illusory and cannot be captured in real life.

Table 1.11:
Firms without Fundamental Coverage in Datastream

The table shows returns and alphas with their corresponding t-statistics on long-short
portfolios created from stocks in CRSP by buying those that have fundamental coverage
in Datastream and shorting those that do not. The portfolios are either equal-weighted
(EW) or value-weighted (VW). The full sample includes all available non-financial stocks
while the all-but-microcaps universe is restricted to stocks with capitalization larger than
that of bottom decile of the NYSE. The sample spans from July 1990 to December 2016.
The alpha is estimated with respect to the Fama-French five factor model, and the factor
loadings are also provided. The reported returns are in percent per month. The standard
errors in t-statistics are adjusted for autocorrelation and heteroskedasticity, as in Newey
and West (1987), with 12 lags.

Full Sample All-but-microcaps

EW VW EW VW

Mean Return 1.45 0.44 0.89 0.40
(8.57) (3.36) (6.24) (3.11)

Alpha FF5 1.20 0.42 0.80 0.39
(8.15) (5.18) (9.60) (4.67)

Mkt 0.17 -0.03 -0.02 -0.04
(6.98) (-0.91) (-0.91) (-1.16)

SMB -0.08 -0.30 -0.22 -0.27
(-1.65) (-7.86) (-5.45) (-7.11)

HML 0.01 -0.04 0.18 -0.05
(0.17) (-0.75) (3.43) (-0.83)

RMW 0.41 0.30 0.24 0.29
(8.28) (5.45) (5.57) (5.08)

CMA 0.06 0.00 0.08 0.01
(0.71) (0.06) (1.24) (0.22)

Avg # of stocks 1581 1581 551 551
Min # of stocks 342 342 178 178

1.6.1 Low Profitability Firms without Fundamental Coverage in

Datastream

We have previously documented large differences in returns on profitability anomalies

in Compustat relative to Datastream. The discrepancy is mainly due to stocks in low

profitability category and we study them in more detail here. The stocks that are among

the least profitable in Compustat and have no fundamental coverage in Datastream have

severely underperformed since 2000. This underperformance could be connected to the

low interest of the investor since they were not worth following by one of the main data
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vendors. It could also be because they are difficult to short, which introduces limits to

arbitrating and allows only a slow adjustment. We will now study the low profitability

stocks without the fundamental coverage in Datastream in more detail.

Table 1.12 presents the average monthly returns on a strategy that buys all stocks

without fundamental coverage in Datastream that are in the bottom decile or quintile

of operational profitability in Compustat. We measure profitability by operating profits

to assets as in Ball et al. (2016). Our sample either includes all non-financial stocks or

we further discard all stocks with sizes smaller than bottom decile on the NYSE in the

previous June. The portfolios start in 2000 as there are many stocks missing fundamental

coverage in Datastream in 1990s and this dilutes the overall effect.25 The portfolios

are either value-weighted (VW) or equal-weighted (EW). A value-weighted strategy in

which shorts stocks without fundamental coverage in Datastream that are in the lowest

profitability decile in Compustat yields 27% annually over the 2000 to 2016 period. The

strategy is also significant for equal-weighted returns. The returns remain significant on

a all-but-microcaps universe. Alphas with respect to the Fama-French five factor model

are even more significant with t-statistics of approximately 6. There are, on average, 133

stocks in the portfolio for the full sample but fewer for the all-but-microcaps sample. The

evidence is therefore based only on few data points. We have tried to look at individual

instances of these stocks. The stocks are often facing bankruptcy and have management

problems.

There are several possible explanations for this anomaly. First, it could be the case

that the fundamental data have been backfilled in Compustat only after some time. The

stocks have been in CRSP for 72 months on average, so the late addition of fundamental

information on new issues cannot fully explain the difference. It is also possible that the

difference is due to the inattention of investors. We can proxy for the attention by the

number of analysts following them. Elgers et al. (2001) show that the number of financial

analysts covering the stocks can predict the future return. The stocks in the portfolios

have, on average, 3.19 analysts covering them, which is lower than the 7.35 analysts for

all the other stocks. This is in line with our previous analysis that the stocks would have

fundamental coverage if they had more than 4 analysts coverings them. The same caveat

applies as for the fundamental coverage anomaly described in the previous section in that

the profits are probably only illusory and cannot be captured in real life.

1.7 Robustness

Here, we provide robustness to our findings. Our previous analysis focused on quantile

portfolios with return weighting following the original studies. We will now show that our

conclusions remain unchanged for a different construction of the portfolios. Table 1.13

presents the differences in the portfolios sorted on anomalies for different constructions

of the portfolios. We extend our previous analysis to decile and tercile breakpoints in

25The overall inference remains nonetheless unchanged even for 1990 to 2016 period.
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Table 1.12:
Low Profitability Firms without Fundamental Coverage in Datastream

The table shows returns and alphas with their corresponding t-statistics on portfolios
created from stocks that are within the bottom decile (quintile) of profitability stocks in
Compustat but do not have fundamental coverage in Datastream. The portfolios are either
equal-weighted (EW) or value-weighted (VW). We measure profitability by operating
profits to assets as in Ball et al. (2016). The full sample includes all available non-financial
stocks while the all-but-microcaps universe is restricted to stocks with capitalization larger
than that of bottom decile of the NYSE. The sample spans from July 2000 to December
2016. The alpha is estimated with respect to the Fama-French five factor model, and the
factor loadings are also provided. The reported returns are in percent per month. The
standard errors in t-statistics are adjusted for autocorrelation and heteroskedasticity, as
in Newey and West (1987), with 12 lags.

Full Sample All-but-microcaps

Decile Quintile Decile Quintile

EW VW EW VW EW VW EW VW

Mean Return -1.95 -2.21 -1.82 -1.43 -2.15 -2.27 -1.79 -1.33
(-2.59) (-2.92) (-2.67) (-2.03) (-2.88) (-2.65) (-2.82) (-1.84)

Alpha FF5 -2.22 -2.68 -2.07 -1.72 -2.61 -2.74 -2.08 -1.58
(-5.53) (-7.03) (-6.05) (-5.02) (-6.01) (-5.35) (-7.29) (-4.02)

Mkt 0.73 0.99 0.68 0.99 0.90 1.07 0.85 1.03
(5.83) (6.82) (7.34) (8.61) (8.86) (6.94) (9.27) (8.28)

SMB 0.99 1.00 0.91 0.65 1.27 0.96 0.94 0.56
(6.40) (4.98) (7.25) (5.81) (8.24) (4.14) (10.20) (4.10)

HML -0.22 -0.39 -0.21 -0.36 -0.52 -0.30 -0.26 -0.34
(-0.91) (-1.67) (-0.93) (-1.78) (-2.60) (-1.00) (-1.29) (-1.54)

RMW -1.03 -0.72 -0.90 -0.60 -0.72 -0.67 -0.64 -0.57
(-4.97) (-3.86) (-5.96) (-4.19) (-4.44) (-3.36) (-5.68) (-3.59)

CMA 0.57 0.58 0.48 0.30 0.55 0.40 0.11 0.18
(2.25) (2.25) (2.16) (1.34) (2.37) (1.27) (0.62) (0.80)

Avg # of stocks 133 133 236 236 16.40 16.40 42 42
Min stocks 25 25 50 50 2 2 8 8

portfolio sorts and value-weighting. It is apparent that there is only a slight difference

for the various breakpoints on equal-weighted portfolios. Value-weighted portfolios have

lower average returns and t-statistics, but some differences among the databases still

remain.

Panel D captures the number of significant signals with t-statistics larger than 2 for

the various portfolio constructions. The number of significant anomalies is very similar

across the two databases, but it is generally smaller in Datastream. The number of signals

that are significant across both the databases is always lower than for Compustat alone

by at least one fourth. The previous conclusions therefore carry over to other portfolio

constructions and are very robust.
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Table 1.13:
Robustness - Different Portfolio Construction

The table shows the returns and their corresponding t-statistics among portfolios created
from sorts on fundamental anomalies. We compare the portfolios created with CRSP &
Compustat or with just Datastream. The portfolios are either value-weighted or equal-
weighted with decile, quintile, or tercile breakpoints in sorts. We also show correlation
between the two cases. The sample starts in July 1990 and ends in December 2016. The
list of anomalies is provided in Appendix A. The portfolios are constructed by buying
stocks in the top decile, quintile, or tercile of the signal and shorting stocks in the bottom
decile, quintile, or tercile of the signal. The standard errors in t-statistics are adjusted for
autocorrelation and heteroskedasticity, as in Driscoll and Kraay (1998).

Equal-weighted Portfolios Value-weighted Portfolios

Corr CT DS Diff Corr CT DS Diff

Panel A: Decile Portfolios

Accruals 0.736 0.61 (4.85) 0.61 (4.85) (1.56) 0.785 0.37 (3.08) 0.37 (3.08) (-0.24)
Intangibles 0.611 0.43 (3.74) 0.43 (3.74) (5.41) 0.624 0.12 (2.92) 0.12 (2.92) (3.57)
Investment 0.776 0.60 (6.48) 0.60 (6.48) (0.07) 0.757 0.38 (3.00) 0.38 (3.00) (-1.49)
Profitability 0.761 0.53 (-0.03) 0.53 (-0.03) (-5.68) 0.827 0.41 (1.42) 0.41 (1.42) (-2.70)
Value 0.857 0.74 (3.36) 0.74 (3.36) (0.49) 0.870 0.28 (1.60) 0.28 (1.60) (0.67)
All 0.747 0.59 (6.81) 0.59 (6.81) (0.47) 0.772 0.31 (3.75) 0.31 (3.75) (0.13)

Panel B: Quintile Portfolios

Accruals 0.762 0.56 (5.05) 0.56 (5.05) (1.03) 0.834 0.27 (2.45) 0.27 (2.45) (-0.42)
Intangibles 0.714 0.41 (3.48) 0.41 (3.48) (3.81) 0.733 0.15 (2.81) 0.15 (2.81) (3.19)
Investment 0.815 0.49 (6.36) 0.49 (6.36) (-0.92) 0.835 0.23 (2.78) 0.23 (2.78) (-0.26)
Profitability 0.827 0.38 (-0.14) 0.38 (-0.14) (-6.61) 0.868 0.30 (0.92) 0.30 (0.92) (-3.51)
Value 0.899 0.64 (3.39) 0.64 (3.39) (-0.24) 0.908 0.25 (1.61) 0.25 (1.61) (0.64)
All 0.800 0.50 (6.38) 0.50 (6.38) (-0.82) 0.834 0.24 (3.36) 0.24 (3.36) (0.07)

Panel C: Tercile Portfolios

Accruals 0.754 0.47 (5.03) 0.47 (5.03) (0.74) 0.854 0.17 (1.98) 0.17 (1.98) (0.65)
Intangibles 0.772 0.35 (3.41) 0.35 (3.41) (2.51) 0.766 0.12 (2.69) 0.12 (2.69) (2.63)
Investment 0.832 0.39 (6.32) 0.39 (6.32) (-0.89) 0.867 0.21 (2.86) 0.21 (2.86) (-0.68)
Profitability 0.835 0.32 (-0.05) 0.32 (-0.05) (-7.01) 0.886 0.22 (1.43) 0.22 (1.43) (-1.69)
Value 0.914 0.54 (3.16) 0.54 (3.16) (-0.66) 0.935 0.18 (1.26) 0.18 (1.26) (0.13)
All 0.817 0.42 (5.99) 0.42 (5.99) (-1.20) 0.860 0.18 (3.03) 0.18 (3.03) (0.79)

Panel D: Number of significant signals

Equal-weighted Value-weighted

CT DS both CT DS both

Decile Portfolios 44 39 30 14 13 7
Quintile Portfolios 41 39 29 11 12 7
Tercile Portfolios 38 38 26 9 5 3

1.8 Conclusion

We have compared fundamental data from two sources, and we have shown that mea-

surement error in the fundamental data can be large. There are substantial differences

in the raw financial statements caused by different methodologies for the construction

of statements in the databases. These are less pronounced for portfolios created from

sorts on fundamental signals. The findings on the significance of anomalies constructed
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with Compustat are therefore robust to measurement error. We have documented several

problems with Datastream. We have managed to correct some, but others have no clear

solution. The strong message of this paper is that Datastream is a good source of data

only after approximately 2000, and its use in an earlier period could be connected to a

significant bias. This is true for both the US and the international samples. We have also

revisited the role of delisting returns and have not found any serious bias introduced by

setting missing delisting returns to zero, unlike in the previous studies.
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Appendix A

List of Fundamental Anomalies
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Table A.1:
List of Published Fundamental Anomalies

Accruals
Acc Accruals Sloan (1996)
ChCE Change in Common Equity Richardson et al. (2006)
ChCOA Change in Current Operating Assets Richardson et al. (2006)
ChCOL Change in Current Operating Liabilities Richardson et al. (2006)
ChFL Change in Financial Liabilities Richardson et al. (2006)
ChLTI Change in Long-Term Investments Richardson et al. (2006)
ChNFA Change in Net Financial Assets Richardson et al. (2006)
ChNNCWC Change in Net Non-Cash Working Capital Richardson et al. (2006)
ChNNCOA Change in Net Non-Current Operating Assets Richardson et al. (2006)
ChNCOA Change in Non-Current Operating Assets Richardson et al. (2006)
ChNCOL Change in Non-Current Operating Liabilities Richardson et al. (2006)
GriI Growth in Inventory Thomas and Zhang (2002)
ICh Inventory Change Thomas and Zhang (2002)
IGr Inventory Growth Belo and Lin (2011)
MBaAC M/B and Accruals Bartov and Kim (2004)
NWCCh Net Working Capital Changes Soliman (2008)
POA Percent Operating Accrual Hafzalla et al. (2011)
PTA Percent Total Accrual Hafzalla et al. (2011)
TA Total Accruals Richardson et al. (2006)
Intangibles
ChGMChS 4 Gross Marging - 4 Sales Abarbanell and Bushee (1998)
SmI 4 Sales - 4 Inventory Abarbanell and Bushee (1998)
AL Asset Liquidity Ortiz-Molina and Phillips (2014)
EPr Earnings Predictability Francis et al. (2004)
ES Earnings Smoothness Francis et al. (2004)
HI Herfindahl Index Hou and Robinson (2006)
HR Hiring rate Belo et al. (2014)
ICBE Industry Concentration Book Equity Hou and Robinson (2006)
IARER Industry-adjusted Real Estate Ratio Tuzel (2010)
OC Org. Capital Eisfeldt and Papanikolaou (2013)
RDM RD / Market Equity Chan et al. (2001)
TAN Tangibility Hahn and Lee (2009)
URDI Unexpected RD Increases Eberhart et al. (2004)
WWI Whited-Wu Index Whited and Wu (2006)
Investment
CAPEX 4 CAPEX - 4 Industry CAPEX Abarbanell and Bushee (1998)
AGr Asset Growth Cooper et al. (2008)
ChNOA Change Net Operating Assets Hirshleifer et al. (2004)
ChPPEIA Changes in PPE and Inventory-to-Assets Lyandres et al. (2007)
CDI Composite Debt Issuance Lyandres et al. (2007)
CEI5Y Composite Equity Issuance (5-Year) Daniel and Titman (2006)
DI Debt Issuance Spiess and Affleck-Graves (1995)
GrLTNOA Growth in LTNOA Fairfield et al. (2003)
INV Investment Titman et al. (2004)
NDF Net Debt Finance Bradshaw et al. (2006)
NEF Net Equity Finance Bradshaw et al. (2006)
NOA Net Operating Assets Hirshleifer et al. (2004)
NOACh Noncurrent Operating Assets Changes Soliman (2008)
SR Share Repurchases Ikenberry et al. (1995)
TXFIN Total XFIN Bradshaw et al. (2006)
Profitability
AT Asset Turnover Soliman (2008)
CT Capital Turnover Haugen and Baker (1996)
CBOP Cash-based Operating Profitability Ball et al. (2016)
ChiAT Change in Asset Turnover Soliman (2008)
EP Earnings / Price Basu (1977)
EC Earnings Consistency Alwathainani (2009)
FSc F-Score Piotroski (2000)
GP Gross Profitability Novy-Marx (2013)
Lvrg Leverage Bhandari (1988)
OSc O-Score (More Financial Distress) Dichev (1998)
OPtA Operating Profits to Assets Ball et al. (2016)
OPtE Operating Profits to Equity Fama and French (2015)
Value
AM Assets-to-Market Fama and French (1992)
BM Book Equity / Market Equity Fama and French (1992)
CM Cash Flow / Market Equity Lakonishok et al. (1994)
DurE Duration of Equity Dechow et al. (2004)
ECoBP Enterprise Component of Book/Price Penman et al. (2007)
EM Enterprise Multiple Loughran and Wellman (2011)
IR Intangible Return Daniel and Titman (2006)
LCoBP Leverage Component of Book/Price Penman et al. (2007)
NPY Net Payout Yield Boudoukh et al. (2007)
OL Operating Leverage Novy-Marx (2010)
PY Payout Yield Boudoukh et al. (2007)
SaGr Sales Growth Lakonishok et al. (1994)
SP Sales/Price Barbee Jr et al. (1996)
SuGr Sustainable Growth Lockwood and Prombutr (2010)
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Appendix B

Construction of the Anomalies

Anomalies are grouped into 5 categories: accruals, profitability, value, investment, and

intangibles. Construction of individual anomalies follows Harvey et al. (2016), McLean

and Pontiff (2016) and Hou et al. (2017), with the exception of selecting a subset of

exchanges and frequency of rebalancing. When these exceptions apply, they are described

in the individual anomalies’ definitions.

Accruals

Accruals (Acc)

Based on Sloan (1996), accruals are defined as

Acc =
(∆actt −∆chet)− (∆lctt −∆dlct −∆tpt)− dpt

(att + att−1)/2

where ∆actt is change in current assets, ∆chet is change in cash and cash equivalents,

∆lctt is annual change in current liabilities, ∆dlct is annual change in debt included in

current liabilities, ∆tpt is annual change in income taxes payable and dp is depreciation

and amortization expense.

Change in Current Operating Assets (ChCOA)

Based on Richardson et al. (2006), change in current operating assets is defined as

ChCOA =
COAt − COAt−1

att−1

where COAt are current operating assets, COAt = actt − chet in which actt are current

assets, chet are cash and short-term investment and att−1 are one-year lagged total assets

Change in Current Operating Liabilities (ChCOL)

Based on Richardson et al. (2006), change in current operating liabilities is defined as

ChCOL =
COLt − COLt−1

att−1
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where COLt are current operating liabilities, COLt = lctt− dlct in which lctt are current

liabilities, dlct is debt in current liabilities and att−1 are one-year lagged total assets.

Change in Net Non-Cash Working Capital (ChNNCWC)

Based on Richardson et al. (2006), Change in Net Non-Cash Working Capital is defined

as

ChNNCWC =
WCt −WCt−1

att−1

where WCt is working capital, WCt = COAt−COLt in which COAt are current operating

assets defined above in Change in Current Operating Assets anomaly and COLt are

current operating liabilities defined above in Change in Current Operating Liabilities

anomaly.

Change in Net Non-Current Operating Assets (ChNNCOA)

Based on Richardson et al. (2006), Change in Net Non-Current Operating Assets is defined

as

ChNNCOA =
NCOAt −NCOAt−1

att−1

where NCOt are non-current operating asset, NCOAt = NCAt−NCLt in which NCAt

are non-current assets defined in Change in Non-Current Operating Assets anomaly and

NCLt are non-current operating liabilities defined in Change in Non-Current Operating

Liabilities anomaly.

Change in Non-Current Operating Assets (ChNCOA)

Based on Richardson et al. (2006), Change in Non-Current Operating Assets is defined

as

ChNCOA =
NCAt −NCAt−1

att−1

where NCAt are non-current assets defined as NCAt = att − actt − ivaot where att are

total assets, actt are current assets, ivaot is investment and advances (0 if missing).

Change in Non-Current Operating Liabilities (ChNCOL)

Based on Richardson et al. (2006), Change in Non-Current Operating Liabilities is defined

as

ChNCOL =
NCLt −NCLt−1

att−1

where NCLt = ltt − lctt − dlttt in which ltt are total liabilities, lctt are current liabilities

and dlttt is long-term debt (0 if missing).

Change in Net Financial Assets (ChNFA)

Based on Richardson et al. (2006), Change in Net Financial Assets is defined as

ChNFA =
NFNAt −NFNAt−1

att−1
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Does the Source of Fundamental Data Matter?

where

NFNAt = FNAt − FNLt

are net financial assets. FNAt are financial assets, FNAt = ivstt + ivaot. Where ivstt

are short-term investments, ivaot are long-term investments. FNLt are financial liabili-

ties, FNLt = dlttt + dlct + pstkt. Where dlttt is long-term debt, dlct is debt in current

liabilities, and pstkt is preferred stock.

Change in Long-Term Investments (ChLTI)

Based on Richardson et al. (2006), Change in Long-Term Investments is defined as

ChLTI =
ivaot − ivaot−1

att−1

where ivaot are long-term investments and att−1 are one-year lagged total assets.

Change in Common Equity (ChCE)

Based on Richardson et al. (2006), Change in Common Equity is defined as

ChCE =
ceqt − ceqt−1

att−1

where ceqt is common equity and att−1 are one-year lagged total assets.

Change in Financial Liabilities (ChFL)

Based on Richardson et al. (2006), Change in Financial Liabilities is defined as

ChFL =
FNLt − FNLt−1

att−1

where FNLt are net financial liabilities defined in anomaly Change in Net Financial

Assets and att−1 are one-year lagged total assets.

Growth in Inventory (GriI)

Based on Thomas and Zhang (2002), Growth in Inventor is defined as

GriI =
invtt − invtt−1

(att + att−1)/2

where invtt are inventories and att are total assets.

Inventory Change (ICh)

Based on Thomas and Zhang (2002), inventory change is defined as

ICh =
invtt − invtt−1

att−1

where invtt are inventories and att−1 are one-year lagged total assets.

Only firms with positive inventories in this or previous year are included.
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Inventory Growth (IGr)

Based on Belo and Lin (2011), inventory growth is defined as

IGr =
invtt − invtt−1

invtt−1

where invtt are inventories.

M/B and Accruals (MBaAC)

Based on Bartov and Kim (2004), M/B and Accruals is defined as

MBaAC =


1 if stock is in low book-to-market (BMt) and high accrual (Accrt) quintiles

−1 if stock is in high book-to-market (BMt) and low accrual (Accrt) quintiles

0 otherwise

Accruals (Acct) are defined above, and book-to-market (BMt) - book equity divided by

market equity - is defined in category Value.

Net Working Capital Changes (NWCCh)

Based on Soliman (2008), net working capital changes are defined as

NWCCh =
NWCt −NWCt−1

att−1

NWCt = (actt− chet)− (lctt− dlct) is net working capital, where actt are current assets,

chet is cash and cash equivalents, cltt are current liabilities and dlct is debt in current

liabilities.

Percent Operating Accruals (POA)

Based on Hafzalla et al. (2011), percent operating accruals are defined as

POA =
nit − oancft
|nit|

where nit is net income and oancft is cash flow from operations.

Percent Total Accruals (PTA)

Based on Hafzalla et al. (2011), percent total accruals are defined as

PTA =
nit − (−sstkt + prstkct + dvt + oancft + ivncft + fincft)

|nit|
where nit is net income, sstkt sale of common and preferred stock, prstkct is purchase of

common and preferred stock, dvt is total dividends, oancft is cash flow from financing,

ivncft is cash flow from investment and fincft is cash from from financing.

Total Accruals (TA)

Based on Richardson et al. (2006), total accruals are defined as

TA =
TACCRt − TACCRt−1

att−1
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Does the Source of Fundamental Data Matter?

where TACCRt = NCOt + WCt + NFNAt NCOt are net non-current operating assets

defined in anomaly Change in Net Non-Current Operating Assets, WCt is working cap-

ital defined in anomaly Change in Net Non-Cash Working Capital and NFNAt are net

financial assets defined in anomaly Change in Net Financial Assets.

Intangibles

Asset Liquidity (AL)

Based on Ortiz-Molina and Phillips (2014), asset liquidity is defined as

AL =
chet + 0.75(actt − chet) + 0.5(att − actt − gdwlt − intant)

att−1

where att−1 are one-year lagged total assets, actt are current assets, chet is cash and

short-term investments, gdwlt is goodwill (0 if missing) and intant are intangibles (0 if

missing).

Asset Liquidity II (AL2)

Based on Ortiz-Molina and Phillips (2014), Asset Liquidity II is defined as

AL2 =
chet + 0.75(actt − chet) + 0.5(att − actt − gdwlt − intant)

MEt−1

where the definition of variables is the same as for AL and market equity MEt−1 is price

times shares outstanding, MEt = prct−1 ∗ shroutt−1.

∆Sales - ∆Accounts Receivable (ChSChAR)

Based on Abarbanell and Bushee (1998), ∆Sales - ∆Accounts Receivable is defined as

ChSChAR =
salet − salet−1+salet−2

2
salet−1+salet−2

2

−
rectt − rectt−1+rectt−2

2
rectt−1+rectt−2

2

where salet is net sales and rectt are total receivables.

Only firms with positive two-year sales and two-year gross margin averages are included.

∆Gross Margin - ∆Sales (ChGMChS)

Based on Abarbanell and Bushee (1998), ∆Gross Margin - ∆Sales is defined as

ChSChAR =
GMt − GMst−1+GMt−2

2
GMt−1+GMt−2

2

−
salet − salet−1+salet−2

2
salet−1+salet−2

2

where salet is net sales and GMt is gross margin, defined as GMt = salet − cogst, where

cogst is cost of goods sold.

Only firms with positive two-year sales and two-year gross margin averages are included.

Earnings Conservatism (EC)

Based on Francis et al. (2004),

EARNit = αi0 + αi1NEGit + βi1Rit + βi2NEGitRit + eit
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in which EARNit = ibt
MEt

, where ibt are earnings, MEt is market equity defined in anomaly

book-to-market in Section Value, Rit is i’s stock 15-month return and NEGit is defined

as:

NEGit =

{
1 if Rit < 0

0 otherwise

Earnings Conservatism is defined as EC = βi1+βi2
βi1

.

Earnings Persistence (EPe)

Based on Francis et al. (2004), Earnings Persistence is defined as the slope coefficient

(beta) from the first-order autoregressive model using the ten-year rolling window for

split-adjusted earnings per share. Split-adjusted earnings per share are defined as EPSt =
epspxt
ajext

.

Only firms with no missing required data over the ten-year rolling window are included.

Earnings Predictability (EPr)

Based on Francis et al. (2004), Earnings Predictability is defined as volatility of residuals

from the first-order autoregressive model using the ten-year rolling window for split-

adjusted earnings per share. Split-adjusted earnings per share are defined as EPSt =
epspxt
ajext

.

Only firms with no missing required data over the ten-year rolling window are included.

Earnings Timeliness (ET)

Based on Francis et al. (2004),

EARNit = αi0 + αi1NEGit + βi1Rit + βi2NEGitRit + eit

in which EARNit = ibt
MEt

, where ibt are earnings, MEt is market equity defined in anomaly

book-to-market in Section Value, Rit is i’s stock 15-month return, and NEGit is defined

as:

NEGit =

{
1 if Rit < 0

0 otherwise

Earnings Timeliness is defined as R2 from the regression.

Earning Smoothness (ES)

Based on Ortiz-Molina and Phillips (2014), earnings smoothness is defined as

ES =
std(ELAt)

std(CFOAt)

where the standard deviation is calculated over the ten-year rolling window and only firms

with no missing required data over the ten-year history are included. Further

ELAt =
ibt
att−1
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and

CFOAt = ibt − (DCAt −DCLt −DCHEt +DSTDt − dpt))

where ibt are earnings and att−1 is lagged total assets. DCAt is one-year change in current

assets, DCLt is the one-year change in current liabilities, DCHEt is the one-year change

in cash and short-term investments, DSTDt is the one-year change in debt in current

liabilities, and dpt is depreciation and amortization.

Herfindahl Index (HI)

Based on Hou and Robinson (2006), Herfindahl index as a measure of industry concen-

tration defined as

HI =
Ht +Ht−1 +Ht−2

3

Ht =
∑Nj

i=1 salei,j, where saleij is the sale of firm i in industry j and Nj is the total

number of firms in the 3-digit SIC code defined industry.

Hiring rate (HR)

Based on Belo et al. (2014), hiring rate is defined as

HR =
empt−1 − empt− 2

0.5empt−1 + 0.5empt−2

where empt is the number of employees. Stocks with HR = 0, often a consequence of a

stale information, are exluded.

Industry-adjusted Real Estate Ratio (IARER)

Based on Tuzel (2010),industry-adjusted real estate ratio is defined as

IARER = RERt −
∑Nj

j=1RERij

Nj

i.e. the real estate ratio minus its, 2-digit SIC code defined, industry average. Real estate

ratio is defined as

RERt = (fatbt + fatlt)/ppentt

where fatbt is the sum of buildings at cost, fatlt is leases at cost and ppegtt is gross

property, plant, and equipment.

Industries with less than five firms are excluded.

Industry-adjusted Organizational Capital-to-Assets (IaOCA)

Based on Eisfeldt and Papanikolaou (2013), Industry-adjusted Organizational Capital-to-

Assets is defined as

IaOCA =
OCAt −

∑Nj
j=1OCAij

Nj

std(OCAij)

where OCAt = OCt

att
is organizational capital-to-assets, in which OCt is organizational

capital defined below in anomaly Org. Capital. Industry-adjusted organizational capital-
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to-assets is thus firm’s org. capital industry demeaned and then divided by the standard

deviation of org. capital within its industry.

Industry Concentration Assets (ICA)

Based on Hou and Robinson (2006), Industry Concentration Assets is Herfindahl index

(HI), defined above, with total assets att as a measure of market share instead of sales

salet.

Industry Concentration Book Equity (ICBE)

Based on Hou and Robinson (2006), Industry Concentration Book Equity is Herfindahl

index (HI), defined above, with book equity BEt defined in anomaly Book Equity /

Market Equity.

Org. Capital (OC)

Based on Eisfeldt and Papanikolaou (2013), organizational capital is defined recursively.

For the first year of stocks appearance in data, organizational capital is set equal to 4

times selling, general and administrative expense (0 if missing), i.e.

OCt0 = 4 ∗ xsgat0

All next years, organizational capital is defined as

OCt =

0.85∗OCt−1+xsgat
cpit

att

where cpit is and att are total assets.

R&D Capital-to-assets (RDCA)

Based on Li (2011), R&D Capital-to-assets is defined as

RDCA =
xrdt + 0.8xrdt−1 + 0.6xrdt−2 + 0.4xrdt−3 + 0.2xrdt−4

att

where xrdt are R&D expenses and att are total assets. Nominator is thus accumulated

annual R&D expenses over the past five years with a linear depreciation rate of 20%.

Only firms with positive numerator and nonmissing xrdt are included.

R&D Expenses-to-sales (RDES)

Based on Chan et al. (2001), R&D Expenses-to-sales is defined as

RDES =
xrdt
salet

where xrdt is research and development expense and salet are sales.

Only firms with positive xrdt are included.
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R&D / Market Value of Equity (RDM)

Based on Chan et al. (2001), R&D-to-market value of equity is defined as

RDM =
xrdt
MEt

where xrd is research and development expense and MEt = prct ∗ shroutt is the market

equity defined as price times shares outstanding, at the end of the previous year.

∆Sales - ∆Inventory (SmI)

Based on Abarbanell and Bushee (1998), change in sales - change in inventory (∆Sales -

∆Inventory) is defined as

SmI =
salet − salet−1+salet−2

2
salet−1+salet−2

2

−
invtt − invtt−1+invtt−2

2
invtt−1+invtt−2

2

where salet is net sales and invtt is total inventories.

Annual rebalancing frequency.

Tangibility (TAN)

Based on Hahn and Lee (2009), tangibility is defined as

TAN =
chet + 0.715rectt + 0.547invtt + 0.535ppegtt

att

where chet are cash holdings, rectt are accounts receivable, invtt is inventory and ppegtt

is property, plant and equipment.

Unexpected R&D Increases (URDI)

Based on Eberhart et al. (2004), unexpected R&D increases is a binary variable defined

as

URDI =

 1 if ( xrdt
revtt

> 0.05) & (xrdt
att

> 0.05) & ( xrdt
xrdt−1

> 1.05) & (
xrdt
att

xrdt−1
att−1

> 1.05)

0 otherwise

where xrdt are R&D expenditures, revtt is total revenue and att is total assets. URDI = 1

if R&D scaled by assets and revenue is greater than 5%, the yearly percentage change in

R&D expenditures is greater than 5%; and R&D scaled by assets increased by more than

5%.

Whited-Wu Index (WWI)

Based on Whited and Wu (2006), Whited-Wu index is defined as

WWIit = −0.091CFt−0.062DIV Pt+0.021LDAt−0.044log(att)+0.102ISGt−0.035(SGt)

where

CFT =
4

√
1 +

ibt+dpt
att

4
− 1
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where ibt is income before extraordinary items, dpt is depreciation and amortization, att

are total assets, DIV Pt is a binary variable equal to one if firm pays cash dividends

(dvpsxt > 0) and 0 otherwise, and LDAt = dlttt
att

is the long-term debt to total assets.

ISGt =
(
∑Nj

i=1 salei,j)t

(
∑Nj

i=1 salei,j)t

where saleij is the sale of firm i in industry j and Nj is the total number of firms in the

3-digit SIC code defined industry including at least 3 firms.

SGt =
4

√
1 +

salet
salet−1

4
− 1

Investment

Asset Growth (AGr)

Based on Cooper et al. (2008), asset growth is defined as

AGr =
att
att−1

where att are total assets.

Change in Net Operating Assets (ChNOA)

Based on Hirshleifer et al. (2004), Change in Net Operating Assets is defined as

ChNOA =
NOAt −NOAt−1

att−1

where NOAt are net operating assets defined below and att−1 are lagged total assets.

Changes in PPE and Inventory-to-Assets (ChPPEIA)

Based on Lyandres et al. (2007), Changes in PPE and Inventory-to-Assets is defined as

ChPPEIAt =
(ppegtt − ppegtt−1) + (invtt − invtt−1)

att−1

wehere ppegtt is gross property, plant and equipment, invtt is total inventories and att−1

are lagged total assets.

Composite Debt Issuance (CDI)

Based on Lyandres et al. (2007), Composite Debt Issuance is defined as

CDI = log(
dlttt + dlct

dlttt−5 + dlct−5

)

where dlttt is total long-term debt and dlct is debt in current liabilities.
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∆CAPEX - ∆Industry CAPEX (CAPEX)

Based on Abarbanell and Bushee (1998), change in investment minus the change in in-

dustry investment (∆CAPEX - ∆Industry CAPEX). Where

∆CAPEX =
capxit − capxi,t−1+capxi,t−2

2
capxi,t−1+capxi,t−2

2

and ∆Industry CAPEX is defined analogously for aggregated industry CAPEX. capxt is

capital expenditure.

Stocks in industries with less than 3 firms are excluded.

Debt Issuance (DI)

Based on Spiess and Affleck-Graves (1995), debt issuance is defined as

DI =

{
1 if dltist > 0

0 otherwise

where dltist is long-term debt/issuance.

Growth in LTNOA (GriLTNOA)

Based on Fairfield et al. (2003), growth in long-term net operating assets is defined as

GriLTNOA = NOAt −NOAt−1 − ACCRt,

where NOAt are net operating assets, defined below and ACCRt are accruals defined

above in category Accruals.

Investment (INV)

Based on Titman et al. (2004), investment is defined as

INV =
capxt/revtt
avg3t(

capx
revt

)

where capxt is capital expenditures, revtx is total revenue and avg3t() is average from the

previous three years.

Stocks with revenue ¡ $10m are excluded.

Net Debt Finance (NDF)

Based on Bradshaw et al. (2006), Net Debt Finance is defined as

NDFt =
dltist − dltrt + dlccht

(att + att−1)/2

where dltist is long-term debt issuance, dltrt is long-term debt reduction , dlccht are

current debt changes and att are total assets.

Net Equity Finance (NEF)

Based on Bradshaw et al. (2006), Net Equity Finance is defined as

NEFt =
sstkt − prstkct − dvt

(att + att−1)/2
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where sstkt is sale of common and preferred stock (0 if missing), prstkct is purchase of

common and preferred stock (0 if missing) , dvt are cash dividend, and att are total assets.

Net Operating Asset (NOA)

Based on Hirshleifer et al. (2004), net operating assets are defined as

NOA =
OAt −OLt

att−1

OAt and OLt are operating assets and operating liabilities defined as OAt = att − chet
and OLt = att− dlct− dlttt−mibt− pstkrvt− ceqt, where att is total assets, chet is cash

and short-term investment, dlct is current portion of long-term debt, dltt is long-term

debt, mibt is minority interest, pstkrv is preferred stock and ceq is common equity.

Noncurrent Operating Assets Changes (NOACh)

Based on Soliman (2008), noncurrent operating assets changes are defined as

NOACh =
NCOAt −NCOAt−1

att

where NCOAt is noncurrent operating assets. Noncurrent operating assets are defined as

NCOAt = (att − actt − ivaeqt)− (ltt − lctt − dlttt)

, where att are total asssets, actt are current assets, ivaeqt are investment and advances

(0 if missing), ltt are total liabilities, lctt are current liabilities and dlttt is long-term debt.

Share Repurchases (SR)

Based on Ikenberry et al. (1995), share repurchases are defined as binary variable

SR =

{
1 if prstkct > 0

0 otherwise

where prstkct is purchase of common and preferred stock.

Total XFIN (TXFIN)

Based on Bradshaw et al. (2006), total net external financing is defined as

TXFIN =
sstkt − dvt − prstkct + dltist − dltrt

att

where att are total assets, sstkt is sale of common and preferred stock (0 if missing),

dvt are cash dividends, prstkct is purchase of common and preferred stock (0 if missing),

dltist is sale of long-term debt and dltrt is purchase of long-term debt.
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Profitability

Asset Turnover (AT)

Based on Soliman (2008), asset turnover is defined as

AT =
salet

avg2t(NOA)

where NOA are net operating assets defined as NOA = (att− chet)− (ltt− dlttt− dlct−
mibt) and avg2t(NOA) is average NOA from the previous two years. att are total assets,

chet is cash and cash equivalents, ltt are total liabilities, dlttt is long-term debt, dlct is

debt in current liabilities, and mibt is minority interest (0 if missing). Firms with negative

NOA and negative operating income (oiadp) are exluded.

Capital Turnover (CT)

Based on (Haugen and Baker, 1996), capital turnover is defined as

CT =
salet
att−1

where salet is sales and att−1 are one-year lagged total assets.

Cash-based Operating Profitability (CBOP)

Based on Ball et al. (2016), cash-based operating profitability is defined as

CBOP =
(
revtt − cogst − xsgat + xrdt − (rectt − rectt−1)− (invtt − invtt−1)−

−(xppt − xppt−1) + (drct + drltt − drct − drltt) + (rectt − rectt−1) + (apt − apt−1)

+(xacct − xacct−1)
)
/att

where att are total assets, revtt is total revenue, cogst is cost of goods sold, xsgat are

selling, general, and administrative expenses, xrdt are research and development expen-

ditures (0 if missing), rectt are accounts receivables, invtt is inventory, xppt are prepaid

expenses, drct is current deferred revenue, drltt is long-term deferred revenue, apt are

accounts payable and xacct are accrued expenses. Changes (in brackets) are all equal to

0 if missing.

Change in Asset Turnover (ChiAT )

Based on Soliman (2008), change in asset turnover is defined as

ChiAT = ATt − ATt−1

where ATt is asset turnover defined above.

Earnings Consistency (EC)

Based on Alwathainani (2009), earnings consistency is defined as

EC = 5

√
Π5
i=1(1 + egi)− 1
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where egi is earnings growth is defined as

egt =
epspxt − epspxt−1

|epsxt|+|epsxt−1|
2

where epspxt are earnings per share excluding extraordinary items. Stocks with |egt| > 6

are deleted. Also stocks with the previous two earnings growths with opposite signs are

excluded (egt ∗ egt−1)

Earnings / Price (EP)

Based on (Basu, 1977), earnings-to-price is defined as

EP =
ibt
MEt

where ibt is income before extraordinary items and MEt = prct ∗shroutt is market equity,

i.e. price times shares outstanding.

Firms with ibt ≤ 0 are excluded.

F-Score (FSc)

Based on Piotroski (2000), F-score is defined as the sum of nine binary variables (F1-F9)

and is further limited only to firms in the highest quintile with respect to book-to-market

F =
9∑
i=1

Fi

Binary variables are defined as

F1 = 1 if nit > 0; 0 otherwise

F2 = 1 if oancft > 0 ; 0 otherwise

F3 = 1 if nit
att

> nit−1

att−1
; 0 otherwise

F4 = 1 if oancft > nit ; 0 otherwise

F5 = 1 if dlttt
att

< dlttt−1

att−1
; 0 otherwise

F6 = 1 if actt
lctt

> actt−1

lctt−1
; 0 otherwise

F7 = 1 if sstkt − (pstkt − pstkt−1) ≤ 0 ; 0 otherwise

F8 = 1 if oiadpt
salet

> oiadpt−1

salet−1
; 0 otherwise

F9 = 1 if salet
att

> salet−1

att−1
; 0 otherwise

where nit is net income, oancft is cash-flow from operating activities, att are total assets,

dlttt is long term debt, actt is current assets, lctt are current liabilities, sstkt is sale of

common and preferred stock, pstkt is total preferred stock, oiadpt is operating income

after depreciation, and salet is net sales.

Gross Profitability (GP)

Based on Novy-Marx (2013), gross profitability is defined as

GP =
revtt − cogst

att−1
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where revtt is total revenue, cogst is cost of goods sold, and att−1 are total assets lagged

by one year.

Operating Profits to Assets (OPtA)

Based on Ball et al. (2016), operating profits to assets are defined as

OPtA =
revtt − cogst − xsgat + xrdt

att

where revtt is total revenue, cogst is cost of goods sold, xsgat is SG&A, xrdt are research

and development expenditures, and att are total assets.

Operating Profits to Assets (OPtE)

Based on Fama and French (2015), operating profits to equity are defined as

OPtE =
revtt − cogst − xsgat + xintt

bet

where revtt is total revenue, cogst is cost of goods sold, xsgat is SG&A, xintt is interest

and related expense (total), and bet is book equity defined in Book Equity / Market

Equity variable. At least one from xint, cogs, xsga cannot be missing and the missing

values are filled with zeros.

Leverage (Lvrg)

Based on Bhandari (1988), leverage is defined as

Lvrg =
dlttt + dlct
MEt

where dlttt is long-term debt, dlct is debt in current liabilities and MEt = prct ∗ shroutt
is market equity defined in anomaly of earnings/price.

O-Score (OSc)

Based on Dichev (1998), O-score is defined as

OSc = −1.32− 0.4078log(
att
cpit

) + 6.03 ∗ (
dlttt + dlct

att
)− 1.43 ∗ (

actt − lctt
att

) + 0.076 ∗ (
lctt
actt

)−

−1.72 ∗ (OENEGt)− 2.37 ∗ (
nit
att

)− 1.83 ∗ (
pit
dpt

) + 0.285 ∗ (INTWOt)− 0.521 ∗ (
nit − nit−1

|nit|+ |nit−1|
)

where att are total assets, cpit is inflation, dlttt are long-term liabilities, dlct are short-term

liabilities, actt are current assets, lctt are current liabilities, OENEGt is binary variable

equal to one if ltt > att and 0 otherwise, nit is net income, INTWOt is binary variable

equal to one if stock has negative net income in both previous years and 0 otherwise.

Only stocks with SIC codes from 1 to 3999 and from 5000 to 5999 are included.

Return on Net Operating Assets (RNOA)

Based on Soliman (2008), return on net operating assets is defined as

RNOA =
oiadpt
NOAt−1
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where NOA are net operating assets defined as NOAt = (att− chet)− (ltt−dlttt−dlct−
mibt). att are total assets, chet is cash and cash equivalents, ltt are total liabilities, dlttt

is long-term debt, and dlct is debt in current liabilities and mibt is minority interest (0 if

missing).

Firms with negative NOA and negative operating income (oiadp) are exluded.

Value

Assets-to-Market (AM)

Based on Fama and French (1992), assets-to-market is defined as

AM =
att
MEt

where att are assets total and MEt is market equity.

Book Equity / Market Equity (BM)

Based on Fama and French (1992), book-to-market equity is defined as

BM = log(
BEt
MEt

)

Market equity is price times shares outstanding, MEt = prct ∗ shroutt. Book equity is

defined conditional on missing items as

BEt = seqt − PSt

where seqt is total stockholders’ equity, if missing then seqt = ceqt + pstkt, or seqt =

att − ltt, where ceqt is tangible common equity, pstkt is preferred stock using liquidating

value, att are total assets, ltt are total liabilities,and PSt is preferred stock measured using

(ordered on availability) redemption, liquidating or par value, i.e. pstkrvt, pstklt, pstkt.

Cash Flow / Market Value of Equity (CM)

Based on Lakonishok et al. (1994), cash flow to market value of equity is defined as

CM =
ibt + dpt
MEt

where ibt is net income, dpt is depreciation and amortization and MEt is market equity

defined above in book-to-market equity anomaly.

Duration of Equity (DurE)

Based on Dechow et al. (2004), duration of equity is defined as

DurEt =
58

3
+

1

MCt

10∑
j=1

cdjj(j − 58/3)

1.12

where cdj is defined recursively from the following equations: gj+1 = 0.06 + 0.24gj, bej =

be0(1 + gj), roej+1 = 0.12 + 0.57roej, and cdj = roejbej−1. The starting values are

be0 = ceqt, roe0 = ibt
ceqt−1

, and g0 = salet
salet−1

− 1. bet is the book equity, ceqt−1 is a lag of
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common equity, ibt are earnings, and salet are net sales.

Enterprise Component of Book/Price (ECoBP)

Based on Penman et al. (2007), enterprise component of book/price is defined as

ECoBP =
BEt +NDt

NDt +MEt

where BEt and MEt are book value of equity and market equiy, defined above in book-

to-market equity anomaly. NDt = dlttt + dlct + pstkt + dvpat − tstkpt − chet is net

debt, where chet is cash and short-term investments, dlttt is long-term debt, dlct is debt

in current liabilities, pstkt is preferred stock, dvpat is preferred dividends in arrears and

tstkpt is preferred treasury stock.

