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 Many-body localization, that is the disorder-induced localization of interacting particles, signals a breakdown of conventional thermodynamics, as these systems do not thermalize and show non-ergodic time evolution. We experimentally observe this non-ergodic evolution for interacting fermions in a one-dimensional quasi-random optical lattice and identify the many-body localization transition through the relaxation dynamics of an initially-prepared charge density wave. For sufficiently weak disorder the time evolution appears ergodic and thermalizing, erasing all initial ordering, whereas above a critical disorder strength a significant portion of the initial ordering persists. The resulting critical disorder value show a distinctive dependence on the interaction strength, in agreement with numerical simulations. Our experiment paves the way to further detailed studies of many-body localization, for instance in non-correlated disorder or higher dimensions.We experimentally observe many-body localization of interacting fermions in a one-dimensional quasi-random optical lattice. We identify the many-body localization transition through the relaxation dynamics of an initially-prepared charge density wave. For sufficiently weak disorder the time evolution appears ergodic and thermalizing, erasing all remnants of the initial order. In contrast, above a critical disorder strength a significant portion of the initial ordering persists, thereby serving as an effective order parameter for localization. The stationary density wave order and the critical disorder value show a distinctive dependence on the interaction strength, in agreement with numerical simulations. We connect this dependence to the ubiquitous logarithmic growth of entanglement entropy characterizing the generic many-body localized phase.	Comment by Jelena Stajic: Needs to be rewritten with the correct structure (see checklist)	Comment by Ulrich Schneider: Rewritten according to guidelines.




The ergodic hypothesis (EHUD)is one of the central principles of statistical physics. In ergodic time evolution of a quantum many-body system, local degrees of freedom become fully entangled with the rest of the system, leading to an effectively classical hydrodynamic evolution of the remaining slow observables [1]. Hence, ergodicity is responsible for the demise of observable quantum correlations in the dynamics of large many-body systems and forms the basis for the emergence of local thermodynamic equilibrium in isolated quantum systems [2, 3, 4]. It is therefore of fundamental interest to investigate how ergodicity breaks down and and search for alternative, genuinely quantum paradigms in the dynamics, and to understand the long-time stationary states that ensue in the absence of ergodicity.	Comment by Jelena Stajic: Define briefly for the general reader
One path to breaking ergodicity is provided by the study of integrable models, where thermalization is prevented due to the constraints imposed on the dynamics by an infinite set of conservation rules. Such models have been realized and studied in a number of experiments with ultracold atomic gases [5, 6, 7]. However, integrable models represent very special and fine-tuned situations, making it difficult to extract general underlying principles.
Theoretical studies over the last decade point to many-body localization (MBL) in a disordered isolated quantum system as a more generic alternative to thermalization dynamics. In his original paper on single-particle localization, Anderson already speculated that interacting many-body systems subject to sufficiently strong disorder would also fail to thermalize [8]. Only recently, however, have convincing theoretical arguments been put forward that Anderson localization remains stable under the addition of moderate interactions, even in highly excited many-body states [9, 10, 11]. Further theoretical studies have established the many-body localized state as a distinct dynamical phase of matter that exhibits novel universal behavior [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. In particular, the relaxation of local observables does not follow the conventional paradigm of thermalization and is expected to show explicit breaking of ergodicity [23]. In many ways, the MBL transition is fundamentally different from all other known transitions [24, 25]. On one side of the transition ergodicity prevails and quantum effects decay at long times, whereas on the other side quantum correlations persist indefinitely. Hence the MBL transition sets a sharp boundary between a macroscopic world showing quantum phenomena and one governed by classical physics.

