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Abstract
At high-altitude, hypobaric hypoxia is a significant stress for humans and other animals, challenging oxygen homeostasis and therefore tissue metabolism. Genetic signals of physiological adaptation have been identified in human populations and non-human species with long-term residence at high-altitude. In Tibetans, some genetic signals are linked to altered metabolic function, e.g. variants in EPAS1 are associated with increased glycolysis, whilst variants in PPARA are associated with a decreased capacity for fatty acid oxidation. A number of other genetic signals that may impact on metabolism have been identified in Tibetans and other populations, although the downstream consequences are not well-defined. Use of high-throughput technologies to comprehensively profile metabolic phenotype could advance understanding of the evolutionary processes conferring hypoxia tolerance at high-altitude.
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Abbreviations
AMPK		AMP-activated protein kinase
FAO		fatty acid oxidation
GLUT		glucose transporter
GTPCH1	GTP-cyclohydrolase 1
GWS		genome wide SNP
Hb		hemoglobin
HIF		hypoxia-inducible factor
HOAD		β-hydroxyacyl-CoA dehydrogenase
iNOS		inducible nitric oxide synthase
MTHFR		methylenetetrahydrofolate reductase
NO		nitric oxide
PHD		prolyl-hydroxylase
PO2		partial pressure of oxygen
PPARα		peroxisome proliferator-activated receptor α
PTGIS		prostaglandin I2 synthase
pVHL		von Hippel-Lindau protein
SNP		single nucleotide polymorphism
TCA		tricarboxylic acid
VDR		vitamin D receptor

Introduction
For humans and other animals, the fall in barometric pressure at high-altitude results in lower inspired partial pressures of oxygen (PO2), challenging convective oxygen delivery and giving rise to tissue hypoxia [1]. Ascent to altitude can expose individuals to other stressors, depending on the geographical region, season and/or time of day, e.g. cold, UV radiation and altered gut microbiota, but hypoxia remains a significant and defining feature at all times, in all high-altitude regions of the world [2]. 

Subjects ascending to high-altitude show responses that mitigate the fall in oxygen delivery [1]. For instance, an immediate rise in ventilation rate partially offsets the fall in alveolar PO2, whilst an increase in heart rate at rest and during submaximal exercise enhances blood flow. Over more sustained periods, a rise in hematocrit increases oxygen carriage capacity. Beyond these adjustments in oxygen delivery, however, it is increasingly recognised that acclimatization also encompasses changes in tissue oxygen utilization [2]. Recent, high-throughput proteomic [3,4] and metabolomic [3,5,6] analyses of lowlanders ascending to altitude have confirmed that significant remodelling of tissue metabolism occurs, altering circulating metabolite levels. Metabolic responses to hypoxia, in rodents and non-high-altitude native humans, include the suppression of oxidative metabolism in cardiac [7] and skeletal muscle [8], including a fall in fatty acid oxidation (FAO) capacity [5,7,9], and increased glycolysis [5,6,9].  

At the molecular level, the response to hypoxia is mediated by the hypoxia-inducible factor (HIF) pathway (Figure 1) [10]. Under normoxic conditions, HIF-1α and HIF-2α are expressed and transcribed in most tissues but are hydroxylated in an oxygen-dependent fashion by the prolyl-hydroxylase (PHD) enzymes [10]. This targets HIF-1α/HIF-2α for ubiquitination by the von Hippel-Lindau protein (pVHL), tagging them for degradation by the proteasome [10]. Under conditions of low cellular PO2, HIF-1α/HIF-2α are stabilised and form heterodimers with the nuclear-localised HIF-1β [10]. These heterodimers bind to hypoxia response elements in the promoter regions of hundreds of target genes encoding factors that underpin the systemic and cellular responses to hypoxia [11], including EPO (encoding erythropoietin), VEGFA (encoding vascular endothelial growth factor a) and many genes encoding enzymes of the glycolytic pathway [12]. HIF activation thereby enhances glycolysis but can also modulate other aspects of metabolism e.g. increasing lactate production [13,14], impairing mitochondrial electron transport [14] and decreasing FAO capacity by suppressing the fatty acid-activated transcription factor peroxisome proliferator-activated receptor α (PPARα) [15].

