
Fast TLB Simulation for RISC-V Systems
Xuan Guo

Gary.Guo@cl.cam.ac.uk
University of Cambridge

Cambridge, UK

Robert Mullins
Robert.Mullins@cl.cam.ac.uk
University of Cambridge

Cambridge, UK

ABSTRACT
Address translation and protection play important roles in today’s
processors, supporting multiprocessing and enforcing security. His-
torically, the design of the address translation mechanisms has been
closely tied to the instruction set. In contrast, RISC-V defines its
privileged specification in a way that permits a variety of designs.

An important part of the design space is the organisation of
Translation Lookaside Buffers (TLBs). This paper presents our re-
cent work on simulating TLB behaviours in multi-core RISC-V
systems1. Our TLB simulation framework allows rapid, flexible and
versatile prototyping of various hardware TLB design choices, and
enables validation, profiling and benchmarking of software running
on RISC-V systems. We show how this framework can be integrated
with the dynamic binary translated emulator QEMU to perform
online simulation. When simulating complicated multi-level shared
TLB designs, the framework runs at around 400 million instruc-
tions per second (MIPS) when simulating an 8-core system. The
performance overhead compared to unmodified QEMU is only 18%
when the benchmark’s L1 TLB miss rate is 1%.

We also demonstrate how this tool can be used to explore the
instruction-set level design space. We test a shared last-level TLB
design that is not currently permitted by the RISC-V’s privileged
specification. We then propose an extension to RISC-V’s virtual
memory system design based on these experimental results.

1 INTRODUCTION
RISC-V is an simple, extensible, general-purpose and open instruc-
tion set architecture (ISA). In the past year, RISC-V support has been
upstreamed in many open-source software projects, such as the
Linux kernel, GNU toolchains, LLVM, etc. We also see an emerging
number of open-source RISC-V processsors debuted in the past year,
such as Ariane from ETH Zurich, and SweRV from Western Digital
Corporation. There are also a number of open-source system-on-
chip (SoC) platforms being actively developed, such as lowRISC
from lowRISC CIC.

Most of the existing open-source RISC-V implementations are
simple cores which focus more on the microcontroller use case,
such as RI5CY from ETH Zurich. However, there is also a demand
for high-performance, Linux-capable RISC-V SoC implementations
for personal computing or even server workloads. Address transla-
tion and protection, or virtual memory addressing (VMA) support,
is one of the core components of such a system. Processors sup-
porting virtual memory often employ translation caches such as
1Available at https://github.com/nbdd0121/TLBSim under BSD-2 licence.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license.
CARRV 2019, June 22, 2019, Phoenix, AZ
© 2019 Copyright held by the owner/author(s).

Translation Lookaside Buffers (TLBs) to cache virtual-to-physical
mappings, avoiding the cost of high-latency accesses to in-memory
address translation data structures. TLBs are crucial to system per-
formance due to the penalties associated with misses [1][2]. We
investigated the few existing open-source implementations with
supervisor mode and discover that their VMA and TLB support
is relatively simple. They use a single-level fully-associative TLB.
Furthermore, the same TLB design is duplicated for instruction and
data accesses. In addition, the current version of Linux kernel (5.0)
only uses a limited subset of VMA features that RISC-V provides.
This work aims to help validate and profile different TLB design
decisions in simulation using real workloads, generating results to
guide software, hardware and ISA design decisions. This will be
particularly important for the high-performance many-core RISC-V
systems that we anticipate will soon be produced.

In this paper, we present a framework for simulating TLB be-
haviours, and conduct experiments to explore the design-space of
RISC-V virtual memory systems. We make the following contribu-
tions:

• We demonstrate how QEMU can be modified to perform
fast TLB simulation with only a minor performance loss.
Even when simulating complex multi-level TLB designs, we
incur only a 18% performance overhead compared to vanilla
QEMU, and can achieve around 400 MIPS when simulating
an 8-core system.

• We use the tool to log and categorise the Linux kernel’s use
of SFENCE.VMA, RISC-V’s TLB flush instruction. We suggest
that an extra constraint is placed upon the hardware to aid
more efficient software implementations.

