Supply chain data analytics for predicting supplier disruptions: A case study in complex asset manufacturing 
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Abstract

Although predictive machine learning for supply chain data analytics has recently been reported as a significant area of investigation due to the rising popularity of the AI paradigm in industry, there is a distinct lack of case studies that showcase its application from a practical point of view. In this paper we discuss the application of data analytics in predicting first tier supply chain disruptions using historical data available to an OEM. Our methodology includes three phases: First, an exploratory phase is conducted to select and engineer potential features that can act as useful predictors of disruptions. This is followed by the development of a performance metric  in alignment with the specific goals of the case study to rate successful methods. Third, an experimental design is created to systematically analyse the success rate of different algorithms, algorithmic parameters, on the selected feature space. Our results indicate that adding engineered features in the data, namely agility, outperforms other experiments leading to the final algorithm that can predict late orders with 80% accuracy. An additional contribution is the novel application of machine learning in predicting supply disruptions. Through the discussion and the development of the case study we hope to shed light on the development and application of data analytics techniques in the analysis of supply chain data. We conclude by highlighting the importance of domain knowledge for successfully engineering features.
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Background

Data analytics is an umbrella term that includes the application of statistical, machine learning,  and simulation and optimisation based modelling approaches to explore and gain insight from data. While analytics in supply chain management is not new at all (Souza, 2014), the rise of “big data” made the term “data analytics” increasingly popular with several recent reviews published discussing the definition, classification and use of big data analytics in supply chains (Wang et al 2016, Add-Tenkorang and Helo 2016, Zhong et al 2016, Spanaki et al 2017, Tiwari et al 2018). 

Definitions on what constitutes “big” in data in a supply chain have not converged to a consensus (Add-Tenkorang and Helo 2016), although several authors emphasise the four dimensions of big data coming to affect data generated within supply chains as well. These include volume (amount of data), velocity (speed with which data is generated), veracity (noise and errors in data) and variety (the number of heterogeneous data sources data is coming from). Although definitions and classifications are still emerging, there is consensus in big data’s potential to improve productivity, competitiveness, performance and efficiency in supply chains (Trkman, McCormack, de Oliveira, & Ladeira, 2010, Dubey and Gunasekaran 2015, Wamba et al 2015, Wang et al 2016)