Significant human populations have become established at altitudes >2,500 m in at least three regions of the world: the Ethiopian Highlands, the Andean Altiplano and the Tibetan Plateau [16] (Figure 2). Over thousands of years of residence, the natural selection of physiological traits that offset environmental stresses has occurred in these populations [17]. Studies have sought to identify the genetic basis of adaptation in each of these populations, and collectively suggest that selected gene variants result in altered molecular mechanisms that regulate both oxygen delivery and cellular metabolism. Here we review recent genetic findings that hint at metabolic aspects of altitude adaptation and consider the implications for integrated metabolic function. We also consider comparative aspects of metabolic physiology at altitude in some non-human species, and finally, we propose future directions for this research.


Genetic signals of metabolic adaptation
Tibetans
The Qinghai-Tibetan plateau is the largest high-altitude region and has been occupied by humans for at least 30,000 years [18], with its inhabitants having formed geographically-distinct groups. Genome-wide analysis of selection and association studies have identified several polymorphisms associated with high-altitude adaptation in Tibetan populations [19]. One ancient and widespread positive selection signature includes EPAS1 (encoding HIF-2α) [20-23] (Figure 1). The adaptive alleles include those that are Denisovan in origin [24] and have been related to high-altitude adaptation in these archaic hominins who were present on the Plateau ~160,000 years ago [25]. Positive selection in present-day Tibetans suggests adaptive introgression of these alleles into the gene pool of ancestral groups, being present in Sherpas [26] and other neighbouring populations in the Greater Himalayan Region [27]. Tibetan-enriched EPAS1 variants have been associated with lower circulating hemoglobin ([Hb]) compared with lowlanders [20,21], decreased susceptibility to hypoxic pulmonary vasoconstriction [28] and increased circulating lactate, indicative of increased glycolysis [29]. Indeed, lactate dehydrogenase activity was found to be higher in Sherpa skeletal muscle than in that of lowlanders, and this was associated with less accumulation of glycolytic intermediates at high-altitude [5].  

Other genetic signals of metabolic adaptation in Tibetans include single nucleotide polymorphisms (SNPs) in PPARA (encoding PPARα) [21] (Figure 1), which have been associated with increased circulating fatty acids, suggesting suppression of FAO [29].  These SNPs are enriched in Sherpas, and were found here to be associated with lower PPARα expression, lower skeletal muscle FAO capacity and improved mitochondrial coupling compared with lowlanders, as well as alterations in tricarboxylic acid (TCA) cycle intermediates [5]. A relative switch away from FAO towards glucose would result in improved efficiency of oxygen utilisation, and accordingly a similar downregulation of FAO was seen in lowlanders ascending to altitude [5]. A recent study of DNA methylation in subjects of European descent following a similar ascent to Everest Base Camp reported enhanced methylation of EPAS1 and PPARA at altitude, suggesting that epigenetic mechanisms may underpin metabolic responses in lowlanders acclimatizing to high-altitude [30]. It has been suggested that epigenetic mechanisms may play a role in high-altitude adaptation, permitting the relatively rapid acquisition of beneficial, heritable features [31,32], and the metabolic consequences of epigenetic regulation at altitude deserve further investigation.

A further gene strongly associated with high-altitude adaptation in Tibet is EGLN1 (encoding the HIF-regulator, PHD2; Figure 1). One study of Tibetan-specific missense mutations in the first exon of EGLN1 showed an increased sensitivity to oxygen and therefore increased HIF degradation in hypoxia, suggesting suppression of HIF-mediated polycythemia [33], whilst another study reported impaired HIF degradation in HEK293 cells [34].  Additional studies are needed to determine tissue- and cell-specific effects of these variants. Although no clear association was observed between the putatively adaptive EGLN1 locus and circulating metabolites [29], the metabolic remodelling supported by selection on EPAS1 and PPARA, enhancing anaerobic capacity and improving the efficiency of oxygen utilization, may serve to compensate for the suppression in [Hb] arising from selection on EGLN1.

A further, recent study in Tibetans highlighted alleles around two genomic loci, namely EPAS1 and MTHFR (encoding methylenetetrahydrofolate reductase) that were associated with altered circulating levels of hemoglobin, folate and homocysteine [35]. The allele of MTHFR enriched in Tibetans may offset the increased degradation of folate at high-altitude resulting from UV exposure [36]. Folate is essential for red blood cell maturation, but is also known to support lipid metabolism [37]. Moreover, there is emerging evidence that folate deficiency leads to instability in mtDNA transcription, resulting in the altered expression of electron transfer system components and mitochondrial dysfunction [38]. 