• We investigate the case for shared TLBs and a global ASID
space. We find that shared TLBs have a concrete advantage
over private TLBs, and that a global ASID space can increase
gains further. We then propose an extension to permit the
use of such a design for RISC-V.

2 BACKGROUND
2.1 VMA in RISC-V
The privileged specification 1.10 [12] of RISC-V defines the address
translation structure of in-memory page tables to support VMA.
Depending on machine word-length and configuration, virtual ad-
dresses are translated to physical addresses using two, three or four
levels of page table. A control and status register (CSR) called SATP
(Supervisor Address Translation and Protection) is used to store the
base address of the root page table. In addition to the base address,
a paging mode field and a 16-bit address space identifier (ASID)
field (9-bit in 32-bit RISC-V) are packed into the SATP CSR allowing
these fields to be changed atomically. The ASID field can be used



CARRV 2019, June 22, 2019, Phoenix, AZ Guo, et al.

to distinguish between TLB entries to avoid the need to flush TLBs
during context switches.

RISC-V also includes a SFENCE.VMA instruction to flush TLBs.
SFENCE.VMA takes two optional register operands to specify the
ASID and virtual address to flush. Implementations may choose to
ignore register operands and always perform a full TLB flush.

Unlike almost all other architectures which describe similar in-
structions as flushing translation cache entries from TLBs, RISC-V
defines the instruction as a fencing instruction after which the
previous modifications to address translation data structures are re-
quired to be honoured by the hardware. The specification is worded
in such way deliberately to allow a wide design space. However,
as a result of such definition, an implementation can technically
cache invalid entries in its TLB while still being RISC-V compliant.
We will revisit this issue in Section 5.2 and explore its implications
using our TLB simulator.

2.2 ASID Space
RISC-V, in its current state, also mandates that all hardware threads
(harts) need to have their own private ASID spaces. The concept
of hart-local ASID spaces is frequently used in other ISAs which
add ASID support as a later extension, e.g. x86 [6]. Without ASID
support initially, each core naturally has separate address transla-
tion units. For backward compatibility considerations, ASIDs are
kept local to each core when they are added. On the other hand,
for architectures that are designed to have ASID support from day
one, such as ARMv8, the ASID space is global to all processors, and
remote TLB cache shootdown is also supported.

RISC-V’s privileged specification has undergone some large scale
changes, and there is already software that makes use of its vir-
tual memory system without having ASID support. As RISC-V
requires CSR fields unknown to software to be filled with 0, it
happens that software naturally uses ASID 0 when ASIDs are in-
troduced. The backward compatibility burden essentially requires
ASID 0 to be treated as local to each hart. Following our suggestions
about a global ASID space, the committee has decided to place a
forward-compatibility requirement on software so that non-zero
ASIDs should have consistent meanings across different harts, and
software should not use ASID 0 if it decides to use other ASIDs.

2.3 Shared TLB
A global ASID space allows more than remote TLB shootdown. It
allows harts to share last-level TLBs, and also possibly inter-core
cooperative prefetching [4][8]. Bhattacharjee, et al. investigated
the potential performance gains of using a single shared L2 TLB
when compared to multiple per-core private L2 TLBs (with the same
number of total entries when aggregated) [3]. Their result showed
that shared TLBs can consistently outperform private TLBs, and
on average the L2 miss rate is reduced by 27%. Li, et al. reported
that PS-TLB can achieve similar performance [7].

A shared TLB can be most efficiently implemented if the ASID
space is shared globally. As mentioned in the previous subsection,
the global ASID space is not currently permitted by RISC-V. We
therefore also show how a shared TLB can be designed while being
compliant with the current architecture specification in Section
6, and use our framework to simulate the performance between

different designs. The experimental results are then used to propose
an extension.