Recently, Wang et al (2016) discussed the application of the three main categories of big data analytics in supply chains. These include descriptive, predictive and prescriptive analytics. Descriptive analytics in supply chains allow one to explore current state of affairs. For example, supply chain metrics such as total stock in inventory, average money spent per customer and year to year changes in sales would be common examples that provide historical insights regarding the company’s production, financials, operations, sale finance, inventory, and customers (Wang et al 2016). 
Predictive analytics includes the use of predictive algorithms to estimate future state of affairs in supply chains. Tiwari et al 2016 give examples of forecasting customer behaviour such as purchasing patterns and identifying trends in sales  activities. Similarly, Zhong et al 2016’s description of predictive analytics include the marketing and financial aspects of supply chains, such as social media tracking, tracking of exchange rates for trade. 
Prescriptive analytics includes building on prediction to optimise the current state of affairs to take action to move towards a more desirable state. For example prediction of volatility in traded goods may lead to adjustments in price or inventory, using customer-product usage data may lead to optimisation of spare parts inventory for maintenance, traffic data may lead to optimisation of logistic routes to avoid predicted traffic disruptions, or demand data leading to warehouse inventory adjustments. Cohen (2015) and Sharma and Garg (2016) suggest that the internal production system should be linked to external partners including both suppliers and consumers, in order to explore the use of big data analytics in inventory management and automated inventory control. Similarly, (Wang et al., 2016) use analytics to optimise inventory ordering decisions. Katchasuwanmanee, Bateman, and Cheng (2016) use a combination of internal data supplemented by external, unstructured data to improve production efficiency.  Zhong, Huang, and Lan (2014) apply RFID-enable big data to support shop floor logistics planning and scheduling and then  then create an industrial IoT (Internet of Things) proof of concept system using RFID tags. 
It is interesting that in the examples given above, the term supply chains have been used loosely as the boundary of analysis has incorporated all tactical, strategic and operational sides of business, encompassing a variety of business functions including finance, marketing and sales (e.g. Zhong et al 2016), while others have focussed on the more confined domain of supply chains including logistics and procurement (in reviews of Tiwari et al 2018, Wang et al 2016). This may be partly because big data analytics in other functions seem to be impacting supply chain management, and partly because the goal of data analytics is understood to be integrating both multiple business functions and data from the supply chain by pooling data together (Zott et al 2011, Spanaki et al 2018).
Out of these three categories, descriptive and predictive data analytics in supply chains have received the least attention, whilst optimisation has been the most popular. Wang et al (2016) call for more research in the relationship between these categories as they observe reports from these categories have been siloed, whilst in reality they may constitute phases that naturally follow one another. 
Although the reviews conducted by Wang et al(2016), Tiwari et al (2018), Spanaki et al (2018)  all find that main data analytics methods currently employed are statistics, simulation, optimization, the big promise of big data is in machine learning (Tiwari et al 2018). Very little literature explores the use of machine learning in supply chains. Zhong et al (2016)  highlight that in many of the cases traditional approaches for supply chain data analysis are upgraded to be termed as big data decision making models, however, these models may not be able to handle big data. In fact big data itself is defined as a collection of data so large that traditional data storage and analysis methods cannot process it (Voss et al 2014 ). Zhong et al (2016) suggest that machine learning should be embedded to decision models so they can have continuous learning capability. In fact, machine learning is typically used in descriptive and predictive phases of data analytics, and the reason for its absence in big data supply chain literature may well be because of a lack of research in machine learning based techniques in this domain. According to a study by IBM, the overwhelming finding was that most organisations were in the very early stages of predictive analytics with the majority of those who use it focussing on sales and customer behaviour forecasting, rather than supply chain operations (IBM 2012). 
Our review shows first that data analytics in supply chains is of growing interest with various early definition and synthesis papers highlighting its promise and importance. Within these, there is considerable confusion as to what constitutes big data or data analytics methods with a distinct scarcity of case studies demonstrating real life implementations to guide researchers and practitioners. In particular, predictive analytics and the use of machine learning in supply chain data has been absent from literature. Motivated by these findings, we present a case study in the prediction of supply disruptions in the complex asset manufacturing sector. 

The issue of supply disruption itself is topical. In the past decade several authors noted that increased complexity in global, large scale supply chains has made them vulnerable to environmental, organisational and network related risks (Juttner, Peck, Christopher 2003, Chopra and Sodhi 2004), giving rise to the domain of supply chain risk management. While supply chains face various sources of risk such as demand uncertainty or internal events (Chopra and Sodhi 2004), our focus is on disruptions that are supplier created through late deliveries. 

A number of authors highlighted the potential of using big data to predict supply chain disruptions, although there has not been any reported cases of its use. According to Wang et al. (2016a), supply chain analytics could be applied in procurement to manage supply risks and suppliers performance, enabling global supply chains to adopt a proactive rather than a reactive response to supply chain risks. He et al (2014) proposed a conceptual framework that includes natural language processing to extract potential supply chain risks from sources such as news outlets, followed by risk classification and a simulation engine that predicts potential impact of the risks on a company’s KPIs. Fan et al. (2015) presented a framework to incorporate big data analytics into supply chain risk management using internal and external big data. Similar to He et al (2014)’s framework this framework is aimed at high impact low frequency events. For example, customer complaints can detect quality issues, public news and social media may inform disasters and exchange rate movements can be forecast from Twitter counts. The authors plan to implement a prototype to support emergency planning and risk monitoring. Dani (2009) proposed a proactive approach to supply chain risk management including data mining to uncover potential risk sources. Brintrup et al (2015) proposed a graph mining approach to estimate how disruptions such as earthquakes may cascade in global supply networks. 
Although most research to date has focussed on high impact low frequency supply disruption events, it is often the case that low impact high frequency disruptions consume the largest amount of time and effort within manufacturing organisations. Especially in a complex asset that includes thousands of sub-systems procured from elsewhere, even a very small percentage of delays, when aggregated over time, would constitute a large number of disruptions that need to be handled. Our anectodal discussions within the aerospace and automotive sectors suggest that companies typically spend 5-6 man hours per day dealing with small scale disruptions. Further, machine learning based approaches such as clustering, or classification tend to be more successful with high frequency risk events as more data is available to train prediction algorithms (Haimowitz and Key 2002).  
Our contribution thus includes: a case study that demonstrates how data analytics, more specifically machine learning, can be used to predict supply chain disruptions. First, an exploratory phase is conducted to select and engineer potential features that can act as useful predictors of disruptions. This is followed by the development of a performance metric  in alignment with the specific goals of the case study to rate successful methods. Third, an experimental design is created to systematically analyse the success rate of different algorithms, algorithmic parameters, on the selected feature space. Our results indicate that adding engineered features in the data, namely agility, outperforms other experiments leading to the final algorithm. Through the discussion and the development of the case study we hope to shed light on the development and application of data analytics techniques in the analysis of supply chain data. We conclude by highlighting the importance of domain knowledge for successfully engineering features.  
Case study