A number of variants in the gene GCH1 (encoding GTP-cyclohydrolase 1; known to play a role in stabilising NO synthase activity) were recently found to be targets of selection in Tibetans [39] and associated with elevated circulating nitric oxide (NO) levels [40]. Exhaled concentrations of the signalling molecule and vasodilator NO are elevated in Tibetans (and to a somewhat lesser extent in Andeans) compared with lowlanders [41]. Enhanced NO availability may improve pulmonary perfusion and offer protection against pulmonary hypertension at altitude [42]. Elevated circulating NO metabolites are also associated with enhanced limb blood flow in Tibetans [43], and the regulation of cardiac [7] and skeletal muscle metabolism [8] in hypoxia.

More recent analyses have highlighted a number of other gene loci under selection in Tibetans with possible metabolic relevance. A whole-genome scan of selection identified PTGIS (encoding prostaglandin I2 synthase) and VDR (encoding vitamin D receptor) among top selection candidate genes [44]. Meanwhile, genome wide SNP (GWS) analysis across the Greater Himalayan Region revealed region-wide variants in ATP6V1E2 (ATPase H+-transporting V1 subunit E2) and SLC52A3 (solute carrier family 52 A3) [27]. Links between these regions and adaptive metabolic function are, however, yet to be revealed. 

Andeans
Humans took up residence on the Andean Altiplano at least 11,500 years ago [45] and experienced a complex genetic history as a result of European contact and admixture [46]. Here, EGLN1 and EPAS1 have been identified as key adaptive genes [23,47,48]. Variants in the EGLN1 locus differ to those seen in Tibetans [48] and no association has been reported between adaptive gene copies and [Hb] in this population [49]. Other genes under positive selection include PRKAA1 (encoding the α1 subunit of the cellular energy sensor AMP-activated protein kinase, AMPK) [23]. A variant in PRKAA1 has been associated with greater uterine artery diameter and improved cardiometabolic homeostasis at high altitude and, along with a variant in EDNRA (encoding endothelin receptor type A), protection against altitude-induced intra-uterine growth restriction [50].  Strong positive selection has also been seen in genes associated with cardiovascular development and cardiometabolic function including NOS2A (encoding inducible NO synthase) [23] and BRINP3 [51]. 

Ethiopians
Humans have resided on the Semien Plateau of Ethiopia for ~70,000 years [52], although certain groups (the Oromo) have only occupied the plateau since the 1500s [53]. The complex demographic history of these populations includes Eurasian gene flow, resulting in a high degree of admixture. A strong signal selection in BHLHE41 (which encodes basic helix-loop-helix family member E41 and is also known as SHARP1 or DEC2) was detected upon applying stringent admixture correction to GWS analysis across 5 Ethiopian populations [54]. BHLHE41 is a regulator of circadian rhythm [55] and of the HIF pathway, being transcriptionally-activated by HIF-1α but repressing HIF targets via increased HIF-1α/HIF-2α degradation [56-58]. Other genetic signals identified among other highland populations and seen in Ethiopians include EPAS1, EGLN1 and PPARA [59,60]. Adaptive metabolic effects of these variants are yet to be defined, although associations have been identified between [Hb] and some adaptive SNPs [59,60]. 

Comparative aspects of metabolic physiology at high-altitude
Comparative approaches have provided significant insight into metabolic adaptation to high-altitude, with evidence of convergent evolution found across a number of non-human species [61]. For instance, a positive selection signature for EPAS1 is present in both endotherms and ectotherms, as shown in the Tibetan mastiff dog breed [62] and three species of Tibetan hot-spring snakes (genus Thermophis) [63]. Both display novel EPAS1 variants, with that in the mastiff being associated with decreased vascular resistance (though not [Hb]) [62,63].  