3 SIMULATOR IMPLEMENTATION
3.1 Inclusive L1 TLB
When running code of a non-native ISA, QEMU uses its tiny code
generator (TCG) to perform dynamic binary translation (DBT),
translating guest binaries to host binaries. When TCG is compiled
with soft MMU support (i.e. doing full system emulation), it uses a
technique similar to hardware direct-mapped TLBs to accelerate
code with virtual memory access. Any guest memory access in-
structions are translated to a sequence of host instructions which
accesses QEMU’s TLB-like structure first to acquire the physical
address before performing the actual access. When the TLB access
hits, the control flow does not leave generated code, and QEMU’s
helper code is invoked when the corresponding page does not exist
in the TLB. It is worth mentioning that QEMU’s direct-mapped
TLB is only an acceleration mechanism, and it does not simulate
or intend to simulate the actual address translation mechanisms
employed in actual hardware. Other ISA simulators, e.g. Spike, use
similar approach to accelerate memory access when soft MMU is
used.

We would like our simulation framework to be used without
extensive modification in ISA simulators. The case is especially
true for QEMU, as modifying the TLB used in TCG requires a
range of components to be changed. Moreover, ISA simulators
almost always use direct-mapped TLBs for performance concerns.
Traversing through associative caches, which most hardware TLB
designs use, is clearly not acceptable on the hot path.

Our TLB simulation framework is therefore built as a shared
library and dynamically linked into ISA simulators. We made the
design decision that our code should only be executed on the slow
path. When a memory location is accessed, the ISA simulator will
query its own TLBs first (referred later as L0 TLB from our simula-
tion’s point-of-view). If L0 TLB hits, the ISA simulator can serve the
request directly. The API provided by our TLB simulation frame-
work is called when L0 TLB misses, replacing ISA simulator’s own
page walking routine.

To ensure all TLB misses can be accurately recorded and simu-
lated, we need to avoid scenarios where a memory access hits L0
TLB but would miss in our TLB. To address this potential issue,
we enforce that all entries in L0 TLB must also be included in our
simulated L1 TLB. If any entries are evicted from our TLB, we will
use the L0 TLB invalidation callback provided by the ISA simulator
to remove the entry from L0 TLB as well. Figure 1 shows the control
flow of a guest data memory accesses when the user is QEMU, with
only L1 caches simulated. The control flow is more complicated if
multi-level TLBs are simulated.

Our approach keeps ISA simulator’s fast-path almost untouched,
therefore all the performance overhead of TLB simulation lies in
the slow path. As a result, only minor performance overhead is
observed. A drawback of this approach is that aswe did not intercept
all TLB accesses, we cannot implement least-recently used (LRU)
policy in L1 TLBs. This is a deliberate trade-off we made for high
performance. Other replacement policies that do not require all
TLB accesses to be accounted, e.g. FIFO, random or even victim



Fast TLB Simulation for RISC-V Systems CARRV 2019, June 22, 2019, Phoenix, AZ

Is the virtual 
address in 

QEMU TLB?

Obtain the physical address from 
QEMU TLB

Check the 
permission

Insert the entry into simulated TLB

Perform the actual memory access

Insert the entry into QEMU TLB

Lookup the virtual 
address in 

simulated TLB

Walk page tables

Any entries being 
evicted from 

simulated TLB?
Flush the entry from QEMU TLB

Trigger a page fault exception

Miss

Hit Miss

Hit

Yes

No

Pass

Fail

Dynamic Binary Translated Code QEMU TLB Simulator

Figure 1: Control flow of a guest data memory access, with only L1 caches simulated

caches, can be supported. We believe that the simulated result is
still representative as there are researches suggesting that only
small hit-rate gap exists between replacement policies [9].

3.2 QEMU Integration
Our design decision makes integration with QEMU simple. To be
able to use our TLB simulation framework, only the following
changes are made in QEMU:

• Replace page walking routine with calls to TLB simulator;
• When SFENCE.VMA is executed, call TLB simulator in addi-
tion to normal flush;

• Inserting code to the beginning of each DBT-ed basic block to
update instruction retirement counters. We need two coun-
ters, total number of instructions executed and number of
memory access instructions executed. By tracking these two
counters, we can calculate number of L1 hits even when
some of the lookups never reach our TLB simulator.
To avoid the synchronisation cost by keeping per-CPU coun-
ters, the inserted code will only update per-CPU counters,
and the counters are only aggregated when control is handed
back to QEMU’s main loop from DBT-ed code.