  
  
While Anderson localization of non-interacting particles has been experimentally observed in a variety of systems, including light scattering from semiconductor powders in 3D [26], photonic lattices in 1D [27] and 2D [28] and cold atoms in 1D and 3D random [29, 30, 31] and quasi-random [32] disorder, the interacting case has proven more elusive. Initial experiments with interacting systems have focused on the superfluid [33, 34, 35] or metal [36] to insulator transition in the ground state. Evidence for inhibited macroscopic mass transport was reported even at elevated temperatures [36], but is hard to distinguish from exponentially slow motion expected from conventional activated transport or effects stemming from the inhomogeneity of the cloud. Possible precursors of many-body localizations have also been reported in a transport experiment using conventional thin film electronic insulators [37]. 
Here we report the experimental observation of ergodicity breaking due to many-body localization away from the ground state. Our experiments are performed in a one-dimensional system of ultracold fermions in a bi-chromatic, quasi-randomly disordered lattice potential. We identify the many-body localized phase by monitoring the time evolution of local observables following a quench of system parameters. Specifically, we prepare a high-energy initial state with a strong, artificially prepared charge density wave (CDW) order (Fig. 1A) and measure the relaxation of this charge density wave in the ensuing unitary evolution. Our main observable is the imbalance  between the respective atom numbers on even () and odd () sites

		(1)
 which directly measures the CDW order. While the initial CDW () will quickly relax to zero in the thermalizing case, this is not true in a localized system, where ergodicity is broken and the system cannot act as its own heat bath (Fig. 1B) [38]. Intuitively, if the system is strongly localized, all particles will stay close to their original positions during time evolution, thus only smearing out the CDW a little. A longer localization length  corresponds to more extended states and will lead to a lower steady state value of the imbalance. The long-time stationary value of the imbalance thus effectively serves as an order parameter of the MBL phase and allows us to map the phase boundary between the ergodic and non-ergodic phases in the parameter space of interaction versus disorder strength. In particular, close to the transition the CDW imbalance? - is expected to vanish asymptotically as a power law  with  [39]. In contrast to previous experiments, which studied the effect of disorder on the global expansion and transport dynamics [29, 32, 33, 36, 35], the CDW order parameter acts as a purely local probe, directly capturing the ergodicity breaking. Although ultimately facing a similar challenge, namely distinguishing very slow dynamics from no dynamics, the CDW is expected to undergo much faster dynamics, thereby facilitating the detection of MBL.
Theoretical model
Our system can be described by the one-dimensional fermionic Aubry-André model [40] with interactions [38], given by the Hamiltonian

		(2)
 Here,  is the tunneling matrix element between neighboring lattice sites and  () denotes the creation (annihilation) operator for a fermion in spin state  on site . The second term describes the quasi-random disorder, i.e. the shift of the on-site energy due to an additional incommensurate lattice, characterized by the ratio of lattice periodicities , disorder strength  and phase offset . Lastly,  represents the on-site interaction energy and  is the local number operator (see Fig. 1C).

 
  
This quasi-random model is special in that, for almost all irrational  [39], all single particle states become localized at the same critical disorder strength  [40]. For larger disorder strengths the localization length decreases monotonically. Such a transition was indeed observed experimentally in a non-interacting bosonic gas [32]. In contrast, truly random disorder will lead to single-particle localization in one dimension already for arbitrarily small disorder strengths. Previous numerical work indicates many-body localization in quasi-random systems to be similar to that obtained for a truly random potential [38].

Experiment

We experimentally realize the Aubry-André model by superimposing on the primary, short lattice () a second, incommensurate disorder lattice with  (thus ) and control ,  and  via lattice depths and relative phase between the two lattices [39]. The interactions () between atoms in the two different spin states  and  are tuned via a magnetic Feshbach resonance [39]. In total, this provides independent control of ,  and  and enables us to continuously tune the system from an Anderson insulator in the non-interacting case to the MBL regime for interacting particles.
An additional long lattice () forms a period-two superlattice [41, 42] together with the short lattice and is employed during the preparation of the initial CDW state, and during detection [39]. Deep lattices along the orthogonal directions ( and ), create an array of decoupled 1D tubes. Here,  denotes the recoil energy, with  being Planck’s constant,  the mass of the atoms and  the respective wavelength of the lattice lasers.
We employ a two component degenerate Fermi gas of K atoms, consisting of an equal mixture of 90-110  atoms in each of the two lowest hyperfine states  and , at an initial temperature of 0.20(2) , where  is the Fermi temperature. The atoms are initially prepared in a finite temperature band insulating state [43] with up to 100 atoms per tube in the long and orthogonal lattices. We then split each lattice site by ramping up the short lattice in a tilted configuration [39] and subsequently ramp down the long lattice. This creates a charge density wave, where there are no atoms on odd lattice sites but zero, one or two atoms on each even site [42, 44]. This initial CDW is then allowed to evolve for a given time in the 8.0(2) deep short lattice at a specific interaction strength  in the presence of disorder . In a final step, we detect the number of atoms on even and odd lattice sites by employing a band-mapping technique which maps them to different bands of the superlattice [44, 39]. This allows us to directly measure the imbalance , as defined in Eq. 1, in much larger systems than what is numerically feasible.