Metabolic adaptations have been most comprehensively assessed in wild deer mice (Peromyscus maniculatus). These mice have a broad altitudinal distribution across North America, residing below sea level and up to 4,300 m. Compared with lowland populations, highlanders have higher aerobic capacities resulting from adaptations that include ventilatory [64] and circulatory enhancements [65] as well as greater capillarity and subsarcolemmal mitochondrial densities in skeletal muscle [66], in association with differences in gene expression (e.g. Notch4, Tfam, Ppargc1α) [67]. Aspects of cardiovascular adaptation to high-altitude in highland deer mice, including altered myocardial gene expression, have been attributed to adaptive SNPs in Epas1 [68].

In contrast to humans at altitude, highland deer mice have an increased capacity for lipid metabolism to fuel thermogenesis [69]. A highly oxidative phenotype occurs in gastrocnemius muscle, which is used during shivering, whereby a high proportion of type I fibres [66,67,70] is accompanied by increased mitochondrial oxidative capacity [66] and activity of the β-oxidation enzyme β-hydroxyacyl-CoA dehydrogenase (HOAD) [69]. Enhanced skeletal muscle FAO capacity was associated with upregulation of genes involved in β-oxidation and oxidative phosphorylation [69-71]. During submaximal exercise however, the highland deer mouse has an increased reliance upon carbohydrate oxidation [72], supported by raised expression/activity of hexokinase 1 and 2 and increased expression of glucose transporters (GLUT1 and GLUT4) [72]. High-altitude adaptation has thereby resulted in a complex skeletal muscle metabolic phenotype, which can support high rates of β-oxidation to enable thermogenesis and high rates of glucose oxidation to improve metabolic efficiency during exercise [73]. Whilst gene expression analysis has pointed towards groups of co-expressed genes [67,71], the precise regulation of this metabolic plasticity remains unclear.
 
Further evidence for metabolic adaptation to high-altitude has been seen in the Tibetan locust (Locusta migratoria) a migratory species that thrives above 4,200 m. In hypoxia they maintain aerobic respiration supported by high cytochrome c oxidase activity [74] and flux from glycolysis into the TCA cycle via pyruvate dehydrogenase [75]. A strong positive selection signal in the gene PTPN1, encoding the insulin receptor inhibitor PTP1B, indicated a mechanism to support glucose oxidation by attenuating hypoxia-induced insulin resistance [76].  Of note, PTPN1 is also under selection in the Tibetan wild boar, where it plays a possible role in adaptive thermogenesis [77]. 

An extreme example of adaptive hypoxic tolerance, in a context distinct from high-altitude, is the African naked mole-rat (Heterocephalus glaber). These burrowing mammals tolerate extreme hypoxia (5% O2) for 5 h with no adverse effects and make a full recovery from loss of consciousness after 18 min of total anoxia (0%) [78]. Anoxic exposure induces a switch towards anaerobic glycolysis fuelled by fructose, with uptake supported by increased expression of GLUT5 and phosphorylation by ketohexokinase, thereby bypassing phosphofructokinase and permitting continual glycolytic flux independent of cellular energy status [78]. 


Conclusions and Future Directions
Genetic analyses, in humans and other species at high-altitude, have revealed signals of adaptation that confer hypoxia tolerance through potential metabolic mechanisms (Table 1). The use of other high-throughput analytical techniques, such as proteomics, metabolomics and lipidomics, have been relatively underused in studies of resident high-altitude populations compared with lowlanders ascending to altitude, and have much potential to elucidate the functional consequences of these genetic signals [3,5,6]. Moreover, those studies using such techniques to date have typically focussed either on systemic metabolic signals by analysing blood samples [6], which reveal little about any specific tissue, or on skeletal muscle [3-5]. Reproductive viability is of vital importance to the success of human populations at altitude [79], indeed birthweight is relatively protected in native populations at high-altitude compared with lowlanders [80]. Whilst adaptations such as enhanced uterine blood flow [50] and placental antioxidant capacity [81] have been seen in highland populations, further work is needed to establish whether metabolic and mitochondrial adaptations support placental function at high-altitude. Meanwhile, as the first reports of altered DNA methylation appear in both lowlanders [30] and highlanders [32] at altitude, novel molecular mechanisms that underpin metabolic adaptation should be considered. 
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Figure Legends