3.3 Features
We have implemented fully associative, set associative and direct
mapped TLBs with FIFO replacement policy. Other replacement
policies and victim caches can also cooperated within our frame-
work. It is also possible to implement advanced techniques such as
prefetching and CoLT [10] in our framework.

Besides the conventional TLB designs used in hardware, we also
implement an “ideal TLB”. Ideal TLB caches all translations that it
sees, and never evicts entries. It is identical to a fully associative
TLB with infinite number of entries. It is the basis of the Software
Validation use case that we describe in Section 5.1.

Our framework is able to gather various statistics related to the
virtual memory system, including number of misses, evictions and
flushes associated with each level of TLB. We also categorise page

faults and executed SFENCE.VMAs and provided separate counters
for each.

Our TLB simulation framework is designed to be thread-safe
to support multi-threaded ISA simulators, e.g. QEMU with multi-
thread TCG (MTTCG) enabled, where all logical guest cores run
in their own thread. All statistics are gathered using counters im-
plemented as atomic variables. Other critical data structures are
protected by light-weight spin locks instead of mutexes. We use
fine-grained spin locks whenever possible to reduce possibility of
contention.

We also support offline L2 TLB simulation. A trace collector can
be connected to L1 TLB models, and log TLB requests to a file. The
file can be replayed for L2 TLB simulation. However, the offline
simulation works well only on small benchmarks, therefore the
experiments carried out in later sections used online simulation
only.

4 SIMULATOR PERFORMANCE
We evaluated the performance overhead of TLB simulation when
used together with QEMU. The performance impact is minor, as the
only changes we have made to QEMU’s fast path are the instruction
retirement counters, which can also be turned off if these measure-
ments are not necessary for a specific experiment or benchmark.

Figure 2 shows the performance of QEMU with and without TLB
simulation, when simulating a multi-level TLB design when the
workload has L1 TLB miss rate of 1%. When running with 8 guest
CPU cores, the framework achieves around 50 MIPS per core. The
average performance loss compared to unmodified QEMU is 18%. In
some experiments where L1 TLB miss rate is low, the performance
loss can be as low as 2.5%.

The performance we achieve is 2860x faster than the gem5 sim-
ulator at 175 KIPS and 125,000x faster than the Chisel C++ RTL
simulator at 4 KIPS [11]. The numbers show that if only the virtual
memory system is of concern, using our TLB simulation framework
provides a significant speedup.



CARRV 2019, June 22, 2019, Phoenix, AZ Guo, et al.

1 2 3 4 5 6 7 8
Number of Cores

0

100

200

300

400

500
M

IP
S

No TLB simulation
With TLB simulation

Figure 2: Performance of QEMU, with and without TLB sim-
ulation, in MIPS

5 SOFTWARE VALIDATION, PROFILING AND
BENCHMARKING

5.1 Software Validation
Our simulation framework can be used to verify the operating sys-
tem software’s behaviour on different hardware implementations.
Our framework can be tuned to disable hardware accessed/dirty bit
updates, deliberately cache invalid entries, and/or generate page
faults aggressively when an invalid translation entry is found in
the TLB, to test if the software has handled such cases properly. We
also implemented a set of validators on top of the ideal TLB. We
can detect the following common mistakes:

• ASID reused without flushing;
• Page table entries updated with different physical address
or reduced permission, but there is no SFENCE.VMA.

• Multiple ASIDs used to refer to the same page table. While
not strictly wrong, it often indicates an implementation error
in software, and is at least a performance issue.

The experiments carried out in Section 6 requires the operating
system to have ASID support. We need to implement ASID support
for Linux ourselves, as its RISC-V port does not have ASID support
at the time of writing. We used the validation feature of our TLB
simulator extensively to verify and debug our implementation.

5.2 Software Profiling
As discussed in section 2.1, RISC-V compliant implementations
are allowed to cache an invalid entry in its TLB, as SFENCE.VMA is
specified as an ordering instruction, so it is needed to guarantee
that a write to a previously invalid leaf page table entry (PTE) is
made visible.