Our case study is from a manufacturing company that builds complex engineering assets. As a leading manufacturer the company has already established systems in place to deal with both minor and large disruptions. Minor disruptions that occur on a day to day basis have low impact on the supply chain as well as being low in frequency. However, the asset produced has millions of components and thousands of sub-systems, hence even a small percentage of delays, when aggregated over time, constitute a large number of disruptions that need to be handled. Therefore the company would like to create a prediction mechanism to classify high risk and low risk orders so that efforts can be made to work closer with the suppliers for contingency planning and risk mitigation.  

Hence our inquiry is about estimating the likelihood that the delivery of an order is going to be delayed, based on the historical data available to the manufacturer.  

Data was downloaded from the manufacturer’s Enterprise Resource Planning (ERP) system and includes supplier delivery performance for a complex engineering product over a year for two manufacturing plants. Descriptions of the main relevant variables in the data are given on Table 1. A delay is said to occur when the actual delivery date exceeds the planned delivery date by a specified number of days, which is a value consistent across all necessary components (product, hereon). 

Table 1. Overview of data
	Feature
	Format
	Description

	Product
	Alpha numeric
	Unique code describing item ordered

	Product description
	Text
	Short description of the item

	Product Type
	Number 
	Product family item belongs to

	Order date
	Date 
	When the order was placed

	Actual supply time
	Integer
	Lead time given to the supplier

	Supply time delta
	Integer
	How late was order given by OEM

	Receive by date
	Date 
	When should order be received for production line

	Late order indicator
	Binary
	Did the OEM place the order later than originally specified in contract

	Planned delivery date
	Date
	When did supplier say they would deliver

	Actual delivery date
	Date
	When did supplier actually deliver

	Data capture date
	Date
	When was this data record updated last

	Contracted supply time
	Integer
	How long should supplier be given to deliver item, contractually

	Record count
	Integer
	Unique record identifier

	Company
	Text
	Company name

	PO number
	Text
	Purchase order number

	Order method
	Integer
	Category indicating how order was placed

	Supply warehouse
	Alpha-numeric
	Which warehouse item is to be delivered

	Supplier ID
	Integer
	Unique supplier identification

	Supplier
	Text 
	Legal name of supplier



Phase 1: Data exploration and pre-processing
After processing missing and duplicated data it was found that the dataset contained 232,912 orders of 2000 products, from 351 suppliers, of which 13% were delivered later than originally contracted. However, upon closer inspection it appeared that out of the delayed orders, over 90% of orders were less than a day delayed, with the median value being 4 days early. While this is good news for the company, when actual delays are calculated using the specific definition of the company, the problem of data imbalance arises. This means that the negative class i.e. orders that are not delayed, is much larger than the positive class i.e. orders that are delayed. Class imbalance is a complicating factor, because it results in a tendency towards false positive classification error; as there are many more instances of the negative class. The implication is that predicting the small class (delayed orders) is more difficult than the large class (on-time orders) because the biggest source of training data for the algorithm is on the large class. However, it is the small class that is the main target of the predictive process. Approaches to mitigate imbalance will be discussed later in the paper.