Results

We track the time evolution of the imbalance  for various interactions  and disorder strengths  (Fig. 2). At short times the imbalance exhibits some dynamics consisting of a fast decay followed by a few damped oscillations. After a few tunneling times  the imbalance approaches a stationary value. In a clean system () and for weak disorder, the stationary value of the imbalance approaches zero. For stronger disorder, however, this behaviour changes dramatically and the imbalance attains a non-vanishing stationary value that persists for all observation times. Since the imbalance must decay to zero on approaching thermal equilibrium at these high energies, the non-vanishing stationary value of  directly indicates non-ergodic dynamics. Deep in the localized phase, where unbiased numerical Density-Matrix Renormalisation Group (DMRG) calculations are feasible due to the slow entanglement growth, we find the stationary value obtained in the simulations to be in very good agreement with the experimental result. These simulations were performed for a single homogeneous tube without any trapping potentials [39]. The stronger damping of oscillations observed in the experiment can be attributed to a dephasing caused by variations in  between different 1D tubes [44, 39].	Comment by Ulrich Schneider: We would like to preserve the emphasis:
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We experimentally observe an additional very slow decay of  on a timescale of several hundred tunneling times for all interaction strengths, which we attribute to the fact that our system is not perfectly closed due to small background gas losses, technical heating, photon scattering and coupling to neighboring tubes [45, 39]. Another potential mechanism for delocalization at long times is related to the intrinsic SU(2) spin symmetry in our system [46]. However, for the relevant observation times our numerical simulations do not indicate the presence of such a thermalization process.	Comment by Jelena Stajic: A bit unclear – do you mean the idealized DMRG simulations you mentioned above – they wouldn’t be expected to show similar thermalization, correct? 	Comment by Ulrich Schneider: No, the DMRG calculation would capture this effect, if it would be relevant on the simulated timescales.
To characterize the dependence of the localization transition on  and , we focus on the stationary value of , plotted in Fig. 3 for non-interacting atoms and in Fig. 4 for interacting atoms. For non-interacting atoms (Fig. 3), the measured imbalance is compatible with extended states within the finite, trapped system for . Above the critical point of the homogeneous Aubry-André model at  [40], however, the measured imbalance strongly increases as the single-particle eigenstates become more and more localized. The observed transition agrees well with our theoretical modeling including the harmonic trap [39].
The addition of moderate interactions slightly reduces the degree of localization compared to the non-interacting case, i.e. they decrease the imbalance  and hence increase the critical value of  necessary to cross the delocalization-localization transition (Figs. 4, A and B). Importantly, we find that localization persists for all interaction strengths. For a given disorder, the imbalance  decreases up to a value of  before increasing again. For large , the system even becomes more localized than in the non-interacting case. This can be understood qualitatively by considering an initial state consisting purely of empty sites and sites with two atoms (doublons): for sufficiently strong interactions, isolated doublons represent stable quasiparticles as the two atoms cannot separate and hence only tunnel with an effective second-order tunneling rate of  [47, 48]. This strongly increases the effective disorder  and promotes localization. In the experiment, the initial doublon fraction is well below one [39] and the density is finite, such that we observe a weaker effect. We find the localization dynamics and the resulting stationary values to be symmetric around , highlighting the dynamical  symmetry of the Hubbard Hamiltonian for initially localized atoms [49]. The effect of interactions can be seen in the contour lines (Fig. 4A, dotted white lines) as well as directly in the characteristic ‘W’ shape of the imbalance at constant disorder (Fig. 4B), demonstrating the re-entrant behaviour of the system [22]. This behaviour extends to our best estimate of the localization transition, which is shown in Fig. 4A as the solid white line.	Comment by Jelena Stajic: I find the use of the term re-entrant a bit awkward here as this usually implies the order parameter going to zero and then increasing again, which isn’t the case here.
	Comment by Ulrich Schneider: But it does: Picture a cut along U for Delta slightly bigger than 2J. At U=0, the system is localized and the CDW>0. For increasing U, the CDW first decays to zero but then becomes finite again for large U.
We can gain additional insight into how localization changes with interaction strength by computing the growth of the entanglement entropy [39] between the two halves of the system during the dynamics (Fig. 5A). For long times, we observe a logarithmic growth of the entanglement entropy with time as , which is characteristic of the MBL phase [12, 13]. The slope  is proportional to the bare localization length , which in a weakly interacting system in the localized phase corresponds to the single particle localization length. In general,  is the characteristic length over which the effective interactions between the conserved local densities decay [17, 18] and connects to the many-body localization length  deep in the localized phase. In contrast to , however,  is expected to remain finite at the transition [24]. We find  to exhibit a broad maximum for intermediate interaction strengths (Fig. 5B), corresponding to a maximum in the thus inferred localization length. This maximum in turn leads to a minimum in the CDW value. Both the characteristic ‘W’ shape in the imbalance and  the maximum in the entanglement entropy slopeare consequences of the maximum in localization length. Equivalent information on the localization properties as obtained from the entanglement entropy can be gained in experiments by monitoring the temporal decay of fluctuations around the stationary value of the CDW [39]. While we do not have sufficient sensitivity to measure these fluctuations in the current experiment, we expect them to be accessible to experiments with single site resolution [50, 51].
To systematically study the effect of the initial energy density on the MBL phase, we load the lattice using either attractive, vanishing or repulsive interactions (Fig. 6), thereby predominantly changing the number of doublons in the initial state [39]. Since the initial state consists of fully localized particles only, the local energy density is directly given by the product of interaction strength  and doublon density. We find that for an interaction strength during the evolution of  the energy density does not significantly affect the localization properties, proving that MBL persists over a wide energy range. For , localization properties depend significantly on the doublon fraction because of the second emerging energy scale , as discussed above. Thus, the localization transition can be tuned via changing the doublon fraction at large U. This constitutes a direct observation of a many-body mobility edge, since the doublon density dominates the energy density.
For the case of repulsive loading, i.e. a low fraction of doubly occupied sites, the imbalance for  and strong interactions match within error. Indeed, a rigorous mapping can be made between the non-interacting system and the dynamics in the doublon free subspace at strong interactions  [39]. At very large interactions and high doublon fractions, the additional long timescales start to also compete with heating and loss processes, rendering the definition of stationary states challenging.