This is contrary to what software normally assumes. Linux, for
example, assumes that TLBs cannot contain totally invalid entries.
TLB flush routines will not be called by the kernel at all in this
scenario. The current RISC-V port of Linux (at the time of writing,
5.0) instead uses a feature that Linux provides to allow architectures
to preload the MMU (update_mmu_cache) to perform the flush
instead. This MMU preloading code is called whenever a mapping
is created, for example, when a program’s text segment is mapped
by the execve system call. At this time the program is not executed
yet, and it is extremely unlikely that an hardware implementation

will load these TLB entries speculatively. The TLB flushes have thus
most likely been superfluous.

We are interested in how RISC-V’s current ISA design can impact
software, as TLB flushes can be expensive operations on many
micro-architectures, including but not limited to:

• Micro-architectures that always perform a full TLB flush on
SFENCE.VMA.

• Micro-architectures with multi-level TLBs, in which case a
SFENCE.VMA requires flushes in all TLB hierarchies.

• Micro-architectures with virtual cache, in which case a
SFENCE.VMA may also require a cache flush.

Category Number per MInst Percentage
Never Accessed 5.01 40%
Previously Invalid 6.78 54%

Previously Non-Writable 0.59 5%
Necessary 0.13 1%

Table 1: SFENCE.VMAs issued by the Linux kernel

We use our simulation framework to investigate SFENCE.VMAs
issued by the Linux kernel. The workload chosen is the compi-
lation of the Linux kernel, as TLB flushes happen mostly when
processes are frequently spawned and terminated. We categorise
SFENCE.VMAs issued into 4 categories, as shown in Table 1:

• Never accessed page: These are mappings that are newly cre-
ated and never accessed. The specification allows hardware
to prefetch TLB entries anywhere in the address space, but
these entries will never be fetched in practice.

• Previously invalid page: These are mappings which were
previously invalid, and are made valid by the page fault
handler. This usually applies to the stack and heap where
pagemaps are created but memory is not yet allocated. These
flushes are not necessary in a design that does not cache
invalid entries.

• Previously non-writable page: These pages are previously
non-writable, and are made writable by the page fault han-
dler. These pages are usually results of a fork which makes
page copy-on-write (CoW). These entries may have been
cached in TLBs as the result of a successful read, so it is
reasonable to issue SFENCE.VMA in this scenario.

• Necessary flushes: These flushes are absolutely necessary,
for example, as a result of mprotect which downgrades the
permissions on the page.

All cases other than (4) can be done lazily, i.e. do not flush
them until they trigger exceptions. The current Linux kernel issues
SFENCE.VMAs in all cases, including (1) and (2), based on the reason-
ing that TLB flushes are less expensive than page faults. However,
we think that the cases behind (1) and (2) are rare if not impossible
to see in actual hardware implementations. As they account for
94% of SFENCE.VMAs, eliminating them can improve performance
when flushes are expensive. We therefore suggest RISC-V privileged
specification to:

• Recommend against hardware from caching invalid entries;
• Recommend software to assume that such case is unlikely.

We do not suggest that the possibility is ruled out completely, i.e.
software should still handle spurious page faults properly, therefore



Fast TLB Simulation for RISC-V Systems CARRV 2019, June 22, 2019, Phoenix, AZ

no additional hardware logic is needed to deal with the case where
a speculatively executed memory access causes a page fault after a
page table modification (even though the case never happens in a
properly implemented OS).

6 HARDWARE/ISA DESIGN SPACE
EXPLORATION: THE CASE FOR SHARED
TLB

We discussed about the current scenario of RISC-V’s ASID design
in Section 2.2, and mentioned the benefit of shared TLBs shown by
prior arts in Section 2.3. In this section, we explore three possible
L2 TLB designs and their performance in terms of hit rates.

