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ADAPTIVE ECONOMICS: 
A neuroethological approach to the study of preferences, biases, and choice 

by Philipe Mathurin Bujold 

Dissertation summary 
A neuron's curse is that at every given time, with the information available to it, it must choose to either 

send a signal to its neighbouring cells or remain silent. It has evolved to be the optimal decision unit 

and, together with around 86 billion of its neighbours, the neuron keeps us alive, helps us cooperate, 

and allows us to successfully compete with others when resources get scarce. Yet, we, being collections 

of these neurons, still struggle to describe how these individual decision-makers support the broader 

process that is human decision-making. 

Traditionally, decision theory has sought to understand human choices by relying more on mathematics 

than biology. This has led to the general assumption that decision-makers behave ‘as-if’ guided by 

mathematical rules and algorithms that are mostly static over time. In reality, however, decision-making 

relies on a brain that, due to its limited capacity, has evolved the ability for flexible and dynamic cog-

nition. 

The experiments presented in this thesis, build on dichotomies in human behaviour that cannot be ex-

plained by traditional economic models - first replicating these findings in rhesus macaques, then ad-

dressing the neurobiological algorithms that could reconcile these dichotomies. Specifically, I looked 

at the effects of different reward ranges, different levels of risk, and different experimental paradigms 

in shaping the way monkeys made choices. I demonstrate that, far from having the stable and fixed 

preferences prescribed by economic models, rhesus macaques appear to flexibly adapt their choice pref-

erences in a way that optimizes their decision-making given their experience with the task at hand. I 

then elaborate on the neurobiological basis for preference adaptation, and show how incorporating sim-

ple, dynamic algorithms into economic choice models improves their predictive power. 

Taken together, my results demonstrate the need for, and advantage of, integrating neuroethological 

thought into the current framework of decision theory. 
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Chapter 1  
A brief history of decision-making 

 

How do we make decisions? Or for that matter, how does any animal make any decision? This funda-

mental question, and the focus of ‘decision theory’, has long been dissected by experts in the fields of 

economics, neuroscience, psychology, ecology and philosophy - each of these looking at decision-mak-

ing from very different perspectives.  

Universally (and throughout this thesis), research on decision-making almost always involves the use 

of models: imperfect1 algorithms that, given sets of inputs (things like the costs, the benefits, or the 

uncertainty associated with a given choice), output quantifiable behavioural predictions. We can think 

of these as strategies, or sets of rules, that we can use to predict when one might choose apples over 

oranges, to describe the activity of individual neurons, or to quantify differences in the foraging behav-

iour of animals (in the same ways that we use models to predict and understand the weather). Models 

are decision theory’s bread and butter, but the purpose of models also divides decision theory into dif-

ferent theoretical schools: the prescriptive, descriptive, and the - often ignored - predictive.  

Normative (or prescriptive) decision theory, conventionally the realm of neoclassical economics, con-

cerns itself with the development of choice models that capture behavioural ideals; that is, they output 

what a purely rational decision-maker ought to do (Stevens, 2010; Thaler, 2016). Normative models 

assume we behave ‘as-if’ following specific sets of rules and axioms when making choices, and they 

see any deviations between our behaviour and their predictions as irrational (a failure in optimizing our 

decisions). These theories prescribe rather than describe actual choices, and are less concerned with 

realism than they are with objective optimization. The reverse, where the emphasis is on realism and 

capturing true behaviour, is the branch of decision theory we call descriptive (see Schoemaker, 1982 

for review; but see also Chase, Hertwig, & Gigerenzer, 1998; and McFall, 2015). This approach is the 

prime focus of behavioural economics - the merger of psychology, sociology, and economics – a sub-

field of economics that appeared in the latter half of the 20th century as a direct response to the descrip-

tive failures of the normative approach. As we will cover in this chapter, descriptive models attempt to 

best ‘fit’ real behaviour in a way the normative approach does not; where prescriptive models ask ‘what’ 

are the choices that we make, the descriptive approach – with the help of psychology – goes further and

                                                      
1 The power of modelling lies in the fact that models always serve as simplifications of the real world. Models are 
thus, in that sense, imperfect. They allow us to ignore those variables that we consider uninformative, focusing 
solely on the variables that we believe are most relevant to the question we are trying to answer. This is put perhaps 
most poetically by the statistician George Box: “all models are wrong but some are useful” (1979). 
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asks ‘why’. The third and final school, the one we call predictive, interweaves neuroscience, compara-

tive psychology, and ecology with traditional economic thought – doing so by asking ‘how’ (and when) 

we might make the decisions prescribed or described by the other two schools (Fig. 1-1).  

The interaction of these three approaches is decision theory’s greatest strength, but the way in which 

they interact also highlights one of its biggest limitation (particularly as we search for decision-making 

‘in the brain’): both the descriptive and predictive approaches currently rely on normative economics. 

Economists observe people’s choices, they then use their measures to develop mathematical algorithms 

that describe human behaviour; psychologists refine these models using cognitive principles that ‘make 

sense’ of the choices measured by economists; and neuroscientists, working to understand the brain, 

use these models to make predictions about the neural circuits that govern decision-making. Put simply, 

we use what ‘ought to be’ as a basis for what ‘is’ - in this case, ‘as-if’ models that wholly ignore the 

biological constraints of our physiological brain (Sugden, 1993; Volz & Gigerenzer, 2014). Every level 

of decision theory is shaped, in some way or another, by the unrealistic prescriptive models of neoclas-

sical economics. Could we not, instead, incorporate biology from the start? Should we not, if the goal 

is to predict and understand choices, develop models we know the brain can support? 

This thesis’ First Chapter, through an overview of decision theory’s timeline, milestones, and disa-

greements, outlines the challenge that the pervasiveness of normative ideals poses for the fields that 

then rely on predictive accuracy (namely, neuroscience, comparative psychology, and ecology). Next, 

Chapters 2, 3, and 4 tackle the above in hopes of consolidating the decision-making fields: first by 

highlighting the predictive limitations of even today’s most popular decision models, then by demon-

strating how simple edits rooted in neurobiological thought can improve the predictive validity of these 

algorithms. The experiments presented in these chapters focus on changes in behaviours that are not 

accounted for by traditional choice models, doing so with a twist. If the goal is to improve the biological 

validity of choice models, a crucial step is to ensure they can also account for the behaviour of animals 

that share in our neurobiology – other primates, in particular. The work presented in this thesis therefore 

focuses on the economic behaviour (choice preferences, patterns, and biases) of our close cousin, the 

Rhesus Macaque (Macaca mulatta), and on one of our most defining primate characteristic: adaptability 

(Jones, 2005). The last two chapters, the Discussion and Postface, stand in direct answer to the problem 

posed in this first one (the lack of biological validity in decision theory) – they synthesize my experi-

mental results, reconcile past incongruities in the field, and cover the latest trends in decision theory. 

Though each of my thesis’ subsequent chapters will feature their own, topic-specific reviews, I invite 

you to view the rest of this chapter as the premise of what is to come, and as the inspiration behind my 

research focus. In the words of the evolutionary biologists Theodosius Dobzhansky: 

‘Nothing in biology makes sense except in the light of evolution’ … 

… and decision-making is inherently, undoubtedly, biological.  
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Figure 1-1 | The questions asked by descriptive decision-theory. The disciplines that 
study decision-making mostly do so by linking three different questions: what, why, and 
how do we make the choices we make. What questions focus on choices and preferences 
that can be observed in experimental settings. Why questions seek to explain the ‘algo-
rithms’ that can lead to the patterns of choice we observe. How questions tie in these algo-
rithms with biology – seeking to understand the neurobiological hardware that supports the 
choices we make. Though decision-theory has had much success moving downwards (from 
what to how questions), a crucial limitation to the modern framework of decision-theory is 
that no one tries to answer the questions in a bottom-up manner (from how to what). There 
is little research done where biology is the actual starting point. (For reviews on these ques-
tions and broader framework, see Krakauer, Ghazanfar, Gomez-Marin, MacIver, & 
Poeppel, 2017; Marr & Ullman, 1982; Mobbs, Trimmer, Blumstein, & Dayan, 2018)  
 



Chapter 1 | A brief history of decision-theory 
 

4 
 

1.1 Prescription 
For any and all disciplines studying decision-making, rational choice theory presents itself as the de 

facto starting point (von Neumann et al., 2004). The embodiment of the normative (prescriptive) ap-

proach, rational choice theory essentially states that decision-makers should act in a way that maximises 

their personal gains, doing so by ranking real-world outcomes onto a common scale (usually utility) to 

then select the choice that ranks highest. A rational decision-maker always chooses the option that they 

absolutely, and consistently prefer – the perfect optimizer. The present section illustrates how the frame-

work of rational choice has come to dominate decision-making research, and how it led to the develop-

ment of perhaps the single most important concept in decision theory: utility maximisation. 

1.1.1 Expected Value 

The idea behind rational choice theory can be traced back to the mid-seventeenth century, when a series 

of correspondences between the philosopher Blaise Pascal and the mathematician Pierre de Fermat led 

to the development of what is now known as modern probability theory (Ore, 1960). In these letters, 

the duo formalized the concept of expected value (EV), whereby the objective value of a choice could 

be expressed as the product of (i) its outcome value (or values) and (ii) the likelihood that this outcome 

would occur. Using this early definition of economic value, Pascal theorized that any rational decision-

maker would make choices that maximize expected value returns. In its full form, the EV of a choice 

was (and still is) given by the sum of all its outcomes (𝑥𝑥) multiplied by the respective probability (𝑝𝑝) 

that they would come to pass:  

Expected Value =  ∑  𝑝𝑝𝑛𝑛 × 𝑥𝑥𝑛𝑛         ( 1-1 ) 

Pascal and de Fermat’s formalization of expected value linked economic theory with probability theory 

in two crucial ways: choices with the same mean outcome were recognized as having the same expected 

value (the EV corresponds to the statistical average, or mean, of a choice’s outcome distribution); and 

the variance in choices’ outcome distributions came to be known as the risk involved in selecting a 

given option. Thereafter, the term risk came to be used in decision theory to define the certainty with 

which a decision-maker can expect the outcome of a choice to reflect said choice’s expected value.2  

While EVs go a long way in predicting people’s choices (see Fig. 1-2), a crucial limitation was made 

apparent in 1713 through a hypothetical situation that is now famously known as the St Petersburg 

paradox:  

  

                                                      
2 This goes against the psychological, and indeed more popular use of risk as a proxy for a loss’ magnitude. In 
economics, risk is always a positive number, regardless of choice outcomes being positive or negative, and relates 
specifically to the statistical concept of variance. It is also important to dissociate magnitude risk from probability 
risk; the variance in outcome magnitudes versus the variance in outcome likelihoods. 
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Figure 1-2 | Predicting choices from expected value. Four different choice options appear 
above. The first two, in the upper quadrant, represent coin flips: each outcome is uncertain, 
but their expected value is the sum of their individual outcomes’ expected value. The lower 
two options represent what we call safe options: the outcome of the choice is guaranteed, 
and the expected value therefore the value of their single outcome. Each of these options is 
unique, but those that share a column are equal in expected value, whilst the options on the 
same line share an equal level of risk. Expected value predicts that the options on the right 
would be preferred to the options on the left.  
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“Suppose someone offers to toss a fair coin repeatedly until it comes up heads, and to pay you 

£1 if this happens on the first toss, £2 if it takes two tosses to land a head, £4 if it takes three 

tosses, £8 if it takes four tosses, and so on. What is the largest sure payment you would be 

willing to forgo in order to [… ] play this game?” (Machina, 1987, p.135) 

If expected value is used to predict what a rational decision-maker would pay, we get a very puzzling 

prediction: because the game can – hypothetically - carry on forever, its expected value is infinite. That 

is, if rational decision-makers use EVs to make decisions, the rational price to pay for this game is the 

totality of one’s wealth (as opposed to the few pounds any real person would truly pay):  

Expected Value = 1
2

× £1 +  1
4

× £2 + 1
8

× £4 + ⋯  =  £0.5 +  £0.5 +  £0.5 + …  =  £∞ ( 1-2 ) 

This obvious discrepancy between real behaviour and the expected value predictions in the St Peters-

burg paradox led to the next development in rational choice theory: the Expected Utility Hypothesis.  

1.1.2 Expected Utility Theory 

In the eighteenth century, two centuries after Pascal and de Fermat’s development of expected value, 

the Swiss Bernoulli family started exchanging letters on the topic of the St Petersburg paradox. Nicolas 

Bernoulli had first recognized the paradox in 1713 (Cowling, 1955), but it is his cousin, the mathema-

tician Daniel Bernoulli, who finally presented a solution in 1738 (Bernoulli, 1954). Instead of making 

choices using expected values, Daniel Bernoulli proposed that people relied on their own, unique level 

of wealth in affording value to choices. This internal, subjective value came to be known as utility: the 

value that something has to you. 

A £50 note is worth more to someone who has £0 than to someone who already has £100. Bernoulli 

reasoned that the metric used by decision-makers to make choices should reflect this change: the change 

in an outcome’s ‘worth’ relative one’s current level of wealth. According to his expected utility hypoth-

esis, people would make choices in a way that maximized their subjective metric of utility (accounting 

for their context and tastes). People were utility-maximising rather than expected value maximising, 

and unlike expected value, the utility assigned to identical options could be different for different peo-

ple. In Bernoulli’s formulation, the expected utility of a choice stands as the sum of all individual out-

come utilities (u(x)) multiplied by their respective probability (p): 

Expected Utility = ∑  𝑝𝑝𝑛𝑛 × 𝑢𝑢(𝑥𝑥𝑛𝑛)        ( 1-3 ) 

The Bernoulli utility function, 𝑢𝑢(𝑥𝑥𝑛𝑛), represents the transformation of objective values (𝑥𝑥𝑛𝑛) into utili-

ties (a transformation that depends on the individual’s preferences and their current level of wealth). 

Bernoulli theorised that this function takes the form of a gradually flattening upwards curve (a concave 

function). That is, as wealth increases, each additional unit of 𝑥𝑥𝑖𝑖 results in less ‘marginal’ utility (Fig. 

1-3).  
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£0 £50 £100 £0 £50 £100 £0 £50 £100
Objective reward Objective reward Objective reward

a) b) c)
Risk-seeking Risk-neutral Risk-averse

Figure 1-3 | Expected utility’s curvature predicts risk attitude. Picture a choice between a coin flip that rewards £100 
half the time (£0 otherwise), and a guaranteed £50 note – the choice one will make is a direct result of the utility function 
being a) convex, b) linear, or c) concave. In the case of convexity, the expected utility of the $50 note will always be lower 
than that of the coin flip (50% chance of £100, £0 otherwise). We say, in that case, that the decision-maker is risk-seeking 
and prefers riskier, more uncertain options. If we reverse the curvature and make the utility function concave, we find that 
the opposite is true: the coin flip will always have a lower utility than the safe $50 option. Finally, assuming that linear 
utility is equivalent to using expected value to predict choices: the options have different levels of risk, but the decision-
maker is indifferent between them.  
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This idea was key in resolving the St Petersburg paradox: with a concave utility function, there would 

come a point where marginal utility plateaued, thereby anchoring the price that a rational player would 

be willing to pay for the coin flip game. Later developments on the expected utility hypothesis offered 

a second interpretation for the curvature of utility functions: a prediction of people’s attitude vis-à-vis 

risk. Concavity led to risk-aversion (Fig. 1-3c), convexity led to risk-seeking behaviour (Fig. 1-3a), and 

a flat utility function was the equivalent of someone using expected values to make choices (i.e., without 

considering risk, Fig 1-3b). Beyond resolving the St Petersburg paradox and predicting people’s attitude 

towards risk, however, expected utility’s most important contribution is that it allowed for the compar-

ison of different goods and outcomes using a common currency – this will later, as we will see, serve 

as the premise for identifying ‘value’ in the brain (Wu & Glimcher, 2018).  

Today, Expected Utility Theory (hereafter EUT) stands as both the modern incarnation of Daniel Ber-

noulli’s original hypothesis, and the nucleus of normative decision theory. In 1944, John von Neumann 

and Oskar Morgenstern proposed the four axioms of EUT, rules that individuals had to satisfy if their 

preferences were to follow the predictions of Bernoulli’s expected utility hypothesis (when choices 

involved risky outcomes; von Neumann & Morgenstern, 1944). For an individual to be considered ra-

tional under the expected utility hypothesis, EUT states that their preferences must be: (i) complete, (ii) 

transitive, (iii) continuous, and (iv) independent of irrelevant factors. The first two axioms, complete-

ness and transitivity, establish that decision-makers should be able to order their preferences. The con-

tinuity axiom, then, is necessary to establish a continuous scale upon which probabilities and outcomes 

are compared. The last axiom, that of independence, is necessary to establish that preferences keep their 

order regardless of other factors – such as the way choices are presented, the addition of decoy options 

(options that you would never pick anyways), or the scaling up or down of all options simultaneously. 

Where the first three axioms allow us to establish the general shape of a utility function, the independ-

ence axiom allows EUT to use said function in order to prescribe the choices one should make in dif-

ferent situations (in other words, it assumes preferences are static). Together, the axioms establish the 

conditions necessary for us to determine whether a decision-maker is acting ‘as if’ he is maximising 

expected utility. Von Neumann and Morgenstern, thus, mathematically defined rational choice theory 

in a way that could be used to rigorously study human decision-making.  

It did not take long for EUT to become the dominant model of rational choice in economics (and deci-

sion theory, for that matter). In fact, most of neoclassical economics adopted von Neumann and Mor-

genstern’s framework as an ideal mathematisation of rationality.  

1.1.3 The limits of normative utility theory 

As more economists and psychologists began using EUT to study decision-making, it became apparent 

that the source of its power, i.e., the axioms of rationality, would also prove to be its limitation. Most 

famously, in 1953, the French economist Maurice Allais presented a series of experiments in which 
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decision-makers reliably violated EUT’s independence assumption. Allais, who designed the two situ-

ations now known to as the Allais paradox, showed that people reliably violated EUT’s predictions – 

particularly when it came to considering probabilities objectively (when computing the expected utility 

of risky outcomes).  

The first violation of EUT exposed by Allais’s Paradox came from adding a common consequence (or 

irrelevant alternative) to every option in a binary choice. Take the following two situations (adapted 

from Kahneman & Tversky, 1979):  

“Situation 1: 

I offer you a choice between: option A, a 33% chance of getting £2500 (£0 otherwise); option 

B, a 34% chance of getting £2400. Do you prefer option A or option B?  

Situation 2: 

I offer you another choice between: option C, a 33% chance of getting £2500, 66% chance of 

getting £2400, and a 1% chance of £0; option D, £2400 for sure. Do you prefer option C or 

option D?” 

The decision is a hard one, but most people in situation 1 prefer option A. That is, they prefer the 33% 

chance of getting £2500 over the 34% chance of getting £2400. Given this result, EUT prescribes that, 

in situation 2, option C should be preferred to option D. This is not what Allais found. Instead, he found 

that people consistently behaved irrationally and picked option D. The simple addition of a common 

consequence led to different preferences in each situation – a scenario incompatible with EUT’s axiom 

of independence. In numbers, we see that true preferences are incompatible with a single, consistent 

utility function: 

[0.33 × 𝑢𝑢(£2500)] > [0.34 × 𝑢𝑢(£2400)]      ( 1-4 )  

[0.33 × 𝑢𝑢(£2500)] + [0.66 × 𝑢𝑢(£2400)] < [0.34 × 𝑢𝑢(£2400)] + [0.66 × 𝑢𝑢(£2400)] ( 1-5 ) 

Another violation of EUT highlighted by Allais is the one engendered by dividing or multiply decision 

variables by a common ratio (Allais, 1953; Camerer, 1989). An example of the common ratio effect, 

whereby the common ratio is an identical 75% reduction in the probability of getting each outcome, 

goes as follows (again, adapted from Kahneman & Tversky, 1979): 

“Situation 1: 

Suppose I offer you a choice between option A, £3000, and option B, an 80% chance of getting 

£4000 (£0 otherwise). Which one would you prefer?  

Situation 2:
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If I offer you another choice between option C, a 25% chance of getting £3000 (£0 otherwise) 

and option D, a 20% chance of getting £4000 (£0 otherwise). Which one would you prefer?” 

For the first situation, most people pick option A, suggesting that most people are risk-averse, and that 

the expected utility of option A is higher than the expected utility of option B. From this result, and 

through the assumptions of EUT, it follows that in situation 2 people should pick option C. This, again, 

was shown to not be the case by Allais. Though each situation presented decision-makers with (i) the 

same monetary rewards, and (ii) scenarios where the second option occurred 80% of the time relative 

the first option’s likelihood (100% vs 80%; 25% vs 20%), when presented with situation 2, people 

reversed their preferences and picked option D over option C.  

[1.00 × 𝑢𝑢(£3000)] > [0.80 × 𝑢𝑢(£4000)]       ( 1-6 )  

[0.25 × 𝑢𝑢(£3000)] < [0.20 × 𝑢𝑢(£4000)]       ( 1-7 )  

Since we would need two different utility functions to capture the effects of both the common conse-

quence and common ratio effects, Allais’ Paradox represents a direct violation of von Neumann and 

Morgenstern’s axiom of independence (Allais, 1953). Another, more popular interpretation, is that if 

we assume utility remains constant, what changes, is our evaluation of probabilities.  

Until Allais, there had also been no clear challenge to the idea that uncertainty had to be treated objec-

tively (unlike outcome magnitudes, which were transformed into utilities). Soon after Allais, however, 

Ellsberg’s Paradox added fuel to the fire by demonstrating that uncertain outcomes with known proba-

bilities (risky) are treated differently than uncertain outcomes with unknown probabilities (ambiguous). 

In fact, Ellsberg demonstrated that decision-makers reliably preferred risky outcomes to ambiguous 

ones (Ellsberg, 1961) – a behaviour that could, again, not be explained by von Neumann and Morgen-

stern’s EUT.  

The final nail in EUT’s coffin came with the psychologists Daniel Kahneman and Amos Tversky’s 

demonstration that, far from being independent of ‘irrelevant factors’, people’s choices are inherently 

dependent on the way that choice outcomes are framed (Tversky & Kahneman, 1981, 1986). Specifi-

cally, they challenged the robustness of EUT’s independence axiom with a series of simple experiments 

like the following (Tversky & Kahneman, 1981, p.453): 

“Imagine that the U.S. is preparing for the outbreak of an unusual Asian disease, which is expected to 

kill 600 people. Two alternative programs to combat the disease have been proposed. Assume that the 

exact scientific estimate of the consequences of the programs are as follows: 

Situation 1:  

If Program A is adopted, 200 people will be saved. 
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If Program B is adopted, there is a 1/3 probability that 600 people will be saved, and a 2/3 

probability that no people will be saved.  

Situation 2: 

If Program C is adopted, 400 people will die.  

If Program D is adopted, there is 1/3 probability that nobody will die, and 2/3 probability that 

600 people will die.” 

In these hypothetical scenarios, the outcomes for both the risky or riskless options are the same: 200 

people survive, 400 people die. Still, when Kahneman and Tversky presented people with these choices, 

most preferred the safer program A in situation 1, but opted for the riskier program D in situation 2 – a 

direct violation of EUT’s predictions (if A was preferred in situation 1, the equivalent program C should 

have also been preferred in situation 2). People reliably made decisions that were risk-averse when 

outcomes were presented as gains (as EUT predicts), but they became risk-seeking when outcomes were 

presented as losses – a direct reflection, or inversion, of their preference for risk.  

What Kahneman and Tversky established with the above example is now known as the framing effect: 

how the way in which a choice is framed markedly changes the decision-maker’s preference for risk. 

This effect has since been reproduced in a variety of situations (Henrich, 2004; McNeil et al., 1982), 

and in a variety of nonhuman decision-makers (we will cover this later in the chapter); it also forms the 

basis for decision theory’s most successful ‘descriptive’ model of decision-making: Prospect Theory 

(PT). 

1.2 Description 

1.2.1 Prospect Theory 

In 1979, Kahneman and Tversky proposed a novel, more descriptive model of decision-making that 

could account for the many violations of rational choice uncovered in previous decades. To do so, they 

strategically incorporated ideas from psychology into the framework of EUT, making for a more robust 

model of decision-making that nevertheless adhered to the principles of utility maximisation prized by 

normative economics (Figure 1-4). In a sense, they developed a new set of axioms and rules that made 

‘rational’ the behaviours that EUT considered ‘irrational’ (Tversky & Kahneman, 1992; Volz & 

Gigerenzer, 2014) – they made utility maximisation descriptive. First, they addressed the framing effect 

(the main violation of independence) by integrating it directly into a decision-makers ‘utility’ function. 

PT replaced the wealth-dependent EUT utility function with a value function that interpreted outcomes 

as gains or losses relative to a decision-maker’s reference-point. The value function maintained EUT’s 

concavity (risk-aversion) for those outcomes considered gains, but became instead convex (risk-seek-

ing) for outcomes considered losses (Fig. 1-4a). Second, the value function accounted for people’s 

oversensitivity to losses (loss aversion) by creating a ‘kink’ at the value function’s reference point. That  
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GainsLosses

Probabilities

a) b)

Figure 1-4 | Prospect theory’s value and probability distortion functions. a) The value 
function’s curvature reverses at the inflection point: it is concave for gains and convex for 
losses. The is also a ‘kink’ in the function at the reference, whereby losses are weighed 
more heavily than gain. b) People subjectively distort probabilities. Prospect theory’s 
weighing function assumes that we overweigh low probabilities and underweight high ones.  
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is, the slope of the loss segment was more pronounced than that of the gains segment, such that a given 

loss required more than the equivalent gain to compensate for the decision-maker’s extra aversion for 

losing. Third, probabilities were now also treated subjectively: outcome probabilities were weighed 

according to a distorted probability metric rather than the objective likelihood that they would occur. 

PT’s weighing function (𝜔𝜔), or probability distortion, has since conventionally taken the shape of an 

inverted-S where low probabilities are overweighed, and high probabilities are underweighed (Fig. 1-

4b). Integrating these three psychological concepts into the utility maximisation framework, the value 

of a prospect (a prospective outcome, or gamble) under PT was formalized as: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥,𝑝𝑝)  = ∑𝜔𝜔(𝑝𝑝𝑛𝑛) × 𝜈𝜈(𝑥𝑥𝑛𝑛)        ( 1-8 ) 

where 𝜔𝜔(𝑝𝑝𝑛𝑛) is the distorted probability 𝑝𝑝𝑛𝑛 that outcome 𝑥𝑥𝑛𝑛 will occur, and 𝜈𝜈(𝑥𝑥𝑛𝑛) is the reference-

dependent value of outcome 𝑥𝑥𝑛𝑛. 

Through this simple but psychologically sound formulation, PT managed to account for many of the 

EUT violations published at the time (most famously, Allais’ paradox). It also describes what has be-

come known as the fourfold pattern of risk attitudes: that decision-makers are (i) risk-averse for risky 

gains if their probabilities are high, but (ii) risk-seeking for losses that have high probabilities (ii), and 

that they are (iii) risk-seeking for gains if their probabilities are low, but (iv) risk-averse for losses that 

have low probabilities (Scholten & Read, 2014; Tversky & Kahneman, 1992). Since it kept in line with 

the assumption of utility (value) maximisation, PT readily migrated from behavioural economics into 

the many other subfields of economics – becoming the leading model of choice in modern decision 

theory (Camerer, 1998; Camerer & Weber, 1992). For their development of PT, and, really, for pio-

neering the merger of psychology and economics that would become later come to be known as behav-

ioural economics, Kahneman and Tversky were awarded the 2002 Nobel Prize in economics. 

1.2.2 Heuristics and biases 

Around the same time that they formalized PT, Kahneman and Tversky published a series of experi-

mental results demonstrating that people did not always behave ‘as-if’ maximising some kind of internal 

‘utility’ metric – an idea that had been previously advanced by the economist and psychologist Herbert 

Simon (Simon, 1966).  

In Simon’s words, the problem with rational choice and utility-maximisation (up to that point) had been 

the ‘complete lack of evidence that, in actual human choice situations of any complexity, these compu-

tations [could] be, or in fact, [were] performed’ (Simon 1955). His solution, and perhaps Simon’s most 

important contributions to decision theory, was the conceptualisation of bounded rationality: the idea 

that humans had a limit to their computational ability, and that this inherently constrained our decision-

making abilities. In developing this idea, he suggested that humans, rather than calculating and 
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comparing precise values and probabilities, often made us of mental shortcuts – rules of thumb he 

termed heuristics – to facilitate the decision-making process.  

Kahneman and Tversky built on this concept through a series of experiments investigating people’s use 

of heuristics to simplify complex decisions outside PT (Tversky & Kahneman, 1974). In their view, 

heuristics were used to reduce the level of complexity involved with calculating precise probabilities, 

and to simplify the ‘rational’ thought process used in predicting the value of our choices (Tversky & 

Kahneman, 1974). For example, a common heuristic they identified was that of availability (Tversky 

& Kahneman, 1973), wherein decision-makers assessed the likelihood of an event through the ease with 

which they could recall it (in other words, how available it is to them). Since the likelihood of something 

occurring is generally tied to our having experienced it, this is a good strategy in many settings. It can 

also, however, lead to suboptimal behaviour; particularly when dealing with events of low likelihood 

but high salience. For example, shark attacks rarely happen, and even more rarely lead to someone’s 

death; yet, they have a very poignant effect on people, such that more people are more afraid of shark 

attacks than of drownings, of falling aeroplane debris (which in fact kill 30 times more people), or of 

falling coconuts (which kill twice as many people as shark; Barss, 1984).  

In addition to the availability heuristic, Kahneman and Tversky also behaviours they termed the Gam-

bler’s Fallacy and the Hot-Hand Bias: opposing patterns of choice that are, nonetheless, both engen-

dered by our tendency to perceive fake relationships between uncorrelated events (Falk & Konold, 

1997; Nickerson, 2002; Rabin & Vayanos, 2010). The former, the gambler’s fallacy, refers to a deci-

sion-maker’s false belief that, in a sequence of unrelated events, those events that have not occurred for 

some time are more likely to occur – that things have to balance out (Tversky & Kahneman, 1971). In 

contrast, the hot-hand bias relates to the false belief that winning or losing comes in streaks (Gilovich 

et al., 1985).  

Both phenomena have been tied to a heuristic that Tversky and Kahneman call representativeness: that 

we simplify the world through a belief that small samples (of events or variables) should be representa-

tive of the larger distributions from which they have been drawn (Kahneman & Tversky, 1972; Tversky 

& Kahneman, 1974). Using the earlier example of the coin flip game, one we understand as having a 

50/50 chance of either a heads or tail outcome (because of the Law of Large Numbers3), the represent-

ativeness heuristic explains why most of us erroneously expect short bouts of play to mimic these un-

derlying probabilities (we mistakenly believe in the Law of Small Numbers4). In the case of the gam-

bler’s fallacy, this easily translates to expecting heads after landing on tails multiple times. In the case 

                                                      
3 When independently drawing from a distribution of outcomes, larger samples are more likely to represent the 
mean, or the expected value of said distribution. 
4 The incorrect belief that, when independently drawing from a distribution, even small samples should reflect the 
distribution expected value. 
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of the hot-hand effect, however, the reasoning is that representativeness leads people to interpret streaks 

as unrepresentative of (and therefore detached from) the randomisation process (Ayton & Fischer, 

2004). In other words, the hot-hand effect makes us perceive streaks as special ‘breaks’ in the random-

ization process – ones we then expect will continue.  

Though both phenomena have been described at length (for review, see J. Xu & Harvey, 2014b), there 

is still little consensus on these heuristics beyond their ‘ad hoc’ labels. In fact, behavioural economists 

still fundamentally disagree as to what might lead to one bias over the other, and about how these 

opposing biases can co-exist (Burns & Corpus, 2004; Miller & Sanjurjo, 2018; Oskarsson et al., 2009; 

J. Xu & Harvey, 2014b). A study by economists Rachel Croson and James Sundali (2005), looking at 

the decision-making of gamblers in casinos, perhaps best illustrates the problem. Focusing on the game 

of roulette, they found that gamblers (i) placed more bets after winning (i.e. hot-hand bias), but also (ii) 

bet significantly more against long streaks of numbers than with the long streaks (i.e. 5 repetitions or 

more). Both the hot-hand effect and the gambler’s fallacy co-existed in the same people, but each heu-

ristic targeted a different aspect of the same game – why? In a later study, the same authors found that 

these opposing patterns of behaviour also correlated in strength (Sundali & Croson, 2006), suggesting 

that, if not the representativeness heuristic, these two biases nonetheless shared some sort of underlying 

cognitive process (we will get back to this later).  

By using the above heuristics to describe the behaviours that PT could not, Kahneman and Tversky led 

most of behavioural economics to view heuristics as unavoidable, imperfect substitutes to rational, util-

ity-maximisation (Tversky & Kahneman, 1973). In doing so, their heuristics-and-biases research pro-

gram popularised the idea that both rational and irrational choices could be explained - albeit separately 

(a distinction that still governs the descriptive approach today; cf. Fiedler & von Sydow, 2015; 

Gigerenzer, 2016). 

1.2.3 Ecological rationality 

In direct opposition to the work of Kahneman and Tversky, a branch of behavioural economics argues 

that the rational/irrational distinction is but an artificial one, and that the field might do better to under-

stand the conditions under which ‘irrational’ heuristics are in fact optimal. In place of rational choice 

theory and the framework of utility maximisation, they define a new framework that stems directly from 

Herbert Simon’s early criticism of ‘as-if’ theories and his later conceptualisation of bounded rationality. 

They call it ecological rationality, the evolutionary psychologist’s take on behavioural economics 

(Hammerstein & Hagen, 2005; Hoffman et al., 1998). 

Through an almost exclusive focus on the use of heuristics, ecological rationality argues that theories 

like PT offer no solutions to the failings of rational choice theory: they still assume near-infinite com-

putational ability (i.e., unbounded rationality), and, in effect, only patch the failings of earlier rational 

choice models like EUT (Volz & Gigerenzer, 2014). In contrast, instead of a single, ‘perfect’ decision-
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making algorithm, the approach of ecological rationality is to view multiple, imperfect heuristics as the 

best course of action for decision-makers that have biological and cognitive constraints (Simon, 1990; 

Todd & Gigerenzer, 2000).  

In line with this view, the psychologist (and architect of modern ecological rationality) Gerd Gigerenzer 

conceptualises the mind as an adaptive toolbox: a collection of simple but specialized heuristics that 

evolution has assembled into the different strategies we use to make choices (Gigerenzer & Selten, 

2002). Unlike Kahneman and Tversky's heuristics, these should be specific enough to be formally model 

(i.e., not one-word labels; cf. Gigerenzer, 2010), yet also describe behaviour as accurately as - or better 

than - traditional models (Goldstein & Gigerenzer, 2002). Gigerenzer’s heuristics are fast-and-frugal 

ones: simple algorithms that, by exploiting statistical regularities in our environment, facilitate choices 

when our knowledge is incomplete (Todd & Gigerenzer, 2000).  

Take the aforementioned hot-hand bias (i.e. our tendency to incorrectly perceive positive correlations 

between the outcomes of random events). Although the rational choice school labels this bias as an 

‘irrational’ application of the ‘rational’ law of large numbers, the approach of ecological rationality has 

been to try and identify situations where such a bias is in fact optimal. As a result, while traditional 

explanations for the hot-hand bias have focused on errors of representativeness (i.e. the law of small 

numbers), a separate set of studies has sought to formally understand the ecological realities that would 

favour a hot-hand bias (for review, see Kong, Granic, Lambert, & Teo, 2019). This rapidly growing 

body of work argues that the perception of streaks – far from irrational5 – is in fact an optimal strategy: 

the hot-hand bias is significantly better than chance when dealing with uncertain or varying odds (e.g., 

Burns, 2004; Csapo, Avugos, Raab, & Bar-Eli, 2015; Hammack, Cooper, Flach, & Houpt, 2017; Miller 

& Sanjurjo, 2018b), and it presents no real disadvantages when dealing with true random processes 

(Scheibehenne, Wilke, & Todd, 2011). In contrast to that of the heuristics-and-biases view, the ecolog-

ically rational take on the hot-hand bias is thus that: “if there is […] a pattern, expecting that particular 

pattern can be advantageous by providing an edge in predicting future events, and if there is no pattern, 

expecting one will not do worse than any other strategy” (Scheibehenne et al., 2011, p. 327).  

Supporting this interpretation, the hot-hand bias shifts in intensity as our brain ages (Castel et al., 2012), 

has been observed across different cultures (A. Wilke & Barrett, 2009), and is a heuristic we also share 

with other primates (Blanchard, Wilke, et al., 2014) – key indications that this bias, more than just a 

learned strategy, has an inherent biological basis (i.e. ripe for natural selection). Along that vein, a series 

                                                      
5 The classic studies on the ‘hot-hand’ bias have been mostly carried out in relation to sports and sports betting, 
and assume that ‘scoring’ is generally uncorrelated (that is, players that score are not more likely to score again; 
see Gilovich, Vallone, & Tversky, 1985b; Kahneman, n.d.). Several studies have since, however, demonstrated 
that scoring is not ‘as random’ as initially thought, and that a belief in ‘streaks’ might not be as erroneous as they 
once seemed (for review, see Avugos, Köppen, Czienskowski, Raab, & Bar-Eli, 2013; or Bar-Eli, Avugos, & 
Raab, 2006) 
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of studies by the psychologists Andreas Wilke and Harold Clark Barrett (et al.) paint the hot-hand bias 

as a heuristic evolving to take advantage of the ‘clumpiness’ of our ancestral foraging environment 

(Scheibehenne et al., 2011; A. Wilke et al., 2009; A. Wilke & Barrett, 2009). Specifically, they suggest 

that looking for (and expecting) ‘clumps’ might be advantageous in a world where the distribution of 

plants, other animals, and water is often not random (A. Wilke et al., 2014). Evolving a heuristic, or 

bias, that piggy-backs on the clumped structure of our environment is thus a very ecologically rational 

thing to do. By taking advantage of statistical regularities in the environment, the hot-hand heuristic 

alleviates the need for more energetically expensive, ‘rational’ cognition (Mishra, 2014).  