Enterprise Multiple (EM)

Based on Loughran and Wellman (2011), enterprise multiple is defined as

EM =
EVt
oibdpt

where oibdpt is operating cash flow and EVt is enterprise value defined as EVt = MEt +

dlttt+dlct+pstkt+dvpat− tstkpt−chet. MEt is market equity defined above in book-to-

market equity anomaly, dlttt is long-term debt, dlct is debt in current liabilities, pstkt is

preferred stock, dvpat is preferred dividends in arrears, tstkpt is preferred treasury stock

and chet is cash and short-term investments.

Intangible Return (IR)

Based on Daniel and Titman (2006), intangible return is defined as residual from the

following cross-sectional regression

log(rt−5,t) = β0 + β1BMt−5 + β2log(RBt−5,t) + εt

where rt−5,t is 5- year stock return, BMt−5 is 5-year-lagged book-to-market defined in

anomaly Book Equity / Market Equity and RBt−5,t = log( BEt

BEt−5)−
∑t−1

p=t−5(rp−log(
Pp

Pp−1
))

) in

which BEt is the book equity defined in anomaly Book Equity / Market Equity , rp is

the stock return for year p and Pp is the price at the end of year p.

Leverage Component of Book/Price (LCoBP)

Based on Penman et al. (2007), leverage component of book/price is defined as

LCoBP = BEt − ECoBPt

where BEt is book value of equity defined above in book-to-market equity anomaly, and

ECoBPt is enterprise component of book/price defined above.
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Net Payout Yield (NPY)

Based on Boudoukh et al. (2007), net payout yield is defined as

NPY =
dvct + prstkct − sstkt

MEt

where dvct are dividends common/ordinary, prstkct is purchase of common and preferred

stock, sstkt is sale of common and preferred stock, and MEt is market equity.

Operating Leverage (OL)

Based on Novy-Marx (2010), operating leverage is defined

OL =
xsgat + cogst

att

where xsgat is SG&A, cogst is cost of goods sold, and att are total assets.

Payout Yield (PY)

Based on Boudoukh et al. (2007), payout yield is defined as

PY =
dvct + prstkct − (pstkrvt + pstkrvt−1)

MEt

where dvct are dividends common/ordinary, prstkct is purchase of common and preferred

stock, pstkrvt is preferred stock/redemption, and MEt is market equity.

Sales Growth (SaGr)

Based on Lakonishok et al. (1994), sales growth is defined as

SaGr =
5SGRt + 4SGRt−1 + 3SGRt−2 + 2SGRt−3 + 1SGRt−4

15

where SGRt is the rank of firm in year t based on the simple sales growth defined as

SG = salet/salet−1.

Sustainable Growth (SuGr)

Based on Lockwood and Prombutr (2010), sustainable growth is defined as SuGr =

BEt/BEt−1, where BEt is book equity defined above in book-to-market equity anomaly.

Sales/Price (SP)

Based on Barbee Jr et al. (1996), sales-to-price is defined as SP = revtt/MEt, where

revtt is total revenue and MEt is the market equity defined above in the book-to-market

equity anomaly.
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Appendix C

Classification of Industries in

Datastream

Table C.1:
Industries in the Datastream Level 3 Classification and Corresponding

Four-digit SIC
Datastream lvl 3 industry SIC codes

Automobiles & Parts 3011, 3510, 3714, 3751, 5013
Basic Resources 800, 1000, 1040, 1090, 1220, 1221, 2421, 2600, 2611, 2621, 2631, 3310, 3312, 3317, 3330, 3334, 3350, 3360, 3444,

3460, 3720, 5050, 5051
Chemicals 2810, 2820, 2821, 2833, 2851, 2860, 2870, 2890, 2891, 2990, 3080, 3081, 3341, 5160
Construct. & Material 1400, 1540, 1600, 1623, 1731, 2400, 2430, 2950, 3211, 3231, 3241, 3250, 3270, 3272, 3281, 3290, 3430, 3440, 3442,

3448, 5031, 5070, 5072
Financial Services(3) 6111, 6141, 6153, 6159, 6162, 6163, 6172, 6189, 6200, 6211, 6221, 6282, 6361, 6500, 6510, 6770, 6795, 6798, 6799,

8880, 8888, 9995
Food & Beverage 100, 200, 900, 2000, 2011, 2013, 2015, 2020, 2024, 2030, 2033, 2040, 2050, 2052, 2060, 2070, 2080, 2082, 2086,

2090, 2092
Healthcare 2590, 2800, 2834, 2835, 2836, 3060, 3821, 3826, 3841, 3842, 3843, 3844, 3845, 3851, 4100, 5047, 6324, 8000, 8011,

8050, 8051, 8060, 8062, 8071, 8082, 8090, 8093, 8300, 8731
Ind. Goods & Services 1700, 2390, 2650, 2670, 2673, 2750, 2761, 3050, 3086, 3089, 3221, 3320, 3357, 3390, 3411, 3412, 3443, 3451, 3452,

3470, 3480, 3490, 3523, 3524, 3530, 3531, 3532, 3537, 3540, 3541, 3550, 3555, 3560, 3561, 3562, 3564, 3567, 3569,
3575, 3580, 3585, 3590, 3600, 3612, 3613, 3620, 3621, 3634, 3640, 3669, 3670, 3672, 3677, 3678, 3679, 3690, 3711,
3713, 3715, 3721, 3724, 3728, 3730, 3743, 3760, 3812, 3822, 3823, 3824, 3825, 3827, 3829, 3861, 3910, 4011, 4013,
4210, 4213, 4231, 4400, 4412, 4513, 4700, 4731, 4950, 4953, 4955, 4961, 5000, 5063, 5065, 5080, 5082, 5084, 5090,
5099, 6099, 6794, 7320, 7350, 7359, 7361, 7363, 7374, 7377, 7380, 7381, 7384, 7385, 7389, 7829, 8111, 8200, 8351,
8600, 8700, 8711, 8734, 8741, 8742, 8744, 9721

Insurance 6311, 6321, 6331, 6351, 6411
Media 2711, 2721, 2731, 2732, 2741, 2780, 4832, 4833, 4841, 7310, 7311, 7330, 7331, 7819, 7822, 8900
Oil & Gas 1311, 1381, 1382, 1389, 2911, 3533, 4522, 4610, 4900, 5171, 5172, 6792
Pers & Househld Goods 1531, 2100, 2111, 2200, 2211, 2221, 2250, 2253, 2273, 2300, 2320, 2330, 2340, 2451, 2452, 2510, 2511, 2520, 2522,

2531, 2540, 2771, 2840, 2842, 2844, 3021, 3100, 3220, 3260, 3420, 3433, 3630, 3651, 3716, 3790, 3873, 3911, 3931,
3942, 3944, 3949, 3950, 3960, 5020, 5030, 5064, 5130, 5150, 5190, 6552

Real Estate 6519, 6531
Retail 700, 2790, 3140, 4220, 5094, 5010, 5110, 5122, 5140, 5141, 5180, 5200, 5211, 5271, 5311, 5331, 5399, 5400, 5411,

5412, 5500, 5531, 5600, 5621, 5651, 5661, 5700, 5712, 5731, 5734, 5735, 5912, 5940, 5944, 5945, 5960, 5961, 5990,
6399, 7200, 7340, 7500, 7600, 7841

Technology 3559, 3570, 3571, 3572, 3576, 3577, 3578, 3579, 3661, 3663, 3674, 3695, 4899, 5040, 5045, 7370, 7371, 7372, 7373
Telecommunications 4812, 4813, 4822
Travel & Leisure 1520, 3652, 3990, 4512, 4581, 5810, 5812, 6512, 6513, 6532, 7000, 7011, 7510, 7812, 7830, 7900, 7948, 7990, 7997
Utilities 4911, 4922, 4923, 4924, 4931, 4932, 4941, 4991, 5900
Banks 6021, 6022, 6029, 6035, 6036, 6199
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Appendix D

Detailed Results for Individual

Anomalies

The following tables are constructed as described in the corresponding aggregated tables

in the main text of this study. The significance is determined with t-test of mean returns.

The standard errors in t-statistics are adjusted for autocorrelation and heteroskedasticity,

as in Newey and West (1987), with 12 lags. The significance of difference of means of two

return time-series is determined in a t-test of time-series of differences of returns of the

two series.
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Table D.1:
Impact of Delisting in Compustat - Detailed

Our Delisting vs No Delisting Our Delisting vs Shumway (1997)

Corr Our No delisting Diff Corr Our Shumway Diff

Accruals
Acc 1.000 0.29 (2.26) 0.31 (2.42) (6.33) 1.000 0.29 (2.26) 0.29 (2.24) (-3.60)
ChCE 0.999 0.38 (2.17) 0.42 (2.41) (5.45) 1.000 0.38 (2.17) 0.36 (2.08) (-2.81)
ChCOA 0.998 0.53 (5.04) 0.55 (5.17) (2.48) 0.999 0.53 (5.04) 0.53 (4.96) (-1.77)
ChCOL 0.999 0.36 (4.00) 0.37 (4.07) (2.51) 1.000 0.36 (4.00) 0.36 (3.98) (-1.60)
ChFL 0.999 0.56 (7.88) 0.55 (7.83) (-2.21) 1.000 0.56 (7.88) 0.56 (7.91) (2.59)
ChLTI 0.992 0.13 (2.91) 0.14 (3.03) (1.06) 0.995 0.13 (2.91) 0.12 (2.73) (-1.39)
ChNCOA 1.000 0.68 (5.46) 0.70 (5.60) (4.20) 1.000 0.68 (5.46) 0.68 (5.45) (-1.95)
ChNCOL 0.997 0.17 (2.01) 0.18 (2.15) (2.04) 0.998 0.17 (2.01) 0.17 (1.91) (-1.48)
ChNFA 0.997 0.42 (6.10) 0.41 (5.99) (-2.71) 1.000 0.42 (6.10) 0.42 (6.13) (2.82)
ChNNCOA 0.999 0.71 (5.97) 0.72 (6.04) (1.99) 0.999 0.71 (5.97) 0.71 (6.00) (0.57)
ChNNCWC 0.997 0.35 (4.19) 0.36 (4.33) (2.00) 0.998 0.35 (4.19) 0.34 (4.09) (-1.49)
GriI 0.998 0.48 (5.34) 0.50 (5.49) (2.23) 0.998 0.48 (5.34) 0.48 (5.27) (-1.45)
ICh 0.998 0.50 (5.26) 0.52 (5.43) (2.56) 0.999 0.50 (5.26) 0.50 (5.18) (-1.61)
IGr 0.998 0.55 (5.22) 0.56 (5.38) (2.47) 0.999 0.55 (5.22) 0.54 (5.15) (-1.50)
MBaAC 0.996 1.43 (7.02) 1.43 (6.97) (-0.01) 1.000 1.43 (7.02) 1.42 (7.00) (-1.62)
NWCCh 0.994 0.49 (6.76) 0.48 (6.77) (-0.42) 0.997 0.49 (6.76) 0.48 (6.66) (-0.84)
POA 0.999 0.70 (5.51) 0.69 (5.50) (-1.58) 1.000 0.70 (5.51) 0.70 (5.52) (1.73)
PTA 0.999 0.33 (3.20) 0.35 (3.37) (4.26) 1.000 0.33 (3.20) 0.33 (3.19) (-0.41)
TA 0.999 0.44 (3.56) 0.48 (3.84) (5.15) 0.999 0.44 (3.56) 0.44 (3.46) (-2.17)
Intangibles
AL 0.999 0.44 (2.74) 0.45 (2.81) (1.33) 0.999 0.44 (2.74) 0.44 (2.69) (-1.22)
ChGMChS 0.999 0.24 (3.55) 0.22 (3.34) (-5.01) 1.000 0.24 (3.55) 0.24 (3.56) (2.13)
EPr 0.998 0.66 (4.60) 0.65 (4.42) (-2.13) 1.000 0.66 (4.60) 0.67 (4.61) (2.29)
ES 1.000 0.21 (1.00) 0.23 (1.10) (4.40) 1.000 0.21 (1.00) 0.21 (0.99) (-0.77)
HI 0.999 0.06 (0.50) 0.07 (0.52) (0.14) 0.999 0.06 (0.50) 0.06 (0.47) (-0.88)
HR 0.999 0.42 (3.75) 0.43 (3.88) (3.47) 1.000 0.42 (3.75) 0.41 (3.72) (-3.42)
IARER 0.999 0.31 (2.43) 0.31 (2.47) (0.45) 1.000 0.31 (2.43) 0.31 (2.45) (1.02)
ICBE 0.999 0.12 (0.86) 0.13 (0.90) (0.84) 0.999 0.12 (0.86) 0.12 (0.83) (-1.00)
OC 1.000 0.45 (2.57) 0.46 (2.65) (3.66) 1.000 0.45 (2.57) 0.45 (2.56) (-1.38)
RDM 1.000 1.19 (4.16) 1.21 (4.21) (3.82) 1.000 1.19 (4.16) 1.19 (4.14) (-2.64)
SmI 0.996 0.37 (5.39) 0.37 (5.42) (0.10) 0.997 0.37 (5.39) 0.36 (5.35) (-0.56)
TAN 0.999 0.29 (1.81) 0.28 (1.77) (-1.37) 1.000 0.29 (1.81) 0.28 (1.79) (-0.50)
URDI 1.000 0.47 (2.42) 0.46 (2.37) (-2.54) 1.000 0.47 (2.42) 0.47 (2.41) (-1.33)
WWI 0.999 0.36 (1.76) 0.41 (1.98) (4.51) 1.000 0.36 (1.76) 0.35 (1.71) (-1.67)
Investment
AGr 0.999 0.63 (3.90) 0.66 (4.05) (3.97) 1.000 0.63 (3.90) 0.62 (3.83) (-2.36)
CAPEX 0.998 0.37 (4.67) 0.38 (4.74) (2.15) 1.000 0.37 (4.67) 0.37 (4.65) (-1.96)
CDI 1.000 0.21 (2.22) 0.21 (2.18) (-1.11) 1.000 0.21 (2.22) 0.21 (2.24) (1.92)
CEI5Y 0.999 0.28 (2.30) 0.27 (2.30) (-0.33) 1.000 0.28 (2.30) 0.28 (2.30) (0.80)
ChNOA 0.997 0.27 (4.09) 0.27 (4.10) (0.86) 1.000 0.27 (4.09) 0.27 (4.08) (-1.49)
ChPPEIA 1.000 0.63 (5.32) 0.65 (5.44) (3.51) 1.000 0.63 (5.32) 0.63 (5.31) (-2.89)
DI 0.998 0.25 (3.78) 0.25 (3.74) (-1.62) 0.999 0.25 (3.78) 0.25 (3.75) (0.01)
GrLTNOA 0.999 0.61 (4.41) 0.62 (4.49) (2.94) 1.000 0.61 (4.41) 0.60 (4.39) (-3.44)
INV 0.996 0.27 (3.80) 0.28 (3.85) (0.53) 0.997 0.27 (3.80) 0.28 (3.82) (0.94)
NDF 0.998 0.34 (4.29) 0.34 (4.31) (-0.04) 1.000 0.34 (4.29) 0.34 (4.28) (0.02)
NEF 1.000 0.72 (3.16) 0.69 (3.07) (-6.04) 1.000 0.72 (3.16) 0.72 (3.17) (2.81)
NOA 0.998 0.53 (4.99) 0.54 (5.12) (2.52) 0.999 0.53 (4.99) 0.52 (4.91) (-1.60)
NOACh 1.000 0.55 (4.03) 0.55 (4.03) (-0.05) 1.000 0.55 (4.03) 0.55 (4.03) (-0.50)
SR 0.997 0.20 (2.66) 0.17 (2.31) (-4.80) 0.999 0.20 (2.66) 0.20 (2.76) (2.31)
TXFIN 1.000 0.89 (4.80) 0.88 (4.71) (-3.86) 1.000 0.89 (4.80) 0.90 (4.81) (1.49)
Profitability
AT 1.000 0.26 (2.25) 0.26 (2.25) (-0.26) 1.000 0.26 (2.25) 0.26 (2.25) (0.34)
CBOP 1.000 0.53 (3.30) 0.53 (3.30) (-0.19) 1.000 0.53 (3.30) 0.53 (3.31) (1.79)
CT 1.000 0.28 (1.97) 0.27 (1.96) (-0.77) 1.000 0.28 (1.97) 0.28 (1.98) (1.41)
ChiAT 0.999 0.21 (3.60) 0.21 (3.54) (-1.46) 1.000 0.21 (3.60) 0.21 (3.63) (1.13)
EC 1.000 0.20 (2.69) 0.20 (2.65) (-1.63) 1.000 0.20 (2.69) 0.20 (2.70) (1.01)
EP 0.998 0.72 (5.32) 0.71 (5.28) (-1.42) 0.999 0.72 (5.32) 0.72 (5.38) (1.15)
FSc 0.999 0.45 (2.99) 0.41 (2.74) (-5.17) 1.000 0.45 (2.99) 0.45 (3.05) (3.22)
GP 0.999 0.34 (2.49) 0.32 (2.32) (-4.46) 0.999 0.34 (2.49) 0.34 (2.55) (1.93)
Lvrg 1.000 0.30 (1.81) 0.32 (1.95) (6.01) 1.000 0.30 (1.81) 0.29 (1.80) (-2.69)
OPtA 0.999 0.56 (2.93) 0.51 (2.70) (-5.88) 0.999 0.56 (2.93) 0.58 (3.00) (3.13)
OPtE 1.000 0.34 (1.78) 0.31 (1.63) (-4.68) 1.000 0.34 (1.78) 0.35 (1.83) (2.64)
OSc 1.000 0.08 (0.39) 0.03 (0.15) (-5.71) 1.000 0.08 (0.39) 0.09 (0.44) (4.25)
Value
AM 1.000 0.88 (4.61) 0.91 (4.71) (4.60) 1.000 0.88 (4.61) 0.88 (4.60) (-2.60)
BM 1.000 0.98 (5.75) 0.99 (5.77) (1.36) 1.000 0.98 (5.75) 0.98 (5.74) (-1.78)
CM 1.000 0.87 (4.05) 0.83 (3.85) (-5.10) 1.000 0.87 (4.05) 0.88 (4.11) (3.11)
DurE 1.000 0.94 (4.47) 0.94 (4.45) (-1.24) 1.000 0.94 (4.47) 0.94 (4.47) (0.40)
ECoBP 1.000 0.79 (4.36) 0.79 (4.37) (0.12) 1.000 0.79 (4.36) 0.79 (4.36) (-0.25)
EM 0.999 0.26 (1.74) 0.28 (1.84) (2.31) 1.000 0.26 (1.74) 0.26 (1.72) (-0.45)
IR 1.000 0.49 (2.67) 0.52 (2.84) (5.70) 1.000 0.49 (2.67) 0.48 (2.64) (-3.20)
LCoBP 1.000 0.39 (3.14) 0.39 (3.14) (-0.32) 1.000 0.39 (3.14) 0.39 (3.14) (0.67)
NPY 1.000 0.90 (4.15) 0.88 (4.05) (-4.85) 1.000 0.90 (4.15) 0.91 (4.18) (3.23)
OL 1.000 0.46 (2.90) 0.47 (2.97) (3.29) 1.000 0.46 (2.90) 0.46 (2.90) (-0.27)
PY 1.000 0.34 (1.94) 0.33 (1.85) (-4.75) 1.000 0.34 (1.94) 0.35 (1.99) (3.83)
SP 1.000 1.01 (4.42) 1.03 (4.49) (3.08) 1.000 1.01 (4.42) 1.01 (4.42) (-0.92)
SaGr 0.998 0.24 (2.30) 0.25 (2.39) (2.06) 1.000 0.24 (2.30) 0.24 (2.28) (-1.77)
SuGr 0.999 0.17 (1.26) 0.20 (1.52) (5.09) 0.999 0.17 (1.26) 0.16 (1.19) (-2.07)
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Does the Source of Fundamental Data Matter?

Table D.2:
Datastream vs Compustat in the Common Sample - Panel A - Detailed

Signals Portfolios

Pears Corr Spear Corr Corr CS DS Diff

Accruals
Acc 0.993 0.987 0.997 0.55 (2.63) 0.54 (2.61) (-0.19)
ChCE 0.966 0.981 0.995 1.16 (3.88) 1.14 (3.86) (-1.30)
ChCOA 0.951 0.981 0.989 0.68 (3.69) 0.66 (3.61) (-0.92)
ChCOL 0.943 0.972 0.979 0.49 (2.87) 0.46 (2.75) (-1.13)
ChFL 0.932 0.957 0.939 0.26 (2.98) 0.27 (3.21) (0.13)
ChLTI 0.787 0.640 0.659 0.24 (2.48) 0.18 (1.88) (-1.02)
ChNCOA 0.966 0.946 0.987 0.93 (4.12) 0.94 (4.36) (0.17)
ChNCOL 0.847 0.843 0.864 0.33 (2.72) 0.26 (2.39) (-1.06)
ChNFA 0.882 0.884 0.883 -0.05 (-0.47) 0.02 (0.23) (1.73)
ChNNCOA 0.967 0.960 0.988 0.86 (4.21) 0.89 (4.44) (0.65)
ChNNCWC 0.944 0.969 0.967 0.45 (3.52) 0.49 (3.77) (1.63)
GriI 0.917 0.960 0.979 0.42 (2.87) 0.38 (2.69) (-1.75)
ICh 0.935 0.970 0.981 0.51 (3.15) 0.48 (3.04) (-1.21)
IGr 0.888 0.966 0.978 0.52 (3.04) 0.44 (2.70) (-2.45)
MBaAC 0.895 0.895 0.972 1.85 (4.87) 1.81 (4.69) (-0.79)
NWCCh 0.938 0.969 0.968 0.31 (3.65) 0.33 (3.67) (1.03)
POA 0.868 0.981 0.978 0.42 (3.30) 0.48 (3.88) (2.65)
PTA 0.883 0.965 0.971 0.52 (4.62) 0.48 (4.27) (-1.58)
TA 0.913 0.924 0.979 1.02 (3.55) 0.97 (3.58) (-1.39)
Intangibles
AL 0.820 0.874 0.969 0.45 (1.56) 0.64 (1.72) (1.51)
ChGMChS 0.318 0.804 0.841 -0.15 (-1.59) -0.16 (-1.62) (-0.07)
EPr 0.934 0.961 0.976 0.21 (1.12) 0.23 (1.13) (0.27)
ES 0.994 0.997 0.999 0.83 (2.64) 0.82 (2.64) (-0.99)
HI 0.721 0.747 0.718 -0.13 (-0.69) -0.11 (-0.68) (0.22)
HR 0.858 0.925 0.972 0.73 (3.63) 0.72 (3.79) (-0.33)
IARER 0.660 0.633 0.681 0.75 (2.33) 0.45 (1.52) (-1.43)
ICBE 0.615 0.644 0.631 -0.20 (-0.52) -0.07 (-0.34) (0.45)
OC 0.738 0.963 0.986 0.62 (2.40) 0.58 (2.33) (-0.82)
RDM 0.889 0.977 0.998 1.87 (3.09) 1.86 (3.14) (-0.15)
SmI 0.931 0.958 0.976 0.09 (0.91) 0.04 (0.40) (-2.54)
TAN 0.964 0.976 0.997 0.40 (1.17) 0.39 (1.15) (-0.29)
URDI 0.882 0.882 0.991 0.54 (1.77) 0.62 (1.89) (1.94)
WWI 0.998 0.998 0.998 1.11 (3.12) 1.13 (3.24) (0.62)
Investment
AGr 0.986 0.985 0.995 1.16 (3.84) 1.12 (3.80) (-1.12)
CAPEX 0.723 0.943 0.969 0.59 (4.14) 0.58 (4.42) (-0.08)
CDI 0.980 0.982 0.963 -0.08 (-0.57) -0.11 (-0.74) (-0.75)
CEI5Y 0.893 0.954 0.995 0.19 (0.94) 0.17 (0.86) (-1.01)
ChNOA 0.976 0.957 0.954 0.32 (2.70) 0.33 (2.87) (0.25)
ChPPEIA 0.894 0.969 0.990 0.64 (3.52) 0.62 (3.53) (-0.88)
DI 0.920 0.920 0.981 0.18 (2.29) 0.18 (2.36) (0.40)
GrLTNOA 0.784 0.958 0.995 0.77 (4.29) 0.78 (4.29) (0.74)
INV 0.636 0.895 0.918 0.44 (4.02) 0.41 (3.73) (-0.65)
NDF 0.939 0.963 0.923 0.12 (1.35) 0.18 (2.31) (1.42)
NEF 0.975 0.979 0.999 -0.05 (-0.13) -0.06 (-0.17) (-0.59)
NOA 0.972 0.980 0.995 0.73 (2.58) 0.72 (2.60) (-0.21)
NOACh 0.981 0.990 0.995 0.46 (2.32) 0.46 (2.27) (-0.27)
SR 0.956 0.956 0.993 -0.17 (-1.74) -0.19 (-1.88) (-1.22)
TXFIN 0.954 0.973 0.994 0.22 (0.78) 0.18 (0.68) (-1.20)
Profitability
AT 0.931 0.991 0.993 0.20 (1.35) 0.21 (1.44) (0.35)
CBOP 0.822 0.899 0.809 0.50 (1.75) 0.32 (1.23) (-1.29)
CT 0.988 0.994 0.998 0.05 (0.22) 0.06 (0.22) (0.11)
ChiAT 0.859 0.961 0.955 0.10 (0.87) 0.14 (1.24) (1.30)
EC 0.952 0.961 0.952 0.03 (0.25) 0.03 (0.28) (0.19)
EP 0.696 0.972 0.994 0.51 (2.12) 0.50 (2.12) (-0.27)
FSc 0.962 0.960 0.951 -0.36 (-1.29) -0.36 (-1.30) (0.05)
GP 0.818 0.904 0.962 -0.02 (-0.10) -0.03 (-0.15) (-0.17)
Lvrg 0.627 0.991 0.998 0.49 (1.29) 0.48 (1.25) (-0.55)
OPtA 0.854 0.934 0.975 -0.03 (-0.10) -0.00 (-0.01) (0.53)
OPtE 0.769 0.870 0.990 -0.33 (-0.78) -0.31 (-0.73) (0.36)
OSc 0.770 0.978 0.997 -1.04 (-2.99) -1.01 (-2.91) (1.32)
Value
AM 0.641 0.993 0.998 1.28 (3.03) 1.26 (3.01) (-0.99)
BM 0.962 0.985 0.996 1.18 (3.46) 1.14 (3.28) (-2.49)
CM 0.655 0.968 0.999 -0.09 (-0.17) -0.06 (-0.12) (0.89)
DurE 0.653 0.982 0.997 0.75 (2.25) 0.74 (2.26) (-0.55)
ECoBP 0.598 0.980 0.997 0.80 (2.10) 0.74 (1.96) (-2.58)
EM 0.347 0.907 0.991 0.79 (2.64) 0.76 (2.52) (-0.89)
IR 0.985 0.989 0.997 1.12 (3.68) 1.12 (3.72) (0.16)
LCoBP 0.394 0.956 0.994 0.41 (1.36) 0.35 (1.25) (-1.51)
NPY 0.683 0.965 0.996 -0.01 (-0.03) -0.02 (-0.06) (-0.32)
OL 0.987 0.988 0.977 0.64 (3.06) 0.59 (2.72) (-1.52)
PY 0.627 0.947 0.987 -0.34 (-1.50) -0.34 (-1.57) (0.13)
SP 0.663 0.992 0.999 1.20 (2.56) 1.18 (2.52) (-1.36)
SaGr 0.991 0.991 0.995 0.26 (1.48) 0.26 (1.53) (0.37)
SuGr 0.716 0.970 0.992 0.96 (3.61) 0.96 (3.73) (-0.04)
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Table D.3:
Datastream vs Compustat in the Common Sample - Panel B - Detailed

CRSP Returns Compustat Signals

Corr CS DS CS - DS Corr CS DS CS - DS

Accruals
Acc 0.999 0.55 (2.63) 0.54 (2.58) (-0.96) 0.997 0.55 (2.65) 0.55 (2.65) (0.05)
ChCE 0.998 1.16 (3.88) 1.13 (3.84) (-2.07) 0.997 1.17 (3.88) 1.17 (3.90) (-0.08)
ChCOA 0.994 0.68 (3.69) 0.68 (3.65) (0.04) 0.994 0.68 (3.69) 0.66 (3.65) (-1.41)
ChCOL 0.991 0.49 (2.87) 0.49 (2.84) (0.10) 0.991 0.49 (2.87) 0.44 (2.70) (-2.38)
ChFL 0.952 0.26 (2.98) 0.29 (3.35) (0.95) 0.980 0.26 (2.91) 0.25 (2.90) (-0.26)
ChLTI 0.658 0.24 (2.48) 0.17 (1.78) (-1.18) 0.984 0.24 (2.47) 0.25 (2.59) (0.97)
ChNCOA 0.989 0.93 (4.12) 0.95 (4.28) (0.62) 0.996 0.93 (4.11) 0.91 (4.16) (-0.96)
ChNCOL 0.879 0.33 (2.72) 0.27 (2.31) (-1.08) 0.988 0.33 (2.73) 0.35 (2.88) (1.09)
ChNFA 0.893 -0.05 (-0.47) 0.03 (0.31) (1.88) 0.972 -0.04 (-0.43) -0.06 (-0.54) (-0.70)
ChNNCOA 0.991 0.86 (4.21) 0.90 (4.42) (1.33) 0.996 0.86 (4.19) 0.86 (4.24) (-0.21)
ChNNCWC 0.977 0.45 (3.52) 0.48 (3.67) (1.19) 0.988 0.45 (3.55) 0.46 (3.62) (0.37)
GriI 0.984 0.42 (2.87) 0.39 (2.75) (-1.80) 0.994 0.43 (2.90) 0.42 (2.87) (-0.82)
ICh 0.988 0.51 (3.15) 0.49 (3.07) (-0.94) 0.994 0.51 (3.20) 0.51 (3.19) (-0.20)
IGr 0.988 0.52 (3.04) 0.47 (2.82) (-2.18) 0.989 0.52 (2.99) 0.49 (2.90) (-0.97)
MBaAC 0.977 1.85 (4.87) 1.84 (4.74) (-0.25) 0.986 1.85 (4.87) 1.77 (4.78) (-1.69)
NWCCh 0.972 0.31 (3.65) 0.33 (3.81) (1.07) 0.985 0.32 (3.67) 0.34 (3.62) (1.00)
POA 0.981 0.42 (3.30) 0.46 (3.62) (1.41) 0.993 0.42 (3.28) 0.44 (3.38) (1.31)
PTA 0.981 0.52 (4.62) 0.50 (4.31) (-1.04) 0.988 0.52 (4.64) 0.49 (4.56) (-1.56)
TA 0.986 1.02 (3.55) 0.97 (3.50) (-1.55) 0.996 1.02 (3.55) 1.02 (3.60) (-0.19)
Intangibles
AL 0.969 0.45 (1.56) 0.62 (1.60) (1.22) 0.997 0.45 (1.58) 0.43 (1.58) (-0.65)
ChGMChS 0.857 -0.15 (-1.59) -0.16 (-1.77) (-0.15) 0.991 -0.14 (-1.54) -0.15 (-1.53) (-0.25)
EPr 0.982 0.21 (1.12) 0.24 (1.19) (0.57) 0.994 0.22 (1.16) 0.21 (1.08) (-0.88)
ES 0.999 0.83 (2.64) 0.81 (2.63) (-1.20) 1.000 0.81 (2.62) 0.82 (2.63) (1.42)
HI 0.718 -0.13 (-0.69) -0.10 (-0.63) (0.30) 0.999 -0.14 (-0.74) -0.16 (-0.82) (-1.97)
HR 0.980 0.73 (3.63) 0.74 (3.86) (0.16) 0.994 0.74 (3.72) 0.73 (3.69) (-0.31)
IARER 0.680 0.75 (2.33) 0.45 (1.53) (-1.43) 0.999 0.77 (2.37) 0.78 (2.41) (0.37)
ICBE 0.630 -0.20 (-0.52) -0.07 (-0.32) (0.46) 1.000 -0.20 (-0.52) -0.21 (-0.54) (-0.86)
OC 0.989 0.62 (2.40) 0.58 (2.28) (-1.03) 0.998 0.63 (2.42) 0.62 (2.42) (-0.44)
RDM 0.998 1.87 (3.09) 1.87 (3.14) (0.09) 0.999 1.86 (3.09) 1.85 (3.08) (-0.47)
SmI 0.978 0.09 (0.91) 0.04 (0.45) (-2.31) 0.998 0.09 (0.97) 0.10 (1.02) (0.61)
TAN 0.999 0.40 (1.17) 0.38 (1.14) (-0.95) 0.999 0.39 (1.18) 0.39 (1.16) (-0.15)
URDI 0.992 0.54 (1.77) 0.62 (1.89) (2.05) 1.000 0.54 (1.76) 0.53 (1.72) (-1.71)
WWI 1.000 1.11 (3.12) 1.11 (3.15) (-0.15) 0.999 1.11 (3.12) 1.13 (3.21) (0.84)
Investment
AGr 0.998 1.16 (3.84) 1.14 (3.82) (-0.66) 0.996 1.15 (3.86) 1.14 (3.84) (-0.74)
CAPEX 0.971 0.59 (4.14) 0.60 (4.44) (0.28) 0.996 0.59 (4.22) 0.59 (4.29) (-0.16)
CDI 0.971 -0.08 (-0.57) -0.13 (-0.83) (-1.29) 0.991 -0.12 (-0.80) -0.10 (-0.74) (0.64)
CEI5Y 0.995 0.19 (0.94) 0.16 (0.82) (-1.33) 1.000 0.19 (0.97) 0.19 (0.96) (-0.38)
ChNOA 0.964 0.32 (2.70) 0.34 (2.98) (0.62) 0.991 0.32 (2.64) 0.32 (2.61) (-0.01)
ChPPEIA 0.993 0.64 (3.52) 0.62 (3.53) (-0.77) 0.997 0.64 (3.53) 0.63 (3.55) (-0.51)
DI 0.983 0.18 (2.29) 0.18 (2.34) (0.34) 0.998 0.18 (2.29) 0.18 (2.28) (0.41)
GrLTNOA 0.996 0.77 (4.29) 0.78 (4.25) (0.61) 0.999 0.77 (4.33) 0.78 (4.37) (0.91)
INV 0.926 0.44 (4.02) 0.42 (3.87) (-0.43) 0.985 0.43 (4.04) 0.41 (3.90) (-1.23)
NDF 0.953 0.12 (1.35) 0.15 (2.02) (0.87) 0.965 0.14 (1.60) 0.16 (1.88) (1.20)
NEF 0.999 -0.05 (-0.13) -0.06 (-0.17) (-0.65) 1.000 -0.05 (-0.14) -0.05 (-0.16) (-1.15)
NOA 0.997 0.73 (2.58) 0.72 (2.56) (-0.58) 0.998 0.72 (2.60) 0.73 (2.64) (0.43)
NOACh 0.997 0.46 (2.32) 0.46 (2.28) (-0.18) 0.998 0.47 (2.43) 0.47 (2.44) (-0.54)
SR 0.994 -0.17 (-1.74) -0.18 (-1.81) (-0.64) 0.999 -0.17 (-1.74) -0.18 (-1.81) (-1.49)
TXFIN 0.995 0.22 (0.78) 0.18 (0.65) (-1.55) 0.998 0.21 (0.77) 0.21 (0.78) (0.21)
Profitability
AT 0.997 0.20 (1.35) 0.20 (1.37) (-0.13) 0.995 0.21 (1.45) 0.21 (1.46) (-0.15)
CBOP 0.808 0.50 (1.75) 0.29 (1.13) (-1.55) 0.997 0.50 (1.75) 0.50 (1.76) (0.12)
CT 0.999 0.05 (0.22) 0.06 (0.24) (0.46) 0.999 0.06 (0.24) 0.05 (0.19) (-0.82)
ChiAT 0.979 0.10 (0.87) 0.15 (1.27) (2.35) 0.975 0.12 (0.98) 0.10 (0.91) (-0.92)
EC 0.953 0.03 (0.25) 0.02 (0.19) (-0.24) 0.999 -0.01 (-0.05) 0.00 (0.00) (1.99)
EP 0.994 0.51 (2.12) 0.50 (2.09) (-0.63) 1.000 0.51 (2.10) 0.52 (2.14) (2.21)
FSc 0.968 -0.36 (-1.29) -0.32 (-1.16) (0.66) 0.983 -0.35 (-1.29) -0.40 (-1.45) (-1.05)
GP 0.962 -0.02 (-0.10) -0.03 (-0.12) (-0.07) 0.997 -0.02 (-0.08) -0.02 (-0.09) (-0.13)
Lvrg 0.999 0.49 (1.29) 0.46 (1.21) (-1.72) 0.999 0.49 (1.29) 0.51 (1.35) (2.12)
OPtA 0.977 -0.03 (-0.10) 0.02 (0.06) (1.02) 0.994 -0.03 (-0.10) -0.08 (-0.25) (-2.00)
OPtE 0.991 -0.33 (-0.78) -0.31 (-0.75) (0.28) 1.000 -0.33 (-0.77) -0.35 (-0.81) (-1.36)
OSc 0.998 -1.04 (-2.99) -1.00 (-2.86) (1.88) 0.998 -1.04 (-2.98) -1.06 (-3.02) (-1.36)
Value
AM 0.999 1.28 (3.03) 1.27 (3.01) (-1.03) 0.999 1.28 (3.01) 1.27 (3.06) (-0.32)
BM 0.997 1.18 (3.46) 1.16 (3.36) (-1.85) 0.998 1.18 (3.46) 1.16 (3.37) (-1.80)
CM 0.999 -0.09 (-0.17) -0.07 (-0.14) (0.57) 1.000 -0.09 (-0.17) -0.09 (-0.19) (-0.64)
DurE 0.998 0.75 (2.25) 0.73 (2.20) (-1.74) 0.999 0.74 (2.22) 0.76 (2.26) (1.06)
ECoBP 0.999 0.80 (2.10) 0.76 (2.02) (-1.99) 0.998 0.80 (2.09) 0.77 (2.04) (-1.49)
EM 0.993 0.79 (2.64) 0.75 (2.48) (-1.12) 0.998 0.79 (2.67) 0.79 (2.75) (-0.19)
IR 0.997 1.12 (3.68) 1.11 (3.72) (-0.15) 0.999 1.10 (3.66) 1.11 (3.67) (0.74)
LCoBP 0.997 0.41 (1.36) 0.36 (1.27) (-1.55) 0.998 0.41 (1.37) 0.39 (1.34) (-1.07)
NPY 0.997 -0.01 (-0.03) -0.01 (-0.03) (0.03) 0.999 -0.02 (-0.05) -0.03 (-0.11) (-1.26)
OL 0.981 0.64 (3.06) 0.61 (2.85) (-0.96) 0.983 0.64 (3.08) 0.64 (2.96) (-0.34)
PY 0.988 -0.34 (-1.50) -0.33 (-1.50) (0.52) 0.998 -0.34 (-1.51) -0.35 (-1.56) (-0.41)
SP 1.000 1.20 (2.56) 1.18 (2.51) (-2.48) 0.999 1.20 (2.55) 1.21 (2.59) (0.49)
SaGr 0.996 0.26 (1.48) 0.26 (1.52) (0.45) 0.997 0.26 (1.47) 0.27 (1.56) (1.08)
SuGr 0.995 0.96 (3.61) 0.98 (3.72) (0.72) 0.997 0.96 (3.62) 0.94 (3.57) (-1.64)
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Does the Source of Fundamental Data Matter?

Table D.4:
Datastream vs Compustat in Their Own Full Samples - Detailed

Full Samples Cap Over $100 million & No Financial & 2001+

Corr CS DS CS - DS Corr CS DS CS - DS

Accruals
Acc 0.953 0.31 (1.39) 0.58 (2.56) (2.65) 0.956 -0.05 (-0.34) 0.04 (0.27) (2.82)
ChCE 0.896 0.64 (2.27) 1.40 (4.16) (3.87) 0.910 0.11 (0.53) 0.26 (1.16) (2.13)
ChCOA 0.692 0.64 (3.28) 0.73 (3.77) (0.59) 0.933 0.09 (0.40) 0.04 (0.18) (-0.85)
ChCOL 0.710 0.55 (3.49) 0.43 (2.07) (-0.82) 0.946 0.18 (0.90) 0.21 (0.95) (0.49)
ChFL 0.612 0.50 (5.46) 0.29 (3.41) (-3.24) 0.909 0.04 (0.28) 0.09 (0.80) (0.60)
ChLTI 0.400 0.21 (2.71) 0.19 (1.83) (-0.16) 0.597 0.21 (1.54) 0.26 (1.28) (0.42)
ChNCOA 0.876 0.82 (3.55) 1.12 (4.70) (2.11) 0.911 0.24 (1.13) 0.31 (1.61) (1.49)
ChNCOL 0.802 0.20 (1.74) 0.30 (2.73) (1.24) 0.874 -0.02 (-0.08) 0.04 (0.23) (0.56)
ChNFA 0.503 0.29 (2.72) -0.04 (-0.39) (-3.04) 0.667 0.01 (0.05) 0.02 (0.17) (0.15)
ChNNCOA 0.870 0.84 (3.86) 1.05 (4.87) (1.42) 0.891 0.31 (1.54) 0.36 (2.46) (0.71)
ChNNCWC 0.777 0.29 (1.97) 0.44 (3.10) (2.00) 0.867 -0.05 (-0.43) -0.09 (-0.99) (-0.65)
GriI 0.771 0.49 (3.26) 0.42 (3.19) (-0.70) 0.945 0.20 (0.84) 0.07 (0.36) (-2.27)
ICh 0.760 0.52 (3.09) 0.54 (3.63) (0.16) 0.913 0.28 (1.12) 0.17 (0.73) (-2.05)
IGr 0.776 0.50 (2.72) 0.62 (3.85) (1.06) 0.921 0.02 (0.10) 0.04 (0.18) (0.31)
MBaAC 0.842 1.67 (4.96) 1.47 (3.69) (-1.13) 0.939 -0.02 (-0.04) -0.23 (-0.41) (-1.98)
NWCCh 0.778 0.43 (4.44) 0.30 (3.16) (-1.98) 0.841 -0.01 (-0.05) -0.01 (-0.07) (-0.02)
POA 0.825 0.68 (5.18) 0.26 (1.96) (-4.57) 0.941 0.15 (0.65) 0.08 (0.46) (-0.85)
PTA 0.783 0.35 (3.30) 0.61 (4.06) (2.35) 0.861 0.13 (1.20) 0.13 (1.21) (0.03)
TA 0.851 0.64 (2.67) 1.07 (3.87) (2.61) 0.785 0.28 (1.61) 0.31 (1.86) (0.38)
Intangibles
AL 0.927 0.38 (1.35) 0.73 (1.88) (1.75) 0.808 0.36 (1.02) 0.09 (0.27) (-2.82)
ChGMChS 0.482 0.16 (1.57) -0.19 (-1.59) (-2.90) 0.841 0.01 (0.03) -0.05 (-0.31) (-0.51)
EPr 0.835 0.72 (3.82) 0.14 (0.70) (-4.20) 0.971 0.43 (0.99) 0.34 (0.94) (-0.91)
ES 0.904 0.07 (0.20) 0.81 (2.83) (3.67) 0.982 0.06 (0.22) 0.12 (0.43) (1.08)
HI 0.702 0.00 (0.03) -0.19 (-0.62) (-0.88) 0.890 0.26 (1.34) 0.23 (0.82) (-0.27)
HR 0.821 0.59 (3.09) 0.99 (4.50) (2.68) 0.942 0.39 (1.69) 0.36 (1.73) (-0.45)
IARER 0.148 0.31 (2.11) 0.56 (2.41) (0.89) 0.084 -0.17 (-0.49) -0.14 (-0.81) (0.08)
ICBE 0.087 -0.03 (-0.14) 0.07 (0.31) (0.34) 0.682 0.13 (0.72) 0.25 (1.12) (0.72)
OC 0.913 0.46 (1.66) 0.97 (3.05) (3.04) 0.930 0.32 (0.95) 0.30 (0.90) (-0.23)
RDM 0.978 1.37 (2.31) 1.99 (3.11) (4.05) 0.970 0.54 (1.61) 0.47 (1.29) (-0.79)
SmI 0.345 0.33 (2.78) 0.07 (0.74) (-2.05) 0.805 -0.36 (-4.41) -0.36 (-4.65) (0.08)
TAN 0.972 0.45 (1.34) 0.37 (1.03) (-0.73) 0.981 -0.33 (-1.63) -0.20 (-1.16) (2.73)
URDI 0.944 0.52 (1.56) 0.48 (1.45) (-0.39) 0.955 0.22 (0.90) 0.22 (0.90) (-0.06)
WWI 0.929 0.44 (1.19) 1.26 (3.59) (5.49) 0.986 -0.15 (-0.83) -0.02 (-0.11) (2.62)
Investment
AGr 0.880 0.96 (3.01) 1.42 (4.30) (2.13) 0.951 0.25 (0.97) 0.25 (0.86) (-0.02)
CAPEX 0.660 0.41 (2.77) 0.60 (4.83) (1.78) 0.890 0.18 (1.12) 0.15 (0.96) (-0.60)
CDI 0.822 0.17 (1.05) -0.06 (-0.37) (-2.40) 0.893 0.18 (1.06) 0.11 (0.78) (-0.77)
CEI5Y 0.984 0.41 (2.10) 0.22 (1.13) (-3.84) 0.978 0.42 (1.73) 0.48 (2.04) (0.89)
ChNOA 0.586 0.28 (2.66) 0.51 (3.99) (2.11) 0.838 -0.11 (-0.63) -0.12 (-0.83) (-0.32)
ChPPEIA 0.849 0.65 (3.38) 0.81 (4.38) (1.29) 0.903 0.41 (2.22) 0.38 (2.46) (-0.44)
DI 0.782 0.35 (3.53) 0.25 (2.25) (-1.23) 0.955 -0.02 (-0.13) -0.02 (-0.24) (-0.20)
GrLTNOA 0.930 0.42 (2.56) 0.86 (4.61) (6.77) 0.959 0.22 (1.15) 0.33 (2.14) (2.00)
INV 0.790 0.21 (1.77) 0.45 (3.91) (3.51) 0.875 0.04 (0.27) 0.10 (0.73) (0.82)
NDF 0.553 0.42 (4.90) 0.30 (3.34) (-1.71) 0.630 0.02 (0.12) 0.15 (1.33) (0.93)
NEF 0.968 0.68 (2.03) 0.01 (0.02) (-6.08) 0.990 0.33 (1.31) 0.28 (1.05) (-0.97)
NOA 0.709 0.70 (3.19) 0.91 (3.22) (1.07) 0.950 0.19 (1.07) 0.23 (1.51) (0.63)
NOACh 0.936 0.55 (2.59) 0.59 (3.29) (0.69) 0.936 0.38 (2.48) 0.43 (2.73) (0.83)
SR 0.892 0.13 (1.16) -0.27 (-1.76) (-4.97) 0.976 0.31 (2.51) 0.23 (2.01) (-2.90)
TXFIN 0.884 1.04 (3.86) 0.29 (1.04) (-6.44) 0.949 0.54 (1.73) 0.32 (1.08) (-1.68)
Profitability
AT 0.946 0.16 (1.12) 0.30 (1.95) (2.20) 0.967 0.39 (2.03) 0.55 (2.75) (1.80)
CBOP 0.815 0.80 (2.56) 0.43 (1.61) (-2.65) 0.826 0.42 (0.83) 0.60 (1.67) (0.74)
CT 0.726 0.09 (0.42) 0.01 (0.04) (-0.29) 0.975 0.52 (2.48) 0.52 (2.81) (0.10)
ChiAT 0.743 0.18 (1.86) 0.12 (1.14) (-0.96) 0.890 -0.19 (-1.64) -0.21 (-1.26) (-0.25)
EC 0.725 0.09 (0.85) 0.11 (1.03) (0.33) 0.839 -0.04 (-0.41) 0.14 (1.42) (2.37)
EP 0.914 0.56 (2.63) 0.64 (2.84) (1.16) 0.950 -0.01 (-0.07) 0.10 (0.51) (1.33)
FSc 0.749 0.29 (1.03) -0.71 (-1.83) (-4.14) 0.739 0.22 (0.59) 0.43 (1.07) (1.16)
GP 0.835 0.28 (1.17) -0.01 (-0.07) (-2.05) 0.923 0.37 (1.32) 0.39 (1.33) (0.13)
Lvrg 0.967 0.25 (0.72) 0.55 (1.44) (3.00) 0.973 0.44 (1.28) 0.46 (1.36) (0.35)
OPtA 0.772 0.93 (2.69) -0.10 (-0.29) (-5.84) 0.890 0.51 (1.33) 0.44 (1.56) (-0.47)
OPtE 0.954 0.44 (1.08) -0.38 (-0.83) (-4.75) 0.974 0.39 (1.62) 0.38 (1.88) (-0.11)
OSc 0.942 0.28 (0.75) -1.05 (-2.83) (-8.17) 0.982 0.10 (0.26) -0.09 (-0.25) (-2.55)
Value
AM 0.946 1.09 (2.86) 1.20 (2.89) (0.71) 0.988 0.43 (0.94) 0.46 (1.03) (0.62)
BM 0.932 1.20 (3.79) 1.19 (3.37) (-0.10) 0.978 0.14 (0.40) 0.13 (0.38) (-0.32)
CM 0.961 0.71 (1.53) -0.26 (-0.51) (-6.79) 0.983 0.58 (2.34) 0.44 (1.88) (-2.54)
DurE 0.914 0.90 (2.65) 0.81 (2.35) (-0.60) 0.979 0.04 (0.11) 0.07 (0.19) (0.55)
ECoBP 0.951 0.82 (2.22) 0.52 (1.36) (-2.29) 0.985 0.16 (0.41) 0.20 (0.50) (0.98)
EM 0.942 -0.05 (-0.15) 0.76 (2.45) (5.19) 0.946 -0.31 (-1.44) -0.09 (-0.45) (3.15)
IR 0.902 0.58 (1.85) 1.22 (3.83) (4.16) 0.959 -0.00 (-0.01) 0.08 (0.27) (0.90)
LCoBP 0.949 0.39 (1.48) 0.22 (0.82) (-1.78) 0.977 -0.20 (-1.09) -0.23 (-1.27) (-0.41)
NPY 0.950 0.87 (2.81) -0.03 (-0.08) (-7.80) 0.980 0.49 (1.87) 0.37 (1.32) (-1.42)
OL 0.761 0.49 (2.73) 0.78 (3.92) (2.36) 0.908 0.47 (1.99) 0.48 (2.39) (0.19)
PY 0.864 0.25 (1.16) -0.40 (-1.42) (-4.23) 0.934 0.14 (0.59) 0.23 (0.99) (1.59)
SP 0.973 1.13 (2.55) 1.39 (2.92) (1.91) 0.987 0.42 (1.15) 0.53 (1.47) (1.90)
SaGr 0.682 0.21 (1.45) 0.36 (1.91) (1.05) 0.939 0.18 (1.00) 0.24 (1.30) (1.09)
SuGr 0.863 0.40 (1.68) 1.04 (3.94) (4.37) 0.891 0.12 (0.64) 0.23 (1.19) (1.19)
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Table D.5:
Portfolio Constructions Reducing Discrepancy Between Databases - Detailed