In all three setups, all configurations other than L2 TLB are kept
identical. All simulations are carried out using 8 cores, and each core
has its own separate instruction L1 TLB (I-TLB) and data L1 TLB
(D-TLB). All L1 TLBs are 32-entry and fully-associative. Hardware
accessed/dirty bit updates are on, and no invalid entries will be
cached. Non-writable entry may be cached and trigger a page fault
without falling to page walker. The three setups differ by their L2
configurations only:

(1) Private L2 TLB: Each core has its own dedicated 128-entry, 8-
way set associative L2 TLB. Both the core’s I-TLB and D-TLB
are connected to this L2 TLB.

(2) Shared L2 TLB, without the assumption of global ASID space:
There is a unified 1024-entry, 8-way set associative TLB. Each
TLB entry is tagged with a associated hart ID, in addition to
an ASID and a virtual page number (VPN).

(3) Shared L2 TLB, with the assumption of global ASID space:
There is a unified 1024-entry, 8-way set associative TLB.
Each TLB entry is tagged with only an ASID and a VPN. The
TLB is free to serve an entry that is originated by a hart to a
different hart.

While all setups have the same number of L2 TLB entries per core,
their hardware costs differ: setup (2) requires additional tag bits for
hart IDs; (1) has low requirement for communications; (2) and (3)
need less logic for tag checking (as they are 8-way in total instead
of 8-ways per core). These three configurations are selected for
their simplicity, but our framework may be modified to simulate
additional sharing mechanisms, such as PS-TLB [7].

Figure 3 shows the results generated using the PARSEC bench-
mark suite [5] (excluding raytrace, which fails to compile) to test
the scenario where memory sharing is common and frequent. A
shared L2 TLB without global ASID performs similarly or better
compared to private L2 TLBs in all PARSEC benchmarks. The av-
erage L2 miss rate drops from 29% for private L2 TLB to 23% for
shared L2 TLB without global ASID. We observe a major improve-
ment in all benchmarks when shared L2 TLB is allowed to exploit
a global ASID space. The miss rate drops further to 9%, inline with
our expectation. When sharing is common, global ASID space can
avoid storing redundant copies, therefore can cache more entries.

We also use Linux kernel compilation as a benchmark. Compiling
a single C file is serial, but the whole task is embarrassingly parallel
as different files can be concurrently compiled using make -j<n>.
This benchmark tests the different TLB organisations whenmemory
sharing and communications between cores are infrequent. Figure
4 shows the statistics we gathered. When all 8 cores are used, the

bla
ck

sc
ho

les

ca
nn

ea
l

de
du

p

fac
es

im
fer

re
t

flu
ida

nim
ate

fre
qm

ine

str
ea

mclu
ste

r

sw
ap

tio
ns vip

s
x2

64

av
er

ag
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
is

s 
ra

te

Private
Shared w/o Global ASID
Shared w/ Global ASID

Figure 3: Local L2 TLB miss rates running the PARSEC
benchmarks

1 2 4 8
Parallelism

0.0

0.1

0.2

0.3

0.4

0.5

M
is

s 
ra

te

Private
Shared w/o Global ASID
Shared w/ Global ASID

Figure 4: Local L2 TLB miss rates compiling the Linux ker-
nel, in relation to parallelism

miss rate reduction is minimal as we expected. When fewer number
of jobs are used, the effective per-hart L2 TLB size for shared TLB
is greater, so we see a huge performance gain over private L2 TLB.
We believe that global ASID TLB outperforms shared TLB without
global ASID slightly as processes are occasionally migrated between
harts. This result shows that shared TLBs can be particularly useful
for low or moderate utilisation.

We also explored the relationship betweenmiss rate and per-core
L2 TLB size in these three setups, with result shown in Figure 5. As
we expected, the miss rate is negatively correlated to the per-core
L2 TLB size in all three setups. A more interesting observation is
that the miss rate of shared TLB with global ASID is even better
than the miss rate of shared TLB without global ASID with twice
as many entries, and is approximately the same as the miss rate of
private L2 TLB design with 4 times as many entries per core. This
suggests that, in parallel workloads, if we change a private L2 TLB
design to a shared L2 TLB design with global ASID, we will be able
to save 3/4 space while preserving the miss rate.