Through this less-is-more perspective, research on ecological rationality has identified 3 main rules, or 

building blocks, that generally compose heuristics: (i) search rules that specify how and where to look 

for choice-relevant information; (ii) stopping rules that specify when the search should end; and (iii) 

decision rules that specify how the final choice should be made (Todd & Gigerenzer, 2000). The spe-

cifics of these rules, and the ways in which they are tweaked, depend on the properties of the problem 

for which they have then been assembled. The recognition heuristic6, for example, requires the deci-

sion-maker to search for information in memory (the search rule), to stop the search once something is 

recognized (the stopping rule), and to select the object that was recognized (the decision rule; see 

Gigerenzer & Goldstein, 2011). It is the more ‘formal’ analogue to Kahneman and Tversky’s availabil-

ity heuristic (unlike availability, however, it can be used precisely model choices). In a similar vein, the 

priority heuristic – a heuristic alternative to EUT or PT – posits that we search our options in terms of 

minimum gain, probability of minimum gain, and maximum gain (in that order); that we stop our ex-

amination if either the minimum gains differ by 1/10 or more of the maximum gain or if the probabilities 

differ by 1/10 or more of the probability scale; and that we decide on the option with the highest value 

for that variable that we were considering when we stopped (Brandstätter et al., 2006, 2008). With just 

3 rules, and no mention of utility, the priority heuristic is in fact able to rival or outperform many of 

PT’s predictions7: the preference reversals of the Allais paradox and the fourfold pattern of risk atti-

tudes, to name a few. 

Naturally, the fast-and-frugal view of heuristics clashes with the more predominant heuristics-and-bi-

ases one. Yet, for many non-economists, the heuristics of Gigerenzer’s adaptive toolbox echoes the 

biological reality that is the selection of ‘simple, repeated design patterns’ through human evolution 

                                                      
6 The recognition heuristic, though analogous to Kahneman and Tverky’s availability heuristic, differentiates itself 
via the fact that it is a clearly defined model of decision-making (not an informal, one-word label; Goldstein & 
Gigerenzer, 2002; Pachur, 2011). It also does not depend on the ‘number of times’ an event has been encountered, 
only the ability to recognize it(Pachur et al., 2011). 
7 It should be noted, nonetheless, that ‘the priority heuristic models difficult decisions, not all decisions. It does 
not apply to pairs of gambles in which one gamble dominates the other one, and it also does not apply to “easy” 
problems in which the expected values are strikingly different’ (Brandstätter et al., 2006, p.8). In fact, in situations 
where decisions would be considered ‘simple’ the priority heuristic appears to fails quite remarkably (Rieger & 
Wang, 2008; but see (Brandstätter et al., 2008; Brandstätter & Gussmack, 2013). 
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(Adams, Watson, Pearson, & Platt, 2012), and is in keeping with the idea that the brain likely relies on 

a number of simple, repeated algorithms to build complex cognition (e.g., decision-making; McNamara 

& Houston, 2009; Pearson, Watson, & Platt, 2014). Since neural computations are energetically expen-

sive, the use of simple algorithms that adapt to the structure of one’s environment might represent the 

best cost-benefit tradeoff in terms of evolutionary investment (Hayden & Walton, 2014). What tradi-

tional economists view as suboptimal choices, then, likely reflects but a mismatch between (i) the evo-

lutionary context in which our brain has assembled theses heuristics, and (ii) the artificial situations in 

which economic choices have been studied (Goldstein & Gigerenzer, 2002; Kacelnik, 2012). Put 

simply, fast-and-frugal heuristics are neither rational or irrational (in the classical sense); rather, they 

are ecologically rational if they lead to optimal choices in the situations for which they have evolved 

(Gigerenzer & Gaissmaier, 2011; Raab & Gigerenzer, 2015). 

1.3 Prediction (or lack thereof) 
Today, with ecological rationality still in its infancy, rational choice theory and its derivatives continue 

to dominate decision theory8. Following the trend set by Kahneman and Tversky, however, the last few 

decades have seen the behavioural economics inundated with newer models seeking to explain the fail-

ings of older ones (for reviews, see Camerer, 1989; Shafir & LeBoeuf, 2002). Cumulative Prospect 

Theory9 rose to address the failures of PT (Tversky & Kahneman, 1992), new heuristics replaced old 

ones, and a collection of new theories and algorithms began to amass, each one describing specific 

choice biases in utmost detail (e.g., Köszegi & Rabin, 2006; Masatlioglu & Ok, 2005; Quiggin, 1982; 

Sugden, 2003). With no clear and unified framework to fall back on, the field has had no way of filtering 

this growing number of models (each one promising to outdo others in describing choices). In the words 

of Stephen Choi and Adam Pritchard (two eminent Wall Street regulators and law professors): “Instead 

of a theory, behavioural economics [came to rely] on a hodgepodge of evidence showing the ineffec-

tiveness of human decision-making in various circumstances” (2003, p.10).  

The solution to this problem, and the filter by which to consolidate decision theory, comes by way of 

the biological sciences…  

                                                      
8 Just look at the way behavioural economics has been popularized in recent years. Books like Daniel Kahneman’s 
Thinking Fast and Slow (2011) and Dan Ariely’s Predictibly Irrational (2008), as well as the idea of Nudging in 
public policy (see Thaler & Sunstein, 2008), all stem from the rational approach. Specifically, from the ‘divide’ 
between rational and irrational thinking. 
9 Cumulative Prospect Theory (CPT), refines the original version of PT by addressing one of its original failures: 
that the sum of an option’s distorted probabilities could, in effect, add up to more than 1 (creating all sorts of 
issues regarding the plausibility of its predictions). To address this issue, CPT incorporates the concept of rank-
dependence, from rank-dependent EU (Quiggin, 1982, 1993), whereby it distorts the cumulative probabilities of 
options, not their objective ones (Fennema & Wakker, 1997; Tversky & Kahneman, 1992). It is this transform of 
PT that is used throughout this thesis.  
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1.3.1 The advent of neuroeconomics 

In the 1980s, the field of neuroscience went through something of a revolution. The invention of novel 

imaging techniques suddenly allowed researchers that had previously been confined to the study of 

brain lesion (in animals and neurological patients) to explore a more direct link between the brain and 

behaviour. The study of decision-making through neurobiology had finally become a possibility, and 

many neuroscientists started using the choice models developed by behavioural economics to correlate 

the activity of different brain regions with choices and preferences. 

The first successful study demonstrating a quantifiable link between brain and behaviour came in 1989 

when neurophysiologists William Newsome and J. Anthony Movshon showed that the activity pattern 

of neurons in the monkey visual cortex correlated with the animals’ choices (Glimcher & Fehr, 2014; 

Newsome et al., 1989). In a task where monkeys had to indicate the direction in which dots on a screen 

were moving, Newsom and Movshon found that the activity of individual neurons reliably correlated 

with the chosen direction. Then, three years later, the field saw the publication of the first three studies 

that used functional magnetic resonance imaging (fMRI10) to correlate whole-brain activity with be-

haviour (Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 1992). The neuroscientific revolution 

had begun. 

The development of fMRI in the early 1990s put neuroscience in an ideal position to explore the neural 

computations of human decision-making – something that economists had never before been able to 

do. Concurrently, behavioural economists started tooling with the idea that neuroscience could serve as 

the unifier they had been looking for: a tool that would identify the biological constraints that decision 

theory should place on models of choice. Before long, like-minded psychologists, neuroscientists, and 

economists began collaborating. Then, in 2005, a seminal paper by the behavioural economists Colin 

Camerer, George Lowenstein, and Drazen Prelec laid out the groundwork for what was to become the 

field of neuroeconomics (Camerer et al., 2005). In doing so, they outlined two unique and promising 

contributions of neuroscience to the study of decision-making: 

(i) Incremental, top-down contributions: wherein neuroscience could refine or reform the ‘as if’ 

models of decision-making currently in use (which the authors argue “have never been well 

supported empirically”).  

(ii) Radical, bottom-up contributions: wherein the economic approach would be thoroughly re-

evaluated, laying out a new neurobiological foundation to replace past economic theories. 

                                                      
10 Unlike MRI, which produces a ‘still’ image of the brain, fMRI measures brain activity through changes in brain 
(blood) oxygenation levels over time. Since blood flow (and therefore oxygenation) is coupled with the needs of 
recently active neurons, fMRI signals allow us to pinpoint areas of the brain that were active at the time of the 
scan (Logothetis et al., 2001). 
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The goals were set, and the field of neuroeconomics was born. But while Camerer and his colleagues 

stressed that “in the long run a more “radical’ departure from current theory will become necessary” 

(Camerer et al., 2005, p.55), the field’s most influential work has stubbornly stuck to the incremental 

approach. The idea of a neural common currency (Glimcher et al., 2005; Levy & Glimcher, 2012; 

McNamara & Houston, 1986; Montague & Berns, 2002), a signal mimicking the economic concept of 

utility, has been particularly prevalent. An early study by the neurophysiologist Camillo Padoa-Schi-

oppa and John A. Assad (2006), for example, identified the orbitofrontal cortex (OFC), a region of the 

prefrontal cortex that stands right above your eyeballs, as the one to represent the rational ‘value’ of our 

different choice options. By presenting monkeys with a choice between two juice options and simulta-

neous recording the activity of their OFC neurons, they found that (i) individual neurons encoded the 

value of either option separately, (ii) that this ‘value’ activity was indicative of choice, and (iii) that 

these values were independent of either option’s position (i.e. the motor response needed to select it). 

A follow-up study, reiterating the OFC’s role in computing value, showed that within a task, the neu-

ronal representations of value suggested transitivity: that is, the value of each option was independent 

of the other options available to the monkey – signals were absolute, not relative (Padoa-Schioppa & 

Assad, 2008). Studies like these have since guided a volley of others into identifying different brain 

regions with activity patterns that correlate with EUT’s utility or PT’s value, their axiomatic compo-

nents, or the broader ideas of rational choice theory (O’Doherty, 2014; O’Neill & Schultz, 2018; Pastor-

Bernier et al., 2017; Stauffer et al., 2014). Conversely, with most of neuroeconomics following the 

assumptions rational choice, there has been but a handful of studies looking at the neurobiological plau-

sibility of ecological rationality (Hunt & Hayden, 2017; Khader et al., 2011; Kotz & Dorp, 2010) 

Though arguably one-sided, neuroeconomics’ focus has permitted the identification of brain networks 

involved in the behavioural manifestations of PT’s framing effect (De Martino et al., 2006; Zheng et 

al., 2010), loss aversion (Knutson et al., 2008; Tom et al., 2007) and probability distortion (Hsu et al., 

2009; Tobler et al., 2008). And while the main contributions of neuroeconomics remain incremental, 

the study of neural signals – particularly their ‘noisiness’, or stochasticity11 – has been central to the 

development of the novel choice models put forth in recent years (see Hunt & Hayden, 2017; Louie, 

Glimcher, & Webb, 2015; Rustichini & Padoa-Schioppa, 2015; this will be covered in more depth in 

the interlogue and postface chapters).  

Though the incremental approach has delivered on its refinement promise, neuroeconomics still has a 

long way to go if it is to radically change our understanding of economic decision-making (Bossaerts 

& Murawski, 2015). Specifically, rather than using ‘as-if’ models to locate and quantify choice-related 

activity in the brain, neuroeconomics needs to start questioning the neurobiological validity of the mod-

els it uses (i.e. act as a filter; cf. Volz & Gigerenzer, 2014). Many of these models, for instance, show a 

                                                      
11 The inherent randomness with which neurons process information and communicate 
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remarkable lack of predictive power. An entire book, ‘Risky curves: On the empirical failure of expected 

utility’, has been written on the topic (D. Friedman et al., 2014). How can we expect to accurately map 

out (and indeed predict) brain function if none of the models we use accurately predict out-of-sample 

choices? A paradigm shift is on the horizon for neuroeconomics: one that will hopefully take it from 

predicting biology with economic models, to predicting economic choices with biology (something the 

field can uniquely do).  

1.3.2 Comparative psychology and primate economics 

Whereas neuroeconomists typically see the use of animals as a window into the human brain (i.e. neural 

systems from which we can record neural activity12), the field of comparative psychology offers a dif-

ferent take on the matter. If decision theory is to truly understand human decision-making, they argue 

that the study of animal decision-making is, in of itself, a worthwhile endeavour. Animals with whom 

we share an evolutionary history offer us a glimpse into the past – a way to understand the evolutionary 

forces that have shaped our decision-making. In studying them, comparative psychology poses im-

portant questions for decision theory: (i) can we use the models of human decision-making to success-

fully describe the behaviour of animals that share in our neurobiology (other primates, in particular); 

and (ii) if not, why? 

The study of animal choices, and indeed the comparative approach, is perhaps best illustrated by a 

famous series of experiments on capuchin behaviour. In 2006, Chen, Lakshminaryanan, and Santos 

made headlines13 following their publication of a study that showed capuchin monkeys consistently 

selecting food rewards that were presented as gains over identical food rewards presented as losses (just 

like the framing effect PT describes in humans). Following this, in 2011 the same group went on to 

demonstrate that capuchin monkeys were risk-averse for choices presented as gains, but risk-seeking 

when choices were presented as losses (just like humans; Lakshminarayanan, Chen, & Santos, 2011). 

Their procedure was elegantly simple: two experimenters presented capuchins with two sets of apple 

pieces. The number of pieces would then vary in a known or unknown way before the monkey received 

whichever set they had chosen. In the gains frame, the safe experimenter always added an additional 

piece of apple to the starting one; the risky experimenter sometimes added two, sometimes added noth-

ing. The loss frame was similar, but instead of starting with a single piece of apple and adding more, 

the experimenters consistently removed one piece from an initial three, or probabilistically removed 

two. As expected, the monkeys were risk-averse for choices framed as gains, picking the ‘safe’ 

                                                      
12 It should be noted that neuroscientists resort to animal experiments only when there is no alternative, or when 
it is impractical or unethical to use specific treatments/methods on humans (things like electrode recordings, se-
lective lesioning, or genetic manipulations). Several neuroscientists described this best in a 2018 report: “studies, 
using invasive methods, complement those in human volunteers and patients, using non-invasive methods such 
as brain imaging and computational modelling” (Mitchell et al., 2018). 
13 I would recommend to any reader to watch Laurie Santos’ TED talk on the subject, titled ‘A monkey economy 
as irrational as ours’: https://www.ted.com/talks/laurie_santos?language=en 

https://www.sciencedirect.com/topics/neuroscience/brain-imaging
https://www.ted.com/talks/laurie_santos?language=en
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experimenter significantly more than the ‘risky’ one; and they were risk-seeking for choices framed as 

losses – even though the outcomes were the same.  

Until then, though we knew animals of all kind had a lot of experience choosing between primary bio-

logical rewards (e.g., food, water, sex), it had been less obvious that they should behave like humans 

(especially ‘rational’ humans) when participating in similar economic experiments. The work of Yale’s 

Comparative Cognition Laboratory changed all of that: it showed that human models could be used to 

describe the behaviour of primates (the effect being replicated in many different animals, including 

chimpanzees and bonobos; see Krupenye, Rosati, & Hare, 2015).  

The application of PT to the study of primate behaviour has its limitations, however, and it becomes 

apparent when we attempt to generalize decision strategies across species: risk attitudes are not con-

sistent across tasks, across species, and even within single species. Humans and capuchins might be 

largely risk-averse for choices involving gains, but many primates instead demonstrate risk-seeking 

preferences. Macaques, for example, are generally risk-seeking in neuroeconomic experiments (McCoy 

& Platt, 2005; O’Neill & Schultz, 2010; Smith et al., 2017; Stauffer et al., 2015; E. R. Xu & Kralik, 

2014), but a handful of studies also demonstrate risk-averse behaviour (Genest et al., 2016; Yamada et 

al., 2013). Bonobos and Chimpanzees, two of the most related primate species, also show widely diver-

gent patterns of risk attitude: chimpanzees appear to be more risk-seeking, while bonobos exhibit hu-

man-like risk aversion (Heilbronner, Rosati, Stevens, Hare, & Hauser, 2008; Krupenye et al., 2015). 

Conversely, a study by Haun et al. (2011), in which the risk attitude of all four great apes was compared, 

found that they were all risk-seeking to some degree, while another study found that orangutans were 

instead risk-averse (Pelé et al., 2014). This last one, wherein orangutans, capuchins, and macaques had 

to decide between (i) keeping a cup of cookies they had been given or (ii) taking a gamble and trading 

with the experimenter for a different one (out of six randomly selected ones from a pile they could 

observe), was particularly revealing. They found that orangutans and capuchins were risk-averse, but 

that long-tail macaques were not (just like rhesus macaques).  

This diversity in risk attitudes in primates, often inconsistent within single species, is confusing at every 

level of decision theory. Rational choice cannot explain it, and ecological rationality alone does not 

provide a clear biological basis that evolution could act on. Still, where we used to think that differences 

in decision-making represented fundamental differences in neurobiology, comparative psychology has 

shown that simple, fundamental biases, exacerbated by task design, are often the ones to blame 

(Heilbronner, 2017; Volz & Gigerenzer, 2014). Macaques overweight gambles that they have 

previously won (Blanchard, Wilke, et al., 2014), humans and monkeys become more risk-seeking when 

playing for relatively small rewards (Heilbronner & Hayden, 2013; B. J. Weber & Chapman, 2005), 

and both monkeys and humans underweight rewards when their probabilities that are stated overtly 

compared with those where the probabilities have to be learned (Heilbronner & Hayden, 2016; Hertwig 
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& Erev, 2009; B. J. Weber & Chapman, 2005). In parallel, a new wave of neuroeconomics has also 

begun to highlight the effect of past choices and contextual statistics in shaping neural activity and the 

behaviour that ensues (e.g., Diederen, Spencer, Vestergaard, Fletcher, & Schultz, 2016; Webb, 

Glimcher, & Louie, 2014; Zimmermann, Glimcher, & Louie, 2018). It is, in fact, the effects of 

contextual statistics on decision-making that this thesis later explores.  

1.3.3 The promise of neuroethology 

With the merger of behavioural economics and neuroscience giving rise to the field of neuroeconomics, 

a similar merger, this time between ethology (the study of natural animal behaviour) and neuroscience, 

produced what we now know as neuroethology (Konishi, 2010). A field focused on natural behaviour, 

it differentiates itself from neuroeconomics in that it considers the effects of evolutionary pressure as 

fundamental to the study of the nervous systems. To truly understand the brain, it argues that neither 

behaviour nor the circuits that generate it can be taken out of their evolutionary context (a view not too 

distant from that of ecological rationality). The evolutionary origins of a species, their development, as 

well as the anatomical and physiological limitations that biology engenders, are all central to the neu-

roethological perspective. 

The modern incarnation of the field, originating in the 80s, has only recently garnered the interest of 

those that study decision-making (Adams et al., 2012; Watson & Platt, 2008). Nevertheless, the neu-

roethological approach is likely the key to a more radical rework of decision theory – one more in-line 

with what Camerer et al. had intended (2005). Unlike the neuroeconomists14 who gaze into the brain 

using the ‘as-if’ models of decision theory, neuroethologists build models that consider: (i) the choice 

problems animals confront, (ii) the algorithms that could be used to solve these problems, and (iii) most 

importantly, whether the brain’s architecture can actually support said algorithms (Pearson et al., 2014). 

In doing so, neuroethology offers a bottom-up take on the neurobiology of decision-making and brings 

a much needed second opinion to an area where theories have previously gone unchallenged.  

Along these lines, one of neuroethology’s clearest, and most robust finding is that the algorithms we 

use to make choices are flexible; that, biologically, homo sapiens is closer to ecological rationality’s 

homo heuristics than rational choice’s homo economicus (cf. Gigerenzer & Brighton, 2009; Kalenscher 

& Wingerden, 2013; Levitt & Lis, 2008). Ethology has been arguing for years that behavioural flexi-

bility is what has made us primates so successful (Jones, 2005). Likewise, studies that look at the neural 

basis of our more ‘natural’ decisions are starting to highlight the dynamic nature our brain’s choice 

algorithms (e.g., Blanchard & Hayden, 2014; Hayden & Walton, 2014; Kolling, Wittmann, & 

Rushworth, 2014; Kvitsiani et al., 2013). Research on primate foraging behaviour, for example, is 

                                                      
14 For simplicity’s sake, I use the term ‘neuroeconomics’ to capture those neuroscientific studies that describe and 
predict neurobiological variables using economic theory; and ‘neuroethology’ as those studies that instead build 
theories from the neurobiology. Though the dichotomy is, in reality, much blurrier, imposing a clear-cut distinc-
tion is useful for this discussion and to understand the power of those studies that blur the line. 
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particularly insightful. A study on the by the neuroscientists Benjamin Hayden, John Pearson, and Mi-

chael Platt (2011), had rhesus macaques make choices between two options that emulated the choices 

a monkey could make when foraging in a ‘patchy’ environment (i.e. one where water and food is found 

in ‘clumps’). Termed the patch-leaving problem, monkeys were faced with the decision to either stay 

and get a reward (juice with diminishing returns) or leave the patch and reset their ‘staying’ earnings. 

Every time they picked the stay option they got a little bit less reward, but every time they chose to 

leave they faced a travel delay (time) associated with the ‘search’ for the next patch. While monkeys 

were choosing, Hayden et al. found that the activity in their cingulate cortex15 mimicked an accumula-

tion-to-threshold process: the activity of individual neurons slowly built up as the animals ‘depleted’ 

the patch and got closer to their ‘leave’ decision; once activity reached a specific threshold, the monkey 

would choose to leave (it largely chose to stay, otherwise). Interestingly, though the activity threshold 

remained constant, the increments with which neurons ‘built-up’ activity changed depending on the 

time delay involved with leaving. The brain seemed to be comparing a relatively stable representation 

of the value of staying, with a relatively dynamic value of leaving (the flexibility needed in a changing 

environment; Hayden, 2018). 

Accumulation-to-threshold models, of which the most popular is drift-diffusion (for review, Ratcliff, 

Smith, Brown, & McKoon, 2016), have long been a staple of perceptual decision-making research (a 

branch of neuroscience that focuses on problems of recognition, or detection of motion direction; e.g., 

Summerfield & De Lange, 2014). Mimicking the way neurons in our sensory systems make choices, 

these models predict that individual groups of neurons, representing different but specific options, ramp 

up their firing activity as perceptual evidence accumulates. The first group of neurons to reach a specific 

activity threshold (or segment of the population) leads to that group’s respective option being selected 

by the system. On a psychophysical level, when applied to value-based decision-making, these models 

highlight that the relative difference in the activity of neuronal populations is what determines choices. 

Perhaps surprisingly, accumulation models also suggest that the absolute ‘value’ of our options might 

significantly influence the time it takes for us to ‘make up our mind’ (Busemeyer & Townsend, 1993; 

Hunt et al., 2012; Webb, 2018).  

Another characteristic of cortical circuits, discovered again by the study of perception (e.g., Britten & 

Heuer, 1999; Carandini, Heeger, & Movshon, 1997; Heeger, 1992; but see also, Howard & Kahnt, 

2017; Louie, Grattan, & Glimcher, 2011; Strait, Blanchard, & Hayden, 2014), is that individual neurons 

encode information relative to the activity of their neighbours (for review, see Carandini & Heeger, 

2012). The activity of neurons, in other words, is normalized in a context-dependent manner – they 

become more sensitive to high magnitude stimuli when such signals are abundant, but they become less 

sensitive to high magnitude stimuli if low magnitude signals become the norm (Summerfield & Tsetsos, 

                                                      
15 The dorsal anterior cingulate cortex, more precisely. 
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2015). According to the neurobiologists Simon Laughlin, this is a classic case of efficient-coding: be-

cause of the physical limits to the information they can represent16, the most efficient thing for neurons 

to do is match their input-output function to the distribution of inputs they might expect (Fig. 1-5a). In 

Laughlin’s words, “The strategy of matching a neuron’s input-output function to the expected distribu-

tion of signals […] ensures that the maximum amount of information is transferred between elements” 

(Laughlin, 1981, p.912). Just like the heuristics of ecological rationality, however, efficiency sometimes 

produces odd– if informative – results. In the visual system, for example, normalization is behind vari-

ous optical illusions (for example, see Figure 1-5b). Similarly, in value systems, normalization can lead 

to some of rational choice theory’s most famous violations (Louie et al., 2013) and likely serves as the 

basis for reference-dependent preferences, as described by PT (LoFaro et al., 2014; Louie et al., 2014).  

A final neurobiological reality worth mentioning, and one made most famous by my own PhD Super-

visor, is the near ubiquity of reinforcement learning signals in the brain (e.g., Doll, Simon, & Daw, 

2012; Vickery, Chun, & Lee, 2011, for review, see Schultz, 2015). In 1997, the neurophysiologist Wolf-

ram Schultz and his colleagues, the computational neuroscientists Peter Dayan and Read Montague, 

published a defining study on the unique role of dopamine in predicting and updating the value of 

rewards. Where midbrain dopamine neurons had been previously known to predict appetitive stimuli 

(think of dopamine’s implication in drug addiction), Schultz and his colleagues demonstrated that they 

also signalled what machine learning experts called a reward prediction error. By measuring dopamin-

ergic activity in the brain of monkeys during learning, the team showed that dopamine neurons emitted 

“a positive signal (increased spike production) if an appetitive event [was] better than predicted, no 

signal (no change in spike production) if an appetitive event occur[ed] as predicted, and a negative 

signal (decreased spike production) if an appetitive event [was] worse than predicted” (1997, 1594). 

Schultz et al.’s study demonstrated that dopamine’s role was twofold: first, it encodes information about 

the subjective value and context of the rewards we expect to get; and second, it highlights any mismatch 

between reality and expectations in a way that promotes learning throughout the brain (Bayer & 

Glimcher, 2005; Schultz, 2016; Stauffer et al., 2014). By modulating synaptic plasticity, this second 

dopamine signal it is theorized to reinforces rewarding behaviours while discouraging unrewarded ones 

(Daw & Tobler, 2013). In computational theory, we call this phenomenon reinforcement learning, 

whereby a system or algorithm ‘learns’ from past actions in order to better predict and optimize future 

choices (Sutton & Barto, 2018).  

The prevalence and recurrence of these basic features of the brain point to the very real possibility that, 

rather than using complex and inflexible models, decision theory might be better served by sets of 

simple but adaptive algorithms (Kuchibhotla et al., 2017; Yoo & Hayden, 2018).  

                                                      
16 The limits of the cortex’ neural code is generally estimated to be between 0 and ~200 action potentials a second.  
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Figure 1-5 | Relative coding as a defining feature of the brain. a) Neurons efficiently encode their inputs. To optimize both their 
energy use and their limited coding capacity (i.e. max/min firing rates) neurons tune their processing (the input-output function; top) 
to best represent the distribution of their inputs (bottom). By tuning their response function, neurons allocate more perceptual re-
sources to those stimuli that occur more frequently; in turn, neurons become more precise in encoding differences between these 
stimuli (Adapted from Laughlin, 1981). b) Optical illusion from spatial context. The central squares on either side of this figure are 
the same colour: a medium shade of grey. The way our brain interprets this colour, however, depends on the context in which we 
find it. If the background is dark, then relative the background the central square looks lighter. If the background is light, then relative 
to the background the central square looks darker. According to neuroscientists, the same kind of process governs the way we evaluate 
rewards. 0£ looks better if our expectation was a loss of 10£; conversely, 0£ looks worse if we expected to win 10£ (Adapted from 
Louie & Glimcher, 2012). 
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Just as ecological rationality had suggested, we are now finding that the brain’s decision algorithms are 

simple enough to be efficient, but flexible enough to be useful in a wide array of situations (Kalenscher 

& Wingerden, 2013). Neurons encode values in a context-dependent way, they learn from experience, 

and they finetune their firing rates to match the realities of our environment – particularly in those areas, 

like the orbitofrontal cortex, previously though to hold our neural representations of utility (Diederen 

et al., 2016; Shunsuke Kobayashi et al., 2010; Padoa-Schioppa, 2009; Rustichini et al., 2017; 

Zimmermann et al., 2018). Why not use these properties of neurons to – if not fully redefine decision 

models – at least edit existing ones in a way that makes them more plausible. There is some evidence 

to suggest that reinforcement learning could induce hot-hand biases, for instance (Abrahamyan et al., 

2016; Neiman & Loewenstein, 2011; Worthy & Todd Maddox, 2014), as well as in shaping the way 

we value repeated, uncertain decisions (e.g., G. Barron & Erev, 2003; Lejarraga & Gonzalez, 2011; 

Weiss-Cohen, Konstantinidis, Speekenbrink, & Harvey, 2018; Wulff, Mergenthaler-Canseco, & 

Hertwig, 2018). As an argument to incorporating flexible algorithms into the formal study of risky, 

decision-making, Chapters 2 and 3 will investigate the effects of adaptation on choice, while Chapter 

4 focuses on the situation described just above. 

1.4 Bringing decision theory full-circle 
As you may have come to realize, though the many subfields of decision theory complement each other 

by focusing on different questions (recall Fig. 1-1), the way they ‘knit’ their ideas into a cohesive whole 

ignores a very important question: how does all of it tie-in together? 

Broadly speaking, the different fields and questions reviewed here look at decision-making from either 

a top-down or a bottom-up perspective. The former, the top-down approach, (i) looks at choices, (ii) 

suggests algorithms that can describe these choices, and (iii) searches for neural representations of these 

algorithms in the brain. Economists build models from the choices people make, psychologist refine 

them, and neuroeconomists use them. The bottom-up approach, in contrast, should do the reverse: (i) 

start from the basic biological circuits we find in the brains, (ii) use these to describe the algorithms that 

the brain can support, and (iii) filter for the algorithms that match real, observable choices. The problem 

with decision theory is that, while the two perspectives could ideally form a circular framework (where 

top-down and bottom-up inform and build on each other; see Krakauer, Ghazanfar, Gomez-Marin, 

MacIver, & Poeppel, 2017), the two are wholly unbalanced. Besides, even if decision theory started 

building from the ground up, in humans we are limited in that we cannot precisely measure single-cell 

activity (non-invasive imagine precludes a truly bottom-up perspective). Animal research, on the other 

hand, presents itself as a clear candidate for a truly circular theory of choice, 
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1.4.1 Animal experiments as uniquely interdisciplinary 

Though the research presented in this chapter has, until now, paints animal research mostly as a means 

to validate human findings, the study of animal decision-making provides much more, and is better 

represented by the following divisions in its approach:  

1. The comparative approach, looks at animals other than humans in an effort to highlight conti-

nuities and discontinuities in choices across species (e.g., Brosnan, Wilson, & Beran, 2012; 

Krupenye, Rosati, & Hare, 2015; Paglieri et al., 2014; Pelé, Broihanne, Thierry, Call, & Dufour, 

2014; Prétôt, Bshary, & Brosnan, 2016; Uhlrich, Micheletta, Thierry, Dufour, & Pelé, 2010; 

Watzek & Brosnan, 2018).  

2. The neurophysiological approach, uses animals to explore the computations of single neurons 

using experimental methods that we could otherwise not use in humans, e.g., single-cell record-

ings, lesion studies, and optogenetics (e.g., Boyden et al., 2016; McCoy & Platt, 2005; Murray 

et al., 2014; Padoa-Schioppa, 2009; Padoa-Schioppa & Assad, 2006; Platt & Glimcher, 1999; 

Schultz, 1998).  

3. The more ‘traditional’ economic modelling approach, uses animal experiments to validate and 

refine economic models in optimally controlled environments (Ferrari-Toniolo et al., 2019; 

Genest et al., 2016; Hayden, 2018), and to propose new models for humans that build on animal 

behaviour (foraging theory, for example; Houston, Fawcett, Mallpress, & McNamara, 2014; 

Mobbs, Trimmer, Blumstein, & Dayan, 2018; Stevens, 2010).  

Each of these approaches offers a unique take on the study of decision-making, exploring fundamental 

questions that would otherwise be left unexplored in human experiments. These also tie in well with 

one of the most popular, and circular frameworks for studying and understanding cognitive processes: 

David Marr’s levels of information processing, or the idea that to fully understand a cognitive system 

one must first understand it via three distinct but complementary levels of analysis (Marr & Ullman, 

1982). We need to study (i) the ‘goals’ of the decision-making system, (ii) the cognitive software or 

algorithms that can support these goals, and (iii) the neural circuits that run the cognitive software (Fig-

ure 1-6).  

In line with David Marr’s levels of analysis, comparative research ties in well with investigating the 

computation, or goal of the decision-making system (what we want to achieve). Behavioural ecologists, 

ethologists, and psychologists compare the choices of human and nonhuman animals to explore biases 

and choice strategies in terms of evolution. This provides valuable insight as to which characteristics of 

human decision-making are commonly shared and which ones are lost as we move away from homo 

sapiens; we can then use this information to generate hypotheses about the evolutionary origins of spe-

cific decision strategies (for review, see Santos & Platt, 2013; Santos & Rosati, 2015). Understanding 

how simple decision patterns evolved – and how they were maintained – goes a long way in helping us 
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understand and model human decision-making strategies. In a sense, this approach is the closest thing 

we have to travelling through time and observing evolution’s effects on the reliability of economic 

models.  

The second approach, wherein animals are used to directly probe the neurons involved in decision-

making, ties in with Marr’s implementation level and fills a unique niche in decision-making research. 

While human neuroimaging (fMRI, MEG, EEG) has mostly worked from the top-down, using eco-

nomic models to identify regional brain activity we think correlates with decision-making, single-cell 

recordings have been instrumental in understanding the basic computations supported by neurons (Cox 

& Kable, 2014; Huk, 2005; Schultz, 1998; Shadlen & Newsome, 2001). 

The final branch of animal economics rounds off Marr’s levels of analysis with a focus on testing and 

developing new algorithms that maximally predict the choices of humans and other animals. Here, be-

havioural economists, computational neuroscientists, and psychologists focus on improving the robust-

ness and predictive ability of various models through animal experiments. They then use these findings 

to better inform models of human choice behaviour. The premise for this approach is that if we can find 

or modify existing algorithms to reliably describe choices across multiple species, we can be more 

confident in their ability to predict our own (Sugden et al., 2006).  

The separation between these approaches parallels the questions asked by human research: comparative 

studies seek to discover what the differences are between the choices of different species; neurophysi-

ologists try to see how choices arise in the brain, and modellers look at why we might observe different 

patterns of choice in different situations. As we have seen in the previous section, these questions, if 

isolated, fall into separate fields of decision theory; the power of animal research is that it allows for 

the merger and integration of these approaches into one cohesive whole.  

We can, within a single animal or species, study all three of Marr’s levels, such that we can fully inte-

grate the top-down and bottom-up perspectives on decision-making (Pearson et al., 2014). Comparative 

studies have often paved the way for neuroscientists and economists to integrate evolutionary compar-

isons into their own research. Using normative and descriptive economic theories, comparative studies 

can model the behavioural differences observed across species. Neuroscientists can then use these dif-

ferences to investigate the neurobiological features that support them. Likewise, if the goal is to under-

stand how ecological rationality shapes choices, ecologists can explore the individual evolutionary 

niches of different species to understand how these niches have shaped the decision strategies of ani-

mals. Where the bottom-up perspective fails in human research, however, the animal-oriented field of 

neuroethology (the study of how nervous systems generate natural behaviour in animals) works pre-

cisely to pinpoint the cognitive algorithms supported by neurobiological findings (Konishi, 2010; 

Pearson et al., 2014; Tinbergen, 1963) – something more akin to the radical approach promised by 

neuroeconomics (Camerer et al., 2005). In line with the idea of ecological rationality, incorporating  
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Figure 1-6 | The missing link in decision-theory: neuroethology. a) Re-illustrating Figure 1-1 with the appropriate deci-
sion-theory disciplines serving as the link between the questions that we can ask. What questions tie-in with Marr’s compu-
tational level, why question tie in with the algorithm (or software), and how questions relate to biology (the hardware). 
Neuroethology has been mostly ignored in decision-theory up until now, but it forms the crucial link in unifying the different 
frameworks presented here. b) Top-down and bottom-up perspectives in decision theory. The former refers to using the 
choices we observe to ultimately explain the neural circuitry that supports decision-making. The latter looks at neural cir-
cuitry directly and suggests models that best predict the choices we observe. The two perspectives need to work together to 
form a circulate and complete analysis of decision-making. 
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ethology and neuroethology into decision theory provides a new, alternative set of hypotheses that can 

help reconcile the ‘rational’ and ‘irrational’ behaviours established by the top-down approach in deci-

sion theory.  

1.4.2 Reframing choices from the bottom up 

This thesis stands at the confluent of the ideas presented in this chapter. In fact, the aim of my entire 

PhD has been to try and reconcile the findings of decision theory’s bottom-up and top-down frame-

works. 

We have known for some time now that that activity all over the macaque brain adapts to the statistical 

properties of the task at hand (Carandini & Heeger, 2012; Laughlin, 1981; Louie et al., 2015; Tremblay 

& Schultz, 1999) – yet, most top-down research in economics, psychology, and indeed neuroeconomics 

still relies on models that hold preferences as fixed. Likewise, economics has decades of research that 

quantifies systematically the effects of choice context in shaping people and macaque’s preferences 

(Barberis, 2012; Blanchard, Wilke, et al., 2014; Blanchard, Wolfe, et al., 2014; Heilbronner, 2017; 

Hertwig et al., 2004; Kahneman & Tversky, 1979; Machina, 1987) – reproducing these effects should 

be a goal of the bottom-up approach.  

The work that follows builds from both neuroscience’s current understanding of the biological pro-

cesses that support decision-making, and on the decades of economic research that have come to define 

decision theory. With this in mind, the following chapters attempt to answer one, unifying question: 

what if, rather than relying on stable preferences, we could predict economic choices from preferences 

that adapt. The logic goes as followed: if decision-making relies on the activity of neurons, and the 

activity of neurons adapt to changes in our environment, then preferences should adapt to changes in 

the environment. The trick is then to refine algorithms so that they explain economic choices, mimic 

the activity of neurons, and fulfil the requirements of ecological rationality… Easy! 
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Methods Interlogue 
Econometrics and discrete 

choice modelling 
 

Where this thesis’ introduction focused particularly on the many ‘irrational’ choices that people make, 

the problem of inconsistency is another issue one has to acknowledge when trying to study real, repeated 

behaviour. In a study in 1989 by the American economists Colin Camerer, for example, 31.6% of ex-

perimental subjects were shown to reverse their preferences when repeatedly presented with the same 

binary choices; the economists Starmer and Sugden, also in 1989, published similar findings where 

26.5% of participants changed preferences. What started as a couple of peculiar studies has now turned 

into the norm: people are inconsistent, and economists need models that can describe these inconsist-

encies (for a review, see Stott, 2006). 

To interpret these results, economists began toying with the idea that deterministic choice models like 

Expected Utility Theory (EUT) and Prospect Theory (PT) - which fail to account for the variability 

across choices – might be better served by a bit of imprecision (Cartwright & Festinger, 1943; Machina, 

1985). New models began to accommodate for the noise and errors that seemed so inherent to the deci-

sion-making process (Becker et al., 1963; Block & Marschak, 1959; Hey, 2005), and new axioms were 

developed that allowed for utility-maximising under assumptions of inconsistency (Abdellaoui, 2000; 

Gonzalez & Wu, 1999a; McFadden. Daniel, 2014; D. L. McFadden, 2005). The solution that eventually 

came about, stochastic choice models, is now one of the most common ways by which econometrist 

model choices: rather than predicting choices in a yes or no manner, these models evaluate the proba-

bility of a decision-maker making a specific choice (Harless & Camerer, 1994; Loomes & Sugden, 

1995; McFadden, 2005).  