All-but-microcaps VW Breakpoints from 1000 Largest Stocks VW

Corr CS DS CS - DS Corr CS DS CS - DS

Accruals
Acc 0.940 0.09 (0.96) 0.17 (1.54) (2.47) 0.953 0.07 (0.56) 0.16 (1.20) (3.51)
ChCE 0.957 0.21 (0.94) 0.29 (1.26) (1.57) 0.963 0.27 (1.27) 0.31 (1.39) (0.82)
ChCOA 0.928 0.12 (0.63) 0.15 (0.66) (0.42) 0.953 0.10 (0.56) 0.16 (0.75) (0.96)
ChCOL 0.958 -0.02 (-0.11) -0.00 (-0.02) (0.29) 0.973 0.01 (0.03) 0.01 (0.06) (0.11)
ChFL 0.760 0.29 (2.68) 0.16 (1.73) (-1.55) 0.809 0.30 (2.72) 0.19 (1.90) (-1.64)
ChLTI 0.678 -0.02 (-0.17) -0.04 (-0.23) (-0.19) 0.731 -0.03 (-0.19) -0.06 (-0.33) (-0.40)
ChNCOA 0.819 0.32 (2.25) 0.34 (2.07) (0.36) 0.748 0.27 (1.89) 0.33 (2.03) (0.72)
ChNCOL 0.733 -0.08 (-0.56) -0.07 (-0.60) (0.05) 0.765 -0.00 (-0.03) -0.04 (-0.35) (-0.46)
ChNFA 0.820 0.27 (1.55) 0.20 (0.98) (-0.76) 0.844 0.25 (1.50) 0.16 (0.79) (-1.01)
ChNNCOA 0.829 0.42 (3.07) 0.34 (2.23) (-1.10) 0.789 0.33 (2.52) 0.35 (2.27) (0.25)
ChNNCWC 0.911 0.29 (1.78) 0.33 (2.08) (0.52) 0.884 0.16 (1.11) 0.26 (1.86) (1.64)
GriI 0.896 0.38 (2.52) 0.22 (1.55) (-2.45) 0.855 0.36 (2.46) 0.23 (1.69) (-1.56)
ICh 0.828 0.41 (2.50) 0.26 (1.62) (-1.66) 0.870 0.44 (2.76) 0.32 (2.13) (-1.84)
IGr 0.911 0.06 (0.32) 0.05 (0.29) (-0.12) 0.926 0.07 (0.45) 0.08 (0.49) (0.12)
MBaAC 0.805 0.75 (1.46) 0.72 (1.28) (-0.07) 0.829 0.90 (1.85) 0.89 (1.60) (-0.02)
NWCCh 0.895 0.24 (1.71) 0.23 (1.65) (-0.17) 0.898 0.14 (1.04) 0.20 (1.49) (0.97)
POA 0.914 0.24 (2.05) 0.36 (2.96) (1.77) 0.921 0.18 (1.21) 0.27 (2.23) (1.62)
PTA 0.888 0.16 (0.93) 0.21 (1.18) (0.60) 0.914 0.09 (0.55) 0.17 (0.98) (1.38)
TA 0.825 0.17 (0.92) 0.23 (1.11) (0.66) 0.876 0.15 (0.81) 0.19 (0.90) (0.44)
Intangibles
AL 0.664 0.10 (0.56) 0.48 (2.82) (2.58) 0.766 0.24 (1.35) 0.32 (1.85) (0.67)
ChGMChS 0.670 0.02 (0.20) 0.04 (0.25) (0.10) 0.640 0.06 (0.73) -0.05 (-0.38) (-0.96)
EPr 0.940 0.42 (2.04) 0.30 (1.63) (-1.40) 0.931 0.44 (2.20) 0.30 (1.62) (-1.67)
ES 0.955 0.05 (0.19) 0.26 (1.04) (2.00) 0.961 0.13 (0.67) 0.25 (1.05) (1.32)
HI 0.528 -0.05 (-0.40) 0.09 (0.55) (0.89) 0.558 0.07 (0.46) 0.08 (0.42) (0.01)
HR 0.959 0.04 (0.17) -0.01 (-0.05) (-0.77) 0.965 -0.05 (-0.22) -0.07 (-0.29) (-0.38)
IARER 0.067 0.31 (1.34) 0.44 (1.20) (0.34) 0.079 0.32 (1.49) 0.13 (0.34) (-0.34)
ICBE 0.537 0.14 (0.94) 0.13 (0.92) (-0.08) 0.525 0.27 (1.26) 0.20 (1.32) (-0.36)
OC 0.916 0.28 (1.55) 0.27 (1.38) (-0.23) 0.931 0.28 (1.53) 0.28 (1.46) (0.11)
RDM 0.946 0.54 (1.93) 0.71 (2.48) (1.89) 0.967 0.52 (2.21) 0.69 (2.59) (2.54)
SmI 0.713 0.13 (0.92) 0.12 (0.72) (-0.07) 0.764 0.12 (0.85) 0.11 (0.63) (-0.10)
TAN 0.942 0.02 (0.17) 0.04 (0.23) (0.19) 0.957 0.06 (0.44) 0.11 (0.72) (1.07)
URDI 0.865 0.34 (1.76) 0.45 (1.71) (0.90) 0.868 0.34 (1.76) 0.45 (1.72) (0.93)
WWI 0.968 0.02 (0.07) 0.35 (0.95) (2.69) 0.980 0.13 (0.48) 0.37 (1.27) (3.06)
Investment
AGr 0.960 0.31 (1.43) 0.32 (1.39) (0.15) 0.965 0.25 (1.08) 0.27 (1.16) (0.53)
CAPEX 0.731 0.22 (1.29) 0.11 (0.61) (-0.93) 0.786 0.13 (0.81) 0.07 (0.46) (-0.60)
CDI 0.918 0.08 (0.51) -0.05 (-0.31) (-1.44) 0.898 0.08 (0.56) -0.04 (-0.24) (-1.12)
CEI5Y 0.967 0.28 (1.76) 0.32 (1.83) (0.68) 0.963 0.23 (1.44) 0.21 (1.23) (-0.34)
ChNOA 0.825 0.28 (2.12) 0.40 (2.41) (1.00) 0.660 0.32 (2.45) 0.24 (2.16) (-0.63)
ChPPEIA 0.909 0.25 (1.60) 0.27 (1.87) (0.26) 0.920 0.26 (1.80) 0.27 (1.86) (0.03)
DI 0.884 0.26 (2.59) 0.21 (1.52) (-0.78) 0.887 0.26 (2.61) 0.22 (1.59) (-0.66)
GrLTNOA 0.809 0.19 (1.84) 0.20 (2.15) (0.11) 0.809 0.21 (1.68) 0.20 (1.88) (-0.21)
INV 0.886 0.17 (1.29) 0.15 (0.94) (-0.45) 0.914 0.18 (1.72) 0.16 (1.29) (-0.32)
NDF 0.726 0.18 (1.70) 0.20 (2.23) (0.23) 0.787 0.16 (1.29) 0.19 (2.01) (0.43)
NEF 0.950 0.22 (0.77) 0.05 (0.17) (-2.21) 0.962 0.18 (0.71) 0.13 (0.48) (-0.77)
NOA 0.614 0.45 (3.56) 0.44 (2.83) (-0.09) 0.598 0.41 (3.33) 0.46 (3.51) (0.35)
NOACh 0.816 0.40 (2.58) 0.56 (3.73) (1.79) 0.865 0.38 (3.21) 0.46 (3.75) (1.53)
SR 0.914 0.03 (0.24) 0.05 (0.32) (0.33) 0.918 0.03 (0.26) 0.04 (0.24) (0.11)
TXFIN 0.862 0.54 (2.17) 0.31 (1.25) (-2.39) 0.878 0.26 (1.30) 0.22 (1.04) (-0.50)
Profitability
AT 0.981 0.21 (1.30) 0.31 (1.65) (1.80) 0.975 0.25 (1.70) 0.34 (1.92) (1.45)
CBOP 0.778 0.64 (2.54) 0.49 (2.05) (-1.13) 0.801 0.57 (2.56) 0.48 (2.27) (-0.88)
CT 0.794 0.06 (0.29) 0.16 (1.01) (0.73) 0.830 0.05 (0.23) 0.16 (1.03) (0.92)
ChiAT 0.860 0.24 (1.49) 0.22 (1.47) (-0.28) 0.895 0.15 (1.01) 0.11 (0.75) (-0.84)
EC 0.905 0.24 (1.88) 0.12 (1.08) (-2.20) 0.925 0.21 (1.60) 0.15 (1.18) (-1.17)
EP 0.965 0.32 (1.15) 0.36 (1.29) (0.76) 0.978 0.37 (1.30) 0.37 (1.36) (0.03)
FSc 0.620 -0.02 (-0.07) -0.30 (-0.81) (-0.83) 0.635 0.09 (0.34) -0.39 (-1.07) (-1.52)
GP 0.928 0.13 (0.64) 0.22 (0.96) (1.15) 0.927 0.14 (0.71) 0.15 (0.66) (0.05)
Lvrg 0.983 0.03 (0.07) 0.01 (0.03) (-0.24) 0.984 0.10 (0.29) 0.08 (0.26) (-0.32)
OPtA 0.820 0.48 (1.85) 0.41 (1.68) (-0.56) 0.790 0.43 (1.82) 0.28 (1.41) (-1.33)
OPtE 0.864 0.39 (1.36) 0.12 (0.36) (-1.67) 0.829 0.31 (1.44) 0.24 (0.84) (-0.43)
OSc 0.931 0.11 (0.44) -0.10 (-0.41) (-2.59) 0.935 0.01 (0.04) -0.16 (-0.83) (-2.36)
Value
AM 0.986 0.15 (0.50) 0.19 (0.63) (1.00) 0.985 0.15 (0.49) 0.22 (0.71) (2.00)
BM 0.970 0.20 (0.73) 0.29 (1.06) (1.66) 0.975 0.12 (0.44) 0.19 (0.73) (1.57)
CM 0.968 0.39 (1.12) 0.30 (0.78) (-1.06) 0.976 0.38 (1.17) 0.24 (0.71) (-2.10)
DurE 0.903 0.23 (0.78) 0.13 (0.48) (-0.97) 0.918 0.21 (0.73) 0.24 (0.83) (0.33)
ECoBP 0.969 0.11 (0.34) 0.14 (0.41) (0.41) 0.984 0.08 (0.24) 0.10 (0.30) (0.44)
EM 0.923 0.10 (0.44) 0.27 (1.16) (1.52) 0.948 0.20 (1.00) 0.23 (1.30) (0.61)
IR 0.965 0.15 (0.54) 0.16 (0.59) (0.10) 0.967 0.17 (0.60) 0.25 (0.94) (1.78)
LCoBP 0.964 0.27 (1.02) 0.46 (1.73) (2.00) 0.983 0.25 (0.96) 0.36 (1.26) (1.61)
NPY 0.950 0.37 (1.11) 0.23 (0.77) (-1.84) 0.938 0.17 (0.61) 0.12 (0.40) (-0.51)
OL 0.904 0.21 (1.07) 0.27 (1.47) (0.93) 0.860 0.23 (1.36) 0.29 (1.90) (0.77)
PY 0.900 -0.01 (-0.03) 0.06 (0.15) (0.42) 0.751 0.13 (0.41) -0.09 (-0.29) (-1.24)
SP 0.973 0.26 (0.81) 0.42 (1.28) (3.39) 0.985 0.28 (0.90) 0.40 (1.19) (2.23)
SaGr 0.960 0.09 (0.40) 0.02 (0.08) (-0.95) 0.961 0.06 (0.27) 0.01 (0.04) (-0.73)
SuGr 0.938 0.16 (0.90) 0.23 (1.15) (0.92) 0.952 0.20 (1.04) 0.24 (1.18) (0.81)
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Chapter 2

Omitted Strategy Bias in Anomalies

Research

In this paper, we study the statistical significance of 93 fundamental anomalies published

in academic journals in a multiple hypothesis setting. Harvey et al. (2016) documented

the importance of adopting an appropriate approach to testing when considering many

possibly significant signals. For every published anomaly there are potentially many others

that were tried but not published. If one considers 20 possible signals sequentially in a

single hypothesis test of their significance, she would on average find one significant signal

even if, in reality, none of them is significant.1 The multiple hypothesis testing framework

then corrects for this error rate in specific and controlled ways. One problem is that all

the explored signals cannot be observed as the insignificant findings were not published;

it is thus impossible to account for them. Harvey et al. (2016) attempted to overcome

the issue by making strong structural assumptions and simulating a hypothetical sample

of t-statistics on these unpublished signals. However, this can also be very problematic

as the results depend on assumptions that cannot be fully tested. We take a different

approach by revisiting the data mining approach to fundamental signals of Yan and Zheng

(2017) in order to generate the universe of potential strategies. The potential strategies

can then be studied directly with well-established testing methods.

The fundamental anomalies in this study describe characteristics related to individ-

ual stocks that can predict their future returns. No distinction is being made between

characteristics that are related to risk premia and variables that are related to mispricing

due to frictions or other market imperfections. The studied anomalies are, for example,

accruals of Sloan (1996), earnings over price of Basu (1977), composite equity issuance of

Daniel and Titman (2006), and R&D over Market Equity of Chan et al. (2001).

The analysis considers 48,387 data-mined fundamental signals in an international set-

ting generated from a mixture of items on balance sheet, income, and cash flow statements.

The main body of the analysis focuses only on 1,497 data-mined signals that are the clos-

1See Lo and MacKinlay (1990) and MacKinlay (1995) for early warning that data snooping can become
a serious problem in empirical finance.
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est to the published anomalies. The generated fundamental signals are very close to 25 of

the published anomalies and loosely to another 6; this should provide a realistic setting for

the universe of potential strategies. The 25 anomalies can be considered a subset of the

universe of data-mined signals and the data-mined signals are therefore a good approx-

imation of the universe of possibly tried strategies the 25 anomalies were selected from.

Construction of some of the 93 anomalies is, however, not close to construction of any of

the data-mined signals. The data-mined signals are nevertheless closely correlated with

the anomalies regardless of the differences in construction. There are 34 anomalies whose

equal-weighted decile long-short portfolio returns in the US have at least 90% correlation

with one of the 1,497 data-mined signals. This number goes up to 61 for a minimum 75%

correlation and up to 88 for a minimum 50% correlation. The data-mined signals are

therefore a good approximation of the universe of tried signals from which the anomalies

were selected.2

All portfolios and predictions in our analysis are updated at an annual frequency.

The fundamental signals are dominant drivers of returns at the annual frequency and

our universe of strategies should, therefore, be an ideal testing ground for the selection

of significant annual signals. Omitted published anomalies, that are dominant at higher

frequencies, should only have limited influence on our analysis.

We apply the formal multiple hypothesis test of Storey (2002) to deal with the possible

false positive signals.3 The test controls for the false discovery rate of signals at a 5%

level. We focus on a universe of stocks with price over $1 and size larger than the bottom

decile of the New York Stock Exchange (NYSE) stocks since any annual signal could be

profitably traded there. This is motivated by Hou et al. (2017) and Green et al. (2017)

who show that micro-caps account for only 3% of overall capitalization of stock market in

the US but can have large impact on the number of discovered anomalies. The analysis

covers stocks in the majority of developed markets, which are grouped into following

regions: Asia Pacific, Europe, Japan, and the US. The number of significant signals

detected is highly dependent on the precise specification of the tests. There are fewer

significant signals for value-weighted returns and for factor models with a larger number

of factors. Using the Fama and French (2015) five factor model (FF5) decreases the

number of significant signals in comparison with Capital Asset Pricing Model (CAPM).

The findings of Harvey et al. (2016) where the test statistics are taken from different

studies with various methodologies can therefore suffer from large biases.

The number of significant signals varies greatly across the regions. There are notably

2The main analysis in this study is always conducted on both the full set of 93 anomalies and the
reduced set of 25 anomalies to provide a robustness check for the assumption.

3Storey (2002) was first introduced in finance context in Barras et al. (2010) to test performance
of mutual funds and in Bajgrowicz and Scaillet (2012) to test performance of technical trading rules.
Further papers dealing with performance of mutual funds in multiple hypothesis framework are Kosowski
et al. (2006) and Kosowski et al. (2007). For early finance literature that attempts to correct for data
mining biases, see Sullivan et al. (1999), Sullivan et al. (2001), and White (2000). Foster et al. (1997),
Cooper and Gulen (2006), Green et al. (2017) discuss data mining during variable selection in regression
setting.
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no significant signals at all found in Japan. The number of significant signals is lower

in Europe and Asia Pacific compared to the US, especially for value-weighted returns.

The critical values of t-statistics for 5% significance level, after accounting for multiple

hypothesis setting, are higher than standard value of 1.96 in single hypothesis tests but

they are generally lower than 3 as suggested in Harvey et al. (2016). Equal-weighted

returns require lower cut-off of about 2 to 2.5 since there are many more significant signals

in this case. The critical value for value-weighted return is close to 3. The critical value

also generally increases with number of risk factors for which we adjust the returns. This

is in line with findings of Fama and French (2017) that their five factor model dissects

more anomalies that their three factor model. The results are similar for the full set of 93

anomalies and the reduced set of 25 anomalies which implies that the data-mined signals

are a good approximation for the universe of signals for the 93 anomalies.

We show that the number of significant fundamental anomalies strongly depends on

(a) the adjustment of standard errors on portfolio returns for Heteroskedasticity and

Autocorrelation (HAC) and (b) method to obtain p-values from t-statistics. Most authors

apply the Newey-West (1987) adjustment which requires specification of lags.4 We show

that number of significant signals can drop to one half depending on the specification of

the lag length in HAC adjustment. There is no prior evidence on this issue, to the best

of our knowledge, and different authors choose the number of lags apparently completely

arbitrarily. The frequent choice is fewer than 6 lags.5 The framework with many signals

is an ideal testing ground to see the impact of this choice. Another problem with HAC

robust standard errors is that they tend to understate confidence intervals and reject too

many signals. The over-rejection rate is a well-documented phenomenon in the testing

literature and there are now many remedies available.6 We tackle the over-rejection

problem by relying on the ”naive” block bootstrap of Goncalves and Vogelsang (2011)

with a block length of 3 or 12. Bootstrapping p-values leads to fewer significant signals

compared with the standard approach which implies that relying on quantiles of the

normal distribution for critical values of the t-statistics can be very misleading. None of

the reviewed anomalies studies uses the bootstrap or non-normal critical values and the

p-values reported there are therefore inflated.

We propose a new simulation approach to study power and size of the significance

tests in a controlled environment. We randomly generate fundamental signals and create

portfolios based on them. Returns on the portfolios inherit properties of the data-mined

signals while having zero expected returns by definition which allows us to study how

the number of significant signals changes with varying expected returns. The simulation

4Note that even estimators with automatic selection of lags, such as Newey and West (1994) and
Andrews and Monahan (1992), suffer from similar problems as the procedures tend to select standard
errors that understate confidence intervals.

5The issue is so neglected that most of the authors do not even mention any adjustment. See, for
example, Fama and French (2015), Fama and French (2016), Fama and French (2017), and Ang et al.
(2006b). Eisfeldt and Papanikolaou (2013) adjust for one lag and Ang et al. (2009) for four lags.

6See, for example, Andrews and Monahan (1992), Newey and West (1994), Kiefer et al. (2000), Kiefer
and Vogelsang (2005), and many others.
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exercise reveals that the size of individual tests can be heavily distorted for small numbers

of lags in the HAC adjustment on annually rebalanced portfolio returns. The distortion

is the largest for equal-weighted annually rebalanced portfolios where the bootstrapped

empirical size of the tests is almost double the intended size. Multiple hypothesis tests in-

herit false discovery rate distortions due to their dependence on tests of individual signals.

We next examine power of the tests depending on expected annual returns of the signals.

Equal-weighted portfolios lead to much larger power relative to value-weighted portfolios

which explains why many of the anomalies disappear for value-weighting. Number of risk

factors used to adjust the raw returns also plays a large role in the tests’ power. The

power of the tests decreases with the number of risk factors and FF5 leads to tests with

the smallest power. This implies that some of the anomalies in Fama and French (2017)

could have been explained because of the poor power of the tests and not because of the

higher explanatory power of FF5 model.

The number of significant fundamental signals increases proportionally with the num-

ber of data-mined signals in the multiple hypothesis tests applied to long-short portfolios

based on the signals. There are therefore about 20,000 statistically significant strategies

on the extended universe of data-mined signals. It is, however, hard to believe that there

are so many profitable independent annual signals as it would point to severely inefficient

markets. The analysis so far has disregarded correlation structure between the signals.

Discarding closely correlated signals heavily reduces the number of data-mined signals

and leads to a decrease in proportion of significant signals when more data-mined signals

are added. The portfolio setting therefore offers only limited insight when it comes to

the number of independently significant signals and it is possible that there are only few

truly significant signals that are then mirrored in the other significant signals.

We next examine the impact of missing unpublished signals for the selection of in-

dependently significant signals in regression setting of Lewellen et al. (2015) and Green

et al. (2017). That is, we try to find signals that significantly predict returns on individual

stocks. Green et al. (2017) found that there are only 12 such signals in the US on their set

of published anomalies. We document that the omission of tried but unpublished signals

leads to the same biases as at the portfolio level analysis and the standard multiple hy-

pothesis methods are not conservative enough. The number of independently significant

signals does not increase with larger number of data-mined signals, as was the case in the

portfolio setting. Most of the data-mined signals in the portfolio setting were therefore

closely related to few common risk premiums.

We then select signals with least absolute shrinkage and selection operator (LASSO)

that are both economically (size of coefficients) and statistically significant. The selected

published anomalies are very similar to the selected data-mined signals which documents

that our data mining process leads to similar selection procedure as publishing process

for the academic research.

We next study out-of-sample performance of the data mined signals versus published
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anomalies. Anomalies have to undergo a vetting procedure by referees in order to get

published and in principle this should in turn lead to better performance out-of-sample.

We demonstrate that this is indeed the case for a simple strategy that equally invests in

historically significant signals. In particular, the anomalies identified in the US are prof-

itable in all the other regions under study while data mined signals are only profitable to

a smaller extent. The academic publishing process is therefore able to identify important

risk factors that are valid everywhere. We next try to create an optimal combination of

predictive fundamental signals with LASSO regressions of individual stock returns on the

fundamental signals. LASSO leads to a significant improvement in the out-of-sample per-

formance of data mining to the point that it is not significantly different from published

anomalies. The more advanced methods of supervised machine learning and data mining

can therefore lead to comparable predictive capability as academic research.

Our study is the most closely related in methodology to Yan and Zheng (2017) and

Chordia et al. (2017) but there are some stark contrasts. Yan and Zheng (2017) focused

on full universe of stocks including micro-caps but failed to account for multiple hypoth-

esis setting in the choice of individually significant signals. Yan and Zheng (2017) used

the generated signals as a ”fishing license” to introduce hundreds of new signals.7 Chor-

dia et al. (2017) then introduced proper multiple hypothesis tests on their 2.1 million

signals. The enormous number of signals led them to conclude that it is not possible to

select economically meaningful new signals and critical values for t-statistics stop playing

any role in their setting. We show that these conclusions are mainly caused by the use

of methods that are unfit for the purpose. The number of significant signals increases

uncontrollably with the number of signals only if the correlation structure between the

signals is disregarded. Controlling for the correlation structure and focusing on indepen-

dently significant signals leads to sensible critical values for t-statistics and number of

discoveries of the significant signals.

In terms of substance, our paper is the closest to Harvey et al. (2016) who applied the

multiple hypothesis framework to the findings of many journal articles. The analysis in

Harvey et al. (2016) is limited by the fact that it is not based on panel data of returns

and is rather relying on a simulation framework with strong assumptions. Our analysis

overcomes these difficulties by generating an universe of potential strategies. There is now

a large literature on the choice of independently significant signals.8 This paper touches

the topic of selection of independently significant signals but it mainly focuses on the

impact of considering the full universe of tried signals rather than on which factors are

significant per se. The use of formal statistical methods to isolate a predictive fundamental

signal is similar to Bartram and Grinblatt (2018a) but the methodology on how to do it

7Note that Yan and Zheng (2017) also provide international results using Compustat in their online
appendix . The international results here are expected to be very different since we rely on Datastream
which has much better international coverage historically. See Chapter 1 for description of problems
connected to using fundamental database with imperfect coverage.

8See, for example, Lewellen et al. (2015), Green et al. (2017), Feng et al. (2017), and Freyberger et al.
(2017) for the US evidence and Jacobs and Müller (2017a) for international evidence.
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is very different here.

Our paper contributes to the international finance literature through its global fo-

cus. It broadly belongs to a class of studies investigating cross-sectional predictability

of individual signals outside the US. See, for example, Chui et al. (2010), Barber et al.

(2013), McLean et al. (2009), Rouwenhorst (1998), Lam and Wei (2011), Titman et al.

(2013), and Watanabe et al. (2013). Some similarity in scope is also shared with papers

investigating factor structure of international returns. See, for example, Fama and French

(2012), Fama and French (2017), Rouwenhorst (1999), Griffin (2002), Griffin et al. (2010),

Hou et al. (2011b), and Bartram and Grinblatt (2018b).

This paper contributes in a number of ways: firstly, it studies the significance of

anomalies in multiple hypothesis context in different statistical settings. It shows that

the choice of statistical setting can have a large impact on the critical values required for

significance and number of significant signals. It also shows that the choice of adjustment

of standard errors can have a large impact on number of significant anomalies detected.

In particular, it proposes a new simulation approach to study power and size of statistical

tests under an empirically realistic setting. The key takeaway is that t-statistics testing

significance of annually rebalanced strategies are not well approximated by critical val-

ues of standard normal distribution and should be bootstrapped with block length 12,

corresponding to the frequency of updates of the annual fundamental signals. Finally,

the chapter revisits the value of data mining fundamental signals and documents that its

performance can be heavily improved with proper tools.

2.1 Data and Methodology

2.1.1 Data

The source of accounting variables and trade data for US stocks is annual Merged CRSP/

Compustat database. The US sample spans 1963 to 2016 period and contains all com-

mon stocks (CRSP share code 10 or 11). We adjust the returns for delisting following

guidance in Hou et al. (2017).9 We use three risk factor models in this study: CAPM,

Fama and French (2015) five factor model (FF5), and Fama and French (1993) three fac-

tor models (FF3), which are taken from Kenneth French’s website.10 The source of data

for global stocks is Reuters Datastream. The international sample includes 22 developed

countries. We use the classification of Fama and French (2017) to sorting developed coun-

tries into 4 groups: (1) North America (United States and Canada); (2) Europe (Austria,

Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the

Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom);

9Specifically, we use return over the month if the delisting is on the last day of the month. Relevant
delisting return is then added as a return over the next month. Then we use delisting return (DLRET)
from monthly file if it is not missing. If it is missing then we use (1 + retcum) ∗ (1 +DLRETd)− 1, where
retcum is cumulative return in the month of delisting and DLRETd is delisting return from the daily file.
Lastly, we fill the gaps with (1 + retcum) ∗ (1 + DLRETavg) − 1, where DLRETavg is average delisting
return for stocks with the same first digit of delisting code (DLSTCD).

10http : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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(3) Japan; and (4) Asia Pacific (Australia, New Zealand, Hong Kong, and Singapore).

The coverage of fundamental data in Datastream in individual counties is provided

in Table 2.1. The coverage was weak in the beginning of 1980s but has progressively

improved. The international sample starts in 1990 where there was large enough coverage

for the USA, Europe, and Japan. There are only a few large cap stocks in Asia Pacific

region. The stocks in individual countries are from the largest exchange in the given

country with the exception of the US (NYSE, NASDAQ, and Amex) and Japan (Tokyo

and Osaka).

We manually filter stocks following Ince and Porter (2006), Lee (2011), and Griffin

et al. (2010). The procedure comprises manually checking names of the shares in the

database for over 100 expressions describing their share class. Only primary quotes of

ordinary shares of companies are left. We closely follow the description in Griffin et al.

(2010) on what shares are not common. All REITs are also excluded. This selection

procedure is not very important in the current work as stocks with fundamental coverage

in Datastream are not plagued by as many errors and missing categorization compared to

those without. The price of stocks at the time of portfolio formation, at the end of June,

is required to be larger than $1 with the exception of developed countries in Asia Pacific

group where the cut-off is $0.1.11 The sample is restricted to industrial firms (WC06010 <

4) as Datastream constructs items in the financial statements differently for financial firms,

banks, or insurance companies and they are thus not directly comparable. Adjustments

of raw returns to improve their quality are described in the Chapter 1. Chapter 1 provides

detailed coverage of adjustments to improve quality of data in Datastream.

The focus of our study is on universe of stocks that excludes micro-caps with size

smaller than the smallest decile of stocks in the NYSE. Only a universe of stocks that

can be traded in quantitative strategies without extreme transaction costs is therefore

considered. More fundamental reason to focus on larger cap stocks is that Datastream

has limited historical coverage of stocks with capitalization lower than 100 million USD.

This can have a huge impact on the measurement of performance on individual signals as

detailed in Chapter 1.

11We have selected lower required price for Asia Pacific as the minimum tick size is only $0.001 there.
Setting the threshold to $1 would mean that almost 90% of the sample is discarded.
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Table 2.1:
Number of Firms in Datastream with Accounting Information

The table shows number of industrial firms with price over $1 and capitalization larger than bottom decile in NYSE at the end of previous
June that have fundamental coverage in Datastream or Compustat (just for USA) for at least 2 years.

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 · · · 2015

Australia 73 80 78 94 92 106 97 113 128 95 116 118 94 95 109 114 136 148 180 214 156 170 170
Austria 23 27 33 31 26 34 31 31 27 28 33 35 31 26 24 20 22 24 28 33 31 28 27
Belgium 24 31 31 31 25 31 30 25 26 35 47 49 37 30 33 29 39 46 44 52 46 44 44
Denmark 23 36 40 47 41 53 57 52 55 52 56 59 45 34 33 32 35 35 38 46 39 35 37
Finland 18 23 23 20 25 40 38 45 46 51 62 67 53 43 39 38 49 48 50 56 55 55 46
France 159 211 229 232 196 222 224 210 211 253 252 330 269 226 205 187 207 214 219 230 222 197 201
Germany 117 156 178 179 167 189 200 184 185 203 282 424 261 185 167 153 150 165 170 193 190 174 158
Greece 3 8 10 9 11 14 19 16 15 26 92 114 53 56 50 35 37 45 54 60 55 33
Hong Kong 12 16 14 22 24 27 24 28 41 23 28 33 29 32 32 40 50 59 94 75 64 93 143
Ireland 16 19 19 19 15 17 18 16 15 15 16 17 16 15 10 13 14 13 17 12 10 10 13
Italy 101 116 110 98 73 82 62 61 54 76 76 111 113 84 84 75 90 103 121 124 100 84 85
Japan 936 993 1101 1368 1668 1742 1698 1751 1527 1004 1350 1617 1292 1042 1029 1080 1156 1132 924 1123 1281 1064 1045
Luxembourg 4 4 5 5 5 5 6 6 6 3 4 3 2 3 3 5 6 4 3 2
Netherlands 52 66 70 73 61 71 80 80 88 107 109 113 77 64 61 59 59 64 66 63 57 47 47
New Zealand 1 6 6 9 10 12 12 11 18 12 16 18 15 17 19 15 19 17 24 23 20 19 33
Norway 29 40 39 35 33 39 47 49 51 63 59 72 56 38 32 37 50 63 81 101 61 65 55
Portugal 10 21 23 22 16 21 20 18 23 23 22 29 17 18 18 17 17 19 22 26 25 20 16
Singapore 23 27 31 32 44 50 49 57 61 29 57 42 30 26 22 28 38 38 70 55 38 46 44
Spain 43 59 60 62 56 68 64 63 69 82 81 84 78 71 69 63 70 70 77 77 78 64 56
Sweden 42 49 41 46 54 69 70 73 77 97 87 114 88 72 65 61 66 78 81 87 82 79 93
Switzerland 70 90 87 80 73 84 94 85 87 102 105 120 109 98 81 79 88 91 102 120 110 105 104
UK 470 538 513 521 485 535 542 571 542 565 548 571 462 386 352 340 373 385 412 414 330 329 393
USA 1777 1864 1962 1980 2099 2217 2367 2477 2458 2514 2552 2624 2311 2095 2029 1942 1925 1890 1835 1851 1926 1837 1762
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2.1.2 Construction of Data-mined Fundamental Signals

This section describes how we create the data-mined fundamental signals for potential

anomalies. One of the concerns addressed in this paper is multiple hypothesis problem

of selecting signals that are truly significant among many different alternatives. We deal

with this problem by considering a large universe of signals so that the analysis does not

suffer from sample selection bias from only considering published signals. The signals are

constructed following Yan and Zheng (2017) from balance sheet, income, and cash flow

statement items in either Datastream or Compustat. Yan and Zheng (2017) consider over

17,000 and Chordia et al. (2017) even 2.1 million signals but we restrict our main analysis

to only 1,497. The reason for this is to work with a sample of signals that are as close to

the universe of the published anomalies as possible. The chosen signals are very close to

25 anomalies. Examples include value, investment, and profitability anomalies in (Fama

and French, 2015) and R&D anomalies in Eisfeldt and Papanikolaou (2013). We further

consider a reduced set of 772 data-mined signals that are a subset of the 1,497 signals and

an extended set of 48,387 signals in order to study the potential benefits of considering

fewer or more signals.

Each signal is constructed by a transformation of numerator and denominator. We

use 49 variables for numerator and list them in Table E.1 in the Appendix E. We have

chosen all the fundamental variables that have large coverage (at least 1,000 stocks in the

US every year since 1990) and have been used for the construction of signals for published

anomalies in the next section. The denominators are: total asset (AT, WC02999); total

liabilities (LT, WC03351); total common equity (CEQ, WC03501); stockholders’ equity

(SEQ, WC03501 + WC03451); total sale (SALE, WC01001); and market size (MKT-

CAP). We apply the following 6 transformations relating numerator (X) and denominator

(Y ):

1. Xt/Yt

2. M (Xt/Yt)

3. % M (Xt/Yt)

4. M Xt/Yt−1

5. (Xt + 0.8Xt−1 + 0.6Xt−2 + 0.4Xt−3 + 0.2Xt−4)/Yt

6. M Xt/Xt−1

This together makes 1,519 signals out of which we exclude 20 signals where denominator is

the same as numerator and further 2 that are completely identical to some the anomalies.

The fifth transformation is motivated by Li (2011) and Eisfeldt and Papanikolaou (2013)

who have discovered an anomaly based on accumulation of past R&D expenses. The

motive behind the transformation is that it will capture a trailing average of the given

variable.
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The reduced set of 772 signals is constructed in the same way as the 1,497 signals

but the set of denominators is constrained to total sale, market size, and stockholders’

equity. The extended set of 48,387 signals also shares the same construction as the 1,497

signals but the set of numerators is extended by combining individual items on financial

statements in a structured way. The numerator includes the following combinations of

items on the financial statements:

1. Assets; any combination of CHE, RECT, INVT, ACO, IVAO, IVAEQ, INTAN, and

PPENT.

2. Liabilities; any combination of AP, DLC, LCO, DLTT, and LO.

3. Net current assets; any combination of CHE, RECT, INVT, ACO minus any com-

bination of AP, DLC, and LCO.

4. Net long term assets; any combination of IVAO, IVAEQ, INTAN, PPENT minus

any combination of DLTT and LO.

5. Cash flow statement; any combination of OANCF, CAPX, IVNCF, PRSTKC,

SSTK, DV, DLTIS, DLTR, DLCCH, and FINCF.

6. Income statement; SALE minus any combination of COGS, XRD, DP, XINT, TXT,

XSGA minus XRD, and Accruals.

All of the items above are referenced in Table G.1 except for Accruals which is defined

as a change in RECT plus a change in INVT plus a change in XPP minus a change in

AP. The Accruals correspond to cash outflows not reflected in the income statement and

are inspired by cash based operating profitability of Ball et al. (2016). The extended set

of numerators results in 49,079 signals when combined with the 1,497 signals but only

48,387 of the 49,079 signals are unique.

2.1.3 Published Fundamental Anomalies

Further 93 anomalies published in academic journals are studied. The full list is pro-

vided in Appendix G. All of the anomalies have been described in McLean and Pontiff

(2016), Hou et al. (2017), or Harvey et al. (2016). The sample includes all the funda-

mental anomalies that can be replicated outside the US and from which portfolios can be

constructed via cross-sectional sorts of stocks.12 The sole focus of this study is thus on

cross-sectional characteristics of the stocks. The restriction of sample of stocks in con-

struction of portfolios is the same as for data-mined signals.13 That is, all financial firms

12This includes anomalies: based on quarterly fundamental data since there is only short coverage
internationally; connected to hand collected data in the US such as IPOs, SPOs, and mergers; requiring
segment information and NBER data; and that are institutionally specific such as share turnover or
effective tax rate. Some fundamental anomalies could not be implemented in Datastream as the required
items are missing there.

13Some anomalies also require the classification of industries such as Hou and Robinson (2006). The
choice in the original papers is mostly with respect to SIC industry classification. We use third level
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are excluded and the same restrictions on price and size at the end of previous June are

applied.14

Anomalies that are based on short-term investments, and therefore have to be rebal-

anced more frequently than annually, are excluded from the analysis. All anomalies that

are not constructed from fundamental data are also omitted. Most of the analysis is based

on annually rebalanced portfolios and there are only few non-fundamental anomalies that

are relevant. The most obvious ones are size, price, firm age, liquidity, and long-term

reversals. Only long-term reversals are robustly significant on the universe of stocks ex-

cluding micro-caps but they are likely subsumed by the other signals. Omitted variable

bias is therefore not a cause of worry.

2.1.4 Construction of Portfolios

Finally, we describe how we construct portfolios from the fundamental signals. The

portfolios sorted on fundamental signals are rebalanced annually at the end of June every

year, based on signals from business year ending in the previous calendar year. They are

either value- or equal-weighted and are constructed by buying stocks in the top decile

of the signals and shorting stocks in the bottom decile of the signals. Portfolios based

on published anomalies are always constructed to have positive returns in line with the

findings in the original papers.15 The portfolios are zero cost and returns correspond

to monetary payoff each month. They are thus different from what an investor would

get if he tried to invest in the signals as he would have to hold some collateral. Reason

for this choice is that the value of collateral would often drop below zero within the

12 months before annual rebalancing period. The only solution would be to introduce

leverage constraints and more frequent rebalancing, which would unnecessarily complicate

the analysis.

2.2 Multiple Hypothesis Tests - Bootstrap Methods

When testing the statistical significance of new anomalies it is important to take into

account the full universe of potential anomalies and try to include those that have not

been published. The justification is simple: the value of t-statistic required for significance

will be higher if 20 strategies are tested compared to testing only one. The difference is

due to the fact that there is, on average, one false positive discovery among the 20 tested

strategies. The false discovery appears to be significant in its individual test, while in fact

it is not. It is important to control for these false discoveries in order to maintain the

same rate of type I errors in the statistical tests.

Datastream classification which sorts industries into 19 groups instead. This has one main reason. The
industry classification in Datastream is available only from the static file which means that only the latest
value is available. Variation over time for individual firms between closely related SIC codes would thus
cause problems.

14Constructing the portfolios on large cap universe but with the same restrictions as in the original
studies has no effect on the main results of this study.

15That is, upper deciles of the (signed) signals are always used to produce long legs of the portfolios.
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Every test in a classical statistical framework is framed in terms of type I (size) and

type II (power) errors.

Null hypothesis

Decision True False

Reject Type I error OK

Not Reject OK Type II error

The goal is to select a test that will have the required size, typically 5%, and the largest

possible power. There is always some trade-off between power and size unless the sample

size in increasing. Tests that have smaller size tend to under-reject truly significant, and

thus profitable, signals. In the present study this means that fewer fundamental signals

are deemed significant. It is therefore important to apply appropriate methods with the

largest possible power.

Harvey et al. (2016) studied the problem of identifying significant anomalies in a

multiple hypothesis setting. They collected p-values reported in original studies and

generated a hypothetical sample of p-values on all tried signals, thereby recreated the

original sample of p-values before most of the tried strategies were discarded. However,

the sample of p-values depends on strong underlying assumptions about structure of

correlation among the anomalies. We take a more structured approach in this study by

generating a universe of possible data-mined fundamental signals instead. This allows us

to study the relation between individual anomalies in much greater detail. Specifically, it

allows us to study the role of cross-sectional dependence between the signals. There are

93 published and 772, 1,497, or 48,387 data-mined signals in our sample, or about a 1:8,

1:16 ratio, or 1:520 ratio. This should provide very reasonable setting for the multiple

hypothesis tests. Harvey et al. (2016) estimated that 71.1% of the tried signals were

not published which translates to about 322 overall signals in our case with 93 published

anomalies. This is fewer than 865 but we will show that the main results do not depend

on the number of data-mined signals and the larger number is more reasonable due to the

number of active researchers in the area over the years.

Harvey et al. (2016) reported that: ”We find that the difference in rejections rates

produced by single and multiple hypothesis testing is such that most rejections of the null

of no out-performance under single hypothesis testing are likely false.” They then propose

that the proper cut-off for t-statistics should be three. We will show in the rest of this

section that this conclusion greatly depends on the precise specification of the tests. 63%

of anomalies is significant under most favourable setting and the cut-off t-statistic is close

to two, whereas, none of the anomalies is significant in the most conservative setting.

There are many simple correction methods for individual p-values to make them valid

in multiple testing framework but these usually lead to poor power.16 Harvey et al. (2016)

had to rely on these methods since they did not have a ready access to the original data.

We present three of the most frequently used methods. The simplest method is Bonferroni

16Good overview of the methods is provided in Harvey et al. (2016) and Chordia et al. (2017).
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where p-value on individual tests are multiplied by a number of tests (M). The individual

p-values then have to be M times smaller than the required size in single hypothesis tests.

Holm (1979) provided a refinement by introducing a stepwise method where all the p-

values are ordered from smallest to largest and the penalty is decreasing with their size.

