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Abstract

Diffeomorphisms in general relativity can act non-trivially on the boundary of

spacetimes. Of particular importance are the BMS group of transformations,

originally found by Bondi, Metzner, van der Burg and Sachs. They describe the

symmetries of asymptotically flat spacetimes.

We first consider symmetries such as these that act non-trivially at null

infinity. We look in detail at the BMS group and then describe the conformal

symmetries of asymptotically flat spacetime. These represent an extension of

the BMS group that we call the conformal BMS group.

Second, we explore the action of these large diffeomorphisms in the context

of black holes. The emergence of Virasoro algebras as the asymptotic symmetry

algebras of black hole spacetimes suggests a fundamental link to conformal field

theory. For the case of the generic Kerr black hole, we hypothesize that the

black hole is itself a thermal conformal field theory which transforms under a

Virasoro action. A set of infinitesimal Virasoro L ⊗ Virasoro R diffeomorphisms

are presented which act non-trivially on the horizon. Using the covariant phase

space formalism, we can construct the corresponding surface charges on the

black hole horizon and find the central terms in their algebras. Ambiguities in

the construction of the charges allow for the addition of extra terms. Wald and

Zoupas have provided a general framework for these counterterms, although the

precise form is left undetermined. In computing the horizon charges, certain

obstructions to the integrability and associativity of the charge algebra arise,

calling for some counterterm to be used. A consistent counterterm is found that

removes these obstructions and gives rise to central charges cL = cR = 12J . On

the assumption that there exists a quantum Hilbert space on which these

charges generate the symmetries, one can use the Cardy formula to compute

the entropy of the conformal field theory. This Cardy entropy turns out to be

exactly equal to the Bekenstein-Hawking entropy, providing a potential

microscopic interpretation for this macroscopic area-entropy law. The results

are generalised to the Kerr-Newman black hole with the addition of charge.
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1 Introduction

One century ago, Albert Einstein published his ground-breaking General

Theory of Relativity, a theory of space and time and of gravitation. For over

two hundred years prior to this, the conception of space and time had followed

the formulation of Newton, as absolute quantities, with gravity a force that

acted at a distance. General Relativity altered the conventional Aristotelian

view of the Universe on a large scale, fundamentally linking space and time and

the action of gravity through geometry. This revolutionised understanding and

gave enormous predictive power: the first major prediction, the bending of light

by gravity, was verified by Eddington in 1919 with the observation of stars

during a solar eclipse, and the second huge prediction of gravitational waves

was confirmed only recently in September 2015 by the gravitational wave

detectors of LIGO and Virgo [1]. The direct detection of gravitational waves is

perhaps the most compelling evidence for the existence of black holes, which

result from the death of massive stars. This first detection measured the

gravitational waves that emanated from the collision of two black holes about

1.3 billion years ago. This cataclysmic event released about 5.3 × 1047 joules of

energy as gravitational waves and radiated at a peak power of more than that

of all the stars in the observable universe combined [1].

The black hole information problem

The black hole no hair theorems tell us that black holes are characterised only

in terms of three quantities: the mass, M, charge, Q and angular momentum, J.

Classically, it is possible to form a black hole with parameters M, J and Q, in an

infinite number of ways. This suggests that the black hole has infinite entropy.

This was the generally accepted picture until a striking resemblance between the

laws of black hole mechanics and the laws of thermodynamics was uncovered

by Bardeen, Bekenstein, Carter and Hawking [2–4]. For these laws to coincide,

black holes must have a finite temperature and a finite entropy. In a seminal
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paper by Hawking titled Black hole explosions? [5], black holes were shown to be

thermal objects that emit radiation, with a Hawking temperature given in terms

of the surface gravity κ as 1,

TH =
κ

2π
. (1.1)

One result of this finite temperature is that black holes must also have a finite

entropy, which is given in terms of its area, A by the famous Bekenstein-Hawking

formula [4, 6],

S =
A

4
. (1.2)

This discovery uncovered a new and very deep problem in theoretical physics.

In the statistical, thermodynamic picture, the entropy is a measure of the number

of different states of a system. But for black holes, there is no clear way to count

the degrees of freedom, without a microscopic description. A central question

therefore arises: what are the quantum states of a black hole? This question

remains unresolved despite considerable progress, particularly for black holes in

string theory [7] and will become an essential feature of any theory of quantum

gravity.

The fact that black holes radiate energy means that they can evaporate. Once

a black hole has completely evaporated, all that is left will be thermal Hawking

radiation. It might seem reasonable to assume that the whole process from black

hole formation to evaporation obeys the laws of quantum mechanics: that an

initial state will evolve according to an S-matrix as,

|Ψfinal〉 = S |Ψinitial〉 . (1.3)

Since the S-matrix is unitary, evolution of |Ψfinal〉 from |Ψinitial〉 will be

deterministic, and one will be able to recover the initial state from knowledge

of the final state [8]. However, if we assume that the black hole was formed

from some matter in a pure quantum state, then the overall process will involve

the evolution from a pure to a mixed state. This is not a unitary process and

1We use units such that G = ~ = 1
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thus would violate quantum mechanics. Consequently, one is forced to draw the

uncomfortable conclusion that information is lost in the process of black hole

formation and subsequent evaporation [9]. This is the content of the black hole

information paradox.

Possible ways out of the paradox

Over the last few decades, several potential resolutions to the information

paradox have been proposed, but to date, the problem remains unsolved.

Previous options that have been considered include: information stored in a

stable remnant which survives after evaporation [10–12], evaporation treated as

quantum tunnelling [13,14], information prevented from entering the black hole

in the first place due to ‘bleaching’ [15, 16], information emerging at the final

stages of evaporation [17, 18], information encoded in ‘quantum hair’ [19],

information escaping to ‘baby universes’ [20, 21], information stored both

outside and inside the black hole via complementarity [22, 23] and numerous

other scenarios. For information about each of these proposals, as well as a

discussion of their various merits and flaws, see [16], [24] and [25].

Recent developments: soft particles

Diffeomorphisms (diffeos) in general relativity can act non-trivially - on

both the classical phase space and the physical quantum states - whenever the

spacetime has a boundary. In string theory, ‘large’ diffeomorphisms which act

nontrivially at the horizon have been used to count black hole microstates and

microscopically reproduce the macroscopic area law [7, 26]. This, however, is

restricted to supersymmetric or near-supersymmetric black holes, not the

astrophysical black holes that we see in the sky.

More recently, the effects of large diffeos on physically realistic black holes

have been studied from a different point of view [27–63], beginning from the

observation of Bondi, Metzner, van der Burg and Sachs [64,65] that they can act
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nontrivially on the boundary of spacetime at infinity. They discovered an infinite

group of symmetries, containing so-called ‘supertranslations’, which change the

physical state. These supertranslations act to shift the individual light rays

of null infinity forward or backward in retarded or advanced time. This BMS

group of symmetries of so-called ‘asymptotically flat spacetime’ has been the

subject of much scrutiny over recent years, with additional symmetries identified

and referred to as ‘superrotations’ [66–68], but which are still only partially

understood.

However, new research into the infrared behaviour of quantum gravity has put

the subject on firmer footing, for example [69–76]. It turns out [69] that certain

antipodally-matched combinations of supertranslations at the future endpoint

of past null infinity and the past endpoint of future null infinity correspond to

exact symmetries of gravitational scattering. Each of these supertranslations can

be associated with a corresponding ‘supertranslation charge’ and the antipodal

combinations give rise to an infinite set of conservation laws for all gravitational

theories in asymptotically Minkowskian spacetimes. These conservation laws can

be interpreted as identifying net incoming energy at a given angle with the net

outgoing energy at the opposing angle. It has been shown [69–71] that these

relations are actually equivalent to the soft (i.e. zero energy) graviton theorems,

dating back to the work of Weinberg in 1965 [77].

There are two major insights that can be inferred from these developments,

as set out in [27], which call into question the assumptions that underpin the

information paradox. The first is that the vacuum in quantum gravity is not

unique. Supertranslations act to transform the vacuum into a physically distinct

vacuum, also with zero energy. These two vacuum states are then related to

each other by the creation or annihilation of soft gravitons. The infinite number

of supertranslations means that there is an infinity of degenerate vacua, which

differ from one another by their numbers of soft gravitons. After a black hole

evaporates, one can no longer assume that the quantum state settles down to a

unique vacuum.
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The second assumption concerns the no hair theorems. In [27, 28], it was

shown that the BMS transformations act on the horizon of a generic 4D Kerr

black hole and create distinguishing features referred to as soft hair. Thus black

holes are not ‘bald’, or with just the few ‘hairs’ corresponding to mass, charge

and angular momentum, but perhaps they have an infinite head of soft hair,

corresponding to the infinite number of BMS symmetries.

This shift in the interpretation of two key principles, driven by new

understanding of the symmetries of asymptotically flat spacetimes and the

infrared structure of quantum gravity, has hinted at a possible way forward in

understanding the information paradox. We remain, however, far from any

resolution.

One key hurdle that must be overcome in reaching a resolution is deriving

the Bekenstein-Hawking entropy law (1.2) for generic black holes in terms of a

microscopic description, without reliance on string theory. Although an actual

derivation of the entropy has not yet been found, in [78], following the earlier

work [79] on the hidden conformal symmetry of a spin J Kerr black hole, a set

of diffeos were found which act non-trivially on the horizon. These diffeos have

the following properties:

(i) The Lie bracket algebra acts as a left-right Virasoro pair on the horizon,

(ii) The corresponding Iyer-Wald-Zoupas charges [80–86] with a judicious

choice of counterterm, have central terms with cL = cR = 12J .

Assuming that there exists a unitary Hilbert space (including horizon edge states)

transforming under these Virasoro algebras, along with the Cardy formula, the

area law then follows.
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Outline of the thesis

The structure of this thesis is as follows. In the first chapter we will look in

general at large gauge transformations: those which are not simply coordinate

transformations, but act nontrivially. In section 2 we will discuss the known

symmetries of flat space: the Poincaré group of translations, rotations and boosts.

We will further constrain the spacetime to be conformally flat and hence find the

conformal group. We will then define asymptotically flat spacetimes and explore

the corresponding symmetries here, resulting in the BMS group. Again, we will

add in conformal symmetry and find the analogue of the conformal group for

asymptotically conformally flat space. We call this the conformal BMS group

and we will consider it in detail in section 3. In particular, we will find the group

algebra. This involves a careful analysis of the action of the group generators

and the use of a modified Lie bracket. The relation of the conformal BMS group

to the BMS group is considered, along with it applications in a wider context.

The second chapter considers the problem of black hole information, with

the ultimate goal being to recover the entropy of the Kerr black hole using

microstates on the horizon. We begin in section 4 by recapping the covariant

phase space techniques used to compute surface charges associated to

diffeomorphisms. We will consider the algebra of these charges and the

possibility that there might be central terms. We will explicitly compute the

various forms of the charges and central terms for the gravitational case,

expressions which will be used repeatedly in later sections. There may be

certain issues in defining these charges, which result from lack of integrability

or associativity. We will discuss how these issues arise and how they may be

avoided. In addition, several ambiguities arise in constructing these charges.

We will unpick these ambiguities in detail and consider how they might be used

to add extra terms to the charges or to manipulate the expressions to find more

convenient versions.

In section 5 we consider the AdS/CFT correspondence, to understand what

techniques we can learn from this duality to take forward into computing the
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entropy of the Kerr black hole. We start in section 5.1 by reviewing the main

features and properties of conformal field theory (CFT) and show how the

Virasoro algebra emerges. We will then look at three-dimensional gravity in

general, before focusing on the specific case of Anti de Sitter (AdS) spacetime.

We will examine the symmetry algebra of AdS3 and then consider in detail the

BTZ black hole, which arises from asymptotically AdS3 spacetimes. In section

5.2.3, we will explore the class of metrics that asymptote to AdS3, as well as the

vector fields which preserve this class of metrics. We will calculate the charges

corresponding to these vector fields, using the covariant phase space methods.

In section 5.3 we will compute the algebra of these charges and find the central

terms. These central terms can be used to calculate the entropy of the CFT via

the Cardy formula, which will be derived in section 5.3.1. We will see that this

Cardy entropy precisely matches the black hole entropy in this case.

In section 6 we will move on to look at four dimensional black holes, beginning

with the case of extreme Kerr, as an intermediate step before studying the case

of the generic Kerr black hole. We will again examine the symmetries of the

spacetime and calculate the corresponding charges, then use the Cardy formula

to compute the entropy.

From here we consider the case of the generic Kerr black hole. This makes up

the bulk of the novel material of this thesis. This involves the consideration of a

different viewpoint, in which the boundary of the spacetime becomes the black

hole horizon. We will discuss this boundary for the Kerr black hole in section 7

but also show in Appendices D and E how this alternative viewpoint will affect

the discussions for the two examples already considered, BTZ and extreme Kerr.

We review the hidden conformal symmetry found in Kerr spacetimes in

section 7.1, by analysing the wave equation and the near region contribution to

the soft absorption cross-sections.