One of the building blocks of stochastic choice models is the Luce choice axiom (Pfanzagl & Luce, 

1959). A product of 1950s psychology, Luce’s axiom provides the mathematical foundation for the 

synthesis that eventually became stochastic choice modelling. Put simply, it states that choices are prob-

abilistic and that the probability of choosing a given option from one set of alternatives is directly pro-

portional to the probability of choosing the same option from a larger set of alternatives (Luce, 1977). 

Mathematically, it takes the following form: 

P(𝑥𝑥𝑖𝑖)  =  𝑣𝑣(xi)
∑ 𝑣𝑣(𝑥𝑥𝑗𝑗)j

           ( i-1 )



  Methods Interlogue | Discrete choice modelling 

33 
 

whereby P(𝑥𝑥𝑖𝑖), the probability of choosing a given option xi is dependent on the strength of 𝑥𝑥𝑖𝑖’s repre-

sentation (𝑣𝑣(𝑥𝑥𝑖𝑖) as the internal representation, utility, or subjective value) relative to that of all other 

options (𝑥𝑥𝑗𝑗) in a choice set. Under Luce’s formulation, the probability of choosing a specific option can 

be directly related to a metric similar to that of utility (Luce, 1958; Machina, 1985). In other words, it 

represents a probabilistic interpretation of the axiom of independence so crucial to EUT. Most contem-

porary stochastic choice models (also knowns as discrete choice models) rest on this early mathematical 

assumption.  

After Luce next step in accounting for inconsistencies within rational choice theory takes the form of 

Jacob Marschak’s Random Utility Maximisation model (or RUM; 1960). Using Thurston’s Law of 

comparative judgement, whereby objective stimuli are said to be perceived with a certain degree of 

noise, Jacob Marschak postulated that the utility of an outcome, at any given time, was the result of a 

true utility value to which noise was added: a direct integration of stochasticity, a ‘randomness’ com-

ponent, into the framework of utility maximisation (Becker et al., 1963; Marschak, 1960). Under Mar-

schak’s assumption that decision-makers sought to maximize this random utility, the probability that a 

given option xi would be chosen was given by: 

P(𝑥𝑥𝑖𝑖)  =  P[𝑈𝑈(𝑥𝑥𝑖𝑖)  ≥  𝑈𝑈(𝑥𝑥𝑗𝑗)] for all i ≠ j        ( i-2 ) 

P(𝑥𝑥𝑖𝑖)  =  P[𝑢𝑢(𝑥𝑥𝑖𝑖)  +  εi  ≥  𝑢𝑢(𝑥𝑥𝑗𝑗)  +  εj ] for all i ≠ j       ( i-3 ) 

P(𝑥𝑥𝑖𝑖)  =  P[𝑢𝑢(𝑥𝑥𝑖𝑖)  −  𝑢𝑢(𝑥𝑥𝑗𝑗)  ≥  εj  −  εi ] for all i ≠ j       ( i-4 ) 

Where the probability of choosing xi is the probability that the utility of xi, with error εi, being larger 

or equal to xj, with error εj. Importantly, the error terms ε are independent, but come from equivariant 

distributions.  

The integration of this RUM framework with the Luce choice model allowed the economist Daniel 

McFadden, in 1968, to computationally model real choice behaviour (published later, McFadden, 

1974a, 1974b). Reinterpreting Luce’s equation into what we now refer to as a multinomial logit model 

(or logistic regression), McFadden showed that: 

P(𝑥𝑥𝑖𝑖)  =  ev(𝑥𝑥𝑖𝑖)

∑ ev(𝑥𝑥𝑗𝑗)
j

          ( i-5 ) 

Where P(xi) could now be directly estimated as a parametric function – the slope of the logit function 

capturing the noise in the decision-maker’s choices. To this day, McFadden’s logit model allows ex-

perimental economists to model choice algorithms using real experimental data, and to explore the va-

lidity of utility-maximisation models with realistic assumptions about our decision-making abilities. 

The work presented in this thesis stands as one such example, and relies almost entirely on the principles 

of discrete choice described in this interlogue. 
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Interlogue figure | The link between utility and stochastic choice. Assuming utilities are 
noisy and can be reinterpreted as equivariant distributions centred around a ‘true’ utility 
function, the stochasticity of choices can be directly interpreted as an overlap on the cogni-
tive representations of ‘random utilities’. Steeper utility functions should lead to less overlap 
in random utilities and more precise choices; flatter utility functions will lead to more over-
lap and therefore more stochastic choices.  Represented above are three sets of choices be-
tween 2 safe (certain) reward. The certainty with which monkeys (or humans, for that mat-
ter) make choices will depend on the overlap between the random utility distributions of the 
rewards involved. 
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Chapter 2  

Partial adaptation to reward range 
induces shifts in rhesus macaque risk 

preferences 
 

2.1 Introduction 
Every day we make choices between outcomes that vary widely, sometimes on the order of magnitudes. 

In a single morning, we can go from choosing between outfits, to choosing to visit our favourite cafe, 

to comparing the costs of a train or plane journey for our next holiday destination. Yet, despite the 

complexity of representing all of these situations, we manage - with a relatively limited brain - to men-

talise and indeed optimise the majority of our choices. 

Prospect Theory (PT), the dominant model in behavioural economics, posits that we optimize our deci-

sions by calculating the value of our choices relative to a reference-point (Kahneman & Tversky, 1979; 

Tversky & Kahneman, 1986). That is, rather than objectively evaluating the outcome of our choices, 

we perceive our options as gains or losses depending on what we are expecting: if the outcomes are 

better than our reference, we treat them as gains; if they are worse, we treat them as losses. Mathemat-

ically, PT represents this behaviour with an S-shaped value (or utility) function where the subjective 

value of gains and losses is given by concave and convex parts of the function, respectively. This has 

important behavioural consequences, particularly for risky-decision-making, as this normative (utility) 

framework predicts that people’s tendency to make risk-averse decisions depends on their perception 

of outcomes as being gains or losses.  

While the idea of reference-dependence has been readily adopted by modern decision theory (Rabin, 

2000; Wakker, 2010), economists are still unclear about how reference points form (Barberis, 2012). In 

prospect theory (PT), Kahneman and Tversky abstractly define reference-points as exogenous from the 

decisions being made. That is, the reference point is not directly explained by PT and can be shaped by 

“aspirations, expectations, norms, and social comparisons” (A. Tversky & Kahneman, 1991, p.157). 

Alternatively, some economists suggest that reference points are but an epiphenomenon of the way in 

which our mind adapts to the statistics of the task at hand (Delquié & Cillo, 2006; Köszegi & Rabin, 

2006; Sugden, 2003) - a framework more in line with the findings that, far from being restricted to 

human reasoning, reference-dependence is a homogeneous feature of animal decision-making (Santos 

& Rosati, 2015) and the brain (Carandini & Heeger, 2012; Louie et al., 2013; Padoa-Schioppa, 2009; 
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Tremblay & Schultz, 1999). Along these lines, one particularly interesting proposal from the epiphe-

nomenon framework, is that of range-dependent utility, or RDU (a play on reference-dependent utility; 

see Kontek & Lewandowski, 2018). Inspired by psychology’s range-frequency theory (Parducci, 1965, 

2012) and neurobiology’s efficient-coding hypothesis (recall Laughlin's work in Chapter 1), RDU sug-

gests that decision-makers evaluate the value of their options relative to not one, but two reference 

points: the minimum and maximum rewards available in any given scenario. In this view, what PT 

identifies as a reference-point could be nothing more than the product of a range-adapting utility func-

tion: the point at a sigmoidal curve inflects from convex to concave (mimicking a neuron’s tuning curve; 

Carandini & Heeger, 2012; Webster, Werner, & Field, 2005). 

Because studies on reference-dependence generally focus on identifying a unique reference-point 

(Baillon et al., 2015), or on describing behaviours under specific reference predictions (Allen et al., 

2016; Crawford & Meng, 2011; Wenner, 2015), there is, as of yet, no way of corroborating or contra-

dicting the previous hypotheses on the emergence of reference-points. The few studies that consider 

shifts in preferences generally do so in a single-range, local context: they document reference-point 

changes following the wins or losses of risky gambles (Arkes et al., 2008, 2010; Shi et al., 2015); never 

the impact that changes expectations have on decision-making. Concurrently, little is known about the 

impact of a task’s structure on preferences, nor how different reward statistics might translate to refer-

ence-points. 

Animal experiments offer a unique avenue whereby we can collect extensive, robust, and controlled 

behavioural data in a variety of scenarios, and explore the formation of reference-points when exoge-

nous factors have minimal impact (i.e. no contribution of language or higher numerical ability). To that 

effect, I investigated how the range of rewards experienced in a binary choice task shaped the prefer-

ences of rhesus macaques – a species that displays many, if not most, of the fundamental choice patterns 

humans display (Heilbronner & Hayden, 2013, 2016; Stauffer et al., 2015). I presented macaques with 

several sets of risky choice options where the range of possible reward magnitudes remained stable for 

weeks at a time, then suddenly shifted new ranges (higher/lower magnitudes or wider/narrower spread). 

On each testing day, I fit the monkeys’ choices with S-shaped utility functions that could explain both 

risk-seeking and risk-averse choices (Genest et al., 2016; Stauffer et al., 2014), I then looked at how the 

monkey’s risk preferences changed as a function of the reward ranges they experienced. I found that, 

while utilities stayed relatively put for periods where a single reward range was experienced, the mon-

keys consistently shifted their preferences when a novel reward range was introduced. What the mon-

keys did not do, however, was rely solely on the current reward statistics to form their reference; in fact, 

while preferences adapted easily to novel reward magnitudes, the monkeys’ reference also kept track 

of the lowest rewards they had experienced over the course of the preceding weeks – even if these now 

fell outside of possible rewards. From our findings, I suggest that preferences are unlikely to reflect a 



Chapter 2 | Partial adaptation to reward range 
 

37 
 

single reference or expectation in a given reward range, but rather, that preferences follow the expecta-

tion of what monkeys think might happen given the knowledge they have accumulated over time.  

2.2 Methods  

2.2.1 Macaque monkeys as economic decision-makers 

The current study was conducted with non-human primates, specifically, three male rhesus macaques 

(Macaca mulatta) weighing 11.2, 15.3, and 13.2 kg (monkeys A, B and C, respectively). All macaques 

in the study were born in captivity, at the Medical Research Council’s ‘Centre for Macaques’ in the 

UK. The monkeys were pair-housed for most of the experiment; monkeys B and C shared an enclosure. 

The monkeys ranged in age from 5 to 8 years old, and all subjects had previous experience with the 

visual stimuli and experimental setup (Ferrari-Toniolo et al., 2019). The experimental protocol was as-

sessed and approved by the Home Office of the United Kingdom. 

Rhesus macaques are the world’s most common old-world primate. In fact, they are the second most 

widely distributed primate species after humans (Timmins et al., 2008). Their geographical range ex-

tends from Afghanistan to China, passing through India and most of south-east Asia – and they thrive 

near human settlements. Rhesus macaques are an incredibly adaptable species, and while our evolu-

tionary paths split nearly 25 million years ago (Kumar & Hedges, 1998; Rogers & Gibbs, 2014), we 

share with them a remarkable array of physical and psychological traits. For this reason, rhesus monkeys 

are the most commonplace species of non-human primate found in scientific research (Capitanio & 

Emborg, 2008). This has led to the development of a rich literature reproducing human economic 

choices in rhesus macaques, and one I build from in this study. Most relevant here is that rhesus ma-

caques behaviour can be successfully described using PT (Farashahi et al., 2018; Ferrari-Toniolo et al., 

2019; Genest et al., 2016; Stauffer et al., 2015). In addition, macaque experiments allow us to control 

the pre- and post-experimental environments in ways not possible for human studies – I can ensure that 

experimental variables are independent of rewards and choices made outside of the experiment (K. M. 

Chen et al., 2006). For this study, the delivery and range of rewards experienced were unique to the 

experimental setup. Unlike humans with monetary pay-outs, the monkeys experienced nothing compa-

rable outside of the laboratory.  

2.2.2 Behavioural task and training 

Three male monkeys used a left-right joystick (Biotronix Workshop, University of Cambridge) to make 

choices between reward-predicting stimuli presented on a computer screen17. After each choice, the 

monkeys received their chosen reward in the form of a specific blackcurrant juice quantity delivered 

probabilistically (matching the probabilities indicated by each stimulus).  

                                                      
17 All experimental protocols were assessed and approved by the Home Office of the United Kingdom. 
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The animals were presented with a simple visual scheme of one or two horizontal lines positioned be-

tween a frame of two vertical lines that depicted reward options that varied both in terms of magnitude 

(liquid quantities, m) and in terms of probability (the likelihood of a reward being delivered, p). Reward 

magnitudes were represented by the vertical position of the horizontal lines on the screen, while reward 

probabilities were represented by the relative width of the horizontal lines within their vertical line 

frame (Fig. 2-1a). As a result, safe (riskless) options were represented by singular full-width horizontal 

lines that touched both sides of their vertical frame, whilst multiple horizontal lines within the vertical 

frame signalled gambles, i.e., multiple ‘risky’ rewards.  

The monkeys were trained to associate these two-dimensional visual stimuli with blackcurrant juice 

rewards over the course of >10,000 single-outcome, imperative trials. In these trials, a single reward 

option was presented on either the left or right side of the screen. To obtain the cued reward, the animals 

were required to select the side on which the reward was presented. Following imperative training, all 

experimental data were gathered within a binary choice paradigm where the monkeys had to choose 

one of two reward options presented simultaneously. One option was always a gamble; the other was 

always a safe, guaranteed reward. Every choice trial began with a white cross at the centre of a black 

screen, followed by the appearance cursor. To initiate a trial the monkeys had to, using the joystick, 

move the cursor to the centre cross and hold it there 0.5-1s. After a successful central hold, two reward 

options appeared left and right of the central cross (Fig. 2-1a). The monkeys had 3s to convey their 

decision by moving the joystick to the selected side and holding their choice for 0.1s to 0.2s - the unse-

lected option would then disappear. The selected option lingered on the screen for 1s after reward de-

livery to strengthen any stimulus-reward associations with visual feedback. A variable intertrial period 

of 1–2 s (blank screen) preceded the next trial onset. Errors were defined as unsuccessful central hold, 

side selection hold, or trials where no choices were made, and resulted in a 6s timeout for the animals, 

after which the trial would be repeated.  

All reward options were repeated on the left and right sides of the computer screen, alternating pseudo-

randomly to control for any side preference. Both the joystick position and task event times were sam-

pled and stored at 1 kHz on a Windows 7 computer running custom MATLAB software (The Math-

Works, 2015a; Psychtoolbox version 3.0.11), and all further analyses were done using custom Python 

code (Python 3.7.3, Scipy 1.2.1, Oliphant, 2007). Over the course of 63, 43 and 57 sessions an average 

of 259 ± 154 (mean ± STD) trials, 317 ± 118 trials, and 131 ± 75 trials were collected for monkeys A, 

B and C, respectively. Crucially, monkeys received the reward they selected after each and every one 

of these trials. This ensured that they experienced the rewards they selected with minimal and constant 

delay, and contrasts with human studies where only a randomly selected subset of trials are rewarded 

at the end of experimental sessions. Delivering rewards after every trial also allowed us to capture 

preferences that were contingent on experiences unique to the task - similar reward delivery and ranges 

were not experienced in the housing environment.  
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2.2.3 Measuring preferences in range-specific conditions 

To examine the degree at which preferences are shaped by a task’s available rewards, binary choice 

data were collected from choices between reward options affixed to different reward ranges (Fig. 2-1b). 

Three range conditions were defined in terms of their mean reward magnitude and the range of possible 

options: 1) low narrow-range, where tested magnitudes were generally set between 0 ml and 0.5 ml; 2) 

high narrow-range, with magnitudes between 0.5 ml and 1.0 ml; and 3) full range, with magnitudes 

between 0 ml and 1.0 ml (0.1 to 1.3 ml for monkey C). Importantly, every reward outcome (no matter 

the range) was repeated the same amount of times for each session – that meant that every reward was 

technically equiprobable (they were presented and delivered according to a flat distribution) The labor-

atory environment allowed us to set range conditions and keep them fixed for days at a time; measuring 

the effects of reward range over weeks rather than blocks (Fig. 2-1c).  

Choice preferences were measured in each range by presenting individual monkeys with a series of 

gamble-safe choices from which Von Neumann–Morgenstern type utilities were estimated (utilities 

under the assumption of linear probability distortion18). Specifically, the utilities associated with the 

juice magnitudes presented in each experimental range were estimated using the multi-step fractile 

method (Genest et al., 2016; Lak et al., 2014; Machina, 1987).  

For every range tested, a utility of a 0% and 100% was assigned to the lowest and highest reward 

magnitudes possible, respectively. The use of utility percentages, rather than 0-1 units, was adopted 

here to simplify comparisons between utility functions that fundamentally differ both in terms of scaling 

and range. From this, and because probabilities were assumed to be treated objectively, it followed that 

the equiprobable gamble formed by the minimum and maximum rewards in a range would be worth 

50% utility (50% = [0.5 * 0%] + [0.5 * 100%]). Each testing session began by presenting this 50% 

utility gamble (m1 = min reward, p1 = 50%, m2 = max reward, p2 = 50%) against safe options of 

varying magnitudes (steps of 0.05 ml). The ratio of safe choices for each gamble-safe pair was recorded, 

and a logistic function was fit across all the measured ratios for the gamble:  

𝑃𝑃𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  = 1/(1 + 𝑒𝑒−�
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚 − 𝑥𝑥0

𝜎𝜎 �)         ( 2-1 ) 

The probability of choosing the safe option (𝑃𝑃𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) depended on the safe reward’s magnitude 

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚) and two free parameters: x0 indicated the x-axis position of the curve’s inflexion 

point, and σ, the temperature parameter. The curve’s inflexion point, set at 𝑃𝑃𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 0.5, also  

                                                      
18 PT predicts that, since every gamble had a probability of p=0.5, every gamble would be underweighed or over-
weighed by the same quantity vis-à-vis safe rewards. In that case, ignoring probability distortion in the analysis 
skews the s-shaped utility function – but it does so in a way that is constant across all measurements. Since changes 
in range magnitude should, theoretically, only affect utility – we chose to ignore probability distortions and focus 
instead on changes in utility across reward ranges. 
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Figure 2-1| Experimental design and timescale. a) Binary choice task. The monkeys chose one of two gambles with a 
left-right motion joystick. They received the blackcurrant juice reward associated with the chosen stimuli after each trial: 
the reward’s magnitude and probability of delivery were signalled by the vertical position and width of a horizontal line as 
set between two vertical ones. Times, in seconds, indicate the duration of each of the task’s main events. b) Experimental 
reward ranges. Choices were made in one of three experimental reward ranges. In the low range, choice options had juice 
magnitudes set between 0 ml and 0.5 ml during preference elicitation sequences. The high range involved juice magnitudes 
set between 0.5 ml and 1.0 ml during preference elicitation sequences (unique to monkey A and B). The full range was set 
between 0 ml and 1.0 ml for monkeys A and B and set between 0.1 ml and 1.3 ml for monkey C. c) Monkeys experienced 
specific reward ranges for consecutive days. Vertical lines represent the daily experimental session, in their tested order; the 
height of these lines signals the reward range tested (blue, low range; yellow, full range; green high range). Black dots 
indicate the mean magnitude of all rewards experienced on the day, the white dots represent the standard deviation on the 
mean.  
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Figure 2-2 | Measuring certainty equivalents and utilities. a) Basic choice behaviour and estimation of 
certainty equivalents. Monkeys chose between a safe reward and a gamble on each trial. The safe rewards 
alternated pseudorandom on every trial – never going above or below the highest and lowest magnitudes 
tested in the daily reward range. Each point is a measure of choice ratio: the monkey’s probability of choosing 
the gamble option over various safe rewards. We fit psychometric softmax functions (Eq. 2-1) to these choice 
ratios, separately for each day, and recorded the certainty equivalent (CE) of individual gambles as the safe 
magnitude for which the probability of either choice would be 0.5 (black arrow). The dashed vertical line 
indicates the expected value (EV) of the gamble represented in the box. b) Estimation of utility using the 
stepwise, fractile method. In step 1, the monkeys were presented with an equivariant gamble comprised of 
the maximum and minimum magnitudes in the tested reward range. the CE of the gamble was estimated and 
assigned a utility of 50%. In step 2, two new equivariant gambles were defined from the CE elicited in step 
1. The CEs of these gambles were elicited and assigned a utility of 25% and 75%. Two more gambles are 
defined in step 3, from the CEs elicited in step 2. Their CEs were then assigned a utility of 12.5% and 87.5%. 
Parametric utility functions, anchored at 0 and 1, were fitted on these utility estimates (see methods). c) 
Equivariant, equiprobable gambles presented in out-of-sample validation sequences. Sets of four gambles, 
unique to each reward range, were used to validate the risk attitudes predicted by the fractile-derived utilities. 
The CEs of these gambles were measured (see panel a) and the difference between CEs and the specific 
gambles’ EVs signalled the monkeys’ risk attitudes: if the difference was positive, the animals were risk-
seeking, if the difference was negative, the animals were risk-averse. 
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captured the gamble’s certainty equivalent (CE): the safe reward magnitude for which the monkey 

would be choice indifferent. Taking the gamble’s utility value as 50%, the gamble’s CE represented a 

direct functional mapping of reward magnitudes to this utility (Fig. 2-2). 

After the first CE had been elicited, two new equiprobable gambles were created: one between the 

lowest reward magnitude and the first CE, the other between the first CE and the highest reward  

magnitude. This sectioned the utility range in two equal halves, and the earlier CE elicitation procedure 

was repeated on the gambles defined from these two halves. Gamble-safe pairings for the elicitation of 

both gambles’ CEs were interweaved in a single block, and utilities of 75% (75% = [0.5 * 50%] + [0.5 

* 100%]) and 25% (25% = [0.5 * 0%] + [0.5 * 50%]) were assigned to the higher and lower gambles’ 

estimated CE, respectively. Finally, a final set of gambles was defined from these CEs – and their indi-

vidual CEs were mapped to utilities of 12.5% and 87.5%. Only sequences that contained a minimum of 

three different choice pairs (repeated at least 4 times) were used in the elicitation of CEs, and only the 

fractile sequences where at least 3 utility values could reliably be estimated were used in further anal-

yses. The CEs assigned to each utility level, in each reward range, were compare via two-way ANOVA.  

2.2.4 Parametric estimation of utilities from aggregate and single choices 

Parametric utility curves were fit onto the CE-Utility data to capture and predict an animal’s choice 

preferences over the entire range of rewards. These utility curves served as a direct signal of the animals’ 

risk attitude over the tested reward range: if the fitted utilities were convex (i.e., increasingly curving 

upwards) the monkeys had demonstrated risk-seeking behaviour; if the curves were instead concave 

(i.e., gradually flattening), the monkeys had demonstrated risk aversion. Several parametric utility mod-

els were compared to ensure the most reliable utility predictions; the best-fitting functions would then 

be used for all further analyses. In accordance with the assumptions of the fractile method, each of these 

functions had to be anchored at 0% to 100% on the y-axis –– and we normalized the CEs on which they 

were fit to be between 0 and 1. Finally, because CEs, not utilities, were the measured data (i.e., the error 

was relative to the x-axis), orthogonal distance regression was used to fit each and every function 

(Boggs & Rogers, 2012). I fit two 1-parameter functions (U1-Power, U1-Tversky),  

𝑈𝑈1−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑚𝑚)  =  𝑚𝑚𝛼𝛼           ( 2-2 )19 

𝑈𝑈1−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑚𝑚)  =  𝑚𝑚𝛼𝛼

(𝑚𝑚𝛼𝛼+(1−𝑚𝑚)𝛼𝛼)1 𝛼𝛼�
         ( 2-3 )20 

                                                      
In each of these functions, 𝑚𝑚 stands for the juice magnitudes (in ml) of a given reward outcome. 
19U1-Power: the α-parameter is the power parameter of the function (if α < 1 utility is convex, if α > 1 utility is 
concave).  
20 U1-Tversky: the α-parameter is the temperature parameter of the function (if α > 1 utility is S-shaped, if α < 1 
utility is inverse S-shaped). 
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two 2-parameter functions (U2-Prelec, U2-SCDF), 

𝑈𝑈2−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑚𝑚)  = 𝑒𝑒−𝛽𝛽×(−𝑙𝑙𝑙𝑙(𝑚𝑚))𝛼𝛼          ( 2-4 )21 

𝑈𝑈2−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚)  = �
𝛽𝛽 × �𝑚𝑚

𝜅𝜅
�
1/𝛼𝛼

, 𝑓𝑓𝑓𝑓𝑓𝑓 0 ≤  𝑚𝑚 ≤  𝛽𝛽

1 −  (1 − 𝛽𝛽) × �1−𝑚𝑚
1−𝛽𝛽

� 1/𝛼𝛼,𝑓𝑓𝑓𝑓𝑓𝑓 𝛽𝛽 < 𝑚𝑚 ≤ 1
     ( 2-5 )22 

And one 3-parameter function (U3-Power) 

𝑈𝑈3−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑚𝑚)  =  �
(𝑚𝑚− 𝛾𝛾)𝛼𝛼 ,𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚 ≥  𝛾𝛾

−𝛽𝛽 × (𝛾𝛾 −𝑚𝑚)𝛼𝛼 ,𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚 <  𝛾𝛾       ( 2-6 )23 

Sets of daily Bayesian Information Criterions (BIC) were then calculated from the orthogonal residuals 

of each fitted model ( 𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑅𝑅  =  𝑛𝑛 × 𝑙𝑙𝑙𝑙 �𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑛𝑛

� + (𝑘𝑘 × 𝑙𝑙𝑙𝑙(𝑛𝑛)) ). I selected the best fitting function 

using a one-way Friedman test followed by pairwise Wilcoxon signed-rank tests (Bonferroni-Holm 

corrected) and compared the estimated parameters specific to each reward range using a one-way 

MANOVA.  

Since the fractile method relied on stepwise, chained measurements (where later metrics depend on 

earlier ones), utility functions were also estimated using a discrete choice model (DCM) fitted to single 

trials for comparison. By fitting a model on individual choices rather than aggregate CE sequences, I 

avoided the propagation of estimation errors from earlier steps onto the next and therefore reduced 

estimation biases for individual utility functions (Abdellaoui, 2000).  

As is commonly done (McFadden, 2001; Stott, 2006), the likelihood that monkeys would choose the 

left option over the right one, given a set noise level and side bias, was modelled using a logit function:  

𝑃𝑃𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  = 1

(1+𝑒𝑒−𝜆𝜆(𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿−𝐸𝐸𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡 − 𝜃𝜃)         ( 2-7 ) 

The probability of choosing the left option was, therefore, in the DCM, a function of the expected utility 

difference between the left and right options, the temperature (or noise) parameter, 𝜆𝜆, and 𝜃𝜃 which 

                                                      
21U2-Prelec: the α-parameter is the temperature parameter of the function (generally, if α > 1 utility is S-shaped, 
if α < 1 utility is inverse S-shaped), and the β-parameter controls the height (or location) of the function’s inflexion 
relative a 45° line across the x- and y-axes of the function. 
22 U2-SCDF: the α-parameter is the power of the function’s curvature (if α > 1 utility is S-shaped, if α < 1 utility is inverse S-
shaped), and the β-parameter controls the x-axis position at which the function’s curvature inverts. 
23 U3-Power: a classic PT interpretation of the power function. Here the α-parameter is the power of the function (generally, 
if α > 1 utility is S-shaped, if α < 1 utility is inverse S-shaped), the β-parameter accounts for any loss aversion (convexity 
would be more pronounced than concavity) , and the 𝛾𝛾-parameter controls the x-axis position at which the function’s curvature 
inverts. 
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captured side bias parametrically. The expected utility of each option (EULeft, EURight), as a function of 

their probability (p) and the utility function U(m), was given by the functional form: 

EU(p,m) = p × U(m)             ( 2-8 ) 

The model’s best-fitting parameters were estimated by minimizing the following cumulative log-like-

lihood function: 

−𝐿𝐿𝐿𝐿(𝜃𝜃| 𝑦𝑦)  = −�∑  𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖 = 1 × 𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) + ∑  𝑦𝑦𝑖𝑖′𝑛𝑛

𝑖𝑖 = 1 × 𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆��  ( 2- 9 ) 

where y and y’ indicated a left or right choice (0 or 1), respectively, for each trial i; n was the total trial 

number for the session.  

Again, the best-fitting discrete choice model was selected via BIC comparisons, this time defined on 

the likelihoods ( 𝐵𝐵𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿  =  (𝑘𝑘 × 𝑙𝑙𝑙𝑙(𝑛𝑛)) − (2 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜) ). The parameters estimated in each 

reward range were also compared using a one-way MANOVA.  

2.2.5 Validating utility predictions from out-of-sample certainty equivalents 

To validate the predictions of the utility functions, CE measures were gathered from binary choices 

presented outside of the utility estimation sequences – these were then used to corroborate the risk 

attitudes predicted by the fractile- or DCM-derived utilities. Two of the three monkeys were presented 

with three sets of four gambles unique to each reward range for which we estimated CEs. We used these 

12 CEs to validate the risk-attitude predictions of the utility function estimated in each range. The gam-

bles in the narrow reward ranges had a spread of 0.15 ml, while gambles in the full range had a spread 

of 0.30 ml – keeping the relative spreads equivalent across the ranges. The gambles’ expected values 

were also, once normalized, centred around the same relative values. In percentage points, each gamble 

spread over 30% of the reward ranges, and gamble was centred at a value representing 25%, 45%, 65%, 

or 85% of the reward range (Fig.2-2c). 

Taking the difference between the CE of these gambles and their expected value as a proxy for risk 

attitude (CE – EV), the risk-attitude estimated from these CEs were compared with the predictions from 

the fractile-elicited and discrete-choice utility curves. If the CE – EV metric were positive, it signalled 

that the animals were risk-seeking. If instead, the measures were negative, the animals could be seen as 

risk-averse. Because of this, if the utility models imposed an S-shape that was unrealistic (and a conse-

quence of the function used) the CE – EV fits would expose it right away: they would not go from risk-

seeking to risk-averse. These measures were repositioned relative the point at which the median (across 

all testing days) fractile- and DCM-derived utilities predicted that risk-attitudes would reverse (i.e., the 

point of risk neutrality) and linear regressions were fit to the repositioned CE – EV metrics in order to 

identify which of the two inflexions proved most reliable in predicting out-of-sample behaviour (fractile 

or DCM-derived): 
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 CE – EV = 𝛽𝛽0 +  𝛽𝛽1(𝐸𝐸𝐸𝐸 −  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)        ( 2- 10 ) 

In the model, 𝛽𝛽0 indicated the point at which CE measures became risk-neutral, i.e., the inflexion point, 

and 𝛽𝛽1 paralleled the curvature, or steepness of a utility function. The R2-value associated with both 

regressions were compared to see which of the two utility estimation procedures most reliably matched 

out-of-sample behaviour. Put simply, these regressions allowed both the validation of predicted risk-

attitudes, and the selection of the better-fitting procedure.  

2.2.6 Defining preference adaptation metrics 

Comparing the utilities estimated from choices in different reward ranges was done in one of two ways: 

the first, assuming that preferences were fixed and did not adapt to the range of possible rewards in a 

task; the second, assuming that preferences fully adapted to the reward spread and magnitude of the 

task at hand (Fig. 2-5). To test for the former, utilities estimated in narrow ranges (i.e., low- and high-

range) were compared to the full-range ones. For the latter, the assumption of full adaptation, utilities 

were compared sequentially - looking for differences in the shape of the utilities between consecutive 

ranges.  

The parametric utility functions all had a unique inflexion point (if at all): a single point where the utility 

function’s curvature reversed, the maximum of the function’s first derivative. This inflexion identified 

the precise reward magnitude for which the monkeys’ risk-attitude changed, and, served as a good in-

dicator or where and how the monkeys’ preferences would change depending on the spread and mean 

rewards in a given range. The inflexion points elicited in different ranges were compared using a Krus-

kal Wallis test with Bonferroni-Holm corrected post-hoc analysis (Wilcoxon test).  

Another metric, the curvature ratio (CR) was defined as the normalized area under the utility functions 

(the function’s area divided by the total area in each range’s domain). The CR provided a direct, nor-

malized metric of the convexity/concavity interplay of daily utility estimates – reflecting overall risk 

attitude to a greater degree than inflexion points. A linear utility function (i.e., a diagonal line) would 

have a CR of 0.5, as would perfectly symmetric S- or inverse S-shaped utilities. A CR above 0.5 indi-

cated that the functions fell above the diagonal and was mostly predicting of risk-averse choices; con-

versely, a CR under 0.5 reflected more risk-seeking choices. The CRs measured in the different range, 

were also compared using a Kruskal Wallis test followed by pairwise Wilcoxon rank-sum comparisons 

(Bonferonni-Holm corrected).  

A final series of metrics, defined as adaptation coefficients, allowed for the quantification of relative 

changes in CRs between utilities that had been estimated in consecutive reward ranges. A sequential 

adaptation coefficient (SAC) was calculated as: 

𝑆𝑆𝑆𝑆𝑆𝑆 =
�∫ 𝑈𝑈𝑛𝑛(𝑚𝑚)𝑑𝑑𝑑𝑑− ∫ 𝑈𝑈𝑛𝑛−1(𝑚𝑚)𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚  𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚 �

∫ 𝑈𝑈𝑛𝑛−1(𝑚𝑚)𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚  𝑑𝑑𝑑𝑑

       ( 2-11 ) 
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and it captured changes in the median utility of a given reward range n (𝑈𝑈𝑛𝑛(𝑚𝑚)), where m represented 

every reward between the minimum and maximum rewards in the tested range, relative to the median 

utility function in the previous range n-1 (𝑈𝑈𝑛𝑛−1(𝑚𝑚)). Since all parametric functions were defined from 

0 to 1, comparing the area under each curve gave us a direct measurement of the difference between the 

utilities that captured preferences in consecutive reward ranges.  

A second coefficient, the general adaptation coefficient (GAC), compared the utility of low- and high-

reward ranges to the utility estimated from a monkey’s full reward range. The GAC placed the narrow-

range utilities (i.e., the low and high range ones) relative to the shape of the full-range’s utility function. 

That is, a GAC of 0 would indicate that the narrow-range utilities are but segments of a fixed full-range 

one, whereas a GAC of 1 suggested that utilities kept a similar form but fully shifted to represent pref-

erences in the new range (Fig 2b). For any GAC where 0 < GAC < 1, utilities had partially adapted. To 

calculate this, narrow range utilities were rescaled to map onto the full range ones: the maximum value 

of the low-range became the utility value of the full-range utility at 0.5 ml, and the utility value of the 

full-range utility at 0.5 ml became the minimum value of the high-range (see Fig. 2-5a). Then, the 

median utility of the full range (Ufull) was rescaled (into 𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) to match the domain and image of 

narrow range utilities (Ulow-range and Uhigh-range). The GAC was given by  

𝐺𝐺𝐺𝐺𝐺𝐺 =
�∫ 𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑚𝑚)𝑑𝑑𝑑𝑑− ∫ 𝑈𝑈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑚𝑚)𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚  𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚 �

�∫ 𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑚𝑚)𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚  𝑑𝑑𝑑𝑑 − ∫ 𝑈𝑈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑚𝑚)𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚  𝑑𝑑𝑑𝑑�
       ( 2-12 ) 

where 𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum and maximum reward magnitudes in a narrow range condition. 

A GAC of 1 signalled full adaptation while a GAC of 0 indicated that no adaptation had taken place. 

Crucially, the GAC metric took no account of the order in which reward ranges were tested; it relied 

instead on full-range utility function as a comparison template.  

2.3 Results 

2.3.1 Experiment design and behavioural performance 

Using a binary choice paradigm, I explored the role of contextual reward statistics in shaping monkeys’ 

preferences. On each day of testing, the animals were presented with choice sequences from which their 

propensity to take risk as a function of the rewards offered was measured. The range of rewards that the 

animals could expect would be kept constant over consecutive days, then suddenly change to a new 

distribution of rewards.  

With no change to the task other than the reward magnitudes presented and delivered, the monkeys 

experienced periods of relatively low rewards, periods of relatively high ones, and periods where they 

saw a mix of both. The aim was to understand how these different ranges informed choice preferences 

(if at all) and to see how the animals’ utility functions shifted with the tested ranges’ new reward statis-

tics (Fig. 2-5). To do so, three rhesus macaques were presented with sets of binary choices from which 
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utility functions were either estimated or validated through out-of-sample measurements of risk attitude. 

In utility estimation sequences, utility measurements were derived from the choices that monkeys made 

between sets of gambles and safe rewards. Using the fractile method (see methods), utilities were de-

rived from the certainty equivalents (CEs) of specific sets of gambles (the safe rewards that were sub-

jectively equivalent to the gamble). In validation sequences, the monkeys’ risk preferences were meas-

ured directly using the certainty equivalents of out-of-sample equivariant gambles. These measurements 

were then used to confirm the utilities estimated in elicitation sequences (Fig. 2-5c).  

Each experimental range was held constant for a continuous number of days, and on each day the mon-

keys were presented with either a utility estimation sequences, an equivariant gamble sequences (out-

of-sample validation sequences), or both. Monkey A experienced a low range for 22 days (0 ml to 0.5 

ml), a full range of rewards for 31 days (0 ml to 1.0 ml), and a high range of rewards for 17 days (0.5 

ml to 1.0 ml). Monkey B experiences a low range for 33 days, then 19 days of high range, followed by 

18 days of full range. Monkey C, quite uniquely, offered a dataset with a longer timescale. He experi-

enced the full range of 0.1 ml to 1.3 ml of reward for 14 days then switched to a low range of 0 ml to 

0.5 ml for 54 weeks. After this, his preferences were measured over 43 days.  