  
  

Conclusion

Our experimental demonstration of ergodicity breaking due to many-body localization paves the way for many further investigations. An interesting extension would be to use ‘true’ random disorder created by e.g. an optical speckle pattern, as has been used to study Anderson localization [29]. Another important next step is extending the present study to higher dimensions. Additional insight can also be gained by analyzing the full relaxation dynamics of local observables [19, 20, 21], in an experimental setup featuring single site resolution [50, 51]. For instance, the decay of fluctuations of  with time could be directly measured, providing an even more direct connection to the entanglement entropy. Another important direction for future investigation is the effect of opening the system in a controlled way. This could be done, e.g. by adding a near-resonant laser to deliberately enhance photon scattering or by employing a Bose-Fermi mixture, in which excitations of the BEC form a well controlled bath for the fermions. This will allow a systematic study of the critical dynamics associated with the MBL phase transition, where the bath relaxation time now provides the only scale. Such a study would also allow the MBL phase to be clearly distinguished experimentally from classical glassy dynamics. The latter, unlike MBL, is insensitive to coupling of the system to an external bath.
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Figure  1: Schematics of the many-body system, initial state and phase-diagram. A. Initial state of our system consisting of a charge density wave, where all atoms occupy even sites () only. For an interacting many-body system, the evolution of this state over time depends on whether the system is ergodic or not. B. Schematic phase diagram for the system: in the ergodic, delocalized phase (white) the initial CDW quickly decays, while it persists for long times in the non-ergodic, localized phase (yellow). The striped area indicates the dependence of the transition on the doublon fraction, with the black solid line indicating the case of no doublons. The black dash-dotted line represents the experimentally observed transition for a finite doublon fraction, extracted from the data in Fig. 4. The grey arrows depict the postulated pattern of renormalization group flows controlling the localization transition. For , as well as in the limit of infinite  with no doublons present [39], the transition is controlled by the non-interacting Aubry-André critical point, represented by the unstable grey fixed points. Generically, however, it is governed by the MBL critical point [24], shown in red. The  as well as the  limits represent special integrable cases that are not ergodic [52, 53]. C. A schematic representation of the three terms in the Aubry-André Hamiltonian (Eq. 2).