Part of the reason that computing charges for the Kerr black hole is so much

more challenging than the cases already mentioned is that it is hard to write

the Kerr metric in a simple way that is also well-adapted for this context. In
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section 7.2 we introduce different coordinate systems for the Kerr spacetime and

outline the various merits of each. This involves the development of Kruskal-like

coordinates, the details of which may be found in Appendix F.

In section 7.3 we will provide a heuristic derivation for the entropy of the

Kerr black hole, before proceeding to calculate it in detail, again using covariant

phase space methods. We start by finding suitable vector fields in section 7.4

and then proceeding to calculate the charges in section 7.5. This involves the

development of a counterterm to avoid problems with constructing charges with

well-defined associative Dirac brackets. A suitable counterterm is proposed and

a consistent charge is found. In a similar manner to the previous cases of BTZ

and extreme Kerr, the central charge is used to compute the entropy of the CFT

by use of the Cardy formula. This calculation is performed, and its implications

are discussed, in section 7.7.

In section 8 we add charge and generalize the previous work to the case of

the Kerr-Newman black hole. This again involves understanding the hidden

conformal symmetry, choosing appropriate vector fields and computing the

charges to find the entropy.

In section 9 there is a discussion of the further work needed to stand a chance

of resolving the information paradox, before we conclude in section 10.

In this work we will use units such that c = G = ~ = 1.
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Part I

Large Gauge Transformations
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2 Spacetime symmetries

In four-dimensional Minkowski space, the isometries of the spacetime are given

by the ten independent solutions to Killing’s equation. These solutions allow

one to form the Poincaré algebra, made up of four translations in each of the

spacetime directions, plus three boosts and three spatial rotations. These are

the symmetries of special relativity.

As soon as gravitational fields are included via general relativity, the standard

isometry transformations of flat space must be revised. In the 1960s Bondi, van

der Burg, Metzner and Sachs (BMS) postulated that there must be some way in

which the full Poincaré group represent ‘approximate’ symmetry transformations

[64, 65, 87]. They studied these approximate symmetries of curved spacetime by

investigating the asymptotic symmetries of asymptotically flat spacetimes at null

infinity - if the spacetime were asymptotically flat, then infinitely far away from

any gravitational fields we must in some sense be able to reproduce the Poincaré

group as the symmetry group. This group of asymptotic symmetries is known

as the BMS group [64,87], a larger group than the Poincaré group of flat space,

that consists of the ordinary Lorentz transformations plus an infinite number of

‘supertranslations’.

This BMS group has been extensively studied over the years. Penrose

investigated the BMS group as a symmetry group on null infinity [88] and later

with Newman, he looked into possible subgroups of BMS that might arise when

considering scattering problems and the emission of radiation out to

infinity [89].

More recently, the BMS group has received renewed attention. An extension

to the BMS group has been proposed to include ‘superrotations’ [66–68] and

work has been done on the conserved quantities that would be associated to the

asymptotic symmetries of the BMS group [29, 62, 90–92]. In the quantum

picture, these conservation laws amount to relations between ingoing and

outgoing scattering states [69, 74] and have been shown to be equivalent to

so-called soft theorems [70, 71] and subleading soft-theorems [93], originally
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formulated by Weinberg and Low [77, 94]. Within the last few years, the effect

of these symmetries on black hole spacetimes has been investigated along with

the potential for these conservation laws to provide answers to the black hole

information paradox [9, 27].

While the Poincaré and BMS groups describe the symmetries of special and

general relativity, for any theory that also admits a conformal symmetry, the

necessary group of isometries must be larger. In flat space, the Poincaré group

gets extended to the conformal group at spacelike infinity and at null infinity,

one needs not the BMS group but a conformal version of it, which is developed

here.

Conformal symmetry is at the heart of many important physical theories.

For example, Maxwell’s free field equations are conformally invariant, as is the

massless Dirac equation. In terms of gravity, the situation is less clear, but

for empty space, the Weyl tensor is unchanged by conformal transformations

to the metric [95]. Another hint at conformal symmetry in gravity is through

the connection with Yang-Mills theory: some aspects of gravity, particularly

scattering amplitudes, can be regarded as the product of two Yang-Mills theories

[96] - and we know Yang-Mills to be a classically conformally invariant theory in

Minkowski space.

Given that N = 4 Yang-Mills theory exhibits conformal symmetry, an

obvious next step will be to study the action of the conformal BMS group in

this context. The BMS group has previously been shown to be a conformal

extension of the Carroll group [97, 98]. A generalization of the BMS group for

supergravity has also been studied [99], although without investigation into

asymptotically conformal transformations. Recently, work on classifying the

asymptotic symmetry algebras of theories in different dimensions has been

studied in the context of holography [100].
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2.1 Conformal symmetries of flat space:

Poincaré and conformal groups

In four-dimensional flat Minkowski spacetime, it is possible to identify certain

symmetries of the metric - transformations that leave the spacetime invariant.

These are the ten isometries which form the well-known Poincaré group of the

symmetries of special relativity. These symmetries are found by asking for

which vector fields ξ does the Lie derivative of the metric vanish, in other

words, solutions to Killing’s equation,

(Lξg)ab = ∇aξb +∇bξa = 0. (2.1)

Lξ is the Lie derivative with respect to the vector field ξ. In (3+1)-dimensional

Minkowski space, we get ten independent solutions (Killing vectors (KV)) that

make up the Poincaré group. This Poincaré group consists of the Lorentz group,

a subgroup made up of three boosts and three spatial rotations, as well as an

abelian normal subgroup of four translations in each of the spacetime directions.

The generators of these symmetry transformations may be written,

Mab ≡ (xa∂b − xb∂a), Pa ≡ ∂a , (2.2)

where the Mab give the Lorentz transformations and Pa the translations. The

commutation relations are,

[Pa, Pb] = 0,

[Mab, Pc] = ηbc Pa − ηac Pb,

[Mab,Mcd] = ηadMbc + ηbcMad − ηbdMac − ηacMbd, (2.3)

where ηab is the Minkowski metric of signature (−,+,+,+). These are the

generators of the group O(3, 1).

We may also look at transformations which preserve the metric up to a
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conformal factor,

Lξ g = Ω2 g . (2.4)

By taking the trace, we can solve for Ω2 and find that the transformations ξ

correspond to solutions to the conformal Killing equation, which in four

dimensions is:

∇a ξb +∇b ξa −
1

2
gab∇c ξ

c = 0 . (2.5)

The solutions are conformal Killing vectors (CKV).

In flat space, the conformal Killing vectors consist of the Poincaré group,

along with an extension to include special conformal transformations generated

by Kµ and dilatations (scalings) generated by D:

D ≡ xa ∂a ,

Ka ≡ x2 ∂a − 2xax
b ∂b . (2.6)

The commutation relations are given by:

[D,Ka] = Ka,

[D,Pa] = −Pa,

[Ka, Pb] = 2ηabD + 2Mab,

[Ka,Mbc] = ηabKc − ηacKb . (2.7)

These are the generators of the group O(4, 2).

2.2 Symmetries of asymptotically flat spacetimes

In a curved spacetime the above transformations no longer hold as exact

symmetries. However, in any asymptotically flat spacetime one can define

‘asymptotic symmetries’ which correspond to those transformations that are

consistent with the boundary conditions of asymptotic flatness. This amounts

to the consideration of an ‘asymptotic Killing equation’ - the solutions to which

are known to form a larger group of symmetries, known as the BMS group [64].
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This consists of the ordinary Lorentz transformations, plus an infinite number

of ‘supertranslations’ and ‘superrotations’. Let us briefly review how these

symmetries arise in some detail, before extending this algebra to include also

the asymptotic manifestations of conformal symmetry.

Using retarded Bondi coordinates (u, r, xA), the flat space Minkowski metric

is given by,

ds2 = −du2 − 2du dr + r2 γAB dx
AdxB , (2.8)

where γAB is the unit metric on the two-sphere at infinity. In the Bondi gauge,

grr = grA = 0, ∂r

(
det
(gAB
r2

))
= 0 . (2.9)

In order to maintain this metric asymptotically, any allowed transformations

are constrained by a set of boundary conditions. These ensure that any non-

zero components of the resulting Riemann tensor have suitable r-dependence

as r → ∞, so that the curvature falls off sufficiently fast. The corresponding

changes to the metric must therefore obey certain fall-off conditions, given by

δguA ∼ O(r0) ,

δgur ∼ O(r−2) ,

δguu ∼ O(r−1) ,

δgAB ∼ O(r) . (2.10)

In order to satisfy the Bondi gauge, we also require,

δgrr = δgrA = 0, ∂r

(
det

(
gAB + δgAB

r2

))
= 0 . (2.11)

If peeling holds [101], any asymptotically flat metric can be written as an

expansion in powers of 1/r. In Bondi coordinates near null infinity, this is,

ds2 =− du2 − 2du dr + r2 γAB dx
AdxB

+ 2
mb

r
du2 + r CABdx

AdxB +DAC
A
B du dx

B + . . . ,
(2.12)
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where DA is the covariant derivative with respect to the metric on the two-sphere,

and mb and CAB are functions of (u, xA) and denote first order corrections to

flat space. mb is the ‘Bondi mass aspect’ and ∂uCAB = NAB where NAB is the

‘Bondi news’. Capital letters A,B, ... can be raised and lowered with respect to

γAB.

Transformations that preserve these conditions and therefore maintain the

structure of the metric correspond to asymptotic solutions to the Killing

equation. These are generated by the vector fields,

ξT ≡ f ∂u +
1

2
D2f ∂r −

1

r
DAf ∂A ,

ξR ≡
1

2
uψ ∂u − (

1

2
r ψ − 1

4
uD2ψ) ∂r + (Y A − u

2r
DAψ)∂A ,

(2.13)

where f is any scalar spherical harmonic, Y A are conformal Killing vectors on

the 2-sphere and ψ≡DAY
A. Further terms that are subleading in r have been

neglected. The vectors ξT generate infinitesimal ‘supertranslations’ and the ξR

give the ‘superrotations’. The supertranslations act to shift individual light rays

of null infinity forwards or backwards in retarded time. The standard BMS group

of infinitesimal transformations preserving the asymptotically flat metric contains

only the superrotations that are globally well defined on the sphere. These

correspond to supertranslations ξT and superrotations ξR for which Y z =1, z, z2

and its conjugates, when expressed in stereographic coordinates on the two-

sphere [87]. More recently, an ‘extended BMS’ group has been proposed to

include all vector fields ξR with Y z=zn+1 (and conjugates) for any n [31,66–68,

92].

There is a similar construction at past null infinity.
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3 The conformal BMS symmetry groups

For the conformal case, we look for asymptotic solutions to the conformal Killing

equation and ask that the infinitesimal changes in the metric satisfy the same

fall-off conditions as above.

The group of solutions involves the ordinary BMS supertranslations (T ) and

superrotations (R), plus a dilatation (D), another sort of conformal dilatation,

a ‘BMS dilatation’ (E) and a new type of extended special conformal

transformation, a ‘BMS special conformal transformation’ (C). In our

coordinates, at leading order, these are given by,

T ≡ f ∂u +
1

2
D2f ∂r −

1

r
DAf ∂A ,

R ≡ 1

2
uψ ∂u − (

1

2
r ψ − 1

4
uD2ψ) ∂r + (Y A − u

2r
DAψ) ∂A ,

D ≡ u ∂u + r ∂r ,

E ≡ u2

2
∂u + r(u+ r) ∂r ,

C ≡ u2

4
ζ ∂u −

(
u2

4
+
r2

2
+
u r

2

)
ζ ∂r −

u

2

(
1 +

u

2r

)
DAζ ∂A , (3.1)

where ψ≡DAY
A, ζ≡DAZ

A and Y A and ZA are conformal Killing vectors on the

2-sphere. Note that while the superrotations may be formed from any conformal

Killing vectors, the special conformal transformations however vanish if ZA is

a Killing vector. Therefore C is only formed from the divergence of ‘strictly

conformal Killing vectors’.

Thus the conformal BMS group is larger than both the conformal group

and the BMS group. As well as the infinite number of supertranslations and

superrotations, the new special conformal transformation also gives an infinite

number of symmetries - generated by the infinity of strictly conformal Killing

vectors ZA. Just as for the superrotations we can define both global and local

special conformal transformations. The conformal BMS group described above

is the group CBMS+, as it is defined on future null infinity, J +. Performing

a similar calculation on past null infinity, J −, we can obtain the corresponding

(although different) group CBMS−.
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It is also worthwhile considering how the original (i.e. flat space) conformal

group fits into this larger asymptotic group. In flat space, there are four special

conformal transformations, given by equation (2.6). When written in (u, r, xA)

coordinates, these are,

Ku ≡ u2 ∂u + 2r(u+ r)∂r ,

Kr ≡ 2u2 ∂u − u2∂r ,

KA ≡ −u(u+ 2r)∂A ; (3.2)

we can thus identify,

Ku = 2E , (3.3)

and the other components are contained within the superrotation and the new

special conformal transformation C, for suitable choice of ψ and ζ.