For each reward range, sets of daily utilities were estimated using the fractile method. The way reward 

magnitudes (CEs) mapped onto these utilities (once normalized to the minimum and maximum rewards 

in a range) could then be compared within and between the different rewards ranges. To do so, and 

because utilities were defined from 0% to 100% regardless of their range, the CEs were normalized 

relative the maximum and minimum magnitudes in the appropriate reward range (Fig. 2-3). As ex-

pected, higher utility values mapped onto higher reward magnitudes (higher CEs), but the way in which 

they did so differed markedly depending on the range. The same utility levels (12.5%, 25%, 50%, 75% 

and 87.5%) in different reward ranges did not map onto the same relative magnitudes (i.e., normalized 

CEs). I confirmed this statistically, using a two-way ANOVA with the main factors being the utility 

level tied to individuals CEs and the reward range from which they had originated. The ANOVA con-

firmed that there was a significant main effect of utility level on the value of the estimated CEs (monkey 

A: F(4,295) = 64.301, p = 4.812 × 10−39; monkey B, F(4,192) = 50.51, p = 4.107 × 10−39; monkey C: 

F(4, 295) = 609.547, p = 3.254 × 10−141). The range in which utility-specific CEs had been estimated 

also had a significant main effect on the value of the estimated CEs (monkey A: F(2,295) = 356.415, p 

= 1.991× 10−79; monkey B, F(2,192) = 8.994, p = 0.003× 10−3; monkey C: F(1, 295) = 16.204, p = 

7.235× 10−5). Together, these corroborated what we could see graphically (Fig. 2-3): higher CEs cor-

related with higher utilities in all ranges, but these CEs were all relatively lower once a shift from low- 

to full- or high-range had occurred. Supporting the two other main effects, there was a significant inter-

action effect of utility level and range on the estimated CEs, in two of the three monkeys (monkey A: 

F(8,295) = 1.156, p = 0.326; monkey B, F(8,192) = 5.217, p = 1.829× 10−5; monkey C: F(4, 295) = 

8.488, p = 1.707× 106). That is, the steepness of the utility-CE pairings changed between the different 



Chapter 2 | Partial adaptation to reward range 
 

48 
 

reward ranges – utilities in different ranges seemed to follow different functional shapes, rather than a 

simple shifting and rescaling, 

2.3.2 S-shaped utilities best fit monkeys’ behaviour 

Parametric utility functions were fitted to the daily utility measurements to better compare and under-

stand the relationship between the utilities estimated in each range. To do so, several different functional 

forms of utility were first compared; the most reliable function was then used for all further analyses. 

Power functions are commonly used to model utility functions. I therefore fit a 1-parameter power (U1-

Power), 2-parameter CDF of a two-sided power (U2-SCDF), and a 3-parameter anchored power functions 

(U3-Power) to the monkey’s CE-utility pairings. In addition to power-type functions, I looked at functions 

typically reserved for probability distortion modelling (Ferrari-Toniolo et al., 2019; Stott, 2006): the 1-

parameter Tversky function (U1-Tversky), and the 2-parameter Prelec (U2-Prelec) – two functions that could 

readily take on the s-shape prescribed by PT. All functions mapped reward magnitudes onto utility 

values from 0 to 1 (i.e., 0% to 100% of normalized utilities), and all but the 1-parameter power function 

could capture risk-seeking and risk-averse behaviour, as well as any inversion in the monkeys’ risk 

attitudes within a reward range.  

Because of the fractile method’s reliance on aggregate, chained datapoints (Farquhar, 1984; Machina, 

1987), utility functions were also fit using a discrete choice model (DCM) applied to individual, rather 

than aggregate, choices (Eq. 2-7). In line with the fractile-derived utilities, and because previous exper-

iments with the same monkeys had identified negligible probability distortions for p = 0.5 (Stauffer et 

al., 2015), choices in the model were then predicted based on the choices’ expected utilities (probabili-

ties were treated as objective). The parameters that best described individual choices in each model 

were estimated through maximising the cumulative log likelihoods of the DCMs defined on individual 

experimental sessions (Eq. 2-9; see methods).  

To select the utility function that best described both the CEs and individual choices Bayesian infor-

mation criteria (BIC) from all fitted models - the model with the lowest median BIC would thus repre-

sent the best fitting model. Of the five tested utility functions, the 2-parameter Prelec proved most reli-

able in fitting both forms of data (Fig. 2-4a,b). Though the model is normally reserved for probability 

distortion models, it presented the lowest BICRSS score as derived from the residuals of fractile-derived 

utilities (significantly so, Friedman test; monkey A: Fr(4,240) = 177.154, p = 3.046× 10−37; monkey 

B: Fr(4,168) = 140.780, p = 1.903× 10−29; monkey C: Fr(4,220) = 120.800, p = 3.604× 10−25), and 

the lowest BICLL score as derived from the log likelihoods of the discrete choice fits in 2 of 3 monkeys 

(Friedman test; monkey A: Fr(4,240) = 219.091, p = 2.327× 10−45; monkey B: Fr(4,168) = 186.469, p 

= 2.221× 10−38; monkey C: Fr(4,220) = 180.020, p = 5.298× 10−37). In the other monkey (monkey 

A), the BICLL of the 2-parameter CDF of the two-sided power distribution and the 2-parameter Prelec 

proved statistically indistinguishable. From these BICRSS and BICLL measures, and because the 
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behavioural predictions from each fitting method generally agreed (Fig. 2-4c), I selected the 2-param-

eter Prelec function for all further analyses.  

2.3.3 Monkeys’ risk preferences adapt to novel ranges of rewards  

Each fitted utility function provided a pair of parameters that could be compared to those elicited in the 

same or different reward ranges. The curvature of these utility functions served as a direct indicator of 

the animal’s risk attitude for any given magnitude. Convexity reflected risk-seeking behaviour; concav-

ity signalled risk-aversion. From these parametric functions, three predictions could be made: utilities 

would either (i) fully adapt to the novel reward ranges, (ii) not adapt and remain constant (i.e., different 

parts of the same curve), or (iii) utilities would partially adapt in a way that did not solely rely on the 

current reward range. To test for these predictions, further analyses were split into two sets of hypoth-

eses. One set looked at utilities under the assumption that no adaptation had occurred, the other assumed 

full utility adaptation between each of the reward range conditions. In the case of the no adaptation 

assumption, the predictions from utilities on identical reward magnitudes in the narrow range and full 

range were compared (Fig. 2-5a). For the full adaptation assumption, the utilities from sequential reward 

ranges were normalized and compared, looking at any differences with the previous range’s pattern of 

risk attitude (Fig. 2-5b). If neither assumption proved accurate, then the assumption would be that nei-

ther full nor no adaptation had taken place – that is, preferences would have partially adapted.  

Starting with fractile-derived utilities, comparing the functional parameters elicited in the different re-

ward ranges provided us with a stringent test regarding the full adaptation assumption. In the 2-param-

eter Prelec function, the α-parameter represented the temperature of the function, while the β-parameter 

captured the relative height of the curve. If these were identical across conditions, similar patterns of 

utility reflected preferences regardless of unique reward magnitudes in the different reward ranges. One-

way MANOVA analysis on the log-transformed parameters confirmed that this was not the case: there 

was a significant effect of reward range on the parameters elicited in each condition, for all monkeys 

(monkey A: F(2,59) = 34.913, Wilks’s λ = 0.454, p = 1.116× 10−10; monkey B, F(2,41) = 13.695, Wilks’s 

λ = 0.594, p = 2.946× 10−5; monkey C: F(1, 54) = 9.381, Wilks’s λ = 0.739, p = 3.252× 10−4). Specifi-

cally, there was a significant differences between Monkey A and B’s β-, or height-, parameters (monkey 

A: F(2,59) = 67.301, p = 2.447× 10−11; monkey B, F(2,41) = 13.695, p = 2.946× 10−05; monkey C: 

F(2,54) = 1.120, p = 0.290), as well as a significant difference in Monkey C’s α-, or temperature-, 

parameters (monkey A: F(2,59) = 0.434, p = 0.513; monkey B, F(2,41) = 2.583, p = 0.116; monkey C: 

F(2,54) = 18.858, p = 6.236× 10−5). The utilities, in terms of parameters, differed depending on the 

range from which they came (Fig. 2-6b). 

To explore how these parametric differences influenced utility patterns in a way that was directly com-

parable between conditions, I compared the position of each utility function’s inflexion points – the  
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Figure 2-3 | Utility functions elicited from daily fractile procedures. Order of ranges tested is captured vertically. 
Black dots represent CE-utility pairings elicited in individual experimental sessions using the fractile method; col-
oured lines are parametric fits (𝑼𝑼𝟐𝟐−𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷) to daily CE estimates (blue, low narrow range; yellow, full range; green, 
high narrow-range. Utility fits for Monkey A, from top to bottom, represent 20 days, 26 days, and 15 days. For monkey 
B, we have 23 days, 7 days, and 13 days. Finally, monkey C has a total of 13 days for the top panel, and 43 days for 
the lower one. In all cases, convexity of the functional fit signals risk-seeking behaviour, concavity signals risk-
aversion. 
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Figure 2-4 | Model comparisons within and across fitting procedures. a) Model selection for fractile-derived util-
ities. We calculated daily Bayesian information Criterions for each utility function using the orthogonal residuals on 
each fit (BICRSS). Lower BICRSS scores indicated a better fit to the CE-utility pairings, and the 2-parameter Prelec 
model that was used throughout this study appears in blue (U2-Prelec). b) Model selection for discrete choice utilities. 
We again calculated daily BIC scores for each utility function, this time using the log-likelihoods estimated to fit each 
discrete choice models (BICLL). Lower BICLL scores indicated better fits between the discrete choice model (DCM) 
predictions and individual measured choices pairings. Again, the 2-parameter Prelec model that was used throughout 
this study appears in blue (U2-Prelec), and, in contrast to the fractile-fits, we also compared the various DCMs to pre-
dictions based on expected value (seeing if noise alone could explain choices). c) Curvature ratios (CRs) from each 
fitting procedure correlate. We calculated CRs as the area under the curve of each utility function. Each point repre-
sents the CRs from fractile-derived utilities (x-axis) and DCM-derived utilities (y-axis); their colour captures the 
reward range from which they estimated (blue: low-range, green: high-range; yellow: full-range). Significant positive 
correlations between the fractile-derived CRs and DCM-derived CRs were found in each of the three monkeys, and 
we only observed clear differences between the two procedures in monkey B.  
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Figure 2-5 | Schematic representation of full-, partial-, and non-adapting utilities estimated in low- and full-ranges of rewards. a) 
Scaled, identical utility functions in different reward ranges: the utility value of a 0.5 ml reward in the small range (blue curve, 100% utility) 
is scaled to the utility value of 0.5 ml reward in the large range (yellow curve). From left to right, utilities reshape assuming full-, partial-, 
and no adaptation. The three possibilities differ mostly in terms of the risk-attitudes exhibited for rewards between 0 ml and 0.5 ml – under 
full adaptation they should differ, under no adaptation they should not. b) Utilities normalised according to the reward range from which they 
were estimated. Utilities are set on the same scale by normalizing across the domains of each function. Curves should overlap if utilities adapt 
fully (left) and fail to do so if there is no adaptation (right). If functions fail to adapt the low range utility is predicted to be identical to the 
first half of the full range utility curve. c) Predicting the direction of risk attitudes (r.a) from utilities. For an equiprobable gamble made up 
of the two outcomes that fall at the edges of each grey shaded area, the horizontal black line depicts the expected value (EV) and the black 
dot above or below signals the direction in which we expect the certainty equivalent (CE). A black dot above the horizontal line signals risk 
seeking behaviour (or positive r.a.) and a CE of higher value than the EV, and a dot below the line signals risk averse behaviour (negative 
r.a.). From left to right we again have predictions of r.a. given full-, partial-, or non-adaptive preferences.  
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reward magnitude at which the behaviour predicted by the utility function flipped from risk-seeking to 

risk-averse (or risk-averse to risk-seeking depending on the temperature of the utility function). The 

inflexion crudely summarized choice predictions with a single metric – one that had been previously 

used to signal monkeys’ ‘reference-points’ (K. M. Chen et al., 2006; Lakshminarayanan et al., 2011). 

Importantly, since this metric was tied to CE values; one could easily observe if inflexion points fell on 

similar magnitudes depending on the range in which it had been measured (Fig. 2-5a).  

From these inflexion points, the assumption of no adaptation was tested by comparing both within and 

across-range inflexions. If no adaptation had occurred, the inflexions would be the same within and 

across the different reward ranges. Testing for the former, i.e., within range differences in inflexion 

points, no significant pattern of change could be identified – at least for monkeys A and B (linear re-

gression analysis, monkey A: pfull-range = 0.160, phigh-range = 0.472; monkey B: pfull-range = 0.270, phigh-range 

= 0.714; monkey C: plow-range = 0.009). And since monkey C’s low range had been tested over a year 

after changing ranges – the fact that a significant positive slope was identified (the inflexion slowly 

went up in value over the days of testing) did little to indicate range-swap adaptation. Moving from 

within range to between range analyses, there were significant differences between the range-specific 

inflexions for all monkeys (Kruskal Wallis test; monkey A: H(2,58) = 44.281, p = 2.424× 10−10; mon-

key B: H(2,40) = 27.973, p = 8.429× 10−7; monkey C: H(1,54) = 28.397, p = 9.881× 10−8), which 

translated into significant pairwise differences (Wilcoxon rank sum) for all but Monkey B’s high and 

full range inflexion points (Fig 2-6a). Simply put, the inflexion points fell on different reward magni-

tudes for each of the reward ranges. If preferences had truly been non-adaptive, no significant difference 

across any of the conditions would have been observed.  

Since none of the results corroborated the no-adaptation hypothesis, the next step was to test for full 

adaptation. Rather than comparing the absolute position of the utilities’ inflexion points, testing for full 

adaptation required predicting where inflexion points from a past range would map onto the next range: 

the assumption being that if the same utility function simply shifted to a new range (i.e., fully adapted), 

the relative position of the inflexion should be the same. An inflexion at 0.3 ml in the low range, for 

example, would be placed at 0.15 ml in the full range, and vice versa. However, since an inflexion of 

0.3 in the low range would result in a negative magnitude when compared with the high range, inflex-

ions < minimum reward were set at the minimum, and inflexions > maximum reward were set to the 

maximum. There were significant differences between all consecutive comparisons in Monkeys A and 

C, and none for monkey B (Fig 2-6a; Wilcoxon rank sum test). From a full adaptation perspective, this 

suggested that, while Monkeys A and C had not fully shifted their reference to accommodate the new 

ranges, Monkey B’s preferences seemed to follow the same relative pattern across all rewards ranges.  

From the inflexion points, the picture that emerged was one of (at least) partial adaptation. That is, the 

significant differences between the inflexion points corroborated neither the idea of fully- or non-  
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Figure 2-6 | Fractile-derived utilities reflect preferences adaption between the different reward ranges. a) Scaled 
utilities estimated from fractile-derived CE-utility pairings. Each curve represents the median of daily, range-specific 
parameter estimates; 95% Confidence intervals were estimated via boostrapping said parameters (random sampling with 
replacement, n=10000). Dotted blue lines represent predictions full-range utilities predicted to fully-adapt to low-ranges. 
The dotted green lines represent similar full-adaptation predictions in the high range. Bar graphs represent the median 
inflection point, i.e., the reward magntiude at which the curve goes from convex to concave – points are daily inflection 
points. Upper asterisks (*) indicate differences between daily inflection estimates in two sequential ranges (Wilcoxon 
rank sum test, p < 0.05); Lower asterisks (*) indicate significant difference between the median predicted inflection from 
the previous tested range and the true inflection estimates of the next range (Wilcoxon rank sum, p < 0.05). b) Normalized 
utilities estimated from fractile-derived CE-utility pairings. Each curve is the median of daily, range-specific parameter 
estimates normalized according to the minimum and maximum rewards in the tested range. Again, 95% confidence 
intervals were estimated via boostrapping. Points represent mean normalized certainty equivalents ± SEMs for each of 
the tested range. Bar graphs representmedian curvature ratios (CRs) for each range; the relative concavity of each utility 
(concave > 0.5; convex < 0.5) – individual points are daily CRs. Upper asterisks (*) indicate significant differences 
between CRs estimated in sequential ranges (Wilcoxon rank sum, p < 0.05). For each panel, blue comes from low-range 
utilities, yellow from full-range, and green from high-range. 
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adaptative preferences. Nevertheless, because inflexion points carried no information about the risk 

attitude that followed or preceded them, the inflexion points could be similar even if the monkeys’ 

choices were not. To counter this, the previous comparisons were repeated using the area under each 

utility curve – a direct indicator of the convexity/concavity patterns within single utilities. Rather than 

representing a single point, the area under each curve reflected the order and intensity of risk-seeking 

or risk-averse behaviour throughout the reward range. Hereafter defined as curvature ratios (CRs, see 

methods), the areas calculated in each range were compared through Kruskal Wallis test (followed by 

pairwise Wilcoxon rank sum post-hoc tests). The results validated the earlier findings from the inflexion 

comparisons: sequentially, there were significant differences across ranges for Monkey A and B (mon-

key A: H(2,58) = 27.973, p = 8.428× 10−7; monkey B: H(2,40) = 12.124, p = 0.002), but there were 

no statistical differences between monkey C’s CRs across conditions (Fig 2-6b; H(1,54) = 1.872, p = 

0.171). In essence, while the risk attitudes that monkeys A and B exhibited differed between reward 

ranges, monkey C seemed to exhibit relatively similar behaviour in the two ranges (albeit with a slightly 

different inflexion).  

To validate these fractile-based comparisons, the full/no-adaptation analyses were repeated using the 

DCM-derived utilities. Both the inflection points and the CRs of monkey A reliably mimicked earlier 

findings: significant differences between the ranges meant that inflexion points adapted partially (Fig 

2-7a; Kruskal Wallis, H(2,58)= ` 44.504, p = 2.167 x 10-10), but differences in sequential predictions 

also meant that inflexions were not fully-adaptive (Fig 6a; Wilcoxon rank sum, Z(45)full-range: -5.761, p 

= 8.351 x 10-9; Z(40)high range: -4.790, p = 1.661 x 10-6). Corroborating the latter, CRs were again found 

to be significantly different across all range conditions (Fig 2-7b; H(2,58) = -51.342, p = 7.100x10-12). 

For Monkey B, the DCM-derived inflexion points also behaved like those estimated from fractile util-

ities: there were significant differences between all but the high and full-ranges (H(2,40) = 31.103, p = 

1.762 x 10-7), suggesting that inflexions were not fixed. This was also validated by the finding that there 

were no significant differences between all consecutive predictions (Z(29)high-range = 1.103, p =0.270; 

Z(20)full-range = 1.941, p = 0.052). In terms of curvature ratios, i.e., test of no adaptation, there again was 

a difference between the CRs gathered in different reward ranges (H(2,40) = 7.470, p = 0.024), but this 

time none of the post-hoc pairwise comparisons reached significance once corrected for multiple com-

parisons (Wilcoxon rank sum; Fig 6b). This meant that monkey B’s preferences were much closer to 

being fully adaptive than not. Finally, Monkey C’s results, like monkey A, were consistent across elic-

itation methods. Inflection points were significantly different between the two ranges tested (H(1,54) = 

30.524, p = 3.297 x 10-8), consecutive inflection predictions were also significantly different (Z(55)low-

range = 2.076, p = 0.03), and CRs were not (Z(55)low-range = 0.0178, p = 0.897). Inflexions differed, but 

risk attitudes did not. 

Taken together, these results suggest that while no monkey (except perhaps monkey B) demonstrated 

full adaptation, some form of partial adaptation had occurred across every range in every animal. More 
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specifically, while not fully adapted, monkey A and C’s utilities did shift following changes in the task’s 

reward statistics. Their inflexion points moved, but not to the degree predicted by a full shift of the 

previous range’s inflexions. Where the two monkeys differed, however, was in the fact that Monkey C 

had maintained a very similar CR across conditions – likely due to the time elapsed between the differ-

ent tests. Monkey B, on the other hand, maintained the relative inflexion predicted across conditions 

and a similar (though different in fractile-estimates) utility shape.  

2.3.4 Predicting range-specific preferences from adapting utilities 

While the fractile- and DCM-fits generally agreed on the inflexion of utility functions (Fig. 2-6a, 2-7a), 

variations in parameter estimates and concavity/convexity patterns (particularly in monkey B; see Ta-

ble. 2-1) highlighted the need to select the most reliable fitting procedure if quantification of adaptation 

was the goal.  

To address this concern, I compared the risk attitudes predicted by the utilities of each method to real 

risk attitudes measured in different, out-of-sample choices (i.e., validation sequences). The CEs of equi-

probable and equivariant gambles were recorded in each of the reward ranges, and the differences be-

tween these CEs and the gambles’ expected values (CE – EV) were used to signal the monkeys’ risk 

attitudes. Every gamble had a magnitude spread equivalent to 30% of the respective reward range, and 

their expected values were anchored at 25%, 45%, 65%, and 85% of the testing range’s magnitudes 

(Fig. 2-2c). If the difference between a gamble’s CE and its objective, expected value (CE - EV) was 

positive, it reflected a risk-seeking attitude towards the gamble; if, on the other hand, this value was 

negative, the animal was said to be risk-averse. These ‘validation’ measurements were gathered in two 

of our three monkeys (monkeys A and B). 

The CE - EV attitude predictions were compared to the risk attitude predictions from the fractile and 

DCM utility estimates. If the S-shaped pattern of utilities elicited for each monkey were accurate, 

choices involving magnitudes that fell below the utility’s inflexion point should have been risk-prone, 

while choices above it should have been risk-averse (also validating the S-shape utilities as more than 

just an effect of the Prelec functional form). I found that this was indeed the case and that CEs in all 

ranges reflected both risk-seeking and risk-averse behaviour dependent on the relative magnitudes in-

volved (Fig. 2-8a). Then, to identify the best-fitting utility estimation procedure, the CE – EV values 

were regressed onto the gamble’s relative distance from the median inflexions in each range (the dis-

tance in EV terms; see Eq. 2-10). In both monkeys, positioning CE – EV values relative the DCM-

derived inflexion resulted in a better regression fit than using the fractile-derived inflexions (Fig. 2-

8b,c) – the DCM-derived utilities were therefore chosen for further quantification as they represented a 

more accurate depiction of the monkeys’ behaviour.  
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Figure 2-7 | Discrete choice utilities reflect partial preferences adaption between the different reward ranges. a) 
Scaled utilities estimated from discrete choice models (DCM). Each curve represents the median of daily, range-specific 
parameter estimates; 95% Confidence intervals were estimated via boostrapping said parameters (random sampling with 
replacement, n=10000). Dotted blue lines represent predictions full-range utilities predicted to fully-adapt to low-ranges. 
The dotted green lines represent similar full-adaptation predictions in the high range. Bar graphs represent the median 
inflection point, i.e., the reward magntiude at which the curve goes from convex to concave – points are daily inflection 
points. Upper asterisks (*) indicate differences between daily inflection estimates in two sequential ranges (Wilcoxon rank 
sum test); Lower asterisks (*) indicate significant difference between the median predicted inflection from the previous 
tested range and the true inflection estimates of the next range (Wilcoxon rank sum). b) Normalized utilities estimated from 
DCMs. Each curve is the median of daily, range-specific parameter estimates normalized according to the minimum and 
maximum rewards in the tested range. Again, 95% confidence intervals were estimated via boostrapping (random sampling 
with replacement, n=10000). Points represent mean normalized certainty equivalents ± SEMs for each of the tested range. 
Bar graphs represent median curvature ratios (CRs) for each range; the relative concavity of each utility (concave > 0.5; 
convex < 0.5) – individual points are daily CRs. Upper asterisks (*) indicate significant differences between CRs estimated 
in sequential ranges (Wilcoxon rank sum). For each panel, blue comes from low-range utilities, yellow from full-range, and 
green from high-range. 
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Figure 2-8 | Discrete choice utilities better predict out-of-sample risk attitudes. a) Differences between the 
certainty equivalent (CEs) and expected value of out-of-sample, equivariant gambles reflects the risk attitudes 
predicted by utilities. Each point represents a CE – EV measure from individual CE estimates. For CE-EV 
measures above 0 reflect risk-seeking behaviour, points below 0 reflect risk-averse behaviour. The transition 
from risk-seeking to risk-averse behaviour should correlate with the inflection points predicted from utility 
functions: full lines represent the median inflection as predicted from daily fractile-derived utilities; dotted 
lines represent the median inflection from DCM-derived utilities. b) Discrete choice (DCM) derived inflections 
(better) predict risk attitudes as measured in out-of-sample gambles. CE – EV metrics positioned as a function 
of a gamble’s EV position relative the median fractile-derived inflection of each range. The x-axis captures the 
relative difference between the range’s inflection point (in ml) and a gamble’s EV (in ml). Dotted lines repre-
sent linear regression lines across all CE – EV measurements (monkey A: p=1.77 x 10-35; monkey B: p=1.90 
x 10-31). c) Fractile-derived inflections predict risk attitudes as measured in out-of-sample gambles. CE – EV 
metrics positioned as a function of a gamble’s EV position relative the median fractile-derived inflection of 
each range. The x-axis captures the relative difference between the range’s inflection point (in ml) and a gam-
ble’s EV (in ml). Dotted lines represent linear regression lines across all CE – EV measurements (monkey A: 
p=5.43 x 10-35; monkey B: p=1.43 x 10-29). 
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2.3.5 Partial range adaptation shapes monkeys’ risk preferences  

Two final metrics were defined to quantify the degree to which each monkey’s DCM-utilities had 

adapted between the different reward ranges: a sequential adaptation coefficient (or SAC; Eq. 2-11) and 

a general adaptation coefficient (or GAC; Eq. 2-12). The former served to quantify how the utilities 

adapted sequentially as a function of the preceding range of rewards, the latter to position low- and 

high- range utilities relative to adaptive or absolute full range utilities. 

The sequential adaptation coefficients (SAC) represents the percent change in the CRs (the normalized 

areas under each curve) of successive utilities. It can be used to quantify differences in utilities within 

a single range, or, in this case, between the median utilities of different ranges. Importantly, the SAC 

allowed me to quantify utility adaptation on a normalized scale: if utility patterns were fully adapting 

(i.e., fixed shape regardless of the range), the SAC would gravitate to 0. On the other hand, the SAC 

would become negative if utilities became more convex (since the area under the utilities would become 

smaller), and more positive if utilities became more concave. The other coefficient, the general adapta-

tion coefficient (GAC), compared the utility of the low- and high-ranges with the full reward range’s 

utility function (Fig 2b, dashed lines). Using the full-range utility as the ‘default’ utility shape, the GAC 

measured how different narrow utilities were – ranging from no or 0% adaptation (i.e., narrow utilities 

were but segments of an absolute full-range utility) to full or 100% adaptation (the utilities had a fixed 

form that simply adapted to new ranges). I used DCM-derived utilities to calculate these adaptation 

coefficients.  

Using the SAC to quantify how median utilities changed between ranges, I found that the differences 

between utilities of monkey A amounted to SACs of 0.37 and 0.35 for the full- and high-ranges, respec-

tively; 0.11 and -0.14 for monkey B’s high- and full-range, and 0.04 for monkey C’s low range. In 

utility terms, this meant that Monkey A’s utilities predicted behaviour that was 37% and 35% more 

risk-averse in consecutive ranges. Monkey B also became more risk-averse when going from the low 

range to the high range but became more risk-seeking again once choosing in the full range. The direc-

tion of these changes seemed to reflect the ‘position’ of the tested ranges relative to the past range the 

monkeys had experienced. In line with this idea, monkey C had no recent experience with the full-range 

when low-range utilities were estimated; the measured utilities were thus almost identical. 

The GACs calculated for each animal were also very informative in positioning low- and high-range 

utilities relative to the full range ones (see dotted lines in Fig. 2-7). Monkey A, for example, had a GAC 

of 0.51 for the small range, and a GAC of 0.21 for the high range. The first essentially meant that the 

low-range utility was halfway between being but a segment of a fixed full-range utility and being a fully 

rescaled versions of the full-range utility; the second suggested that high-range utilities were much  

closer to being segments of a larger, absolute utility function. For monkey B, low-range utilities 

matched a GAC of 1.14, i.e., the utilities of the low range had an almost identical shape to those in the  
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Figure 2-9 | Daily inflections in utilities reflect rewards experienced in past ranges. Each experimental session is 
represented by a set of horizontal black lines; the first derivatives of fitted utilities appear as the coloured ‘violin plots’ 
on the horizontal lines. Black vertical lines indicate the true mean of the rewards experienced by monkeys on individual 
days – smaller black lines indicate the STD on these means. Grey ‘violin plots’ reflect the expected distributions of 
rewards that monkeys ‘learned’ over past experimental sessions, based on reinforcement learning predictions (Eq. 2-13, 
2-14). They are those normal distributions that best fit utilities, as allowed by a Rescorla-Wagner learning rule. Of note, 
the grey normal distributions are not restricted by ‘reward ranges’ in the way that utilities are. 
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full-range, and the high-range utilities had a GAC of 0.69, a bit more than halfway between no- and 

full- adaptation. Monkey C, corroborating earlier findings, had a GAC between low and full-ranges of 

0.87 – they were, for all intents and purposes, identical.  

Finally, going back to the original idea that preferences are shaped by one’s expectations, I looked at 

the shape of each DCM-utility relative to the task’s daily reward statistics. Though even the initial 

range’s utility inflections never truly followed the task’s mean reward (one-sample t-test; monkey A: 

t(20)low-range = 3.849, p = 0.001; monkey B: t(23)full-range = 2.534, p = 0.019; monkey C: t(13)high-range = 

4.267, p = 1.103 x 10-4), the difference between mean rewards and inflections became markedly larger 

for monkeys A and B when they were introduced to new reward ranges (Kruskal-Wallis test; monkey 

A: H(2,58)= ` 40.052, p = 2.008 x 10-9; monkey B: H(2,40)= ` 16.806, p = 2.242 x 10-4). Importantly, 

the differences were always skewed towards the past range’s reward distribution. As reward ranges 

changed, monkey A and B’s references appeared to lag in fully adapting to the new ranges. Monkey C, 

on the other hand, saw no differences between its two reward ranges (H(1,54) = 0.021, p = 0.884) – 

presumably because of the 54-week gap between the two sets of measurements.  

To better understand and quantify the lag in fully adapting to current reward, I built a simple reinforce-

ment-learning model that predicted the reward distributions most likely to have shaped monkeys’ util-

ities (Sutton & Barto, 2018). Assuming the ‘normal’ form and a simple Rescorla–Wagner learning rule, 

the model then identified the distributions closest to the one captured by monkey’s daily utility measures 

(that is, seeing utilities as the cumulative representation of the reward distribution the monkeys most 

expected). These distributions’ means and standard deviations (STD) were given by the following rule:  

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖  =  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖−1 + 𝜂𝜂 (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 −  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖−1) ( 2-13 ) 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖  =  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖−1 + 𝜂𝜂 (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 −  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖−1)  ( 2-14 ) 

where each day’s ‘expected’ distribution relied on predictions from the previous day (i-1), as well as the 

learning rate (𝜂𝜂) at which monkeys learn from the difference between these predictions (expectedi-1) 

and reality (reali) – the prediction error. Importantly. the first expected parameters were assumed to be 

the statistics that the monkey first observed, because of this as 𝜂𝜂 would get closer to 1, it would indicate 

that predictions adapted instantly to new ranges; if 𝜂𝜂 was closer to 0, it indicated preferences had relied 

only on early observations (i.e. the first distribution of rewards that the monkey experience). The func-

tions were fitted by minimizing the sums of square differences between the cumulative distribution 

function of these curves and the utility of the CEs that had been previously measured using the fractile 

method. 

Though far from a perfect fit, this simple reinforcement model offers some much-needed insight as to 

the role that expectations played in shaping the monkeys’ preferences. Monkeys A, B, and C had learn-

ing rates of 0.62, 0.81, and 0.62, respectively; that is, their preferences adapted quickly to new reward 
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distributions, but not fully. The recent past also had a role to play, albeit marginal, in shaping the relative 

value of rewards. Figure 2-9 illustrates both these ‘expected’ distributions as well as the ‘true’ distribu-

tions of the utility curves (as measured by the first derivative of the utility functions). Notice how the 

expected distributions spill over reward range changes only for the first couple of days. If preferences 

are built around expectations, then the utilities that best described these preferences point to these mon-

keys using mostly present but also past information to shape them. 

2.4 Discussion 
In the present study, I investigated the role that task-specific expectations have in shaping the prefer-

ences of macaque monkeys. In line with human research on reference-dependent preferences (Arkes et 

al., 2008, 2010; Koszegi & Rabin, 2007), monkeys’ risk preferences shifted following changes to the 

range of rewards they could expect from the task at hand. As the rewards that the task delivered got 

higher, the reward magnitude at which their risk-attitudes shifted also became higher. Modelling the 

utility functions that best captured the monkeys’ behaviour, I found that changes in their risk-prefer-

ences mimicked the changes predicted in models like Prospect Theory (Kahneman & Tversky, 1979): 

the points at which utility shifted from convex to concave closely followed what I would consider plau-

sible expectations in the task.  

Taking the position of S-shaped utilities as a proxy for the monkey’s expectations, our findings suggest 

that monkeys partially adapted their preferences to account for new ranges of rewards in a task. While 

they readily adapted to novel rewards, they did not readily ignore (or forget) reward information that 

was no longer relevant to the task. Rather than relying solely on the current instalment of the task to 

build their expectation, the monkeys appeared to also consider the distribution of past rewards – partic-

ularly the extremes in a range - in shaping their preferences (i.e., their utility curve). This led to partial, 

not full, adaptation.  

Monkeys A and B, for example, reliably shifted their reference point when possible rewards went from 

lower to higher magnitudes. When looking at the utility function that best represented their preferences, 

the monkeys’ utilities appeared to scale instantly to represent the now broader realm of possible re-

wards. Conversely, when possible rewards were restricted to high magnitudes only (i.e., high-range), 

the monkeys did not adjust their preferences in a way that accounted for the unavailability of lower 

magnitudes – even after many days. Where they had previously been flexible in rescaling preferences, 

the monkeys’ preferences in the high range (where low rewards were never delivered) stubbornly re-

flected the higher-half of full-range utilities. And while the shift from low to high range seemed to 

induce partial, almost full adaptation – the shift from full to high range reflected a move along a fixed, 

absolute utility instead. The data from monkey C, where different reward ranges were tested 54 weeks 

apart, corroborated this expectation-based interpretation by providing a window on the adaption of util-

ities after a year. While monkeys A and B experienced every range in the span of just a couple of 
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months, the effects of past high rewards on monkey C would have been minimal. In that respect, it came 

as no surprise that monkey C’s lower range utilities took the form of fully rescaled full-range ones24.  

The idea that preferences adapt to fit the range of possibilities is neither new nor unfounded (Brunswik, 

1956; Gigerenzer et al., 1991; Glöckner et al., 2014; E. U. Weber & Johnson, 2008). Indeed, while 

prospect theory rests on reference-dependence, several newer models mimic RDU in that they claim 

that the value we imbue our options with rely on the other options we have at our disposal (Hunter & 

Gershman, 2018; Loomes & Sugden, 2006; Parducci, 2012; Steward et al., 2003; Yaari, 2006). Like-

wise, it has long been known in psychology and neuroscience that range-adaptation is an inherent fea-

ture of the brain (Louie & De Martino, 2013). In sensory systems, for example, neuron’s maximize their 

efficiency by tuning their firing rates to match the distribution of sensory signals (Carandini & Heeger, 

2012; Laughlin, 1981) – the same is thought to occur, to varying degrees, in the brain areas that encode 

value (Burke et al., 2016; Shunsuke Kobayashi et al., 2010; Louie et al., 2015; Padoa-Schioppa, 2009; 

Tobler et al., 2005; Tremblay & Schultz, 1999). Specifically, and supporting the idea of range-depend-

ent utility, neurons in the primate prefrontal cortex have recently been recorded adapting their firing 

rate to different reward ranges in a way similar to our monkeys’ utility curves. In a study by Conen and 

Padoa-Schioppa (2019), rhesus macaques only partially rescaled the value of juice rewards relative to 

the other possibilities in a given block of choices. When recording from neurons in the monkeys’ or-

bitofrontal cortex (an area in the prefrontal cortex often linked to subjective value), the researchers 

found that the neural code mimicked behavioural measurements in that it partially adapted to match the 

specific reward distributions of different blocks within the broader context of all past rewards. Crucially, 

two processes seemed to drive this adaptation: the first, a slow and adaptive learning process about the 

outcomes one can expect (e.g., reinforcement learning25, see (Bavard et al., 2018; Rudebeck & Murray, 

2014; Wilson et al., 2014); the second, a rapid weighing of rewards relative the decision-makers present 

context (e.g., normalization26, see Louie et al., 2013; Hiroshi Yamada, Louie, Tymula, & Glimcher, 

2018; Zimmermann et al., 2018)).  

Partial adaptation is likely to underlie the brain’s ability to maximize ‘local’ decisions, all while placing 

these decisions in a much broader context (i.e., relative past experiences; Conen & Padoa-Schioppa, 

2019; Fairhall, Lewen, Bialek, & De Ruyter van Steveninck, 2001; Rustichini, Conen, Cai, & Padoa-

Schioppa, 2017). When comparing similarly-priced wines, for example, we manage to select our 

                                                      
24 We see a similar effects with Monkey A’s utilities that had been previously estimated (years ago) in a different 
experiment and setup (Genest et al., 2016). 
25 A likely candidate for the adaptive learning process is that of reinforcement learning: a process intimately tied 
with the orbitofrontal cortex and its interactions with the dopaminergic system (for review, see Soltani & 
Izquierdo, 2019). My own results suggest that reinforcement learning (albeit an over-simplified form) can help 
explain the role of experience in shaping current preferences. 
26 For the more local, relative encoding of rewards, evidence points to divisive normalization: the canonical pro-
cess by neurons tune their firing rates to match the distribution of available stimuli.  
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favourite from relatively narrow distributions (similar prices) while still placing our selection relative 

to a much broader price distribution (our past experiences with wines). It has recently been suggested 

that this ability to flexibly optimize ‘local’ decisions while keeping track of past outcomes underlies the 

formation of cause-and-effect relationships in our thinking (Bavard et al., 2018). If this is the case, then 

the changes observed in our monkeys’ utility functions suggest that the animals truly had an expectation 

or an internal model about the rewards they could get in the task at hand.  

Overall, and in line with the current view from neuroeconomics, I showed that the preferences of ma-

caque monkeys’ scale in a way that reflects both inherent properties (and indeed limitations) of the brain 

and the statistics of the task at hand. Put most poetically by the economists Herbert Simon, our mon-

keys’ decision appeared “… shaped by scissors whose two blades are the structure of the task environ-

ments and the computational capabilities of the actor” (Simon, 1990, p.7). Perhaps it is time we con-

sider this in building the next generation of predictive economic models. 
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Chapter 3  
Comparing the risky and riskless choice 

preferences of rhesus monkeys 
  

3.1 Introduction 
Whether we are choosing between fruits or vegetables at the supermarket, deciding to jaywalk in the 

face of incoming traffic, or picking the ideal friends to go traveling with, most of our decisions fall 

under two categories: some have certain outcomes, some do not. Economists call these risky or riskless 

decisions (‘risk’ referring to the uncertainty of a choice’s outcome), and - while vastly untested – there 

is general agreement in economics that peoples’ preferences in one type of situation parallels prefer-

ences in the other.  