6.1 Extension to RISC-V
Following empirical data from the last section, we see a clear advan-
tage of shared TLBs with global ASID space, and believe that such



CARRV 2019, June 22, 2019, Phoenix, AZ Guo, et al.

MASI mismatch Cannot share; different ASID isolation domain

MASI match

VMID mismatch Cannot share; different VM

VMID match

The entry has global bit set Can share
Both ASIDs are non-zero and identical Can share
Both ASIDs are non-zero but not identical Cannot share
Both ASIDs are zero Cannot share; software does not support ASID
One ASID is zero and another is non-zero Implementation-defined

Table 2: Look-up table for whether translation caches could be shared

32 64 128 256 512
Per-Core L2 TLB Size

0.0

0.2

0.4

0.6

0.8

M
is

s 
ra

te

Private
Shared w/o Global ASID
Shared w/ Global ASID

Figure 5: Local L2 TLB miss rates running the PARSEC
benchmarks, in relation to per-core L2 TLB size

design should definitely be allowed by the specification. Global
ASID space also has other potential benefits than just allowing
shared translation caches. It also permits virtual cache, which is
used in some GPU designs [13]. For OSes, the gain of independent
hart-local ASID space has little value, and may not be worth the
complexity of tracking ASID individually per hart. If hardware
supports remote TLB shootdown, by using consistent meaning
of ASIDs across harts, OSes can take advantage transparently by
issuing sbi_remote_sfence_vma_asid.

To permit these designs, RISC-V’s privileged specification re-
quires a change. However, we cannot simply declare that now
ASIDs are global – this will break existing software that uses ASID
0 on all harts, and we will lose the ability to perform logic partition
(LPAR) style separation on hardware without hypervisor extension
support. We therefore propose an “ASID space sharing extension”
instead:

A new CSR, MASI (Machine Address Space Isolation CSR) should
be introduced, which is a write-any-read-legal (WARL) CSR register.
This CSR can be implemented by all hardware implementations
regardless whether they would like to use global ASID space.

The number of writable bits are implementation-defined. Non-
writable bits are hardwired to constants, which may or may not
be zero. Less significant bits are implemented first. Software can
determine the writable part of this CSR by first writing all zeroes to
MASI and read back, then writing all 1s to MASI and read back, and
XORing the results. Following this procedure, the bits containing 1
in the XORed result are writable.

Table 2 shows whether two entries could be shared under the
proposed extension. We deliberately include the implementation-
defined clause when one hart uses an ASID of zero and another
hart uses an non-zero ASID while sharing the same MASIs and
VMIDs. This relaxation allows simpler hardware implementations

when handling ASID 0, allowing them to simply map ASID 0 to an
unique global ASID (e.g. hart ID) instead of implementing complex
logic to deal with ASID 0 specially in the entire TLB hierarchy.

This design opens up space for possible designs:

• If an implementation utilises global ASID space, but does
not want to support LPAR, e.g. not needed or there is an
hypervisor extension for the task, the implementation can
simply hardwire MASI to 0.

• If an implementation does not exploit global ASID space, it
can hardwire MASI to the hart ID (or any unique number).

• If an implementation wants to utilise global ASID while
supporting LPAR, it will need to implement writable bits
in this CSR. It also needs to add corresponding tag bits in
TLB entries. Note that this is not an additional overhead as
without this extension and global ASID, it would need to tag
TLB entries with hart IDs anyway.

The proposed extension also allows other topologies. For exam-
ple, if there are two sockets and ASID sharing is supported within
a socket, then the hardwired constant bits can be set to different
values on two sockets, so the software would know that some harts
can share a translation cache but not others.

The proposed extension requires software to use non-zero ASIDs
and global pages to represent consistent meaning across harts,
unless they are aware of the MASI configuration. We looked into
existing kernel ports (Linux and FreeBSD), and have seen no usage
of global page and non-zero ASIDs so far, so our proposed change
will not break backward compatibility of software. The proposed
change will also not affect existing hardware, as accesses to the
proposed CSR will trigger illegal instruction faults. The firmware
could catch the exception and return the hart ID instead. Moreover,
we expect that most implementations will not need to support both
ASID sharing and LPAR, so they would only need to implement a
readonly CSR, which is almost free in hardware.