Several approaches are possible for exploring the delay prediction problem, which in turn determine the algorithmic approach that needs to be taken. For example, the prediction problem could inquire the amount of delay that a given order may incur, the probability with which a delay might occur, or simply whether an order will be delayed or not. Given the imbalanced dataset problem, there may not be enough information for approximating the amount or likelihood of delays accurately. Therefore, we opted to approach the prediction problem as a binary classification problem where a classifier algorithm classifies data into two non-overlapping classes. Hence the method needs to identify between delayed orders and on-time orders. 


The first step involved data pre-processing during which orders with missing features, duplicates, were removed and errors such as misspellings of supplier or product names were corrected. Features that encapsulate the same information such as unique supplier name and supplier identification number were removed. Other data that has been removed include administrative data such as PO number and data that is related to what the classifier aims at predicting, for example, the actual delivery date of the order. In order to prevent bias, these have been removed. 

In machine learning problems that involve a finite number of data samples in a high-dimensional feature space, typically a large amount of training data is required to ensure that there are several samples with each combination of values. A typical rule of thumb is that there should be at least 5 training examples for each dimension in the representation (Koutroumbas et al 2008).  This can be checked using frequency distributions of each feature  that is fed into the algorithm. Upon inspection we found that the majority of products are single sourced although few suppliers act as product (Fig.1a).  and order hubs  (Fig.1b). Most suppliers deliver a small product portfolio size, and have a small number of orders, however some suppliers have both exponentially larger product portfolios that they deliver to the company and some suppliers have exponentially larger orders. Interestingly, the two are not correlated. In order to avoid the curse of dimensionality (Ref), we ignored orders that contained suppliers that were ordered less than 5 times, and products that were ordered less than 5 times. 
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(a)			  	 		(b)

Figure 1. Distribution of product portfolio size and orders





Phase 2: Identification of suitable performance metrics
The performance of a classification approach can be evaluated by computing the number of each correctly recognised class (true positives and true negatives), and examples that were incorrectly assigned to each class (false positives, false negatives) and investigating the ratio of these to all positives (P) and all negatives (N). These four counts constitute a confusion matrix (Table 2).

Table 2. Example Confusion Matrix
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The confusion matrix enables one to calculate several performance metrics, summarised as below:

· Accuracy percentage defined as the total number of accurate (or true) predictions divided by the total number of predictions: TP+TN /P+N 
· Precision (or positive predictive value) percentage defined as the accurate positive predictions divided by the total number of positive predictions: TP/ P 
· Negative predictive value (NPV) percentage defined as the accurate negative predictions divided by the total number of negative predictions: TN /N 
· Recall (or sensitivity; true positive rate) percentage defined as the accurate positive predictions divided by the actual total number of positive: T/P 
· Specificity (or true negative rate) percentage de ned as the accurate negative predictions divided by the actual total number of negative T/N 

Before selecting a suitable performance measure, characteristics of the classes need to be evaluated as well as the goal of the classification problem. Although our primary concern is the prediction of a delay, here we have an imbalanced dataset, in that there are many more instances of on time deliveries than delays. In such cases standard classification methods tend to ignore the minority class, and lose classification ability (Chawla 2004). If we consider training a classifier with maximising accuracy in a dataset with a 1:100 imbalance ratio, the classifier would obtain 99% accuracy simply by ignoring positive examples and classifying all examples as negative. 

As the delayed-orders represent the positive class of the predictions output, the main focus of the comparison would be the precision and recall of the predicted positive outcomes. Precision refers to the ratio of correctly predicted delayed-orders over all delayed-order predictions, and recall refers to the  ratio of correctly predicted delayed-orders over the number of actual delayed-orders. Although false classification of an on-time order would lead to unnecessary risk mitigation actions, false classification of a delayed-order as low risk is more problematic, as the costs of dealing with an unexpected disruption could outweigh mitigation planning. 