Specifically, the method rejects any hypothesis where pi(M + 1 − i) < α for 1 ≤ i ≤ M

and size α. This method is a refinement of Bonferroni. It tends to reject additional true

positive hypothesis and is less strict for larger p-values. Benjamini and Yekutieli (2001)

provide further refinement. The test proceeds again by first sorting p-values from the

smallest to the largest so that p1 ≤ p2 . . . ≤ pi . . . ≤ pM . False discovery rate (FDR)

adjusted p-values are determined with backward induction where pFDRM = pM
∑

1≤j≤M
1
j

and

pFDRi = min

{
pFDRi+1 , pi

M

i

∑
1≤j≤M

1

j

}
(2.1)

The individual hypothesis are rejected with FDR of 5% if their adjusted p-values pFDRi

are smaller than 5%.

The methods presented so far have focused on standard testing framework that con-

trols for probability of at least one false positive discovery (type I error), but in practice

this rapidly becomes too strict. The approach where we try to correct for probability

of even one false positive discovery is denoted family-wise error rate (FWER). This as-

sumption becomes too restrictive when there are many signals, as is the case here, and

it is advantageous to allow for some false discoveries if it leads to acceptance of many

positive discoveries. In our case of trading strategies, this means that several unprofitable

strategies are accepted in order to select many more truly profitable strategies. The in-

crease in number of profitable strategies should lead to a more profitable meta-strategy.

This approach to the testing is defined by the maximum FDR, which is the proportion of

false positive discoveries among all signals that were deemed significant. The rest of this

section then discusses FDR methods that require bootstrap but should lead to greater

power in the tests.

2.2.1 Cross-sectional Bootstrap

There are two types of bootstrap that we use in this study. A simpler block bootstrap re-

samples fixed blocks of returns on individual portfolios and its main purpose is estimation

of p-values. A more complex block cross-sectional bootstrap then resamples blocks of the

whole cross-section of returns on portfolios created from the fundamental signals. There

are several ways how to introduce time dependence into the block bootstraps such as the

bootstrap of Politis and Romano (1994) where the length of the block is assumed to follow

exponential distribution with expected value of l. We will rely on a simpler version of

circular bootstrap which was proposed in Politis and Romano (1992) and which resamples

blocks of fixed length l. The benefit of this later bootstrap is that it produces more stable

results due to lower uncertainty when we study the impact of the block length.
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We use ”naive” block bootstrap to estimate p-values on individual fundamental signals.

The naive bootstrap consists of applying the same adjustment to the standard errors

on both observed and bootstrapped returns. In particular, we apply Newey and West

(1987) HAC robust estimator with a number of lags equal to the length of the blocks.17

An alternative approach is to estimate t-statistics on original series with HAC robust

estimator and to opt for a ”natural” estimator of standard errors on the bootstrapped

returns.18 The ”natural” estimator leads to almost identical findings and the choice of

naive bootstrap thus does not influence our conclusions.

The block cross-section bootstrap that controls for time-series dependence in a finan-

cial setting was implemented in Fama and French (2010) and Kosowski et al. (2006). The

main idea behind the bootstrap is to draw the complete cross-section of returns on all

portfolios at the same time so that the correlation structure between them is preserved.

The blocks of returns then allow for arbitrary structure for any time dependence. This

is important for multiple hypothesis testing if returns on the portfolios tend to move to-

gether since alphas and their t-statistics then tend to be correlated. Resampling in blocks

is especially important in an international setting where returns on a signal in one country

may be related to returns on the same signal in other countries at leads or lags.

The null hypothesis implemented in the bootstrap corresponds to the ”least favorable”

conditions, that is, all the true alphas are equal to zero. This zero hypothesis is least

favorable because it puts the largest hurdles for any potentially significant signal. Another

approach introduced below will relax the assumption.

The bootstrap can be used for any statistic such as p-value, t-statistic, or alpha. Yan

and Zheng (2017) give their preference to evidence in t-statistics, since they are pivotal

statistics and should be less prone to outliers. The use of t-statistics instead of alphas is

also recommended in Romano et al. (2008) and we make the same choice here to make

our analysis more robust.

The bootstrap proceeds in the following steps:

1. Create portfolios based on fundamental signals.

2. Estimate alpha with respect to factor models and any statistic of interest.

3. Remove alpha from the portfolios, i.e. implement the null hypothesis of no alphas.

Bootstrap proceeds with these adjusted returns.

4. Draw a sample of time periods of the same length as the original portfolios. Suppose

that the index for the original sample period is 1 to T. The time-periods are drawn

with replacement as a sequence by drawing start period t from 1 to T with equal

probability and length s. The first piece of sequence is then adjusted to t, t+1,

17See Goncalves and Vogelsang (2011) for asymptotic theory and detail on the method. The method
was originally covered in Götze et al. (1996).

18See Götze et al. (1996) for asymptotic theory and Romano and Wolf (2006) for automatic selection
of block length.
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. . . , t+s-1 mod T to stay in the original sample period of 1 to T. The rest of the

sequence is drawn until it includes T elements.

5. Create a new sample of returns by drawing the whole cross-section of returns with

the sequence of time periods as specified in the previous step.

6. Estimate alpha with respect to factor models the statistic of interest from resampled

returns.

7. Repeat steps 4 to 6 10,000 times.

8. Compute required statistics from values from step 2 and 6.

2.2.2 Storey (2002)

The simple cross-sectional bootstrap is suitable for the estimation of the probability of

generating the returns on all strategies by pure chance. However, it does not offer any

guidance on number of significant signals. The following method captures the number.

The method was developed by Storey (2002) and introduced into finance in Barras et al.

(2010) and Bajgrowicz and Scaillet (2012).

The method is based on a simple idea that we can infer proportion of true null hypoth-

esis from distribution of p-values on single hypothesis tests of significance of individual

strategies. It would be expected that the p-values would be uniformly distributed on [0, 1]

interval if there are no truly significant strategies. This corresponds to the case where

the strategies contain only noise. The p-values would cluster around 0 if there is some

proportion of profitable strategies.

Figure 2.1 plots the distribution of p-values on value-weighted portfolios of the data-

mined and published strategies. Their returns are adjusted with the CAPM model. It

is indeed the case that the p-values cluster around zero. The method is based on a

simple idea that the number of deep-in-the-null strategies should well approximate the

true proportion of strategies with zero expected return. The solid horizontal red line

shows expected density of strategies that are truly insignificant. The number of strategies

can be estimated with ∑
i{pi ≥ λ}
1− λ

= π0. (2.2)

Bajgrowicz and Scaillet (2012) suggest setting λ = .6 and we follow the suggestion.

Values between .4 and .7 do not have a large impact on the findings. The dashed horizontal

red line then shows what the density of p-values has to be in order for the signals to be

significant with FDR of 10% at a given p-value. Number of significant strategies can then

be estimated with

max
i

{π0pi
i
≤ γ

}
(2.3)
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Figure 2.1: Distribution of p-values. The figure shows density of bootstrapped p-
values on 1,590 fundamental signals, 1,497 data-mined and 93 from published studies.
The sample is restricted to industrial stocks with price over $1 and capitalization larger
than bottom decile in NYSE at the end of previous June. It spans July 1963 to December
2016. The value-weighted long-short portfolios are constructed by buying stocks in the
top decile of the signals and shorting stocks in the bottom decile of the signals. The
alphas are estimated with CAPM. Standard errors in t-statistics are HAC adjusted, as in
Newey and West (1987) with 3 lags.

where γ stands for the user selected FDR. The vertical solid blue line shows critical

value of p∗i . It is apparent that the method also accepts strategies with marginal FDR for

a given p-value of less than γ. This is because the test accepts exactly γ of false discoveries

and thus continues to accept hypotheses that are under the line to compensate for a larger

number of significant signals with very small p-values.19

The method is very simple but has its limitation. Barras et al. (2010) originally

applied it to returns from mutual funds which are not heavily correlated with each other.

They thus relied on independence between the funds. This claim is harder to maintain

for portfolios created from the same dataset. Bajgrowicz and Scaillet (2012) relaxed this

strong assumption and showed that it is also consistent under weak dependence and block

dependence. Weak dependence occurs when the signals are asymptotically independent.

Block dependence means that returns on portfolios can be correlated in blocks of signals

but number of these blocks tends to infinity as number of signals increases.

Bootstrap is not required for the method, strictly speaking, but Bajgrowicz and Scail-

let (2012) use it for estimation of the p-values. It is related to the cross-sectional method

described earlier in that they should both lead to similar inference for π0 = M . The rela-

tionship is easy to show when p-values are bootstrapped instead of the usual t-statistics in

the cross-sectional bootstrap. Implementation of the null hypothesis of no outperforming

strategies should translate into a distribution of bootstrapped p-values that are roughly

19Note that this could lead to sub-optimal selection of strategies for out-of-sample tests but can be
simply remedied by setting stricter desired FDR.
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uniform on the [0, 1] interval. We are then comparing the realized distribution of p-values

with a uniform distribution. Setting π0 < M leads to conditions that are less strict than

the least favorable conditions, which leads to a larger power to reject the outperforming

strategies.

The two methods thus differ in their null hypotheses. Barras et al. (2010) assume that

there is some fraction of strategies with alpha equal to zero but there is also a fraction

that genuinely outperforms. The method then tries to separate these two sets to keep

the error rate at the specified level. The cross-sectional bootstrap, on the other hand,

assumes that there are no outperforming strategies.

2.2.3 Empirical Results

Cross-sectional Bootstrap

Table 2.2 provides bootstrap evidence on likelihood of the observed t-statistics being

generated by pure chance from signals with zero true alpha. The likelihood is estimated

with cross-sectional bootstrap with 93 published anomalies included along with the 1,497

data-mined signals. The columns with p-values provide the proportion of simulation runs

where a given quantile of absolute value of t-statistics on alphas was higher than the

quantile observed in the original sample. The reasoning behind quantiles of absolute

values is that the signal would be deemed significant if it was either significantly positive

or negative and skewness in samples would distort this evidence for positive or negative

values.20 We focus on the US in Panel A, Europe in Panel B, Japan in Panel C, and on

Asia Pacific in Panel D.

Standard errors on t-statistics in the table are HAC robust and adjusted with Newey

and West (1987) procedure with 3 lags. Large number of lags leads to large p-values and

this effect can be significant. All the p-values when adjusting for FF5 model are generally

larger than 5% for 24 lags and would thus lead to no anomalies under FDR = 5%. We

have selected 3 lags as the bootstrap of t-statistics is then very similar to bootstrap of

alphas. The increase in p-values hints on loss of power for more lags.

The table documents that neither value-weighted nor equal-weighted returns can be

plausibly randomly generated in the US. p-values on equally-weighted portfolios are gen-

erally smaller and thus lead to possibility of additional significant signals. Even value-

weighted returns do not, however, have large p-values. None of the factor model is able

to plausibly explain returns on the signals.

The European sample leads to very similar conclusions as the US sample. Japanese

sample is very different as there is no sign of any violation of market efficiency and all the

fundamental signals could be generated by pure chance with p-values around 50%. This

will later translate into no statistically significant signals there in multiple hypothesis tests

since it is not possible to statistically distinguish between true or false positive signals.

20It is indeed the case that alphas tend to be more clustered on either positive or negative side in the
US and Japan. This is possibly due to a latent risk factor that has not been properly accounted for.
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Table 2.2:
Simulated p-values of Quantiles of t-statistics

The table shows quantiles of t-statistics on alphas on long-short portfolios created from
the sorts on fundamental signals in the US, Japan, Europe, and Asia Pacific with their
bootstrapped p-values from 10,000 runs. We employ cross-sectional time dependent boot-
strap described in Section 2.2.1 to determine the p-values. The bootstrap is conducted on
1,590 fundamental signals, 1,497 data-mined and 93 from published studies. The 1,497
data-mined fundamental signals are created by various transformations of 49 account-
ing variables, as described in the Section 2.1.2. The sample is restricted to industrial
stocks with price over $1 and capitalization larger than bottom decile in NYSE at the
end of previous June. It spans July 1963 to December 2016 for the US and July 1990
to December 2016 elsewhere. The value-weighted or equal-weighted long-short portfo-
lios are constructed by buying stocks in the top decile of the signals and shorting stocks
in the bottom decile of the signals. The alphas are estimated with regional versions of
CAPM, Fama-French three, and five factor models. Standard errors in t-statistics are
HAC adjusted, as in Newey and West (1987) with 3 lags.

Equal-weighted portfolios Value-weighted portfolios

CAPM FF3 FF5 CAPM FF3 FF5

t-stat p-value t-stat p-value t-stat p-value t-stat p-value t-stat p-value t-stat p-value

Panel A: Absolute value of t-statistic in the US

100 6.800 0.000 8.574 0.000 7.848 0.000 5.269 0.001 6.473 0.000 5.385 0.003
99.9 6.392 0.000 7.082 0.000 6.276 0.000 4.890 0.000 4.486 0.003 4.761 0.003
99 5.602 0.000 4.948 0.000 4.433 0.006 4.173 0.000 3.793 0.001 3.892 0.001
98 5.356 0.000 4.536 0.000 4.163 0.004 3.861 0.000 3.530 0.001 3.562 0.001
97 5.066 0.000 4.271 0.000 4.008 0.003 3.637 0.000 3.336 0.001 3.395 0.001
96 4.876 0.000 4.155 0.000 3.833 0.003 3.425 0.000 3.132 0.001 3.245 0.001
95 4.746 0.000 3.998 0.000 3.715 0.003 3.262 0.000 3.013 0.001 3.177 0.000
90 3.862 0.000 3.375 0.000 3.223 0.002 2.664 0.000 2.613 0.000 2.762 0.000

Panel B: Absolute value of t-statistic in Europe

100 6.118 0.000 6.543 0.000 5.517 0.004 4.204 0.062 4.994 0.015 4.509 0.066
99.9 5.345 0.000 5.919 0.000 4.690 0.012 4.095 0.021 4.575 0.013 4.024 0.076
99 4.690 0.000 5.000 0.000 3.892 0.007 3.388 0.015 3.367 0.039 3.550 0.021
98 4.333 0.000 4.628 0.000 3.468 0.011 3.003 0.025 3.067 0.038 3.183 0.025
97 4.159 0.000 4.388 0.000 3.232 0.014 2.765 0.032 2.899 0.034 3.005 0.022
96 3.969 0.000 4.114 0.000 3.126 0.011 2.655 0.030 2.695 0.046 2.742 0.037
95 3.807 0.000 3.958 0.000 2.959 0.013 2.567 0.027 2.565 0.050 2.677 0.028
90 3.203 0.000 3.228 0.001 2.505 0.016 2.133 0.041 2.204 0.041 2.116 0.071

Panel C: Absolute value of t-statistic in Japan

100 4.411 0.068 4.063 0.205 3.697 0.377 3.093 0.636 3.409 0.497 3.252 0.631
99.9 3.432 0.264 3.278 0.421 3.148 0.530 2.752 0.707 3.090 0.497 2.901 0.692
99 2.575 0.422 2.843 0.272 2.789 0.307 2.099 0.822 2.537 0.436 2.505 0.496
98 2.400 0.372 2.683 0.214 2.600 0.255 1.880 0.837 2.267 0.473 2.300 0.468
97 2.253 0.368 2.581 0.179 2.467 0.235 1.751 0.838 2.141 0.459 2.182 0.438
96 2.139 0.368 2.462 0.172 2.387 0.204 1.617 0.872 2.046 0.443 2.048 0.460
95 2.028 0.390 2.382 0.159 2.293 0.198 1.538 0.872 1.968 0.435 1.979 0.439
90 1.716 0.395 2.023 0.158 1.923 0.213 1.277 0.878 1.700 0.409 1.690 0.430

Panel D: Absolute value of t-statistic in Asia Pacific

100 5.832 0.001 5.630 0.003 5.459 0.005 4.365 0.054 4.377 0.079 5.054 0.053
99.9 5.522 0.001 5.152 0.002 4.364 0.025 3.857 0.076 4.234 0.042 3.952 0.154
99 4.465 0.000 4.118 0.000 3.650 0.005 3.374 0.018 3.378 0.043 3.080 0.167
98 3.960 0.000 3.815 0.000 3.390 0.003 3.025 0.022 3.174 0.028 2.687 0.207
97 3.729 0.000 3.683 0.000 3.193 0.003 2.853 0.019 2.964 0.028 2.462 0.233
96 3.583 0.000 3.473 0.000 2.994 0.004 2.699 0.021 2.798 0.030 2.293 0.261
95 3.432 0.000 3.371 0.000 2.886 0.003 2.485 0.039 2.720 0.026 2.229 0.237
90 2.981 0.000 2.922 0.000 2.381 0.006 2.086 0.047 2.364 0.018 1.869 0.248

Proportion of Significant Signals

The cross-sectional bootstrap has shown that the fundamental signals can be plausibly

explained by pure chance only in Japan. We will now study number of significant signals
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in the multiple hypothesis tests. Table 2.3 presents number of significant data-mined

signal and anomalies with corresponding critical values. The significance of signals is

determined from the multiple hypothesis tests applied to returns on portfolios sorted on

the individual signals. The tests are performed on the 865 (Reduced), 1,590 (Base), and

48,480 (Extended) portfolios of data-mined signals and anomalies. The proportion of

total significant signals (N) and proportion of significant anomalies (NA) are provided.

The proportion of significant signals in the multiple hypothesis tests is determined with

the Storey (2002) test. False discovery rate is set at 5% for all the specifications. Panel

A is based on all the 93 anomalies while Panel B is based the reduced set of 25 anomalies

that are the closest to the data-mined signals.

Number of significant signals depends on settings of the tests. There tend to be many

more significant signals for equal-weighted returns on portfolios. Additional risk factors,

that we adjust the performance for, also tend to depress the number of significant signals.

The proportion of significant signals is the smallest with FF5 model. This support the

evidence in Fama and French (2017) that their five factor model is useful in explanation of

anomalies. The table also documents that a larger proportion of anomalies is significant

than a proportion of data-mined signals. There are, for example, about 40% significant

data-minded signals with CAPM and equal-weighted returns in the US but about 60%

anomalies. This is as expected since published anomalies had to overcome significance

level hurdles when they were published and are thus not generated by pure chance.

There is a large difference in the number of significant signals across the regions. There

are generally no significant signals in Japan, as would be expected from the previous

results with the cross-sectional bootstrap.21 The number of significant signals in Europe

and Asia Pacific is also lower with respect to the US. This is partly due to the shorter

sample there. The drop is much more apparent for value-weighted portfolios that are

significant only for few signals outside the US.

The results are very similar between Panel A and Panel B which confirms that the data-

mined signals are a good approximation of the universe of potential fundamental signals

for all the anomalies. The 25 anomalies in Panel B are all very close in construction to

the 1,497 data-mined signals in the base case. The proximity guarantees that the multiple

hypothesis tests are factually completely correct and the anomalies could be picked from

the universe of data-mined signals using a mechanical rule. Some of the 93 anomalies in

Panel A do not have a close construction to the data-mined signals. The approximation of

universe of tried strategies therefore has to rely on the close correlation of portfolio returns

on anomalies and data-mined signals rather than the fundamental signals themselves. The

21Note that rebalancing of portfolios at the end of June is a very unfavorable assumption in Japan
where 73% of the firms have their accounting year ending in March. Items on financial statements then
take 15 months to appear in the fundamental signals unlike the usual 6 months in the US. Rebalancing
portfolios at the end of October leads to the same conclusion in that there are no significant signals in the
multiple hypothesis tests. Distribution of t-statistics on portfolio returns created based on the individual
signals, however, has heavier tails suggesting that October rebalancing ostensibly leads to more profitable
signals.
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Table 2.3:
Multiple Hypothesis Tests

The table shows proportion of significant fundamental signals (N) in percentage points
and corresponding critical p-values (p-val) under Storey (2002) multiple hypothesis frame-
work controlling for 5% FDR. We also show proportion of significant anomalies among the
signals (NA). The p-values and distribution of t-statistics is approximated with circular
block bootstrap with 1,000 runs and block size equal to lags in HAC adjustment of errors.
The bootstrap is conducted on 865 (Reduced), 1,590 (Base), and 48,480 (Extended) fun-
damental signals in Panel A, 93 signals from published studies and the rest data-mined.
Panel B further restricts the number of published anomalies to 25 that are closely tied
to the data-mined signals. The data-mined fundamental signals are created by various
transformations of 49 accounting variables, as described in the Section 2.1.2. The sample
is restricted to industrial stocks with price over $1 and capitalization larger than bottom
decile in NYSE at the end of previous June. It spans July 1963 to December 2016 for
the US and July 1990 to December 2016 elsewhere. We run the multiple hypothesis tests
independently on equal-weighted and value-weighted portfolios. The value-weighted or
equal-weighted long-short portfolios are constructed by buying stocks in the top decile
of the signals and shorting stocks in the bottom decile of the signals. The alphas are
estimated with regional versions of CAPM, Fama-French three, and five factor models.
Standard errors in t-statistics are HAC adjusted, as in Newey and West (1987) with 3
lags.

Equal-weighted Portfolios Value-weighted Portfolios

CAPM FF3 FF5 CAPM FF3 FF5

N NA p-val N NA p-val N NA p-val N NA p-val N NA p-val N NA p-val

Panel A: 93 Anomalies

USA 1963-2016
Reduced 47 63 6.6 32 46 3.5 22 38 1.9 11 26 0.9 12 29 1.1 12 26 1.0
Base 37 59 4.2 27 48 2.8 18 33 1.6 8.1 23 0.6 6.9 22 0.6 8.0 24 0.7
Extended 39 62 4.6 28 46 2.6 26 44 2.7 6.2 24 0.5 7.1 20 0.6 4.7 17 0.4
Japan 1990-2016
Reduced 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Base 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Extended 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Europe 1990-2016
Reduced 26 43 2.8 23 34 2.2 2.7 5.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Base 19 37 1.8 18 30 1.6 2.6 5.4 0.2 0.0 0.0 0.0 0.8 3.2 0.1 0.0 0.0 0.0
Extended 16 34 1.4 14 26 1.1 1.0 4.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Asia Pacific 1990-2016
Reduced 21 30 1.9 21 30 2.0 4.2 4.3 0.3 1.2 3.2 0.1 2.3 2.2 0.2 0.0 0.0 0.0
Base 20 31 1.7 20 32 2.0 2.5 4.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Extended 5.0 16 0.4 1.3 4.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Panel B: 25 Anomalies

USA 1963-2016
Reduced 43 64 5.7 28 40 2.8 18 32 1.4 9.2 24 0.7 7.3 16 0.7 9.2 24 0.8
Base 36 64 3.9 25 36 2.4 17 28 1.4 7.2 24 0.5 3.1 0.0 0.3 5.7 16 0.5
Extended 39 68 4.6 28 40 2.6 26 40 2.7 6.2 24 0.5 7.1 4.0 0.6 4.7 16 0.4
Japan 1990-2016
Reduced 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Base 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Extended 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Europe 1990-2016
Reduced 23 52 2.2 21 44 1.8 1.4 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Base 18 48 1.6 17 32 1.5 1.5 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Extended 16 44 1.4 14 28 1.1 0.9 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Asia Pacific 1990-2016
Reduced 20 36 1.5 18 36 1.7 3.3 0.0 0.2 0.0 0.0 0.0 2.3 0.0 0.2 0.0 0.0 0.0
Base 19 36 1.6 19 40 1.8 2.3 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Extended 5.0 16 0.4 1.3 4.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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proximity of results between Panel A and Panel B means that the conclusions from the

multiple hypothesis tests are not heavily influenced by the assumption. The results are

also similar across the three sets of data-mined signals. The proportion of significant

signals tends to be the smallest for the extended set of data-mined signals which is as

expected as there should be a larger proportion of signals with pure noise among them

if the set of anomalies is finite. The assumption on number of tried unpublished signals

therefore does not overly influence the analysis.

Harvey et al. (2016) showed that t-statistic of two is far too low for single hypothesis

tests of anomalies. Their advice is that a threshold of three is much more realistic given

the number of tried signals and, therefore, should be required instead of two. We show

that this threshold depends on settings of the tests of significance. The critical value

generally increases with number of factors that we adjust returns on anomalies with. The

critical p-value for equal-weighted portfolio in the US is 4.2% for CAPM but 1.6% for FF5

for the base number of data-mined signals. The p-values correspond to t-statistics of 2.03

and 2.41, respectively, under an assumption of normal distribution.This is higher than

1.96 normally required in individual tests but it is much lower than three proposed in

Harvey et al. (2016). The critical value also depends on weighting of the returns. Value-

weighted returns tend to require much higher threshold since many more signals can be

explained by pure chance. To conclude, the critical value of t-statistic for value-weighted

returns tends to be close to three as suggested in Harvey et al. (2016) but this threshold

is much lower for equal-weighted returns since there are many more outperforming signals

present.

The table is based on standard errors that are HAC robust per Newey and West

(1987) with 3 lags. The choice of adjustment of covariance matrix for heteroskedasticity

and autocorrelation can have a large impact on the number of significant signals as it

influence both power and size of the tests. The impact of increasing the number of lags

is discussed in Section 2.3.

Proportion of Significant Signals after Omitting Closely Correlated Signals

The analysis has so far focused on signals without any regard for correlation structure

between them. The anomalies are expected not to be heavily correlated as that is a

prerequisite for their publishing. The same does not, however, apply to the data-mined

signals. It is possible that there are many data-mined signals related to just one true

anomaly. Accruals or leverage can, for example, have many forms. We will now consider

only strategies that are not heavily correlated and we will study its impact on the multiple

hypothesis tests.

Table 2.4 is generated in the same way as the Table 2.3 but the set of signals is reduced

by discarding signals that are heavily correlated to any other signal. The strategies are

discarded iteratively so that the correlation between two equal-weighted portfolios in the

US is at most 80%. The selection process starts with the 93 anomalies and discards any

other closely correlated signal so that as many anomalies as possible are preserved. Only

87



459 (Reduced), 578 (Base), or 5,455 (Extended) signals survive which implies that many

of the data-mined signals were indeed closely connected.

The results in Table 2.4 are very similar to Table 2.3 with one prominent exception.

The number of data-mined signals now has powerful impact on proportion of the signifi-

cant signals. Setting with the extended number of signals leads to the smallest proportion

of the significant signals and the smallest critical threshold for p-values. This can be in-

terpreted as an increase in proportion of signals that are just noise when signals closely

related to the original 1497 signals are discarded. The correlation structure among the

signals is therefore of first order importance and the portfolio setting offers only lim-

ited insights when it comes to independently significant signals controlling for the other

signals.22

2.3 The Role of Estimator of Standard Errors of Port-

folio Returns

Previous section has noted that the adjustment of standard errors on returns on anomalies

can have a vast impact on a number of significant signals. We will now demonstrate why

it is the case. We will first discuss problems with asymptotic distribution of t-statistics

with HAC adjusted standard errors. The common methods predict that the distribution

is normal. We will, however, show that it is not normally distributed in practice. The

asymptotic distribution is derived under an assumption that the number of lags in the

HAC adjustment divided by the length of the time series approaches zero, which is never

the case in practice. We will then focus on the selection of appropriate number of lags in

the adjustment.

There is no prior published evidence or consensus in the literature on the choice of

the appropriate estimator of standard errors, to the best of our knowledge. Different

authors usually choose the adjustment arbitrarily without any justification. The issue

is so neglected that most of the authors do not even mention any adjustment. See, for

example, Fama and French (2015), Fama and French (2016), Fama and French (2017),

Sloan (1996), and Ang et al. (2006b). Other studies report HAC robust standard errors

but the choice of number of lags in the HAC adjustment is again arbitrary. Eisfeldt and

Papanikolaou (2013) and Cooper et al. (2008), for example, adjust for one lag, Ang et al.

(2009) adjust for four lags, while Green et al. (2017) choose twelve lags.

2.3.1 Fixed-b Asymptotic Distribution for HAC Robust Stan-

dard Errors

Commonly used HAC robust standard errors estimators, such as Newey and West (1987),

operate based on the asymptotic theory that predicts that their resulting t-statistics

are normal. It is then possible to derive appropriate p-values from quantiles of normal

22Note that there are now only 12 anomalies that are closely connected to the data-mined signals in
Panel B which makes the results there anecdotal and hard to interpret.
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Table 2.4:
Multiple Hypothesis Tests Omitting Closely Correlated Signals

The table shows proportion of significant fundamental signals (N) in percentage points
and corresponding critical p-values (p-val) under Storey (2002) multiple hypothesis frame-
work controlling for 5% FDR. The table is constructed identically to Table 2.3 except that
the set of signals is restricted so that the correlation between two equal-weighted portfolios
in the US is at most 80%. The bootstrap is conducted on 459 (Reduced), 578 (Base), and
5,455 (Extended) fundamental signals in Panel A, 69 signals from published anomalies
and the rest data-mined. Panel B further restricts the number of published signals to 12
that are closely tied to the data-mined signals.

Equal-weighted Portfolios Value-weighted Portfolios

CAPM FF3 FF5 CAPM FF3 FF5

N NA p-val N NA p-val N NA p-val N NA p-val N NA p-val N NA p-val

Panel A: 69 Anomalies

USA 1963-2016
Reduced 37 59 4.4 39 57 4.4 26 46 2.6 14 28 1.1 9.6 23 0.8 4.8 13 0.4
Base 34 57 3.6 31 52 3.0 24 45 2.4 10 28 0.8 6.9 19 0.6 4.2 14 0.4
Extended 22 51 2.0 22 48 2.1 15 35 1.3 2.9 20 0.2 2.6 13 0.2 1.4 10 0.1
Japan 1990-2016
Reduced 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Base 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Extended 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Europe 1990-2016
Reduced 19 36 1.8 15 25 1.3 3.9 5.8 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Base 13 29 1.2 13 26 1.1 4.0 5.8 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Extended 9.0 28 0.7 8.7 23 0.7 1.2 2.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Asia Pacific 1990-2016
Reduced 11 22 0.9 15 23 1.5 1.7 2.9 0.2 0.9 2.9 0.1 0.9 1.4 0.1 0.0 0.0 0.0
Base 12 22 0.9 16 25 1.4 2.4 4.3 0.2 0.9 1.4 0.1 0.9 1.4 0.1 0.0 0.0 0.0
Extended 1.4 7.2 0.1 1.3 4.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Panel B: 12 Anomalies

USA 1963-2016
Reduced 34 67 3.4 32 50 3.1 18 33 1.6 10 33 0.7 2.0 0.0 0.2 3.0 17 0.2
Base 30 67 2.8 27 50 2.3 19 42 1.7 6.1 33 0.4 1.7 0.0 0.2 1.3 8.3 0.1
Extended 22 67 2.0 21 50 2.0 15 33 1.3 2.7 25 0.2 2.5 0.0 0.2 1.3 8.3 0.1
Japan 1990-2016
Reduced 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Base 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Extended 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Europe 1990-2016
Reduced 13 33 1.1 12 25 0.9 2.7 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Base 10.0 33 0.8 11 33 0.8 3.6 8.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Extended 8.8 50 0.7 7.9 25 0.6 1.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Asia Pacific 1990-2016
Reduced 6.2 25 0.5 10 17 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Base 10 33 0.7 12 17 1.0 2.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Extended 1.3 8.3 0.1 1.3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

distribution. This asymptotic theory is derived under an assumption that as length of

time series (T ) goes to infinity, number of lags of autocorrelations (M) divided by T goes

to zero. In other words, the number of lags that we adjust for grows at a slower rate

than length of the time series. The assumption tacitly implies that M/T (b) should be

very close to zero. This is, however, never the case in practice and b is always positive.

Authors of these estimators of covariance matrix were well aware of this fact and Andrews

and Monahan (1992) report ”As shown in the Monte Carlo results of Andrews (1991),

however, the kernel estimators considered in the above papers all perform quite poorly

in certain contexts. In particular, kernel HAC covariance matrix estimators often yield

confidence intervals whose coverage probabilities are too low (equivalently, test statistics

89



that reject too often) and this phenomenon is not attributable to a particular choice of

kernel or bandwidth parameter.”

Aware of these shortcomings, Kiefer et al. (2000) developed a new asymptotic theory

that does not suffer from these over-rejections. They labeled it fixed-b asymptotics since

it assumes that b = 1. They then extended their results to b ∈ [0, 1] in Kiefer and

Vogelsang (2005). They show that under Bartlett kernel, as in Newey and West (1987),

the distribution of test t-statistic is not normal but depends on b. The critical value for

two sided test of a single hypothesis at 5% level is 2.02 assuming that the number of lags

is twelve and time period is 1963 to 2016, as in our US sample. The critical value is higher

than the usual 1.96 for normal distribution and fewer signals are therefore rejected. The

critical value, however, goes up to 4.771 when b = 1. The density of the new standardized

distribution is close to normal but it has larger tails. The problem is thus not only related

to t-statistics having larger variance as the whole distribution is distorted. Choice of lags

is a problem that does not disappear with this approach. The new asymptotic theory gives

correct size to the tests. Choosing number of lags that is far from its true value, however,

leads to poor power of the tests and lowers number of rejections of truly out-performing

signals. We will discuss the power in more detail below.

So why does asymptotic theory matter in our case? First, we cannot rely on critical

values of standard normal distribution. It is therefore advantageous to rely on a bootstrap

that takes care of this problem. Second, and more importantly, HAC adjustment can cause

large problems when mixing signals of various lengths. This is exactly our case where some

anomalies and data-mined signals cannot be constructed for the whole sample. The result

is a mix of short and long time series with different critical values for significance of their

t-statistics. This can then lead to under-rejection of truly significant signals in both cross-

sectional bootstrap and Storey (2002) test. Some of the signals will tend to provide more

extreme values under the null and this will create noise in the tests. The problem could be

further exaggerated by resampling, as it is often the case that bootstrap selects very short

time-series in some samples. The t-statistics are therefore not unconditionally pivotal,

which destroys their main benefit.

Figure 2.2 plots bootstrapped density of .95 quantile of absolute value of t-statistics

on 1590 data-mined signals and anomalies. We use naive bootstrap and the same setting

as described before. The portfolios are value-weighted.23 Standard asymptotic theory

predicts that the density should be centered around 1.96. This is obviously not the case

and appropriate critical value is closer to two. It is also worth noting that the problems

with distribution of critical values are exacerbated by more complicated factor models.

The critical value for CAPM is significantly lower than for FF5 model. The distribution

is significantly shifted to the right for more lags in the adjustment.

Is there any easy solution to non-standard distribution of t-statistics? At many places

of this study, it is required to estimate p-values. This would be very complicated if we

23Equal-weighting leads to even larger distortions.
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Figure 2.2: Distribution of 95th percentile of bootstrapped t-statistics. The
figure shows bootstrapped density of 95th percentile of t-statistics on 1,590 fundamental
signals, 1,497 data-mined and 93 from published studies. The sample is restricted to
industrial stocks with price over $1 and capitalization larger than bottom decile in NYSE
at the end of previous June. It spans July 1963 to December 2016. The value-weighted
long-short portfolios are constructed by buying stocks in the top decile of the signals and
shorting stocks in the bottom decile of the signals. The alphas are estimated with CAPM
and Fama-French three and five factor models. Standard errors in t-statistics are HAC
adjusted, as in Newey and West (1987) with either 3 lags or 12 lags.

had to rely on non-standard distribution to derive them. Fortunately, Goncalves and

Vogelsang (2011) showed that the naive bootstrap shares many characteristics with fixed-

b asymptotic theory and it correctly adjusts the p-values.

2.3.2 Impact of Number of Lags in HAC Adjustment on Num-

ber of Individually Significant Signals

The previous sections discussed the problems related to standard HAC robust covariance

matrix in Newey and West (1987) and showed that it is possible to overcome them with

the correct asymptotic theory. This section discusses the last required ingredient - number

of lags; or more precisely kernel bandwidth.

Andrews and Monahan (1992) and Newey and West (1994) have proposed automatic

rules to select the bandwidth. Problem with the rules is that they were optimized to select

appropriate standard error but not for optimal confidence interval coverage in tests. Sun

et al. (2008) explain the problem: ”For typical economic time series, the optimal bandwidth

that minimizes a weighted average of type I and type II errors is larger by an order of

magnitude than the bandwidth that minimizes the asymptotic mean squared error of the

corresponding long-run variance estimator.” The automatic selection rules thus tend to

provide lower number of the required lags which results in confidence intervals under-

coverage and rejection of too many hypothesis. Sun et al. (2008) also provide a new rule

for automatic selection that overcomes these problems. It is, however, not suited for the
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Figure 2.3: Proportion of Significant Signals Depending on Adjustment of Stan-
dard Errors. The figure shows the proportion of significant signals at 5%, 1%, and .1%
level as a function of adjustment of standard errors and block length in bootstrap. Lines
show the proportion as a function of lags in Newey and West (1987) adjustment for auto-
correlation and heteroskedasticity. Squares, triangles, and circles stand for bootstrapped
values using alphas, unadjusted t-statistics, and HAC adjusted t-statistics as in Newey
and West (1987), respectively. The figure is based on 1,590 fundamental signals, 1,497
data-mined and 93 from published studies. The sample is restricted to industrial stocks
with price over $1 and capitalization larger than bottom decile in NYSE at the end of
previous June. It spans July 1963 to December 2016. The equal-weighted long-short
portfolios are constructed by buying stocks in the top decile of the signals and shorting
stocks in the bottom decile of the signals. The alphas are estimated with Fama-French
five factor model.

type of bootstrap that we use here and is again based on an asymptotic behaviour. The

problem of selection of bandwidth does not disappear for the bootstrap but it translates

into selection of block length.24

We next turn to assessment of impact of choice of the bandwidth on the number

of significant signals. Figure 2.3 shows how the proportion of signals significant at 5%

(red), 1% (light blue), and 0.1% (dark blue) level evolves depending on the number of

lags and estimator of covariance matrix. We consider only equal-weighted portfolios of

data-mined signals and anomalies here as equal-weighting is an overwhelming choice in

the literature (McLean and Pontiff (2016)). The performance of anomalies is adjusted

for five Fama-French factors. The horizontal lines correspond to Newey and West (1987)

estimator with critical values from normal distribution. We also provide results for three

specifications of naive bootstrap. Critical values for alphas without any standardization

are depicted with squares. The upward-facing triangles show naive bootstrap for t-statistic

with standard errors without any adjustment for heteroskedasticity or autocorrelation.

The circles then describe proportion of significant signals with Newey and West (1987)

24See, for example, Romano and Wolf (2006) who provide rule for automatic selection of block length.
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HAC robust estimator and bootstrapped critical values.

One apparent feature is that a larger number of lags leads to fewer significant signals.

The number generally drops uniformly for the first 24 lags. The number of significant

signals levels off after 24 lags and reaches the minimum at about 60. It starts increasing

after that because the block length starts causing problems with randomness of the sample.

The increase is mainly in tail of the distribution. The decline in the number of significant

signals can be substantial. 10% of all signals are significant at 0.1% level with Newey

and West (1987) adjustment and critical values from normal distribution. This drops

to 0.3% for bootstrapped critical values and 24 lags. Notably, the critical values from

normal distribution seem to over-reject null hypothesis for any number of lags. This is

in line with evidence in the previous subsection. The green vertical lines correspond to

mean number of lags selected by Andrews and Monahan (1992) and Newey and West

(1994). The optimal number of lags is 5.5 and 10.4, respectively.25 The proportion of

significant signals is then intercept of these vertical lines and lines for Newey and West

(1987) adjustment.

There is also a large discrepancy between different versions of the bootstrap. The

simplest version, without studentization, tends to reject the most signals possibly due to

distorted size of the tests.26 It can also get heavily distorted with the existence of large

outliers. Studentization should improve properties of the bootstrap and its importance

is emphasized in Davison and Hall (1993), Götze et al. (1996), and Romano and Wolf

(2006). The drop in number of significant signals with the number of lags in HAC robust

adjustment does not have to imply improper size of tests with the small number of the

lags. This is because there is a trade-off between type I and type II error rate. Type I

error rate decreases with the number of lags but type II rate increases. The test then

has poor power and rejects fewer truly significant signals. Bootstrap without HAC robust

adjustment should capture role of block size in the bootstrap since that is the only thing

that is changing. This should in turn capture the effect of autocorrelation on standard

errors without any distortion in power as in the case of Newey and West (1987) adjustment.

The optimal number of lags for naive bootstrap with HAC adjustment therefore appears

to be around six where number of rejected hypothesis is similar to minimum number of

rejected hypothesis without the HAC adjustment. Larger number of lags then probably

leads to poor power of the tests. We also provide proportion of signals significant with

Kiefer et al. (2000) estimator denoted by inverse triangles. It is higher than for naive

bootstrap with Newey and West (1987) adjustment and 24 lags. This hints that the

optimal number of lags is lower than that. We will next turn to simulations to study

power and size of the tests in a controlled environment.

25Note that the number of lags is lower for value-weighted portfolios at 3 and 9 lags, respectively.
26Shao and Politis (2013) showed that this version of bootstrap does not have a normal distribution in

finite sample analogously to fixed-b asymptotics for HAC errors.
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2.3.3 Simulations

Figure 2.3 showed that adjustment of standard errors on portfolio returns can have a

large impact on proportion of significant signals. It is, however, not obvious if the change

in proportion of significant signals is due to decreasing power the tests or improper size

of the tests for the small number of lags in HAC adjustment. This section proposes a

simulation framework that inherits all the properties of the empirical data and enables us

to study the size and power of the tests in the controlled environment.

Section 2.1.2 has described construction of a large universe of fundamental signals.

The fundamental signals are of two types: noise signals that are not connected to any

excess return on stocks and true predictive signals that are connected to excess return

on stocks. The multiple hypothesis test is trying to distinguish between the two types

of the signals. It is easy to generate any number of the noise signals since randomly

generated fundamental signals are not connected to any excess returns by definition. In

particular, we randomly draw simulated fundamental signals from uniform distribution for

each company-year (GVKEY-year in Compustat). The simulated fundamental signals are

updated annually at the end of June and portfolios are constructed from them in exactly

the same way as for the data-mined fundamental signals as described in Section 2.1.4.

The noise signals share the same properties as the data-mined fundamental signals due to

having the same construction. The simulations focus solely on the US where the quality

of the data is the highest.27

The power and size of the statistical tests can be studied on these simulated signals.

The proportion of significant signals should be the same as size of the individual tests

if the tests have correct size. The multiple hypothesis tests should therefore lead to no

significant signal if there is truly no significant signal. It is also possible to test power

of the tests by adding positive monthly return to the portfolios created based on the

simulated signals. The correct functioning of Storey (2002) test requires that some noise

signals remain. The monthly return is therefore added only to 20% of the simulated

signals when power and size of the multiple hypothesis test is studied. The empirical false

discovery rate of multiple hypothesis test can be estimated by increasing the monthly

returns up to a point where all of the 20% of truly significant signals are rejected. The

simulated fundamental signals are unrelated to the risk factors by definition. The added

annual return is therefore equal to excess return after adjusting for the risk factors. The

simulated signals are also useful to assess whether number of the risk factors has any role

on power and size of the statistical tests.

Figure 2.4 plots proportion of significant simulated signals as a function of true annual

returns on the portfolios. The upper two subplots show the proportions for individual

tests of significance at 5% confidence level based on bootstrapped p-values. The lower

two subplots depict the proportions based on multiple hypothesis test (MHT) of Storey

27Note that the authors have also experimented with generating correlated signals but there was no
impact on the overall results. Storey (2002) method is therefore robust to correlation among the signals.
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Figure 2.4: Proportion of Significant Simulated Signals Depending on Strength
of the Signals. The figure shows the proportion of significant signals as a function
of true annual returns on 10,000 simulated annual fundamental signals. The signals
are deemed significant based on their bootstrapped p-values using 10,000 runs of the
block bootstrap with block length 3 and standard errors adjusted for autocorrelation
and heteroskedasticity as in Newey and West (1987) with 3 lags. The significance is
determined either in individual tests at 5% significance level or multiple hypothesis tests
(MHT) of Storey (2002) at 5% false discovery rate. The significance of individual signals
is determined via regressions adjusting the portfolio returns for CAPM, FF3, or FF5
factors. The fundamental signals are randomly drawn from uniform distribution for all
company-years (GVKEY in Compustat). The company-years are matched to market data
from July to June each year so that the signal for each company changes at the beginning
of each July and remains constant for the next 12 months. The equal-weighted long-short
portfolios are constructed by buying stocks in the top decile of the random signals and
shorting stocks in the bottom decile of the signals. The annual return on the signals is
simulated by adding constant monthly return to all the portfolios for individual tests and
20% of portfolios for MHT tests. The sample is restricted to industrial stocks with price
over $1 and capitalization larger than bottom decile in NYSE at the end of previous June.
It spans July 1963 to December 2016.
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(2002) at 5% false discovery rate. The bootstrap uses block length 3 and standard errors

on the returns on the portfolio are estimated with Newey-West adjustment with 3 lags.

The Figure 2.4 is supported with tabulated numbers in Panel A of Table 2.5. The table

also contains estimated proportion of signals with zero true return π = π0/M in Storey

(2002) test. The proportion of significant signals is provided for portfolio returns adjusted

for CAPM, FF3, and FF5 risk factors.

The individual tests for significance in the upper two subplots in Figure 2.4 have visibly

distorted size for FF5 risk factors. The proportion of rejected signals is close to 9% even

through the size of the test is 5% and the true annual return is zero. The distorted size is

also documented in Table 2.5 for both 5% and 1% intended significance levels. The FF5

risk factors also lead to noticeably lower power relative to CAPM. There is also a slight

decrease in power for FF3 risk factors relative to CAPM. The power of the individual

tests is lower for value-weighted portfolios relative to equal-weighted portfolios.

The results for multiple hypothesis tests (MHT) closely follow results for the individual

signals. The bootstrapped p-values of individual signals are the basis of Storey (2002) test

and their incorrect distribution translates into incorrect false discovery rate. Figure 2.4

documents that the MHT tests don’t reject any signal when there are no outperforming

strategies and reject all the truly outperforming strategies for sufficiently high annual

returns. The power of the tests is higher for equal-weighted returns and 3% annual

return is enough for the signal to be rejected with certainty at 5% false discovery rate.

The difference in power between equal-weighted and value-weighted portfolios explain the

previous results where the proportion of significant fundamental signals was much lower

for value-weighted portfolios. The power also decreases with number of risk factors so

that FF5 factors lead to the weakest power. The drop in proportion of significant signals

with number of the risk factors documented in Figure 2.3 is therefore partly due to the

drop in power.

There is 20% of simulated signals with truly positive annual returns which means that

there should be about 21.05% of rejected signals with the desired 5% false discovery rate.