Figure  2: Time evolution of an initial charge-density wave. A charge density wave, consisting of fermionic atoms occupying only even sites, is allowed to evolve in a lattice with an additional quasi-random disorder potential. After variable times the imbalance  between atoms on odd and even sites is measured. Experimental time traces (circles) and DMRG calculations for a single homogeneous tube (lines) [39] are shown for various disorder strengths . Each experimental datapoint denotes the average of six different realizations of the disorder potential and the error bars show the standard deviation of the mean. The shaded region indicates the time window used to characterise the stationary imbalance in the rest of the analysis.
  

  
Figure  3: Stationary values of the imbalance  as a function of disorder  for non-interacting atoms. The Aubry-André transition is at . Circles show the experimental data, along with Exact Diagonalization (ED) calculations with (red line) and without (grey line) trap effects [39]. Each experimental data point is the average of three different evolution times (13.7, 17.1 and 20.5) and four different disorder phases , for a total of 12 individual measurements per point. To avoid any interaction effects, only a single spin component was used. The ED calculations are averaged over similar evolutions times to the experiment and 12 different phase realizations. Error bars show the standard deviation of the mean.
Figure  4: Stationary imbalance for various interaction and disorder strengths. A: Stationary Imbalance  as a function of interactions  and disorder strength . Moderate interactions reduce the degree of localization compared to the non-interacting or strongly interacting cases. The white dotted lines are contours of equal , while the solid white line is the contour of  matching the Aubry-André transition ( and ) extended to the interacting case. It indicates the MBL transition. The green dot-dashed line shows the fitted minima of  for each  [39]. Each individual data point (vertices of the pseudo-color plot) is the average of the same 12 parameters as in Fig. 3. The color of each square represents the average imbalance of the four points on the corners. All data taken with a doublon fraction of . B: Cuts along four different disorder strengths. The effect of interactions on the localization gives rise to a characteristic ’W’-shape. Solid lines are the results of DMRG simulations for a single homogeneous tube. Error bars indicate the standard deviation of the mean. 
Figure  5: Calculated Growth growth of entanglement entropy and corresponding slope. A: DMRG results of the entanglement entropy growth [39] for various interaction strengths and . For long times, logarithmic growth characteristic of interacting MBL states is visible. The experimentally used evolution times indicated by the yellow shaded region are found to be in the region of logarithmic growth. B: The slope of the logarithmic growth (circles), extracted using linear fits up to the longest simulated time () in A, shows a non-monotonic dependence on the interaction strength, which is correlated with the inverse of the steady state value of the CDW order parameter (red line). Error bars reflect different initial starting times for the fit.


Figure  6: Stationary imbalance  as a function of interaction strength during loading. Data taken with disorder . The loading interactions of  (attractive, where  denotes Bohr’s radius),  (non-interacting) and  (repulsive) correspond to initial doublon fractions of 51(1)%, 43(2)%, and 8(6)%, respectively [39]. Each  value is the average of the same 12 parameters as in Fig. 3. Error bars show the standard deviation of the mean. Solid lines are guides to the eye. The grey shaded area spans the limiting cases of 0 and 50% doublons, simulated using DMRG for a single homogeneous tube.
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