3.1 The modified bracket

In order to compute the algebra, there is an important subtlety that must be

taken into account: it is not the Lie bracket that is required, but a modified

version of it (see e.g. [92]). This is because the vector fields generate

perturbations in the metric and these vector fields are themselves

metric-dependent. Thus, in calculating the commutator an extra piece must be

added or subtracted from the usual bracket in order to take into account how

each vector field varies as the metric changes.

Consider the action of a vector field, ξ1 on the metric, followed by another

vector, ξ2. We allow metric variations gab→gab+ĥab which satisfy the fall-off

conditions given above and then calculate the possible vector fields, ξ, which can

give rise to such variations. Thus these vector fields are defined through,

L̂ξ1g = ĥ , (3.4)
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where the ‘conformal’ Lie derivative is defined by,

(L̂ξg)ab = ∇aξb +∇bξa −
1

2
gab∇cξ

c . (3.5)

When the second vector field ξ2 acts on the metric we allow for additional

perturbations:

ξ2 → ξ2 + µ2 ,

g + ĥ → g + ĥ+ K̂ , (3.6)

where µ2 is a first order perturbation to the vector field and K̂ is a second

order variation of the metric. We then find the action of L̂ξ2g to second order.

Explicitly,

K̂ab = µc2 ∂cgab + ξc ∂cĥab + ∂aξ
cĥbc + ∂aµ

c
2gbc + ∂bµ

c
2gac + ∂bξ

cĥac

− 1

2
gab ∂cµ

c
2 −

1

2
ĥab ∂cξ

c − 1

2
gabΓ

c
cdµ

d − 1

2
ĥabΓ

c
cdξ

d − 1

2
gabδΓ

c
cdξ

d ,
(3.7)

where δΓccd is the perturbation of the connection Γccd due to the change g→g+ĥ.

Asking that the corresponding changes to the metric still satisfy the boundary

conditions and the Bondi gauge as above, we may solve for µ2.

In order to find the commutator, [ξ1, ξ2] of two generators we must repeat the

process - acting first with ξ2 and then with ξ1 and find the corresponding values

of µ1. We can then compute,

δµ = µ2 − µ1 , (3.8)

which gives the necessary piece that must be subtracted from the ordinary

commutator to account for changes to the metric from the vector fields being

themselves metric-dependent.

It turns out that the only commutators for which this modification is

important are those involving T . In Appendix A we illustrate this modified

bracket in the most subtle case - showing that the commutator of two
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supertranslations, [T, T ], vanishes.

3.2 The conformal BMS algebra

In order to get a sense of the general structure of the group, it is useful to look

at the elements involved in the commutation relations. The general results take

the following overall form,

[T,R] ∼ T ,

[T,D] ∼ T ,

[R,R] ∼ R ,

[C,D] ∼ C ,

[D,E] ∼ E ,

[E,R] ∼ C .

(3.9)

We also have that

[R,C] ∼ E , (3.10)

except in the special case where the vector, Y A that generates the superrotations

is a Killing vector, i.e., ψ = 0, in which case,

[R,C] ∼ C . (3.11)
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All other commutators vanish:

[T, T ] = 0 ,

[C, T ] = 0 ,

[C,C] = 0 ,

[R,D] = 0 ,

[T,E] = 0 ,

[C,E] = 0 ,

[E,E] = 0 ,

[D,D] = 0 .

(3.12)

One can now compare this algebra with that of the flat space conformal group.

The first thing to notice is that the structure is entirely different. In particular,

no commutator ever produces a dilatation on the right hand side. In the case

of flat space, a special conformal transformation commuted with a translation

gives a combination of dilatations and rotations. In this conformal BMS group,

the commutation of both C and E with a supertranslation give zero. In addition,

when a BMS special conformal transformation is commuted with a superrotation

that is generated by a Killing vector, the result is consistent with the flat space

version: we get another BMS special conformal transformation. However, when

the superrotation is generated by a conformal Killing vector then the commutator

gives a different result, a BMS dilatation.

Both the flat space conformal group and the conformal BMS group have

a subgroup involving the elements T,R,D and these subgroups have the same

structure - as seen in the first three lines of (3.9). The superrotations form their

own subgroup, just like the rotations in the flat space group.

Other subgroups of the conformal BMS group can be identified. There is

one involving T,D,E, one with E,R,C and one with T,R. There is another

involving all elements except for the supertranslations, R,C,D,E. A dilatation

with any other element also generates a subgroup.
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With this group structure in mind, we can now look at the commutation

relations in more detail. The supertranslations are generated by the function f ,

so we write T =T (f). Similarly, the superrotations and special conformal

transformations are generated by vector fields, so we write R=R(Y A) and

C=C(ZA). Then, more explicitly, the group algebra is given by,

[T (f), D] = T (f ′), f ′ = f ,[
T (f), R(Y A)

]
= T (f ′), f ′ =

1

2
f ψ − Y ADAf ,[

D,C(ZA)
]

= C((Z ′)A), (Z ′)A = ZA ,[
R(Y A), E

]
= C((Z ′)A), (Z ′)A = Y A ,[

R(Y A), R((Y ′)A)
]

= R((Y ′′)A), (Y ′′)A = Y BDB(Y ′)A − (Y ′)BDBY
A .

(3.13)

When R is generated by a strict conformal Killing vector,

[
R(Y A), C(ZA)

]
=

1

4
(ζψ +DAζDAψ)E , (3.14)

whereas when R is generated by a Killing vector,

[
R(Y A), C(ZA)

]
= C((Z ′)A), (Z ′)A = Y Aζ . (3.15)

At first sight, when R is generated by a strict CKV it does not look as though the

commutator with C gives simply E. However, closer inspection of the prefactor

reveals that it is indeed a constant. This requires the following identities that

hold for a 2d strict CKV:

Y A = −1

2
DAψ ,

DADBψ = −γABψ . (3.16)

Note that since the generators of C must be strict conformal Killing vectors,

equation (3.13) shows that if the superrotation involved is generated by a Killing

vector, then the commutator vanishes. While equation (3.13) gives a general
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expression for the commutation of two superrotations, it is worthwhile examining

the result for the different cases in which the superrotations are generated by two

KVs, two strict CKVs, or one of each. For either two KVs or two strict CKVs,

the resulting superrotation generator, (Y ′′)A is a KV, but for one KV and one

strict CKV, one gets a strict CKV.

We have checked all the Jacobi identities and provide an illustrated example

of how these commutation relations are computed according to the modified

bracket in Appendix A.

3.3 Discussion

The symmetries of spacetime at asymptotic infinity - especially in the case of

asymptotically flat geometry - are of particular interest to the physics of

scattering processes. In particular, this is where the S-matrix should be

measured. The fact that there are more symmetries at infinity than mere

Poincaré is extremely suggestive and the connection between the

holomorphically extended BMS group and the recently proposed

infinite-dimensional symmetries of soft-particle scattering amplitudes [102]

related to soft-theorems [73, 93, 103] may hint at a previously overlooked

simplicity in the structure of four dimensional theories involving massless

particles.

Because many of the most intriguing results along these lines have been

found in the context of the scattering of massless particles, the extension of the

BMS group to include spacetimes with conformal symmetry is both natural

and important. Continuing this generalisation to the case of conformal theories

with maximal supersymmetry is a natural road ahead - with exciting possibility

of connecting the new symmetries proposed in [102] with those known to exist

in the case of maximally supersymmetric Yang-Mills theory in the planar limit.
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Part II

Black Hole Entropy
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Part II of this thesis discusses how the Bekenstein-Hawking entropy of

different black hole spacetimes may be reproduced by considering a microscopic

description. The main goal of this chapter is to show that it is possible to

reproduce the macroscopic area-entropy law for generic Kerr black holes.

Many supersymmetric or near-supersymmetric black holes in string theory

admit a Vir L⊗Vir R action of nontrivial or ‘large’ diffeomorphisms [7,26] (diffeos)

whose central charge can be determined by the analysis of Brown and Henneaux

[104]. This fact, along with a few modest assumptions, allow one to determine

the microscopic entropy of the black hole and reproduce [105] the macroscopic

area law [4] without reliance on stringy microphysics.

In the following sections we will provide motivating evidence for the

conjecture that the entropy of real-world Kerr black holes can be understood in

a manner similar to their mathematically much better understood stringy

counterparts.

The large diffeomorphisms in the string theory examples are not ordinarily

taken to act on the entire asymptotically flat spacetime. Roughly speaking, the

spacetime is divided into two pieces. One piece contains the black hole and the

other asymptotically flat piece has an inner boundary surrounding a hole. The

large diffeos are taken to act on the black hole. The dividing surface is often taken

to be the ‘outer boundary’ of a decoupled near-horizon AdS3 region and the large

diffeos are taken to act on this region. However, there is some ambiguity in the

choice of dividing surface, and with a suitable extension inward, the large diffeos

can alternately be viewed as acting on the horizon. Indeed, when the black hole

is embedded in an asymptotically flat spacetime there is no clear location to place

the outer boundary of the AdS3 region, and the horizon itself provides a natural

dividing surface. Using the covariant phase space formalism [80–86] (see also the

recent review [106]) with a surface term reproduces the standard entropy results

for BTZ black holes in AdS3 from an intrinsically horizon viewpoint, albeit with

a slight shift in interpretation (see Appendix D). Further comments on this

division of the spacetime, and the corresponding split of the Hilbert space into
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two pieces, appear in section 7.7.

Using the horizon itself as the dividing surface permits the analysis of a more

general class of black holes without near-horizon decoupling regions, such as most

of those seen in the sky. It was recently shown [27, 28] that supertranslations

act non-trivially on a generic black hole, changing both its classical charges and

quantum state i.e. generating soft hair. However, supertranslations form an

abelian group and are clearly inadequate for an inference of the entropy along

the lines of the stringy analysis. As emphasized in [27, 28, 38, 47] a richer type

of soft hair, as in the stringy examples, associated to nonabelian large diffeos, is

needed.

In [78] and as will be explained in this chapter, we considered a more general

class of Vir L ⊗ Vir R diffeos of a generic spin J Kerr black hole, inspired by the

discovery some years ago [79] of a ‘hidden conformal symmetry’ which acts on

solutions of the wave equation in a near-horizon region of phase space rather

than spacetime. In [79] and subsequent work e.g. [107–121] the numerological

observation was made that, if one assumes the black hole Hilbert space is a

unitary two-dimensional CFT with cL = cR = 12J , the Cardy formula reproduces

the entropy. In [78] we brought this enticing numerological observation two steps

closer to an actual explanation of the entropy. First we gave precise meaning

to the hidden conformal symmetry in the form of an explicit set of Vir L ⊗Vir R

vector fields which generate it and moreover act non-trivially on the horizon

in the sense that their boundary charges are non-vanishing. Secondly, within

the covariant formalism, we found a Wald-Zoupas boundary counterterm which

removes certain obstructions to the existence of a well-defined charge and gives

cL = cR = 12J . Assuming the existence of horizon edge states in a unitary

Hilbert space transforming under these Virasoro algebras, the area law then

follows (as expected) from the Cardy formula.

We do not, however, prove uniqueness of the counterterm, attempt to tackle

the difficult problem of characterizing ‘all’ diffeos which act non-trivially on the

black hole horizon, or show that the charges defined are integrable or actually
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generate the associated symmetries via Dirac brackets. These tasks are left to

future investigations. For these reasons, the work of [78] might be regarded as

incremental evidence for, but certainly not a demonstration of, the hypothesis

that hidden conformal symmetry explains the leading black hole microstate

degeneracy.

Previous potentially related attempts to obtain 4D black hole entropy from

a Virasoro action at the horizon include [40,63,122–128].

The structure of this chapter is as follows. We will first recap the covariant

phase space techniques that are used to compute charges, then go over the

lessons that we have learnt from the AdS/CFT correspondence, including

three-dimensional gravity and the well-known example of the BTZ black hole.

We will then extend this approach to explore four dimensional spacetimes,

considering the extreme Kerr black hole and then finally the Kerr black hole.

In each case we will find the appropriate diffeomorphisms and compute the

corresponding charges. We will then find the associated entropy of the field

theory using the Cardy formula. The main challenge (and the novel material of

this chapter) involves exploring how this may be done for the case of the

generic Kerr black hole.
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4 Covariant phase space

4.1 A generalised Noether theorem and covariant charges

The construction of covariant charges has a long history including [80–86] and

has been reviewed in many places (e.g. [106]). A recent comprehensive discussion,

including counterterm ambiguities and also adapted to black hole horizons, can

be found in [58].

In a d-dimensional spacetime, consider a Lagrangian density L that depends

on dynamical fields Φ, which include for example the metric and any matter

fields.

The dynamical fields Φ are defined on the phase space. Phase space is a

symplectic manifold, M, with a symplectic 2-form, Ω, which has the following

properties:

• It is skew-symmetric, ΩAB = −ΩBA,

• It is closed, δΩ = 0, where δ is the exterior derivative on the phase space,

• It is non-degenerate, ΩABV
B = 0 =⇒ V B = 0.