The proportion of rejected signals is higher than that for FF5 in Figure 2.4 when the

annual returns are larger than 4%. This is further supported by Panel A in Table 2.5.

The bootstrapped false discovery rate for FF5 and equal-weighted returns is close to

11% which is far from the desired 5% rate. Estimated proportion of simulated strategies

satisfying the null hypothesis of zero return is also much lower than its true value of 80%.

Panel A of Table 2.5 has shown that the proportion of rejected signals under the null

of the individual tests does not correspond to their desired size. Panel B then studies

impact of increasing block length of the bootstrap and lags in Newey-West adjustment of

standard errors to 12. Panel B is supplemented with Figure 2.5 which plots the proportion

of rejected signals depending on annual returns on the portfolios for both 3 and 12 lags in

the adjustment. The figure also plots proportion of significant signals with 3 lags when

critical threshold for the bootstrapped p-values is chosen to yield exactly 5% of significant
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Table 2.5:
Simulations of Size of the Tests

The table shows bootstrapped size of statistical tests on 10,000 simulated annual funda-
mental signals. The signals are deemed significant based on their bootstrapped p-values
using 10,000 runs of the block bootstrap in Panels A, B, and C. Block length of the boot-
strap is 3 in Panel A and C while it is 12 in Panel B. p-values in Panels D and E are based
on critical values of normal distribution. Standard errors adjusted for autocorrelation and
heteroskedasticity as in Newey and West (1987) with either 3 lags in Panel A and D or 12
lags in Panel B, C, and E. The bootstrapped size of individual tests is defined as propor-
tion of significant signals in individual tests where the bootstrapped p-values are lower
than 1% or 5% threshold. The bootstrapped size of multiple hypothesis test of Storey
(2002) at either 1% or 5% false discovery rate is defined as proportion of false positive
discoveries among all the rejected signals. There are 20% true positive discoveries among
all the signals for multiple hypothesis tests. The table also shows estimated proportion
of signals with zero returns π. The significance of individual signals is determined via
regressions adjusting the portfolio returns for CAPM, FF3, or FF5 factors. The fun-
damental signals are randomly drawn from uniform distribution for all company-years
(GVKEY in Compustat). The company-years are matched to market data from July to
June each year so that the signal for each company changes at the beginning of each July
and remains constant for the next 12 months. The equal-weighted long-short portfolios
are constructed by buying stocks in the top decile of the random signals and shorting
stocks in the bottom decile of the signals. The sample is restricted to industrial stocks
with price over $1 and capitalization larger than bottom decile in NYSE at the end of
previous June. The sample spans July 1963 to December 2016.

Monthly Rebalanced Portfolios Annually Rebalanced Portfolios

Equal-weighted Value-weighted Equal-weighted Value-weighted

CAPM FF3 FF5 CAPM FF3 FF5 CAPM FF3 FF5 CAPM FF3 FF5

Panel A: Bootstrapped p-values with 3 Block Length and 3 Lags in HAC Adjustment

Single Hypothesis Tests
1% 1.25 1.35 1.45 0.82 0.96 1.44 1.46 1.55 1.89 1.01 1.11 1.47
5% 5.32 5.68 6.19 4.84 4.88 6.51 6.54 6.99 8.52 5.38 5.88 6.94
Multiple Hypothesis Tests
1% 1.28 1.43 1.38 0.89 1.14 1.67 1.57 2.10 2.68 0.84 1.14 1.14
5% 5.88 6.15 7.11 4.85 5.03 7.66 7.36 7.54 10.8 4.44 4.90 6.59
π 79.0 77.6 76.1 80.6 79.3 74.5 75.3 73.0 66.4 78.0 77.8 74.7

Panel B: Bootstrapped p-values with 12 Block Length and 12 Lags in HAC Adjustment

Single Hypothesis Tests
1% 1.21 1.27 1.19 0.95 1.13 1.31 1.15 1.03 1.07 0.99 1.12 1.25
5% 5.42 5.43 5.71 5.09 5.33 5.86 5.19 5.02 5.72 4.74 5.15 5.73
Multiple Hypothesis Tests
1% 1.33 1.48 1.57 0.79 0.94 0.94 0.84 0.89 1.04 0.89 0.94 0.99
5% 5.48 5.53 6.89 4.53 4.49 5.12 4.53 4.67 5.79 5.30 4.81 5.88
π 81.0 78.8 75.7 80.0 79.0 76.6 79.5 79.2 70.5 80.5 78.6 74.5

signals under the null hypothesis. Increasing the number of lags limits and block length

the distortions in size of the individual tests. It also limits distortions in false discovery

rate in the multiple hypothesis setting. Figure 2.5 documents that power of the individual

tests decreases for 12 lags but it is nonetheless higher than for proper critical threshold for

bootstrapped p-values with 3 lags. The larger number of lags therefore decreases number
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Table 2.5 Continued

Monthly Rebalanced Portfolios Annually Rebalanced Portfolios

Equal-weighted Value-weighted Equal-weighted Value-weighted

CAPM FF3 FF5 CAPM FF3 FF5 CAPM FF3 FF5 CAPM FF3 FF5

Panel C: Bootstrapped p-values with 3 Block Length and 12 Lags in HAC Adjustment

Single Hypothesis Tests
1% 1.20 1.30 1.40 0.96 1.30 1.40 1.31 1.33 1.27 1.23 1.20 1.39
5% 5.92 6.09 6.36 5.41 5.58 6.13 5.70 5.80 6.40 5.47 5.42 6.07
Multiple Hypothesis Tests
1% 1.28 1.38 1.62 0.89 1.04 0.89 1.23 1.23 1.57 1.04 0.79 1.67
5% 5.70 6.67 6.85 4.90 4.67 6.37 6.50 6.15 7.66 5.39 5.57 6.89
π 78.4 77.8 76.4 76.0 78.4 74.4 78.0 75.6 68.0 76.7 77.1 72.8

Panel D: 3 Lags in HAC Adjustment without Bootstrap

Single Hypothesis Tests
1% 1.21 1.42 1.78 0.97 0.89 1.63 1.39 1.66 2.80 1.11 1.20 1.79
5% 5.75 6.71 7.07 5.05 5.03 7.22 6.22 7.49 10.1 5.47 5.74 7.67
Multiple Hypothesis Tests
1% 1.48 1.43 2.34 0.74 1.38 2.53 1.19 2.01 3.94 0.89 1.53 3.05
5% 6.98 7.83 8.63 6.02 6.28 10.4 7.36 9.34 16.0 5.93 6.76 9.62
π 76.6 73.7 72.5 77.0 76.8 72.4 76.7 73.5 65.7 77.6 74.6 69.5

Panel E: 12 Lags in HAC Adjustment without Bootstrap

Single Hypothesis Tests
1% 1.36 1.43 1.87 1.21 1.48 2.07 1.16 1.29 2.40 1.34 1.48 1.79
5% 5.99 6.23 6.79 5.53 6.05 7.82 5.74 6.16 9.22 5.81 5.95 7.79
Multiple Hypothesis Tests
1% 1.96 1.91 2.10 1.23 1.57 2.53 1.43 1.72 3.71 0.94 1.04 2.58
5% 6.93 8.05 8.80 5.79 6.76 9.91 7.32 8.38 13.3 4.94 5.84 9.26
π 77.8 76.0 73.8 76.6 76.6 73.4 77.4 74.6 65.8 77.6 76.2 71.0
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Figure 2.5: Proportion of Significant Simulated Signals Depending on Strength
of the Signals. The figure shows the proportion of significant signals as a function of
true annual returns on 10,000 simulated annual fundamental signals. The signals are
deemed significant based on their bootstrapped p-values using 10,000 runs of the block
bootstrap with block length 3 (or 12) and standard errors adjusted for autocorrelation
and heteroskedasticity as in Newey and West (1987) with 3 (or 12) lags. The significance
of individual signals is determined in individual tests at 5% significance level. The signif-
icance is determined via regressions adjusting the portfolio returns for FF5 factors. The
line denoted ”3 lags, correct size” uses critical threshold for the bootstrapped p-values
that leads to exactly 5% significant signals when the excess return is equal to zero. The
fundamental signals are randomly drawn from uniform distribution for all company-years
(GVKEY in Compustat). The company-years are matched to market data from July to
June each year so that the signal for each company changes at the beginning of each July
and remains constant for the next 12 months. The equal-weighted long-short portfolios
are constructed by buying stocks in the top decile of the random signals and shorting
stocks in the bottom decile of the signals. The annual returns on the signals are simu-
lated by adding constant monthly return to all the portfolios. The sample is restricted to
industrial stocks with price over $1 and capitalization larger than bottom decile in NYSE
at the end of previous June. It spans July 1963 to December 2016.

of signals mainly by correcting the size of the individual tests and not by decreasing power

of the tests.

It is not clear from the previous evidence whether (a) increasing block length in the

bootstrap or (b) increasing number of lags in auto-correlation and heteroskedasticity

adjustment or (c) doing both (a) and (b) jointly is behind the desired correction of size of

the tests. Panel C in Table 2.5 is a middle step between Panel A and B as it increases only

the block length to 12 while keeping the number of lags in adjustment of the standard

errors for auto-correlation at 3. It is apparent that the size of the tests has improved

significantly relative to Panel A with block length 3. The block length in the bootstrap is

therefore responsible for a large part of the correction in the size of the tests. Increasing

the number of lags in the standard error adjustment in Panel B, however, has significant

impact for the false discovery rate in the multiple hypothesis tests.
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Panels D and E in Table 2.5 investigate importance of the bootstrap in estimation of

p-values on the individual portfolios. p-values in Panels D and E do not rely on bootstrap

but are derived from critical values of standard normal distribution, as is mostly done

in the literature. The normal distribution is a limiting distribution of t-distribution as

the sample increases to infinity and is a good approximation of the t-distribution of the

t-statistics with larger sample size. Panel D relies on adjustment of standard errors for

heteroskedasticity and auto-correlation for up to 3 lags while Panel E for up to 12 lags.

It is evident that the bootstrapped size of the individual tests and false discovery rate of

the multiple hypothesis tests are far from their desired values even for the 12 lags. The

adjustment of standard errors for auto-correlation and heteroskedasticity is therefore alone

not sufficient to provide correct size of the tests. The conclusion derived from this section

therefore is that not only the number of lags in the adjustment of the standard error is

important for the correct size of the tests but the p-values also need to be bootstrapped

with a suitable method.

2.3.4 Auto-correlation or Conditional Heteroskedasticity?

Table 2.6:
Tests of Presence of Auto-correlation and Heteroskedasticity on the

Simulated Signals
The table shows proportion of simulated signals created as in Table 2.5 for which null
hypothesis of no auto-correlation or no auto-regressive heteroskedasticity of up to 12
lags is rejected. The proportion of signals is provided in percentage points for 1% and
5% significance levels. Presence of no auto-correlation is tested in Ljung-Box test while
presence of no autoregressive conditional heteroscedasticity (ARCH) is tested in ARCH
LM test and McLeod and Li (1983) test.

Monthly Rebalanced Portfolios Annually Rebalanced Portfolios

Equal-weighted Value-weighted Equal-weighted Value-weighted

CAPM FF3 FF5 CAPM FF3 FF5 CAPM FF3 FF5 CAPM FF3 FF5

Tests of Presence of Auto-correlation and Heteroskedasticity

Ljung-Box Test for Auto-correlation of up to 12 Lags
1% 4.35 3.93 3.66 20.5 18.9 17.3 20.6 15.5 12.7 23.4 21.2 19.5
5% 13.4 12.7 12.4 35.8 33.9 31.9 33.1 27.5 24.4 38.6 36.1 34.0
ARCH LM Test for Auto-regressive Heteroskedasticity of up to 12 Lags
1% 57.4 52.2 47.6 98.1 97.7 96.9 80.7 75.9 70.8 96.7 96.0 95.0
5% 71.0 67.1 62.6 99.2 99.0 98.7 86.4 83.6 79.7 98.4 98.0 97.4
McLeod-Li Test for Auto-regressive Heteroskedasticity of up to 12 Lags
1% 65.7 61.4 56.1 99.2 98.9 98.5 83.3 79.3 74.7 98.2 97.8 97.2
5% 76.2 72.3 68.3 99.6 99.4 99.2 87.8 85.1 81.8 99.0 98.7 98.4

The importance of block size in the bootstrap hints that auto-correlation in returns

not the sole driver of inappropriate critical values in the t-statistic. Table 2.6 provides

further support for this claim. It provides proportion of signals, simulated in the same way

as in Table 2.5, where null hypothesis of no auto-correlation of up to 12 lags in residual

portfolio returns after adjusting them for the risk factors is rejected at either 1% or 5%.
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The test rejects auto-correlation far more frequently than what would be expected by pure

chance but not all the signals exhibit significant auto-correlation. The auto-correlation is

therefore only weak among the generated signals. Table 2.6 also presents proportion of

cases where null hypothesis of no autoregressive heteroskedasticity in residual portfolio

returns after adjusting them for the risk factors is rejected at either 1% or 5%. The au-

toregressive heteroskedasticity is tested with autoregressive conditional heteroscedasticity

(ARCH) Lagrange multiplier (LM) test and McLeod and Li (1983) test. Almost all the

signals exhibit ARCH effects which sheds some light on why increasing the block length

was so important for the block bootstrap. Short block length does not allow for the

bootstrap to generate sample with the significant ARCH effects as in the original series.

The autoregressive heteroskedasticity can be explained by shifting leverage over the

year for the annually rebalanced portfolios. The reason for this is that the annual rebal-

ancing induces dependence in portfolio returns over the year. The dependence is induced

by the fact that returns in a given month are influenced by cumulative returns since the

last portfolio rebalancing. Suppose that the market return is 50% over July-December pe-

riod, the volatility of payoffs from the given long-short strategy should then also be 50%

higher over the remaining 6 months before the portfolio is rebalanced. Similar effects

emerge when value of either short or long legs of the portfolio increases in value. The

time-dependence of portfolio returns is then manifesting itself though the documented

ARCH effects when leverage of the portfolios significantly drifts away from its baseline

value in months following the annual rebalancing period. Larger block length in the

bootstrap is therefore required to simulate the dependence in the data.

The analysis in this paper has so far focused on annually rebalanced zero-cost long-

short strategies. Table 2.5 also shows bootstrapped size and false discovery rate for

monthly rebalanced strategies. Monthly rebalanced strategies generally don’t suffer from

the large distortions in size and false discovery rate. These results further support that

the annual rebalancing is the driving force behind the problems related to inappropriate

critical values in the t-statistic.

2.3.5 Impact on Proportion of Significant Signals in Multiple

Hypothesis Tests

We study the impact of unconditionally non-pivotal nature of t-statistics on the multiple

hypothesis tests in Table 2.7. The table is mostly constructed in the same way as Table 2.3.

The only difference in Panel A with respect to Table 2.3 is that p-values are based on a

block bootstrap with block length of 12 months and Newey-West adjustment of standard

errors of 12 months instead of 3 previously. Panel B and C rely on the unchanged number

of lags but the portfolios are rebalanced monthly instead of annually. Both of the changes

should limit the incorrect size of the multiple hypothesis tests.

The impact of increasing the number of lags in Newey-West adjustment in Panel A

depends on risk factors used in estimation of alphas on the portfolio returns. It was
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Table 2.7:
Multiple Hypothesis Tests - The Impact of HAC Adjustment

The table shows proportion of significant fundamental signals (N) in percentage points
and corresponding critical p-values (p-val) under Storey (2002) multiple hypothesis frame-
work controlling for 5% FDR. The table corresponds to Panel A in Table 2.3. The only
exception is that the standard errors are adjusted as in Newey and West (1987) with 12
lags in Panel A (otherwise 3 lags) and the portfolios are rebalanced monthly in Panel B
and C (otherwise annually). Risk factors in Panel C are constructed in the same way as
the portfolios of the fundamental signals and follow Fama and French (2015) otherwise.

Equal-weighted Portfolios Value-weighted Portfolios

CAPM FF3 FF5 CAPM FF3 FF5

N NA p-val N NA p-val N NA p-val N NA p-val N NA p-val N NA p-val

Panel A: 12 Lags in HAC Adjustment

USA 1963-2016
Reduced 40 58 5.0 22 31 2.3 5.7 14 0.5 9.0 22 0.7 6.5 14 0.6 0.7 2.2 0.1
Base 32 54 3.4 15 26 1.4 3.2 7.5 0.3 6.6 19 0.5 4.3 13 0.4 0.0 0.0 0.0
Extended 33 56 3.7 17 26 1.4 5.7 14 0.6 1.1 7.5 0.1 0.9 5.4 0.1 0.0 0.0 0.0
Japan 1990-2016
Reduced 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Base 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Extended 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Europe 1990-2016
Reduced 15 26 1.4 18 27 1.7 0.9 3.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Base 13 25 1.2 13 25 1.2 1.2 3.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Extended 8.2 23 0.7 8.0 20 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Asia Pacific 1990-2016
Reduced 14 25 1.3 13 17 1.3 1.0 1.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Base 13 24 1.1 10 15 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Extended 2.4 9.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Panel B: Monthly Rebalanced Portfolios

USA 1963-2016
Reduced 48 68 6.3 48 68 6.1 35 54 3.9 17 34 1.5 22 38 2.2 18 28 1.6
Base 43 67 4.9 45 67 5.6 32 53 3.3 12 31 1.0 17 34 1.6 18 32 1.5
Extended 42 66 5.1 38 65 4.3 37 54 4.4 8.9 29 0.7 11 24 0.9 9.4 22 0.7
Japan 1990-2016
Reduced 1.4 5.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Base 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Extended 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Europe 1990-2016
Reduced 36 55 3.9 42 60 4.9 8.0 24 0.4 0.8 2.2 0.1 1.2 4.3 0.1 0.0 0.0 0.0
Base 33 54 3.4 38 60 4.3 9.9 24 0.7 1.4 5.4 0.1 3.1 6.5 0.2 0.9 1.1 0.1
Extended 23 47 2.1 23 54 2.1 2.8 16 0.2 0.0 0.0 0.0 1.1 4.3 0.1 0.0 0.0 0.0
Asia Pacific 1990-2016
Reduced 25 33 2.2 22 30 2.3 2.5 1.1 0.2 1.6 6.5 0.1 2.0 4.3 0.2 0.0 0.0 0.0
Base 22 30 1.9 20 29 2.1 2.3 1.1 0.2 0.0 0.0 0.0 1.0 2.2 0.1 0.0 0.0 0.0
Extended 13 28 1.1 4.1 13 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Panel C: Monthly Rebalanced Portfolios with Equivalently Constructed Risk Factors

USA 1963-2016
Reduced 49 69 6.6 42 65 5.2 18 39 1.7 16 34 1.4 19 40 1.8 5.4 18 0.5
Base 43 66 4.9 41 62 4.8 20 41 2.0 12 32 1.0 16 39 1.4 3.3 14 0.3
Extended 42 67 5.1 40 62 4.8 19 40 1.8 8.6 29 0.7 9.4 29 0.8 1.1 8.6 0.1
Japan 1990-2016
Reduced 0.8 4.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Base 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Extended 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Europe 1990-2016
Reduced 36 55 3.9 35 55 4.2 14 35 1.2 0.8 2.2 0.1 2.7 5.4 0.2 0.0 0.0 0.0
Base 32 54 3.3 31 52 3.6 19 39 1.7 1.3 3.2 0.1 3.0 5.4 0.2 0.0 0.0 0.0
Extended 24 48 2.2 16 44 1.4 5.2 32 0.4 0.0 0.0 0.0 1.1 3.2 0.1 0.0 0.0 0.0
Asia Pacific 1990-2016
Reduced 23 30 2.0 23 31 2.2 0.0 0.0 0.0 1.3 4.3 0.1 2.4 5.4 0.2 0.0 0.0 0.0
Base 24 32 2.0 22 30 2.0 0.0 0.0 0.0 0.6 3.2 0.1 2.5 7.5 0.2 0.0 0.0 0.0
Extended 13 26 1.1 13 24 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

previously shown with simulations that problems with size of the single hypothesis tests
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are the most severe for FF5 but almost nonexistent for CAPM. The results in Panel A

support this evidence. There are only slight changes in proportion of significant signals

with respect to Table 2.3 for CAPM. The proportion of significant signals and critical

values for p-values, however, drop to about one third for FF5. The drop is partly caused

by correcting the size of the tests but it is also partly caused by a drop in power of the

tests. The larger number of lags therefore carries some costs.

The monthly rebalancing in Panel B also shrinks problems with incorrect size of the

tests. The proportion of significant signals is generally larger than in Table 2.3. The main

reason for the increase in significant signals is that the risk factors are no longer properly

controlling for their underlying fundamental risk as they are constructed in a different

way than the portfolios. Panel C changes the risk factors’ construction so that it is the

same as construction for the fundamental signals. The new construction of the risk factors

reduces the proportion of significant signals to about one half for FF5 and equal-weighted

portfolios and even more for value-weighted portfolios. The portfolio setting is therefore

intrinsically connected to many issues and the regression framework introduced in the

next section is suitable to overcome them.

2.4 Multiple Hypothesis Tests: Independent Signals

All the multiple hypothesis tests covered so far correctly select signals in the individual

tests of significance but they say nothing about which signals are marginally useful in

explaining the future returns in relation to the other signals. It could be the case that the

multiple hypothesis tests will give us hundreds of signals that are closely related to each

other and most of the signals are then a linear combination of the others. The multiple

hypothesis tests based on portfolios are unfit to select the signals that each provide new

information. Therefore, it is necessary to look for other methods.

Lewellen et al. (2015) and Green et al. (2017) used Fama and MacBeth (1973b) regres-

sions of individual stock returns on their past characteristics to select the independently

significant signals. The regressions test whether the characteristics are related to cross-

section of returns. The characteristics are normalized to have values between zero and one

by considering quantiles of the given characteristic among all the stocks in the given region

and month. There are some problems with this approach including multicollinearity and

a need to adjust resulting p-values for multiple hypothesis setting. Green et al. (2017)

try to overcome the multiple hypothesis problems by adjusting the p-values for FDR as

in Benjamini and Yekutieli (2001) and the multicollinearity problems by discarding sig-

nals with the high variance inflation factors (VIF). We follow this approach and discard

collinear signals with VIF larger than either 3 or 7. Having the universe of potential

signals also allows us to use Storey (2002) multiple hypothesis test with a better power

to reject truly significant signals relative to Benjamini and Yekutieli (2001).

In essence, we regress returns on the individual stocks over 12 months starting in

July in calendar year t on M rescaled fundamental signals from business year ending in
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calendar year t− 1

ri,t = β0 +
M∑
j=1

βjxi,j,t−1 + εi,t. (2.4)

Where xi,j describes a transformed fundamental signal j for a given stock i. All the

raw fundamental signals are normalized to between -0.5 and 0.5 by transforming them

into empirical quantiles within each region-year and subtracting 0.5. The missing values

are filled with zeros. We exclude 4 binary signals from the set of published anomalies. The

regressions are fitted on annual data rather than on monthly data as was done in Green

et al. (2017), since all signals under the study are updated only annually. The regressions

pool together all the available stocks for all the time periods and the whole cross-sections

in a given region. It is not possible to run Fama-MacBeth regressions as in Green et al.

(2017) because the number of characteristics is sometimes larger than the number of

stocks in the cross-section. The goal of the regressions is to select fundamental signals xj

that are statistically significant. Selection of the method to estimate the standard errors

therefore plays some role. Heteroskedasticity robust standard errors are always used.28

Our selection problem is more complicated than in the existing studies as we have

many signals. Consequently, the number of signals is larger than the number of stocks in

cross-section in some regions. Discarding signals based on VIF can lead to a loss of signals

that are closely correlated to some other signals but have incremental predictive power

over the other signals. Therefore, we also adopt LASSO of Tibshirani (1996) with L1

penalty to tackle the multidimensionality problems without discarding any signals before

running the regressions.29

Inference on the signals selected by LASSO is very problematic since coefficients from

LASSO are heavily biased. Lee et al. (2016) explain the problem: ”For example, one

common approach when the number of variables is not too large is to fit a linear model

with all variables included, observe which ones are significant at level α, and then refit the

linear model with only those variables included. The problem with this is that the p-values

can no longer be trusted, since the variables that are selected will tend to be those that are

significant. Intuitively, we are ”over-fitting” to a particular realization of the data.”30 The

whole argument boils down to the same reasoning as in the case of missing unpublished

anomalies in the multiple hypothesis framework in that the confidence intervals are not

28We have tried several adjustments of the standard errors including HAC robust and clustered on
time but the choice makes little difference for the conclusions. There appears to be no problem with
autocorrelation here given that both signals and returns are at annual frequency.

29LASSO equally penalizes all coefficient in least square minimization problem and thus shrinks most
of them to zero and thus selects the most important variables. LASSO does not have oracle property but
we prefer it over adaptive LASSO as it requires fewer specified parameters. The results from adaptive
lasso are almost identical so this does not have any impact on our findings. Freyberger et al. (2017)
proposed to use non-parametric approach with additive models but we have found little improvement
from adopting it. This is possibly due to larger number of signals under study here. Linear models are
thus good enough approximation and seem to capture most of the predictability.

30Another good explanation is provided in Berk et al. (2013).
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conservative enough if we do not account for all tried signals. There are now many

available methods to adjust the confidence intervals for proper post-selection inference.

P-values from LASSO are adjusted with method suggested in Tibshirani et al. (2016) and

then Benjamini and Yekutieli (2001) FDR correction is applied on the adjusted p-values.31

2.4.1 Simulation Evidence

We start with the simulations to compare the various methods. The financial setting for

regression methods is very challenging and it is therefore valuable to study the methods

in a controlled environment before we move to the empirical setting. There are two

main sources of difficulties. First, the predictability of returns on individual stocks is

extremely small and out-of-sample (OOS) R2 is mostly below 1%. Next, there are some

cases of large multicollinearity between the signals due to their generation process. Both,

multicollinearity and high noise-to-signal ratio, can lead to a complete breakdown of the

methods.

We simulate a setting that is close to the empirical data in the US. We simulate 100,000

observations of annual returns on individual stocks that are log normal with zero mean

and are driven by K signals

ri = exp

(
−σ2/2 + 0.03

K∑
j=1

xij + εi

)
− 1, (2.5)

where K ∈ {10, 50}, ε ∼ N(0, σ), and σ = 0.4. There are 1500 simulated signals in total;

K of which are true drivers of returns, 600 - K are a mix of true drivers and noise, and

900 are pure noise. All the signals are uniformly distributed on (-.5, .5) interval. The 600

- K mixed signals are generated by randomly drawing three true drivers of returns and

then randomly mixing them together with noise:

xj = ρ(axa + bxb + cxc)/(a+ b+ c) + (1− ρ)γ, (2.6)

where γ is uniform over (-0.5, 0.5), a, b, c are uniform on (0,1), and ρ is uniform on

either (0, 0.5) or (0, 0.75). The mixed signals are then transformed to empirical quantiles

minus 0.5 so that they have the same distribution as the other signals. ρ smaller than

0.75 guarantees that there are no extreme problems with collinearity. Two settings are

considered; with few true drivers of the returns (K = 10) and many true drivers of the

returns (K = 50). Any time dependence issues are ignored and the sample is iid over

time and individual stocks to simplify the problem.

We first generate additional 20,000 observations to test how successful the OLS and

the LASSO predictions are in our simulations in terms of OOS R2. The maximum feasible

OOS R2 is about 1.82% for setting with 50 true independent signals and 0.37% for 10

signals. The maximum can only be obtained when all the truly independently significant

signals are used with their true coefficients. LASSO leads to about 90% of the maximum

feasible OOS R2 while OLS leads to negative OOS R2 in the case with 10 truly significant

31Storey (2002) method is not feasible here as the number of selected signals is often small.
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signals and less than 1% with 50 truly significant signals. The ability of the methods to

cope with the high noise-to-signal ratio deteriorates rapidly when all the true coefficients

are shrank from 0.03 to 0.02, which is more consistent with empirical data in the US. R2

from LASSO drops to about 50-70% of the maximum feasible OOS R2 while OLS leads

to negative OOS R2 everywhere.

Table 2.8:
Simulations for Independently Significant Signals

The table shows number of significant coefficients and corresponding simulated false dis-
covery rate (FDR) in brackets for regressions of simulated returns on 1,500 signals. We
present average values from 100 runs. LASSO (no FDR) counts all signals selected from
the LASSO that are significant at 5% level in a further regression (OLS) or that are
significant with proper post-selection inference (P-S Inf). We then control for 5% FDR
in the regressions of the return on all the signals (OLS) or again in post-selection setting
(LASSO: OLS and LASSO: P-S Inf). We control for FDR with either Benjamini and
Yekutieli (2001) (BY) or Storey (2002) (STO) method. Port STO stands for number of
signals that are significant in decile long-short portfolio setting with STO adjustment at
5% FDR. The penalty in the LASSO is selected with three-fold cross-validation.

5% FDR

Port LASSO: (no FDR) OLS LASSO: OLS LASSO: P-S Inf

K STO OLS P-S Inf STO BY STO BY STO BY

ρ = 0.5
10 329 26 (0.749) 8 (0.247) 1 (0.031) 0 (0.000) 11 (0.158) 4 (0.265) 4 (0.009) 6 (0.068)
50 346 110 (0.544) 47 (0.130) 49 (0.047) 41 (0.006) 51 (0.051) 52 (0.074) 40 (0.052) 34 (0.024)

ρ = 0.75
10 432 12 (1.000) 13 (0.993) 0 (0.050) 0 (0.000) 6 (0.790) 0 (0.170) 0 (0.010) 0 (0.070)
50 448 85 (0.722) 90 (0.728) 11 (0.050) 4 (0.003) 88 (0.724) 7 (0.148) 0 (0.010) 8 (0.043)

Table 2.8 presents number of significant coefficients (and corresponding simulated

FDR in brackets) from regressions of simulated returns on all the 1,500 simulated signals.

LASSO (no FDR) shows number of significant coefficients at 5% level from regressions

of returns on signals selected from the LASSO. OLS stands there for a second step OLS

estimated with the selected signals and P-S Inf for significance under proper post-selection

inference. 5% FDR category then adjusts for FDR either in regressions of all the 1,500 sig-

nals (OLS) or post-selection (LASSO: OLS or LASSO: P-S Inf). We control for FDR with

either Benjamini and Yekutieli (2001) (BY) or Storey (2002) (STO) methods. Penalty in

the LASSO is selected with three-fold cross-validation. The LASSO usually selects about

250 strategies.

We first study the impact of preselecting signals without properly adjusting p-values

on the selected signals. This is analogous to focusing only on published anomalies and

disregarding tried but unpublished signals. LASSO (no FDR) compares number of sig-

nificant coefficients at 5% level without accounting for FDR. It is obvious that there are

many more significant signals without proper post-selection inference. The same is also

true after adjusting for FDR at 5% level. The bootstrapped true FDR is mostly higher

than the 5% desired level. This means that the standard multiple hypothesis methods fail

when they are applied to a preselected sample, as is the case for the published anomalies
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in Green et al. (2017).

We next focus on the differences between OLS with FDR and LASSO with post-

selection inference and FDR. Both of these methods lead to correct FDR rates. OLS

tends to select more signals. True FDR for STO method are close to the desired rates

and it thus has the largest power to reject the true significant signals. BY then tends to

be too strict and under-reject. The difference between the two FDR methods is minimal

for the LASSO. Larger collinearity between the signals decreases power of all the tests.

Selection of truly significant signals with K = 10 becomes infeasible.

We also show the number of signals that are significant in decile long-short portfolios

with STO adjustment and 5% FDR (Port STO). The number is in line with our previous

empirical analysis using multiple hypothesis methods in the US.

To conclude, we have documented that both small OOS R2 and multicollinearity

can lead to severe problems with the methods and the setting can easily become too

challenging for them to work properly. Then, it is not possible to find any significant

signal after properly correcting for FDR at 5%, although there are many of them in

reality. Failure to find significant signals is not an evidence of no existing important

signals, it could simply be a result of the poor power of the tests.

2.4.2 Empirical Evidence

Green et al. (2017) found that only 12 characteristics are reliably independent determi-

nants in non-microcap stocks in the US from 1980 to 2014. They relied only on a set

of published anomalies and it is highly possible that their conclusions were influenced

by the absence of tried but unpublished signals. It is important to adjust p-values in

regressions for the number of all tried signals for the very same reason as in the other

multiple hypothesis tests. We will here revisit the issue with our universe of signals and

methods.

Panel A in Table 2.9 presents number of selected independently significant signals in

regressions of individual stock returns on the fundamental characteristics. We focus on

three LASSO settings based on selection of penalty λ in the regressions. We set λ = 1% in

the simplest setting. The value is chosen so that it yields parsimonious model with a few

signals, but yet the same out-of-sample predictive power as those with more parameters.

The value of λ is also close to those estimated with BIC criterion in the second setting.

λ in the last setting is estimated to minimize the mean square error in 10-fold cross-

validation.32 This should give us the upper estimate since it tends to select model with

too many parameters. We further control for FDR with either Benjamini and Yekutieli

(2001) (BY) or Storey (2002) (STO) methods.

The number of selected signals widely differs depending on the values of λ. The number

of statistically significant signals is, however, very similar. There are no significant signals

in Japan, which is in line with the previous evidence of no significant signals in multiple

hypothesis tests on portfolios. There is one clear trend in that anomalies tend to be more

32AIC criterion tends to select values that are between BIC and cross-validation.
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Table 2.9:
Independently Significant Signals

The table shows number of independently significant signals from regressions of individual
stocks returns on transformed fundamental signals. We either regress all the signals using
weighted-least-squares regressions (WLS) or rely on LASSO to select smaller number of
signals that do not suffer from collinearity. We control for FDR at 5% level with either
Benjamini and Yekutieli (2001) (BY) or Storey (2002) (STO) method. Panel B then
presents the significant signals chosen with LASSO in the US. Signals with bold p-values
are also significant with FDR of 5%. The LASSO regressions are conducted on 1,590
fundamental signals; 1,497 data-mined and 93 from published studies. The data-mined
fundamental signals are created by various transformations of 49 accounting variables, as
described in the Section 2.1.2. Panels C and E consider 861 (Reduced), 1,586 (Base), and
48,476 (Extended) signals, 89 of which are anomalies and the rest data-mined. Panels D
and F further restrict the set of published anomalies to 24 that are closely tied to the
data-mined signals. The sample is restricted to industrial stocks with price over $1 and
capitalization larger than the bottom decile in NYSE at the end of previous June. It
spans July 1963 to December 2016 in the US and July 1995 to December 2016 in other
regions.

Panel A: Number of Significant Signals

Anom and d-m Signals Data-mined Signals Anomalies

USA E J AP USA E J AP USA E J AP

WLS All Signals
STO 6 3 0 0 0 1 0 0 25 19 3 0

Anomalies 4 2 0 0
BY 2 1 2 0 0 2 0 0 19 9 3 0

Anomalies 2 1 1 0
WLS Signals with VIF < 7

STO 24 7 2 0 9 13 0 0 25 19 3 0
Anomalies 16 5 2 0

BY 8 3 1 0 5 3 1 0 19 9 3 0
Anomalies 8 2 2 0

LASSO with λ = 1%
Selected by LASSO 22 31 15 39 20 25 14 34 10 14 6 14
Post-selection inference 8 6 6 3 7 7 6 5 10 12 2 4

Anomalies 5 2 1 1
Post-selection inference BY 5 2 3 0 4 2 1 0 10 4 0 1

Anomalies 3 1 0 0
LASSO with λ Minimizing BIC

λ 1.3% 2.8% 2.2% 3.7% 1.7% 3.3% 2.2% 3.7% 0.9% 2.1% 1.9% 3.1%
Selected by LASSO 12 3 0 0 6 0 0 0 10 3 0 0
Post-selection inference 8 3 0 0 6 0 0 0 10 3 0 0

Anomalies 7 2 0 0
Post-selection inference BY 8 3 0 0 5 0 0 0 10 3 0 0

Anomalies 7 2 0 0
LASSO with λ Minimizing MSE in 10-fold Cross-validation

λ 0.4% 0.5% 2.2% 1.4% 0.6% 0.6% 2.2% 1.4% 0.2% 0.5% 1.0% 1.5%
Selected by LASSO 62 62 0 22 32 46 0 20 39 21 6 9
Post-selection inference 14 10 0 3 12 5 0 3 20 10 2 2

Anomalies 7 4 0 1
Post-selection inference BY 4 2 0 0 4 0 0 0 11 5 0 0

Anomalies 2 2 0 0

Panel B: List of the Significant Signals in the US Chosen with LASSO and λ = 1%

Signal Original study p-value

BE/ME Fama and French (1992) 0.021
Growth in LTNOA Fairfield et al. (2003) 0.021
R&D/MV Chan et al. (2001) 0.000
CBOP Ball et al. (2016) 0.006
Earnings Predictability Francis et al. (2004) 0.000
Change in OIBDP/SEQ 0.014
(trailing CHE)/ME 0.000
XSGA/ME 0.007
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Table 2.9 Continued
Reduced Set Base Set Extended Set

USA E J AP USA E J AP USA E J AP
Panel C: Number of Significant Signals for STO, Base Set of Anomalies, VIF < 7

All Signals 24/319 10/319 2/319 0/319 24/339 7/339 2/339 0/339 9/1194 2/1194 0/1194 0/1194
Anomalies 17/76 7/76 2/76 0/76 16/76 5/76 2/76 0/76 7/76 2/76 0/76 0/76

Panel D: Number of Significant Signals for STO, Reduced Set of Anomalies, VIF < 7
All Signals 7/260 4/260 0/260 0/260 4/273 9/273 0/273 0/273 5/1130 0/1130 0/1130 0/1130

Anomalies 2/19 2/19 0/19 0/19 2/17 2/17 0/17 0/17 3/15 0/15 0/15 0/15
Panel E: Number of Significant Signals for STO, Base Set of Anomalies, VIF < 3

All Signals 19/137 12/137 0/137 0/137 23/139 15/139 0/139 0/139 17/316 9/316 0/316 0/316
Anomalies 13/48 7/48 0/48 0/48 14/50 9/50 0/50 0/50 9/45 5/45 0/45 0/45

Panel F: Number of Significant Signals for STO, Reduced Set of Anomalies, VIF < 3
All Signals 11/106 16/106 0/106 0/106 17/105 10/105 0/105 0/105 10/289 9/289 0/289 0/289

Anomalies 5/10 5/10 0/10 0/10 7/10 4/10 0/10 0/10 4/9 4/9 0/9 0/9

frequent among the selected signals in the US. Data mining thus leads to a selection of

signals that are similar to those published in journals. This is expected since all the

covered anomalies were discovered in the US with CRSP and Compustat data. The

researchers thus tend to focus on the US market much more.

WLS section in Panel A deals with weighted-least-squares regression of returns on all

the signals with consequent FDR correction. The weight in the regressions is proportional

to one over number of stock in the cross-section each year to give equal weight to each

time period. This is very similar to the approach in Green et al. (2017) when only

anomalies are considered. The multi-collinearity issues are either ignored and all the

signals are used, or they are partially dealt with by iteratively discarding anomalies that

have variance inflation factor (VIF) of more than seven when considered with respect to

the other anomalies.33 The initial focus on independent anomalies is introduced in order

to keep as many of them as possible. Data-mined signals with VIF larger than seven

are then also iteratively discarded. STO leads to a larger number of significant signals

than any specification of LASSO. BY, however, provides fewer signals due to poor power

of the test. Green et al. (2017) therefore likely underestimate number of independently

significant anomalies due to their reliance on BY. Dealing with multi-collinearity turns

out to be very important and there are many more significant signals when the closely

related signals are discarded. One striking feature is that there are many more significant

anomalies when no data-mined signals are considered. This is due to the pre-selection

problem described previously in the simulations. Any analysis focusing just on published

anomalies therefore likely suffers from biases caused by omitting signals that were tried

but not published.

The results reported so far were describing the base case with 1,497 data-mined signals

and 89 published anomalies. Panel C extends the analysis to the reduced and extended

sets of data-mined signals with 768 and 48,383 signals, respectively. Panel D reduces the

number of published anomalies in Panel C from 89 to 24 so that all of them are closely

related to the universe of data-mined signals. The results in both Panel C and D are based

33VIF is defined as 1/(1−R2) in a regression of a given explanatory variable on all the other explanatory
variables.
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on Storey (2002) method applied to p-values from WLS regressions based on signals with

VIF lower than 7, as in Panel A. The format of reporting is x/y where x is the number

of significant signals and y is the number of remaining signals after the closely related

signals are discarded. Panel C documents that the reduced set of data-mined signals has

only a small impact on the number of significant independent signals. The number of

significant signals, however, drops for the extended set of signals. The drop can be simply

explained by a finite number of signals that can predict the individual stock returns and

increasing proportion of noise signals with the new data-mined signals. The new noise

signals contaminate the existing signals and make it harder to statistically reject them.

The same is also true for the reduced set of published anomalies in Panel D. The number

of significant signals is much smaller in Panel D relative to Panel C. The smaller number

is again caused by lower number of signals with small p-values due to the reduced set

of anomalies. The academic process is therefore able to create new signals that cannot

be captured by a naive data-mining process in the regression setting. Panel E and F

correspond to Panel C and D, respectively, with the exception that only signals with VIF

lower than 3 are kept. There is only a small difference in Panel E relative to Panel C.

There is notably a larger number of significant signals in Europe and for the extended

set of data-mined signals. There are many more significant signals in Panel F relative to

Panel D which supports the conjecture that there were too many noise signals in Panel

D relative to true drivers of returns for the MHT tests to distinguish between them. To

conclude, the number of data-mined signals plays a large role in the regression setting

and too many data-mined signals can lead to fewer rejected anomalies.

We next turn to a detailed analysis of signals that were selected in the US in Panel B.

There are five anomalies and three data-mined signals for the base case of LASSO with

λ = 1% and without accounting for FDR. The original source of anomalies is described in

the table. We prefer to interpret signals selected from LASSO as the selection guarantees

that the signals have economically significant predictive ability along with their statistical

significance. All the three data-mined signals are similar to some published anomaly.34

There are seven anomalies among the 8 selected signals for λ minimizing BIC criterion.

The anomalies include the five with λ = 1 plus cash flow over market value of equity of

Lakonishok et al. (1994) and change in net non-current operating assets of Richardson

et al. (2006). The eighth signal is again trailing cash over market value of equity. The

shift between selected anomalies based on slight change in λ documents that the selection

process is very unstable and could lead to very different outcomes for different research

designs. The impact of FDR correction depends on the chosen λ and there is notably no

reduction in significant signals for BIC.

The significant signals selected from just data-mined signals without the anomalies are

all closely related to some published anomalies. They include operating income (OIDBP)

34The relevant paper is Soliman (2008) for change in operating income over book value of equity, Palazzo
(2012) in the case of trailing cash (transformation 5) over market value, and Eisfeldt and Papanikolaou
(2013) in the case of sales, general, and administrative expenses over market value of equity.
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Figure 2.6: Transformations of Signals in the Regressions.

over total assets (similar to profitability), cash over market cap (similar to Palazzo (2012)),

change in assets over market cap (similar to investments), SG&A over market cap (similar

to Eisfeldt and Papanikolaou (2013)), and R&D expense over market cap (similar to Chan

et al. (2001)). This documents that data mining without any regard for economic theory

tends to find similar drivers of returns as the academic research. Furthermore the selected

signals are close to those generally thought of as important in the academic literature.

All the fundamental factors in Fama and French (2015) five factor model, or their close

substitutes, appear somewhere among the selected significant signals in the US.

2.4.3 Portfolio-shaped Signals

The regressions have so far assumed that the fundamental signals predict mean stock

returns in a linear form. That is, the individual stock returns are a linear function of

cross-sectional quantiles of the signals. The linear form is, however, different from the

previous portfolio-level analysis in that the fundamental signals have to predict the whole

cross-section of the stock returns and not just the extreme deciles. Figure 2.6 compares

the linear form with portfolio-shaped transformation of the signals. The portfolio-shaped

transformation sets the upper 1−x cross-sectional quantile of the signal equal to 1, lower

x quantile equal to −1, and is equal to zero otherwise. The x corresponds to 0.1 for decile

sorts. We will now investigate whether the portfolio-shaped transformation of the signals

has any impact on the previous conclusions.

Table 2.10 presents number of significant signals with the portfolio-shaped transfor-

mation of the signals. The table corresponds to Panels C to F in Table 2.9. The weighed

least squares regression is again estimated with 1/Nt weights so that all the years have the

same role in optimization regardless of the number of stocks in each of them. Three spec-

ifications of the portfolio-shaped regressions corresponding to decile (10/90 breakpoints),

quintile (20/80 breakpoints), or third decile (30/70 breakpoints) long-short portfolios are
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considered. That is, x is either 0.1, 0.2, or 0.3. Only the base case with 1,490 data-mined

signals is considered.

Table 2.10:
Independently Significant Portfolio-shaped Signals

The table shows number of independently significant signals from regressions of individual
stocks returns on transformed fundamental signals. The transformed signals are shaped to
correspond to kernels for portfolios, that is, the bottom x quantile of original signals each
year is transformed to −1 and upper 1− x quantile of the original signals is transformed
to 1. Where x is either first decile (10/90 breakpoints), second decile (20/80 breakpoints),
or third decile (30/70 breakpoints) and the transformed signals are equal to 0 otherwise.
We regress all the signals using weighted-least-squares regressions (WLS). We control
for FDR at 5% level with Storey (2002) (STO) method. Signals with variance inflation
factor (VIF) larger than 7 are discarded before running the regressions in Panel A and B
and with VIF larger than 3 in Panel C and D. The regressions are conducted on 1,586
fundamental signals; 1,497 data-mined and 89 from published studies. Panel B and D
further restricts the number of anomalies to 24 that are closely related to the data-mined
signals. The data-mined fundamental signals are created by various transformations of
49 accounting variables, as described in the Section 2.1.2. The sample is restricted to
industrial stocks with price over $1 and capitalization larger than the bottom decile in
NYSE at the end of previous June. It spans July 1963 to December 2016 in the US and
July 1995 to December 2016 in other regions.