In economics, Expected Utility Theory (EUT) served as the dominant model of risky decision-making 

until the inception of behavioural economics in the 1970s. Under EUT, a decision-maker’s attitude 

towards risk was captured by the curvature of their utility function: a mapping of outcomes and rewards 

onto an internal, subjective metric. Concavity predicted an aversion to risk, while convexity predicted 

risk-seeking behaviour (von Neumann & Morgenstern, 1944). From this, economists assumed that what 

accounted for risky preferences in uncertain decisions, i.e., the curvature, could also readily be inter-

preted as increasing or diminishing preference for larger quantities of a certain outcome (H. F. Barron 

et al., 1984; Keeney & Raiffa, 1993; Stalmeier & Bezembinder, 1999). Contrasting with this interpre-

tation of EUT, Prospect Theory (PT) highlighted an additional difference between risky and riskless 

choices through the introduction of subjective probability weightings. Rather than being solely pre-

dicted by an individual’s utility curvature, one’s risk-attitude would also vary with their subjective 

treatment of outcome probabilities (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992). In other 

words, while EUT assumed that risk attitudes derived exclusively from the way in which people value 

rewards, PT made the case for two components: again, the curvature of utility (i.e., reward valuation), 

but also the subjective weighting of uncertainty (i.e., distorted probabilities).  

PT has since become widespread in the study of risky and riskless decision-making (Camerer et al., 

2002; Hertwig & Erev, 2009; Kahneman et al., 1990; Lattimore et al., 1992). But with all the studies 

on behaviour that make use of PT, there is a remarkable lack of research validating its predictions in 

both risky and riskless choices; the limitation being that risky utilities (or PT values) are usually meas-

ured from choices between risky options (Stott, 2006; Tversky & Kahneman, 1992). This clearly cannot 
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be done in a riskless context, but one interesting avenue has been to compare risky and riskless prefer-

ences via introspective metrics. In a study by Stalmeier & Bezembinder (1999), medical patients were 

asked questions that involved risky outcomes: “would you rather: live 20 years with a migraine on x 

days per week (followed by death), or live 20 years with a p% chance of getting migraines y times a 

week, z times a week otherwise”; and questions where all options were riskless: “which difference is 

larger: the difference between 0 days of migraine and x days of migraine, or the different between x 

days of migraine and 3 days of migraine”. Modelling preferences through PT, they found that risky and 

riskless utilities were identical, and that probability distortion accounted for most of the discrepancy 

between the risk attitudes predicted by riskless utilities and the risk attitudes measured from risky 

choices. A similar approach by Abdellaoui, Barrios, & Wakker (2007), this time using money outcomes 

(gains) rather than medical outcomes (losses), led to the similar conclusion: PT successfully reconciled 

risky and riskless utilities.  

Nonetheless, since the subjects in these studies were generally risk-averse (for gains), it remains to be 

seen whether PT also reconciles risky and riskless utilities for risk-seeking decision-makers. Addition-

ally, the results of these introspective studies have recently been challenged by a set of studies using a 

more modern, incentive-compatible approach: the use of time trade-offs as means to study riskless de-

cisions (Cheung, 2016). In these studies, people make choices between larger rewards delivered in the 

future (with certainty) and smaller rewards delivered now; utilities from intertemporal choices are then 

compared to those estimated from risky choices. Unlike introspective experiments, however, the ma-

jority of the research done on time trade-offs reports discrepancies between riskless, time-discounted 

utility functions and risky ones (Abdellaoui, Bleichrodt, L’Haridon, & Paraschiv, 2013; Andreoni & 

Sprenger, 2012; Cheung, 2015; Lopez-Guzman, Konova, Louie, & Glimcher, 2018, but see Andersen 

et al., 2011) - discrepancies that even probability distortions cannot resolve.  

The lack of clear insight as to PT’s ability to reconcile risky and riskless choices represents a crucial 

limitation to the interpretation of the model; particularly as it rapidly becomes the de facto model of 

choice to study animal behaviour and neuroeconomics (X. Chen & Stuphorn, 2018; De Martino et al., 

2006; Farashahi et al., 2018; Ferrari-Toniolo et al., 2019; Lakshminarayanan et al., 2011; Marshall & 

Kirkpatrick, 2015; Stauffer et al., 2015). Simultaneously, since there have been no attempts at reconcil-

ing risky and riskless utilities in nonhuman decision-makers, there is no evidence to suggest that either 

human interpretations can be used. To address this important lacuna, the present study explores the link 

between the risky and riskless utilities of our close primate relative: the rhesus macaque. I presented 

monkeys with two types of binary choice trials: risky trials, where monkeys made choices between 

certain and uncertain juice rewards; and riskless trials, where the monkeys make choices between two 

certain juice rewards. Like in previous human and macaque experiments, I used the monkeys’ propen-

sity to choose uncertain, equiprobable rewards (with varying risk) over several certain ones to estimate 

the shape of the utility curves that best described their preferences for risk. For riskless choices, utilities 
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were estimated using the random utility maximisation (RUM) framework (for review, see McFadden, 

2001). Rather than asking monkeys about the strength of their preferences (as in introspection studies), 

I measured it directly via the degree of stochasticity they displayed for choices between repeated reward 

pairs. Since RUM assumes an inherent noisiness on the utilities assigned to reward options, reward 

pairs where utilities were closer together inevitably led to more stochastic choices. This assumption was 

used to predict the relative slope of riskless utilities for different reward magnitudes: choices that were 

more random suggested a relatively flatter curvature of the utility function than choices that were more 

certain. Importantly, this risky/riskless design addressed two of the most important caveats in human 

studies: (i) both risky and riskless trials were now incentive compatible (relying on revealed preferences 

rather than introspection), and (ii) choices were presented in the exact same way for both risky and 

riskless sequence (no time trade-off). 

By parametrically separating the contributions that utility and probability distortion had on the mon-

keys’ risky choices, I found that, just like the human studies had previously shown, risky utilities were 

closer to riskless utilities once probability distortions had been accounted for. I did not, however, find 

that these utilities were identical. In fact, after re-estimating risky utilities from a different set of choices 

(this time with gambles that were both equiprobable and equivariant) I found that more than just a 

risky/riskless dichotomy, the simple act of holding risk as a constant versus having risk vary led to the 

monkeys exhibiting significantly different patterns of choice.  

Overall, while the hypothesis guiding this study was that PT would successfully reconcile risky and 

riskless choices, I found that the sole addition of probability distortions to the utility framework did not 

bring the risky and riskless utilities of macaque monkeys inline. In fact, more than a simple difference 

in risky/riskless choices, I found that even in risky scenarios, the utilities measured from one type of 

sequence (varying risk) could not, under PT, predict choices in another type of sequence (constant risk). 

3.2 Methods  
The premise of this study was to compare the utilities estimated from monkeys’ choices in risky or 

riskless settings. To do so, monkeys were presented with sets of choices that could then be translated 

into utility metrics. Those utilities measured from riskless choices were compared, first with utilities 

derived from risky choices, assuming no subjective weighing of probabilities (EUT utilities), then with 

risky utilities where the contribution of probability distortion had been accounted for separately (PT 

utilities). Afterwards, since the utilities in each pairing had been found to differ significantly, I added 

an additional out-of-sample test where I compared the behaviour predicted from these utilities to be-

haviour in a different set of risky choices. Each of these steps are discussed in further detail in the 

following sections. 
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Figure 3-1 | Experimental design and measures of risky and riskless choices. a) Binary choice task. The 
monkeys chose one of two gambles with a left-right motion joystick. They received the blackcurrant juice reward 
associated with the chosen stimuli after each trial. Time, in seconds, indicate the duration of each of the task’s 
main events. b) Schema of visual stimuli. Rewards were visually represented by horizontal lines (one or two) 
set between two vertical ones. The vertical position of these lines signalled the magnitude of said rewards. The 
width of these lines, the probability that these rewards would be realized). c) Estimating certainty equivalents 
from risky choices. Monkeys chose between a safe reward and a risky gamble on each trial. The safe rewards 
alternated pseudorandomly on every trial – they could be of any magnitude between 0 ml and 0.5 ml in 0.05 ml 
increments. Each point is a measure of choice ratio: the monkey’s probability of choosing the gamble option 
over various safe rewards. Psychometric softmax functions (Eq. 3-1) were fit to these choice ratios, then used to 
measure the certainty equivalents (CEs) of individual gambles (the safe magnitude for which the probability of 
either choice was 0.5; black arrow). The solid vertical line indicates the expected value (EV) of the gamble 
represented in the box. d) Estimating the strength of preferences from riskless choices. Riskless safe rewards 
were presented against one another, the probability of choosing the higher magnitude option (A) is plotted on 
the y-axis as a function of the difference in magnitude between the two options presented (∆ magnitude). The 
differences in magnitude tested were 0.02 ml, 0.04 ml, 0.06 ml, and a psychometric curve, anchored with its 
inflection anchored at a ∆ magnitude of 0, were fit on the choice ratios measured (Eq. 3-2). These functions were 
fit to different magnitude levels, and the temperature of each curve reflected the strength of monkeys’ prefer-
ences at each of these different levels.  
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3.2.1 Task Design and Setup 

Two male rhesus macaques (Macaca mulatta) repeatedly chose between two reward options (reward-

predicting stimuli) presented on an upright computer monitor. While sitting in a primate chair (Crist 

instruments), they used a left-right joystick (Biotronix Workshop, the University of Cambridge) to in-

dicate their choice on each trial and received the reward they selected at the end of each of these binary 

choice trials (Fig. 3-1a).  

Reward options took the form of various combinations of reward magnitude and probability, and were 

represented on the monitor through horizontal lines that scaled, and moved, relative to two vertical 

‘framing’ lines (fig 3-1b). Reward magnitudes were represented by the vertical position of the horizon-

tal lines: 0 ml at the bottom of the vertical frame (1.5ml at the top, and 0 < m < 1.5 in-between), whilst 

the probability of receiving said reward was represented by the width of the horizontal lines within the 

frame. A single, horizontal line that touched the frames at both ends signalled a 100% probability of 

getting that reward (certain outcome); multiple lines that failed to touch the frames indicated probabil-

istic gambles of probability 0% < p < 100% (Fig. 1a). The monkeys were trained to associate these two-

dimensional visual stimuli with blackcurrant juice rewards over the course of two years, and both mon-

keys had previous experience with the task and stimuli before this study. They had both experienced 

reward probabilities that ranged from 0 to 100% (Ferrari-Toniolo et al., 2019), and reward magnitudes 

that ranged from 0ml to 1.3ml of juice (see chapter 2). For this study, reward magnitudes were held 

between 0ml and 0.5ml of blackcurrant juice, and gamble options all had a probability of 50%.  

Each binary choice trial began with a white cross at the centre of a black screen, if the monkey was 

holding the joystick, a cursor would also appear on the screen (Fig. 3-1a). Using the joystick, the mon-

keys initiated each trial by moving the cursor to the centre cross and holding it there for 0.5-1s. Follow-

ing this holding period, two reward options appeared to the left and to the right of the central cross (see 

Fig. 1a). The animal had 3s to convey his decision by moving the joystick to the selected side and 

holding his choice for 0.1-0.2s - the unselected option would then disappear. The selected option lin-

gered on the screen for 1 s after reward delivery – followed by a variable inter-trial period of 1–2 s 

before the next trial. Errors were defined as unsuccessful central holds, side selection holds, or trials 

where no choices were made. Each of these resulted in a 6 s timeout for the animal, after which the trial 

would be repeated (ensuring the elicitation of preferences for each tested option pair). Additionally, all 

reward options were repeated on both the left and right sides of the computer screen, alternating pseu-

dorandomly to control for any side preference. Both the joystick position and task event times were 

sampled and stored at 1 kHz on a Windows 7 computer running custom MATLAB software (The Math-

Works, 2015a; Psychtoolbox version 3.0.11). I collected on average 423 ± 91 (STD) trials per session 

over 22 sessions for monkey A, and 338 ± 41 trials over 7 sessions for monkey B. Only trials where the 

option pair had been repeated at least 4 time were analysed in this study. Data processing and statistical 

analyses were run in python (Python 3.7.3, SciPy 1.2.1, see Oliphant, 2007). 
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3.2.2 Revealing preferences for risky and riskless choice 

The monkeys’ daily reward preferences were measured in risky and riskless choice sequences under the 

framework of utility maximisation. In risky choice sequences, trials always pit a risky gamble against 

a safe option –the utility of different reward magnitudes was estimated via the ratio of choices between 

different gamble and safe rewards. All of the gambles comprised two equally likely reward outcomes 

(though one could be 0ml). In riskless choice sequences, monkeys were presented with pairs of ‘safe’ 

options with a single fixed outcome – I used the ratio of choice between pairs of rewards that always 

differed by the same magnitude amount to estimate utility.  

For risky sequences, utilities were estimated using the fractile-bisection procedure – a method that in-

volves dividing the range of possible utilities into progressively smaller halves (or fractals) and esti-

mating the reward magnitude associated with each of these utility fractals. Simply put, the procedure 

defined set utility metrics (in this case ½, ¼ and ¾, and 1/8 and 7/8 of the maximum utility, see fig 2ab) 

for which the corresponding safe rewards were derived (Fig. 3-2a).  

Utility values of 0 and 1 were arbitrarily assigned to 0ml and 0.5ml of juice, respectively. Since mon-

keys only experienced trials set between these reward magnitudes, this constrained all utility estimates 

between a 0 and 1. Then, in accordance with EUT27, a utility of 0.5 was assigned to the equiprobable 

gamble formed of these two magnitudes (0.5 = [0.5 * 0ml] + [0.5 * 0.5ml]). The first step of the proce-

dure involved presenting the monkeys with choices between this gamble and varying safe rewards (in 

0.05ml increments), from these, the safe reward that was equivalent to the gamble in utility terms was 

identified (i.e., the safe reward chosen in equal proportion to the gamble; see Fig 3-1c).  

To estimate this safe reward, the following logistic sigmoid curve was fitted to the proportion of safe 

choices for each of the gamble/safe pairing:  

𝑃𝑃(𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)  = 1/(1 +  𝑒𝑒−�
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚 − 𝑥𝑥0

𝜎𝜎 �      ( 3-1 ) 

Where probability that the monkeys would choose a safe reward over the 0.5 utility gamble (P(ChooseSafe)) 

was contingent on the safe option’s magnitude (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚) and two free parameters: x0, the x-

axis position of the curve’s inflection point, and σ, the function’s temperature. Importantly, this func-

tion’s inflection point represented the exact safe magnitude for which the monkeys should be indifferent 

between the set gamble and a given safe reward. The x0-parameter could thus be used as a direct estimate 

of the gamble’s certainty equivalent (CE), or, put simply, the safe reward equivalent to a utility of 0.5. 

                                                      
27 The fractile procedures does not separate the effects of probability distortion from the effects of utility on 
choices. It therefore relies on EUT’s formulation that EU = p x u(ml). This limitation will later be addressed using 
a PT-derived discrete choice model with which the individual contributions of probability distortion and utility 
can be separated. 
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Only sequences that contained a minimum of three different choice pairs (repeated at least 4 times) 

were used in the elicitation of CEs. 

From the CE identified as the 0.5 utility value, two new equiprobable gambles were created representing 

utility values of 0.25 (¼ of the utility range) and 0.75 (1/4 and ¾ of the utility range, respectively). Of 

the two new gambles, one was set between 0ml and the first CE’s ml value, the other was set between 

the first CE and 0.5ml (Fig. 3-2b). The CE elicitation procedure (logistic fitting, Fig 3-1c) was repeated 

for each of these gambles. Crucially, gamble/safe pairings for both gambles were interwoven in the 

same sequence – to ensure a similar spread in the presented rewards.  

After eliciting the CEs of these gambles, the estimation procedure was repeated one final time with the 

new CEs as the upper or lower gamble outcomes. Here, the fractile procedure would automatically 

terminate if no safe rewards could fit between the outcomes of the new gambles; this would occur if the 

animal was particularly risk-seeking or risk-averse. If this was the case, utilities of 0.25, 0.5, and 0.75 

would be mapped onto the appropriate reward magnitudes and the elicitation sequence would end. If, 

instead, the three fractile steps were successful, the procedure would result in a mapping of five utilities, 

0.125, 0.25, 0.5, 0.75, and 0.875, onto five safe rewards. Only sequences where at least 3 utility points 

were successfully identified were used in the study (monkey A, 22 sessions; monkey B, 7 sessions).  

For riskless choice sequence, choice ratios between pairs of safe options were measured - this time 

looking at the likelihood of a monkey choosing the high magnitude option over the lower magnitude 

one (Fig. 3-1d). The range of juice rewards (0.05 ml to 0.5 ml) was divided into sets of 0.05 ml incre-

ments and safe-safe pairs centred on these magnitude increments. For each increment, I defined three 

sets of safe-safe choices where each pairing differed by 0.02ml, 0.04ml, or 0.06 ml. The small size of 

these differences ensured that choices would be stochastic. These differences are hereafter defined as 

‘gaps’, i.e., safe-safe pairings of fixed differences, where three sets of gaps were anchored at each in-

cremental ‘midpoint’.  

The likelihood of choosing the higher magnitude option in different gap-midpoint pairings was used to 

infer the shape of the monkeys’ utility functions (Fig. 3-3a,b,c). Specifically, the difference between 

the likelihoods of choosing the better options, at different midpoints, reflected the separability of the 

utility of different reward magnitudes. Under RUM, the degree of certainty with which choices are 

made (i.e., the closer choice ratios are to 100%) directly correlates with the separability of the noisy 

utilities that correspond to each option in a choice (see this thesis’ Methods Interlogue). Practically 

speaking, this implies that, looking at repeated choices between two set magnitudes, a decision-maker 

with a flatter utility function should exhibit more stochasticity in their choices (i.e., less precision) than 

a decision-maker with a steeper utility (i.e., more precision). Changes in choice ratios between sequen-

tial midpoints, as averaged across gaps, could therefore be used as a proxy for a monkeys’ utility slope. 
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To estimate these RUM-compliant utilities, logistic curves were fitted to the likelihood of choosing the 

better option (for the three gaps) at every midpoint level (Fig 3-3a): 

𝑃𝑃(𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒)  = 1/(1 +  𝑒𝑒−�
𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚 

𝜎𝜎 �)        ( 3-2 ) 

Unlike for CE estimation, this logistic function captured the likelihood of choosing the high-magnitude 

option (in a safe-safe pairing) contingent on the gap between the two options (𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚) and σ, the logistic 

function’s temperature. Just as is the case for CE estimation however, the utility estimates relied on 

aggregate choices between multiple reward pairs. The logistic fit also highlighted sequences where 

monkeys would not follow even the most basic principle of rational choice: weak stochastic dominance 

(picking an objectively lower outcome). Choices where this was the case were removed from all future 

analyses: that is, when the estimated temperature parameters of logistic fits were negative (i.e., the 

larger the gap, the lower the likelihood of choosing the better option). 

Where logistic fittings were successful, the functions were used to estimate the higher-lower choice 

ratio, at each midpoint, assuming a magnitude gap of 0.03ml (Fig. 3-3a). Then, the inverse cumulative 

of a logistic probability density function (centred at 0 with variance = 1) was used to estimate the dis-

tance, in utility terms, between the two magnitudes in the 0.003ml gap (Fig. 3-3b). In other words, these 

0.03ml gaps were placed onto a shared scale (i.e., random utilities) through the assumption that, on each 

trial, the probability that the monkeys would pick the better reward (𝑥𝑥𝑖𝑖) was given by:  

𝑃𝑃(𝑥𝑥𝑖𝑖)  =  𝑃𝑃[𝑈𝑈(𝑥𝑥𝑖𝑖)  ≥  𝑈𝑈(𝑥𝑥𝑗𝑗)],𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 ≠ 𝑗𝑗       ( 3-3 ) 

𝑃𝑃(𝑥𝑥𝑖𝑖)  =  𝑃𝑃[𝑢𝑢(𝑥𝑥𝑖𝑖)  +  𝜀𝜀𝑖𝑖  ≥  𝑢𝑢(𝑥𝑥𝑗𝑗)  + 𝜀𝜀𝑗𝑗 ].𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 ≠ 𝑗𝑗      ( 3-4 ) 

𝑃𝑃(𝑥𝑥𝑖𝑖)  =  𝑃𝑃[𝑢𝑢(𝑥𝑥𝑖𝑖)  −  𝑢𝑢(𝑥𝑥𝑗𝑗)  ≥  𝜀𝜀𝑗𝑗  −  𝜀𝜀𝑖𝑖  ],𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 ≠ 𝑗𝑗       ( 3-5 ) 

In this form, the probability of choosing 𝑥𝑥𝑖𝑖 rather than 𝑥𝑥𝑗𝑗 was given by the probability that the difference 

in the true utilities of 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 was greater or equal to the noise on 𝑥𝑥𝑗𝑗 (𝜀𝜀𝑗𝑗) minus the noise on 𝑥𝑥𝑖𝑖 (𝜀𝜀𝑖𝑖). 

From this, it followed that the distribution of noise differences could be used as a predictor of the dis-

tance between the two true utilities (𝑢𝑢(𝑥𝑥𝑖𝑖) and 𝑢𝑢(𝑥𝑥𝑗𝑗)). Because of the assumption of constant noise, the 

probability of choosing 𝑥𝑥𝑖𝑖 over 𝑥𝑥𝑗𝑗 would be directly proportional to the distance between the true utility 

of two options. In accordance with McFadden’s formulation (McFadden, 1974a, 2005; Stott, 2006), I 

assumed that the distribution of error differences (𝜀𝜀𝑗𝑗  −  𝜀𝜀𝑖𝑖) took a logistic form:  

𝑃𝑃(𝑥𝑥𝑖𝑖)  =  1
(1+𝑒𝑒−∆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 )

            ( 3-6 ) 

and then used the inverse of this logistic distribution’s CDF to estimate the difference in utilities 

(∆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) between the hypothetical 0.03ml reward gaps (fig 3-3c) - essentially the slope of the 
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monkeys’ utility function at every midpoint. The cumulative sum of these slopes provided an estimate 

of the utility at each midpoint.  

3.2.3 Modelling risky and riskless choices with Prospect Theory 

Because the utilities measured from aggregate behaviour did not dissociate between the effects of prob-

ability distortion and utility on choices (i.e., they were EUT utilities rather than PT ones), parametric 

utility functions were re-estimated from individual choices using a discrete choice model that could 

account for the effects of both, separately. This placed both utility metrics on a common and comparable 

scale, and, most importantly, it allowed for the inclusion of probability distortion as an additional con-

tributor to the monkeys’ preferences.  

As in most discrete choice models (and in line with the aggregate RUM metric), a logit function (soft-

max) was used to represent noise in the decision-making process. The probability of the monkey making 

either a left or right option was therefore given by:  

𝑃𝑃𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  = 1

(1+𝑒𝑒−𝜆𝜆(𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿−𝑉𝑉𝑅𝑅𝑅𝑅ℎ𝑡𝑡 − 𝜃𝜃)       ( 3-7 ) 

Where the probability of choosing the left option is a function of the difference in value between the 

left and right options, the temperature (or noise) parameter, 𝜆𝜆, and the side bias parameter 𝜃𝜃. The value 

of each option (VLeft, VRight) took on the functional form prescribed by PT: 

𝑉𝑉(𝑝𝑝,𝑚𝑚)  =  𝑤𝑤(𝑝𝑝) ∗ 𝑢𝑢(𝑚𝑚)        ( 3-8 ) 

where the value of an option was the product of a power-function distorted probability:  

𝑤𝑤(𝑝𝑝)  = 𝑝𝑝𝜌𝜌,  (𝜌𝜌 =  1 𝑖𝑖𝑖𝑖 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)     ( 3-9 ) 

and the utility of the option’s outcome was prescribed the CDF of a two-sided power distribution (Kotz 

& Dorp, 2010):  

𝑢𝑢(𝑚𝑚)  =  �
𝜅𝜅 × �𝑚𝑚

𝜅𝜅
�
1/𝛼𝛼

,𝑓𝑓𝑓𝑓𝑓𝑓 0 ≤  𝑚𝑚 ≤  𝜅𝜅

1 −  (1 − 𝜅𝜅) × �1−𝑚𝑚
1−𝜅𝜅

� 1/𝛼𝛼,𝑓𝑓𝑓𝑓𝑓𝑓 𝜅𝜅 < 𝑚𝑚 ≤ 1
      ( 3-10 ) 

In the case of the probability distortion function, the ρ-parameter prescribed either an overweighing (ρ 

>1) or underweighting (ρ<1) of an outcome’s probability. The utility prescribed by the 2-parameter 

CDF of a two-sided power distribution assigned utility measures as a function of an α-parameter (the 

function’s temperature) and an inflection point κ, where the curvature of the utility function would 

invert. Importantly, for the utility function, the κ was bounded by the range of outcome magnitudes 

experienced by the monkeys (0ml and 0.5ml) – and each outcome magnitude was normalized onto a 0-

1 scale.  
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Each of these parameters was fit to single-choice data by minimizing the sum of negative log-likeli-

hoods defined on the model as: 

𝐿𝐿𝐿𝐿(𝜃𝜃| 𝑦𝑦)  = −�∑  𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖 = 1 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿� + ∑  𝑦𝑦𝑖𝑖′𝑛𝑛

𝑖𝑖 = 1 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙�1 −  𝑃𝑃𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�� ( 3-11 ) 

For each individual choice trial, i, y and y’ indicated a left or right choice (1 if yes, 0 if no), n was the 

total trial number for the session, and 𝑃𝑃𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 was the output of the earlier logistic function (Eq. 3-

3). This discrete choice analysis was restricted to choice sequences previously deemed appropriate for 

the aggregate preference estimations described in earlier sections. 

3.2.4 Statistical comparison of risky and riskless choices 

Estimating utilities through discrete choice modelling allowed for the comparison of the functional pa-

rameters that best described the monkeys’ decisions in risky and riskless conditions, and to explore the 

unique contributions of both magnitudes (utility) and probabilities (probability distortion) in a way that 

aggregate, non-parametric measures did not permit – mostly because of scaling.  

Because the logit function’s 𝜆𝜆-, and the utility’s α-parameters were asymmetrically distributed (with 

values <1 accounting for as much change as values >1), these were log-transformed before proceeding 

with any comparison. Then, the parameters elicited in risky choice sequences were compared to those 

estimated from riskless sequences using a one-way multivariate analysis of variance (or MANOVA) 

whereby the main comparison factor in the analysis was the risk-riskless condition described by each 

set of parameters. Since the probability distortion parameter for riskless choices was constant and fixed 

at 1, I restricted the MANOVA analysis to the softmax and utility parameters. I then ran additional 

correlation analyses (Pearson’s R) between risky and riskless utility parameters to determine if the pa-

rameters in one set of choices could predict those of another.  

All parameters were compared independently for each monkey, results were never pooled across ani-

mals, and the statistics for each monkey are reported separately. All statistical analyses were considered 

significant at p < 0.05.  

3.2.5 Predicting choices from risky and riskless utilities 

To better visualize and understand how the different parameters would translate to behaviour, the daily 

utility and (when applicable) probability distortion functions estimated from risky and riskless choices 

were used to predict the certainty equivalents (CE) of four different equivariant gambles (Fig 3-6a). 

Since each daily set of parameters led to four different CEs, these estimates formed distributions that 

could easily be contrasted with each other and with true, measured behaviour.  

Choice sequences to measure these four gambles’ CEs were presented to the monkeys on different days 

– these CEs were then compared to those predicted by the risky/riskless functional estimates. Including 

the measured CEs, four sets of four CEs (one real, three predicted) were compared using a two-way  
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Figure 3-2 | Estimating risky utilities using the fractile procedure. a) Fixed utilities are 
mapped onto different reward magnitudes. The gambles that monkeys experienced are de-
fined from bisections of the range of possible reward magnitudes. For each step the gambles 
were held fixed; safe magnitudes varied by 0.05ml increments. b) Estimation of utility using 
the stepwise, fractile method. In step 1, the monkeys were presented with an equivariant 
gamble comprised of the maximum and minimum magnitudes in the tested reward range. 
The CE of the gamble was estimated and assigned a utility of 50%. In step 2, two new 
equivariant gambles were defined from the CE elicited in step 1. The CEs of these gambles 
were elicited and assigned a utility of 25% and 75%. Two more gambles are defined in step 
3, from the CEs elicited in step 2. Their CEs were then assigned a utility of 12.5% and 
87.5%. Parametric utility functions, anchored at 0 and 1, were fitted on these utility estimates 
(see methods). c) Datapoints represent CEs tied to specific utility levels, as estimated 
through the fractile procedure. Both monkeys exhibit risk-seeking behaviour for low-mag-
nitude rewards, and risk-averse behaviour for high-magnitude ones. The data represents in-
dividual utility estimates gathered over 22 sessions for monkey A, and 7 sessions for mon-
key B.  
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Figure 3-3 | Estimating riskless utilities from the stochasticity in safe-safe choices. a) Measuring mean stochasticity in 
choices between safe reward pairs. The likelihood that a monkey would pick the better of two safe rewards was measured 
for fixed pairs of rewards centred at different increments of the reward range. For each incremental ‘midpoint’, the likeli-
hoods were fitted with softmax curves – these were then used to estimate the likelihood that the monkeys would pick the 
better out of two rewards if these differed by a gap of 0.03ml around the midpoint. b) Using random utility to interpret choice 
ratios as differences in utility. The likelihoods that monkeys would pick the better reward given a gap of 0.03ml were trans-
formed using the inverse cumulative distribution function (CDF) of a logistic distribution. Under the random utility maxi-
mization framework, the utility of different rewards took the form of equally noisy distributions centred at the monkeys’ 
‘true’ utilities. The output of inverse CDFs is the distance between these random utilities (that is, the marginal utility at a 
given midpoint). c) From marginal utilities to utility. Because the distances between random utilities represented estimates 
of marginal utility for each midpoint, the cumulative sum of these measurements approximated a direct utility measurement 
for each of these midpoints. These measurements were normalized whereby the utility of the highest midpoint was 1, and 
the starting midpoint had a utility of 0. d) Daily strength of preference estimates from softmax fits. Each point represented 
the slope temperature for a softmax curve fitted on the choice ratios for three reward gaps centred on a midpoint (x-axis). 
The lower the inverse of the temperature parameter, the steeper the softmax curve and the more separable the random utilities 
were. Lower values meant higher marginal utility measurement (steeper function), higher ones meant lower marginal utility 
(flatter function). The blue line and points represent the mean of the daily measurements. e) Daily choice ratio estimates 
from softmax fits. Estimates from the same day are linked by grey lines. Ratios of 0.5 meant that the random utility distri-
butions of the rewards separated by 0.03 ml were fully overlapping (i.e., flat utility function); choice ratios closer to 1 meant 
random utilities that were fully dissociated and non-overlapping. f) Normalized daily utilities. Utilities measured on the same 
day are linked by grey lines – these are normalized relative to the minimum and maximum midpoint fitted in the testing 
session. Utilities over the diagonal suggest monkeys were risk-averse, utilities under the diagonal signalled risk-seeking 
behaviour instead. All data in panels d-f were gathered over 22 sessions for monkey A, and 7 sessions for monkey B. Cru-
cially, the midpoints where softmax temperatures fell above 3.5 standard deviations of the median absolute deviation were 
removed from the aggregate metrics and this figure (but not from the discrete choice fittings; 14 out of 265 measurements 
for monkey A, 3 out of 62 for monkey B).  
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analysis of variance (ANOVA): (i) those predicted from riskless utilities, (ii) those predicted by a mer-

ger of riskless utilities and risky probability distortion, (iii) those predicted from risky utilities and prob-

ability distortion, and (iv) the CEs actually measured on different, out-of-sample days.  

3.3 Results 
Prospect theory assumes that the utilities that guide both risky and riskless decisions are the same; that 

what differs between the two situations is simply the way that decision-makers treat probabilities (as-

suming the reference point is constant). I sought to validate this assumption in macaque monkeys by 

comparing the decisions they made in risky versus riskless choice sequences. Two rhesus macaques 

were trained to make binary choices between pairs of rewards presented on the left and right sides of a 

digital screen (fig. 3-1a). These reward options varied in terms of blackcurrant juice quantity as well as 

the probability that they would be delivered. The monkeys received the selected rewards after every 

trial – contingent on their delivery probability.  

Choice preferences were elicited in trial sequences where either both options were certain and therefore 

riskless (probability of 100%), or in sequences where one option was safe and the other was a risky 

gamble between two juice magnitudes each delivered with probability p = 0.5 (equiprobable). I used 

these riskless or risky choices to infer an animal’s utility function, compatible with EUT, and to predict 

the monkey’s propensity to take risks. Both choice sequences were structured in a way that allowed me 

to map utilities onto aggregate behavioural metrics, and to then model these choices under the assump-

tions of Prospect Theory.  

3.3.1 Measuring risky and riskless preferences 

In risky choices, utilities were estimated by psychometrically measuring the certainty equivalent (CE) 

of equiprobable gambles through the fractile method: a stepwise procedure whereby one progressively 

sections the range of possible rewards using the CEs estimated from previous steps (Fig 3-2a,b).  

Since equivariant gambles were off-limits to estimate riskless utilities, the random utility maximisation 

(RUM) framework – essentially an extension of EUT or PT for stochastic choices – was used to estimate 

changes in utility across various magnitude intervals. Under RUM, the assumption is that the utility 

assigned to a given reward varies randomly on every trial. That is, the subjective value of a reward is 

considered noisy, and varies as if it was randomly picked from a distribution of random utilities centred 

around the reward’s ‘true’ utility (see this thesis’ Methods interlogue). The precision of a monkey’s 

choices between two rewards, under RUM, represents a direct measure of how much the random utility 

distributions representing the two rewards overlap. 

Each riskless sequence comprised a series of choices between two safe rewards that differed by fixed 

juice amounts: the gap between each pair was of either 0.02ml, 0.04ml, or 0.06ml. Each of these 3 pairs 

were then set at unique midpoint magnitudes: 0.05ml, 0.10ml, 0.15ml, 0.20ml, 0.25ml, 0.30ml, 0.35ml, 
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0.40ml, or 0.45ml. The goal was to estimate the distance between the random utilities of reward pairs, 

for each gap, at each midpoint.  

The choice ratios for each of these gap pairs, at every midpoint, were measured and fitted with psycho-

metric curves that averaged the three ratios (minimizing the impact of any erroneous measurement on 

the utility estimates; Eq. 3-2). From the psychometric fits, the choice ratio at an untested gap of 0.03ml 

was recorded as an aggregate summary of the three measured choice ratios for each midpoint (Fig. 3-

3a). These ratios were then transformed into estimates of the distance between the random utilities of 

the reward pairs (Fig. 3-3b); these distances represent the slope of the utility function at every given 

midpoint. Finally, the cumulative sum of these utility differences was calculated and normalized, 

providing daily utility measurements for each of the tested midpoints (Fig. 3-3c).  

3.3.2 The mismatch between risky and riskless utilities  

Choices measurements from risky and riskless sequences were gathered on the same day for N = 22 in 

monkey A and N = 7 for monkey B. For both risky and riskless sequences, the link between utility 

measurements and reward magnitudes was confirmed via one-way ANOVA. Looking at the effect that 

utility-specific gambles had on the CEs elicited from monkeys’ risky choices, both monkeys exhibited 

a significant main effect of utility on the CEs (Monkey A: F(4,123) = 34.123, p = 1.838× 10−24; Monkey 

B: F(4,39) = 172.537, p = 3.090 × 10−24). That is, the utilities associated with different reward magni-

tudes were significantly different (this would not have been the case if monkeys selected options at 

random). In both monkeys, the utility measurements from risky choices followed an S-shape pattern: 

the monkeys were risk-seeking for relatively low-magnitude rewards, and risk-averse for relatively 

high-magnitude ones (Fig. 3-2c). For riskless choices, rather than comparing utilities, I compared the 

temperature of the softmax curves (i.e., the slope) that described choices at each incremental midpoint.28 

Monkey B’s temperature parameters, or slopes, varied significantly depending on the midpoint magni-

tudes from which they had been estimated (Fig 3-3d; F(8,52) = 4.187, p = 6.370 × 10−4). These did not, 

however, achieve significance for monkey A (F(1,256) = 1.042, p = 0.405). The utility measurements for 

monkey B predicted risk-averse choices for the entire reward range (Fig. 3-3f, lower panel), the ones 

for monkey A predicted risk-neutrality (Fig. 3-3f, upper panel).  

Because these aggregate measurements were not (i) Prospect-Theory-compatible, and (ii) comparable 

between the risky/riskless sequences29, utilities were re-estimated and placed on a common scale using 

a discrete choice model of Prospect Theory (see methods, Eq. 3-7). In the model, utility functions took  

                                                      
28 Since utilities were but an interpretation of the original temperature results, it was more appropriate to statisti-
cally compare the temperatures. Moreover, since these utility measurements came from a cumulative sum, they 
would almost always be significantly different. The proper statistical test is thus on the temperature parameter of 
the softmax fits – making sure that choice stochasticity did vary with midpoint magnitude. 
29 They both relied on aggregate, relative metrics and the riskless utility measurements covered a smaller range 
(0.05 ml to 0.45 ml) than the fractile ones (0 ml to 0.5 ml) 



Chapter 3 | Comparing risky and riskless choices 

80 
 

 

 

  

−0.5 0.0 0.5
Δ value

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

(c
ho

os
e 

le
ft)

0.0 0.5 1.0
Reward probability

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
di

st
or

tio
n

−0.5 0.0 0.5
Δ value

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

(c
ho

os
e 

le
ft)

0.0 0.5 1.0
Reward probability

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
di

st
or

tio
n

0.0 0.25 0.5
Reward magnitude

0.0

0.2

0.4

0.6

0.8

1.0

Ut
ilit

y

0.0 0.25 0.5
Reward magnitude

0.0

0.2

0.4

0.6

0.8

1.0

Ut
ilit

y

Monkey A

Monkey B

100

200

300

BI
C

 s
co

re
60

80

100

120

140

BI
C

 s
co

re

a) b)
Riskless Risky (PT) Risky (EUT)

Figure 3-4 | Discrete choice estimates differ between risky and riskless choices. a) Median parametric estimates for (from 
left to right) the logit functions, utility functions, and probability distortion functions fitted to risky and riskless choices; the 
shaded area represents the 95% C.I. on the median of these functions (random sampling with replacement, n=10000).. For 
riskless choices, the discrete choice model predicted choices from the expected utilities of rewards (no probability distortion). 
Utilities were mostly linear, though slightly concave. For risky utilities, two versions of the discrete choice model were fitted: 
the expected utility theory (EUT) model predicted choices solely based on reward options’ utilities (with no probability dis-
tortion); the other, the prospect theory (PT) model, predicted choices based on utilities and probability distortion. Both mon-
keys were risk-seeking; but where the PT model accounted for this mainly through probability distortion, the EUT model 
accounted for it through a more convex utility. b) PT fits individual choices better than EUT. Bayesian information criterions 
(BIC) were calculated from the log likelihoods of the daily best-fitting PT and EUT discrete choice models; an objective, 
expected-value based model is included for comparison.  
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Figure 3-5 | Risky utilities do not predict riskless ones, and vice-versa. a) Median utility function estimates for risky and 
riskless choices. The shaded area represents the 95% C.I. on the median of these functions (random sampling with replacement, 
n=10000).. For riskless choices, utility estimates were mostly linear (though slightly concave). For risky utilities, the two 
different versions of the discrete choice model predicted S-shaped utilities, but risky EUT utility functions were more convex 
than PT utility functions. b) Comparison of daily parameter estimates. The sets of parameters estimated on the same day are 
linked via the dotted lines. The x-axis represents the log-transform of the utility functions’ temperature parameters (α): α > 0 
implies an S-shaped utility function, α < 0 implies an inverse S-shaped one. The y-axis represents the magnitude at which the 
utility function’s curvature inverted (κ), c) Neither the temperature or inflection parameters correlate between risky and riskless 
utility functions. Pearson’s correlations were run on the parameters from risky and riskless scenarios. Red squares highlight 
Pearson’s R for the correlation between the temperature and inflection parameters between risky and riskless conditions. As-
terisks (*) indicate significant correlations (p < 0.05). 
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the form of the cumulative distribution function of a two-sided power distribution (Eq. 3-10 ; Kotz & 

Dorp, 2010): a 2-parameter function that could easily account for risk-seeking and risk-averse choices 

(Kontek & Lewandowski, 2018). If 𝛼𝛼 > 1, the utility function would be convex and predict risk-seeking 

choices up to the inflection at parameter 𝜅𝜅 (predicting risk-averse choices thereafter); if instead 𝛼𝛼 < 1, 

the utility function would be concave and predict risk-averse behaviour up to the inflection at 𝜅𝜅 (pre-

dicting risk-seeking behaviour afterwards). For risky choices, a 1-parameter power function captured 

the distortion of probabilities (Eq. 3-9). Since the only probability experienced was p = 0.5, 𝜌𝜌> 1 implied 

an underweighting of gamble options whilst a 𝜌𝜌 < 1 implied that gambles were overweighed instead. 