A vector field X tangent to the phase space (rather than spacetime) is a

symplectic symmetry over the phase space if,

LXΩ = 0. (4.1)

The dynamical fields obey

δ1δ2Φ− δ2δ1Φ = 0. (4.2)

Again, δ is the exterior derivative on the space of field configurations, in contrast

to d, the exterior derivative operator on the spacetime. The fields Φi solve the

equations of motion, and δΦi solve the linearised equations of motion around the

solution Φi.
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The action of the theory is defined,

S =

∫
ddx
√
−gL =

∫
L, (4.3)

where L = ∗L. The equations of motion are obtained by varying the action. In

the language of forms, this can be written,

δS =

∫
δL =

∫
EΦδΦ + dΘ, (4.4)

where the first term on the right hand side involves summation over all fields Φi.

The equations of motion for each dynamical field Φ is given by

EΦ = 0, (4.5)

subject to some boundary conditions.

The second term on the right hand side of (4.4) is the (d − 1)-form, Θ,

the surface term generated by the variation. It is known as the presymplectic

potential. It is obtained by acting with Anderson’s homotopy operator, IdδΦ [129],

on the Lagrangian. Anderson’s homotopy operator is a fundamental operator

which is defined for second order theories by [130],

IdδΦ =

(
δΦ

∂

∂Φ,µ

− δΦ∂ν
∂

Φ,νµ

)
∂

∂(dxµ)
. (4.6)

We write Θ = ∗θ, where the vector field θµ[δΦi,Φi] depends on the fields and their

variations, but not explicitly on the coordinates. The presymplectic potential

gives rise to the presymplectic form, defined as the variation,

ω[δ1Φ, δ2Φ] = δ1Θ[δ2Φ,Φ]− δ2Θ[δ1Φ,Φ]. (4.7)

The Lee-Wald symplectic form is then given by,

Ω[δ1Φ, δ2Φ,Φ] =

∫
Σ

ω[δ1Φ, δ2Φ,Φ], (4.8)
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where Σ is a Cauchy surface in the spacetime.

Consider now that the variation of the Lagrangian, L, is made with respect

to a spacetime diffeomorphism ζ,

δζL = LζL

= EΦδζΦ + dΘ[δζΦ,Φ], (4.9)

where δζΦ = LζΦ, is the field variation generated by ζ. According to Cartan’s

“magic formula”, LζL = d(ιζL) + ιζdL, so δζL = ζ · dL + d(ζ ·L). Since dL = 0,

we have

−EΦδζΦ = d(Θ[δζΦ,Φ]− ζ · L)

= dJζ (4.10)

where Jζ = Θ[δζΦ,Φ]− ζ · L is the Noether current, a (d− 1)-form.

When the equations of motion are satisfied, by (4.5) we have dJ ≈ 0 (where

≈ is used to indicate that the equation holds when the equations of motion are

satisfied) and thus Jζ is an exact form on the phase space,

Jζ ≈ dQN
ζ (4.11)

and QN
ζ is the Noether-Wald charge density, a (d− 2)-form.

Given (4.9), we can see that,

(δ1δ2 − δ2δ1)L = δ1EΦδ2Φ + dδ1Θ[δ2Φ,Φ]− δ2EΦδ1Φ− dδ2Θ[δ1Φ,Φ]. (4.12)

When the equations of motion are satisfied, δEΦ ≈ 0, and thus,

(δ1δ2 − δ2δ1)L ≈ dδ1Θ[δ2Φ,Φ]− dδ2Θ[δ1Φ,Φ]

= dω[δ1Φ, δ2Φ,Φ], (4.13)

using the presymplectic form defined in (4.7). Therefore, since (δ1δ2−δ2δ1)L = 0
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using (4.4), we have

dω[δ1Φ, δ2Φ,Φ] ≈ 0. (4.14)

One consequence of this is that, with one variation generated by a gauge

transformation ζ, one can find a (d− 2)-form kζ such that

ω[δΦ, δζΦ,Φ] ≈ dkζ [δΦ,Φ], (4.15)

where again the fields solve the equations of motion and their variations solve the

linearized equations of motion. In terms of the above quantities, the infinitesimal

surface charge kζ [δΦ,Φ] is given by,

kζ [δΦ,Φ] = δQN
ζ [δΦ,Φ]− ιζΘ[δΦ,Φ]. (4.16)

For a proof of this expression, see Appendix B.

The local variation of charge, δQζ is then given by the integral of ω[δΦ, δζΦ,Φ]

over a Cauchy surface Σ, which, by Stokes theorem, reduces to a boundary

integral of kζ [δΦ,Φ] over ∂Σ ,

δQζ [δΦ,Φ] =

∫
∂Σ

kζ [δΦ,Φ]. (4.17)

One should interpret δQζ [δΦ,Φ] as the change in charge between the two

solutions Φi and Φi + δΦi, conjugate to the vector field ζ.

4.1.1 Ambiguities

Several ambiguities arise in this formalism in going from the action to the final

expression for the charge variation δQζ [δΦ,Φ]. They have been catalogued by

Wald and Zoupas [85], but we will here note how a few of these ambiguities arise.

• The first ambiguity arises from the Lagrangian, to which one may add an

exact form, L→ L + dW. The effect of this is to shift the Noether current

by, Jζ → Jζ + d(ζ ·W) [131].
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• Given (4.4), we see that for a given Lagrangian, there is the freedom to add

an exact (d− 1)-form to the presymplectic potential, Θ, i.e. Θ[δζΦ,Φ]→

Θ[δζΦ,Φ] + dX[δζΦ,Φ]. The corresponding effect on the Noether current

is Jζ → Jζ + dX[δζΦ,Φ] [131].

• From (4.11), it can be seen that the Noether-Wald charge density is also

ambiguous up to an exact (d−2)-form, dY, QN
ζ → QN

ζ +dY. In this case,

by (4.11), we find that there is no effect on the Noether current.

• Since the presymplectic form is given by the exterior derivative of the

surface charge kζ [δΦ,Φ] in (4.15), we see that the addition of an exact form

to this surface charge, kζ → kζ +dZ, would leave ω[δΦ, δζΦ,Φ] unaffected.

4.1.2 Integrability

The local charge variation, δQζ [δΦ,Φ] is not necessarily integrable - it may not

be an exact differential on the phase space. Despite the notation δ, there may

not exist a charge Qζ that can be built from δQζ 2. Formally, the necessary

criterion for integrability is that the surface charge satisfy,

δ1

∫
∂Σ

kζ [δ2Φ,Φ]− δ2

∫
∂Σ

kζ [δ1Φ,Φ] = 0, (4.18)

for all variations δ1,2Φ belonging to the tangent bundle ofM. In other words, if

there exists a charge Qζ , then it obeys,

(δ1δ2 − δ2δ1)Qζ = 0. (4.19)

This condition may also be written [131]

∫
∂Σ

ζ · ω[δ1Φ, δ2Φ,Φ] ≈ 0. (4.20)

2It is for this reason that this notation may be misleading, and a more appropriate way of
writing the charge (which is often used elsewhere in the literature) might be �δQζ [δΦ,Φ], to
emphasise the potential for non-integrability.
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One can most easily see the problem of integrability in the charge variation

by examining the formula for the surface charge integrand in terms of the

Noether charge and presymplectic potential as in (4.16). Here, the variation of

the Noether charge, δQN
ζ is manifestly an exact differential since this is a

genuine variation. However, the second term on the right hand side of (4.16)

may not itself be integrable. In cases where this term is not integrable, one may

exploit the ambiguities noted above to find a suitable counterterm that may be

added to render the total charge variation integrable. Several examples of such

counterterms have been proposed in the literature, and discussed for example

in [58, 83–86], but in general these have been produced on a case-by-case basis.

The task of finding a universal counterterm which is compatible with the

allowed ambiguities while simultaneously making the total charge variation

integrable is, in general, an ongoing problem. In section 7.5 and Appendix C

we will explore the case of the Kerr black hole and propose a counterterm for

this scenario.

4.1.3 Conservation

Under the assumption of integrability, one can construct the surface charge Qζ
from δQζ and find that it is conserved if

ω[δΦ, δζΦ,Φ] ≈ 0, (4.21)

where again the fields Φi solve the equations of motion and the δΦi solve the

linearised equations of motion. This naturally means that δQζ will not depend

on the choice ∂Σ, or more generally that the symplectic form Ω is not dependent

on the choice of surface Σ.

4.1.4 Charge algebra

Any two diffeomorphisms ζ, χ form an algebra under the Lie bracket,

[Lζ , Lχ] = L[ζ,χ]. (4.22)
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The same should be true of the charges defined with respect to these vector fields.

We will soon see that explicit calculations reveal the possibility that we have a

central term in the algebra of the charges.

We will consider the case of asymptotic symmetries - those which act non-

trivially at infinity and that obey a set of boundary conditions. We will assume

that we can choose boundary conditions such that any ‘allowed’ vector field ζ

asymptotically solves the Killing equation. If the resulting charge variation, δQζ
is zero, the diffeomorphism ζ is simply a gauge or coordinate transformation

and is called trivial. The asymptotic symmetry group is defined as the group of

diffeomorphisms which physically change the state of the system and will result

in a non-zero charge, δQζ .

Asymptotic symmetry group =
Allowed diffeomorphisms

Trivial gauge transformations
. (4.23)

We will now find the algebra of the charges. As in [106], we can pick some

reference set of fields, Φ̄i and consider the path integral along some curve γ in

the phase space, from Φ̄i to the field configuration Φi. The charge Qζ (assuming

it exists by integrability of δQζ) is then defined as

Qζ [Φ, Φ̄] =

∫
γ

∫
∂Σ

kζ [δΦ,Φ] +Nζ [Φ̄]. (4.24)

Here Nζ [Φ̄] is the charge associated to the reference field configuration, which

may include for example, any counterterms that are required so that Qζ may be

integrable. At this stage, Nζ [Φ̄] is dependent on the theory in question and a

universal prescription is unknown.

One can now consider a Lie bracket for any two conserved charges Qζ and

Qχ associated to two diffeomorphisms ζ and χ. The bracket is defined [106],

{Qζ ,Qχ} = δζQχ =

∫
∂Σ

kχ[δζΦ,Φ]. (4.25)

The algebra of charges is then isomorphic to the Lie algebra of diffeomorphisms
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up to a possible central extension,

{Qζ ,Qχ} = Q[χ,ζ] +Kχ,ζ [Φ̄], (4.26)

where

Kχ,ζ [Φ̄] =

∫
∂Σ

kχ[δζΦ̄, Φ̄]−N[ζ,χ][Φ̄]. (4.27)

Kχ,ζ [Φ̄] depends only on the reference field configuration, Φ̄ and not on δΦ and

furthermore it is a conserved quantity, just like Qζ . This means that it is

constant on the phase space and therefore commutes with all charges Qζ , i.e. it

is indeed a central term. Later we will see that if a central term is computed

that is not constant on the phase space, one must conclude that there will be

an obstruction to constructing and integrating well-defined charges with a

well-defined algebra, the existence of which has been assumed in arriving at

(4.26). Such an obstruction must be removed by again exploiting the

ambiguities introduced in deriving the charges in order to add extra terms.

When Kχ,ζ [Φ̄] = 0, (4.26) expresses general coordinate invariance. However,

if the central term does not vanish we see a violation of diffeomorphism symmetry,

which is physically unacceptable. It is like an anomaly in many field theories, and

must be cancelled by something. We will explore this further in later sections.

4.2 Covariant charges for gravity

The starting point is the Einstein-Hilbert Lagrangian four-form,

L =

√
−g

16π
R. (4.28)

The only dynamical field, Φi, in this configuration is the metric tensor gab with

variation δgab = hab. 3 The variation of the Lagrangian is

δL = −
√
−g

16π
Gabh

ab + dΘ[h, g]. (4.29)

3Note that in this case we choose to vary the metric with respect to indices upstairs.
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The presymplectic potential Θ = ∗θ is a spacetime three-form, where

θa[h, g] = − 1

16π
(∇bh

ab −∇ah). (4.30)

The infinite-dimensional phase space of general relativity has as its tangent

vectors the infinitesimal metric perturbations hab that obey the linearised

Einstein equations. Although Θ is a three-form in spacetime, it is also a

one-form in the phase space. The presymplectic form,

ω[h1, h2, g] = δh1Θ[h2, g]− δh2Θ[h1, g] (4.31)

obeys dω = 0 and can therefore be used to define a conserved inner product. ω is

a two-form in the phase space. The linearized charge δQ is then obtained from the

presymplectic form ω(h1, h2; g) by the replacement of h1 with the perturbation

generated by a large diffeomorphism Lζg,

δQ(ζ, h; g) =

∫
Σ3

ω(Lζg, h; g). (4.32)

Assuming the background field equations are satisfied, the presymplectic form

is exact and thus reduces to a boundary integral, giving rise to the Iyer-Wald

charge,

δQIW (ζ, h; g) =
1

16π

∫
∂Σ3

kIW , (4.33)

as it must in order for diffeomorphisms which vanish on the boundary to have

δQIW = 0. Explicitly, writing kIW = ∗FIW ,

(FIW )ab =
1

2
∇aζbh+∇ah

c
bζc +∇cζa h

c
b +∇ch

c
a ζb −∇ah ζb − (a↔ b), (4.34)

where h = haa.