We can therefore look into the F-Score measure which is used to focus on the successful predictions on one class: 



The F-measure is allows one to adjust the weighting of the measure to be placed on recall or precision by adjusting β (Rijsbergen, 1979). The F-measure is evenly balanced when β = 1. Precision is weighted more than recall when β < 1, and recall over precision otherwise. Machine learning practitioners advocate for the use of F0.5 and F2 to complement the balanced F1 (see Jardine and van Rijsbergen 1971, van Rijsbergen 1979 and Tombros et al. 2002). 

Hence, by using the F-measure for training the classifier we may nudge the classifier to focus on the minority class, improving our chances of tackling the imbalanced dataset problem. 

However, additional measures need to be taken to address data imbalance. Several actions are possible. Oversampling would involve re-sampling the minority class until it reaches the size of the majority class. Undersampling would consist of removing examples of the majority class until it reaches the size of the minority class. However undersampling can result in the loss of important data while oversampling can lead to overfitting (Chawla 2004). On the other hand Drummond and Holte (2003) acknowledge that “using undersampling established a reasonable baseline for algorithmic comparison”, arguing that it often yields better results than oversampling. We thus opt to use undersampling. 

An additional approach to improve classification performance and to mitigate bias introduced by undersampling, we use bagging (also known as bootstrap aggregating) (Breiman 1996). Bagging improves classification results by combining results from randomly sampled training datasets. Given a training dataset of size n bagging generates m new datasets of equal size by sampling with replacement. Hence m models are fitted to the generated samples; after which consensus class for a given test data point is arrived by majority voting.  

2.3 Phase 3: Algorithm and initial feature selection

A feature is an individual measurable property or characteristic of a phenomenon being observed (Bishop 2006). Choosing informative, discriminating and independent features is a crucial step for effective algorithms in  machine learning. Successful feature selection involves selecting a subset of relevant features for use in model construction that reduce computational effort involved in model training, make interpretation easier, and reduces the likelihood for overfitting. This process involved conducting exploratory predictive analysis with classification algorithms.
Classification algorithms are appropriate for supervised data analysis problems, where the aim is to assign the correct labels to data entries, which in this case are ‘On-Time’ and ‘Late’. Data from both locations have been aggregated as there was significant overlap among items and suppliers.  A number of models have been fitted to the combined data set including K-Nearest Neighbour, Random Forest (RF), Logistic Regression and Support Vector Machine (SVM). Linear Regression was also used as an attempt to predict the delinquency binary indicator. K-Nearest Neighbour (KNN) tries to match the data point with the closest data point or points in the historic data set . When multiple data points are used, a simple majority vote by the data points determine which class the new data point should belong to, thus generating a prediction. Random Forest is an ensemble method of the Decision Tree model. An ensemble method means running the model numerous times and selecting the highest performing model as the solution. Decision trees are comprised of nodes and each node is associated with the input features. Each node splits into multiple edges, which may be the categorical features or range intervals for continuous variables. The model splits the data set by the features such that the nodes at the bottom consist of, ideally, only one predictive category (Bell, 2015). Logistic Regression uses multiple features data to predict a binary dependent variable. The model uses a Bernoulli distribution to calculate the probability and likelihoods to generate class predictions (Schoonjans, 2018). SVM aims to draw decision boundaries (or hyperplanes) that best divide up clusters of data points. The distance between the line and individual clusters is then maximised (Bell, 2015). 
To allow for cross comparison between algorithms and to explore which features have most predictive power an initial experiment has been conducted by including features that remained after data pre-processing. Table 3 displays performance scores obtained by each classification model.  