Three forms of this discrete choice model were fit onto daily experimental results (Fig. 3-4a). For risk-

less choices, only utility’s parameters were free (probability distortion was fixed as linear); for risky 

choices, one version of the model incorporates both a utility function and a probability distortion func-

tion (PT utilities), the other versions relied solely on a utility function (EUT utilities).  

In terms of risky choices, both the EUT and PT models predicted s-shaped utility function. The PT 

model, however relied on a concave probability distortions (significantly so; one-sample t test, Monkey 

A: t(21) = -4.912, p = 7.383 X 10 -5; Monkey B: t(6) = -4.196, p = 0.006), rather than convex utility 

function, to predict risk-seeking behaviour. For that reason, PT’s s-shaped utility functions were mostly 

left-skewed (more concave than convex) whereas EUT utility functions captured risk-seeking behaviour 

solely through a right-skewed s-shape (more convex than concave). Overall, the daily best-fitting pa-

rameters from the PT and EUT models were significantly different from each other (Table. 3-1), with 

the PT model capturing behaviour significantly more reliably (Fig. 3-4b; Wilcoxon rank sum test; mon-

key A: p = 2.00 × 10−4; monkey B: p = 0.018).  

Like in previous human studies (Abdellaoui et al., 2007; Stalmeier & Bezembinder, 1999), estimating 

utilities through PT’s framework, rather than EUT’s one, brought risky fits more in line with riskless 

ones (Table. 3-1; Fig 3-5a). However, one-way MANOVA analyses on the risky PT and riskless pa-

rameters (including noise and side-bias) revealed that significant differences between the two types of 

choices were maintained (Fig. 5b). Looking specifically at utility, both monkey A and B’s utility tem-

peratures were consistently and significantly different between risky and riskless choices (Monkey A: 

F(1,42) = 6.078, p = 0.018; Monkey B: F(1,12) = 13.883, p = 0.003). Simply put, the monkey’s risk-attitudes 

were significantly different. Independently, monkey B’s noise and side bias parameters were signifi-

cantly different across risky and riskless choices (noise: Monkey A: F(1,42) = 1.838, p = 0.182; Monkey 

B: F(1,12) = 9.562, p = 0.009; side bias: Monkey A: F(1,42) = 0.021, p = 0.885; Monkey B: F(1,12) = 17.889, 

p = 0.001), and Monkey A saw a significant difference between the position of utility’s inflection (Mon-

key A: F(1,42) = 5.277, p = 0.023; Monkey B: F(1,12) = 0.204, p = 0.659). For monkey A, this meant that 

riskless utilities predicted mostly one set of risk-attitudes, whilst risky utilities predicted two (risk-seek-

ing to risk-averse, depending on the magnitudes involved). For monkey B, a difference on both the 

noise and side bias parameter reflected a difference in the way the monkey guided his choices. In 
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addition, there was no clear relationship between the parameters of risky utility functions and riskless 

ones (Fig. 3-5c). 

3.3.3 Prospect theory predictions are task-specific 

To extend these findings beyond parametric comparisons, and to understand how these parameters 

translated into predictable behaviour, the risky and riskless utility estimates (and probability distortion) 

were used to predict the certainty equivalents of different out-of-sample gambles. Four equiprobable (p 

= 0.5) gambles were defined (Fig. 3-6a), and their CEs were derived from the daily fitted utility func-

tions (risky PT and riskless) and probability distortion functions (risky PT). In addition to risky- and 

riskless-derived CEs, and since riskless parameter relied on no probability distortion, a third set of CEs 

was derived from a hybrid model of riskless utilities and risky probability distortions measured on the 

same day (risky/riskless hybrid). A total of twelve CE values were estimated for each testing day: four 

stemming from risky estimates, four from riskless ones, and four from the risky/riskless hybrid.  

Essentially, each set of predicted CEs served as a testable hypothesis regarding the relative value of 

gambles versus safe reward options. I therefore presented monkeys with sequences of out-of-sample 

trials to measure the true CEs of these gambles and compare these to the predictions made from the 

parametric utility fits. On a separate set of days (17 days for monkey A, 29 for monkey B), I presented 

the monkeys with the four predefined gambles pitted against safe rewards (varying by 0.05ml), and 

estimated their CEs using the earlier psychometric curve (Eq. 3-1). The CEs that had been directly 

measured were compared to those predicted from the risky and risky/riskless hybrid models using mul-

tiple two-way ANOVAs. The purely riskless predictions were not included in the ANOVA analyses 

since, (i) the CEs were directly correlated with the risky/riskless hybrid CEs, and (ii) they did not in-

corporate the effects of a probability distortion, which had previously been identified as contributing to 

a significantly more reliable fit for risky choices. In both monkeys, there were significant difference 

between all pairings of the various CE distributions (Table. 3-2; p < 0.05).  

Finally, to understand where the true CEs differed, in terms of utility and probability distortion, I fit the 

previously used discrete choice model to the choices made by the monkeys in the CE elicitation se-

quence (Fig. 3-7). These new sets of decision parameters were compared the those from the ‘fractile’ 

risky estimates. As predicted by the previous CE estimates, one-way MANOVA analysis (this time 

including probability distortions) revealed that the parameters fit to the latter CE estimation sequences 

were significantly different to the parameters that fit monkey A’s choices during fractile sequences 

(Monkey A: F(1,37) = 12.412, Wilks’s λ = 0.347, p = 8.093 × 10-7). That is, the fits describing choices in 

two risky scenarios, both using the exact same stimuli, led to remarkably different decision parameters 

(noise: F(1,37) = 0.114, p = 0.737; side bias: F(1,37) = 40.01, p = 2.28 × 10−7; utility temperature: F(1,37) = 

1.819, p = 0.186; and utility inflection: F(1,37) = 12.901, p = 9.499 × 10−4) – in particular the probability 

distortion (F(1,37) = 14.678, p = 4.776 × 10−4). Surprisingly, however, while monkey B’s risky CE  



Chapter 3 | Comparing risky and riskless choices 

84 
 

 

 

  

Figure 3-6 | Out-of-sample comparison of predicted and measured certainty equivalents (CEs). a) the CEs of four dif-
ferent gambles were measured. Each of these gambles had a magnitude spread of 0.15ml, and their expected values were 
anchored at 0.125ml, 0.225ml, 0.325ml, and 0.425ml. b) Distribution of measured CEs and predicted ones. Each point repre-
sents the predicted CEs from the utility parameter estimates on a given day; the green ones are real CE measurements from 
monkeys’ choices. There were, for monkey A, 62 measured CEs and 88 predicted ones; for monkey B, there were 124 meas-
ured CEs and 35 predicted ones. c) Average distribution of CEs. The average CEs, in addition to the raw CEs, is plotted for 
clarity. Measured CEs differed significantly from all predicted one. Both monkeys were a lot more risk-seeking (for low reward 
magnitudes) in risky sequences where risk was kept constant than for risky sequences where risk varied (fractile method).   
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Figure 3-7 | Comparing decision parameters in riskless, risky equivariant, and risky non-equivariant choices. 
Median parametric estimates for (from left to right) the logit functions, utility functions, and probability distortion func-
tions fitted to risky and riskless choices; the shaded area represents the 95% C.I. on the median of these functions. Most 
noticeably, monkey A appeared to treat uncertainty very differently depending on the sequence trials used to elicit risky 
decision parameters. The PT utility functions estimated from both monkeys’ out-of-sample CE elicitation sequences 
were much more convex than those estimated from sequences used to build utilities in fractiles. 
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predictions and measured CEs differed significantly, the difference between the parametric fits on his 

individual choices failed to reach significance (Monkey B: F(1,34) = 1.544, Wilk’s λ = 0.795, p = 0.206). 

None of the decision parameters were significantly different (noise: F(1,34) = 0.086, p = 0.361; side bias: 

F(1,34) = 0.025 p = 0.876; utility temperature: F(1,34) = 1.098, p = 0.302; utility inflection: F(1,34) = 3.547, 

p = 0.068; and probability distortion: F(1,34) = 0.422, p = 0.521). 

3.4 Discussion 
Using a robust, incentive-compatible task, we showed that utility functions that describe decisions in-

volving risk more closely mimicked riskless utility functions if probability distortions were considered. 

I modelled macaque monkeys’ risky and riskless choices through stochastic versions of PT and EUT, 

and reliably estimated functional parameters that best described their choices. Each day, the monkeys 

were presented with risky or riskless binary choice sequences. In risky ones, they made choices between 

gambles and safe rewards; in riskless ones, both choices had a single, certain outcome. I found that 

modelling monkeys’ risky decisions via the PT model of choice, in addition to providing a better fit 

than EUT, led to decision parameters that more closely resembled riskless ones. This trend is in-line 

with the human literature (Abdellaoui et al., 2007; Stalmeier & Bezembinder, 1999). However, the final 

comparison differed; the monkeys’ utility functions were more alike, but they were still significantly 

different in terms of shape and position. 

In terms of behavioural metrics, the CEs estimated in fractile sequences suggested both monkeys were 

risk-seeking for all but the highest of reward magnitudes that they experienced. The PT and EUT models 

predicted similar risk-seeking behaviour via an overweighing of gamble options, but they differed in 

the way in which they achieved this. Both EUT and PT models predicted s-shaped utilities, the PT 

model, however, accounted for the monkey’s risk-seeking behaviour mostly through its concave prob-

ability distortion. In other words, the subjective probability of ‘winning’ a gamble was higher than the 

objective probability of winning regardless of utility’s effects. EUT fits on the other hand, captured 

risk-seeking behaviour exclusively through their utility function; one that was right-leaning (more con-

vex than concave) and so predicted higher utilities for gamble options than for safe ones. Since PT’s 

utilities were ‘free’ from the effects of probability distortion, the s-curves were left-shifted (i.e., more 

concave than convex), suggesting a relatively more risk-averse utility function than from EUT’s pre-

dictions. Comparing these findings to the riskless utility fits, we found that PT utilities deviated far less 

from riskless utilities than EUT ones. Still, the utilities estimated from riskless binary choices were 

relatively linear (if slightly risk-averse), a shape that was at odds with that of the risky PT estimates. It 

appears that, at least within the confines of our experiment, the difference between risky and riskless 

utilities was not as simple as the addition of a probability distortion parameter. That is, the monkeys 

likely chose using different strategies in the two conditions: where risk significantly bias-distorted the 

way they evaluated options, both monkeys appeared to be far more objective in their preferences for 

riskless rewards. 
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Of course, while the same binary choice design was used in risky and riskless choices, the difference 

between options was much greater in risky sequences than in riskless ones. To estimate aggregate risk-

less utilities, for example, the rewards that the monkeys experienced differed only by up to 0.06ml in 

every trial. In risky sequences, on the other hand, gambles were pitted against safe rewards spread over 

the full range of the gambles’ outcomes. Monkeys experienced a broad range of magnitudes in each of 

the sequences, but the differences between riskless choices could have required far more attention to 

dissociate than those in riskless choices (something we cannot account for; but see, Farashahi et al., 

2018). The logical next step will be to see if risky choices between closer-together gambles reproduce 

the patterns of choices that I have observed. 

Where these findings fail to replicate the data from risky and riskless introspective studies (though see 

Hertwig, Wulff, & Mata, 2018), they are nonetheless in line with the incentive-compatible time trade-

off approach. Since these types of time discounting tasks are easily adapted to study preferences in 

rhesus macaques (Blanchard et al., 2013; Hayden & Platt, 2007; Hwang et al., 2009; S. Kobayashi & 

Schultz, 2008), it would be interesting to see how utility functions estimated using time trade-offs in 

macaque monkeys correlate with the present findings. Another approach that would be interesting to 

consider is the one used by Chung, Glimcher and Tymula (Chung et al., 2019), where they compared 

risky and riskless choices between bundles of outcomes - estimating utilities through identifying the 

combinations of rewards for which decision-makers are indifferent. They found that risky and riskless 

choices could be reconciled when choices involved gains, but that PT failed to reconcile the two when 

the choices involved losses. Since preferences over losses are generally risk-seeking (for humans), it 

could be that the macaque monkeys’ risk-seeking behaviour mimics this loss-related discrepancy. If 

macaque monkeys were to, in risky settings, adjust their expectations in a way that paints the lower 

outcome of a gamble as a loss, one would expect the lower end of their utility function to behave like 

the loss side of PT’s value function (Kahneman & Tversky, 1979). There is some evidence that rhesus 

macaques (and indeed humans) do this: they exhibit preferences consistent with win-stay lose-shift 

strategies (G. Barron & Erev, 2003; Gilovich et al., 1985; Heilbronner & Hayden, 2013). For repeated 

gamble-safe choices, they generally reverse their risk-seeking preferences for gambles depending on if 

they have previously won or lost a previous gamble instance (Blanchard, Wilke, et al., 2014; Ferrari-

Toniolo et al., 2019; Lau & Glimcher, 2005). If this is the case, fitting macaques’ choices through utility 

models that account for trial-by-trial changes in preferences are likely to do a better job at reconciling 

risky and riskless utilities than using a single utility and probability distortion function applied to the 

entire experimental procedure.  

Overall, the results presented here add to the already dire need for decision models to account for flex-

ible, context-specific preferences (Farashahi et al., 2018; Hayden et al., 2008; Heilbronner & Hayden, 

2016). Although I expected some form of discrepancy between risky and riskless utilities, the fact that 

one of the monkeys’ probability distortions also shifted significantly between risky scenarios 
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(equivariant CE elicitation and fractile method) suggests that preferences flexibly adjust to more than 

just the level of risk at hand. For decision theory as a whole, reconciling dynamic preferences with more 

traditional economic models would go a long way to making more accurate, descriptive predictions. 
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Table 3-1 | MANOVA Tests for pairwise differences between the risky EUT, risky PT, and riskless discrete choice 
models. The analyses were run on four of the five free parameters, excluding the probability distortion one. The risky EUT 
and riskless models had no probability distortion parameter to compare with the risky PT model’s probability distortion one. 
 

  

 Utility Type F (1, 42) p Wilks λ 

 
Riskless, 

Risky (PT) 
3.757 0.011 0.722 

Monkey A 
Risky (EUT), 

Risky (PT) 
8.625 4.364 × 10−5 0.531 

 
Riskless, 

Risky (EUT) 
4.475 0.005 0.685 

 Utility Type F (1, 12) p Wilks λ 

 
Riskless, 

Risky (PT) 
8.649 0004 0.206 

Monkey B 
Risky (EUT), 

Risky (PT) 
2.371 0.130 0.487 

 
Riskless, 

Risky (EUT) 
8.719 0.004 0.205 
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Table 3-2 | Two-way ANOVA Tests for pairwise differences between three sets of certainty equivalents. The certainty 
equivalents came from the daily predictions of the risky/riskless hybrid model, the PT model, and the ones measured from out-
of-sample sequences.  
  

 Utility Type Df F  p 

 
Risky/Riskless, 

Risky (PT) 
(7, 168) 404.058 1.384 × 10−101 

Monkey A 
Risky/Riskless, 

True CEs 
(7, 142) 134.906 1.746 × 10−59 

 
Risky (PT),  

True CEs 
(7, 142) 88.538 1.305 × 10−48 

 CE Type Df F  p 

 
Risky/Riskless, 

Risky (PT) 
(9, 60) 171.021 2.426 × 10−39 

Monkey B 
Risky/Riskless, 

True CEs 
(9, 149) 202.183 7.959 × 10−79 

 
Risky (PT),  

True CEs 
(9, 149) 211.873 3.189 × 10−80 
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Chapter 4  
Choice sequence shapes probability 

distortion in rhesus macaques 
 

4.1 Introduction 
Choices between uncertain rewards require decision-makers to evaluate each option along multiple di-

mensions. At the very least, a decision-maker needs to simultaneously consider the reward's quantity 

and probability of occurrence if he is to evaluate its attractiveness in relation to other choice prospects. 

The von Neumann and Morgenstern Expected Utility (EU) theory was the first axiomatic model of 

rational behaviour capable of describing people's choices in these situations (von Neumann & 

Morgenstern, 1944). EU theory rigorously introduced the concept of utility as a representation of a 

decision-maker's subjective value for an objective reward quantity. Through the metric of utility, EU 

theory was able to describe different risk attitudes, such as the risk-seeking behaviour of a gambler or 

the risk aversion of an insurance buyer; it was, however, soon challenged by the various experimental 

results of behavioural economics (for review see, e.g., Machina, 1987; Starmer, 2000; Weber & 

Camerer, 1987). Attempts to resolve some of these challenges led to the development of several gener-

alized expected utility theories, many of which (notably prospect theory, rank-dependent utility theory, 

and cumulative prospect theory) incorporated the concept of probability distortion (Kahneman & 

Tversky, 1979; Quiggin, 1982; Tversky & Kahneman, 1992). While maintaining the nonlinear relation-

ship between subjective utility and objective reward magnitudes, these theories made use of subjective 

probability weightings, or probability distortions, to account for the idea that reward probabilities were 

also treated nonlinearly during choice. 

Experimental measures of probability distortion in humans and monkeys typically show that, whereas 

small probabilities tend to be overweighed by decision-makers, large probabilities are instead under-

weighed (Gonzalez & Wu, 1999; Kahneman & Tversky, 1979; Stauffer et al., 2015). There is, however, 

dramatic variation in this pattern of distortion across both different subjects (Bruhin et al., 2010; Burke 

et al., 2018; Gonzalez & Wu, 1999) and between different task contexts (Farashahi et al., 2018; Hertwig 

et al., 2004; Wu et al., 2009). While the causes of such variability have yet to be identified, differences 

in probability distortions could relate to the way in which probability information is presented to deci-

sion-makers (Hertwig et al., 2004), or the way in which probability knowledge is acquired and stored 

by the decision-maker (Camilleri & Newell, 2013). Some studies suggested that prospect theory might 
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altogether be incapable of explaining differences in risk attitudes across these contexts (Kellen et al., 

2016). 

Here we investigated the role of choice context, specifically sequence structure, as a possible source of 

probability distortion variability in rhesus macaques, animals known to show quantifiable and repro-

ducible probability distortions (Stauffer et al., 2015). To achieve this, we first measured the certainty 

equivalents (CEs) of specific gambles, defined as the amount of reward for which the animal was 

choice-indifferent with regards to said gambles; the CE therefore indicated the subjective value of the 

gamble in the ‘currency’ of the safe reward. We then simultaneously estimated the contributions of 

utility and probability distortion to these subjective values, allowing us to model the shape of the mon-

keys' probability distortion independently from utility. 

We used this technique to investigate the possible influence of trial sequence structure on the shape of 

the probability distortion in two different task situations: randomly intermixing the trials required for 

the CE measurements of all gambles, or determining the CEs of different gambles via separate blocks 

of trials. We performed an out-of-sample test to validate and extend the results of our main task, and 

investigated the contribution of trial history as a possible correlate of probability distortion variance. 

Our data showed that a change in the presentation order of probability information indeed altered the 

observed probability distortion pattern, inducing a reversal in probability distortion shape. 

4.2 Methods  

4.2.1 Animals and experimental setup 

Two male rhesus macaques (Macaca mulatta) were used in this study (11.2 and 13.2 kg). During ex-

periments, the monkey sat in a primate chair (Crist Instruments) and made choices between two reward-

ing stimuli presented on a computer monitor positioned 30 cm in front of them. The animals reported 

their choices between options with a left-right motion joystick (Biotronix Workshop, the University of 

Cambridge). Joystick position and task event times were sampled and stored at 1 kHz on a Windows 7 

computer running custom-made software written in MATLAB (The MathWorks, 2015a) using Psych-

toolbox (version 3.0.11). All experimental protocols were assessed and approved by the Home Office 

of the United Kingdom. 

4.2.2 Experimental design 

We trained the monkeys to associate visual stimuli with specific juice rewards that varied along two 

dimensions: the quantity of juice delivered (reward magnitude, m) and the delivery probability of the 

reward (reward probability, p). To capture both dimensions descriptively, the visual stimuli consisted 

of a horizontal bar or of a pair of horizontal bars framed between two vertical lines. The vertical position 

of the horizontal bars signalled the magnitude of juice delivered; the width of the bar signalled the 

probability of their delivery from no bar (no reward) to touching the frame on both side (certain reward). 

To ensure that the bar’s edge position relative to the frame was not used as a cue for the gamble’s 
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mathematical expected value (EV; i.e., the product of m and p), the bars were randomly shifted hori-

zontally on each trial. This guaranteed that magnitude and probability information were independently 

presented and used to make choices. Multiple partial bars found between the vertical frames signalled 

gambles between ‘risky’ rewards, whereas a singular, full-width horizontal bar signalled a safe, riskless 

reward. Across all trials, monkeys experienced rewards ranging from 0 ml to 0.5 ml in 0.05 ml incre-

ments, and gamble probabilities varying between 0.1 and 1 in decimal increments (0.1). 

The animals learned to associate rewards and magnitudes with the visual stimuli schema through 

>10,000 single-outcome, or imperative, trials. In these trials, only one option was presented on either 

side of the screen. To obtain the cued reward, the animals were required to select the side on which the 

reward was presented. All reward options were repeated on both the left and right sides of the computer 

screen, alternating pseudorandomly to control for any side preference. 

Following imperative training, we presented the animals with a binary choice paradigm where they had 

to choose one of two reward options presented simultaneously. Most binary choice trials pitted a safe 

reward against a gamble. All gambles consisted of two probabilistic rewards: the monkey could either 

get a fixed 0.5 ml of juice with probability p, or 0ml of juice with probability 1 ≥ p. Safe options varied 

in terms of reward magnitude only. In separate sets of trials, we presented the animals with choices 

between two gambles with two outcomes each (possible outcomes: 0, 0.25, 0.5 ml). In these trials, one 

of the gambles could have two non-zero outcomes (0.25 and 0.5 ml). In all cases, reward was delivered 

probabilistically, matching the probabilities cued by each stimulus. 

Trials began with a white cross at the centre of a black screen, followed by the appearance of a joystick-

driven cursor. The cursor had to be moved to the centre cross in order for a trial to begin. After success-

fully maintaining the cursor on the central cross for 0.5–1 s, two visual option cues appeared left and 

right of the central cross (see Fig. 4-1a). In the case of imperative trials, only one option appeared while 

the other side remained dark. The animal had 3 s to convey his decision by moving the joystick to the 

selected side, after which the unselected option would disappear. The animal’s response time (RT; i.e., 

the time interval between the cues appearance and the beginning of the joystick movement) was col-

lected for individual trials. Reward delivery occurred after the holding time (0.1–0.2s), and the selected 

option lingered on the screen for 1s post reward delivery to reinforce stimulus-reward associations with 

visual feedback. A variable intertrial period of 1–1.5s (blank screen) led to the next trial onset. Unsuc-

cessful central hold, side selection hold, or trials where no choices were made resulted in a 6s timeout 

for the animal, after which the trial would be repeated. 

4.2.3 Psychometric elicitation of CEs 

The likelihood of a monkey choosing a specific, individual gamble over different safe options was 

assessed through the binary choice paradigm (see Fig. 4-1b). The resulting choice ratios were then used  
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Figure 4-1 | Experimental design. a, Trial sequence. Each trial started with the monkey moving a white cursor, through left/right arm move-
ments with a joystick, to the centre of the screen. After 0.5–1 s (centre holding), two cues appeared indicating the two offered options (choice 
period): possible reward magnitudes and probabilities were indicated by the vertical position and width of a horizontal bar, respectively. A 
single horizontal bar represented a sure reward. Two bars represented a gamble with two possible outcomes. The monkey moved the cursor to 
the side of the preferred option, within 2 s. After 0.1–0.2 s (holding time), the juice reward was delivered according to the chosen option's 
reward magnitude and probability. A further 1 s (association period) followed to reinforce the association between chosen cue and reward. b, 
Psychometric elicitation of CEs. Left, Three example gambles with different reward probabilities (p = 0.3, p = 0.5, p = 0.7) paired with varying 
safe magnitudes to elicit each gamble's CE. Right, Each point represents the probability of choosing the safe option in choices between a fixed 
gamble (identified by the colour) and a varying safe magnitude (horizontal axis). Lines are psychometric curves obtained by fitting a softmax 
function to the choice ratios. Each line is associated with one specific gamble and identifies its CE as the magnitude corresponding to a choice 
ratio of 0.5 (vertical dashed line). c, Task conditions. The CEs were elicited using two sequence structures: in the MIXED condition, different 
gambles and different safe options were randomly intermixed; whereas in the REPEATED condition, the CE measurement for one gamble was 
completed before presenting a different gamble. d, Temporal sequence of the presented gamble EV in the two elicitation conditions for one 
sample session (first 200 trials). The trial-by-trial variation of the gamble EV highlights the difference in sequence structure between MIXED 
(red) and REPEATED (blue) conditions. e, Variability of gamble EV across consecutive trials. Absolute value of the gamble EV difference 
(mean ± SEM) between two consecutive trials, showing the main distinction between the two elicitation sequences: the previous trials' gamble 
EV was consistently different from the current one in the MIXED condition, whereas it stayed constant in the REPEATED condition. *Signif-
icant difference between conditions (t test). 
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to fit a logistic sigmoid function, or psychometric curve, to estimate choice likelihoods for every possi-

ble safe-gamble pairing within the tested reward range as follows: 

P(ChooseSafe) = 1/ �1 +  𝑒𝑒−�
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚 − 𝑥𝑥0

𝜎𝜎 ��      ( 4-1 )  

These psychometric curves captured the likelihood of choosing a safe option over a gamble through 

two free parameters: x0, measuring the x-position of the curve’s inflexion point, and σ, the function’s 

temperature parameter, reflecting the steepness of the curve. Importantly, only sequences that contained 

choices between a gamble and a minimum of three different safe options (repeated at least 4 times) 

were used in the analysis. 

The point of choice indifference between gamble and safe options, corresponding to the inflexion point 

𝑥𝑥0 of the resulting model, represented a gamble’s CE: the certain safe reward that was of equal subjec-

tive value to the gamble. CEs could then be used to categorize behaviour. Gambles where the CEs were 

of greater value than the predicted EV signalled risk-seeking behaviour for that gamble’s probability 

value. Gambles with CEs lower than their EVs indicated risk-averse behaviour for that option. For cases 

where CEs were equal to EVs, the animals were seen as being risk-neutral.  

To explore the role of task structure on the variability of one’s probability distortion pattern, we meas-

ured CEs in one of two elicitation conditions: MIXED or REPEATED trial sequences (see Fig. 4-

1c,d,e). In the case of MIXED sequences, multiple CEs were elicited through single blocks of random-

ized choice trials involving different gambles and safe options. Such blocks were repeated until each 

gamble-safe pair had been presented a minimum of four times each. In the case of REPEATED se-

quences, CEs were elicited using blocks of trials that contained a unique gamble. These REPEATED 

trial blocks pitted multiple safe options against a single gamble for the elicitation sequence. Other than 

these sequence designs, everything from visual cues to timescales was identical. The only difference 

between elicitation conditions was the number of different probabilities of reward (gambles) experi-

enced within a trial block. Testing for each elicitation condition was done consecutively over multiple 

days, with each monkey receiving imperative training before their daily elicitation sessions. We col-

lected on average 172.95 ± 20.24 (mean ± SEM) trials per daily session over 56 sessions for Monkey 

A (22 REPEATED and 34 MIXED sessions, in consecutive days), and 414.63 ± 27.87 trials over 59 

sessions for Monkey B (31 REPEATED and 28 MIXED sessions, in consecutive days). 

4.2.4 Analysis of behavioural data 

All data were collected, stored, and analyzed using custom MATLAB and Python (Python 3.7.1, SciPy 

1.1.0; Oliphant, 2007) software. Analyses were run on trial-by-trial choice data, and on the CEs elicited 

psychometrically from these trial-by-trial choices. The data were stored and analyzed separately for the 

two animals. 
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Before any comparative analyses, the use of visual stimuli to guide the monkeys’ decision behaviour 

was verified through analysing all CE elicitation trials (excluding error trials where the animals made 

no choices) in a logistic regression model as follows: 

𝑦𝑦 =  𝛽𝛽0 + 𝛽𝛽1(𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) + 𝛽𝛽2�𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆� + 𝛽𝛽4(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) + 𝛽𝛽3(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿) + 𝜀𝜀   ( 4-2 )  

The dependent variable took a value of y = 1 if the gamble was chosen and y = 0 if the safe option was 

chosen instead. As had been previously done (Stauffer et al., 2015), we fitted four independent varia-

bles: option values (EVgamble, EVsafe) were defined as the EVs of gamble and safe rewards; gamble po-

sition (PositionLR) as 0 for left, 1 for right screen side; and the outcome’s risk value (Risk) was defined 

as � 𝑝𝑝 ∗ (1 − 𝑝𝑝), a proportional representation of probabilistic variance. We fitted individual testing 

days separately, fully standardizing the β-coefficients and then testing for statistical significance (one-

sample t test, p<0.05) to identify relevant decision variables. Positive regression coefficients indicated 

an increase in the likelihood of choosing a gamble over a safe option with increasing independent var-

iable value; negative regression coefficients indicated a decrease in the likelihood of choosing the gam-

ble. 

Once the use of onscreen stimuli to guide choices had been confirmed, CEs were measured using the 

aforementioned psychometric fit. CEs gathered in the MIXED condition were compared with CEs gath-

ered under the REPEATED condition using a two-factor ANOVA with gamble probability and elicita-

tion condition as main factors. The ANOVA also captured any interaction between the two factors, 

highlighting any condition effects present at a sequence level. 

We used trial-by-trial choices to parametrically model the respective effects of utility and probability 

distortion on single choices, and more generally, on the subjective value of gambles (CEs). For each 

daily testing session, we simultaneously estimated both the utility and probability distortion functions 

from within a standard discrete choice model. Functional parameters that best-described choices be-

tween gamble-safe pairs were elicited in this way, capturing the individual effects of nonlinear utility 

and probability distortion. The model ran on trial-by-trial choice data, with data binned into several sets 

containing one gamble and all safe options presented against it on the day (CE elicitation sequence). 

The discrete choice (softmax) function returned the probability of choosing the gamble option based on 

the subjective value of both the gamble (VG) and the safe reward presented (VS). 

𝑃𝑃𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  =  1/(1 +  𝑒𝑒−𝜆𝜆(𝑉𝑉𝐺𝐺−𝑉𝑉𝑆𝑆))        ( 4-3 )  

The softmax parameter, λ, defined the likeliness of choosing the better prospect; each option’s value 

(V) was defined according to prospect theory (Kahneman and Tversky, 1979), as the product of utility 

(u) and probability distortion (w) outputs as follows: 

𝑉𝑉(𝑝𝑝,𝑚𝑚)  =  𝑤𝑤(𝑝𝑝) × 𝑢𝑢(𝑚𝑚)         ( 4-4 )  
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Utility was modelled through a power function as follows: 

𝑢𝑢(𝑚𝑚)  =  �𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

�
𝜌𝜌

         ( 4-5 ) 

where ρ>1 captured risk-seeking choice behaviour, ρ<1 captured risk-averse choice behaviour (ρ<1), 

and p = 0 implied risk neutrality (Hsu et al., 2009). Magnitude values were divided by 0.5 ml (mmax), 

such that the maximal reward a monkey could get was anchored at 1 unit of utility. 

We compared four functional models of probability distortion in an attempt to best capture changes in 

probability distortion across conditions. Of these classical models, two had a single fitting parameter: 

the one-parameter Prelec function (Eq. 4-6, Prelec-1, parameter: α) and the Kahneman and Tversky 

probability weighting function (Eq. 4-7, Tversky, parameter: ε); the others had two fitting parameters: 

the two-parameter Prelec function (Eq. 4-8, Prelec-2, parameters: α, β) and the Gonzalez and Wu log-

odds model (Eq. 4-9, Gonzalez, parameters: γ, δ). Formally: 

𝑤𝑤(𝑝𝑝)  = 𝑒𝑒  −(−𝑙𝑙𝑙𝑙(𝑝𝑝))𝛼𝛼           ( 4-6 ) 

𝑤𝑤(𝑝𝑝)  = 𝑝𝑝𝜀𝜀

(𝑝𝑝𝜀𝜀+(1−𝑝𝑝)𝜀𝜀)1/𝜀𝜀         ( 4-7 ) 

𝑤𝑤(𝑝𝑝)  = 𝑒𝑒  −𝛽𝛽(−𝑙𝑙𝑙𝑙(𝑝𝑝))𝛼𝛼          ( 4-8 ) 

𝑤𝑤(𝑝𝑝)  =  𝛿𝛿𝑝𝑝𝛾𝛾

𝛿𝛿𝑝𝑝𝛾𝛾+(1−𝑝𝑝)𝛾𝛾
         ( 4-9 ) 

Using a maximum likelihood estimation (MLE) method, we simultaneously estimated the functional 

parameters (𝛩𝛩) from the experimental data. We defined the log-likelihood function as follows: 

𝐿𝐿𝐿𝐿(𝛩𝛩|𝑦𝑦)  = ∑  𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖 = 1 × 𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) + ∑  𝑦𝑦𝑖𝑖′𝑛𝑛

𝑖𝑖 = 1 × 𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�   ( 4-10 ) 

The log-likelihood function was defined on all trials in a session (n), the trial number (i), and the choice 

outcome variable for the gambles and safe options (y and y’, respectively). The outcome variables took 

a value of 1 if their respective option was chosen; 0 otherwise. We used an unconstrained Nelder–Mead 

search algorithm (Python: scipy.optimize.minimise) to compute the functional parameters that mini-

mised the negative log-likelihood (-LL). This MLE approach allowed for the simultaneous estimation 

of the model’s free parameters, placing no constraints on their values (Abdellaoui, 2000; Pelé et al., 

2014; Stauffer et al., 2015). 

The algorithm identified the best fitting softmax, utility, and probability distortion parameters with re-

spect to each monkey’s daily choices in CE elicitation sequences. Four complete models were para-

metrized, accounting for the different probability distortion functions investigated. From these, we cal-

culated the Bayesian Information Criterion (BIC) to pinpoint the probability distortion function most 

reliable in capturing behaviour. Four sets of parameters and their BIC were estimated for every testing 
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day, independently for each model. We selected a single model for further analysis, based on the flexi-

bility of the functional model, its comparative BIC score (one-factor ANOVA with repeated measures, 

Greenhouse-Geisser–corrected p values: pGGc), and the deviance between the model’s predicted CEs 

and the experimental ones (one-factor ANOVA with repeated measures, Greenhouse-Geisser–corrected 

p values; Greenhouse & Geisser, 1959). 

We further validated the parameter estimation procedure by running 10 simulated choice datasets within 

the fitting algorithm. Datasets used for testing were generated by fixing the utility parameter (ρ) and 

varying the probability distortion parameter (α), or vice versa. The softmax temperature parameter was 

kept constant (λ = 10), as we specifically wanted to test the robustness of the estimation procedure in 

relation to variability in the utility and probability parameters. These fixed models were used to simulate 

individual trial choices. We simulated 6 trials for every gamble-safe pair (safe magnitude levels: 0–0.5 

ml in steps of 0.05 ml). Five datasets varied in terms of utility (ρ = 0.20, 0.50, 1.00, 1.50, 3.00), and 

five in terms of probability distortion (α = 0.33, 0.67, 1.00, 1.50, 3.00). We measured estimation accu-

racy as the 95% CI on estimated parameters from Monte Carlo simulations on the parameter-derived 

datasets. 

The final estimated parameters were first log-transformed to account for the asymmetric distribution of 

the utility and probability distortion parameters (ranging from 0 to ∞, with a value of 1 defining the 

linear case). We then compared the parameter estimates via one-way MANOVA with elicitation con-

dition as main factor. From this multivariate analysis, we identified any significant effect of individual 

decision functions while recognizing the collective role of all three parameters in capturing risk prefer-

ences. More specifically, the MANOVA identified which model function parameters (choice softmax, 

utility, or probability distortion) differed significantly between CE elicitation conditions. 

In the REPEATED condition, the gamble option did not change for long sequences of trials and could, 

theoretically, be ignored. To test the possibility of an attentional shift toward the safe option in this 

condition, we defined a model with different weights applied to the two options’ values as follows: 

𝑃𝑃𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  =  1/(1 +  𝑒𝑒−𝜆𝜆( (1−𝑘𝑘)×𝑉𝑉𝐺𝐺  − 𝑘𝑘×𝑉𝑉𝑆𝑆 ))      ( 4-11 ) 

The weight parameter (k) captured the attentional shift toward one option, if significantly >0.5. The 

options’ values (VG, VS) were computed, as in the previous model, using the power utility function and 

the selected probability distortion function (Prelec-1). 