Figure 1. Hypoxia inducible factor (HIF) pathway, with genes showing selection in high-altitude resident populations highlighted. HIF-1α and HIF-2α (encoded by EPAS1) are expressed in most cells but are hydroxylated under normoxic conditions by the prolyl-hydroxylases: PHD1, PHD2 (encoded by EGLN1) and PHD3. Hydroxylation tags HIF-1α/HIF-2 α for ubiquitination by the von Hippel-Lindau protein (pVHL), tagging them for proteasomal degradation. Under hypoxic conditions HIF-1α and HIF-2α are stabilised and form heterodimers with HIF-1β, activating the transcription of hundreds of genes. HIF-1 activation is associated with angiogenesis via the expression of VEGFA (encoding vascular endothelial growth factor A) and metabolic effects including increased glycolysis and lactate production and attenuation of fatty acid oxidation (FAO) via the suppression of PPARA expression. PPARA encodes peroxisome proliferator-activated receptor α (PPARα), a transcriptional regulator of FAO in heart, skeletal muscle and liver. HIF-2 activation increases the expression of EPO, encoding erythropoietin, which stimulates red blood cell production. Selection of EPAS1 and EGLN1 variants have been seen in Tibetan (blue asterisk), Andean (red asterisk) and Ethiopian (green asterisk) populations. Selection of PPARA variants have been seen in Tibetan (blue asterisk) and Ethiopian (green asterisk) populations. For metabolic features associated with these variants in these three populations, see the main text and Figure 2.

Figure 2. Location of high-altitude resident populations on the Tibetan Plateau (blue), the Andean Altiplano (red) and in the Ethiopian Highlands (green). Also shown for each region are the estimated duration of occupancy, elevation of a representative major settlement (Lhasa, La Paz, Addis Ababa), genetic signals of metabolic adaptation and associated phenotypic features where known. [Hb], circulating hemoglobin concentration; FAO, fatty acid oxidation.



Table 1: Genetic signals of possible metabolic adaptation to high-altitude in human populations on the Tibetan Plateau, the Andean Altiplano and in the Ethiopian Highlands

	Gene
	Population
	Refs
	Protein Encoded
	Function

	EPAS1
	Tibetan
	[20-23,35,39]
	Hypoxia-inducible factor 2α (HIF-2α)
	Oxygen-sensing

	
	Andean
	[23,47]
	
	*Variant associated with increased glycolysis in Tibetans [29]

	
	Ethiopian
	[60]
	
	

	PPARA
	Tibetan
	[21]
	Peroxisome proliferator-activated receptor α (PPARα)
	Regulation of fatty acid oxidation

	
	Ethiopian
	[59]
	
	*Variant associated with decreased fatty acid oxidation in Tibetans [29] and Sherpas [5]

	EGLN1
	Tibetan
	[23,39]
	Prolyl hydroxylase 2 (PHD2)
	Oxygen-sensing

	
	Andean
	[23,48]
	
	

	
	Ethiopian
	[60]
	
	

	MTHFR
	Tibetan
	[35]
	Methylenetetrahydrofolate reductase (MTHFR)
	Folate metabolism

	GCH1
	Tibetan
	[39]
	GTP-cyclohydrolase 1 (GTPCH1) 
	Regulation of nitric oxide synthesis

	PTGIS
	Tibetan
	[44]
	Prostaglandin I2 synthase (PTGIS)
	Prostanoid biosynthesis

	VDR
	Tibetan
	[44]
	Vitamin D receptor

	Transcriptional regulation of mineral metabolism and other pathways

	ATP6V1E2
	Tibetan
	[27]
	ATPase H+-transporting V1 subunit E2 
	Acidification of intracellular organelles 

	SLC52A3
	Tibetan
	[27]
	Solute carrier family 52 A3
	Intestinal riboflavin absorption 

	PRKAA1
	Andean
	[23]
	α1 subunit of AMP-activated protein kinase (AMPK)
	Cellular energy homeostasis 

	NOS2A
	Andean
	[23]
	Inducible nitric oxide synthase (iNOS)
	Nitric oxide biosynthesis 

	BRINP3 
(aka FAM5C)
	Andean
	[51]
	BMP/retinoic acid-inducible neural-specific protein 3
	Regulation of cell cycle transition 

	BHLHE41 
(aka SHARP or DEC2)
	Ethiopian
	[54]
	Basic helix-loop-helix family member E41  
	Regulation of oxygen-sensing and circadian rhythm 



* Indicates strong association between gene variant and metabolic phenotype 
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