Table 3. Performance of models before feature engineering
	
	R2
	Precision
	Recall
	F1
	F0.5
	F2

	Random Forest
	0.81
	0.83
	0.77
	0.8
	0.82
	0.8

	SVM
	0.49
	0.49
	1
	0.66
	0.55
	0.83

	Logistic Regression
	0.66
	0.63
	0.69
	0.66
	0.64
	0.68

	Linear Regression
	0.40
	N/A
	N/A
	N/A
	N/A
	N/A



It can be seen that there is considerable difference between algorithm performance. Random Forest is the highest performing algorithms followed by Logistic Regression. Neither SVM nor Linear Regression handle the problem successfully. SVM does not deal with class imbalance well, as the recall and precision measures differ considerably, whereas RF and Logistic Regression are more balanced. For the RF model, it is shown that ‘Supply time delta’, ‘Product’ and ‘Supplier’ have higher feature importance than other features (0.32, 0.30, 0.15 respectively). It is that supply time delta, has the highest predictive power. This feature is the difference between the contracted supply time, agreed between a supplier and the OEM, and the actual supply lead time given to the supplier for a specific order. The item and supplier features suggest that certain items and suppliers are more likely to be late, which could prompt the OEM to reach out to investigate reasons behind the higher delays. 
At this stage RF has been selected as the prediction algorithm and a secondary analysis was done which involved using only the important features that yield predictive power to serve as a baseline for improvement (Table 4). 
Table 4. Baseline model performance 
	
	R2
	Precision
	Recall
	F1
	F0.5
	F2

	Random Forest
	0.78
	0.80
	0.75
	0.77
	0.79
	0.76


Phase 4: Feature engineering

After the initial feature selection stage, feature engineering followed.  Whilst the baseline features that were identified in the previous section are readily available, additional information can be used to augment the dataset. Feature engineering is the process of using domain knowledge of the data to create features that improve prediction capability. Following a brainstorming session which included the domain experts from the company with the research team, the following candidate features were considered: 
· Average number of orders: certain orders including the same supplier, and product type might be more frequent than others, potentially increasing pressure on suppliers
· Average monthly order book size: defines the number of average orders due and has not yet been delivered, potentially indicating supplier’s inability to cope with delays
· Number of warehouses served by a supplier: might indicate increased logistic pressure and complex planning issues   
· Average number of products by a supplier: might indicate increased pressure and complex planning issues   
· Late order percentage: ratio of late orders given to a supplier out of all of its orders. Suppliers might be accustomed to late given orders and prone to late delivery
· Agility: capability of suppliers to handle highest monthly order variations as a proxy of the supplier’s flexibility. Supply chain agility has been described Christopher (2000) as “the ability of an organization to respond rapidly to changes in demand, both in terms of volume and variety”. While Christopher (2000) generalises the concept of agility from the point of view of any company embedded in the supply chain, Gligor et al. (2015) and Teece et al (1997) define agility from the OEM’s point of view, stating that agility is “an  OEM’s ability to quickly adjust its supply chain tactics and operations (Gligor et al 2015)”, and “the  OEM’s ability to integrate, build, and reconfigure internal and external competences to address rapidly changing environments (Teece et al., 1997)”. In our case we use the broad definition of Christopher (2000), and focus on assessing the supplier’s agility only. Despite various definitions in literature, there is no accepted measure of agility as a quantitative metric. In the absence of one, we proxied agility using the time difference between when subsequent orders were given: 



Where  is the agility score of a supplier, p is the overall products offered by the supplier, t is the index for orders. The next step normalises the supplier’s agility score by dividing it by the maximum agility score obtained by any supplier in the dataset. 




Of course there would be multitude of ways to assess the agility of a supplier, such as the difference between subsequent order sizes. In an ideal world, we would aggregate data from multiple OEM’s placing orders on the supplier and examine variations contained within. However in the absence of such data, we decided to use the above measure, recognising it as a limited proxy. 

Furthermore, in the above form agility is not much more differentiator than the Supplier variable itself, as it would generate a specific proxy for the supplier. However agility should actually be viewed as a dynamic feature, because a supplier’s agility might change over time as it gets better or worse in handling variations in orders. Hence four different time windows were selected to better see the variations in agility scores with time. For example, to predict an order to be delivered in Period 3,  the agility score for the supplier up to the end of Period 2 was  considered. This method thus required the orders from the initial periods to be removed from the data. In addition, in cases where there were not any agility score entries between consecutive time periods, the agility score from the last period was replicated. 
Further exploratory analysis showed that only the Agility feature improved the predictive power of the baseline algorithm. Figure 2 displays  the improved performance scores using agility as an additional feature. 
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Figure 2. Performance scores for RF with and without agility score
To further assess the performance of the model, it can first be compared to a random allocation of labels (on-time or delayed). This would be equivalent to someone in an organization guessing whether a supplier will deliver late or not. As the datasets are imbalanced, and the imbalanced ratio is known, two types of guessing are compared to the output of the designed predictions:

Random guessing: Assigning half of the orders to one class (delayed) and the other half to the other (On-Time).
Weighted guessing: If the ratio of the positive label (delayed orders) is x, it randomly assigns x% of the orders to delayed, and the remaining (1 − x)% to On-Time.