4.2.5 Evaluation of probability distortion in the Marschak–Machina triangle 

We introduced the Marschak–Machina triangle (Machina, 1982; Marschak, 1950) to compare the 

choice behaviour between the MIXED and REPEATED conditions in an out-of-sample test, and to 

evaluate the theoretical predictions of the discrete choice model vis-a-vis utility and probability distor-

tions. 
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The Marschak–Machina triangle defines a 2D space where any probabilistic combination of three fixed 

reward magnitudes m1<m2<m3 can be represented (for details, see Results). The x- and y-axes corre-

spond to the probability of obtaining the lowest (p1) reward m1 and the highest (p3) reward m3, respec-

tively. The probability of the middle magnitude is not explicitly represented in the diagram, but it can 

be readily obtained as p2 = 1-(p1+p3). Points on the horizontal axis, therefore, correspond to gambles 

with outcomes m1 and m2, whereas points on the vertical axis identify gambles with m2 and m3 as 

possible outcomes; the hypotenuse comprises all gambles containing outcomes m1 and m3 only. In our 

experiment, we set the fixed magnitude levels to m1 = 0 ml, m2 = 0.25 ml and m3 = 0.5 ml. 

We characterized monkey A’s behaviour within the Marschak-Machina triangle, by defining indiffer-

ence lines between points on the triangle edges as follows: we presented choices between a fixed gamble 

(A), defined on one of the axes, and a set of gambles (Bi) located on the triangle’s hypotenuse; by fitting 

a psychometric curve to the ratio of Bi and A choices, we identified the indifference point on the hypot-

enuse as the probability p3 corresponding to a choice ratio of 0.5. We then defined an indifference line 

as the segment connecting the fixed gamble on the axis with its corresponding indifference point. This 

procedure was repeated for four fixed gambles on the x-axis (p1 = 0.2, 0.4, 0.6, 0.8) and for another four 

fixed gambles on the y-axis (p3 = 0.2, 0.4, 0.6, 0.8), resulting in 8 indifference lines. 

Such indifference lines characterized points on the triangle edges (two-outcome gambles): they did not 

represent complete indifference curves within the Marschak–Machina triangle (three-outcome gam-

bles). Nevertheless, the slopes of the indifference lines univocally identified a directional property a 

monkey’s risk preference pattern: a gradual change in the slope (fanning-in or fanning-out) of indiffer-

ence lines has been extensively used in the economic literature to characterize choice behaviour, par-

ticularly in relation to the predictions of generalized expected utility theories. This property allowed us 

to quantify behavioural changes across elicitation conditions and to compare the observed data with 

predictions from the theoretical economic model. 

Crucially, gambles resting on the two axes were never used in the elicitation of CEs, representing an 

out-of-sample test. As a consequence, the choice behaviour observed in the Marschak–Machina triangle 

could be used as independent validation for our previous results. 

We computed the theoretical indifference lines by calculating, for each of the eight fixed gambles de-

fined above, the probability p3 for which the theoretical subjective value of the fixed gamble was equal 

to that of the gamble on the hypotenuse. The subjective value of a two-outcome gamble was defined 

according to cumulative prospect theory as 

𝑉𝑉(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)  =  𝑢𝑢(𝑚𝑚𝐻𝐻) × 𝑤𝑤(𝑝𝑝𝐻𝐻) +  𝑢𝑢(𝑚𝑚𝐿𝐿) × (1 −𝑤𝑤(𝑝𝑝𝐻𝐻))    ( 4-12 ) 
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where mH and mL represent the magnitude of the highest and lowest outcome respectively, pH the prob-

ability of occurrence of the highest outcome, u the power utility function and w the Prelec-1 probability 

distortion function. 

The indifference point was defined as the point on the hypotenuse with subjective value 

(𝑢𝑢(𝑚𝑚3) × 𝑤𝑤(𝑝𝑝3)) equal to the subjective value of the fixed gamble (V(gamble)). Thus, knowing the 

value of the fixed gamble, one could identify the indifference point as the probability p3 satisfying the 

equation u(m3)×w(p3) = V(gamble) as follows: 

𝑝𝑝3  = 𝑤𝑤−1 �𝑉𝑉(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)
𝑢𝑢(𝑚𝑚3) �         ( 4-13 ) 

where w-1 represents the inverse of the probability distortion function: that is, w-1 = e(-(-ln(w))1/α). 

Each daily set of indifference points was elicited after CE elicitation sequences, for both the MIXED 

and REPEATED CE elicitation sessions. This resulted in two sets of indifference lines, distinctly asso-

ciated with the REPEATED and MIXED conditions. Both datasets were obtained using intermingled 

gamble sequences, so any difference in the pattern of indifference lines could only be attributed to the 

effect of the previous block of trials (i.e., REPEATED or MIXED CE elicitation). 

The directional pattern of the indifference lines was characterized by a measure of the ‘fanning’ direc-

tion, corresponding to a gradual change in the slopes of indifference lines. When moving from the lower 

right to the top left corner of the Marschak–Machina triangle, indifference lines decreasing their slope 

would fan-in, whereas indifference lines increasing their slope would fan-out, much like the structural 

slats of a folding fan. 

A linear regression analysis on the indifference line slopes was used to statistically characterize the 

fanning pattern. A positive regression coefficient identified fanning-out of the indifference lines, 

whereas a negative regression coefficient identified fanning-in. It should be noted that the relation be-

tween the slopes of the indifference lines, as we defined them, was not expected to be linear, but the 

linear regression served as a reasonable description of the expected theoretical pattern and was then 

used to characterize the measured behaviour. 

To statistically compare the predicted and observed sequence effects on the steepness of the indifference 

lines, we first calculated the shift of indifference points (change in p3 value) between the REPEATED 

and MIXED conditions; we did this for each of the eight indifference lines, for both the measured data 

and the model’s predicted lines. We then performed a correlation analysis on the modelled and meas-

ured shifts. 

4.2.6 Trial history effects 

Because gamble presentation order was the only difference between the MIXED and REPEATED elic-

itation sequences, we sought to categorize the effects of said order on the subjective distortion of 
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probabilities. Using past gamble EVs as a quantitative measure of past experiences (specific to proba-

bilities), we compared the distribution and use of previous gamble EVs across elicitation condition. 

We first compared the variability of consecutive gamble probabilities in both conditions using a two-

sample t-test. We used the absolute value of consecutive gamble EV differences to contrast order in an 

unsigned manner, as signed differences would amount to 0 in both cases. We then assessed the use of 

past gamble EVs using the following logistic regression: 

𝑦𝑦 =  𝛽𝛽0 + 𝛽𝛽1(𝐸𝐸𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) + 𝛽𝛽2�𝐸𝐸𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆� + 𝛽𝛽3(𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−1) + ⋯+ 𝛽𝛽𝑛𝑛(𝐸𝐸𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−𝑛𝑛) + 𝜀𝜀 ( 4-14 ) 

Again, the dependent variable took a value of y = 1 if the gamble was chosen and y = 0 if the safe option 

was chosen instead. The EV of both the current gamble and safe (EVgamble, EVsafe), as well as the gamble 

EV of up to 8 trials in the past (EVgamble-n), served as independent variables. Trials that did not have a 

minimum of 8 previous trials, in individual sessions, were removed for this analysis. We again stand-

ardized regression coefficients and identified how many past gamble EVs had a significant impact on 

current choice (one-sample t-test, p<0.05). Refining the analysis to a singular preceding trial, we inves-

tigated the use of a win-stay/lose-shift (WSLS) strategy by the animals. A common strategy for human 

and nonhuman primates alike, a WSLS choice pattern involves repeating a ‘winning’ choice until it 

results in a ‘loss,’ after which one would shift and try their luck on another choice option. Because 

choice options in the CE elicitation sequences involved many different values for both the gamble and 

the safe options, we instead explored a more relaxed WSLS model as follows: 

𝑦𝑦 =  𝛽𝛽0 + 𝛽𝛽1(𝐸𝐸𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) + 𝛽𝛽2�𝐸𝐸𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆� + 𝛽𝛽3� 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� + 𝛽𝛽4(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿) + 𝜀𝜀  ( 4-15 ) 

If the previous choice had been that of a gamble, and that gamble had won (i.e., resulted in a 0.5 ml 

reward), the third independent variable (Outcomepast) took a value of 1; if the past chosen gamble had 

instead been unsuccessful, Outcomepast was 0. By including current EVGamble, EVSafe, and PositionLR, we 

could identify the relative effect of a previous gamble’s outcome on current choice. The logistic regres-

sion analysis was only applied to trials in which the previous trial’s gamble was chosen. A positive 

regression coefficient for Outcomepast implied a greater likelihood of picking the gamble after a ‘win’, 

regardless of its value. A negative coefficient would, instead, capture a decrease in the likelihood of 

picking the gamble after a ‘loss.’ 

To compare the performance of this model with the previously defined model (Eq. 4-2), which did not 

include the contribution of past trials, we computed the BIC scores of the two models only in trials in 

which the previous gamble was chosen. After this trial selection, we removed 5 sessions in Monkey A’s 

data, as they had fewer than 4 trials per gamble-safe pair. 

To further investigate the effect of past outcomes on the risk patterns, we defined a reinforcement learn-

ing model, in which each gamble value was updated, starting from its EV, by adding or removing a 
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fixed amount following a win or a loss, respectively. Formally, choices were evaluated according to the 

discrete choice model defined earlier (Eq. 4-2), in which the safe value (VS) was the certain option’s 

magnitude (linear coding of magnitudes), whereas the gamble value (VG) was updated on each trial 

according to the following rule: 

𝑉𝑉𝐺𝐺  =  𝑉𝑉𝐺𝐺 + 𝜂𝜂 ∙  𝑝𝑝𝑝𝑝𝑝𝑝𝑊𝑊𝑊𝑊𝑊𝑊 −  𝜂𝜂 ∙  𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿      ( 4-16 ) 

Where preWin and preLoss are variables encoding the last trial’s outcome: preWin = 1 if a gamble was won 

in the previous trial, 0 otherwise, and vice versa for preLoss. The value-updating parameter η represented 

the amount of ‘value’ (in millilitres) added or removed to the value of future gambles based on the prior 

gamble’s outcome. According to this model, the gamble value was not updated if the safe option had 

been chosen on the previous trial. 

We retrieved the η parameter value using MLE, and used the resulting average value to simulate choices 

and compute the resulting CEs. The simulation was run on MIXED and REPEATED sequences sepa-

rately, to compare the effect of a value-updating model on the CEs in the two sequence conditions. 

4.2.7 Statistical analysis 

We used MATLAB and/or Python for all statistical analyses. Logistic regressions were computed per 

session, and results were standardized by multiplying each coefficient with the ratio of the correspond-

ing independent variable’s SD over the SD of the predicted variable (Menard, 2011). Standardized re-

gression coefficients were tested for statistical significance through one-sample t-test. Two-factor 

ANOVA, one-factor MANOVA, linear regression, and t-test results were considered significant at p < 

0.05, whereas one-way repeated-measures ANOVAs were Greenhouse–Geisser corrected (degrees of 

freedom adjustment) to account for sphericity violations (Mauchly’s test p < 0.05; Greenhouse & 

Geisser, 1959). Post hoc analysis with Bonferroni–Holm correction for multiple comparisons was ap-

plied to ANOVA results. Cohen’s d values were used as a measure of effect sizes. In all analyses of 

data from single sessions, we reported mean ± SEM across sessions. 

4.3 Results 

4.3.1 Design 

We tested whether the shape of the probability distortion would be influenced by the order in which 

probability information is presented in a sequence of decisions.  

Once the animals had been extensively trained with the reward-predicting stimuli (>10,000 trials), we 

presented them with sequences of binary choices between different probabilistic rewards (or gambles) 

and safe rewards (Fig. 4-1). We then used the choice ratios to measure the value of gambles relative to 

certain rewards, pinpointing the certain rewards that were subjectively equivalent to gambles, or a gam-

ble’s CE. This procedure revealed the animals’ attitude toward risky choices: gamble CEs larger than  
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Figure 4-2 | Basic choice behaviour and estimation of CEs. a, Logistic regression of choice behaviour. Four task variables (gamble EV, 
safe EV [magnitude], risk variance, gamble position) were used as regressors for the gamble choice. Positive standardized coefficients for 
gamble EV and risk indicated that monkeys preferred gambles with higher EV to gambles with lower EV, and more risky gambles to less 
risky ones. Negative coefficient for safe EV confirmed that monkeys preferred higher reward magnitudes to lower ones. The positive position 
factor for 1 monkey indicated a side bias, which was taken into account by repeating all choice pairs with inverted left-right positions.* 
Significant regression coefficient (one-sample t test). b, Psychometric estimation of CEs. CEs of two example gambles with probabilities 
0.1 (top) and 0.8 (bottom), estimated in the two different elicitation sequences: MIXED (red) and REPEATED (blue) sequences. The per-
centages of safe choices as a function of safe magnitude (circles) were fitted to softmax functions (curves). Vertical lines indicate the gambles 
EVs (dashed lines). Filled circles represent the CEs. In both monkeys, low probability gambles (top) had a lower CE in the REPEATED 
condition than in the MIXED condition, where the CEs were consistently higher than the EVs, indicating risk seeking behaviour. High 
probability gambles (bottom) showed the inverse pattern, indicating risk seeking behaviour only in the REPEATED condition. c, Pattern of 
CEs across the two elicitation sequences (MIXED vs REPEATED). Single session CEs (small data points) and average CEs across sessions 
(large data points) plotted as a function of gamble EV, with cubic spline interpolated curves. The full pattern of CEs shows a smooth 
transition from low to high probability gambles in terms of CE difference across the two elicitation sequences. For low probability gambles, 
both monkeys showed higher CEs in the MIXED than in the REPEATED conditions; when increasing gamble probabilities, the CE differ-
ence across conditions gradually reduced and inverted, resulting in lower CEs in the MIXED than in the REPEATED condition for high 
reward probabilities. Single session data points were shifted horizontally (REPEATED condition: left; MIXED condition: right) for visual-
ization purposes. d, Mean RT (± SEM across sessions) in the two elicitation conditions. RTs for Monkey A were similar in the two conditions 
(RT difference = 3.0 ms, t(9088) = −0.59, p = 0.56); Monkey B showed faster response in the MIXED condition compared with the RE-
PEATED condition (RT difference = 30.0 ms, t(22233) = −15.88, p = 1.77 × 10−56) (for RT as a function of the options' EV, see Figure 2-
1). *Significant RT difference between conditions (two-sample t test). 
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said gamble’s objective EV reflected risk-seeking behaviour; risk-aversion was characterized instead 

by gamble CEs smaller than the gamble’s EV.  

By simultaneously estimating the individual contributions of utility and probability distortion to these 

measures of risk attitudes, we could model the shape of the monkeys’ probability distortion regardless 

of the utility function. 

4.3.2 Basic behavioural performance 

A logistic regression analysis demonstrated that the monkeys used the information from the visual stim-

uli to guide their decisions on all daily testing sessions (Fig. 4-2a). A positive regression coefficient for 

gamble value (one-sample t-test, Monkey A: t(55) = 29.41, p = 2.5×10-35; Monkey B: t(58) = 30.16, p 

= 3.9×10-37) indicated that animals were more likely to choose higher probability gambles than lower 

probability ones; conversely, the negative coefficient for safe reward value (Monkey A: t(55) = -44.65, 

p = 6.8×10-45; Monkey B: t(58) = -58.61, p = 2.6×10-53) indicated that monkeys chose the safe option 

more frequently when its value was of higher magnitude. Both animals preferred gambles of higher 

over lower probabilistic variance, i.e., they preferred gambles that were more uncertain, regardless of 

the outcome (positive coefficient for risk; Monkey A: t(55) = 4.58, p = 2.7×10-5; Monkey B: t(58) = 

7.79, p = 1.4×10-10). Monkey A, but not monkey B, showed a side bias (positive coefficient for the 

position variable), which was taken into account by balancing the positions of gambles and safe re-

wards: every option was presented the same number of times on each side of the computer monitor. 

4.3.3 Estimation of subjective values using different sequence structures 

We used a binary choice paradigm to estimate the monkeys’ subjective valuation of specific gambles. 

We measured the choice ratios between different safe rewards and gambles ranging in probabilities 

from p = 0.1 to p = 0.9. Fitting a softmax curve to each of these gamble-safe groups allowed us to 

estimate the CEs corresponding to different gamble probabilities (see methods). These CEs served as a 

measure of subjective value for unique probabilities and provided us with a precise measure of an ani-

mal’s risk preference over the range of probabilities tested. 

We elicited CEs in both monkeys using two different elicitation conditions: MIXED and REPEATED 

gamble sequences (Fig. 4-2b). In the MIXED condition, we estimated CEs from sequences of binary 

choices containing several different gambles pitted against safe rewards. All gamble and safe options 

presented were randomly intermixed, and multiple CEs were estimated from these sequences, one for 

each gamble. In the REPEATED condition, we elicited CEs from blocks of trials that contained a single, 

unique gamble versus different safe rewards. In this way, we elicited a unique gamble’s CE for each 

given block. Importantly, the two conditions used the same visual stimuli; any difference between esti-

mated CEs would therefore be due to the elicitation sequence in which CEs were estimated. 

We aggregated the daily CEs of individual monkeys, for both conditions, to determine the risk-prefer-

ence pattern derived from the CEs measured in each elicitation sequence. The risk- preference pattern  
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Figure 4-3 | Response time vs EV. Top: Mean RT (± SEM across sessions) as a 
function of EV difference between the two presented options (gamble EV - safe 
magnitude). Choices between options with similar EV produced higher RT. Bot-
tom: Mean RT (± SEM across sessions) as a function of the EV of the chosen 
option. Faster RTs were associated to higher EV of the chosen option, while 
slower RTs corresponded to choices where a low EV option was selected 
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Figure 4-4 | Modelled vs measured choice behaviour. Comparison of es-
timated (curves) and measured (circles) percentage of safe choices as a 
function of safe magnitude. Conventions and symbols as in Fig. 4-5d. Thin 
lines represent differences between estimated and experimental data per-
centages, with the horizontal line (at 0.5 on the y axis) corresponding to 
perfect estimate (difference=0).  
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was therefore directly inferred from the relation between the CEs and the respective EVs, as opposed 

to being theoretically derived from the shape of utility and probability distortion functions. We found a 

significant difference between the distribution of CE values elicited in REPEATED versus those elicited 

in MIXED sequences (two-way ANOVA, factors: gamble probability, elicitation condition). As ex-

pected, we found a significant main effect of reward probability on a gamble’s CE higher probability 

gambles had a higher CE in both animals (Monkey A: F(8,237) = 444.12, p = 5.2 × 10-138; Monkey B: 

F(8,337) = 241.14, p = 1.4 × 10-134). We also saw a main effect of elicitation conditions (Monkey A: F(1,237) 

= 7.69, p = 0.006; Monkey B: F(1,337) = 20.21, p = 9.6 × 10-6), where CEs elicited in the MIXED condi-

tion were significantly different from those in the REPEATED condition. Adding to this effect, we 

observed a significant interaction effect between probability and condition (Monkey A: F(8,237) = 7.73, 

p = 3.3 × 10-9; Monkey B: F(8,337) = , p = 8.5 × 10-16), suggesting that the different elicitation sequences 

had a more complex effect on CE values than a mere monotonic increase or decrease. This effect was 

readily observable from the condition-specific CE distributions (Fig. 4-2c), where the concave pattern 

of the MIXED-condition CEs contrasts with the S-shaped distribution of the REPEATED-condition 

CEs. Analysis of the RTs showed no significant difference across conditions for Monkey A, while 

monkey B responded faster in the MIXED than in the REPEATED condition (Fig. 4-2d). In general, 

RT observations for both monkeys followed a steady pattern (Fig. 4-3): shorter RTs when choosing 

higher EV compared to lower EV options, and longer RTs for smaller EV differences between options. 

4.3.4 Sequence-dependent changes in probability distortion  

Because CE elicitation rested on reward options that varied in both magnitude and probability, any risk-

preference changes could be attributed to nonlinear utility, probability distortion, or a combination of 

both. To better understand the role of these decision variables in shaping a gamble’s subjective value, 

we simultaneously estimated the shape of both functions from the monkeys’ daily binary choices. Using 

a standard discrete choice model (Eq. 4-3), we elicited functional parameters that best explained each 

animal’s choices between gamble-safe choice pairs on individual days, assuming nonlinear utility and 

probability distortion. The estimation procedure allowed parameters to take on any value, imposing no 

constraints beyond the functional forms of the discrete choice softmax, probability distortion, and utility 

curves. 

We defined the value of each reward option as the product of its subjective probability and utility, 

consistent with prospect theory and other modern decision theories (Kahneman & Tversky, 1979; 

Tversky & Kahneman, 1992). As is traditionally done, we modelled utility through a one-parameter 

power function. The simple power function accounted well for risk-seeking (ρ > 1), risk-averse (ρ < 1), 

or risk neutral attitude (ρ = 1) for the range of reward magnitudes. We tested only one model for utility, 

as magnitude presentations did not differ across conditions. Instead, we sought to optimize our choice 

model with regards to subjective probability because CE elicitation sequences differed in terms of the 

order in which gamble probabilities were experienced. We tested four classical  



Chapter 4 | Choice sequences shape probability distortions 
 

108 
 

  

Figure 4-5 | Choice model selection and validation. a, Good-
ness-of-fit for choice behaviour using four models with differ-
ent probability weighting functions. Bars represent mean BIC 
values (±SEM) across all sessions (Monkey A: N = 56; Mon-
key B: N = 59). BIC scores for daily parametric fits differed 
significantly across models (one-factor ANOVA with repeated 
measures, Monkey A: F(3,150) = 8.32, pGGc = 3.1 × 10−3; 
Monkey B: F(3,174) = 13.575, pGGc = 5.3 × 10−08). Lower 
BIC values for the Prelec weighting functions (Prelec-1, Pre-
lec-2) indicate a better fit of the data compared with the one-
parameter Tversky or two-parameter Gonzalez functions. BIC 
values for all model pairs, except for Prelec-1 versus Prelec-
2, Prelec-1 versus Gonzalez, Prelec-2versus Gonzalez in 
Monkey A, and the Prelec-2 versus Gonzalez in Monkey B, 
were significantly different (post hoc analysis, p< 0.05) for 
both monkeys. The sum of squared errors in CE estimation was 
the lowest in the Prelec models. b, c, Validation of the param-
eter estimation procedure using the Prelec-1 probability 
weighting function. Top, Utility (left) and probability distor-
tion (right) functions used to simulate choices. Bottom, The 
functions recovered with the MLE procedure. Monte Carlo 
simulation of choice behaviour (using the same number of tri-
als and the same step-size for magnitude and probability as in 
the measured data: 9 gamble probabilities, 11 safe magnitudes, 
6 trials per gamble-safe pair) was repeated 1000 times, produc-
ing the 95% CIs on the parameter estimates (grey areas). Var-
ying the utility function parameter (ρ, 0.2–3) while keeping the 
probability distortion parameter constant (α = 0.67) resulted in 
an unbiased estimate of the utility shape (b). The probability 
distortion parameter (α), varying from 0.33 to 3 while keeping 
the utility shape fixed (ρ = 2), was recovered consistently and 
without bias (c). d, Modelled versus measured choice behav-
iour. Comparison of estimated (curves) and measured (circles) 
percentage of safe choices as a function of safe magnitude, for 
two example gambles (probabilities 0.2 and 0.8) (for the full 
dataset, see Figure 3-1). Estimated choice percentages were 
computed using the discrete choice model with the MLE-re-
covered parameters (Eq. 4-3, using the Prelec-1 probability 
weighting function). Red and blue points represent estimated 
CEs. Vertical dashed lines indicate EVs. The estimated psy-
chometric functions closely approximated the measured data 
points, and differences in estimated CEs across conditions are 
compatible with the observed data for both low and high prob-
abilities (Fig. 4-2b). 
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models of probability distortion to maximize the reliability of our model in capturing real choices; two 

of these functions had one free parameter, and the others had two. Finally, we defined cumulative log-

likelihood functions for each of these models and estimated the best-fitting parameters for each decision 

function through MLE (see methods).  

Across all testing sessions, the BIC scores of the Prelec curves were consistently lower than the one-

parameter Tversky and lower than the Gonzalez models in at least one monkey (Fig. 4-5a). However, 

while the two-parameter Prelec had a marginally lower BIC score in both animals, the one-parameter 

Prelec showed marginally lower sums of squared errors between predicted and average experimental 

CEs (one-factor ANOVA with repeated measures, Monkey A: F(3,144) = 6.166, pGGc = 5.7 × 104; Mon-

key B: F(3,168) = 3.699, pGGc = 1.3 × 10−2). We ultimately selected the one-parameter Prelec due to this 

lower sum of squared errors, lower parameter count, and because of its ease of interpretation: for the 

curvature parameter α > 1, the function underweighed low probabilities and overweighed high ones, for 

α < 1, low probabilities were overweighed and high ones were underweighed. With an α = 1, probabil-

ities were treated linearly. Monte Carlo simulations from predefined parameters confirmed the reliabil-

ity of the MLE method for the selected model: we recovered accurate parameters for both the utility 

(Fig. 4-5b) and probability distortion (Fig. 4-5c) functions. 

Having selected the one-parameter Prelec as the best-fitting probability distortion function, we esti-

mated the functional parameters of our choice model (Eq. 4-3) using the MLE method. The model was 

able to capture the characteristic pattern of risk attitudes observed in our experimental data: CEs of low 

probability gambles were larger than their respective EVs in the MIXED condition, whereas CEs of 

high probability gambles were larger than their EVs in the REPEATED condition (4-5d, see Fig. 4-

4 for the full dataset), in accordance with the measured behaviour (Fig. 4-2b). 

We compared daily estimated parameters across CE elicitation conditions for utility and probability 

distortion (Fig. 4-6a). Both animals exhibited convex utility (ρ > 1) in the tested range of 0–0.5 ml 

accounting for risk-seeking behaviour, with linearity only in the case of Monkey B's REPEATED con-

dition. Importantly, probability distortions inverted across elicitation condition. In the MIXED elicita-

tion condition, both animals overweighed low probabilities and underweighed high ones (α > 1), 

whereas they instead underweighed low probabilities and overweighed high ones within the RE-

PEATED condition (α < 1) (Fig. 4-6b). MANOVA confirmed the impact of the different elicitation 

sequences on both animals' choice pattern (Monkey A: F(1,54) = 24.96, Wilks's λ = 0.41, p = 3.85 × 10−10, 

η2 = 0.59; Monkey B: F(1,57) = 40.78, Wilk's λ = 0.31, p = 5.2 × 10−14, η2 = 0.69) with only the probability 

distortion parameter (α) consistently different across conditions (Fig. 4-6a,c). The change in risk-atti-

tude between the two conditions could therefore, at least in the case of gamble-safe choices, be reduced 

to a reversal in the probability distortion function. 

http://www.jneurosci.org/content/39/15/2915#F4
http://www.jneurosci.org/content/39/15/2915#F4
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Figure 4-6 | Utility and probability distortion functions in two elicitation conditions. a, Model parameter estimates (mean 
± SEM across sessions) in the MIXED (red) and REPEATED (blue) conditions. *Significant differences across conditions 
(MANOVA). The probability distortion parameter (α) consistently varied across sequence structures in both monkeys: nega-
tive log values in the MIXED condition corresponded to inverse S-shaped probability distortion (α < 1), whereas positive log 
values in the REPEATED condition implied S-shaped probability distortion (α > 1). Numbers below the bars indicate effect 
sizes (Cohen's d). The utility (ρ) and softmax (λ) parameters significantly differed across conditions only for 1 monkey, with 
a smaller effect size compared with the probability distortion parameter. b, Shapes of the probability distortion function (left) 
and utility function (right) corresponding to the estimated parameters, displaying the consistent difference in subjective prob-
ability evaluation across conditions for both monkeys. c, 2D representation of the utility and probability distortion parameter 
estimates. Dots represent the simultaneously estimated utility (ρ) and probability distortion (α) parameters for single behav-
ioural sessions, with 95% confidence ellipses. 

http://www.jneurosci.org/content/jneuro/39/15/2915/F4.large.jpg?width=800&height=600&carousel=1
http://www.jneurosci.org/content/jneuro/39/15/2915/F4.large.jpg?width=800&height=600&carousel=1
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The REPEATED condition was a much less complex decision situation compared with the MIXED 

one, theoretically allowing for a simpler choice strategy: it would have been sufficient to evaluate the 

certain option, ignoring the gamble option in the majority of trials, to make choices. We tested for this 

possibility by fitting a model with an attentional parameter to the choice data (Eq. 4-11). We found that 

there was no significant difference in attention given to the safe compared with the gamble option (the 

weight parameter was not significantly different from 0.5; Monkey A: t(21) = −2.01, p = 5.7 × 10−2 (t-

test); Monkey B: t(30) = −1.25; p = 2.2 × 10−1), suggesting that both options were fully considered when 

making choices in the REPEATED condition. Furthermore, shorter RTs in the REPEATED condition, 

expected if the monkeys ignored the gamble option, were not observed (Fig. 4-2d). 

4.3.5 Reversal of probability distortion in the Marschak–Machina triangle 

To extend our findings beyond gamble-safe choices, we characterized the choice behaviour of 1 monkey 

in a different set of gambles using the Marschak–Machina triangle. This diagram was first introduced 

as a way of ‘organizing’ a series of anomalies observed in risky choices, most notably the common ratio 

and common consequence effects, which violated the independence axiom of EU theory (Allais, 1953). 

Several economic theories were developed to explain these apparent paradoxes. Each theory predicted 

indifference curves with distinctive shapes in the Marschak–Machina triangle, making it an ideal frame-

work to evaluate and compare the alternative theories (Machina, 1982). 

The use of this diagram, which makes it possible to represent a more general class of choice options 

(i.e., gambles with three fixed outcomes of varying probabilities; Fig. 4-7a), allowed us to extend our 

results to a wider range of problems. We did this to test the robustness of the parametric modelling (out-

of-sample test) and, most importantly, to investigate the effect of elicitation condition from a different 

perspective: by looking at the change in direction of indifference lines, which connected points of the 

triangle edges (specific two-outcome gambles) for which the animal expressed choice indifference (Fig. 

4-7b), we could quantify the effects of elicitation condition that were specifically dependent on changes 

in probability distortion, and independent of changes in the shape of the utility function. 

One of the theoretical consequences of probability distortions in the Marschak–Machina triangle is that 

indifference lines would not be parallel to each other, as in the case of linear probability weighting, but 

would instead fan-out or fan-in depending on the probability distortion (Fig. 4-7c): an inverse S-shaped 

probability distortion would induce fanning-out, whereas an S-shaped one would result in indifference 

lines fanning-in. Fanning-out would indeed correspond to an increase in the steepness of the indiffer-

ence lines when shifting ‘probability mass’ from worse to better outcomes. As steeper lines correlate 

with more risk-seeking behaviour, fanning-out would imply an inverse S-shaped probability distortion. 

The opposite would happen with fanning-in indifference lines, then corresponding to an S-shaped prob-

ability distortion function (Camerer, 1989). Crucially, because the outcome magnitudes used in the 

Marschak–Machina triangle are fixed, the fanning direction is independent of the utility function and is 
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therefore solely determined by the shape of the probability distortion. In that sense, any observed change 

in the fanning direction of the indifference lines with a change in elicitation sequence could only be due 

to a change in the probability weighting function (Fig. 4-7c). 

We used the previously recovered parameters for utility and probability distortion to estimate the ex-

pected pattern of indifference lines in the two experimental conditions: MIXED and REPEATED se-

quences. We then compared the predicted directions of the indifference lines with the measured ones. 

As expected, the theoretical indifference lines, modelled using the previously elicited parameters, 

showed a slight fanning-out pattern for the MIXED condition, where a weakly inverse S-shaped prob-

ability distortion was measured. Conversely, we saw a fanning-in pattern in the REPEATED condition, 

for which we had observed an S-shaped probability distortion (Fig. 4-8a, left). 

The direct experimental measure of indifference lines was performed by presenting the animals with 

binary choices between a gamble represented by a fixed point on the triangle edge and one of several 

points on the triangle's hypotenuse. The indifference line was defined as the segment connecting the 

fixed point with the point corresponding to choice indifference on the hypotenuse. This procedure re-

sulted in a directional pattern of indifference lines compatible with the theoretically predicted one, with 

no clear fanning direction of indifference lines in the MIXED condition, and clear fanning-in in the 

REPEATED condition (Fig. 4-8a, right). We quantified this directional pattern of indifference lines 

using a measure for the fanning direction. The fanning of indifference lines corresponds to a gradual 

change in the slope of indifference lines: when moving from the lower right corner of the probability 

triangle to the upper left corner, an increasing slope would produce fanning-out, whereas a decreasing 

slope would produce fanning-in. Following this principle, we statistically assessed the fanning direction 

of the indifference lines by computing a linear regression on the slopes of the indifference lines. Results 

show no significant regression slope in the MIXED condition (R2 = 0.08, p = 0.50), suggesting no fan-

ning of indifference curves, whereas in the REPEATED condition a significant linear regression (R2 = 

0.98, p = 4.4 × 10−6) indicated fanning-out of the indifference lines. These results are consistent with 

predictions from the modelled indifference lines, which show a similar pattern of fanning directions 

(Fig. 4-8b). 

We statistically compared the measured and predicted patterns of indifference lines by calculating the 

shift in the location of indifference points across conditions, corresponding to changes in the slope of 

indifference lines. A significant correlation between the predicted and measured shifts (Pearson's cor-

relation coefficient r = 0.78, p = 4.0 × 10−3) confirmed that the experimental data complied with our 

theoretical predictions (Fig. 4-8c) and supported the finding that probability distortion drove the change 

in risk attitude between REPEATED and MIXED conditions. 
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Figure 4-7 | Indifference lines in the Marschak–Machina triangle modeling different patterns of probability distor-
tion. a, Representation of gambles in the Marschak–Machina triangle. Schematic representation of a three-outcome gamble 
(left): probabilistic combination (p1, p2, p3) of three fixed magnitudes (m1 = 0 ml, m2 = 0.25 ml, m3 = 0.50 ml), which can 
be represented in the Marschak–Machina triangle (right, with example gambles corresponding to points on the triangle edges). 
Grey line in triangle connects points with equal EV (0.25 ml). b, Procedure for the psychometric measurement of one indif-
ference line. An indifference point (top, blue dot) in choices between a fixed gamble A and different gambles Bi (circles) was 
defined as the point on the triangle hypotenuse for which a softmax function fitted on the ratio of A over Bi choices equated 
0.5 (bottom). An indifference line was then constructed by connecting such indifference point on the hypotenuse to the fixed 
gamble A (blue line). c, Theoretical indifference lines. Indifference lines predicted by cumulative prospect theory, for different 
underlying shapes of utility (u(m), power function) and probability distortion (w(p), Prelec-1 function). Each plot represents 
the indifference lines corresponding to a particular combination of u and w shapes, represented by orange and purple lines, 
respectively. The shape of the utility function (linear in the first row of plots, concave and convex in the other two rows) 
changes the global orientation of the indifference lines, without affecting their fanning direction. On the contrary, a change in 
probability distortion shape corresponds to a change in the fanning direction of indifference lines: a linear probability distortion 
(first column) produces parallel indifference lines, whereas S-shaped (second column) and inverse S-shaped (third column) 
probability distortions correspond to indifference lines fanning-in and fanning-out, respectively, regardless of the utility func-
tion shape. 
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Figure 4-8 | Effect of CE elicitation sequences on the Marschak–Machina triangle indifference 
lines. a, Modelled (left) and measured (right) patterns of indifference lines across conditions. Arrows 
indicate the direction and amount of shift for three sample indifference points between the MIXED 
(red) and REPEATED (blue) conditions, highlighting how the model correctly predicted the effect of 
condition change. Grey line connects points with the same EV (0.25 ml), representing an indifference 
line in case of risk-neutral behaviour. Numbers define indices for the indifference lines, corresponding 
to fixed gambles on the triangle edges (black dots, also represented as visual cues). b, Fanning direc-
tion of the indifference lines. Points represent the slope of indifference lines (angle between each line 
and the horizontal axis) as a function of indifference line index. Circles represent the model predicted 
values. Dots represent experimental data. Lines indicate linear regressions, separately computed on 
the two task conditions for the model (dashed lines) and the data points (continuous lines). A regres-
sion line with negative slope corresponds to a decrease in indifference line angle, indicating fanning-
out; conversely, a positive regression coefficient indicates fanning-in of indifference lines. c, Statisti-
cal comparison between model and experimental data. Shift in location of indifference points across 
elicitation sequences (average difference ± SEM). A linear regression between the modelled and 
measured shifts (inset) confirmed the match between model and data in terms of predicted shift in 
indifference points, corresponding to a correct prediction of the change in the fanning direction across 
conditions. 
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4.3.6 The effect of trial history on the probability distortion  

Because the structure of elicitation sequences appeared to affect probability distortions specifically, we 

investigated whether the differences in choice behaviour could be explained in relation to past experi-

ences, or trial history. One key difference between elicitation sequences was the order of the probabil-

ities presented on the screen. In the MIXED sequences, the monkeys were much more likely to have 

experienced different gambles in their immediate past than in trials from REPEATED sequences, where 

the same gamble was repeated numerous times. Consequently, while the range of probabilities, magni-

tudes, and safe outcomes was identical in both conditions, the variability of past gambles was signifi-

cantly different between the two conditions (Fig. 4-1d,e). 

Because human and nonhuman primates, much like rodents, often base part of their risky decisions on 

recent experiences (G. Barron & Erev, 2003; Hayden et al., 2008; Marshall & Kirkpatrick, 2013; Nowak 

& Sigmund, 1993), we again ran a logistic regression on the probability of choosing the gamble option: 

this time to verify whether the EV of past gambles had any impact on the animals' decisions (Eq. 4-14). 

We found that, in the MIXED condition, both monkeys made use of at least one past gamble to make 

their decision (Fig. 4-9a). The monkeys appeared to bias their choices in favour of the gamble (positive 

regression coefficient) when the prior gamble's EV was higher. In game-theoric terms, and taking the 

gamble's EV as a proxy for its ‘win rate,’ monkeys seemed to follow a WSLS strategy, whereby receiv-

ing a reward from a risky choice option increased the likelihood of choosing a similar option again; the 

opposite was true for choices where the risky option resulted in a loss (no reward). To validate this 

hypothesis, we applied a WSLS-compatible model (Eq. 4-15) on the immediate trial history of both 

monkeys, looking at their propensity to choose a gamble over a safe outcome when they had previously 

chosen a gamble and won (Fig. 4-9b). As expected, we found a significant effect of both the current 

gamble's EV (one-sample t-test, Monkey A: t(50) = 29.41, p = 3.19 × 10−33; Monkey B: t(58) = 32.28, p = 

9.38 × 10−39) and the current safe outcome's EV on the likelihood of choosing a gamble (one-sample t-

test, Monkey A: t(50) = −38.71, p =6.05 × 10−39; Monkey B: t(58) = −46.19, p = 1.9 × 10−47). Both mon-

keys had a small but significant side bias (one-sample t-test, Monkey A: t(50) = −4.59, p = 2.97 × 10−5; 

Monkey B: t(58) = −2.55, p = 1.3 × 10−2). More importantly, there was a significant positive effect of 

‘winning’ the preceding gamble on the likelihood of selecting the gamble option again, regardless of 

value (one-sample t-test, Monkey A: t(50) = 10.75, p = 1.3 × 10−14; Monkey B: t(58) = 8.32, p = 1.76 × 

10−11). In other words, receiving a reward from a risky gamble made the next gamble more attractive 

relative to the safe outcome. 