10/90 Breakpoints 20/80 Breakpoints 30/70 Breakpoints

USA E J AP USA E J AP USA E J AP
Panel A: Base Set of Anomalies, VIF < 7

All Signals 2/1115 0/1115 0/1115 0/1115 3/1028 2/1028 0/1028 0/1028 5/905 0/905 0/905 0/905
Anomalies 2/87 0/87 0/87 0/87 3/88 2/88 0/88 0/88 3/88 0/88 0/88 0/88

Panel B: Reduced Set of Anomalies, VIF < 7
All Signals 0/1052 0/1052 0/1052 0/1052 0/957 0/957 0/957 0/957 3/835 0/835 0/835 0/835

Anomalies 0/22 0/22 0/22 0/22 0/22 0/22 0/22 0/22 0/835 0/835 0/835 0/835
Panel C: Base Set of Anomalies, VIF < 3

All Signals 3/464 2/464 1/464 0/464 20/285 9/285 0/285 0/285 30/210 15/210 1/210 0/210
Anomalies 3/76 2/76 1/76 0/76 11/71 6/71 0/71 0/71 19/60 7/60 0/60 0/60

Panel D: Reduced Set of Anomalies, VIF < 3
All Signals 1/410 1/410 0/410 0/410 12/235 8/235 0/235 0/235 15/169 10/169 0/169 0/169

Anomalies 1/21 1/21 0/21 0/21 5/16 3/16 0/16 0/16 6/15 5/15 0/15 0/15

There are almost no significant signals for VIF smaller than 7 in Panel A and B.

The main reason for the low number of the significant signals is that the number of

signals discarded because the VIF was larger than 7 is also low. The setting with about

one thousand signals corresponds to the case with extended set of data-mined signals in

Table 2.9, where the number of significant signals was low as well. The results in Panel

C and D with VIF smaller than 3 for 20/80 and 30/70 specification of breakpoints in

the portfolio-shaped transformation then roughly correspond to the linear specification in

Table 2.9. To conclude, the results with the linear transformation can be replicated with

the portfolio-shaped transformation which provides further robustness to the findings in

Table 2.9.
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2.5 Out-of-sample Tests

The analysis so far has focused on the selection of significant signals for the full available

sample. We now turn to profitability out-of-sample. Previous evidence has shown that

the selected anomalies in academic journals are very similar to the selected data-mined

signals. This is why it could be the case that data mining has a similar predictive power

as the academic research. There is, however, also a good reason why this does not have

to be the case. All the published anomalies in good journals have to undergo a vetting

procedure during their publication. The vetting guarantees that they are backed with

sound reasoning which should in turn increase profitability out-of-sample.

There are two types of out-of-sample comparison that we offer here. First, there is a

comparison in the US in that we select the historically most successful signals and observe

how they fare out-of-sample. This comparison is within the original market but outside

the original sample’s time period. We also study how they perform outside their original

market; in Europe, Japan, and Asia Pacific. The international test should provide a good

setting to test the hypothesis of better external validity of the published anomalies as

none of the original studies included international tests. We first study out-of-sample

profitability of the signals in investment strategies and then examine predictive ability of

the signals with respect to returns on individual stocks in formal tests.

2.5.1 Out-of-sample Profitability

Panel A of Table 2.11 shows out-of-sample returns on a simple strategy that equally

invests into individual significant fundamental signals. Long-short decile portfolios are

created based on all of the fundamental signals. Every June, we select portfolios based on

all the published anomalies with returns significant at 5% level in one sided hypothesis

test and hold the selected portfolios for the next year.35 Only significant anomalies are

selected as some of the anomalies cannot be replicated after the micro-caps have been

excluded from the sample. The strategy essentially evaluates mean out-of-sample return

on average published anomaly that can be replicated. A similar strategy is then also

created for the 1,497 data-mined anomalies with one change that the same number of the

most significant signals is selected as for published anomalies in the given year. The same

number of data-mined signals is chosen so that the out-of-sample performance captures

the ability of academic studies to better select important signals in contrast to just looking

at significance level. Panel B selects all long-short decile portfolios based on data-mined

signals that are significant in multiple hypothesis tests of Storey (2002) at γ = 5%. Pan-

els A and B therefore study out-of-sample performance at portfolio level of the simplest

aggregate strategy that equally invests in the individual historically significant quanti-

tative strategies. The selection process of significant signals is separately conducted for

35We consider only anomalies published before the formation of the mixed portfolio so that the results
are not driven by forward looking bias.
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Table 2.11:
Performance Persistence

The table shows out-of-sample performance of data-mined or published fundamental sig-
nals. Strategy in Panel A and B selects nt of the historically most significant long-short
portfolios created based on individual fundamental signals in the US at the end of each
June starting in 1995 and equally invests in them for one year. nt corresponds to a number
of significant (t-statistic larger than 1.65) anomalies published by the time t in Panel A
and to number of data-mined signals significant based on Storey (2002) and γ = .05 in
Panel B. We select the strategies separately from a subsample of 93 anomalies published
by the time of portfolio formation and then from 1,497 data-mined signals. Panel C is
based on long-short decile portfolio from strategy that combines all the available signals
through predictive LASSO regressions of individual stocks’ returns on transformed funda-
mental signals in the US. The out-of-sample performance is observed in the US, Europe,
Japan, and Asia Pacific. The 1,497 data-mined fundamental signals are created by various
transformations of 49 accounting variables, as described in the Section 2.1.2. The sample
is restricted to industrial stocks with price over $1 and capitalization larger than bottom
decile in NYSE at the end of previous June. It spans July 1963 to December 2016 in
the US and July 1995 to December 2016 in other regions. The value-weighted or equal-
weighted long-short portfolios are constructed by buying stocks in the top decile of the
signals and shorting stocks in the bottom decile of the signals. The alphas are estimated
with Fama and French (2015) five factor model (FF5). The returns are in percentage
points per month. Standard errors in t-statistics are HAC adjusted, as in Newey and
West (1987) with 12 lags.

Equal-weighted Portfolios Value-weighted Portfolios

USA Europe Japan Asia Pacific USA Europe Japan Asia Pacific

Panel A: Individual Signals Selected Based on Their Significance

Data Mined Signals
Mean Return 0.323 0.236 -0.098 0.422 0.285 0.101 -0.337 0.260

(3.030) (1.610) (-0.816) (3.520) (2.550) (0.891) (-1.080) (0.698)
FF5 alpha 0.196 0.023 -0.113 0.332 0.193 -0.022 -0.351 -0.367

(2.180) (0.238) (-1.270) (2.590) (1.870) (-0.210) (-1.490) (-0.748)
Published Anomalies

Mean Return 0.278 0.306 0.128 0.446 0.281 0.253 0.184 0.432
(3.970) (5.790) (2.640) (5.360) (3.350) (3.350) (1.930) (4.250)

FF5 alpha 0.206 0.180 0.093 0.337 0.202 0.093 0.089 0.224
(3.190) (4.490) (2.430) (3.590) (2.450) (1.550) (1.350) (2.520)

Diff wrt the data mining -0.046 0.070 0.226 0.024 -0.004 0.152 0.521 0.172
(-0.583) (0.589) (2.270) (0.184) (-0.036) (1.910) (2.000) (0.538)

Panel B: Individual Data-mined Signals Selected Based on Storey (2002) and γ = .05

Mean Return 0.027 0.047 -0.011 0.043 0.114 0.072 0.016 0.298
(1.030) (2.020) (-0.561) (1.880) (1.630) (1.070) (0.168) (2.460)

FF5 alpha 0.035 0.012 0.005 0.015 0.120 0.067 0.068 0.100
(1.750) (0.583) (0.326) (0.639) (1.740) (1.020) (0.933) (0.850)

Panel C: Signals aggregated with LASSO Regressions

Data Mined Signals
Mean Return 0.644 1.250 0.775 1.270 0.533 0.434 0.549 1.010

(1.830) (3.260) (2.460) (4.060) (1.800) (1.340) (1.100) (2.850)
FF5 alpha 0.274 0.689 0.554 0.873 0.346 -0.043 0.096 0.722

(1.190) (3.130) (2.480) (2.070) (1.280) (-0.132) (0.261) (1.470)
Published Anomalies

Mean Return 0.819 1.110 0.565 1.180 0.643 0.510 0.398 0.975
(1.530) (2.590) (1.610) (3.830) (1.640) (1.600) (1.250) (3.070)

FF5 alpha 0.062 0.421 0.218 0.492 0.025 0.024 -0.060 0.060
(0.193) (1.810) (1.090) (1.650) (0.110) (0.126) (-0.311) (0.161)

Diff wrt the data mining 0.175 -0.137 -0.209 -0.092 0.110 0.076 -0.151 -0.033
(0.516) (-0.681) (-1.370) (-0.341) (0.377) (0.271) (-0.438) (-0.081)
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equal-weighted and value-weighted portfolios.36

There is some slight under-performance of the published anomalies in the US although

not significant at 5% level. There is a good reason why performance in the US should

be lower than expected for the published anomalies. McLean and Pontiff (2016) showed

that there is a large drop in profitability of anomalies after they are published. They

ascribe this drop to informed trading where investors take the opportunity to make profits.

The published anomalies are, however, much more successful in the international setting.

Equal-weighted portfolios are significant in all regions for published anomalies but they

are insignificant in Japan and Europe for the data-mined signals. This is even more

evident for value-weighted portfolios which are significant in three regions for published

anomalies but only in the US for data-mined signals. These differences are, however,

significant at 5% level only in Japan.

Panel B tests whether a more advanced technique to select all outperforming signals

adds any value. Multiple hypothesis tests were developed in order to select the largest

possible number of individually significant signals and they should, at least theoretically,

provide better out of sample performance. The table documents that it is not the case

and selecting a fixed small number of signals works better. This is in line with the

findings in Bajgrowicz and Scaillet (2012) who found no out-of-sample predictability of

technical trading rules using Storey (2002) test to select likely outperforming signals. As

as result, the ability of the formal multiple hypothesis tests to select individual signals

with persistent profitability is questionable. Chordia et al. (2017) came essentially to the

same conclusion with their 2.1 million strategies.

The evidence presented so far supports the hypothesis that published anomalies out-

perform data mining out-of-sample. This is as expected since publishing anomalies means

overcoming a detailed scrutiny of referees, who require valid theoretical underpinning for

the new findings. This rigorous process should then lead to a better selection of sig-

nals. The profitable anomalies can be identified with important underlying risks, which

is connected to risk premia or to behavioural biases that are innate to humans.

We now turn to what happens when supervised machine learning techniques are ap-

plied in Panel C. To do this, we use LASSO regressions of individual stock returns on

fundamental signals in the US using data available up to the portfolio formation at the end

of each June. The approach is described in Section 2.4 and we set λ = 1%. Future returns

on individual stocks are predicted with the latest available fundamentals. Equal-weighted

and value-weighted portfolios are created based on sorts on the predictions. That is, the

zero-cost long-short portfolios are created by buying stocks in the top decile of predicted

returns and shorting stocks in the bottom decile of predicted returns. Only anomalies

that have been published by the time of portfolio formation are used in order not to

create look ahead bias.37 Shrinking the number of signals should lead to more profitable

36The value-weighted portfolios here label a strategy that equally invests in the value-weighted portfo-
lios based on the individual signals, but is not value-weighted itself per se.

37The results are not hugely influenced by inclusion of all anomalies for the whole period. The perfor-

115



strategies as it should provide optimal combination of signals that jointly lead to highest

returns. This is indeed the case and returns have increased in all the regions for both

data-mined and published anomalies. Data mining now provides positive returns in all

the regions and it is not significantly different from the published anomalies. The same

applies for the risk adjusted returns. Although the risk adjusted returns are noticeably

lower now due to lower diversification among the profitable signals.

2.5.2 Out-of-sample Return Predictability on All the Stocks

Returns on the decile portfolios are not the objective being optimized when minimizing

squared loss in the LASSO regressions. The previous results do not properly access the

predictive ability of the data mined signals and the anomalies. We will now investigate

the out-of-sample (OOS) predictive power for returns on all stocks and not only those in

extreme deciles. We follow Gu et al. (2018) and define absolute predictive ability of the

individual forecast with OOS R2

1−
∑

it(rit − f̂(xit))
2∑

it r
2
it

(2.7)

where f̂ is a predictive function fitted on data preceding year t. Both estimation and

OOS R2 is done on annual signals and returns. Unlike Gu et al. (2018), we use demeaned

returns in each year and region instead of excess returns (over value-weighted market

returns) since we do the same in the LASSO regressions. Raw returns without demeaning

lead to almost identical performance. We compare individual forecasts using anomalies

relative to using data mining in the Diebold and Mariano (1995) test. Specifically, we

adopt the approach in Gu et al. (2018) and create a time-series of differences of cross-

sectional sums of squared losses of the two forecasts. We then test significance of the

differences by testing significance of their time-series average with simple t-test. We

adjust the standard errors in t-statistics for heteroskedasticity and autocorrelation with

Newey-West procedure with 3 lags.

The results in Table 2.12 are in line with our previous results for portfolio returns. The

anomalies research and data mining lead to a very similar OOS predictive performance

but data mining slightly wins here. The difference is significant only in Europe. The fact

that academic research does not have superior predictive power should not be surprising

in the light of our previous evidence. We have shown that signals that are selected as

independently significant from LASSO are very similar for data mining and anomalies.

Academic research thus identifies important drivers of returns which are then very similar

to what pure data mining approach finds, at least in the US, where most of the anomalies

were found.

mance in the US does not improve but rather shrinks to one third for value-weighted portfolios.
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Table 2.12:
Out-of-sample R2

This table shows out-of-sample R2 of the predictions of individual stocks’ returns using
data-mined or published fundamental signals. The predictions follow Panel C of Table 2.11
and are based on a strategy that combines all the available signals through predictive
LASSO regressions of individual stocks returns on transformed fundamental signals in
the US. The out-of-sample performance is observed in the US, Europe, Japan, and Asia
Pacific over July 1990 to December 2016 period. The 1,497 data-mined fundamental
signals are created by various transformations of 49 accounting variables, as described in
the Section 2.1.2. The sample is restricted to industrial stocks with price over $1 and
capitalization larger than bottom decile in NYSE at the end of previous June. It spans
July 1963 to December 2016 in the US and July 1990 to December 2016 period in other
regions. The OOS R2 are in percentage points.

USA Europe Japan Asia Pacific

Anomalies 0.488 0.744 1.150 0.818
Data mining 0.551 1.290 1.680 1.050
Difference -0.339 -2.830 -1.870 -0.587

2.6 Conclusion

We have documented that it is very difficult to select outperforming strategies outside

micro-cap universe of stocks. After carefully accounting for biases in returns, it is possible

to do reasonably well at explaining the returns on a wide range of fundamental anomalies.

Critical values for significance of signals in multiple hypothesis tests are higher than the

critical values for single hypothesis tests but they also heavily depend on specific setting.

The equal-weighted returns tend to lead to higher number of significant anomalies and this

in turn leads to less strict critical values for t-statistics for a given level of significance. The

number of significant signals also critically depends on adjustment of standard errors of

returns for heteroskedasticity and autocorrelation. The number of significant anomalies

can shrink to one third if twelve lags are included in the HAC robust adjustment of

standard errors instead of just one lag. We have shown that the individual significant

anomalies identified in the US are profitable in all the regions out-of-sample but this is

not the case for the data-mined signals. Selecting individual data-mined signals solely

based on their past long-short portfolio returns is not a profitable strategy in Japan when

micro-caps are excluded. Using machine learning tools, however, shrinks this advantage

of academic research. There is no significant difference in predictive ability of the data-

mined signals and the published academic anomalies when LASSO regressions are used

to synthesize the individual signals into one mispricing measure.

The sole focus of this study is fundamental anomalies. The analysis could be easily

extended into other types of anomalies such as those based on past returns or quarterly

fundamental data. We leave this to future research.
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Appendix E

49 Fundamental Variables Used in

Construction of the Data-mined

Fundamental Signals

The list of variables is provided in Table E.1. The table also gives a link on how the

corresponding variables in Datastream are constructed. Appendix F then provides the

full names of variables in Datastream matched to their shortcuts.
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Table E.1:
Fundamental Variables Used for Construction of Fundamental Strategies

The table shows all fundamental variables that were required for construction of our
fundamental anomalies.

BALANCE SHEET
ASSETS
Current Assets

Cash and Short-Term Investments CHE WC02001
Receivables - Total RECT WC02051
Inventories - Total INVT WC02101
Current Assets - Other - Total ACO WC02149 + WC02140

Prepaid Expenses XPP WC02140
Current Assets - Total ACT WC02201
Non-Current Assets

Long-Term Investments IVAO WC02258 + WC02250
Property Plant and Equipment - Total (Net) PPENT WC02501

Property Plant and Equipment - Total (Gross) PPEGT WC02301
Property Plant and Equipment Buildings at Cost FATB WC18376
Property Plant and Equipment Leases at Cost FATL WC18381

Investment and Advances - Equity IVAEQ WC02256
Intangible Assets - Total INTAN WC02649

Assets - Total AT WC02999

LIABILITIES AND SHAREHOLDERS’ EQUITY
Current Liabilities

Debt in Current Liabilities DLC WC03051
Account Payable/Creditors - Trade AP WC03040
Current Liabilities - Other - Total LCO WC03066 + WC03054

+ WC03063 + WC03061
Income Taxes Payable TXP WC03063

Current Liabilities - Total LCT WC03101
Long-Term Liabilities

Long-Term Debt - Total DLTT WC03251
Liabilities - Other LO WC03273 + WC03262

Liabilities - Total LT WC03351
Minority Interest - Balance Sheet MIB WC03426

Shareholders’ Equity
Preferred/Preference Stock (Capital) - Total PSTK WC03451
Retained Earnings RE WC03495

Shareholders’ Equity - Total SEQ WC03501 + WC03451

Common/Ordinary Equity - Total CEQ WC03501
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INCOME STATEMENT
Sales/Turnover (Net) SALE WC01001

Cost of Goods Sold COGS WC01051
Selling, General and Administrative Expenses XSGA WC01101

Research and Development Expense XRD WC01201
Earnings Before Interest, Taxes & Depreciation OIBDP WC01151 + WC01250
Depreciation and Amortization - Total DP WC01151
Earnings Before Interest and Taxes OIADP WC01250
Interest and Related Expense XINT WC01251
Pretax Income PI WC01401
Income Taxes - Total TXT WC01451
Income Before Extraordinary Items IB WC01551

CASH FLOW STATEMENT
Indirect Operating Activities
Operating Activities - Net Cash Flow OANCF WC04860
Investing Activities

Capital Expenditures CAPX WC04601
Investing Activities - Net Cash Flow IVNCF - WC04870
Financing Activities

Purchase of Common and Preferred Stock PRSTKC WC04751
Sale of Common and Preferred Stock SSTK WC04251
Cash Dividends DV WC04551

Dividends on Common Stock DVC WC05376
Long-Term Debt - Issuance DLTIS WC04401
Long-Term Debt - Reduction DLTR WC04701
Net Changes in Current Debt DLCCH WC04821

Financing Activities - Net Cash Flow FINCF WC04890
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Appendix F

Names of Variables in Datastream

Matched to Their Shortcuts
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Table F.1:
Fundamental variables in Datastream

Assets 35 Total Assets 02999
1 Cash & Short Term Investments 02001 Liabilities & Shareholders’ Equity
2 Cash 02003 36 Accounts Payable 03040
3 Short Term Investments 02008 37 Short Term Debt & Current Portion of Long Term Debt 03051
4 Receivables (Net) 02051 38 Accrued Payroll 03054
5 Inventories -Total 02101 39 Income Taxes Payable 03063
6 Raw Materials 02097 40 Dividends Payable 03061
7 Work in Process 02098 41 Other Current Liabilities 03066
8 Finished Goods 02099 42 Current Liabilities - Total 03101
9 Progress Payments & Other 02100 43 Long Term Debt 03251
10 Prepaid Expenses 02140 44 Long Term Debt Excluding Capitalized Leases 03245
11 Other Current Assets 02149 45 Non Convertible Debt 18281
12 Current Assets - Total 02201 46 Convertible Debt 18282
13 Long Term Receivables 02258 47 Capitalized Lease Obligations 03249
14 Investment in Associated Companies 02256 48 Provision for Risks and Charges 03260
15 Other Investments 02250 49 Deferred Income 03262
16 Property Plant and Equipment Net 02501 50 Deferred Taxes 03263
17 Property Plant and Equipment - Gross 02301 51 Deferred Taxes - Credit 18183
18 Land 18375 52 Deferred Taxes - Debit 18184
19 Buildings 18376 53 Other Liabilities 03273
20 Machinery & Equipment 18377 54 Total Liabilities 03351
21 Transportation Equipment 18380 55 Non-Equity Reserves 03401
22 Property Plant & Equipment under Capitalized Leases 18381 56 Minority Interest 03426
23 Property Plant & Equipment - Other 18379 57 Preferred Stock 03451
24 Accumulated Depreciation 02401 58 Common Equity 03501
25 Accumulated Depreciation - Land 18383 59 Common Stock 03480
26 Accumulated Depreciation - Buildings 18384 60 Capital Surplus 03481
27 Accumulated Depreciation - Machinery & Equipment 18385 61 Revaluation Reserves 03492
28 Accumulated Depreciation - Transportation Equipment 18388 62 Other Appropriated Reserves 03493
29 Accumulated Depreciation Other Property Plant & Equipment 18387 63 Retained Earnings 03495
30 Accumulated Depreciation - PPE under Capitalized Leases 18389 64 ESOP Guarantees 03496
31 Other Assets 02652 65 Unrealized Foreign Exchange Gain/Loss 03497
32 Deferred Charges 02647 66 Unrealized Gain/Loss on Marketable Securities 03498
33 Tangible Other Assets 02648 67 Treasury Stock 03499
34 Total Intangible Other Assets - Net 02649 68 Total Liabilities & Shareholders’ Equity 03999
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Table F.1 continued

Additional items 102 Preferred Dividend Requirements 01701

69 Trade Receivables - Net 18297 103 Net Income after Preferred Dividends (Basic EPS) 01706

70 Provision for Bad Debt 18298 104 Extraordinary Items & Gain/Loss Sale of Assets 01601

71 Other Accrued Expenses 03069 Additional items

72 Current Portion of Long Term Debt 18232 105 Research & Development Expense 01201

Income statement 106 Restructuring Expense 18227

73 Net Sales or Revenues 01001 Cash Flow statement

74 Cost of Goods Sold 01051 107 Net Income / Starting Line 04001

75 Depreciation, Depletion & Amortization 01151 108 Depreciation, Depletion & Amortization 04051

76 Depreciation 01148 109 Depreciation and Depletion 04049

77 Amortization of Intangibles 01149 110 Amortization of Intangible Assets 04050

78 Amortization of Deferred Charges 01150 111 Deferred Income Taxes & Investment Tax Credit 04101

79 Gross Income 01100 112 Deferred Income Taxes 04199

80 Selling, General & Administrative Expenses 01101 113 Total Other Cash Flow 04151

81 Other Operating Expenses 01230 114 Funds from Operations 04201

82 Operating Expenses - Total 01249 115 Extraordinary Items 04225

83 Operating Income 01250 116 Funds from/for Other Operating Activities 04831

84 Extraordinary Credit - Pre-tax 01253 117 Decrease/Increase in Receivables 04825

85 Extraordinary Charge - Pre-tax 01254 118 Decrease/Increase in Inventories 04826

86 Non-Operating Interest Income 01266 119 Increase/Decrease in Accounts Payable 04827

87 Pre-tax Equity in Earnings 01267 120 Increase/Decrease in Income Taxes Payable 04828

88 Other Income/Expense - Net 01262 121 Increase/Decrease in Other Accruals 04829

89 Interest Expense on Debt 01251 122 Decrease/Increase in Other Assets/Liabilities 04830

90 Interest Capitalized 01255 123 Net Cash Flow - Operating Activities 04860

91 Pre-tax Income 01401 124 Capital Expenditures (Additions to Fixed Assets) 04601

92 Income Taxes 01451 125 Additions to Other Assets 04651

93 Current Domestic Income Tax 18186 126 Net Assets from Acquisitions 04355

94 Current Foreign Income Tax 18187 127 Increase in Investments 04760

95 Deferred Domestic Income Tax 18188 128 Decrease in Investments 04440

96 Deferred Foreign Income Tax 18189 129 Disposal of Fixed Assets 04351

97 Minority Interest 01501 130 Other Uses/(Sources) - Investing 04797

98 Equity in Earnings 01503 131 Other Uses - Investing 04795

99 After Tax Other Income/Expense 01504 132 Other Sources - Investing 04796

100 Discontinued Operations 01505 133 Net Cash Flow - Investing 04870

101 Net Income before Extraordinary Items/Preferred Dividends 01551 134 Net Proceeds from Sale/Issue of Common & Preferred 04251
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Table F.1 continued

135 Proceeds from Stock Options 04301

136 Other Proceeds from Sale/Issuance of Stock 04302

137 Com/Pfd Purchased, Retired, Converted, Redeemed 04751

138 Long Term Borrowings 04401

139 Increase/Decrease in Short Term Borrowings 04821

140 Reduction in Long Term Debt 04701

141 Cash Dividends Paid - Total 04551

142 Common Dividends (Cash) 05376

143 Preferred Dividends (Cash) 05401

144 Other Sources/(Uses) - Financing 04448

145 Other Sources - Financing 04446

146 Other Uses - Financing 04447

147 Net Cash Flow - Financing 04890

148 Effect of Exchange Rate on Cash 04840

149 Increase/Decrease in Cash & Short Term Investments 04851

Additional items

150 Total Sources 04501

151 Total Uses 04811
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93 Published Anomalies
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Table G.1:
List of Published Fundamental Anomalies

Accruals
Accruals Sloan (1996)
Change in Common Equity Richardson et al. (2006)
Change in Current Operating Assets Richardson et al. (2006)
Change in Current Operating Liabilities Richardson et al. (2006)
Change in Financial Liabilities Richardson et al. (2006)
Change in Long-Term Investments Richardson et al. (2006)
Change in Net Financial Assets Richardson et al. (2006)
Change in Net Non-Cash Working Capital Richardson et al. (2006)
Change in Net Non-Current Operating Assets Richardson et al. (2006)
Change in Non-Current Operating Assets Richardson et al. (2006)
Change in Non-Current Operating Liabilities Richardson et al. (2006)
Change in Short-Term Investments Richardson et al. (2006)
Discretionary Accruals Dechow et al. (1995)
Growth in Inventory Thomas and Zhang (2002)
Inventory Change Thomas and Zhang (2002)
Inventory Growth Belo and Lin (2011)
M/B and Accruals Bartov and Kim (2004)
Net Working Capital Changes Soliman (2008)
Percent Operating Accrual Hafzalla et al. (2011)
Percent Total Accrual Hafzalla et al. (2011)
Total Accruals Richardson et al. (2006)
Intangibles
4 Gross Marging - 4 Sales Abarbanell and Bushee (1998)
4 Sales - 4 Acounts Receivable Abarbanell and Bushee (1998)
4 Sales - 4 Inventory Abarbanell and Bushee (1998)
4 Sales - 4 SG and A Abarbanell and Bushee (1998)
Asset Liquidity Ortiz-Molina and Phillips (2014)
Asset Liquidity II Ortiz-Molina and Phillips (2014)
Cash-to-assets Palazzo (2012)
Earnings Conservatism Francis et al. (2004)
Earnings Persistence Francis et al. (2004)
Earnings Predictability Francis et al. (2004)
Earnings Smoothness Francis et al. (2004)
Earnings Timeliness Francis et al. (2004)
Herfindahl Index Hou and Robinson (2006)
Hiring rate Belo et al. (2014)
Industry Concentration Assets Hou and Robinson (2006)
Industry Concentration Book Equity Hou and Robinson (2006)
Industry-adjusted Organizational Capital-to-Assets Eisfeldt and Papanikolaou (2013)
Industry-adjusted Real Estate Ratio Tuzel (2010)
Org. Capital Eisfeldt and Papanikolaou (2013)
RD / Market Equity Chan et al. (2001)
RD Capital-to-assets Li (2011)
RD Expenses-to-sales Chan et al. (2001)
Tangibility Hahn and Lee (2009)
Unexpected RD Increases Eberhart et al. (2004)
Whited-Wu Index Whited and Wu (2006)
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Table G.1 continued
Investment
4 CAPEX - 4 Industry CAPEX Abarbanell and Bushee (1998)
Asset Growth Cooper et al. (2008)
Change Net Operating Assets Hirshleifer et al. (2004)
Changes in PPE and Inventory-to-Assets Lyandres et al. (2007)
Composite Debt Issuance Lyandres et al. (2007)
Composite Equity Issuance (5-Year) Daniel and Titman (2006)
Debt Issuance Spiess and Affleck-Graves (1995)
Growth in LTNOA Fairfield et al. (2003)
Investment Titman et al. (2004)
Net Debt Finance Bradshaw et al. (2006)
Net Equity Finance Bradshaw et al. (2006)
Net Operating Assets Hirshleifer et al. (2004)
Noncurrent Operating Assets Changes Soliman (2008)
Share Repurchases Ikenberry et al. (1995)
Total XFIN Bradshaw et al. (2006)
Profitability
Asset Turnover Soliman (2008)
Capital Turnover Haugen and Baker (1996)
Cash-based Operating Profitability Ball et al. (2016)
Change in Asset Turnover Soliman (2008)
Change in Profit Margin Soliman (2008)
Earnings / Price Basu (1977)
Earnings Consistency Alwathainani (2009)
F-Score Piotroski (2000)
Gross Profitability Novy-Marx (2013)
Labor Force Efficiency Abarbanell and Bushee (1998)
Leverage Bhandari (1988)
O-Score (More Financial Distress) Dichev (1998)
Operating Profits to Assets Ball et al. (2016)
Operating Profits to Equity Fama and French (2015)
Profit Margin Soliman (2008)
Return on Net Operating Assets Soliman (2008)
Return-on-Equity Haugen and Baker (1996)
Z-Score (Less Financial Distress) Dichev (1998)
Value
Assets-to-Market Fama and French (1992)
Book Equity / Market Equity Fama and French (1992)
Cash Flow / Market Equity Lakonishok et al. (1994)
Duration of Equity Dechow et al. (2004)
Enterprise Component of Book/Price Penman et al. (2007)
Enterprise Multiple Loughran and Wellman (2011)
Intangible Return Daniel and Titman (2006)
Leverage Component of Book/Price Penman et al. (2007)
Net Payout Yield Boudoukh et al. (2007)
Operating Leverage Novy-Marx (2010)
Payout Yield Boudoukh et al. (2007)
Sales Growth Lakonishok et al. (1994)
Sales/Price Barbee Jr et al. (1996)
Sustainable Growth Lockwood and Prombutr (2010)
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Chapter 3

Does It Pay to Follow Anomalies

Research?

Machine Learning Approach with

International Evidence

Low interest rates environment after the Financial Crisis of 2008 has caused a surge in

search for alternative ways of how to earn steady returns that are uncorrelated with the

stocks market. One response of the financial industry was an explosion in a number of

”smart beta” funds that provide exposure to various risk factors, which have been his-

torically connected to risk premia. This larger interest should, however, in turn lead

to their lower profitability. McLean and Pontiff (2016) document the decrease of 58%

in post-publication returns relative to the in-sample returns of anomalies. Jacobs and

Müller (2017b) however show that the United States is the only country with a reliable

post-publication decline in returns of anomalies, emphasizing the importance of interna-

tional evidence in asset pricing. Apart from the lack of the post-publication decline in

the international setting, Jacobs and Müller (2017a) find that combining anomalies into

one mispricing signal using least squares leads to superior out-of-sample risk-adjusted

returns relative to focusing on individual anomalies. The benefit of combining individ-

ual anomalies through predictive regressions is further emphasized by Gu et al. (2018)

who conclude that sophisticated machine learning methods offer higher out-of-sample pre-

dictability in the US compared to the traditional methods in Jacobs and Müller (2017a).

This study extends the use of machine learning methods to international sample and finds

internationally unprecedented out-of-sample profitability using anomalies as predictors in

machine-learning-based predictive regressions.

In order to benchmark machine learning based strategy (mispricing strategy here-

after) we look at out-of-sample profitability of a portfolio-level strategy that invests in

the individual published anomalies (portfolio-mixing strategy hereafter). Having all the

constructed anomalies at our disposal, we examine degree of predictability of future prof-
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itability of the individual anomalies based on their past profitability in various regions. To

our knowledge, this is the first study to focus the question whether international evidence

for individual anomalies can actually help with predictions of their future returns. We

also study the value of international evidence for the prediction of out-of-sample stock

returns in the mispricing strategy. Furthermore, even though machine learning meth-

ods are notoriously hard to interpret we look at the marginal variable importance in our

predictive regressions and find substantial heterogeneity across the regions, forecasting

methods, as well as liquidity-based subsamples. Next, we examine limits to arbitrage

associated with our strategies. We are the first to extensively estimate transaction costs

associated with strategies leveraging predictive power of anomalies internationally and

document that strategies remain profitable even after accounting for the transaction costs

as well as short-selling constraints. Since we only include anomalies as predictors after

their publication we also examine the marginal value of the new anomalies for the out-of-

sample predictions after accounting for the already published anomalies and show that it

remains positive over time, confirming added value of recent anomalies literature.

153 published anomalies are studied in the US, Japan, Europe, and Asia Pacific.

The anomalies in this study describe characteristics related to individual stocks that

can predict their future returns. No distinction is being made between characteristics

that are related to risk premia and characteristics that are related to mispricing due to

frictions or other market imperfections. The studied anomalies are, for example, accruals

of Sloan (1996), earnings over price of Basu (1977), composite equity issuance of Daniel

and Titman (2006), and R&D over Market Equity of Chan et al. (2001). The focus in

this study is restricted to a liquid universe of stocks. The liquid stocks are defined as

the largest stocks with capitalization in the top 90% of the overall market’s capitalization

and dollar trading volume over the previous year in the top 90% of the overall market’s

volume in the individual regions. Only about 500 most liquid stocks pass the criteria in

2010s in a given month in the US. Excluding small-capitalization stocks leads to results

more relevant to investors and limits effect of microstructure noise.1

The portfolio-mixing strategy describing average return on the individual anomalies is

first considered. The portfolio-mixing strategy equally invests in portfolios created based

on individual anomalies that are significant in the US at 5% level.2 Hou et al. (2017)

show that many of the published anomalies disappear on liquid universe of stocks. Our

stock universe is far more liquid relative to Hou et al. (2017). The focus on significant

anomalies in the strategy therefore guarantees that the conclusions are not driven by

inclusion of these irrelevant strategies, as would be the case for the simplest strategy

taking into account all the published anomalies in Hou et al. (2017). The weighting in

the strategy is the simplest possible and the strategy’s average returns can be interpreted

as average return on individual anomalies that were historically significant. The average

returns are expected to be positive if there is any persistence in returns on the anomalies.

1See Asparouhova et al. (2010) for description of the effect of microstructure noise.
2It is later shown that the results do not depend on the 5% significance level.
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The significant anomalies are selected once a year, at the end of June. Only anomalies

that are published by the time of selection are considered. Green et al. (2017) documented

a significant drop in performance of all anomalies in the US after 2003. A similar drop

is observed on the portfolio-mixing strategy and it’s average annualized return drops to

less than 2% after accounting for transaction costs.

The strategy that synthesize information from all the anomalies into one mispricing

signal is studied next. The strategy first predicts next-month returns on individual stocks

from their past characteristics (cross-sectional quantiles of the anomalies). Investment

portfolios are then constructed by buying stocks in top decile of the predicted returns

and short-selling stocks in the bottom decile of the predicted returns. Historical relation

between the past characteristics and future returns is estimated on the past data. The

next month returns on individual stocks are predicted from the latest characteristics.

The historical relationships are typically linearly approximated using Fama and MacBeth

(1973a) least squares regressions in the academic literature, as in Lewellen et al. (2015).

Gu et al. (2018) showed that machine learning methods can significantly outperform the

linear approximation in the US. The use of machine learning methods is extended here

from the US to international markets. The least squares regressions are compared to

gradient boosting regression trees, random forest, and neural networks. The machine

learning methods lead to significant gains in performance of the mispricing strategy in all

the regions.

Value of international evidence for the prediction of out-of-sample returns on the

anomalies is evaluated. Hou et al. (2017) and Harvey et al. (2016) showed that many

anomalies cannot be replicated and many others are significant only due to the in-sample

data snooping. New anomalies are discovered using the same historical datasets in the

US which can lead to false positive discoveries. International data provides new informa-

tion with respect to the US, and it could therefore limit the number of false discoveries.3

International data also increases sample size which in turn leads to more powerful sta-

tistical tests. One problem could be that some anomalies are specific to the US as they

depend on the local institutional setting. For example accruals depend on country-specific

accounting rules. The institutional uniqueness then limits the value of data outside the

US for predictions in the US. There is a little gain from forecasting the expected future

returns in the US based on historical data outside the US relative to focusing solely on the

historical US data in the mispricing strategy. The forecasts in the other regions, however,

gain accuracy from historical data in the respective regions when it is added to historical

data in the US. Mispricing of stocks estimated on historical data in the US captures most

3Note that many anomalies have been individually studied in the international markets. For examples
of studies investigating cross-sectional predictability of individual signals outside the US see Chui et al.
(2010), Barber et al. (2013), McLean et al. (2009), Rouwenhorst (1998), Lam and Wei (2011), Titman
et al. (2013), and Watanabe et al. (2013). The goal here is not the study of performance of the anomalies
outside of the US but rather the use of international historical performance of the anomalies to better
select anomalies that are likely to outperform in the future.
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of predictability of stock returns outside the US.4

Marginal value of new anomalies for out-of-sample predictions after accounting for the

already published anomalies is evaluated. Most of the widely accepted risk factors have

been published before 1995. Examples include size and book-to-market ratio in Fama

and French (1992) and momentum of Jegadeesh and Titman (1993). The new discov-

eries should therefore have lower marginal explanatory power over time as the strongest

predictors of stock returns have been already revealed. It is also possible that the vet-

ting procedure that authors have to undergo during the publishing process limits these

decreasing returns to the new discoveries. The value of recent anomalies is examined by

comparing out-of-sample returns of the mispricing strategy that synthesizes anomalies

published either before 1995, 2000, or 2005. There is a gradual increase in mean returns

and Sharpe ratio on the mispricing strategy over 2005 to 2016 period, when the more

recently published anomalies are added. Investors can therefore benefit from following

the recent academic anomalies research.

Limits to arbitrage could explain the strategies’ profitability and it might not be possi-

ble to invest into the mispriced stocks. Several robustness checks are therefore conducted.

The returns on the long-short portfolios are decomposed into long-only and short-only

components. It is often impossible to short-sell due to insufficient supply of borrowable

stocks. Both the long-only and short-only legs of the mispricing strategy, however, offer an

investment opportunity with respect to returns on the market. Short-selling constraints

cannot therefore fully explain the profitability. Transaction costs on the investment strate-

gies are studied next. It is concluded that both the portfolio-mixing strategy and the

mispricing strategy remain profitable after the transaction costs.5

The focus of this study is the closest to Jacobs and Müller (2017c) and Jacobs and

Müller (2017a) who analyzed returns on anomalies outside the US. This study is, how-

ever, different in many aspects. Firstly, it focuses on liquid universe of stocks which should

make the results more relevant to any investor. Secondly, the role of international evi-

dence in the strategies is investigated. Jacobs and Müller (2017c) and Jacobs and Müller

(2017a) focused solely on strategies that were using data in the respective regions without

evaluating the possible benefits of using the global data. Thirdly, the prediction methods

differ. The introduction of advanced machine learning techniques significantly improves

the out-of-sample fit of the predictions in this study.

The study is the closest in methodology and application of machine learning techniques

4The role of international evidence for the mispricing signal is broadly related to variety of factor
structures outside the US. The international evidence is likely to add little value if there is no proximity of
factor structures across the regions. For examples of papers investigating factor structure of international
returns see Fama and French (2012), Fama and French (2017), Rouwenhorst (1999), Griffin (2002), Griffin
et al. (2010), Hou et al. (2011b), and Bartram and Grinblatt (2018b).

5Novy-Marx and Velikov (2015) studied transaction costs on a range of anomalies in the US and
concluded that the transaction costs are important mainly for high-turnover anomalies whose returns net
of transaction costs often turn negative. Frazzini et al. (2012) demonstrated that real-life transaction
costs for large portfolio managers are much lower than assumed by academics. In particular, returns on
momentum and value style premia survive transaction costs and have large investment capacity. The
transaction costs can be further lowered by appropriate optimized portfolio rebalancing.
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to Gu et al. (2018) who, however, focused solely on the US. Gu et al. (2018) in other re-

spects, differ from this study with their focus on full universe of stocks which has profound

effects on their conclusions. The most important anomalies in their estimation are liq-

uidity, size, and return over the past month (short-term return reversal). Asparouhova

et al. (2010) argue that these variables are connected to future returns mainly through

microstructure biases and have nothing to do with true predictability of stock returns that

is of interest to investors.6 The machine learning methods were built to find all patterns

in the dependent variable and this leads to sub-optimal outcome when predicting stock

returns on illiquid stocks. Focus on large cap universe helps to address these concerns.

Secondly, a large difference with respect to Gu et al. (2018) is that this study allows only

already published anomalies to enter predictions in each year. That is, the information set

of existing anomalies was available to investors by the time they would make a decision

of where to invest their money. Ignoring this assumption can lead to illusory profits that

cannot be obtained in practice.

The contributions of this study are multiple. Firstly, the role of international evidence

for predictions of future returns on individual stocks is evaluated. Most of academic

anomalies research focuses solely on the US and benefits of international evidence have

not been systematically studied before. It is shown that training sample outside the US

does not largely improve forecasts of expected returns on the individual stocks in the US.

Secondly, the marginal value of recent anomalies, while controlling for the well established

anomalies, is evaluated. It is shown that the recently published anomalies are providing

new information about the cross-section of stock returns.

The key takeaways of this chapter are that machine learning methods are a superior

method for predicting future individual stock returns not only in the US but also in all the

other regions. The past evidence from the US encompasses most of information contained

in the stocks-level historical data and international data adds only little to profitability of

the mispricing strategy. Furthermore, the more recently published anomalies are impor-

tant for out-of-sample profitability and following anomalies research is therefore beneficial

for the investors.

3.1 Data and Methodology

3.1.1 Data

The source of accounting and market data for the US is Merged CRSP/Compustat

database from Wharton Research Data Service (WRDS). The sample spans 1926 to 2016

period and contains all New York Stock Exchange (NYSE), Amex, and NASDAQ com-

mon stocks (CRSP share code 10 or 11). The returns are adjusted for delisting following

guidance in Hou et al. (2017).7

6See Roll (1984) for a simple model decomposing stock returns into microstructure noise and changes
in true prices.

7If the delisting is on the last day of the month, returns over the month are used. The relevant
delisting return is then added as a return over the next month. Delisting return (DLRET) from monthly
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The international data is sourced from Reuters Datastream. It is filtered following

Ince and Porter (2006), Lee (2011), and Griffin et al. (2010). The procedure comprises of

manually checking names of the shares in the database for over 100 expressions describ-

ing their share class. Only the primary quotes of ordinary shares of the companies are

retained, with few exceptions where fundamental data in Datastream is linked to other

share classes.8 Real Estate Investment Trusts (REITs) are excluded from the sample. All

the international returns and financial statements in this study are converted to US dol-

lars. The daily returns are deleted for days when the stock market was closed in a given

country. The quality of data is further improved with procedures described in Chapter 1.

Chapter 1 studies implications of the choice of fundamental database on the measurement

of performance of individual fundamental anomalies. It shows that statistical significance

of the individual anomalies varies across Datastream and Compustat. The research infer-

ence can therefore change when a different fundamental database is used. The differences

across the databases are mainly due to imperfect historical fundamental coverage. Stud-

ies of aggregated performance of anomalies, however, do not suffer from these problems.

Analysis in this study is therefore not impacted.

The sample includes 23 developed countries. The countries are sorted into 4 regions:

the USA; Europe (E) - Austria, Belgium, Denmark, Finland, France, Germany, Greece,

Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzer-

land, and the United Kingdom; Japan (J); and Asia Pacific (AP) - Australia, New Zealand,

Hong Kong, and Singapore.

Another important source of data for the anomalies is Institutional Brokers’ Estimate

System (I/B/E/S) which is obtained from WRDS. I/B/E/S is merged on Datastream

directly as it is one of databases provided by Thompson Reuters and Datastream includes

the respective tickers in its static file. The merger with CRSP is done indirectly through

CUSIPs. The databases are merged on 8 digit CUSIP and then on 6 digit CUSIP if un-

successful. The success of the merger is checked manually by comparing quoted tickers on

the exchanges and names of the companies. All the variables in I/B/E/S are transformed

to US dollars with original Reuters exchange rates which are provided by WRDS.

This study focuses only on the liquid universe of stocks. The liquid universe category

covers only stocks that are both (a) within the top 90% of the overall capitalization of all

stocks in each region at the end of previous June and (b) within the top 90% of the overall

dollar trading volume over the previous 12 months of all stocks in each region. The stocks

are further required to have price larger than $1 ($.1 for Asia Pacific) at the end of the

previous June. The restriction on capitalization in the US roughly corresponds to 50%

percentile of the largest stocks on NYSE. Stocks outside the US are further restricted

to have capitalization larger than the bottom decile at NYSE. This further constraint

file is used if it is not missing. (1 + retcum) ∗ (1 + DLRETd) − 1 is used if it is missing, where retcum
is cumulative return in the given month of delisting and DLRETd is delisting return from the daily file.
Lastly, the gaps are filled with (1 + retcum) ∗ (1 +DLRETavg)− 1, where DLRETavg is average delisting
return for stocks with the same first digit of delisting code (DLSTCD).

8The description in Griffin et al. (2010) on classification of common shares is followed.
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guarantees that the stocks are not only liquid with respect to other stocks in the region

but also with respect to the stocks in the US.

Table 3.1 shows average, minimum, and maximum number of stocks in the cross-

section of the individual regions. Full sample category includes all the available stocks

without any restrictions. There are on average about 500 stocks in the US that satisfy

the criteria. The average number of stocks in even smaller in the other regions. Average

capitalization of stocks in the liquid universe after July 1995 is $24 billion in the US, $21

billion in Europe, $9 billion in Japan, and $11 billion in Asia Pacific. Average size of the

stocks in the sample is therefore balanced over the regions.