Results are obtained following Gauher (2016) methodology. Table 5 presents the results of random guessing versus the predictions using the final RF model, which shows that, for both recall and precision, predictions using the developed model are better than random weighted guess. 

Table 5. Comparison of performance with random guessing
	
	RF Model
	Random Guess
	Weighted Guess

	Precision 
	0.83
	0.16 
	0.157

	Recall
	0.78
	0.50
	0.157

	F1
	0.81
	-
	-

	F0.5
	0.82
	-
	-

	F2
	0.79
	-
	-



Discussion and Conclusions

Following a lack of case studies in the application of predictive machine learning in supply chain management, in this paper we presented a novel case study for predicting first tier supply chain disruptions using historical data available to an OEM. By doing so, we hope to shed light on the development and application of data analytics techniques in the analysis of supply chain data. 
The case study followed a methodology that included an exploratory phase conducted to select and engineer potential features, the development of a performance metric  in alignment with the specific goals of the case study and the creation of an experimental design to systematically analyse the success rate of different algorithms. Our results indicate that adding engineered features in the data, namely agility, outperformed other experiments leading to the final solution. 
An important contribution is the novel application of machine learning in predicting supply disruptions. Our results are promising as they present a significant improvement in the prediction of disruptions with limited internal historical data available to the OEM. However, a key learning is that the application of machine learning in this particular field present several challenges. 
First of these is that a disruption problem in industry by definition presents class imbalance: there are fewer disrupted orders than successful orders.  Similar issues have been observed in other industrial machine learning problems such as quality issues on a production line . 
Secondly, disruptions on supply might be dependent on a variety of external factors such as traffic, weather, machine breakdowns and thus their combination might present seemingly random patterns when using only internally available data. Complimentary data from external, publicly available sources or supply chain partners might help increase prediction performance. 
The third issue is the curse of dimensionality. When the number of variables in the feature space is so high, data relating to each attribute becomes sparse, hindering statistical significance. We tried to mitigate this issue by using a cut off value of five samples of each attribute during the pre-processing stage, however more experimentation may be necessary.  
We have shown that it is feasible to generate augmented features that improve the results of the predictions. It appears that agility in this case had a positive impact on performance. This feature might not be appropriate for other industrial settings or might need to be further fine-tuned using production volume data. Similarly, its optimal time window may also be different from case to case. Teasing out appropriate features from data and optimising their use requires domain knowledge, which we argue should underpin the machine learning process in industrial applications such as the one presented in this paper. 
Our case study domain, a complex asset manufacturing company, may induce other limitations to generalisation towards different industries, as supplier delays and their management may be differently assessed. As with single case studies in general, the selected company may possess inherent characteristics strongly different to other companies. In addition the timeframe of the analysis may describe a specific state of the supply chain. 
Several further avenues of research needs to be taken. The focus of dataset augmentation has relied on constructed features, excluding the use of external data. This provides an opportunity for future research. For example, some preliminary work has been done around the extraction of the localisation of suppliers from public sources of data, and the creation of a feature relying on this information, potentially allowing the learning algorithm to deduce location based relationships. 
Additionally, further research is needed to improve the performance of predictions, by testing new methods and optimising the learning process. For example, the confidence level of predictions could be used to generate predictions for orders within a certain confidence only, further improving the precision and recall. The classification based approach we have taken that has relied on well-known classification algorithms and a frequentist approach. Other approaches such as Bayesian models, or Decision Trees may be worth experimenting with as they might be useful in estimating underlying probability distributions of the feature space.
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Table 3.3 Confusion matrix and global precision and recall
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