As before, it is possible to arrive at this expression by considering the Noether

charge. The presymplectic potential (4.30) is a function of the metric variation

hab. When this is due to a diffeomorphism ζ, i.e., hab = Lζgab, the presymplectic
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potential becomes,

θa[Lζg, g] = − 1

8π
(∇b∇(aζb) −∇a∇bζ

b). (4.35)

When the equations of motion are satisfied, the presymplectic potential may be

written

θa[Lζg, g] ≈ −1

16π
∇b(∇bζa −∇aζb). (4.36)

Using

dQN
ζ ≈ Θ− ζ · L, (4.37)

this gives rise to a Noether charge [106],

(QN
ζ )ab =

−1

16π
(∇bζa −∇aζb), (4.38)

where QN
ζ = ∗QN

ζ . The symplectic two-form charge integrand can then be found

from

k[h, g] = δQN
ζ [g]− ιζΘ[h, g], (4.39)

which again after some algebra gives rise to the Iyer-Wald surface charge, kIW ,

given by the explicit expression (4.34).

We can examine the explicit forms of each term in expression (4.39) to get a

better understanding of the integrability of k[h, g]. Of course, the Noether term

is integrable, but we can see from a second variation of Θ[h, g] using (4.30), that

the second term on the right hand side is not, in general, integrable. Writing the

second variation as δgab = kab and fixing the gauge such that h = k = 0, under

antisymmetry of k ↔ h, we get

(δ2θ1 − δ1θ2)a =
1

2
hbc(∇akbc −∇bk

a
c −∇ck

a
b )− (k ↔ h). (4.40)

Thus it is clear that Θ is not in general integrable. The full calculation can be

found in Appendix C.

In terms of the local charge variation, δQ, Wald and Zoupas [85] noted an
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ambiguity in the addition of a possible counterterm δQX of the general form

δQX =
1

16π

∫
∂Σ

ιζ(∗X), (4.41)

where X is a spacetime one-form constructed from the geometry and linear in

h.4 X is not a priori fully determined by the considerations of [84, 85], where

its precise form is left as an ambiguity. Ultimately one hopes it is fixed by

consistency conditions such as integrability and the demand that the charges

generate the symmetry via a Dirac bracket as in [28], or in the quantum form by

action on a Hilbert space. In practice, the determination of X has been made

on a case-by-case basis.

The resulting general form for the linearized charge associated to a

diffeomorphism ζ on a surface Σ with boundary ∂Σ is [85]

δQ = δQIW + δQX . (4.42)

The interpretation of δQ is the difference in the charge conjugate to ζ between

the configuration gab and gab − hab.5 This is the crucial expression that we must

use in order to compute the charge for the Kerr black hole. We will later see how

to construct a counterterm δQX to arrive at a total charge δQ.

4.3 Using ambiguities to simplify the expressions

As derived in section 4.2, the Iyer-Wald charge is given by,

δQIW (ζ, h; g) =
1

16π

∫
∂Σ3

kIW , (4.43)

where explicitly, with FIW = ∗kIW ,

(FIW )ab =
1

2
∇aζbh+∇ah

c
bζc +∇cζa h

c
b +∇ch

c
a ζb −∇ah ζb − (a↔ b). (4.44)

4∗X is often denoted Θ.
5The minus sign here arises because the variation of the metric is defined with respect to

indices upstairs.
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This is the situation when one variation is generated by a diffeomorphism ζ.

It is now worthwhile considering the situation in which both variations, h1

and h2 of the presymplectic form are generated by diffeomorphisms ζ and ζ̃, i.e.

in the above expression we set h = Lζ̃g. Writing D = ∇aζ
a, D̃ = ∇aζ̃

a, the

surface charge integrand becomes,

(F )ab = D̃∇aζb + ζc∇a∇cζ̃b + ζc∇a∇bζ̃
c +∇cζa∇cζ̃b

+∇cζa∇bζ̃
c + ζa∇bD̃ − ζa2ζ̃b − (a↔ b).

(4.45)

Given the ambiguities described above, we have the freedom to add to this a

term of the form, ∇cAabc, where A is any antisymmetric three-form.

Consider,

Aabc = ζb∇aζ̃c + ζa∇cζ̃b + ζc∇bζ̃a − (a↔ b). (4.46)

Then,

∇cAabc = ∇cζb∇aζ̃c +∇cζa∇cζ̃b +∇c∇c∇bζ̃a + ζa2ζ̃b

+ζb∇aD̃ −D∇aζ̃b − (a↔ b).
(4.47)

Now adding this divergence of this three-form to the original surface charge we

get,

(F ′)ab = (F )ab +∇cAabc

= 2ζc[∇a,∇c]ζ̃b + 2∇cζa∇cζ̃b −D∇aζ̃b + D̃∇aζb − (a↔ b)

= Rabcdζ
cζ̃d + 2∇cζa∇cζ̃b −D∇aζ̃b + D̃∇aζb − (a↔ b). (4.48)

This new expression for the surface charge is much simpler than the original,

(4.45). It is also now manifestly antisymmetric under (ζ ↔ ζ̃) and only involves

single derivatives of the vector field. When the vector field is divergence-free, we

are left with just two terms. For the simple vector fields considered later on, this

new expression will prove very useful.
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5 The AdS/CFT correspondence

Holography is the deep connection between two seemingly distinct theories: a

gravitational theory in d+ 1 dimensions and a quantum theory without gravity

in d dimensions. This profound duality was first established by ’t Hooft and

Susskind in the 1990s [132, 133]. Since then, the subject has had far reaching

applications, firstly for black holes, for which a huge volume of work has been

produced, reviewed for example in [134], but also spanning numerous other fields,

including condensed matter [135–137], atomic [138, 139] and nuclear [140–145]

physics.

The first and most concrete example of holography is the

AdS/CFT-correspondence: an equivalence between a theory of gravity in

Anti-de Sitter (AdS) spacetime and a conformal field theory (CFT) without

gravity in one dimension lower [146–148]. The theory of gravity exists in the

bulk of the spacetime and the CFT lives on the conformal boundary of the AdS

spacetime. This correspondence was first investigated in the context of string

theory, for the case of AdS5×S5 dual to a four dimensional maximally

supersymmetric Yang-Mills theory [146].

The equivalence of the two different theories means that the same physics can

be described by two utterly different descriptions. This means that in the case

of black holes, we have the potential to describe the non-perturbative aspects of

gravity via a field theoretic model, a tool which has proven to be very powerful.

In this section we will consider the case of AdS3/CFT2. The use of this

correspondence by Brown and Henneaux [104] actually predated the discovery

of holography [149]. In this work, it was shown that the asymptotic boundary of

AdS spacetime contains two copies of the infinite dimensional Virasoro algebra.

Brown and Henneaux computed the corresponding central charges which were

then used to calculate the entropy of the CFT. It was later shown by Strominger

that this entropy is exactly that of the three dimensional black hole in the dual

theory, as given by the Bekenstein-Hawking entropy law (1.2). This remarkable

fact has suggested a tantalising possibility for a microscopic description of black
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hole entropy, which could be computed without reliance on string theory. Indeed,

this idea has been extended to the case of the extreme Kerr black hole, in the

Kerr/CFT correspondence [127]. The main goal of this chapter is to describe

how we may use the lessons learned from AdS/CFT to calculate the entropy

of the generic Kerr black hole in terms of microstates on the horizon. Before

doing so, however, we will recap the methods used in the original Brown and

Henneaux AdS3/CFT2 case. We will begin by going over the basics of conformal

field theory, then explore the symmetries and properties of three-dimensional

gravity, before linking the two together via the AdS/CFT correspondence.

5.1 Review of conformal field theory and the Virasoro algebra

We would like to investigate why the symmetries of AdS3 and a two-dimensional

CFT suggest a duality between the two theories. We will begin with a brief

review of the basics of two dimensional conformal field theory. Much of this was

first described by Belavin, Polyakov and Zamalodchikov in 1984 [150]. For a

fuller review of the subject, see e.g. [151]. Here we will follow the outline given

in [152].

A conformal field theory is a field theory that is invariant under conformal

transformations - those in which under a change of coordinates x→ x̃, the metric

changes by

gab(x)→ gab(x̃) = Ω2(x)gab(x), (5.1)

as explained in the first chapter.

We will here consider only two-dimensional CFTs. In 2D Euclidean spacetime

with coordinates (x1, x2), consider the complex coordinates,

z = x1 + ix2, z̄ = x1 − ix2. (5.2)

The holomorphic functions are commonly referred to as ‘left-moving’, while the

anti-holomorphic functions are often called ‘right-moving’. If the space is flat,
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then the metric is,

ds2 = (dx1)2 + (dx2)2 = dzdz̄. (5.3)

In two dimensions, there are an infinite number of conformal transformations

given by any holomorphic coordinate transformation,

z → z′ = f(z), z̄ → z̄′ = f̄(z̄). (5.4)

A special case is a translation, z → z + a. The stress-energy tensor of a CFT,

Tab is formed from the conserved currents associated to translational invariance.

The stress-energy tensor is conserved, ∇aTab = 0 and is also traceless at the

classical level, T aa = 0. In the complex coordinates, these conditions mean that

Tzz = T (z) is a holomorphic function and Tz̄z̄ = T̄ (z̄) is an anti-holomorphic

function. Under a finite conformal transformation z → z̃(z), the stress-energy

tensor transforms as,

T (z)→ T̃ (z̃) =

(
∂z̃

∂z

)−2 [
T (z)− cL

12
S(z̃, z)

]
, (5.5)

where cL is a constant, also known as the central charge, and S(z̃, z) is the

Schwarzian derivative, defined as

S(z̃, z) =

(
∂3z̃

∂z3

)(
∂z̃

∂z

)−1

− 3

2

(
∂2z̃

∂z2

)2(
∂z̃

∂z

)−2

. (5.6)

A similar formula applies to the anti-holomorphic part of the stress-energy tensor,

with corresponding central charge, cR.

We will now consider the case of a cylinder, parameterized by the complex

coordinate ω [152],

ω = σ + iτ, σ ∈ [0, 2π). (5.7)
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The cylinder is related to the plane by a conformal transformation,

z = e−iω. (5.8)

On the cylinder, states evolve in time with the Hamiltonian operator,

H = ∂τ . (5.9)

Constant time slices on the cylinder correspond to circles on the plane of constant

radius and states evolve radially, governed by the dilatation operator,

D = z∂z + z̄∂z̄. (5.10)

In moving from one geometry to the other, the stress-energy tensor transforms

as

Tcyl(ω) = −z2Tplane(z) +
cL
24

(5.11)

using (5.6). The Hamiltonian energy is defined,

H =

∫
dσTττ = −

∫
dσ(Tωω + T̄ω̄ω̄). (5.12)

If the ground state energy of the theory on the plane is zero, then on the cylinder

the ground state energy is the Casimir energy,

E = −2π
cL + cR

24
. (5.13)

We can write the stress tensor on the cylinder as a Fourier expansion,

Tcyl(ω) = −
∞∑

m=−∞

Lme
imω +

cL
24
, (5.14)

which after the transformation (5.11) onto the plane, becomes the Laurent
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expansion,

T (z) =
∞∑

m=−∞

Lm
zm+2

(5.15)

and similarly for the anti-holomorphic part. Writing this the other way around

to find Lm as a contour integral of T (z), we have

Ln =
1

2πi

∮
dz zn+1T (z), L̃n =

1

2πi

∮
dz̄ z̄n+1T̄ (z̄). (5.16)

On the plane, these are the charges associated to the conformal

transformations given by δz = zn+1, δz̄ = z̄n+1, with Noether currents

J(z) = zn+1T (z), J̄(z̄) = z̄n+1T̄ (z̄). These charges are conserved under radial

evolution on the plane, or under time evolution on the cylinder.

In the quantum theory, the Ln, L̃n become operators for the generation of

the conformal transformations δz = zn+1, δz̄ = z̄n+1. These generators satisfy a

Virasoro algebra, given by

[
Ln, Lm

]
= (m− n)Lm+n +

cL
12
m(m2 − 1)δm+n,0,[

L̃n, L̃m
]

= (m− n)L̃m+n +
cR
12
m(m2 − 1)δm+n,0,[

Ln, L̃m
]

= 0

(5.17)

where cL, cR are the central charges of the algebra. The terms linear in m arise

from the Casimir energy (5.13) on the cylinder. Each copy of the Virasoro

algebra contains within it an SL(2,R) subalgebra, spanned by the components

{L−1, L0, L1} and {L̃−1, L̃0, L̃1}.