Table 3.1:
Number of Stocks in the Cross-section

Full sample Liquid Universe

mean min max mean min max

Asia Pacific 2430 1012 3706 132 71 238
Europe 5194 4440 6121 350 208 826
Japan 3141 2074 3678 331 208 744
USA 4768 1993 7525 495 263 829

3.1.2 Anomalies

The sample includes 153 anomalies published in academic studies. The full list of the

anomalies is provided in Appendix H. Anomalies that have been described in McLean

and Pontiff (2016), Hou et al. (2017), or Harvey et al. (2016) are primarily selected. The

study focuses only on anomalies that are valid in the cross-section of stocks so that long-

short portfolios can be formed out of them. Any anomalies that are specific to the US,

and which cannot therefore be constructed outside the US, are excluded.9 Fundamental

signals are updated annually at the end of every June using financial statements from

financial years ending in the previous calendar year.10

Some anomalies, such as Herfindahl Index of Hou and Robinson (2006), require classi-

fication of industries for individual firms. The choice in the original papers is mostly with

respect to Standard Industrial Classification (SIC). Third level Datastream classification,

sorting industries into 19 groups, is applied here instead. The larger industry groups

should make the results more robust and consistent across the data vendors. The indus-

try classification in Datastream is available only from the static file, which means that

only the latest values are available. Data vendors may slightly differ in the classification

of individual firms over time because the differences between individual SIC categories

9This includes anomalies: based on quarterly fundamental data since there is only short coverage
internationally; connected to hand collected data in the US such as IPOs, SPOs, and mergers; requiring
segment information and NBER data; and that are institutionally specific, such as, share turnover or
effective tax rate. Some fundamental anomalies could not be implemented in Datastream as the required
items are missing there.

10Section J.1 documents that the annual refreshing of fundamental signals provides very similar results
to monthly refreshing.
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Figure 3.1: Number of the Published Anomalies Over Time.

are often subtle. A translation table between SIC classification and the Datastream clas-

sification is provided in the Appendix C.

There are 93 fundamental, 11 I/B/E/S, and 49 market friction anomalies in the sample.

The anomalies come almost exclusively from the top finance and accounting journals.

Figure 3.1 graphs number of the published anomalies over time. The second line is

capturing number of anomalies whose in-sample period in their respective studies has

ended. The number of anomalies has been gradually increasing over time without any

apparent jumps.

3.1.3 Portfolio-mixing Strategy

This section describes the portfolio-mixing strategy that equally weights returns from the

portfolios on individual anomalies. It serves as a benchmark for the more complicated

mispricing strategy described in the next section. The strategy is especially useful when

studying the role of international evidence in the selection of quantitative strategies that

outperform out-of-sample as it can be understood as a combination rule of multiple quan-

titative strategies based on the past evidence. Portfolio construction for the individual

anomalies is first described and the logic for how the individual portfolios are combined

is discussed next.

Portfolio Construction for the Individual Anomalies

The portfolios are constructed on the liquid universe of stocks. The focus on liquid

universe should make the findings more realistic to someone trying to trade the anomalies.

The stocks with small capitalization (micro-cap) account for only a small fraction of the

overall capitalization of the market, often cannot be traded at significant volumes due

to their high illiquidity. Chapter 1 documents that the fundamental coverage of micro-

cap stocks outside the US is very problematic in Datastream and the imperfect coverage
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can introduce huge biases into the analysis. Both equal-weighted and value-weighted

returns are always provided. The preference should be given to interpretation of the

value-weighted returns since they do not suffer from the market microstructure biases

documented in Asparouhova et al. (2010). These biases can be substantial and can heavily

influence the analysis.

The portfolios on individual anomalies start in July 1963 in the US and July 1990 in

Europe, Japan, and Asia Pacific.11 The period before 1963 in the US is omitted due to

the quality of returns and number of available stocks in CRSP is very low during that

time. The fundamental coverage of stocks in Compustat is also very low which makes

the construction of majority of the anomalies impossible. Further restrictions of the

sample of stocks, based on industries, age of the firms, and the length of history of the

firms’ fundamental data, follow the original studies when constructing portfolios on the

individual anomalies. The original studies are also followed regarding rebalancing period

of the portfolios so that most of anomalies in I/B/E/S and market friction categories

are rebalanced monthly, whereas, fundamental anomalies are mostly rebalanced annually

at the beginning of every July. The zero-cost long-short portfolios on the individual

anomalies are constructed by buying stocks in the top decile of the signals and shorting

stocks in the bottom decile of the signals.12

Table 3.2:
Average Time-series Correlations of Returns on Portfolios Created for the

Individual Anomalies Across the Regions.

USA E J AP

USA 1.000 0.239 0.105 0.120
E 0.239 1.000 0.126 0.122
J 0.105 0.126 1.000 0.094
AP 0.120 0.122 0.094 1.000

Table 3.2 presents average of time-series correlations of returns on the long-short port-

folios created from identical anomalies across the different regions. The anomalies are not

closely correlated across the regions. The international evidence should therefore be very

useful as it can serve as an independent source of information for stock return predictabil-

ity.

Combining Individual Portfolios into One Strategy

The portfolios on individual anomalies are combined into one meta-portfolio through a

simple strategy. The portfolio-mixing strategy selects all the anomalies whose portfolio

returns are significant at 5% level and equally weights them into a single portfolio. The

11International studies using fundamental data, such as Fama and French (2017), usually start in 1990.
The reason for this is that there is an insufficient fundamental coverage before that.

12The zero-cost portfolios are preferred since some annually rebalanced anomalies experience lower
than -100% return during some years which creates problems with the definition of return in terms of
relative change in value of the invested money with respect to the previous month. It would be necessary
to introduce leverage constraints which would unnecessarily complicate the analysis.

139



selection is repeated at the end of every June from 1995 to 2016. Many of the published

anomalies cannot be replicated on the liquid universe of stocks and the selection based on

historical significance guarantees that only robust strategies are used. Significance of the

anomalies is determined based on returns available up to the given June. Only anomalies

published by the given June are considered. The significance is determined based on

p-values that are adjusted for heteroskedasticity and auto-correlation for up to 12 lags.

The equal-weighting of portfolios on individual anomalies adds robustness to the strat-

egy. It could be beneficial to use information of historical covariance structure between

the strategies. DeMiguel et al. (2007), however, show that 1/N weighting provides a very

robust performance out-of-sample and no other simple weighting strategy is able to beat

it.

3.1.4 Mispricing Strategy

The focus has so far been on portfolio level analysis of the individual anomalies. The rest

of this section covers the strategy that shrinks all the anomalies into a single mispricing

signal (”mispricing strategy”). Lewellen et al. (2015) defined the prediction problem as

follows: the goal is to devise a forecasting method that predicts which stocks are likely

to have the highest returns in the next month and which the lowest based on stock

characteristics (the cross-sectional anomalies). To do this, monthly returns on individual

stocks are regressed on their past characteristics. The future return are then predicted

from the latest available characteristics. The regressions are estimated by pooling all the

available stock returns up to the date of portfolio formation. The past characteristics have

to be available before the start of measurement period of the returns. The characteristics

are normalized to their cross-sectional quantiles within each region to reduce problems

with outliers.

To summarize, the following equation is estimated

rit = f(xi,t−1,1, xi,t−1,2, ..., xi,t−1,M) + εit (3.1)

where rit is return on stock i in month t and xi,t−1,1 is cross-sectional quantile of a given

anomaly (characteristic) for the stock i available before the start of month t. The returns

are demeaned by subtracting average cross-sectional returns in every region-month. A

simpler case with linear f() is first covered. It is then extended to a more general structure

using machine learning. The machine learning exercise follows Gu et al. (2018) who

applied a suite of standard machine learning algorithms and showed that they outperform

the linear models in the US. Readers are referred to Gu et al. (2018) or any advanced

machine learning textbook for a detailed theoretical description of the machine learning

methods and only basic definitions are covered here.13

The machine learning methods have both some benefits and some negatives. They

provide better out-of-sample forecasts through limitation of in-sample over-fitting. They

also allow for a very general interaction between the explanatory variables. This general

13See, for example, Friedman et al. (2001) for the textbook treatment.
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form, however, makes the fitted models hard to estimate and the estimates hard to in-

terpret due to the black-box approach. The intractability of the estimates is not a large

concern in this study since even the linear method becomes intractable given the number

of exogenous variables. The main metric of this study is out-of-sample performance and

not the interpretation of the estimated parameters, which is in line with the optimization

objective of the machine learning methods.

The machine learning methods usually depend on some pre-specified meta-parameters.

This study follows the common approach in machine learning literature to choose the

meta-parameters in data-dependent way through three-fold cross-validation (CV). The

CV splits the historical sample into pairs of mutually exclusive validation samples and

training samples. The model is estimated on the training sample with various meta-

parameters and its performance is captured on the validation samples. The meta-parameters,

maximizing the performance over all the validation samples, are then selected for the es-

timation. The CV splits divide the historical sample into three consecutive parts with

similar length.14

Weighted Least Squares

The benchmark model uses weighted least square estimation for linear approximation of

the relationship in equation (3.1). That is, a weighted least square regressions of the stock

returns on the rescaled characteristics is estimated

rit = β0 + β1xi,t−1,1 + β2xi,t−1,2 + ...+ βMxi,t−1,M + εit (3.2)

where the weight on individual observation is the inverse of number of stocks in the

each time period and region. The weights are introduced to give equal importance to

the each time period. The weighting makes the moment conditions equivalent to Fama

and MacBeth (1973a) regressions in Lewellen et al. (2015). The linear specification has

already been applied in international context in Jacobs and Müller (2017c) and Jacobs

and Müller (2017a). It is therefore selected as a benchmark for the more complicated

machine learning methods.15

Penalized Weighted Least Squares

The linear regression model with many explanatory variables can overfit the realization of

past data since it has many degrees of freedom. One way how to reduce the overfitting is

to introduce L1 and L2 penalties on the coefficients during the estimation. The penalties

are chosen by the three-fold cross-validation. The cross validation mostly selects only L1

penalty. The case with just L1 penalty is denoted least absolute shrinkage and selection

operator (LASSO) and was introduced in Tibshirani (1996).

14The sample splits for the initial historical sample period 1963 - 1995 are, for example, 1973 and 1984.
The pairs of training and validation samples are then [1963 - 1984, 1985 - 1995], [1963 - 1973 plus 1985 -
1995, 1974 - 1984], and [1974 - 1995, 1963 - 1973].

15Capitalization-weighted regressions as in Green et al. (2017) have been also tried. The capitalization-
weighting puts lower weight on small cap stocks and is more suited for value-weighted portfolios. The
weighting did not outperform the selected method and the results are therefore not reported here.

141



Figure 3.2: Decision Tree.

Random Forest

The regression tree family of methods is easy to estimate and requires a few specified

meta-parameters. One such tree is depicted in Figure 3.2. The decision tree consists

of nodes (the round-edged boxes) and outcomes (sharp-edged boxes). The outcomes are

in percent return per month.16 The tree starts with a decision whether a given stock is

within the smallest 40% of stocks in the cross-section. The decision can then continue

to the split based on the book to market ratio. The depicted tree is of depth 3, which

is the maximum number of nodes in the longest branch. The tree allows for arbitrary

cross-effects between the variables up to the (depth - 1) degree. This study deals mainly

with relatively shallow trees. The shallow trees are nonetheless able to capture various

important interactions between the explanatory variables. Random Forest and Gradient

Boosting Regression Trees are based on a combination of the individual trees. These

methods cannot be easily visualized but they lead to a better out-of-sample forecasting

performance relative to simpler regression trees.

Random forest is one of the most widely used ensemble tree method. It combines

forecasts from the individual decision trees that are based on subsamples of the training

data. Explanatory variables are also subsampled in the individual trees to increase variety

among the individual forecasts. Random forest is frequently among the top 10% of best

performing machine learning methods in various competitions and it is therefore a very

robust method that is powerful in most of the settings. It requires only few specified meta-

parameters. The specification of the meta-parameters is furthermore not very important

for its performance. It can therefore be used almost out-of-box. This is a large benefit

with respect to neural networks where performance heavily depends on specification of

the model. The largest downside is that its estimates is time consuming.

The results in this study are based on a combination of 500 trees. The trees use

randomly selected 50% of the overall training observations and square root of the overall

available explanatory variables. Minimum node size is chosen to be 0.1% of all the training

observation to leave the method completely meta-parameter free. The 0.1% is large

enough to limit over-fitting but small enough to allow the method to approximate the

16The numbers are arbitrary and do not reflect real data.
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true expected returns on stocks.17

Gradient Boosting Regression Trees

Gradient boosting regression trees (GBRT) of Friedman (2001) rely on a different way

of combining the regression trees than random forest. All the trees in random forest

are chosen independently, whereas, they are selected in a dependent fashion in GBRT.

The idea is to estimate a tree and use only a fraction of its fit for forecasts. The next

iterations then proceed on residuals of the dependent variable after removing the fraction

of the fitted values in the previous iteration. Shrinkage of the individual predictions

guarantees that the learning can correct itself if the fitted values are selected suboptimally

in some iterations. The fraction of individual predictions that is retained for the forecast

is called a learning rate. Number of the learning iterations, given the learning rate, then

determines how closely the particular realization of the sample from the whole population

(the training sample) is over-fitted. A selection of fewer iterations reduces the risk of over-

fitting (estimation error) but decreases the overall fit of the estimation (i.e. introduces

an approximation error). It is therefore important to select the number of iterations with

optimal estimation and approximation error trade-off. One way to do this is to rely on a

cross-validation. The method requires a specification of learning rate, number of iterations

(trees), and maximum depth of the trees.

The analysis in this study is conducted with a fast version of the gradient boosting -

extreme gradient boosting (XGBOOST) of Chen and He (2017). The reason for this is that

it is ten times faster to estimate and thus requires far less computational power. Gu et al.

(2018) benchmarked the different machine learning methods and only neural networks

provided significantly better forecasts than GBRT. GBRT is therefore a good candidate

for the empirical application and it captures most of the gains from the machine learning

methods over the standard finance methods. That is why GBRT is used to examine the

benefits of international training sample in section 3.3 and the benefits of recent anomalies

in section 3.4.

The specification of the GBRT is set as follows: the maximum depth of the trees is

determined by a cross-validation. Depth of up to 9 nodes is considered. Gu et al. (2018)

showed that cross-validation selects similar values in their analysis. The learning rate is

set to 10%.18 Number of iterations is again determined via the three-fold cross-validation.

Neural Networks

Arguably the most powerful machine learning method of today is (deep) neural networks.

Gu et al. (2018) show that they outperform any other method if they are optimally speci-

fied. The neural networks are a very flexible tool that encompasses many specifications.19

17Ignoring this this parameter completely, and leaving unlimited note size, leads to almost identical
results. It is thus not an important assumption.

18Experimenting with the learning rate did not lead to any increase in the predictive power. There is
an extreme amount of noise in the financial data and slower learning is thus not necessary.

19A linear regression is the simplest specification.
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Figure 3.3: Neural Network.

The flexibility is also their largest disadvantage as it requires a long experimentation and

possible over-fitting of the sample.20

Sequential neural networks consist of layers of neurons with information flowing be-

tween the layers in only one direction, from input layer to output layer. The information

is fed in batches consisting of n sample points. Processing of the full training sample is

called an epoch. The speed of change in estimated parameters with new processed batches

is determined through the learning rate. It is often an advantage to slow the learning rate

over time to allow for finer details to be captured. The neural networks are estimated

with back-propagation and stochastic gradient descent.

Figure 3.3 plots specification of the neural network in this study. It is based on three

layers. The initial layer has 150 neurons. The second hidden layer also has 150 neurons.

The last output layer only has one neuron. The first two layers use a rectified linear

unit (ReLU) activation function while the last layer uses a linear activation. Input into

each layer is batch normalized. The network is regularized with dropout layers where

output of fifteen randomly selected neurons is dropped in the first and the second layer

in each epoch. Early stopping callbacks then provide further regularization and stop the

learning process once the mean squared loss stops improving in the validation sample

in four consecutive epochs. Another callback reduces the learning rate when the mean

squared loss stops improving from one epoch to another.

The final forecast is produced from a combination of three estimated neural networks

with different initial random seeds. Each run also uses different validation-training sample

splits to further increase variety over the forecasts. The combination forecast leads to a

great improvement in the performance of the mispricing strategy based on the neural

networks.

Portfolio Construction

The mispricing portfolios start in July 1995, unless stated otherwise. They are again

long-short self-financing and are rebalanced every month. The long leg of the strategy

buys stocks in the upper decile of the predicted next month’s returns. The short leg of

20The over-fitting should be a large cause of worry and all results based on neural networks should be
taken with a grain of salt. The tree-based methods work well out of box even with default setting but
neural networks require a long fine tuning. The fine tuning will translate into problematic performance
out-of-sample of this study.
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the strategy short-sells stocks in the bottom decile of the predicted next month’s returns.

The portfolios are constructed based on sorts of the predicted returns in the individual

regions. Global strategy invests into stocks from all the four regions. The global strategy

is again based on stocks in the extreme deciles of the predicted returns in the individual

regions.

The portfolio returns now also correspond to an investable strategy that holds $1 in

cash, invests $1 in the stocks that are likely to have the largest return in the next month,

and shorts $1 worth of stocks that are likely to have the smallest return in the next month.

The portfolios are rebalanced to have an equal position in cash, long, and short leg of

investment in the stocks at the beginning of each month.

3.1.5 Liquidity Measures

Liquidity costs on the strategies are studies with several liquidity proxies. The proxies

are: VoV(% Spread) of Fong et al. (2017), Gibbs proxy of Hasbrouck (2009), and closing

quoted spread proxy of Chung and Zhang (2014). They are defined in detail in Appendix I.

The proxies were selected to capture a fixed component of transaction costs and ignore

variable component that measures price impact of larger orders. The variable component

is very volatile and depends on the precise trade execution algorithm of each asset man-

ager. The large capitalization universe of stocks reduces concerns about the variable

component and it should be possible to avoid any execution costs altogether through the

use of limit orders.

All of the proxies have some missing observations. The missing observations are back-

filled from the other proxies. Quoted spread is used first for the backfilling, followed

by VoV(% Spread), and the remaining missing observations are backfilled with Gibbs

proxy. Less than 0.02% of the observations is missing in all the three proxies and these

observations are filled by 5% costs.

3.2 Profitability

3.2.1 Portfolio-mixing Strategy

The portfolio level analysis of the individual anomalies is a good starting point as it

provides a simple indication of out-of-sample profitability of the anomalies. The more

complicated method, that synthesizes information embedded in the individual anomalies

to one mispricing signal, is just a refinement of this simple strategy.

Table 3.3 presents returns on the portfolio-mixing strategy that invests equally in

all the portfolios on anomalies that have significantly positive returns at 5% significance

level as described in Section 3.1.3. That is, it corresponds to a setting where someone is

following anomalies research, replicates the published findings, and equally invests into

all published anomalies that he was able to replicate on the liquid universe of stocks. The

performance of the portfolio-mixing strategy is followed in all the regions. The out-of-

sample forecasts begin in July 1995. Global strategy equally invests in the portfolio-mixing
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strategy in the four developed regions.

Table 3.3:
Out-of-sample Performance of the Portfolio-mixing Strategy

The table shows returns of the strategy that equally invests in all the anomalies that
are significant in the US at 5% significance level as described in Section 3.1.3. The
significant anomalies are selected once a year, at the end of June. Only anomalies that
are published by the time of selection are considered. The reported returns are for July
1995 to December 2016 period and are in percentage points.

Equal-weighted Value-weighted

USA Europe Japan AP Global USA Europe Japan AP Global

Mean 0.174 0.297 0.001 0.663 0.284 0.301 0.180 0.253 0.882 0.404
Sharpe Ratio 0.227 0.484 0.002 0.695 0.566 0.387 0.270 0.198 0.816 0.598
Skewness 0.083 -0.085 -1.885 -1.087 -0.436 0.356 0.197 -0.046 1.871 1.358
Kurtosis 9.963 9.230 14.68 13.16 6.920 6.481 9.243 25.09 16.59 22.41
Max Drawdown -29.40 -17.96 -27.63 -27.43 -12.95 -18.12 -26.33 -61.07 -17.35 -20.79

The portfolio-mixing strategy is not statistically significant in the US for both equal-

weighted and value-weighted returns over 1995-2016 period and Sharpe ratio is also low

there. The profitability is sometimes higher in the other regions. The strategy is the

most profitable in Asia Pacific. The returns are higher outside the US despite the fact

that the anomalies have been chosen in the US without any regard for evidence from the

other countries. The anomalies documented in academic literature in the US are therefore

successful in capturing risk premia outside the US. Diversification among the regions also

provides some benefits. The global strategy has Sharpe ratio close to 0.6.

Maximum drawdown (DD) is defined as

min
s>t

100 ∗ (Ps/Pt − 1) (3.3)

where Pt is market value of all assets held in the strategy at time t. That is, DD is the

largest relative drop in value of the invested money over the 1995 to 2016 period. DD

is the smallest in Asia Pacific regions for value-weighted returns, which is in line with

the highest returns and Sharpe ratio there. It is, nonetheless, also small in other regions,

except for Japan.

Green et al. (2017) showed that the profitability of all anomalies has decreased sig-

nificantly after 2003. The same decline in profitability is documented in Figure 3.4. The

figure presents evolution of cumulative returns on the portfolio mixing strategy since June

2002. The profitability of the individual anomalies in the US has dropped to the point

that they yielded only about 20% in this whole period. The strategy was more profitable

in other regions.

The portfolio-mixing strategy relies on a specific threshold for the decision whether to

include a given anomaly in the mix. Figure 3.5 documents that the results are robust to

the choice of this threshold. The figure shows annualized mean returns and Sharpe ratios

for the portfolio-mixing strategy that equally invests into all anomalies whose historical

returns have t-statistic larger than threshold specified at x-axis. Mean returns are increas-
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Figure 3.4: Cumulative returns on the Portfolio-mixing Strategy.

Figure 3.5: Annualized Mean Returns and Sharpe Ratios on the Portfolio-
mixing Strategy Depending on Significance Threshold for Individual Anoma-
lies.
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ing with the threshold in all the region. The mean return on the anomalies are therefore

larger the more significant they were historically. Sharpe ratio of the portfolio-mixing

strategy does not depend that strongly on the significance threshold.21

To conclude, returns on the anomalies in all the regions are positive, which suggests

that it is profitable to invest in the anomalies before transaction costs.

3.2.2 Mispricing Strategy

Performance of the mispricing strategy is examined next. Jacobs and Müller (2017a)

showed that the mispricing strategy estimated with least squares leads to higher returns

in both absolute term and on risk adjusted basis relative to mixing of portfolios on indi-

vidual anomalies. Gu et al. (2018) then documented that the more sophisticated machine

learning methods provide higher out-of-sample predictability relative to least squares.

The machine learning methods are extended to the international sample to determine

whether their benefits persist outside the US.

Table 3.4 presents mean returns on portfolios created, based on the mispricing strategy.

The regressions of stock returns on their characteristics are fit on data available up to

June every year and the future stock returns are then predicted with the latest available

characteristics for each of the next 12 months. The regressions are estimated with least

squares, penalized least squares, random forests, gradient boosting regression trees, and

neural networks. The estimates in table 3.4 are based on the US data from July 1963.

The long-short decile portfolios that invest into stocks in the top decile of the predicted

future returns and short-sell stocks in the bottom decile of the predicted returns are then

created. The reported returns on portfolios are in percent per month and are from July

1995 to December 2016.

Both the tree based methods and neural networks outperform simple least squares.

In particular, gradient boosting regression trees and neural networks outperform least

squares in all the regions for both mean returns and risk adjusted Sharpe ratios. The

machine learning methods are therefore more powerful for stock return predictions out-

side the US as well as inside the US. The superior performance outside the US provides

robustness to findings in Gu et al. (2018) who focused solely on the US. The average

returns on the mispricing strategies are about 4 times higher than for the portfolio level

strategy in the previous section.

Gradient boosting regression trees and neural networks also have the smallest maxi-

mum drawdowns and investing in them is therefore the least risky. Diversification over

the four regions (in the global columns) further reduces the maximum drawdowns and

increases the Sharpe ratios.

Figure 3.6 plots cumulative returns on the gradient boosting regression tree mispricing

strategy in Table 3.4. The returns are presented in decimal logarithms and 1 on the left

scale therefore corresponds to 1000% return on the initial investment. There is a small

21Note that there are only few anomalies with t-statistic larger than 2.5 and the results become unstable
after that.
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Table 3.4:
Performance of the Mispricing Strategy Estimated in the US

The table shows out-of-sample performance of the mispricing strategy as defined in Sec-
tion 3.1.4. It is based on long-short decile portfolios from the strategy that combines
all the available anomalies through predictive regressions of individual stock returns on
transformed characteristics. The estimation methods are least squares, penalized least
squares, random forests, gradient boosting regression trees, or neural networks. That is,
pooled regressions of monthly stock returns on cross-sectional quantiles of their character-
istics observable before each month start are estimated and future returns from the latest
available characteristics are predicted. The value-weighted or equal-weighted long-short
portfolios are constructed by buying stocks in the top decile of the predicted next month
returns and shorting stocks in the bottom decile of the predicted next month returns. The
regressions are rerun at the end of each June with only those anomalies that have been
published by that time. The out-of-sample performance is observed in the US, Europe,
Japan, and Asia Pacific. The training sample spans July 1963 to December 2016 in the
US and July 1990 to December 2016 in other regions. The regressions are estimated only
on the past US data and the future returns are predicted in all the regions. The reported
returns are for July 1995 to December 2016 period and are in percentage points.

Equal-weighted Value-weighted

USA Europe Japan AP Global USA Europe Japan AP Global

Weighted Least Squares
Mean 0.801 0.680 0.922 0.782 0.810 0.575 0.647 0.648 0.633 0.639
Sharpe Ratio 0.479 0.541 0.701 0.497 0.763 0.348 0.472 0.410 0.318 0.550
Skewness -0.340 0.239 -0.425 -0.356 0.025 -0.121 -0.017 -0.688 -0.238 -0.041
Kurtosis 8.521 5.673 4.167 3.713 8.488 7.214 6.483 5.544 4.824 7.880
Max Drawdown -64.70 -37.10 -43.36 -47.61 -43.51 -69.75 -34.16 -44.52 -49.86 -50.85

Penalized Weighted Least Squares
Mean 0.756 0.728 0.886 0.854 0.800 0.644 0.794 0.596 0.754 0.683
Sharpe Ratio 0.443 0.557 0.665 0.526 0.724 0.381 0.554 0.372 0.365 0.568
Skewness -0.487 0.067 -0.620 -0.365 -0.263 -0.316 0.123 -0.692 -0.409 0.023
Kurtosis 8.703 6.662 4.540 3.834 9.301 7.297 7.579 5.715 5.080 9.111
Max Drawdown -65.36 -35.46 -42.32 -48.50 -45.10 -68.02 -37.51 -49.44 -57.38 -49.59

Gradient Boosting Regression Trees
Mean 1.165 0.870 1.173 1.650 1.163 1.391 0.591 1.011 1.415 1.033
Sharpe Ratio 0.720 0.644 0.766 1.005 1.146 0.831 0.412 0.525 0.800 0.870
Skewness 0.319 -1.160 0.682 -0.437 -0.449 0.561 -1.314 0.800 -0.112 -0.433
Kurtosis 6.653 10.17 8.274 5.575 6.812 9.287 12.03 8.611 4.718 7.797
Max Drawdown -38.31 -48.25 -34.37 -36.65 -27.45 -43.93 -42.31 -41.79 -39.58 -35.62

Random Forest
Mean 1.050 1.037 1.107 0.943 1.074 0.977 0.339 1.028 1.183 0.798
Sharpe Ratio 0.703 0.782 0.781 0.520 1.080 0.691 0.222 0.591 0.612 0.726
Skewness -0.328 -1.132 -0.283 -0.789 -0.939 -0.594 -1.149 0.675 -0.062 -0.974
Kurtosis 5.989 9.399 5.558 7.201 7.191 4.951 12.27 8.613 5.855 7.549
Max Drawdown -30.69 -48.18 -40.16 -46.87 -27.76 -30.59 -54.54 -42.12 -39.57 -31.17

Neural Networks
Mean 1.416 1.097 1.295 1.752 1.346 1.420 0.826 1.100 1.177 1.093
Sharpe Ratio 0.905 0.880 1.130 1.086 1.582 0.905 0.649 0.693 0.697 1.042
Skewness -0.083 -0.082 -0.149 0.244 -0.310 -0.167 -0.470 0.629 0.638 -0.255
Kurtosis 7.316 4.827 4.446 5.091 5.304 6.432 7.050 10.37 5.075 6.806
Max Drawdown -44.60 -33.93 -24.70 -38.10 -18.90 -48.11 -31.93 -37.09 -54.45 -33.25

drop in profitability around 2003 in the US, which is in line with the evidence from

portfolio-mixing strategy in Figure 3.4. The mispricing strategy is the least profitable in
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Figure 3.6: Cumulative Returns on the Gradient Boosting Regression Trees
Mispricing Strategy. The figure shows cumulative returns for the mispricing strategy
as described in Table 3.4 that is estimated on the individual stocks from the US.

the European region.

Long-only and Short-only Components of the Strategy

Short-selling can be connected to large costs and sometimes even outright impossible.

That is why it might not be possible to replicate the returns on the mispricing strategy

in practice.22 The long-short strategy in Table 3.4 will now be decomposed into long-

only and short-only components to determine the role of short-selling for the strategy’s

profitability. Table 3.5 decomposes the long-short returns separately for the individual

machine learning methods. The long-only component can be compared to equal-weighted

and value-weighted returns on the whole market as defined by the liquid universe of stocks

in Panel A.

The panel A in the table documents that the mispricing strategy is more profitable

than the whole market in all the regions. The long-only component is responsible for

most of returns on the mispricing strategy. The short-only component then mainly serves

as a hedge that increases Sharpe ratio and lowers maximum drawdown. The returns on

long-only component of gradient boosting regression tree mispricing strategy are about

5% a year larger than returns on the market. The other machine learning methods also

outperform the market.

The more advanced machine learning methods outperform simple least squares both

on the short side and long side. To conclude, the positive returns on the mispricing

strategy are robust to short-selling constrains. Even short-selling-constrained investors

22Short-selling constrains should not be a large issue on our liquid universe of stocks. Andrikopoulos
et al. (2013) showed that although some stocks cannot be short-sold in practice, focusing only on those
that can be short-sold does not statistically diminish returns on 8 quantitative strategies in the UK. They
also showed that short-selling costs are small at about 1% annually in the UK.
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Table 3.5:
Decomposition of the Returns on the Mispricing Strategy to Long-only and

Short-only Components
The table shows returns of the mispricing strategy described in Table 3.4 that is estimated
on the individual stocks from the US. The returns on the long-short portfolios are de-
composed to long-only and short-only components. Equal-weighted and value-weighted
returns on the whole stock markets in the individual regions estimated on the liquid
sample of stocks are also provided.

Equal-weighted Value-weighted

USA Europe Japan AP Global USA Europe Japan AP Global

Panel A: Long-only Component of the Mispricing Strategy

Whole Market
Mean 0.829 0.739 0.300 0.737 0.655 0.786 0.668 0.222 0.806 0.617
Sharpe Ratio 0.507 0.445 0.184 0.376 0.439 0.609 0.442 0.145 0.471 0.477
Skewness -0.656 -0.540 0.075 -0.565 -0.684 -0.651 -0.539 0.052 -0.492 -0.738
Kurtosis 4.391 5.215 3.260 5.405 5.447 3.883 4.249 3.103 4.707 4.384
Max Drawdown -60.81 -63.61 -58.18 -64.72 -56.68 -51.41 -59.46 -65.98 -59.07 -54.54

Weighted Least Squares
Mean 1.099 1.066 0.700 0.786 0.946 0.889 0.990 0.689 0.923 0.812
Sharpe Ratio 0.626 0.585 0.380 0.323 0.605 0.570 0.534 0.382 0.420 0.549
Skewness -0.703 -0.611 0.072 -1.103 -0.811 -0.654 -0.535 -0.012 -0.814 -0.513
Kurtosis 5.328 5.045 3.908 8.174 5.229 5.225 5.024 3.970 8.804 4.554
Max Drawdown -56.12 -62.66 -60.40 -76.62 -59.38 -48.56 -59.94 -63.29 -65.16 -52.87
Information Ratio 0.339 0.505 0.525 0.052 0.342 0.120 0.390 0.465 0.093 0.289

Penalized Weighted Least Squares
Mean 1.036 1.063 0.643 0.848 0.913 0.867 1.064 0.614 1.057 0.794
Sharpe Ratio 0.595 0.594 0.352 0.343 0.592 0.563 0.582 0.347 0.480 0.552
Skewness -0.837 -0.608 0.060 -1.094 -0.843 -0.749 -0.532 -0.063 -0.700 -0.606
Kurtosis 5.750 5.178 3.707 8.003 5.271 5.159 5.153 3.555 9.061 4.542
Max Drawdown -56.87 -63.39 -59.58 -75.79 -59.31 -49.53 -58.57 -59.86 -67.70 -53.04
Information Ratio 0.251 0.480 0.466 0.108 0.300 0.093 0.471 0.405 0.201 0.265

Gradient Boosting Regression Trees
Mean 1.235 1.154 0.676 1.414 1.078 1.367 0.986 0.653 1.396 1.084
Sharpe Ratio 0.569 0.654 0.357 0.600 0.629 0.684 0.586 0.360 0.625 0.650
Skewness -0.338 -0.717 0.191 -0.530 -0.602 -0.020 -0.444 0.399 -0.485 -0.347
Kurtosis 6.051 5.357 3.818 5.681 4.314 6.596 4.746 5.293 5.455 4.035
Max Drawdown -71.09 -63.32 -61.80 -63.02 -57.61 -65.67 -61.14 -73.43 -61.49 -62.35
Information Ratio 0.456 0.718 0.472 0.725 0.468 0.500 0.487 0.448 0.498 0.624

Random Forest
Mean 1.127 1.275 0.577 0.971 0.994 0.951 0.968 0.620 1.003 0.868
Sharpe Ratio 0.527 0.709 0.315 0.396 0.585 0.523 0.553 0.327 0.446 0.547
Skewness -0.985 -0.688 0.143 -0.501 -0.788 -0.975 -0.603 0.380 -0.316 -0.576
Kurtosis 6.545 5.300 3.468 5.211 4.452 6.248 5.125 4.849 4.467 3.825
Max Drawdown -76.51 -62.27 -64.61 -75.60 -62.19 -69.23 -61.92 -74.02 -70.31 -63.97
Information Ratio 0.356 0.941 0.388 0.243 0.382 0.185 0.394 0.438 0.153 0.402

Neural Networks
Mean 1.295 1.262 0.756 1.381 1.140 1.260 1.160 0.696 1.351 1.081
Sharpe Ratio 0.576 0.650 0.404 0.555 0.649 0.625 0.638 0.368 0.613 0.632
Skewness -0.354 -0.081 0.151 -0.464 -0.431 -0.752 -0.313 0.301 -0.167 -0.505
Kurtosis 5.683 5.340 3.336 5.736 3.969 6.118 4.639 4.678 5.748 4.296
Max Drawdown -74.67 -61.71 -58.40 -71.28 -57.78 -74.06 -60.45 -69.03 -60.95 -68.26
Information Ratio 0.480 0.734 0.694 0.611 0.500 0.418 0.593 0.493 0.450 0.577

can therefore benefit from the strategy.
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Table 3.5 Continued

Equal-weighted Value-weighted

USA Europe Japan AP Global USA Europe Japan AP Global

Panel B: Short-only Component of the Mispricing Strategy

Weighted Least Squares
Mean 0.297 0.386 -0.223 0.004 0.136 0.313 0.342 0.041 0.290 0.173
Sharpe Ratio 0.131 0.206 -0.112 0.002 0.077 0.166 0.198 0.021 0.118 0.109
Skewness 0.119 -0.557 0.376 -0.204 -0.234 -0.142 -0.744 0.565 0.045 -0.492
Kurtosis 5.883 4.473 3.564 4.335 4.644 5.892 4.741 3.966 5.797 5.035
Max Drawdown -83.94 -85.78 -71.55 -85.03 -72.04 -78.71 -79.76 -81.47 -86.74 -67.48

Penalized Weighted Least Squares
Mean 0.280 0.335 -0.243 -0.006 0.114 0.222 0.270 0.017 0.303 0.111
Sharpe Ratio 0.123 0.172 -0.121 -0.003 0.063 0.116 0.149 0.009 0.123 0.068
Skewness 0.123 -0.414 0.349 -0.070 -0.166 -0.024 -0.781 0.518 0.156 -0.510
Kurtosis 5.582 5.149 3.510 4.296 4.659 5.650 5.428 3.824 5.814 5.204
Max Drawdown -83.56 -86.54 -70.06 -85.41 -72.34 -72.79 -78.49 -79.48 -86.34 -66.80

Gradient Boosting Regression Trees
Mean 0.069 0.284 -0.497 -0.236 -0.085 -0.023 0.395 -0.358 -0.019 0.051
Sharpe Ratio 0.029 0.117 -0.219 -0.087 -0.042 -0.012 0.174 -0.162 -0.007 0.028
Skewness -0.296 0.008 0.182 0.474 -0.224 -0.395 0.177 0.087 0.019 -0.353
Kurtosis 4.847 6.517 3.632 6.785 5.078 5.682 6.697 3.818 5.182 6.167
Max Drawdown -79.96 -88.78 -66.42 -79.12 -68.60 -79.31 -87.79 -68.29 -78.39 -68.80

Random Forest
Mean 0.077 0.237 -0.529 0.028 -0.080 -0.026 0.628 -0.408 -0.180 0.070
Sharpe Ratio 0.031 0.098 -0.237 0.010 -0.039 -0.012 0.274 -0.186 -0.067 0.037
Skewness -0.263 0.185 0.288 0.723 -0.185 -0.294 0.404 0.173 0.755 -0.275
Kurtosis 4.697 7.201 3.800 8.629 4.968 5.249 9.564 3.687 9.069 6.330
Max Drawdown -80.78 -90.00 -62.61 -90.70 -71.49 -79.21 -93.16 -65.70 -83.39 -73.58

Neural Networks
Mean -0.121 0.165 -0.539 -0.371 -0.206 -0.159 0.333 -0.404 0.175 -0.012
Sharpe Ratio -0.054 0.075 -0.254 -0.142 -0.109 -0.084 0.164 -0.198 0.073 -0.007
Skewness -0.353 -0.134 0.218 0.031 -0.210 -0.416 -0.184 0.226 -0.079 -0.370
Kurtosis 5.104 6.669 3.433 4.608 4.942 5.608 6.763 3.867 4.007 5.798
Max Drawdown -80.06 -83.69 -67.02 -80.60 -67.65 -77.82 -80.68 -68.21 -86.50 -64.90
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Table 3.6:
Performance of the Mispricing Strategy on Risk-adjusted Basis

The table shows returns of the mispricing strategy described in Table 3.4 that is estimated
on the individual stocks from the US adjusted for capital asset pricing model (CAPM)
model and five Fama-French factors (FF5). The standard errors in t-statistics are adjusted
for heterockedasticity and autocorrelation with Newey-West adjustment for up to 12 lags.

Equal-weighted Value-weighted

USA Europe Japan AP Global USA Europe Japan AP Global

Weighted Least Squares
Mean Return 0.801 0.680 0.922 0.782 0.810 0.575 0.647 0.648 0.633 0.639

2.043 2.125 2.597 2.533 2.942 1.495 2.051 1.832 1.817 2.203
CAPM Alpha 0.951 0.672 0.930 0.744 0.851 0.688 0.588 0.657 0.707 0.666

2.604 2.392 2.997 1.927 3.482 1.974 1.967 1.936 1.695 2.710
FF5 Alpha 0.328 0.133 0.672 0.232 0.263 0.080 0.134 0.402 -0.158 0.173

1.114 0.543 2.189 0.562 1.336 0.262 0.486 1.121 -0.343 0.732
Penalized Weighted Least Squares

Mean Return 0.756 0.728 0.886 0.854 0.800 0.644 0.794 0.596 0.754 0.683
1.960 2.191 2.538 2.451 2.800 1.599 2.632 1.645 1.810 2.294

CAPM Alpha 0.922 0.760 0.894 0.839 0.864 0.767 0.776 0.606 0.832 0.737
2.505 2.629 2.844 2.032 3.391 2.132 2.513 1.750 1.825 2.869

FF5 Alpha 0.332 0.179 0.604 0.283 0.252 0.128 0.299 0.320 -0.079 0.192
1.093 0.750 1.998 0.639 1.187 0.412 1.105 0.898 -0.160 0.836

Gradient Boosting Regression Trees
Mean Return 1.165 0.870 1.173 1.650 1.163 1.391 0.591 1.011 1.415 1.033

4.266 2.978 4.021 5.470 6.641 4.465 2.198 2.662 5.236 4.998
CAPM Alpha 1.221 1.047 1.184 1.737 1.242 1.406 0.733 1.028 1.511 1.095

3.630 3.589 3.643 4.883 5.999 3.726 2.539 2.408 4.109 4.283
FF5 Alpha 1.143 0.338 1.073 1.580 1.057 1.600 0.212 0.936 1.160 1.164

3.680 1.116 3.222 3.841 4.377 4.834 0.730 2.211 2.595 4.535
Random Forest

Mean Return 1.050 1.037 1.107 0.943 1.074 0.977 0.339 1.028 1.183 0.798
4.103 4.108 4.038 3.269 5.894 3.932 1.270 2.386 3.222 4.391

CAPM Alpha 1.157 1.200 1.118 1.035 1.172 1.050 0.475 1.039 1.318 0.887
3.614 4.407 3.469 3.064 5.526 3.253 1.564 2.430 3.566 3.762

FF5 Alpha 0.782 0.433 0.919 0.871 0.727 0.740 -0.092 0.836 0.971 0.626
2.748 1.502 2.787 2.258 3.124 2.626 -0.275 1.974 2.304 2.343

Neural Networks
Mean Return 1.416 1.097 1.295 1.752 1.346 1.420 0.826 1.100 1.177 1.093

4.336 3.734 5.759 4.917 7.829 4.442 3.352 3.240 3.342 5.627
CAPM Alpha 1.402 1.179 1.301 1.788 1.383 1.354 0.903 1.108 1.247 1.103

3.928 4.057 5.257 4.575 7.853 3.471 3.413 3.285 3.540 4.586
FF5 Alpha 1.482 1.038 1.185 1.435 1.334 1.584 0.758 1.008 0.749 1.323

5.018 3.885 4.581 3.527 7.754 5.009 2.985 2.941 2.257 5.895

Risk-adjusted Performance of the Strategy

We have so far focused only on raw returns on the mispricing strategy without accounting

for any risk factors. Table 3.6 presents performance of the strategy after accounting for

market returns and five Fama-French factors. Accounting for market return should have

little impact on the performance of the strategy since it is long-short, and thus close to

market neutral, by construction. Table 3.6 confirms that it is indeed the case and capital

asset pricing model (CAPM) alpha is close to the mean returns for all the estimation
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methods. The results are, however, very different when adjusting for five Fama-French

factors. There is again almost no difference between the mean returns and alphas for

more complicated estimation methods but there is a visible deterioration in risk-adjusted

performance for the linear estimation methods. The linear estimation methods therefore

lead to mispricing signal that is close to the traditional risk factors.

To conclude, the profitability of the mispricing strategy is significant even at risk-

adjusted basis. The more complicated estimation methods then lead to returns that are

unrelated to the traditional risk factors.

3.3 The Role of International Evidence

The evidence so far documented that the anomalies identified based on the past data in

the US are profitable out-of-sample in all the regions. Can international data outside the

US be used to better select the winning strategies?

There are some arguments for the usefulness of the international data. The inter-

national data increases sample size and therefore limits the possibility for data-mining

and in-sample overfitting. The larger sample size also generally provides larger power to

statistical tests which should lead to more precise selection of truly significant strategies.

The international evidence extends the sample size mainly in the most recent period. The

most recent data is also the most useful as the financial markets are changing rapidly and

the older data may not be relevant anymore.

There are, however, also some problems with suitability of the international evidence.

The individual global regions have very different institutional settings. Bankruptcy laws,

tax laws, investor protection, and accounting standards vary widely across the regions.

The institutional differences can lower the usefulness of historical data outside the re-

spective regions. The larger estimation sample improves forecasts through consistency.

The consistency, however, works only if the underlying true drivers of stock returns are

uniform over the regions, which is in no way guaranteed.

The previous machine learning evidence was based on predictive regressions estimated

solely on data from the US. This section first investigates whether estimating the pre-

dictive regressions in the respective regions is more suitable than estimating them only

on data from the US. It then explores whether combining estimation samples from the

individual regions can improve the profitability to the mispricing strategy.

There is surprisingly only a small difference between returns on strategies that are

estimated on data from the US in table 3.4 and those that are estimated on data in the

respective regions in table 3.7. One explanation for the similarity is that the sample size

in the US is already large enough to capture the true drivers of stock returns that are

globally valid. One exception is Asia Pacific region where there are only a few liquid

stocks historically, which makes the predictive regressions imprecise. The performance of

the mispricing strategy in Japan is also notably worse than when estimated on the US

data. The explanation is again simple. Japan has undergone a slow eruption of an asset
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price bubble at the beginning of the estimation sample in early 1990s. The estimated

relationships that are valid for this specific period fare badly out-of-sample where the

stock market dynamics go back to their normal state.

Table 3.7:
Performance of the Mispricing Strategy Estimated in the Individual Regions
The table shows out-of-sample performance of the mispricing strategy as described in
Table 3.4. The predictive regressions for individual stock returns are estimated in each
respective region.