7 CONCLUSION
We present a framework for simulating different TLB organisations
for RISC-V systems. Our framework can simulate multi-level TLB
designs at around 400 MIPS per 8 cores, incurring a performance
overhead of∼20%when compared to unmodified QEMU.We use the
tool to log and categorise SFENCE.VMAs issued by Linux and suggest
an extra constraint on hardware to allow more efficient software
implementation. We also investigate the case for shared TLBs and
a global ASID space. We found that shared TLBs with global ASID
space offer a concrete advantage over other organisations. Based
on this empirical data, we propose an extension to permit such a
design for RISC-V.



Fast TLB Simulation for RISC-V Systems CARRV 2019, June 22, 2019, Phoenix, AZ

REFERENCES
[1] Thomas W Barr, Alan L Cox, and Scott Rixner. 2010. Translation Caching:

Skip, Don’t Walk (The Page Table). In International Symposium on Computer
Architecture.

[2] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D Hill, and Michael M
Swift. 2013. Efficient virtual memory for big memory servers. In ACM SIGARCH
Computer Architecture News, Vol. 41. ACM, 237–248.

[3] Abhishek Bhattacharjee, Daniel Lustig, andMargaretMartonosi. 2011. Shared last-
level TLBs for chip multiprocessors. In 2011 IEEE 17th International Symposium
on High Performance Computer Architecture. IEEE, 62–63.

[4] Abhishek Bhattacharjee and Margaret Martonosi. 2010. Inter-core cooperative
TLB for chip multiprocessors. In ACM SIGARCH Computer Architecture News,
Vol. 38. ACM, 359–370.

[5] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: Characterization and architectural implications. In
Proceedings of the 17th international conference on Parallel architectures and com-
pilation techniques. ACM, 72–81.

[6] Intel Inc. 2019. System Programming Guide. Intel© 64 and IA-32 Architectures
Software Developer’s Manual Volume 3 (2019).

[7] Yong Li, Rami Melhem, and Alex K Jones. 2013. PS-TLB: Leveraging page classi-
fication information for fast, scalable and efficient translation for future CMPs.
ACM Transactions on Architecture and Code Optimization (TACO) 9, 4 (2013), 28.

[8] Daniel Lustig, Abhishek Bhattacharjee, and Margaret Martonosi. 2013. TLB
improvements for chip multiprocessors: Inter-core cooperative prefetchers and
shared last-level TLBs. ACM Transactions on Architecture and Code Optimization
(TACO) 10, 1 (2013), 2.

[9] Sparsh Mittal. 2017. A survey of techniques for architecting TLBs. Concurrency
and Computation: Practice and Experience 29, 10 (2017), e4061.

[10] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek Bhattachar-
jee. 2012. Colt: Coalesced large-reach tlbs. In Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society,
258–269.

[11] Tuan Ta, Lin Cheng, and Christopher Batten. 2018. Simulating Multi-Core RISC-V
Systems in gem5. In Workshop on Computer Architecture Research with RISC-V.

[12] AndrewWaterman and Krste Asanović. 2017. The RISC-V Instruction Set Manual
Volume II: Privileged Architecture Version 1.10. (2017).

[13] Hongil Yoon, Jason Lowe-Power, and Gurindar S Sohi. 2018. Filtering translation
bandwidth with virtual caching. InACM SIGPLANNotices, Vol. 53. ACM, 113–127.


	Abstract
	1 Introduction
	2 Background
	2.1 VMA in RISC-V
	2.2 ASID Space
	2.3 Shared TLB

	3 Simulator Implementation
	3.1 Inclusive L1 TLB
	3.2 QEMU Integration
	3.3 Features

	4 Simulator Performance
	5 Software Validation, Profiling and Benchmarking
	5.1 Software Validation
	5.2 Software Profiling

	6 Hardware/ISA Design Space Exploration: The Case for Shared TLB
	6.1 Extension to RISC-V

	7 Conclusion
	References