Representations of the Virasoro algebra classify the states of a two

dimensional conformal field theory. The emergence of this algebra as the

symmetry algebra in other contexts will provide a fundamental link to

conformal field theory.
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5.2 Three-dimensional gravity

The classical action for (2+1)-dimensional gravity is given by the Einstein-Hilbert

action,

IEH =
1

16πGN

∫
d3x
√
−g(R− 2Λ), (5.18)

where GN is the Newton constant in three dimensions and Λ is the cosmological

constant. The resulting vacuum Einstein equations read

Rab −
1

2
Rgab + Λgab = 0, (5.19)

and solutions have constant curvature. The Riemann tensor can be written in

terms of a trace-part (made up of the Ricci tensor) and a traceless conformal

invariant part known as the Weyl tensor. In three dimensions, the Weyl tensor

vanishes and the Riemann tensor becomes,

Rabcd = Λ(gacgbd − gadgbc). (5.20)

Since this expression involves no derivatives of the metric, the curvature is locally

completely defined and does not vary in any dynamical way. This means that

there are no propagating degrees of freedom in three dimensions, and thus there

are no gravitational waves. Even though three-dimensional gravity has no local

degrees of freedom, there may be global degrees of freedom. For example, three-

dimensional spacetimes may have different topologies while remaining locally

indistinguishable. We will explore this idea further in the following sections.

5.2.1 AdS3 spacetimes

Three dimensional Anti-de-Sitter spacetime (AdS3) is the maximally symmetric

solution of Einstein’s equations in three dimensions with constant negative

curvature.
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The metric of AdS3 is given by,

gabdX
adXb = −dX2

0 + dX2
1 + dX2

2 + dX2
3 , (5.21)

which is the induced metric on the hyperboloid,

XaX
a = −`2 (5.22)

where the index a = 0, 1, 2, 3. The length scale ` is a measure of the curvature

and the cosmological constant is Λ = −1/`2. Setting,

X0 = ` cosh ρ cos t,

X1 = ` sinh ρ sinφ,

X2 = ` sinh ρ cosφ,

X3 = ` cosh ρ sin t, (5.23)

the metric becomes,

ds2 = `2(− cosh2 ρdt2 + dρ2 + sinh2 ρdφ2). (5.24)

This is the AdS3 metric in global coordinates. Note that although (5.23) defines

the coordinate t with period 2π, the AdS3 spacetime is considered to be given

by the metric (5.24) above with t ∈ (−∞,+∞).
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AdS3 has six Killing vectors, given by,

ζ−1 =
1

2
[tanh ρe−i(t+φ)∂t + coth ρe−i(t+φ)∂φ + ie−i(t+φ)∂ρ],

ζ0 =
1

2
[∂t + ∂φ],

ζ1 =
1

2
[tanh ρei(t+φ)∂t + coth ρei(t+φ)∂φ − iei(t+φ)∂ρ],

ζ̄−1 =
1

2
[tanh ρe−i(t−φ)∂t − coth ρe−i(t−φ)∂φ + ie−i(t−φ)∂ρ],

ζ̄0 =
1

2
[∂t − ∂φ],

ζ̄−1 =
1

2
[tanh ρei(t−φ)∂t − coth ρei(t−φ)∂φ − iei(t−φ)∂ρ].

(5.25)

The exponent, (t + φ) means we can identify the Killing vectors ζ−1,0,+1 with

‘left-moving’ vector fields, and similarly the ζ̄−1,0,+1 with ‘right-moving’ vector

fields.

The left-moving and right-moving vector fields commute with each other and

each form a copy of the SL(2) algebra,

i[ζ1, ζ−1] = 2ζ0, i[ζ1, ζ0] = ζ1, i[ζ−1, ζ0] = −ζ−1. (5.26)

This means that we are left with the algebra,

SL(2,R)L ⊕ SL(2,R)R. (5.27)

Thus global AdS3 has an SL(2,R)L×SL(2,R)R group of isometries. This is the

two-dimensional global conformal group on the plane or cylinder, a feature that

will become important in identifying a possible conformal symmetry.

The AdS3 metric is conformal to the metric on the cylinder. This can be seen

by making the coordinate transformation sinh ρ = tanχ, with χ ∈ [0, π/2]. The

resulting metric is

ds2 =
`2

cos2 χ
(−dt2 + dχ2 + sin2 χdφ2) (5.28)
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Ignoring the prefactor, this is just the metric on the infinite solid cylinder, with

radius χ = π/2. This cylinder defines the conformal boundary of the global AdS

spacetime. In terms of the AdS/CFT-correspondence, the dual conformal field

theory will live on this conformal boundary.

For future reference, we will also define another useful set of coordinates:

Poincaré coordinates. These are found by taking the metric (5.24) and making

the following coordinate transformations [153]:

1

z
= cosh ρ cos t+ sinh ρ cosφ,

τ = z cosh ρ sin t,

x = z sinh ρ sinφ.

(5.29)

The resulting Poincaré metric is

ds2 =
`2

z2
(−dτ 2 + dx2 + dz2) (5.30)

The coordinates τ, x ∈ (−∞,+∞). The z coordinate behaves as a radial

coordinate. The two regions z < 0 and z > 0 each correspond to one half of the

hyperboloid (5.22). The ‘Poincaré patch’ is usually taken to be the region with

z > 0. Both regions only cover part of the spacetime.

Writing u = 1/z, the metric (5.30) can be written,

ds2 = `2

(
du2

u2
+ u2(−dτ 2 + dx2)

)
. (5.31)

Both forms of this Poincaré metric will become useful in later sections.

5.2.2 The BTZ black hole

To study black hole solutions, we consider a spacetime that is asymptotically AdS3

- one that approaches AdS3 at spatial infinity. Here we explore one particular

solution, describing the BTZ black hole, originally found by Bañados, Teitelboim

and Zanelli [154]. For a fuller review of the subject, see [155]. The metric of the
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BTZ black hole is given by,

ds2 = −N2(r)dt2 +
dr2

N2
+ r2(dφ−Nφ(r)dt)2, (5.32)

where the lapse function is given by

N2(r) = −8M +
r2

`2
+

16J2

r2
, (5.33)

and the angular ‘dragging’ is

Nφ(r) = −4J

r2
. (5.34)

The metric admits two Killing vectors ∂t and ∂φ. If one evaluates the surface

charges with respect to these vector fields on the unit circle at infinity, one

recovers the total mass and angular momentum of the black hole, the parameters

M and J in the lapse function [106],∫
S1
∞

k∂t [δg, g] = δM,∫
S1
∞

k∂φ [δg, g] = δJ.

(5.35)

The scalar curvature is R = − 6
`2

everywhere and thus the metric does not admit

a curvature singularity - it is a black hole because one can identify event horizons.

Writing the lapse function as,

N(r) =

√
(r2 − r2

+)(r2 − r2
−)

r2
, (5.36)

one now sees that, analogously to the Kerr metric, there are inner and outer

horizons, the surfaces H±, defined by r = r− and r = r+ respectively. One

can compute the surface gravity, κ, of the future horizon and then the Hawking

temperature,

TH =
κ

2π
=
r2

+ − r2
−

2π`2r+

. (5.37)
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The angular velocity of the horizon, ΩH is given by the angular dragging function,

ΩH = −Nφ(r+) =
4J

r2
+

=
r−
r+`

. (5.38)

Using the second law of thermodynamics one finds that the entropy of the BTZ

black hole is,

SBTZ =
πr+

2
. (5.39)

It is equal to a quarter of the perimeter of the horizon, the three-dimensional

analogue of the Bekenstein-Hawking entropy-area law (1.2). We will soon see

that this is also the thermodynamic entropy in the CFT. This relationship was

first shown by Strominger in [105].

It is interesting to consider solutions with different values of the mass M.

When M = 0, we have the massless BTZ black hole. In this limit there is no

event horizon and since we do not have a curvature singularity, this solution no

longer represents a black hole. When the mass takes the specific valueM = −1/8,

the solution becomes global AdS3. Thus the continuous BTZ black hole spectrum

is separated from the global AdS spacetime by a mass gap of ∆M = 1/8 [158].

In between these two values of M , the solutions pick up a conical defect and

there is a naked singularity. It has been suggested that the interpretation of this

should be as particle-like objects [156].

Every point of the BTZ black hole is locally AdS3, and the BTZ black hole

solutions can be shown to be quotients of AdS3 [157], found by making periodic

identifications of the coordinates [158].

As shown above, the isometry group of global AdS3 is SL(2,R) × SL(2,R),

the global conformal group in two dimensions. As explained in section 4.1.4, we

will consider instead the asymptotic symmetry group, whose algebra turns out

to be an infinite extension of the isometry algebra SL(2,R)⊕SL(2,R), as shown

by Brown and Henneaux [104]. In two dimensions this is isomorphic to the

conformal algebra, which generates the local conformal symmetries of a CFT.

The asymptotic symmetry algebra of AdS3 is then given by two copies of the
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Witt algebra, the centreless Virasoro algebra, within which there is a subalgebra

that is the isometry algebra of global AdS3. We will explore how this arises in

this next section.

5.2.3 Brown and Henneaux boundary conditions

It is useful to understand the class of metrics that asymptote to AdS3 at spatial

infinity, of which BTZ is one particular example. These can be best described

in Fefferman-Graham coordinates, (ρ, xa). According to the Fefferman-Graham

theorem, any asymptotically AdS3 spacetime can be written in the

neighbourhood of the boundary as [106],

ds2 = `2dρ2 + e2ρg(0)abdx
adxb +O(eρ)

= `2dr
2

r2
+
r2

`2
g(0)abdx

adxb +O(eρ)

(5.40)

where g(0)ab is the 2D zeroth order boundary metric and in the second line we

have set r = `eρ. The spacelike coordinate ρ is defined so that the boundary is

at ρ→∞ and xa = (t, φ) are the coordinates on the boundary.

Brown and Henneaux developed a set of boundary conditions to define

those metrics that asymptote to AdS3 at spatial infinity [104]. In terms of the

coordinates (5.40) given above, these are the Dirichlet boundary conditions,

g(0)ab = ηab, (5.41)

where

ηabdx
adxb = −dt2 + `2dφ2. (5.42)

We can now investigate the metrics which satisfy both the Fefferman-Graham

expansion and the Brown-Henneaux choice of boundary conditions, along with

the diffeomorphisms that preserve such metrics. Note that other choices of

boundary conditions are also possible, see for example [159].
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Consider lightcone coordinates,

x± =
t

`
± φ (5.43)

so that the boundary metric becomes,

ds2
0 = g(0)abdx

adxb = −dt2 + `2dφ2 = −`2dx+dx−. (5.44)

In these coordinates, the most general solution of Einstein’s equations which

obeys the Brown-Henneaux boundary conditions is,

ds2 = `2dr
2

r2
−
(
rdx+ − `2L−(x−)

r
dx−

)(
rdx− − `2L+(x+)

r
dx+

)
. (5.45)

For this metric we can interpret L± as the dynamical fields.

The vector fields which preserve the class of metrics (5.45) are given by [106],

ζ(+) = V +(x+)∂+ −
1

2
∂+V

+∂ρ +

∫
dρ g+−∂+∂+V

+∂−,

ζ(−) = V −(x−)∂− −
1

2
∂−V

−∂ρ +

∫
dρ g+−∂−∂−V

−∂+,

(5.46)

where V + and V − are left and right-moving conformal Killing vectors on the

boundary. The last terms are sub-leading, since gab = e−2ρgab, and will not be

needed to compute the algebra or the charges. We will therefore neglect these

terms from here on.

Writing

V +
n = einx

+

, V −n = einx
−
, (5.47)
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the resulting vector fields, ζ±n satisfy,

[ζ(+)
m , ζ(−)

n ] = 0,

i[ζ(+)
m , ζ(+)

n ] = (m− n)ζ
(+)
m+n,

i[ζ(−)
m , ζ(−)

n ] = (m− n)ζ
(−)
m+n.

(5.48)

In other words, the two sets of vector fields commute with one another and each

obey the Witt algebra, the centreless algebra of diffeomorphisms on the circle.

Moreover, the subsets, {ζ(+)
−1 , ζ

(+)
0 , ζ

(+)
1 } and {ζ(−)

−1 , ζ
(−)
0 , ζ

(−)
1 } each forms a copy of

the SL(2) algebra. By comparison with the Killing vectors of the AdS3 spacetime,

we see that this ‘asymptotic’ algebra contains within it the symmetries of AdS3.

The associated charges form an algebra that is isomorphic to the centrally

extended asymptotic symmetry algebra [160]. The centrally extended asymptotic

symmetry algebra of AdS3 is given by the Virasoro algebra, which is intimately

related to conformal field theory. Thus the charge algebra is given by two copies

of the Virasoro algebra, exactly as in (5.17).

It is this conformal charge algebra of the asymptotically AdS3 spacetime that

motivates the duality between these seemingly distinct theories: a theory of

gravity in three dimensions and a local quantum field theory in two dimensions.

We can relate quantities in the two theories using this duality. For example,

the linear combination L0 − L̃0 of the lowest Virasoro generators, gives rise to

rotations on the plane. We therefore associate this to the angular momentum in

the AdS spacetime,

J = L0 − L̃0. (5.49)

Similarly, the combination L0 + L̃0 gives the dilatation operator on the plane.

The Hamiltonian, or energy of states, generates time translations on the cylinder

or radially evolving circles on the plane. This means that we can relate the mass

or energy in AdS with the Virasoro generators by

M` = L0 −
cL
24

+ L̃0 −
cR
24
, (5.50)
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where the extra terms involving the central charges arise from the Casimir energy

(5.13).