Equal-weighted Value-weighted

USA Europe Japan AP Global USA Europe Japan AP Global

Weighted Least Squares
Mean 0.801 0.682 0.750 1.117 0.811 0.575 0.483 0.348 0.876 0.596
Sharpe Ratio 0.479 0.450 0.396 0.507 0.786 0.348 0.338 0.157 0.375 0.541
Skewness -0.340 -1.280 0.353 -1.957 -0.200 -0.121 -0.995 -0.255 -1.500 -0.349
Kurtosis 8.521 10.03 7.663 20.65 6.543 7.214 7.863 7.841 18.58 6.483
Max Drawdown -64.70 -50.52 -66.56 -61.71 -36.44 -69.75 -42.84 -72.33 -63.57 -44.58

Penalized Weighted Least Squares
Mean 0.756 0.753 0.701 1.333 0.823 0.644 0.616 0.423 1.359 0.656
Sharpe Ratio 0.443 0.458 0.363 0.535 0.749 0.381 0.393 0.197 0.534 0.577
Skewness -0.487 -1.026 0.360 -1.665 -0.278 -0.316 -1.033 0.329 -1.072 -0.376
Kurtosis 8.703 8.700 7.280 21.06 6.723 7.297 8.447 6.321 15.03 7.534
Max Drawdown -65.36 -46.61 -66.88 -69.25 -39.84 -68.02 -43.74 -58.29 -63.68 -39.76

Gradient Boosting Regression Trees
Mean 1.165 0.725 0.951 1.766 1.107 1.391 0.319 0.678 1.522 0.915
Sharpe Ratio 0.720 0.596 0.636 0.761 1.183 0.831 0.238 0.400 0.581 0.850
Skewness 0.319 -0.884 0.445 -0.346 -0.012 0.561 -1.250 0.071 0.026 -0.450
Kurtosis 6.653 7.508 5.686 19.50 5.987 9.287 7.699 4.559 13.42 7.646
Max Drawdown -38.31 -45.14 -34.11 -56.04 -22.56 -43.93 -58.13 -55.73 -55.96 -31.15

Random Forest
Mean 1.050 0.353 1.022 0.960 0.892 0.977 0.140 0.792 1.112 0.711
Sharpe Ratio 0.703 0.265 0.779 0.544 1.007 0.691 0.094 0.503 0.516 0.688
Skewness -0.328 -1.281 -0.201 0.591 -0.408 -0.594 -1.111 0.201 0.768 -0.953
Kurtosis 5.989 9.421 4.537 6.862 6.323 4.951 6.857 4.150 9.382 6.801
Max Drawdown -30.69 -51.84 -32.79 -52.27 -22.31 -30.59 -60.13 -47.42 -51.77 -29.88

Neural Networks
Mean 1.416 0.748 0.958 1.192 1.133 1.420 0.561 0.616 0.986 0.988
Sharpe Ratio 0.905 0.544 0.572 0.592 1.308 0.905 0.383 0.305 0.423 1.025
Skewness -0.083 -0.637 0.464 -0.435 0.026 -0.167 -0.696 0.054 -0.151 -0.465
Kurtosis 7.316 6.991 7.300 5.796 4.891 6.432 7.182 8.016 5.195 6.920
Max Drawdown -44.60 -50.30 -48.09 -55.31 -18.16 -48.11 -37.60 -72.91 -68.84 -21.88

Table 3.8 shows mean returns and other performance statistics for gradient boosting

regression trees mispricing strategy as in table 3.4. The only difference with respect

to table 3.4 is that the future individual stock returns are predicted from regressions

estimated on historical data that are not solely from the US. Predictive regressions with

training sample from the US, the US & Japan, the US & Europe, or the US & Japan &

Europe & Asia Pacific are compared. These three regions cover most of the developed

markets and global stock market capitalization. Corresponding evidence for least square

mispricing strategy is provided in the Appendix J.23

23It is omitted here for the sake of space as all the findings are very similar to gradient boosting
regression trees.
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Table 3.8:
Performance of the Mispricing Strategy Estimated on the International Data
The table shows returns of the mispricing strategy based on gradient boosting regression
trees described in Table 3.4. The historical predictive regressions are estimated on in-
dividual stocks from combinations of the four covered regions: the US, Japan, Europe,
Europe, Asia Pacific.

Equal-weighted Value-weighted

USA Europe Japan AP Global USA Europe Japan AP Global

Estimated in the US
Mean 1.165 0.870 1.173 1.650 1.163 1.391 0.591 1.011 1.415 1.033
Sharpe Ratio 0.720 0.644 0.766 1.005 1.146 0.831 0.412 0.525 0.800 0.870
Skewness 0.319 -1.160 0.682 -0.437 -0.449 0.561 -1.314 0.800 -0.112 -0.433
Kurtosis 6.653 10.17 8.274 5.575 6.812 9.287 12.03 8.611 4.718 7.797
Max Drawdown -38.31 -48.25 -34.37 -36.65 -27.45 -43.93 -42.31 -41.79 -39.58 -35.62
Estimated in the US and Cross-validated on the International Data
Mean 1.114 1.012 1.021 1.192 1.085 1.318 0.665 0.675 0.846 0.968
Sharpe Ratio 0.704 0.747 0.686 0.655 1.057 0.776 0.473 0.355 0.410 0.785
Skewness 0.215 -0.422 0.313 -1.584 -0.558 0.270 -0.673 0.474 -1.266 -0.146
Kurtosis 6.706 11.44 8.626 12.11 7.354 7.886 13.89 8.906 12.23 9.259
Max Drawdown -36.49 -44.69 -39.01 -49.81 -30.07 -39.70 -43.57 -44.37 -61.01 -35.13
Information Ratio -0.108 0.235 -0.285 -0.415 -0.265 -0.108 0.084 -0.399 -0.379 -0.115
Estimated in the US & Japan
Mean 1.317 1.015 1.353 1.537 1.289 1.616 0.812 1.001 1.722 1.262
Sharpe Ratio 0.809 0.911 1.030 1.016 1.413 0.907 0.647 0.550 1.008 1.093
Skewness 0.602 0.715 0.150 0.176 0.380 0.876 0.088 0.837 0.362 0.828
Kurtosis 7.612 8.349 6.909 3.599 8.273 10.26 9.448 10.76 3.516 9.092
Max Drawdown -34.18 -25.91 -25.82 -29.65 -19.15 -42.98 -30.11 -45.32 -29.95 -31.87
Information Ratio 0.186 0.153 0.172 -0.083 0.224 0.208 0.203 -0.007 0.191 0.295
Estimated in the US & Europe
Mean 1.361 1.016 1.173 1.555 1.268 1.513 0.716 0.786 1.397 1.111
Sharpe Ratio 0.854 0.812 0.763 0.892 1.241 0.875 0.501 0.431 0.654 0.944
Skewness 0.049 0.159 0.251 -1.266 -0.313 0.537 -0.463 -0.063 -1.763 -0.055
Kurtosis 6.672 6.745 6.599 11.62 6.270 8.410 7.574 5.445 17.04 6.332
Max Drawdown -38.16 -40.92 -34.41 -45.58 -27.77 -38.96 -47.54 -49.58 -56.36 -30.43
Information Ratio 0.281 0.197 -0.000 -0.085 0.248 0.150 0.129 -0.214 -0.010 0.130
Estimated in the US & Japan & Europe & Asia Pacific
Mean 1.325 1.009 1.281 2.295 1.373 1.432 0.955 1.066 2.317 1.225
Sharpe Ratio 0.808 0.870 0.960 1.486 1.394 0.803 0.680 0.615 1.056 1.048
Skewness 0.257 0.262 0.114 0.624 -0.034 0.991 0.745 -0.013 0.750 0.451
Kurtosis 7.133 5.071 5.931 5.360 7.274 11.46 7.285 4.745 8.252 7.276
Max Drawdown -37.15 -33.19 -24.69 -20.31 -26.01 -38.84 -26.46 -44.00 -53.48 -30.43
Information Ratio 0.191 0.131 0.114 0.530 0.404 0.036 0.295 0.045 0.483 0.251

The table provides mixed results on the value of international evidence. There is a

small gain from adding the international stocks to local training sample in the US for

equal-weighted portfolios. Historical data in the US is therefore completely sufficient

for the future predictions in the US. Profitability of the mispricing strategy in Europe

improves with predictions based on the estimation sample from the US and Europe relative

to from the US only. The profitability in Japan also improves with training sample from

both the US and Japan instead of from the US only. The largest gains in profitability are

in Asia Pacific region where training samples from Japan and Europe are jointly beneficial.

The table also shows the gradient boosting regression tree mispricing strategy esti-

mated in the US using parameters cross-validated in the other three regions. The cross-
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validation on data outside the US could add some predictive power as the validation

sample is coming from more recent period than when the training sample is from the US

only. The table, however, documents that there is no gain from cross-validating outside

the US.

To conclude, the regional institutional setting is indeed an important determinant of

stock return drivers. There is no gain for the US investor to seek international evidence for

quantitative strategies. The larger statistical power, caused by the larger sample, seems

to be completely offset by the differences in institutional setting.

3.4 Importance of New Anomalies for Profitability

of the Strategies

Figure 3.1 documented that the number of published anomalies is increasing roughly

linearly over time. Harvey et al. (2016) found even sharper increase for published as well

as unpublished anomalies. Researchers are looking at the same data again and again to

find the new anomalies which should lead to a large proportion of false positive discoveries.

The proportion of false discoveries is expected to increase over time as the strongest

anomalies are likely already published. Harvey et al. (2016) therefore concluded that

most of the recently published studies can be explained by data-mining and the standard

critical values for statistical significance no longer apply. The data-mining should also

lead to a lower predictive power of the new anomalies. Individual studies introducing new

anomalies almost never properly control for all anomalies published previously. Many

of the new anomalies are therefore subsumed by existing anomalies in proper multiple

hypothesis setting as documented by Green et al. (2017).

Most of the widely accepted anomalies have been published before 1995.24 It is there-

fore worth studying whether the more recently published drivers of stock returns are also

important. This section investigates the marginal value of recently published anomalies

for profitability of the mispricing strategy after accounting for anomalies published earlier.

Table 3.9 presents mean returns and Sharpe ratios on the mispricing strategy as speci-

fied in table 3.4 but with further restrictions on the universe of anomalies. The mispricing

strategy is estimated using anomalies that were published before 1995, 2000, or 2005. Its

performance is then tracked over the 2005-2016 period.25 The different sets of anomalies

provide a good indication for marginal value of the new signals published after 1995, while

accounting for anomalies published before 1995.

There are improvements in mean returns and Sharpe ratios for both the equal-weighted

and value-weighted portfolios in the US with addition of tje new anomalies. The new

anomalies therefore have significant incremental value for out-of-sample forecasts. This

benefit is smaller in Japan and Europe. The results are similar for both least squares and

24For example heavily cited size and book-to-value factor in Fama and French (1992) were introduced
before 1990.

25Adding another set of anomalies published before 2010 and focusing on 2010-2016 out-of-sample
period leads to identical findings. The corresponding results are available in table J.2 in the Appendix J.
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Table 3.9:
Are the More Recent Anomalies Improving Profitability of the Mispricing

Strategy?
The table shows returns of the mispricing strategy described in Table 3.4 that is estimated
on the individual stocks from the US. Anomalies in the estimation are restricted to those
that were published before 1995, 2000, or 2005. The returns are reported in percentage
points per month over the 2005-2016 period.

Equal-weighted Value-weighted

USA Europe Japan AP Global USA Europe Japan AP Global

Weighted Least Squares

Published by 1995
Mean 0.044 0.082 0.361 0.294 0.169 0.268 0.297 0.914 0.284 0.256
Sharpe Ratio 0.034 0.068 0.266 0.194 0.171 0.210 0.226 0.615 0.155 0.234
Published by 2000
Mean 0.055 0.278 0.341 -0.106 0.164 0.119 0.306 0.595 -0.238 0.232
Sharpe Ratio 0.047 0.237 0.234 -0.072 0.177 0.093 0.241 0.363 -0.140 0.234
Information Ratio 0.016 0.275 -0.025 -0.374 -0.010 -0.180 0.011 -0.326 -0.394 -0.038
Published by 2005
Mean 0.612 0.078 0.854 0.270 0.506 0.685 0.105 1.087 -0.004 0.556
Sharpe Ratio 0.564 0.074 0.646 0.189 0.624 0.644 0.087 0.787 -0.002 0.684
Information Ratio 0.856 -0.265 0.702 0.291 0.724 0.545 -0.173 0.482 0.134 0.444

Gradient Boosting Regression Trees

Published by 1995
Mean 0.364 0.276 0.868 0.816 0.531 0.411 0.192 0.917 0.197 0.289
Sharpe Ratio 0.369 0.216 0.772 0.521 0.692 0.377 0.133 0.766 0.114 0.322
Published by 2000
Mean 0.435 0.647 0.979 1.058 0.722 0.250 0.476 0.951 0.943 0.430
Sharpe Ratio 0.408 0.483 0.873 0.727 0.901 0.234 0.313 0.720 0.602 0.461
Information Ratio 0.091 0.453 0.122 0.226 0.430 -0.181 0.267 0.026 0.477 0.227
Published by 2005
Mean 0.824 0.602 1.212 1.043 0.904 0.948 0.381 1.138 0.414 0.777
Sharpe Ratio 0.842 0.537 1.121 0.864 1.309 1.012 0.332 0.980 0.314 1.135
Information Ratio 0.585 -0.054 0.276 -0.012 0.403 0.819 -0.090 0.169 -0.349 0.515

gradient boosting regression trees methods but the returns from least squares are much

more volatile. One explanation for the larger incremental value of the new anomalies in

the US with respect to Europe and Japan is that there are more low-cost exchange traded

funds in the US that arbitrage away the well-known strategies. It is therefore necessary

to find new strategies to get the same predictability of stock returns over time.

To conclude, the marginal value of the new anomalies remains positive over time.

It is therefore valuable to follow recent academic research as it can increase returns to

investors. The positive value of new anomalies is in line with the purpouse of academic

publishing process where new findings are put under scrutiny and the authors have to

prove that their findings provide incremental value with respect to the existing body of

knowledge. The academic review process therefore fulfills its purpouse.

3.5 Transaction Costs

This section studies the out-of-sample performance of the strategies after the transaction

costs. It is possible that the profits on the strategies are only virtual and transaction costs
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are larger than the returns. It is therefore important to examine the costs related to the

strategies.

3.5.1 Transaction Costs on the Strategies

Panel A: Portfolio-mixing Strategy.

Panel B: Gradient Boosting Regression Trees Mispricing Strategy.

Figure 3.7: Monthly Transaction Costs. Panel A shows transaction costs for the
portfolio mixing strategy that equally invests in all the significant anomalies as described
in Table 3.3. Panel B shows transaction costs for the mispricing strategy described in
Table 3.4 that is estimated on individual stock returns from the US. The transaction
costs are estimated with VoV(% Spread) proxy of Fong et al. (2017).

Panel A in Figure 3.7 describes transaction costs on the portfolio-mixing strategy

introduced in Section 3.2.1. The transaction costs are measured by VoV(% Spread) proxy

introduced in Fong et al. (2017). It is evident that the trading costs are similar across

the regions for the liquid sample of stocks. The highest transaction costs tend to be in
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Asia Pacific region. The peaks in the figure appear every July because of the annual

rebalancing of the fundamental strategies. The graph also documents that there are

periods with significant spillover of illiquidity. Two such major episodes are Financial

Crisis of 2008 and Dot-com bubble of early 2000s. The transaction costs have decreased

significantly over time with the increase in market share of electronic trading in 2000s.

The transaction costs on the mispricing strategy are covered next. Panel B in Fig-

ure 3.7 maps transaction costs on the gradient boosting regression trees strategy estimated

in the US. It is apparent that the transaction costs are larger than in case of portfolio-

mixing strategy. The costs are larger because a large portion of the individual anomalies

are fundamental anomalies that are rebalanced annually, whereas, the mispricing strategy

is rebalanced monthly. The transaction costs have decreased significantly over time and

there are again several historical episodes where they were heavily elevated, one being

the Financial Crisis of 2008. The costs are smaller on value-weighted portfolios relative

to equal-weighting which is expected because the value-weighting puts larger weight on

more liquid stocks.

Table 3.10:
Transaction Costs on the Mispricing Strategy

The table shows transaction costs and turnover on the gradient boosting regression trees
mispricing strategy described in Table 3.4 that is estimated on the individual stocks from
the US. The transaction costs are estimated either with VoV(% Spread) proxy of Fong
et al. (2017), average daily closing quoted spread, or Gibbs proxy of Hasbrouck (2009).
The transaction costs and turnover are in percentage points per month.

Equal-weighted Value-weighted

USA Europe Japan AP Global USA Europe Japan AP Global

VoV 0.203 0.343 0.388 0.493 0.357 0.151 0.232 0.288 0.386 0.264
Gibbs 0.819 0.651 0.816 0.784 0.767 0.712 0.567 0.733 0.714 0.681
Quoted Spread 0.111 0.511 0.482 0.791 0.473 0.101 0.384 0.418 0.645 0.387
Turnover 120.0 119.2 118.9 123.6 120.4 130.5 127.1 127.7 139.4 131.2

Table 3.10 presents average transaction costs on the gradient boosting regression trees

mispricing strategy. The transaction costs are estimated with three liquidity proxies in-

troduced in section 3.1.5. All the proxies provide very similar estimates of the transaction

costs outside the US. Estimates from Gibbs proxy are significantly higher in the US than

for the two other proxies. Gibbs proxy is, however, also the most noisy proxy since it

is constructed at an annual frequency. It is furthermore not very suitable to measure

transaction costs for the most liquid stocks due to its construction.

Table 3.10 also shows turnover of the mispricing strategy. The turnover is defined as

Turnovert =
∑
i

abs(wi,t − wi,t−1ri,t−1)/2 (3.4)

where wi,t is weight of stock i in the investment portfolio at the start of period t− 1 and

ri,t−1 is stock return over period t− 1 to t. Sum of all absolute weights wi,t is equal to 2

since the portfolio is long-short. The turnover is close to 125% monthly in all the regions
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which means that over 60% of all the held stocks have to be sold and new bought for both

the short and long leg of the strategy. The turnover can be easily reduced by staggered

portfolio rebalancing but it is not a source of serious worries here due to the small average

transaction costs on the liquid universe of stocks.

The sample of stocks has been selected to be liquid ex ante. Only about 500 most liquid

US stocks fulfill this criterion. These stocks should be with virtually no fixed transaction

costs. The depicted costs therefore correspond to unfavorable trade executions through

aggressive marketable orders. Sophisticated trade execution systems using limit orders

are able to execute the strategies without any transaction costs.

3.5.2 Performance of the Strategies after Transaction Costs

Portfolio-mixing Strategy

Panel A in Table 3.11 presents returns on the portfolio-mixing strategy introduced in Ta-

ble 3.3 adjusted for the trading costs. The set of selected significant strategies is different

from Table 3.3 as the strategies are selected on after cost basis here. The selection after

adjusting for transaction costs leads to a more profitable meta-strategy as the anomalies

with the largest profitability are also often those with the largest transaction costs.

Returns on the strategy remain positive outside Japan but they are generally smaller

than without the transaction costs. The Sharpe ratios are also smaller. The global

portfolio-mixing strategy, however, remains significantly profitable with Sharpe ratio close

to 0.5 for value-weighted returns.

Mispricing Strategy

Panel B in Table 3.11 presents performance of the mispricing strategy after transaction

costs. The mean returns on the strategy remain significantly positive at 5% level. The

net mean annualized returns in the US are above 10% for the machine learning strategies.

Sharpe ratios remain high, especially for the global strategy using neural networks where

they are larger than one.

The mean returns after transaction costs for weighted least square method are again

smaller than for the more advanced machine learning methods. The difference is even

larger on risk adjusted basis. This difference in performance documents that the choice

of appropriate forecasting method is very important for success of investing into the

anomalies.

To conclude, the strategies remain profitable even after accounting for the transaction

costs. The profitability of the strategies is therefore not illusory and can be capitalized

by the investors.

3.6 Conclusion

This study has examined profitability of the quantitative strategies based on published

anomalies around the globe. It has been shown that investing into individual anomalies

is profitable after accounting for transaction costs even on liquid universe of stocks. The
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Table 3.11:
Performance of the Strategies after Transaction Costs

Panel A shows returns minus transaction costs of the portfolio-mixing strategy described
in Table 3.3. Panel B shows returns after transaction costs of the mispricing strategy
described in Table 3.4 that is estimated on the individual stocks from the US. The trans-
action costs are estimated with VoV(% Spread) proxy of Fong et al. (2017). The returns
are reported in percentage points per month.

Equal-weighted Value-weighted

USA Europe Japan AP Global USA Europe Japan AP Global

Panel A: Portfolio-mixing Strategy

Mean 0.151 0.225 -0.119 0.612 0.217 0.109 0.066 0.185 0.589 0.237
Sharpe Ratio 0.186 0.340 -0.165 0.609 0.399 0.184 0.104 0.202 0.630 0.488
Skewness 0.272 0.024 -2.562 -1.255 -0.630 -0.044 0.202 0.260 1.264 0.643
Kurtosis 8.958 7.277 20.36 13.26 6.979 5.907 9.065 23.91 13.59 16.12
Max Drawdown -29.47 -23.33 -42.78 -28.47 -15.07 -22.87 -34.18 -48.59 -20.75 -11.80

Panel B: Mispricing Strategy

Weighted Least Squares
Mean 0.583 0.336 0.514 0.269 0.439 0.583 0.336 0.514 0.269 0.439
Sharpe Ratio 0.348 0.267 0.390 0.170 0.412 0.249 0.294 0.217 0.124 0.313
Max Drawdown -66.74 -44.12 -49.35 -58.25 -49.63 -71.40 -39.33 -59.36 -58.92 -55.91

Penalized Weighted Least Squares
Mean 0.537 0.379 0.471 0.344 0.426 0.480 0.547 0.284 0.358 0.403
Sharpe Ratio 0.315 0.290 0.353 0.211 0.385 0.284 0.381 0.177 0.173 0.335
Max Drawdown -67.37 -43.85 -48.82 -54.35 -51.57 -69.77 -38.97 -58.36 -65.62 -54.72

Gradient Boosting Regression Trees
Mean 0.962 0.527 0.785 1.157 0.806 1.240 0.359 0.723 1.029 0.769
Sharpe Ratio 0.594 0.390 0.513 0.704 0.793 0.741 0.250 0.376 0.581 0.648
Max Drawdown -39.92 -49.42 -36.00 -41.48 -29.34 -44.94 -45.90 -48.05 -41.42 -37.52

Random Forest
Mean 0.844 0.681 0.714 0.414 0.703 0.825 0.089 0.751 0.770 0.525
Sharpe Ratio 0.565 0.513 0.504 0.228 0.706 0.584 0.058 0.431 0.398 0.477
Max Drawdown -34.62 -49.52 -41.89 -63.52 -29.97 -31.22 -61.80 -44.32 -46.17 -32.73

Neural Networks
Mean 1.222 0.785 0.934 1.296 1.016 1.282 0.610 0.834 0.829 0.851
Sharpe Ratio 0.782 0.630 0.815 0.804 1.195 0.818 0.479 0.526 0.492 0.812
Max Drawdown -46.21 -35.29 -25.93 -41.99 -20.70 -49.19 -39.00 -38.28 -58.37 -35.83

performance of the strategy combining individual portfolios on anomalies can be improved

by creating a single mispricing signal instead. Machine learning approach for construction

of the mispricing signal was advocated and its benefits documented.

The machine learning methods lead to higher (risk adjusted) returns relative to stan-

dard methods applied in the academic finance literature. The quantitative strategy using

machine learning is highly profitable even on liquid universe of stocks. Value of the more

recent anomalies was then studied. The recently published anomalies improve average

returns on the investment strategy even after accounting for the previously published

anomalies. The recent anomaly studies are therefore successful in finding new sources of

priced risk and investors’ behavioural biases.

The role of international evidence on precision of predictions of future stock returns

was studied. Out-of-sample performance in the US is not improved with international

evidence in the training sample for the mispricing strategy. Most of the predictability of
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expected stock returns in all the global regions under study can be captured solely with

the US training sample.
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Appendix H

List of the Anomalies

Table H.1:
List of Anomalies

Fundamental

Accruals

Accruals Sloan (1996)

Change in Common Equity Richardson et al. (2006)

Change in Current Operating Assets Richardson et al. (2006)

Change in Current Operating Liabilities Richardson et al. (2006)

Change in Financial Liabilities Richardson et al. (2006)

Change in Long-Term Investments Richardson et al. (2006)

Change in Net Financial Assets Richardson et al. (2006)

Change in Net Non-Cash Working Capital Richardson et al. (2006)

Change in Net Non-Current Operating Assets Richardson et al. (2006)

Change in Non-Current Operating Assets Richardson et al. (2006)

Change in Non-Current Operating Liabilities Richardson et al. (2006)

Change in Short-Term Investments Richardson et al. (2006)

Discretionary Accruals Dechow et al. (1995)

Growth in Inventory Thomas and Zhang (2002)

Inventory Change Thomas and Zhang (2002)

Inventory Growth Belo and Lin (2011)

M/B and Accruals Bartov and Kim (2004)

Net Working Capital Changes Soliman (2008)

Percent Operating Accrual Hafzalla et al. (2011)

Percent Total Accrual Hafzalla et al. (2011)

Total Accruals Richardson et al. (2006)

Intangibles

4 Gross Margin - 4 Sales Abarbanell and Bushee (1998)

4 Sales - 4 Accounts Receivable Abarbanell and Bushee (1998)

4 Sales - 4 Inventory Abarbanell and Bushee (1998)

4 Sales - 4 SG and A Abarbanell and Bushee (1998)

Asset Liquidity Ortiz-Molina and Phillips (2014)

Asset Liquidity II Ortiz-Molina and Phillips (2014)

Cash-to-assets Palazzo (2012)

Earnings Conservatism Francis et al. (2004)

Earnings Persistence Francis et al. (2004)

Earnings Predictability Francis et al. (2004)

Earnings Smoothness Francis et al. (2004)

Earnings Timeliness Francis et al. (2004)

Herfindahl Index Hou and Robinson (2006)

Hiring rate Belo et al. (2014)

Industry Concentration Assets Hou and Robinson (2006)

Industry Concentration Book Equity Hou and Robinson (2006)

Industry-adjusted Organizational Capital-to-Assets Eisfeldt and Papanikolaou (2013)

165



Industry-adjusted Real Estate Ratio Tuzel (2010)

Org. Capital Eisfeldt and Papanikolaou (2013)

RD / Market Equity Chan et al. (2001)

RD Capital-to-assets Li (2011)

RD Expenses-to-sales Chan et al. (2001)

Tangibility Hahn and Lee (2009)

Unexpected RD Increases Eberhart et al. (2004)

Whited-Wu Index Whited and Wu (2006)

Investment

4 CAPEX - 4 Industry CAPEX Abarbanell and Bushee (1998)

Asset Growth Cooper et al. (2008)

Change Net Operating Assets Hirshleifer et al. (2004)

Changes in PPE and Inventory-to-Assets Lyandres et al. (2007)

Composite Debt Issuance Lyandres et al. (2007)

Composite Equity Issuance (5-Year) Daniel and Titman (2006)

Debt Issuance Spiess and Affleck-Graves (1995)

Growth in LTNOA Fairfield et al. (2003)

Investment Titman et al. (2004)

Net Debt Finance Bradshaw et al. (2006)

Net Equity Finance Bradshaw et al. (2006)

Net Operating Assets Hirshleifer et al. (2004)

Noncurrent Operating Assets Changes Soliman (2008)

Share Repurchases Ikenberry et al. (1995)

Total XFIN Bradshaw et al. (2006)

Profitability

Asset Turnover Soliman (2008)

Capital Turnover Haugen and Baker (1996)

Cash-based Operating Profitability Ball et al. (2016)

Change in Asset Turnover Soliman (2008)

Change in Profit Margin Soliman (2008)

Earnings / Price Basu (1977)

Earnings Consistency Alwathainani (2009)

F-Score Piotroski (2000)

Gross Profitability Novy-Marx (2013)

Labor Force Efficiency Abarbanell and Bushee (1998)

Leverage Bhandari (1988)

O-Score (More Financial Distress) Dichev (1998)

Operating Profits to Assets Ball et al. (2016)

Operating Profits to Equity Fama and French (2015)

Profit Margin Soliman (2008)

Return on Net Operating Assets Soliman (2008)

Return-on-Equity Haugen and Baker (1996)

Z-Score (Less Financial Distress) Dichev (1998)

Value

Assets-to-Market Fama and French (1992)

Book Equity / Market Equity Fama and French (1992)

Cash Flow / Market Equity Lakonishok et al. (1994)

Duration of Equity Dechow et al. (2004)

Enterprise Component of Book/Price Penman et al. (2007)

Enterprise Multiple Loughran and Wellman (2011)

Intangible Return Daniel and Titman (2006)

Leverage Component of Book/Price Penman et al. (2007)

Net Payout Yield Boudoukh et al. (2007)

Operating Leverage Novy-Marx (2010)

Payout Yield Boudoukh et al. (2007)

Sales Growth Lakonishok et al. (1994)

Sales/Price Barbee Jr et al. (1996)

Sustainable Growth Lockwood and Prombutr (2010)

Market Friction

11-Month Residual Momentum Blitz et al. (2011)
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52-Week High George and Hwang (2004)

Amihud’s Measure (Illiquidity) Amihud (2002)

Beta Fama and MacBeth (1973a)

Betting against Beta Frazzini and Pedersen (2014)

Bid-Ask Spread Amihud and Mendelson (1986)

Cash Flow Variance Haugen and Baker (1996)

Coefficient of Variation of Share Turnover Chordia et al. (2001)

Coskewness Harvey and Siddique (2000)

Downside Beta Ang et al. (2006a)

Earnings Forecast-to-Price Elgers et al. (2001)

Firm Age Barry and Brown (1984)

Firm Age-Momentum Zhang (2006)

Idiosyncratic Risk Ang et al. (2006b)

Industry Momentum Moskowitz and Grinblatt (1999)

Lagged Momentum Novy-Marx (2012)

Liquidity Beta 1 Acharya and Pedersen (2005)

Liquidity Beta 2 Acharya and Pedersen (2005)

Liquidity Beta 3 Acharya and Pedersen (2005)

Liquidity Beta 4 Acharya and Pedersen (2005)

Liquidity Beta 5 Acharya and Pedersen (2005)

Liquidity Shocks Bali et al. (2013)

Long-Term Reversal Bondt and Thaler (1985)

Max Bali et al. (2011)

Momentum Jegadeesh and Titman (1993)

Momentum and LT Reversal Kot and Chan (2006)

Momentum-Reversal Jegadeesh and Titman (1993)

Momentum-Volume Lee and Swaminathan (2000)

Price Blume and Husic (1973)

Seasonality Heston and Sadka (2008)

Seasonality 1 A Heston and Sadka (2008)

Seasonality 1 N Heston and Sadka (2008)

Seasonality 11-15 A Heston and Sadka (2008)

Seasonality 11-15 N Heston and Sadka (2008)

Seasonality 16-20 A Heston and Sadka (2008)

Seasonality 16-20 N Heston and Sadka (2008)

Seasonality 2-5 A Heston and Sadka (2008)

Seasonality 2-5 N Heston and Sadka (2008)

Seasonality 6-10 A Heston and Sadka (2008)

Seasonality 6-10 N Heston and Sadka (2008)

Share Issuance (1-Year) Pontiff and Woodgate (2008)

Share Turnover Datar et al. (1998)

Short-Term Reversal Jegadeesh (1990)

Size Banz (1981)

Tail Risk Kelly and Jiang (2014)

Total Volatility Ang et al. (2006b)

Volume / Market Value of Equity Haugen and Baker (1996)

Volume Trend Haugen and Baker (1996)

Volume Variance Chordia et al. (2001)

I/B/E/S

Analyst Value Frankel and Lee (1998)

Analysts Coverage Elgers et al. (2001)

Change in Forecast + Accrual Barth and Hutton (2004)

Change in Recommendation Jegadeesh et al. (2004)

Changes in Analyst Earnings Forecasts Hawkins et al. (1984)

Disparity between LT and ST Earnings Growth Forecasts Da and Warachka (2011)

Dispersion in Analyst LT Growth Forecasts Anderson et al. (2005)

Down Forecast Barber et al. (2001)

Forecast Dispersion Diether et al. (2002)

Long-Term Growth Forecasts La Porta (1996)

Up Forecast Barber et al. (2001)
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Appendix I

Definition of Liquidity Proxies

I.1 VoV(% Spread) Proxy

The fixed transaction costs are approximated with VoV(% Spread) proxy introduced in

Fong et al. (2017). It is defined as

8
σ2/3

avg vol1/3
(I.1)

where σ is standard deviation of daily returns and avg vol is average daily trading volume

in USD within a given month. The trading volume is in USD and deflated to 2000 prices.

The proxy roughly measures fixed component of trading costs and excludes price impact.

Including the price impact would further increase the transaction costs. Fong et al. (2017)

show that the price impact component is very hard to measure. It is volatile over regions,

and therefore, very dependent on execution strategy of individual asset managers. The

focus is therefore solely on the fixed component of transaction costs (effective spread).

Kyle and Obizhaeva (2016) estimated a relationship between transaction costs and size

of large institutional portfolio transfers depending on average daily trading volume and

volatility of the stocks. The analysis was conducted on a proprietary dataset covering the

2002-2005 period. VoV(% Spread) roughly corresponds to the fixed component of their

estimated transaction cost function.

Fong et al. (2017) benchmarked the proxy to other existing proxies and found that it

can be outperformed only by closing quoted spread. The quoted spread is, however, not

available for all the regions over the whole sample period.

I.2 Closing Quoted Spread

Closing quoted spread for a given month is defined as

QS =
1

T

T∑
t=1

2(ask − bid)

ask + bid
(I.2)

where ask and bid are observed at the end of trading day on each stock exchange and

T is number of days in the given month. Observations with missing or negative daily

value of QS are excluded from the average. CRSP lists the best quote of bid and ask
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for NASDAQ stocks and the last representative quotes before the market close for NYSE

and Amex stocks. Precise definition of QS can therefore vary over the exchanges.

Chung and Zhang (2014) first benchmarked the QS by comparing it to high frequency

effective spread estimates from Trade and Quote (TAQ) database. They showed that

QS has about 95% average cross sectional correlation with TAQ effective spread over the

1998 to 2009 period. Fong et al. (2017) document that it is also the best spread proxy in

international setting. One problem with QS is that it is often missing in earlier periods

and therefore has to be backfilled with other proxies.

I.3 Gibbs Proxy

Roll (1984) introduced one of the first spread proxies in the academic literature. He

assumed that the true price of stock follows a random walk with bid-ask jumps. That is,

PA
t = PA

t−1 + ut, PO
t = PA

t + sqt (I.3)

4P o
t = s4 qt + ut, ut ∼ N(0, σ2

u) (I.4)

where P o
t is observed log price, PA

t is price of the underlying Brownian motion, and s is

a half spread. Indicator qt is equal to one if the last trade in the day is buy, minus one

if it is sell, and zero if no prices are available during the day. Serial correlation of the

price changes 4P o
t should be negative and related to the spread through the following

relationship

Sroll = 2
√
−cov(4P o

t ,4P o
t+1). (I.5)

This can be contributed to the fact that

cov(4P o
t ,4P o

t+1) = cov(s(qt − qt−1) + ut, s(qt+1 − qt) + ut+1) = E[−s2q2
t ] = −s2. (I.6)

The covariance can be positive in practice. In which case the estimate of spread is set

equal to zero.

Hasbrouck (2009) proposed to extend the Roll model by estimating it with Gibbs

sampler. The idea is to estimate the equation (I.4) augmented with another dependent

variable (market return) via Bayesian regression. The variables qt are generated from the

data by Gibbs sampler.1

The proxy is estimated at annual frequency for each stock and calendar year. Lower

frequency than annual leads to severe deterioration of the proxy’s performance.

1Note that there is an error in the original paper in Journal of Finance. The correct posterior

distribution for σ2
u is IG(αprior + n

2 , βprior +
∑

u2
t

2 ).
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Appendix J

Additional Results

Table J.1:
Performance of the Mispricing Strategy Estimated on Stocks Outside the US:

Weighted Least Squares Regressions
The table shows returns of the mispricing strategy as described in Table 3.4 that is
estimated on individual stocks from the US, US & Japan, US & Europe, or US & Japan
& Europe. The returns are in percentage points per month.

Equal-weighted Value-weighted

USA Europe Japan AP Global USA Europe Japan AP Global

Evidence from the US
Mean 0.801 0.680 0.922 0.782 0.810 0.575 0.647 0.648 0.633 0.639
Sharpe Ratio 0.479 0.541 0.701 0.497 0.763 0.348 0.472 0.410 0.318 0.550
Skewness -0.340 0.239 -0.425 -0.356 0.025 -0.121 -0.017 -0.688 -0.238 -0.041
Kurtosis 8.521 5.673 4.167 3.713 8.488 7.214 6.483 5.544 4.824 7.880
Max Drawdown -64.70 -37.10 -43.36 -47.61 -43.51 -69.75 -34.16 -44.52 -49.86 -50.85

Evidence from the US & Japan
Mean 0.694 0.648 0.796 0.748 0.722 0.607 0.703 0.602 0.569 0.639
Sharpe Ratio 0.404 0.485 0.543 0.450 0.642 0.337 0.485 0.339 0.302 0.498
Skewness -0.215 0.296 -0.407 -0.373 0.055 -0.167 0.296 0.590 0.105 0.362
Kurtosis 7.929 5.619 5.593 4.571 7.920 7.716 5.202 11.16 3.816 9.129
Max Drawdown -69.18 -42.84 -55.39 -48.93 -49.92 -73.56 -36.78 -53.55 -51.64 -54.34
Information Ratio -0.181 -0.056 -0.189 -0.035 -0.218 0.042 0.098 -0.044 -0.045 0.000

Evidence from the US & Europe
Mean 0.780 0.700 0.854 1.140 0.842 0.708 0.638 0.569 0.897 0.715
Sharpe Ratio 0.435 0.546 0.646 0.697 0.736 0.418 0.477 0.340 0.487 0.603
Skewness -0.581 0.082 -0.590 -0.356 -0.397 -0.308 0.141 -0.617 -0.255 -0.221
Kurtosis 10.31 5.844 4.491 3.826 8.745 8.525 5.838 4.677 3.726 7.486
Max Drawdown -63.84 -41.66 -41.74 -48.17 -41.68 -63.39 -36.58 -58.68 -49.51 -44.83
Information Ratio -0.037 0.031 -0.116 0.442 0.082 0.173 -0.014 -0.098 0.274 0.142

Evidence from the US & Japan & Europe
Mean 0.808 0.699 0.884 1.112 0.853 0.765 0.626 0.469 1.020 0.730
Sharpe Ratio 0.444 0.516 0.645 0.691 0.736 0.422 0.426 0.267 0.530 0.580
Skewness -0.359 0.304 -0.267 -0.321 -0.096 -0.303 -0.038 0.134 -0.466 0.034
Kurtosis 8.281 5.359 4.212 4.241 7.407 7.961 5.712 7.329 5.093 7.344
Max Drawdown -70.99 -45.05 -39.66 -42.05 -45.60 -72.31 -37.82 -63.48 -45.19 -50.12
Information Ratio 0.009 0.028 -0.057 0.346 0.096 0.221 -0.030 -0.167 0.320 0.155
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Table J.2:
Is Marginal Return to Following New Anomalies Decreasing over Time?

The table shows returns of the mispricing strategy described in Table 3.4 that is estimated
on the individual stocks from the US. The set of anomalies in the estimation is restricted
to those that were published before 1995, 2000, 2005, or 2010. Returns are reported in
percentage points per month over the 2010-2016 period.

Equal-weighted Value-weighted

USA Europe Japan AP Global USA Europe Japan AP Global

Weighted Least Squares

Published by 1995
Mean 0.189 0.408 0.324 0.343 0.301 0.190 0.300 1.028 0.424 0.337
Sharpe Ratio 0.210 0.408 0.306 0.255 0.440 0.208 0.263 0.926 0.295 0.442
Published by 2000
Mean 0.193 0.777 0.577 0.055 0.409 0.129 0.588 1.063 -0.121 0.415
Sharpe Ratio 0.213 0.811 0.475 0.042 0.592 0.138 0.506 0.816 -0.090 0.540
Information Ratio 0.006 0.556 0.333 -0.306 0.253 -0.086 0.354 0.040 -0.421 0.150
Published by 2005
Mean 0.896 0.780 0.873 0.517 0.793 0.807 0.476 1.376 0.010 0.860
Sharpe Ratio 1.031 0.812 0.760 0.386 1.181 1.001 0.392 1.091 0.006 1.189
Information Ratio 1.233 0.004 0.476 0.380 0.974 0.858 -0.107 0.376 0.081 0.686
Published by 2010
Mean 0.997 0.868 0.978 1.283 0.994 0.797 0.569 0.934 1.247 0.892
Sharpe Ratio 1.240 0.997 0.978 0.937 1.589 0.907 0.561 0.830 0.863 1.262
Information Ratio 0.198 0.156 0.153 0.796 0.595 -0.015 0.130 -0.539 0.792 0.069

Gradient Boosting Regression Trees

Published by 1995
Mean 0.514 0.446 0.634 1.034 0.609 0.446 0.695 0.706 0.817 0.617
Sharpe Ratio 0.638 0.480 0.637 0.723 1.115 0.483 0.739 0.661 0.528 1.006
Published by 2000
Mean 0.517 0.906 1.090 1.595 0.918 0.134 0.652 1.172 1.399 0.561
Sharpe Ratio 0.655 1.015 1.167 1.246 1.765 0.150 0.728 1.001 1.049 0.947
Information Ratio 0.006 0.658 0.487 0.546 0.752 -0.389 -0.054 0.348 0.432 -0.096
Published by 2005
Mean 0.830 0.948 1.169 1.583 1.045 0.822 0.792 1.182 1.161 0.941
Sharpe Ratio 1.223 1.080 1.286 1.483 2.324 1.054 1.082 1.241 1.028 1.978
Information Ratio 0.483 0.057 0.095 -0.009 0.294 0.827 0.154 0.009 -0.152 0.645
Published by 2010
Mean 1.011 1.140 0.817 1.943 1.121 0.509 1.085 0.911 1.765 0.898
Sharpe Ratio 1.443 1.264 0.803 1.562 2.039 0.585 1.221 0.733 1.435 1.530
Information Ratio 0.348 0.289 -0.447 0.369 0.216 -0.405 0.382 -0.277 0.485 -0.094
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J.1 Monthly Updated Fundamental Anomalies

Anomalies based on annual financial statements have so far been updated annually every

June. June was chosen so that firms with financial year ending in December have 6 months

to publish their statements. The explicit assumption was that all the firms publish their

statements within 6 months after their financial year has ended. The rule was originally

devised on the US data where great majority of firms have their financial year ending

in December. The usual financial year end is, however, different in the other regions.

78% of firms in Japan have financial year ending in March. The most frequent choice

of financial year end in Asia Pacific region is either December or June both being about

equally likely. Financial year end date outside December leads to the financial statements

being older than 6 months in June and thus being less relevant. Bartram and Grinblatt

(2018b) and Jacobs and Müller (2017c) circumvented this problem when working with

international data by relying on point-in-time Reuters database that presents financial

statements as they were published by a given date and creating the fundamental signals

monthly. We do not have access to the point-in-time database but we will here create

a pseudo point-in-time database and will also refresh the fundamental signals monthly

rather than annually.

Table J.3 presents results from Table 3.4 based on the annual construction of fun-

damental signals along with their monthly construction. Everything remains the same

as in Table 3.4 with the only difference being that the fundamental signals are updated

every month with financial statement information from financial years ending at least 6

months prior. The explicit assumption again is that all the firms publish their statements

within the 6 months after their financial year has ended. All the trade data information

such as market cap is also updated monthly and taken the most recent. Market cap was

previously taken from the previous calendar year end as in Fama and French (1992) and

was therefore outdated by 6 months by June. Asness and Frazzini (2013) showed that

market cap from June leads to better performance of value factor. There can therefore

also be some benefit from shifting the trade data information.

Table J.3 documents that the lag in availability of the financial statements leads to

some loss in performance in almost all the regions. Both mean returns and Sharpe ratios

with the monthly updating of the fundamental signals are about 10% higher relative to

when they are updated annually. To conclude, the monthly updating can slightly improve

the performance of the mispricing strategy but it does not affect the main conclusions of

this study.
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Table J.3:
Performance of the Mispricing Strategy with Monthly Updated Fundamental

Signals
The table shows returns of the mispricing strategy described in Table 3.4 that is esti-
mated on the individual stocks from the US. The results labelled ”Annually Updated
Fundamental Signals” directly correspond to Table 3.4 where the fundamental signals are
updated every June while the results labelled ”Monthly Updated Fundamental Signals”
are created using fundamental signals that are updated every month based on financial
statements released more than six months prior. Panel A describes results from weighted
least squares estimation method while Panel B reports results from gradient boosting
regression trees method. The returns are reported in percentage points per month.

Equal-weighted Value-weighted

USA Europe Japan AP Global USA Europe Japan AP Global

Panel A: Weighted Least Squares

Annually Updated Fundamental Signals
Mean 0.801 0.680 0.922 0.782 0.810 0.575 0.647 0.648 0.633 0.639
Sharpe Ratio 0.479 0.541 0.701 0.497 0.763 0.348 0.472 0.410 0.318 0.550
Skewness -0.340 0.239 -0.425 -0.356 0.025 -0.121 -0.017 -0.688 -0.238 -0.041
Kurtosis 8.521 5.673 4.167 3.713 8.488 7.214 6.483 5.544 4.824 7.880
Max Drawdown -64.70 -37.10 -43.36 -47.61 -43.51 -69.75 -34.16 -44.52 -49.86 -50.85

Monthly Updated Fundamental Signals
Mean 0.889 0.750 0.869 1.078 0.883 0.736 0.585 0.640 0.676 0.696
Sharpe Ratio 0.537 0.644 0.690 0.663 0.867 0.447 0.440 0.386 0.360 0.634
Skewness -0.203 0.246 -0.479 -0.307 0.008 -0.046 0.075 -0.139 -0.209 -0.063
Kurtosis 8.039 4.970 4.987 3.822 7.683 6.466 6.056 5.155 4.145 6.239
Max Drawdown -63.40 -38.59 -39.29 -42.31 -37.78 -65.32 -26.37 -62.52 -41.22 -41.57
Information Ratio 0.173 0.133 -0.074 0.272 0.219 0.218 -0.105 -0.008 0.029 0.114

Panel B: Gradient Boosting Regression Trees

Annually Updated Fundamental Signals
Mean 1.165 0.870 1.173 1.650 1.163 1.391 0.591 1.011 1.415 1.033
Sharpe Ratio 0.720 0.644 0.766 1.005 1.146 0.831 0.412 0.525 0.800 0.870
Skewness 0.319 -1.160 0.682 -0.437 -0.449 0.561 -1.314 0.800 -0.112 -0.433
Kurtosis 6.653 10.17 8.274 5.575 6.812 9.287 12.03 8.611 4.718 7.797
Max Drawdown -38.31 -48.25 -34.37 -36.65 -27.45 -43.93 -42.31 -41.79 -39.58 -35.62

Monthly Updated Fundamental Signals
Mean 1.264 1.039 1.242 1.597 1.254 1.492 0.771 1.207 1.314 1.125
Sharpe Ratio 0.786 0.840 0.858 0.965 1.241 0.900 0.538 0.645 0.770 0.902
Skewness 0.260 -0.848 0.438 -0.099 -0.337 1.041 -1.332 1.057 0.203 0.518
Kurtosis 7.663 10.95 8.076 5.330 6.896 8.525 16.78 10.60 5.307 7.435
Max Drawdown -47.13 -43.82 -30.79 -37.49 -27.12 -43.11 -43.00 -36.56 -35.74 -31.02
Information Ratio 0.142 0.270 0.091 -0.042 0.237 0.110 0.179 0.191 -0.065 0.141
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