We investigated this effect further, by estimating separate utility and probability distortion parameters 

in trials where a past gamble had been selected and ‘won’ and in trials where the past selected gamble 

had been ‘lost.’ Due to lower trial counts per session after this trial selection, all sessions were pooled 

for each condition. In both animals, the utility function estimated from the former class of trials was 

more convex than the utility estimated from unrewarded trials (Fig. 4-9c). Probability distortions,  
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Figure 4-9 | Sequence-dependent effects of trial history on probability distortion shape. a, Influence of past trials on current trial's choice. 
Standardized regression coefficients (mean ± SEM across sessions) for current trial's gamble EV, safe reward magnitude, and previous trials' 
gamble EV (up to eight trials in the past). *Coefficients significantly different from zero (t test). For both monkeys, the choice behaviour 
depended on at least one trial in the past. Positive regression coefficients indicated that an increase in the previous trial's gamble EV induced 
the monkeys to choose the current trial's gamble option more frequently. b, Effect of the past outcomes on gamble choices. Standardized 
regression coefficients (mean ± SEM across sessions) for gamble EV, safe magnitude, previous trial's gamble outcome (0 or 0.5 ml), and 
gamble position. A significant positive coefficient for the previous outcome indicated that monkeys chose the gamble more often when the 
previously chosen gamble was successful (0.5 ml) than when it was not successful (0 ml): the gamble was chosen more after a win than after 
a loss. In terms of BIC score, this model (Eq. 4-15) was at least as good at describing the choice data compared with the model with no past 
trials' influence (Eq. 4-2) (Monkey A: BIC2 = 84.2, BIC14 = 82.3, t test: p = 0.14; Monkey B: BIC2 = 221.4, BIC14 = 215.8, t test: p = 5.8 × 
10−5). c, Effect of past outcomes on the utility and probability distortion functions. The utility function appeared more convex following a 
gamble-win trial (0.5 ml reward) than following a loss (no reward), suggesting that gamble outcomes had an influence on the relative value of 
gamble and safe options on the next trial. The utility parameter estimates following win and loss trials are indicated as αW and αL, respectively, 
whereas probability distortion parameter as ρW and ρL, respectively. Arrows indicate the change in the utility parameter between loss and win 
trials. Error bars indicate the 95% CIs of the parameter estimates. d, Simulated effect of EV update mechanism based on past outcomes. Mean 
± SEM across simulated sessions (N = 50) of the CE resulting from choices simulated using the learning model (Eq. 4-16) in MIXED and 
REPEATED conditions. The parameters used in the simulation were recovered from the MLE procedure with the same model separately for 
each monkey. Linear probability weighting and linear magnitude coding were used in the simulation, demonstrating that an EV update mech-
anism interacting with the local trial structure could explain the observed change in risk attitudes across conditions without explicitly introduc-
ing a nonlinear probability distortion. 



Chapter 4 | Choice sequences shape probability distortions 
 

117 
 

however, were not consistently different between these two classes of trials, maintaining their respective 

inverse-S and S shapes for MIXED and REPEATED conditions. Much like in the logistic regression, 

these results suggested a tendency to choose the gamble option more often after rewarded (win) trials, 

compared with unrewarded trials (a more convex utility function corresponding to stronger risk-seeking 

behaviour). What it also highlighted, however, was a change in the relative value distribution between 

gambles and safe options: one that varies with past experience. In other words, gambles following a 

rewarded trial would be of higher relative value for the monkeys than those following unrewarded trials, 

at least in terms of safe rewards. 

The effect of past wins or losses on subjective value could account for some of the gap in probability 

distortion observed across our two conditions. A MIXED sequence of gambles would drive subjective 

value estimates in an opposing pattern to that of a REPEATED elicitation sequence simply due to task 

structure. In the case of MIXED sequences, the random distribution of gamble probabilities would in-

deed result in an inverse-S probability distortion. Gambles with probabilities >0.5 would, more often 

than not, follow a gamble of lower EV; the monkey would then, on average, be less likely to pick said 

gamble due to the decrease in subjective value estimate following lower past returns. This would drive 

down the CE value of high probability gambles. In the case of low probability gambles, high past returns 

would drive CEs up. From this, we would expect an opposing distortion pattern in a REPEATED con-

dition. For any gamble, the CE value would be distorted in a way proportional to its own probability: a 

low probability gamble would be driven down in value by repeated experience, whereas a high proba-

bility gamble would see its value go up. A change in gamble value, rather than a simple WSLS strategy, 

might also have longer lasting effects and could explain the persistence of sequence-type effects when 

looking at choices in the Marschak–Machina triangle paradigm. 

To test this hypothesis directly, we developed a simple reinforcement learning model in which gamble 

values were updated based on the previous trial's outcome: the value of a gamble increased by a fixed 

amount after a win and decreased by the same amount after a loss (Eq. 4-16). Importantly, in the choice 

model, the gambles' starting values were the respective objective EVs, which were compared with the 

objective safe magnitudes to make choices. No utility or probability distortion was included, only the 

previous choice softmax function, and we made no distinction between parameters estimated in repeated 

or mixed sequences. We again estimated the model parameters through MLE on each session's trial-by-

trial choice data and retrieved a significant, mean value-updating parameter for both monkeys (Monkey 

A: η = 4.5 × 10−3 ± 9.0 × 10−4 SEM; t(55) =4.96, p = 7.1 × 10−6; Monkey B: η = 4.1 × 10−3 ± 5.8 × 

10−4 SEM; t(58) = 7.1, p = 2.0 × 10−9). The value of η corresponded to the fixed amount of value being 

added to or removed from the gamble's subjective value estimate following ‘win’ and ‘lose’ trials, re-

spectively. 
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After running the estimation procedure on all sessions, we tested whether the average observed value-

updating parameter could explain the different CE distributions seen across the MIXED and RE-

PEATED conditions. We computed CEs from simulated choices using the learning model defined 

above (Eq. 4-16), using the mean recovered softmax and value-updating parameters, still holding utility 

and probability weights linear. The resulting pattern of simulated CEs (Fig. 4-9d) followed the experi-

mental pattern. In particular, it captured the clear separation between the two CE elicitation sequences. 

Although this model appeared to have a higher BIC score than the ‘classical’ prospect theory model 

(Eq. 4-3; Monkey A: BICEq16 = 160.7, BICEq3 = 137.5, t(55) = 6.92, p = 5.01 × 10−9; Monkey B: BICEq16 

= 419.8, BICEq3 = 392.7, t(58) = 4.69, p = 1.70 × 10−5), it accounted for the change in the pattern of CEs 

across both conditions using a single set of parameters. Conversely, two different sets of parameters 

were necessary for the prospect theory counterpart to capture the different CE patterns. 

Together, these results suggest that a simple value-updating mechanism that modifies gamble values 

based on the previous outcomes, applied to different elicitation sequences, would be sufficient to induce 

a reversal in the observed probability distortion patterns of monkeys during choice. 

4.4 Discussion 
This study demonstrated that the shape of the probability weighting function guiding value-based 

choices in monkeys depended largely on the task's sequence structure. When deriving CEs from se-

quences in which different probabilistic rewards pseudorandomly alternated (MIXED), we found that 

monkeys overweighed low probability rewards and underweighed high probability ones. Conversely, 

the same CE elicitation method yielded the opposite choice pattern (underweighting of low probabilities 

and overweighting of high ones) when choice sequences consisted of trial blocks each containing a 

unique, REPEATED gamble. By simultaneously eliciting utility and probability weighting functions 

from each of these elicitation conditions, we showed that the two opposing choice patterns we observed 

could be explained by a reversal of the standard inverse S-shaped probability distortion function, seen 

when gambles were MIXED, to an S-shaped distortion when identical gambles were REPEATED. We 

confirmed and extended these results by comparing choice indifference lines in the Marschak–Machina 

triangle representations of the two elicitation conditions. The triangle's indifference maps were compat-

ible with the observed inversion of probability distortions, preserving the weighting patterns in trials 

where no safe options were presented. Finally, by analyzing both sequence structure and monkeys' 

choices in relation to previous trials, we showed that a past-driven update of subjective values could 

partially explain the observed reversal in probability distortion. 

Modern economic theories of choice under risk introduced distorted probability weightings to account 

for biases and departures from expected utility theory's predictions (Allais, 1953; Kahneman & Tversky, 

1979; Von Neumann & Morgenstern, 1944). Since then, the typical finding has been that humans over-

weighed low probabilities, all the while underweighting high ones (Abdellaoui, 2000; Gonzalez & Wu, 
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1999; Lattimore et al., 1992; Tobler et al., 2008): an inverse-S probability distortion (Kahneman & 

Tversky, 1979). This shape has also been replicated in monkeys (Stauffer et al., 2015) where human-

ported tasks resulted in a reliable inverse-S probability distortion. The current study ties in with these 

findings, using a coherent set of visual stimuli for both gambles and safe reward options to control for 

any bias introduced by the different visual representations of the two option types. Our results, in addi-

tion to reliability capturing macaque behaviour using modern economic choice theories, further char-

acterize the effects of sequence structure on utility and probability distortion. 

In contrast to the generally reported inverse-S-shaped probability distortion, a growing number of stud-

ies on human and animal subjects have highlighted the variability in probability distortion shapes, both 

across subjects and between task conditions (Bruhin et al., 2010; Farashahi et al., 2018; Hey & 

Strazzera, 1989). Recent work by Farashahi et al. (2018) emphasized the flexibility of probability 

weights in adapting to contextual changes, after finding that S-shaped and linear probability distortions 

could be elicited in monkeys when performing different tasks. Our experimental data confirmed this 

high level of behavioural flexibility in monkeys, whereby directly manipulating the order of presented 

gambles in a single task produced opposing patterns of probability distortion. 

Other findings from human experiments suggest that the way in which probability information is pre-

sented could account for the reported variability in subjects' risk attitudes. For example, when reward 

probabilities are explicitly described (choice from description) to human subjects, they act as if over-

weighting the probability of rare events, but when probabilities are learned from experience (choice 

from experience), subjects choose as if underweighting the probability of rare events. This effect has 

been aptly referred to as the description-experience (DE) gap (Hertwig et al., 2004) and appears to 

extend to other primates. Indeed, monkeys have been shown to be more risk-seeking for experienced 

than for described gambles, suggesting a similar DE gap effect in nonhuman primates (Heilbronner & 

Hayden, 2016). Whereas some authors have called for two separate theories explaining choices from 

description and choices from experience (Abdellaoui et al., 2011; Hertwig & Erev, 2009), others have 

suggested that prospect theory could effectively describe choice in the two situations when allowing for 

a change in the probability distortion function between the two settings (Frey et al., 2015; Ungemach 

et al., 2009). 

While the dichotomous choice patterns we observed are comparable with those described in the DE gap 

studies, here the cues representing reward probabilities were identical in the two sequence conditions. 

In both MIXED and REPEATED sequences, probabilities were described explicitly through cues, 

learned from experience by the animals; the conditions only differed in the presentation order of the 

probability information. While the task design was different from previous human DE studies in this 

respect, the repeated sampling of outcomes typically used to ‘learn’ the value of risky prospects in 

choices from experience (for review see Wulff, Mergenthaler-Canseco, & Hertwig, 2018) echoes the 
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repetitive structure of our REPEATED sequence; conversely, described prospects are typically pre-

sented in a less structured, randomized sequence, analogous to our MIXED condition. While a direct 

comparison remains to be made, findings in both the DE gap experiments and in the present study 

suggest that past trial outcomes play a role in shaping the subjective perception of reward probabilities. 

Sampling bias has been identified as a source of variability in probability distortions, particularly in 

relation to the DE gap. Indeed, sampling bias is particularly problematic in ‘experienced’ conditions 

due to the limited number of trials used in learning the options' values: with small sample sizes, low 

probability gambles are often rewarded less frequently than would be prescribed by their nominal prob-

ability (Camilleri & Newell, 2013; Hertwig & Erev, 2009; Hertwig & Pleskac, 2010). The use of iden-

tical descriptive cues and elicitation procedures in the present study ensured that similar sampling sizes 

were applied, and indeed required, to estimate CEs for every gamble. Any bias would therefore affect 

the two conditions in a similar manner. With no obvious sampling biases, our data suggest that the DE 

gap could be modelled on the probability distortion changes we observed across task conditions, and 

that much like in the present study, the observed changes in risk-preferences from described to experi-

enced reward probabilities, might result from differences in the task's presentation order of probability 

information. 

A final source of variability we considered was that the REPEATED condition was a much less complex 

decision situation than the MIXED one: one could ignore the gamble in long, repeated sequences. How-

ever, we found that the animals neither differentially weighed the options nor made choices faster in 

the REPEATED condition, indicating that they were not using widely differing valuation strategies. 

The Marschak–Machina triangle, a diagram widely used in the economics literature, allows for the 

intuitive representation of choices between two- and three-outcome gambles, serving as an ideal frame-

work for investigating complex economic choice problems (Camerer, 1989; Machina, 1987). In the 

current experiment, we elicited indifference points in the Marschak–Machina triangle representation of 

the monkeys' behaviour, which crucially provided a link between animal and human studies. Although 

full indifference curves within the Marschak–Machina triangle remain to be tested, we showed that 

indifference points on the triangle edges complied with economic theories of choice, and confirmed the 

reversal of probability distortion across conditions, this time with probabilistic rewards only. Conse-

quently, we demonstrated the possibility of rigorous behavioural characterization in nonhuman pri-

mates, paving the way for future investigations into the neurophysiological basis of advanced economic 

constructs, such as probability distortion, specific economic axioms, or the neural counterparts of alter-

native economic theories. 

In conclusion, our results demonstrated the effect of a task's sequence structure on the shape of a mon-

key's elicited probability distortion, and highlighted the potential influence of past rewards on subjective 

value. Moreover, and perhaps most significantly, these adaptive effects extended through time: the 
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patterns of indifference lines observed in the Marschak–Machina triangle after a session of MIXED or 

REPEATED sequences were compatible with the probability distortion shapes measured in the preced-

ing CE elicitation session, even though the paradigm used in the Marschak–Machina triangle was al-

ways randomized. In this sense, the CE elicitation sequences preceding the Marschak–Machina triangle 

paradigm might have driven and reinforced a gap between the subjective values of identical probabili-

ties, one that influenced choices between gambles in the Marschak–Machina triangle. The reinforce-

ment learning model we used supports this hypothesis, implying that each experienced outcome could 

reinforce and update the subjective value of probabilities, leading to a flexible and contextually driven 

judgment of probabilistic information. More sophisticated models, such as the addition of a standard 

Rescorla–Wagner learning rule or a nonlinear transformation of safe magnitudes to the current value 

updating mechanism, could be more biologically plausible and successful in explaining the choice 

mechanism, and remain to be explored. It should be noted that the monkeys' initial learning/association 

phase was not analyzed here in reinforcement learning terms, as it was performed with imperative trials. 

A better understanding of probability learning, and the permanence of subjective values reinforced 

across different conditions, could shed light on the core elements of prospect theory and on the undeni-

ably adaptive nature of utility and probability distortions. 
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Chapter 5  
General discussion 

 

5.1 Summary of findings 
The body of work presented in this thesis sought to answer one simple question: what if preferences 

were adaptive? From that original question, what emerges is that far from having the stable and fixed 

preferences prescribed by traditional economic models, rhesus macaques flexibly adapt their prefer-

ences in a way that optimizes their decisions given the demands of the task at hand.  

Specifically, the results in chapters 2-4 highlight the role of contextual adaptation in shaping monkeys’ 

attitude towards risk. In Chapter 2, I demonstrated that the range of rewards that monkeys had experi-

enced in the recent past significantly influenced their propensity to take risks. When the monkeys were 

presented with new reward magnitudes that they had never experienced, their preferences shifted almost 

instantly to account for the new, expanded realm of possibilities. In Chapter 3, I uncovered important 

differences in the way monkeys evaluated the magnitudes of risky (uncertain) and riskless (certain) 

rewards – even after accounting for the effects of Prospect Theory’s probability distortion. In fact, more 

than just a risky/riskless dichotomy, the monkey’s choice preferences in one risky task did not match 

their choice preferences in another risky task. Finally, where chapters 2 and 3 described the factors that 

led preferences to adapt, the results of Chapter 4 demonstrated that using a single adaptive model could 

reconcile what economics would have traditionally recognized as two static ones. By changing the order 

in which rhesus macaques experienced probabilistic gambles, I demonstrated that adaptation to recent 

experiences was enough to induce a full reversal of a monkey’s preference for risk (at least in the way 

economics measures preferences). In doing so, I also provided an alternative, adaptive explanation for 

one of the most puzzling findings in behavioural economics: the description-experience gap30 (Hertwig 

& Erev, 2009; but see Wulff, Mergenthaler-Canseco, & Hertwig, 2018).  

5.2 Neuroethology at the centre of a paradigm shift 
Many attempts have previously been made, particularly by neuroeconomists, to reinterpret top-down 

decision models as a direct representation of brain activity (Glimcher & Fehr, 2014; O’Doherty, 2014). 

In doing so, however, most have ignored a crucial question: do these interpretations also make sense 

                                                      
30 The fact that people’s attitude towards probabilistic rewards reverses depending on if probabilities were stated 
or described, versus if they had been learned from experience  
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from a bottom-up, evolutionary perspective? In other words, how does economics tie-in with neu-

roethology? 

As ironic as it seems, biologists have often been the main culprits in propagating unrealistic top-down 

interpretations of economic findings; doing so when they are, in fact, uniquely positioned to explore 

decision-making in a bottom-up way. Past comparative studies, for example, often assumed an inherent 

uniqueness to human behaviour: viewing differences between the predictions of economic models and 

animal behaviour as reliable differences between the biology of humans and other animals; not as fail-

ings of the model to account for other, external factors. Similarly, while economists have long asserted 

that utility maximisation models serve as ‘as-if’ models of decision-making (M. Friedman, 1953; 

Samuelson, 1937), neuroeconomics readily adopted utility’s framework as a tool to locate decision-

making signals in the brain (Fox & Poldrack, 2009; Wu & Glimcher, 2018). Where neuroeconomists 

could have asked how decisions were being made, they focused on where. This has made the current 

interpretations of neural activity particularly problematic since, other than providing a good fit to exist-

ing data, the is little evidence that ‘as-if’ utility models accurately predict out-of-sample data (D. 

Friedman et al., 2014; Volz & Gigerenzer, 2014) – let alone neural activity (O’Doherty, 2014). Expected 

Utility Theory is not and should not be seen as a theory about the brain – we should instead seek to 

explain EUT using what we know about the brain. 

Likely a symptom of science’s emphasis on ‘significant’ differences, the multidisciplinary-yet-top-

down approach to studying decision-making has thus focused mainly on correlating differences between 

animals and brains with the differences in behaviour recognised by economics. The work in this thesis, 

in contrasts, looked for shared, bottom-up features in behaviour. In doing so, my work positioned itself 

closer to neuroethological thought than that of neuroeconomics: using biologically recognized and plau-

sible mechanisms to explain divergent patterns of behaviour (rather than the other way around). 

Through three separate experiments, that all shared a setup and stimuli, I showed that different ‘irra-

tional’ preferences could result from single, stable mechanisms of adaptative preferences. That prefer-

ences adapt to the range of rewards that an animal could expect, for example, led to the same patterns 

of choice described by Prospect Theory’s value function: animals were risk-seeking for rewards that 

fell below ‘mean’ expectations and risk-averse for those that fell above (Kahneman & Tversky, 1979). 

Similarly, the shift from concave (almost linear) utilities to s-shaped ones – when moving from riskless 

to risky choices – fell well in line with the idea that decision-makers perceive and indeed adapt their 

preferences to fit their expectations. Here the comparison between gamble and safe rewards might have 

anchored expectations, or indeed painted a gamble’s lower outcome as a loss (Blanchard, Wilke, et al., 

2014; Koszegi & Rabin, 2007; Wenner, 2015). Chapter 4, though, provided the most compelling exam-

ple of how bottom-up processes could influence top-down metrics: the same win-stay/lose-shift 
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algorithm, when applied to different reward schedules, led to vastly different and incompatible proba-

bility distortions.  

Crucially, the reinterpretation of stable preferences into adaptive ones is supported by a growing body 

of work that suggests that what is consistent between animals is not, in fact, risk attitudes, but rather the 

way that risk attitudes adapt to contextual modulators (Farashahi et al., 2018; Heilbronner, 2017). The 

idea that simple, biologically-valid algorithms can support top-down observations is also one that deci-

sion theory has recently embraced (Mobbs et al., 2018; Volz & Gigerenzer, 2014; Wu & Glimcher, 

2018). Ecologists, for example, have looked at several alternative theories to explain the ‘irrational’ 

behaviour that Prospect Theory predicts (Houston et al., 2014; McDermott et al., 2008; McNamara et 

al., 2014) – and a growing number of psychologists and neuroscientists go down the path of heuristics 

to interpret both brain signals and behavioural measurements (Khader et al., 2011; Mallpress et al., 

2015; Volz et al., 2010). Even in neuroeconomics, a field built on economics’ normative framework, 

there is renewed interest in re-focusing on the similarities between humans and other animals; examin-

ing these similarities through ethologically rather than economically-driven theories (Kalenscher & van 

Wingerden, 2011; Mobbs et al., 2018; Pearson et al., 2014). Where a reconciliation between bottom-up 

and top-down perspectives might have once seemed unattainable – the idea that adaptation represents 

the rational, ecological constant might finally bring every field of decision theory into sync. 

5.3 The way forward… 
It would be unfair to criticise decision theory’s focus on unrealistic models without also acknowledging 

the limitations of my own findings. In that regard, thought my work sets a precedent for interpreting 

decision-making using biologically-plausible algorithms, one must also recognize that it clearly lacks 

in terms of generalizability: my results rest on the behaviour of but 2 or 3 monkeys, monkeys who have 

spent their whole lives in captive, laboratory housing. Without also studying larger or wilder groups of 

rhesus macaques, there is no way to know if Tigger, Trident, and Ugo’s behaviour was truly representa-

tive of their species as a whole (but a promising line of research aims to resolve this, see De Petrillo & 

Rosati, 2019). Likewise, the artificial and solitary situation in which these monkeys made choices is 

nothing like the natural and social environment in which they evolved (Barrett & Henzi, 2005; 

Hammerstein & Stevens, 2012; Seed & Tomasello, 2010). It would therefore be interesting to see how 

more naturalistic conditions impact behaviour – particularly given the recent finding that monkeys be-

come risk-averse when allowed to freely move an forage (Eisenreich et al., 2019). 

Because of the above, instead of providing conclusive answers the findings from this thesis open a 

Pandora's box of new questions (particularly when it comes to the interpretation of behaviours once 

recognized as static). For example, a set of questions emerges with regards to the divergent risk attitudes 

that captive primates have been shown to exhibit (see Chapter 1). How could adaptation reconcile 

macaque monkeys’ shift from risk-seeking behaviour in one set of studies (McCoy & Platt, 2005; 
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O’Neill & Schultz, 2010; Smith et al., 2017; Stauffer et al., 2015; E. R. Xu & Kralik, 2014) to risk-

averse behaviour in another (Genest et al., 2016; Yamada et al., 2013). Likewise, rather than attributing 

the risk-averse behaviour of Bonobos and risk-seeking behaviour of Chimpanzees to their evolutionary 

history (Heilbronner, Rosati, Stevens, Hare, & Hauser, 2008; Krupenye et al., 2015), the difference 

might simply reflect preferences that have adapted to different tasks or environments contingencies: 

nature versus nurture. Adaptation to different ecological niches might then explain why bonobos exhibit 

risk-seeking behaviour when presented with choices in a different context (Haun et al., 2011). That 

primate preferences are flexible is by no means surprising. In fact, from the perspective of evolution, 

what has led primates to have such tremendous success is their inherent ability to adapt to different 

environments (Strier, 2011). What is surprising rather is that we biologists have been so quick to classify 

differences as static and stable. 

Another important question that also remains to be studied is whether failing to win has the same effect 

on preferences as losing (or in the case of our monkeys, losing juice; Paglieri et al., 2014). In other 

words, do monkeys perceive the lower magnitude of a gamble the same way that an actual loss would 

be perceived? This is particularly relevant but difficult to study since primates have not been known to 

store rewards in the way humans ‘store’ money (Santos & Rosati, 2015). A promising and rather novel 

way around this would be to use digital tokens that accumulate (or vanish) based on a monkeys’ deci-

sions (a design that is slowly making its way into the literature; see Heilbronner, 2017; Paglieri et al., 

2014). Under this design, macaques make choices that can add tokens to a ‘token bank’, or that remove 

tokens directly from it – the monkeys receiving a juice payoff only when the digital tokens in the bank 

reach a set number (Seo et al., 2014; Seo & Lee, 2009; Taswell et al., 2018). While this new design still 

plays on a monkey’s later expectations, i.e., monkeys never lose more than they had when they first 

started the experiment with, it comes much closer to true loss than failing to win (Zakrzewski et al., 

2014). It would be interesting to explore how preferences adapt to true, certain losses versus risky losses. 

Finally, with behavioural flexibility being such a defining feature of primates (particularly humans and 

macaques), one might wonder if what differentiates us from other species is the way in which our brain 

and its neurons adapt their computations to different contexts. Recent evidence points to exactly that: 

full and partial range adaptation (i.e., refining one’s expectations within a broader range of possibilities) 

of prefrontal neurons’ firing rates is likely to underlie our ability to differentiate between contexts, to 

optimize our decisions in each of them, and to shape our understanding of how different situations fit 

together (Bavard et al., 2018; Conen & Padoa-Schioppa, 2019; Rustichini et al., 2017; Schuck et al., 

2016; Wilson et al., 2014). If we are to understand the exact ways that adaptive brain signals contribute 

to behaviour, however, we need models that can capture and explain these processes. In short, it is not 

enough to study adaptive processes using static models. To understand dynamic processes, we need 

dynamic variables. To understand adaptive choices, we need adaptive economics.  
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5.4 Conclusion 
The research presented in this thesis forms the basis for a reinterpretation of irrational choices a rational 

optimization of our limited brain - one that recognizes both the neuroethology of decision-making and 

the economic patterns of choice that have now been recognized for decades. My experimental results 

established that macaques’ preferences are flexible, dynamic, and shaped by the reward statistics of the 

task at hand; it is likely that this ecologically rational mechanism is what leads to some of the more 

economically ‘irrational’ choices that we make. 
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Postface 
~ All models are wrong, but adaptive models are better ~ 

 

A new generation of economic choice models: predictions and hypotheses 
Stable preference metrics have been instrumental in neuroscientists’ search for the brain areas that en-

code value and choice (Glimcher & Fehr, 2014). But where the idea of a ‘utility’ signal in the brain will 

eventually fail is in guiding our understanding of the computations that these brain areas perform. As 

advanced in this thesis, the fixed preference measurements from economic experiments might represent 

but a ‘snapshot’ or an average measure of the adaptive computations taking place throughout the brain 

(Balasubramani, Moreno-Bote, & Hayden, 2018; Ferrari-Toniolo, Bujold, & Schultz, 2019; Hunt & 

Hayden, 2017; Zimmermann, Glimcher, & Louie, 2018). These metrics, therefore, present an inherent 

limitation; they are indicative of what decisions are taking place where, but not how or why these deci-

sions were made in the first place.  

 

Though the work presented in this thesis focused on demonstrating that preference adaptation did occur, 

what follows serves mostly as an introduction to the advantages of switching from traditional economic 

models to a new generation of adaptive models. In particular, models that seek to explain dynamic 

preferences using neurons’ fundamental properties (many exists, see e.g., Alos-Ferrer et al., 2018; 

Kontek & Lewandowski, 2018; Polanía, Woodford, & Ruff, 2019; Rustichini & Padoa-Schioppa, 2015; 

Soltani, de Martino, & Camerer, 2012). Of the many models that have cropped up in the last few years, 

Tymula & Glimcher's (2016) Expected Subjective Value Theory (ESVT) stands out as an elegantly 

simple but biologically-valid reformulation of expected utility theory – one that we can easily be fit to 

datasets that would otherwise be modelled using EUT or PT. ESVT remains a utility maximisation 

model, but it ascribes to its ‘utility’ function the same shape that governs neurons’ firing rates (accord-

ing to an already very successful model of brain activity; e.g., Louie, Grattan, & Glimcher, 2011; 

Hiroshi Yamada, Louie, Tymula, & Glimcher, 2018; Zimmermann et al., 2018). In essence, it keeps the 

variables traditionally used in economics (top-down perspective) but reinterprets the way decision-mak-

ers transform them in a way that makes biological sense (bottom-up). Just like visual neurons encode 

the brightness of an object relative to its background, ESVT assumes that decision-makers encode the 

value of different options relative to task-based expectations and context. 

 

Just like expected utility theory, ESVT starts by defining the expected subjective value of a choice as: 

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡(𝑥𝑥𝑖𝑖,𝑡𝑡 ,𝑝𝑝) =  ∑ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖 = 1 × 𝑆𝑆(𝑥𝑥𝑖𝑖,𝑡𝑡)           ( 6-1 ) 
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Where the expected subjective value of an option (at time t) is a function of a reward’s outcome prob-

abilities 𝑝𝑝𝑖𝑖 and the subjective value of said outcomes 𝑆𝑆(𝑥𝑥𝑖𝑖,𝑡𝑡). The subjective value function, then, builds 

from a bottom-up interpretation of the way neurons encode information relative expectations: 

𝑆𝑆�𝑥𝑥𝑖𝑖,𝑡𝑡�  =  𝑥𝑥𝑖𝑖,𝑡𝑡
𝛼𝛼

𝑥𝑥𝑖𝑖,𝑡𝑡
𝛼𝛼 +𝑄𝑄𝑡𝑡

𝛼𝛼          ( 6-2 ) 

In Tymula and Glimcher’s words: “The subjective value of [each] 𝑥𝑥𝑖𝑖,𝑡𝑡 is divisively normalized by the 

reference point and itself” ( 2016, p.5) - which leads to an s-shaped function that adapts to the decision-

maker’s expectations at time t (𝑄𝑄𝑡𝑡 ). The way ESVT is built differentiates it to traditional economic 

models with three explicit features: (i) preferences rely on inherently physical and comparable metric 

(firing rates), (ii) the function is bounded by the minimum and maximum firing rates that neurons ex-

hibit, and (iii) just like neurons’ firing rates, the value that ESVT assigns to rewards is normalized 

according to the distribution of possible outcomes (Louie et al., 2015; Wainwright et al., 2001; Webb 

et al., 2014). A fourth implicit feature is that, since the model’s features rely on the properties of neu-

rons, predictions from the model should apply equally to human and nonhuman animals. For anyone 

studying behaviour, ESVT offers a computationally simple yet powerful prediction of choice, risk-atti-

tude, and – in its intended form – of neural firing rates.  

Adaptive modelling in this thesis 
To illustrate the uses and power that this new generation of models can have, let's revisit some of the 

results presented in this thesis. While my work looked at the repercussions of adaptation on static eco-

nomic variables (i.e., utility and probability distortion), dynamic variables that adapt to the context of a 

task allow for a whole new set of falsifiable predictions.  

I propose two additions to the ESVT model. The first is the inclusion of a random error term that allows 

us to bring ESVT under the random utility framework (see this thesis’ Methods interlogue). This also 

brings the model more in line with the reality that the neural code is stochastic (Conen & Padoa-

Schioppa, 2015; Kable & Glimcher, 2009; Kurtz-David et al., 2019; Shadlen & Newsome, 2001; Webb, 

2018; S. D. Wilke & Eurich, 2002): 

𝑉𝑉�𝑥𝑥𝑖𝑖,𝑡𝑡 ,𝑝𝑝𝑖𝑖,𝑡𝑡�  =  𝑝𝑝𝑖𝑖𝑈𝑈�𝑥𝑥𝑖𝑖,𝑡𝑡� +  𝜖𝜖         ( 6-3 ) 

The second addition is the incorporation of reinforcement learning to account for dynamic adaptation 

of the decision-maker’s reference-point (one that adapts to both the observed and obtained rewards; see 

Burke, Baddeley, Tobler, & Schultz, 2016):  

𝑄𝑄𝑡𝑡+1  = 𝑄𝑄𝑡𝑡 + ∑𝛿𝛿𝐸𝐸𝐸𝐸(𝑥𝑥𝑡𝑡 −  𝑄𝑄𝑡𝑡) +  𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑅𝑅𝑡𝑡 −  𝑄𝑄𝑡𝑡)      ( 6-4 ) 
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In this form, the expectations for future trials adapt (with strength 𝛿𝛿) to the differences between past 

expectations and observed/obtained rewards. We define the starting expectation starts as the mean of 

the first observed variables - the expectation then adapts based on the predictions errors on all observed 

(∑𝛿𝛿𝐸𝐸𝐸𝐸(𝑥𝑥𝑡𝑡 −  𝑄𝑄𝑡𝑡)) and obtained rewards (𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑅𝑅𝑡𝑡 −  𝑄𝑄𝑡𝑡)). 

Applying this model to the case of probability distortion reversal offers the most clear-cut example of 

where and how adaptive choice models offer the most significant insight. In chapter 4, I suggested that 

preferences adapted to the wins and losses of past gambles. I then validated this by presenting the mon-

keys with MIXED or REPEATED sequences of gambles from which I retrieved two distinct patterns 

(or models) of ‘average’ risk attitudes. We can make behavioural predictions that are much more intri-

cate using a model of adaptive economic behaviour – one that actually predicts moment-to-moment 

behaviour. If we think that the value of gambles changes relative the value of safe magnitudes, all we 

need to do is look at how a single instance of the ESVT’s model changes within and between the dif-

ferent sequences (Fig. 6-1). If we want to validate these predictions, we can look to find neurons that 

emulate this adaptive activity, or behaviourally, compare the model’s predictions of choice accuracy 

and risk attitude with the monkey’s real behaviour (Fig. 6-2).  

In line with ecological rationality’s idea of the adaptive toolbox, this set algorithm can also be used 

hierarchically (where one normalization functions feeds into another), or to compute the relative value 

of different decision variables (think time discounting, uncertainty, or bundle-type rewards). There is 

evidence that the brain normalizes different signals in different regions and on different timescales 

(Hunt & Hayden, 2017; Murray et al., 2014; Zimmermann et al., 2018), ESVT-type models are simple 

models that can account for this.  

Similarly, in a less radical/more incremental way, we can easily add variables to the model that allow 

us to investigate how monkey’s ‘starting’ expectations change as a result of context-specific adaptation. 

Looking at the results of Chapter 2, for example, an ESVT model predicts more than just ‘different’ 

patterns of utility for different ranges: it suggests that monkeys start with broad expectations that match 

past experiences, but that they, over the course of a task, refine their expectations to match the present 

instalment of the task (Fig. 6-3). Future work will undoubtedly explore the predictions that these bio-

logically-valid models make – both at the behavioural and neural levels.  
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Figure 6-1 | Adaptive expected subjective values in MIXED or REPEATED sequences. 
The ‘utility’ functions (subjective value) adapts to past experienced and observed outcomes. 
In MIXED sequences, the utility fluctuates only a little since any reward can occur at any 
time (no skew in the options available). In the REPEATED sequences, however, prolonged 
exposure to a single gamble skews the utility function in the direction of that gamble’s value. 
The utility function adapts to each specific gamble. This happens because monkeys’ observ-
ing and receiving the rewards attributed to unique gambles drive their expectations towards 
that gamble’s expected value (through reinforcement learning). Crucially, the model pre-
dicts a reversal of risk preferences without the need for any probability distortion. 



| Postface 
 

131 
 

 

 

  
Stimuli presented

0.0 0.5
Reward magnitude

0.0
0.2
0.4
0.6
0.8
1.0

S
ub

je
ct

ive
 v

al
ue

Trial #: 48

0.49

0.97

0.0 1.0
Option value

Va
lu

e 
de

ns
ity

Stimuli presented

0.0 0.5
Reward magnitude

0.0
0.2
0.4
0.6
0.8
1.0

S
ub

je
ct

ive
 v

al
ue

Trial #: 52

0.45

0.86

0.0 1.0
Option value

Va
lu

e 
de

ns
ity

Stimuli presented

0.0 0.5
Reward magnitude

0.0
0.2
0.4
0.6
0.8
1.0

S
ub

je
ct

ive
 v

al
ue

Trial #: 77

0.88

0.47

0.0 1.0
Option value

Va
lu

e 
de

ns
ity

Stimuli presented

0.0 0.5
Reward magnitude

0.0
0.2
0.4
0.6
0.8
1.0

S
ub

je
ct

ive
 v

al
ue

Trial #: 80

0.44

0.76

0.0 1.0
Option value

Va
lu

e 
de

ns
ity

a) b) c)

Figure 6-2 | Predicting choice stochasticity through random utility modelling (REPEATED 
sequence). The value function in the ESVT model, when combined with the random utility frame-
work, allows for predictions on the separability of different rewards’ utilities given a monkeys’ past 
experiences in the task. a) choices between equiprobable gambles and safe reward. The ESVT model 
treats the magnitudes as subjective, and the probabilities as objective (for simplicity). The arrow 
under the options points to the option that was picked by the animal. b) ESVT’s value function 
adapts throughout the task. The value function shifts to the right as the blocks of repeated gambles 
progressively shift expectations. This changes the value of the two outcomes relative one another 
and leads to different predictions on the reliability with which monkeys will pick the higher-value 
reward, and vis-à-vis the monkey’s risk attitude. c) The overlap in random utilities distributions 
changes with adaptation. The more two distributions overlap, the more stochastic the monkeys’ 
decisions will be. The left option is represented at every level of the model (panels a, b, c) in blue, 
the right option in pink (magenta). 
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Figure 6-3 | Range-adaptation refines preferences within a single range. a) ESVT value 
functions suggest monkeys go into high-range sessions with low expectations. While the value 
function in both the low-range (blue) and the full-range (yellow) predict that the monkey’s 
expectations stay relatively constant, the predictions from the high-range value function (green) 
suggests that monkeys’ broader expectations get refined as the session progresses. Crucially, 
these predictions can be tested since risk-preferences still depend on the value function’s cur-
vature at different magnitudes. b) EUT and PT values only capture ‘average’ behaviour. Where 
ESVT predicts that monkey’s preferences adapt progressively throughout the task, traditional 
economic models cannot make a distinction between where expectations at the beginning of an 
experimental sessions and expectations at the end.  
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