We are going to hypothesise that the BTZ black hole is dual to a thermal

state in the CFT. We can then hope to use CFT techniques to understand

properties of the black hole. Of particular importance is the thermodynamic

entropy associated with such a thermal state, given by the Cardy formula.

5.3 Calculating the entropy

In this section we will give a derivation of the Cardy formula and then show how

the entropy as calculated by the Cardy formula matches the black hole entropy

for the case of the BTZ black hole.

5.3.1 The Cardy formula

Cardy’s formula [161] gives the entropy of a conformal field theory. It provides

the essential link between the conformal field theory and the gravitational theory

since in many contexts the Cardy entropy is found to match the Bekenstein-

Hawking entropy for black holes, as is shown in the following sections. States

of the CFT are interpreted as microstates of the black hole, which allow for this

connection to be made and for a microscopic description of the entropy to be

hypothesised.

However, Cardy’s entropy formula and the Hawking entropy formula have

two very different regions of validity, which calls into question its use in the

black hole context. This has been explored in detail in [162], where its range of

validity has been shown to be extended.

We will begin by recapping the derivation of Cardy’s formula,

following [162]. An essential feature of a CFT which allows for this derivation is

modular invariance.

We showed in section 5.2.1 that the conformal boundary of asymptotically

AdS3 spacetimes is a cylinder, on which the CFT is hypothesized to live. This
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cylinder is parameterized by the complex coordinate ω as in (5.7) [152],

ω = σ + iτ, σ ∈ [0, 2π). (5.51)

We can instead define this conformal boundary as a torus by taking the

parameterization (5.7) of the cylinder but now asking that τ is also periodic,

with period β. This quantity is the inverse temperature, β = 1/T . The CFT

now lives on the torus and the AdS spacetime exists within it. The complex

number τ is the modular parameter of the torus. For the case of thermal AdS,

the modular parameter is given by [153]

τAdS =
θ

2π
+

iβ

2π`
. (5.52)

Here, θ is the ‘angular potential’, which is the canonical conjugate of the angular

momentum J . Again, ` is the AdS length. This modular parameter has been

shown to be related to the modular parameter of BTZ by

τBTZ = − 1

τAdS
(5.53)

a result by Maldacena and Strominger [153].

The CFT partition function is defined as a trace over the CFT Hilbert space,

Z = Tre−βH+iθJ . (5.54)

We can use the expressions (5.49) and (5.50) to replace the Hamiltonian H and

the angular momentum J in this expression. On the torus, the partition function

becomes a function of the modular parameter τ and its complex conjugate τ̄ .

Using (5.52) we can therefore write the partition function as,

Z(τ, τ̄) = e
iθ(cL−cR)

24 Tr[e2πiτ(L0−
cL
24

)e−2πiτ̄(L̃0−
cR
24

)]. (5.55)

Considering for now only the part involving τ (we can re-insert the part involving
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τ̄ at a later stage), the trace can be written,

Z(τ) =
∑
N≥0

ρ(N)e2πiτ(N−cL/24) (5.56)

where ρ(N) is the number of states with energy eigenvalue L0 = N . We will now

assume that the modular parameter τ is purely imaginary, τ = iβ
2π`

, which means

that as β → 0 in the high-temperature limit, we find that τ → 0.

This partition function exhibits modular invariance, since when regarding τ

as the modular parameter of a torus, the partition function Z(τ) is invariant

under the SL(2,Z) group describing conformal transformations of the torus,

Z(τ) = Z

(
aτ + b

cτ + d

)
, ad− bc = 1. (5.57)

In particular, we have

Z(τ) = Z

(
−1

τ

)
, (5.58)

which means we can compare the partition functions for τ → 0 and τ → i∞ and

relate the high and low-temperature behaviours. We can write,

Z

(
−1

τ

)
= e

2πi
τ

cL
24 Z̃(−1

τ
), Z̃(− 1

τ
) = Tr[e−2πiL0/τ ]. (5.59)

In the high-temperature regime, as τ → 0, the dominating state is the ground

state, where N = 0 and Z̃ → 1. This means that we may approximate,

lim
τ→0

Z(τ) = exp(
2πi

τ

cL
24

) (5.60)

and thus the partition function in this regime is controlled by the central charge

cL.

One can calculate an expression for the asymptotic behaviour of ρ(N) using

a Laplace transform of Z(τ),

ρ(N) =

∫ i∞

−i∞
dτZ(τ)e−2πiτ(N− cL

24
). (5.61)
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In the high temperature limit, using (5.60), this becomes

ρ(N) ≈
∫ i∞

−i∞
dτ exp

[
−2πiτ(N − cL

24
) +

2πi

τ

cL
24

]
. (5.62)

As τ → 0 at high temperatures, N gets large. When N � cL/24, this integral

will be dominated by a saddle point at

τ0 = i

√
cL/24

N − cL/24
. (5.63)

Using the saddle point approximation results in

ρ(N) ≈ exp

[
4π

√
cL
24

(N − cL
24

)

]
. (5.64)

In general, (5.60) will no longer hold when |τ | becomes of order one, i.e. this

approximation is only valid when

N − cL/24

cL/24
� 1. (5.65)

We can now use the expression for ρ(N) to find the entropy. In the

microcanonical ensemble, the entropy is given by the logarithm of the number

of states, S = log ρ(N). As the temperature goes to zero, the only state is the

ground state so N = 1 and the entropy vanishes. At higher temperatures, N is

finite and there will be a non-zero entropy.

Using (5.64) and restoring the anti-holomorphic part, we can arrive at the

Cardy formula for the thermodynamic entropy of a CFT,

SCardy =

[
4π

√
cL
24

(NL −
cL
24

) + 4π

√
cR
24

(NR −
cR
24

)

]
. (5.66)

In the canonical ensemble, we can define left and right temperatures,

∂SCardy
∂NL

∣∣
NR

=
1

TL
,

∂SCardy
∂NR

∣∣
NL

=
1

TR
. (5.67)
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Therefore,

TL =
1

2π

√
NL − cL/24

cL/24
, TR =

1

2π

√
NR − cR/24

cR/24
, (5.68)

and in terms of these temperatures the Cardy formula becomes,

SCardy =
π2

3
(cLTL + cRTR), (5.69)

which now holds for TL,R � 1.

5.3.2 Matching Cardy entropy with black hole entropy

In this section we will show that for the case of BTZ, the Cardy entropy of the

dual CFT matches the Bekenstein-Hawking entropy of the black hole. We will

begin by recapping the calculation of the well-known central charge of the BTZ

black hole, computed at spatial infinity by Brown and Henneaux [160]. We will

then exploit the conformal symmetry to use the Cardy formula and find the

entropy.

In order to compute the charges using (4.42) we must vary the metric with

respect to the fields, L±, giving,

hab = δgab =
∂gab
∂L+

δL+ +
∂gab
∂L−

δL−. (5.70)

Assuming at this stage that there are no counterterms so that we may simply

use the expression (4.33) to compute the charge variations with respect to the

vector fields ζ
(±)
m , we obtain,

δQ(+)
m =

∫
S1
∞

k
ζ

(+)
m

[δg; g] =
`

8π

∫ 2π

0

dφδL+(x+)eimx
+

,

δQ(−)
m =

∫
S1
∞

k
ζ

(−)
m

[δg; g] =
`

8π

∫ 2π

0

dφδL−(x−)eimx
−
.

(5.71)

Note that the integrations are performed on the unit circle at infinity. The
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integrands on the left hand sides of (5.71) are clearly integrable as they involve

the variations of L±. This justifies the decision to leave out counterterms and

we can immediately read off the charges Q(±) from δQ(±), as

Q(+)
m =

`

8π

∫ 2π

0

dφL+(x+)eimx
+

,

Q(−)
m =

`

8π

∫ 2π

0

dφL−(x−)eimx
−
.

(5.72)

By analyzing the charge algebra using the Poisson bracket defined in (4.25), one

finds

{Q(+)
m ,Q(−)

n } = 0,

i{Q(+)
m ,Q(+)

n } = (m− n)Q(+)
m+n +m3δm+n,0

`

8
,

i{Q(−)
m ,Q(−)

n } = (m− n)Q(−)
m+n +m3δm+n,0

`

8
.

(5.73)

The central term in the algebra of charges is in general of the form c
12
m3δm+n,0

with central charge c. One can define the central charge of the (+) sector to be

c = cL, and for the (−) sector one can define c = cR. By shifting the zero mode of

the charges, they may be put in the form more commonly found in the Virasoro

algebra, in which the central extension vanishes for m = −1, 0,+1.

Defining,

Q̃(+)
m = Q(+)

m + α(+)δm,0, (5.74)

for some constant α(+), we get

i{Q̃(+)
m , Q̃(+)

n } = (m− n)(Q̃(+)
m+n − α(+)δm+n,0) +

cL
12
m3δm+n,0. (5.75)

Choosing α(+) = cL
24

, we get

i{Q̃(+)
m , Q̃(+)

n } = (m− n)Q̃(+)
m+n +

cL
12
m(m2 − 1)δm+n,0, (5.76)
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which has a centreless subalgebra of AdS3 exact symmetries. The same can be

done for the charges, Q(−)
m , and one again finds a shift of cR/24. These shifts

correspond to a shift of the mass from the zero mass BTZ black hole to the

spacetime of global AdS3.

We can find the values of the two central charges, cL and cR, from the ‘left’

and ‘right’-moving algebras generated by the charges Q(±) in (5.73) as,

cL = cR =
3`

2
. (5.77)

This is the famous result of Brown and Henneaux. The appearance of central

charges in Virasoro algebras is extremely suggestive of a link to conformal field

theory. Indeed, if we assume the existence of a two-dimensional conformal field

theory living on the unit circle at infinity, one may use the Cardy formula (5.66)

to compute the entropy. Writing the zero modes of the BTZ black hole using

(5.49) and (5.50), one finds NL−cL/24 = 1
2
(M`+J) and NR−cR/24 = 1

2
(M`−J).

Inserting the central charges cL,R as computed above into the Cardy formula, one

finds

SBH = 4π

√
`

32
(M`+ J) + 4π

√
`

32
(M`− J) =

πr+

2
. (5.78)

This is exactly the entropy (5.39) of the BTZ black hole. Thus there is an exact

agreement between the Bekenstein-Hawking entropy of the black hole and the

thermodynamic entropy of the CFT, calculated from the Cardy formula. In

other words, we hypothesize that the BTZ black hole can itself be described as

a 2D thermal CFT, and we use this AdS/CFT correspondence to recover the

entropy in the bulk of the spacetime by looking at field theoretic techniques on

the boundary. Since the Cardy formula gives the entropy as a measure of the

microscopic degeneracy, this gives the BTZ black hole entropy a microscopic

interpretation.

One important issue that has been raised with this matching argument

concerns the range of validity of the two different entropy formulae. As

explained above, the Cardy formula is valid in the high-temperature limit,
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where N is large. The Bekenstein-Hawking formula on the other hand, is valid

in the semiclassical limit, when the area of the black hole is large in Planck

units. This occurs when
c

24
(N − c

24
)� 1, (5.79)

rather than just demanding that the ratio (5.65) is large. This is an ongoing

problem, but has motivated research into an extended range of validity of Cardy’s

formula. One such extension involves using the mass gap between massless BTZ

and global AdS, to find a “sparse light spectrum of states” in theories with

large central charge [163]. This allows the range of validity to be extended from

TL,R � 1 to TL,R > 1/2π. More recently, by studying the chiral ‘Monster’ CFT

with c = 24, the region of validity of Cardy’s formula has been extended further,

right the way down to the AdS-scale [162].

Before proceeding to four dimensional examples, it is worth noting that this

three-dimensional treatment turns out to be relatively simple. Firstly, the

central charge as calculated from (4.33) is a constant, not continuously

variable. Secondly, these charges turn out to be integrable. There is therefore

no reason to introduce a counterterm.
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6 The extreme Kerr black hole

Ultimately, we wish to study the generic Kerr black hole. However, as a simpler

intermediate step, we will first consider the extreme case, which exhibits its own

set of interesting properties. The Kerr/CFT correspondence [127] explored the

possibility that the extreme Kerr black hole itself has a dual CFT description.

The Kerr solution is a two parameter family of solutions to the four

dimensional vacuum Einstein equations for a generic rotating black hole. It is

labelled by two parameters: M , the mass of the black hole, and J , the angular

momentum. The Kerr metric in Boyer-Lindquist coordinates is given by,

ds2 =
ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2
((r2 + a2)dφ− adt)2 − ∆

ρ2
(dt− a sin2 θdφ)2, (6.1)

where

ρ2 = r2 + a2 cos2 θ

∆ = r2 + a2 − 2Mr.
(6.2)

a is a rotation parameter, given by

a =
J

M
. (6.3)

There are outer and inner event horizons at

r± = M ±
√
M2 − a2. (6.4)

The Hawking temperature is given by ,

TH =
(r+ −M)

4πMr+

, (6.5)
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and the angular velocity of the (outer) horizon is given by,

ΩH =
a

2Mr+

. (6.6)

At extremality, we have

M = a. (6.7)

Therefore we see that in this limit, the inner and outer horizons coincide and we

have a single event horizon, at

r+ = r− = r̂ = M. (6.8)

The Killing horizons are called degenerate horizons, in contrast to the bifurcate

horizons of non-extremal black holes. They have zero surface gravity, as can be

seen from the Hawking temperature (6.5) which becomes zero. However, the

black hole still has a non-zero and finite entropy, given by

SBH = 2πM2. (6.9)

We will show in the subsequent sections how this entropy can be reproduced by

considering microstates on the horizon of the extreme Kerr black hole. We will

begin by understanding the geometry close to the horizon.

6.1 Geometry and conformal symmetries

A useful place to start is by introducing the parameter λ,

λ =

√
1− a2

M2
, (6.10)

a measure of the distance to extremality. At extremality, λ = 0. The other limit

occurs when λ = 1, describing the case of the Schwarzschild black hole.

To explore the geometry close to extremality, we can expand coordinates in

terms of the new parameter λ, and eventually take the limit λ → 0. Near the
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horizon, we must use a co-rotating angular coordinate, defined in relation to the

Boyer-Lindquist coordinate as,

φ̂ = φ− t

2M
+O(λ). (6.11)

We will also define new time and radial coordinates, similarly to [127], as

T =
λt

2M
,

R =
r − r+

λM
.

(6.12)

In the limit, λ→ 0, the Kerr metric becomes,

ds2 = 2JΩ2(θ)

[
−R2dT 2 +

dR2

R2
+ dθ2 + Λ2(θ)(dφ̂+RdT )2

]
+O(λp), (6.13)

where

Ω2(θ) =
1

2
(1 + cos2 θ),

Λ(θ) =
2 sin θ

1 + cos2 θ
.

(6.14)

This is the metric of Near Horizon Extreme Kerr, or NHEK [164].

From this metric we can immediately get a sense of an SL(2) symmetry. The

first two terms in the square bracket of (6.13) are the same as the metric for

AdS2 in Poincaré coordinates. AdS2 spacetime has three Killing vectors which

form an SL(2,R) algebra. The NHEK geometry has four Killing vectors in total,

given by

ζ1 = ∂T ,

ζ2 = ∂φ̂,

ζ3 = T∂T −R∂R,

ζ4 =

(
1

2R2
+
T 2

2

)
∂T − TR∂R −

1

R
∂φ̂.

(6.15)
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The third, ζ3 is a scale transformation. We see that ζ1, ζ3 and ζ4 are

independent of the coordinate φ̂ and thus the second Killing symmetry, ∂φ̂

commutes with all the others. This means that the symmetry group of NHEK

is

SL(2,R)× U(1). (6.16)

All four isometries given in (6.15) are independent of the polar angle θ and

therefore act within three-dimensional slices given by the coordinates (T,R, φ̂).

The geometry of these slices at any given angle θ looks like warped AdS3.

Periodicity in the angular coordinate φ̂ means we in fact have a quotient of

warped AdS3. At the specific value of θ where Ω2 = sin θ such that Λ = 1, the

geometry is locally an ordinary AdS3. This means that here the symmetry

algebra is locally SL(2,R)L × SL(2,R)R, whereas at all other values of θ, the

isometry is broken down from SL(2,R)L to U(1) [127].

6.2 Computation of charges

The way forward in finding surface charges in NHEK is very similar to the

approach of Brown and Henneaux in BTZ, as described earlier. Boundary

conditions are imposed and then diffeomorphisms are found that preserve these

conditions. Charges associated to such diffeomorphisms may then be calculated

using the covariant phase space formalism. For the case of BTZ, the

appropriate vector fields involved two commuting copies of the Virasoro

algebra, and related to a two dimensional dual conformal field theory on the

boundary. In the case of NHEK, if we are again to find a dual CFT description,

we might also like to look for vector fields that satisfy Virasoro algebras.

However, since the symmetry algebra is no longer SL(2,R) × SL(2,R) but

SL(2,R) × U(1), it is reasonable to expect that we might only find one such

Virasoro. This has been done in [127] and updated in [165]. The same applies

to the case of near-horizon extreme BTZ, which has a very similar structure to

NHEK.

The first step is to determine the boundary conditions. In taking the near-
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horizon limit of extreme Kerr, the metric (6.13) is no longer asymptotically flat,

so it is not clear which boundary conditions are the most appropriate. For each

set of boundary conditions there is an associated asymptotic symmetry group of

‘allowed’ transformations, excluding those that are trivial, as in (4.23).

The boundary conditions used in [127] are,

δgTT = O(R2),

δgT φ̂ = δgφ̂φ̂ = O(1),

δgTθ = δgφ̂θ = δgθθ = δgφ̂R = O(
1

R
),

δgTR = δgθR = O(
1

R2
),

δgRR = O(
1

R3
),

(6.17)

and the corresponding symmetry generators are given by

ζ = ε(φ̂)∂φ̂ −R∂φ̂ε∂R, (6.18)

where ε is an arbitrary function of φ̂. We can expand ε in eigenmodes,

εn = einφ̂. (6.19)

In [165] it was proposed that an additional term of the form

b

R
∂φ̂ε∂T (6.20)

should be included, where b is some constant, to avoid a situation where the

phase space is not smooth. Note that in either case, when n = 0, the vector field

generates the U(1) rotational isometry.

The vector fields obey a centreless Virasoro algebra under the Lie bracket,

i [ζm, ζn] = (m− n)ζm+n. (6.21)
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The corresponding charges, δQζ and their algebra can then be found. Since

there is only one Virasoro algebra, we find that there is only one (left-moving)

central charge, which can be calculated over surfaces of constant t as r → r+ and

has been found to be cL = 12J , independent of the value of b in (6.20) [127,165].

Notice again that this central charge is constant on the phase space. In [127],

the charges δQζ were also shown to be integrable to quadratic order around the

NHEK background. This means that there was no requirement for the addition

of counterterms.

6.3 Kerr/CFT

In the Kerr/CFT correspondence [127], the extreme Kerr black hole is

hypothesised to be dual to a thermal CFT. The central charge (cL = 12J) is

used in the Cardy formula to calculate the entropy of the dual conformal field

theory and again find that it matches the black hole entropy. We will here show

how this arises.

In order to use the central charge to find the entropy for the black hole, we

must use the Cardy formula which involves the thermal temperatures of the dual

CFT. The derivation of the temperatures requires a definition of the vacuum.

The problem is that for a generic curved spacetime, the vacuum is not unique.

It depends on a timelike Killing vector. In the Kerr solution, it is not possible to

define a Killing vector which is everywhere timelike, due to the existence of the

ergoregion. This means there is no global quantum state which can represent

the vacuum (see [166] and references therein). One approach is to consider the

Frolov-Thorne vacuum as in [127], and choose a timelike vector field that is well

behaved in the near-horizon region. Close to the horizon, one might consider

the generator of the horizon, which in Boyer-Lindquist coordinates is given by,

ζ = ∂t − ΩH∂φ. This is timelike between two surfaces: the horizon, and the

surface at which in order to co-rotate with the black hole an observer must

travel at the speed of light. Frolov and Thorne [167] defined the vacuum in this
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way, by describing it as a density matrix,

ρ = exp

(
−ω − ΩHm

TH

)
, (6.22)

where the eigenmodes of energy and angular momentum are (ω,m). The next

step is to rewrite the density matrix in terms of the near-horizon coordinates. To

do this, it is simplest to use the coordinates (T,R, θ, φ̂) defined above in (6.11)

and (6.12). In these coordinates, we have,

−iωt+ imφ = − i
λ

(2Mω −m)T + imφ̂ = −inRT + inLφ̂ (6.23)

where

nL = m,

nR =
1

λ
(2Mω −m)

(6.24)

are the left and right charges associated to the Killing vectors ∂φ̂ and ∂T of the

near-horizon region. Writing (6.22) in terms of these quantities, we get

ρ = exp

(
−nL
TL
− nR
TR

)
, (6.25)

where now the left and right temperatures are

TL =
r+ −M

2π(r+ − a)
,

TR =
r+ −M
2πλr+

.

(6.26)

In the extremal limit these become [127],

TL =
1

2π
,

TR = 0.

(6.27)

This means that for extreme Kerr, the Frolov-Thorne vacuum is thermally
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populated at temperature TL = 1/2π. Since the states of quantum gravity of

NHEK were shown above to be dual to the left-moving part of a CFT, the CFT

dual of the Frolov-Thorne vacuum must also have this temperature.

Using the Cardy formula for the entropy,

S =
π2

3
cLTL, (6.28)

with cL = 12J and TL = 1/2π we recover the Bekenstein-Hawking entropy,

SBH = 2πJ. (6.29)

This suggests that the extreme Kerr black hole is dual to a thermal CFT at

temperature TL.
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7 The Kerr black hole

We will now proceed to discuss the case of the generic Kerr black hole, given by

the metric (6.1). We will begin by recapping the hidden conformal symmetry of

Kerr black holes, and then move on to discuss the new approach to the problem

and the relevant findings.

We will attempt to build up a microscopic description of the entropy, with

methods similar to those used in previous sections. However, finding a dual

CFT description for the case of the Kerr black hole involves the consideration of

a different viewpoint, in which the boundary of the spacetime is the horizon of

the black hole.

Using the horizon as the boundary of spacetime means that our calculations

are inherently observer dependent [168]. In [27, 28, 78], it was shown that

nontrivial diffeos act on the horizon of a generic 4D Kerr black hole, resulting

in additional features known as soft hair. A non-zero central term found in the

algebra of the corresponding horizon charges means that an observer outside

the horizon will see a violation of diffeomorphism invariance. This is physically

unacceptable and must be cancelled by something. We might hypothesize that

there is a conformal field theory living on the horizon with a central charge

that can do just that. If so, the Cardy formula will tell us the entropy of the

CFT. If this entropy turns out to be equal to the Bekenstein-Hawking entropy,

then we might conclude that the black hole entropy can be described by

microstates on the horizon.

Ultimately we want to follow this procedure to find the horizon charges for

the Kerr black hole. In what follows, in order to simplify the computations we

will in fact find the charges on a section of the horizon, the bifurcation surface.

Extending the analysis away from the bifurcation surface to the full black hole

horizon is left to future work.

However, before finding the charges for the case of the Kerr black hole, it

is worth noting that this shift onto the horizon is possible for the previous case

of the BTZ black hole, and produces the same central term. This calculation is
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done explicitly in Appendix D. The calculations are almost identical to those in

the previous sections, but with a slight shift in interpretation.

Similarly, an interesting feature of the geometry of extreme Kerr is that

surfaces of constant t, r result in ‘internal infinities’, or a ‘throat’. We can

explicitly calculate the central terms on the future horizon by using a different

set of coordinates. This calculation can be found in Appendix E.

7.1 Hidden conformal symmetry

For extremal black holes a SL(2)×U(1) symmetry can be identified. Calculations

of surface charges with respect to diffeomorphisms in the NHEK region form

the Virasoro algebra with central charge 12J . This suggests that the extreme

Kerr black hole is dual to a 2D CFT. Indeed, using the Cardy formula for the

CFT reproduces the Bekenstein-Hawking entropy of the extreme Kerr black hole,

which is further evidence for such a dual description. The conformal symmetry

arises from the geometry of the spacetime in this case.

Moving to non-extreme geometries is a significantly harder challenge. Away

from the extreme limit, the near horizon geometry is just Rindler space, to which

one cannot associate a conformal field theory. If extreme Kerr black holes have a

dual CFT, then one might expect that finite excitations of the CFT correspond

to non-extremal Kerr black holes. However, the back-reaction of the excitations

on the geometry appears to destroy the conformal symmetry. The way out from

this problem is to look for the conformal symmetry in the phase space rather

than the space time. When fields propagate on a space which has a conformal

symmetry, the interactions will exhibit conformal invariance. The same will also

be true when the solution space of the wave equation for the propagating field

has the conformal symmetry, even if the background spacetime does not. A local

conformal symmetry is found in [79] to act on the solution space, and we will

present here this ‘hidden conformal symmetry’.
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7.1.1 Wave equation

Kerr black holes with generic mass M and spin J ≤ M2 exhibit a hidden

conformal symmetry which acts on low-lying soft modes [79]. The symmetry

emerges, not in a near-horizon region of spacetime, but in the near-horizon

region of phase space defined by

ω(r − r+)� 1, (7.1)

where ω is the energy of the soft mode, r is the Boyer-Lindquist radial coordinate

and r+ = M +
√
M2 − a2, with a = J

M
, is the location of the outer horizon. This

simply states that the soft mode wavelength is large compared to the black hole.

One way to see the emergent symmetry is by examining the wave equation for

massless scalar fields in the Kerr spacetime. We will now explore how this arises,

by following [79].

The Klein-Gordon equation for a massless scalar is

1√
−g

∂a(
√
−ggab∂bΦ) = 0. (7.2)

We want to solve this equation in the Kerr spacetime. Using Boyer-Lindquist

coordinates, writing the field in Fourier modes,

Φ[t, r, θ, φ] = e−iωt+imφΦ[r, θ], (7.3)

the wave equation in the Kerr spacetime (6.1) becomes,

∂r(∆∂rΦ) +
(2Mr+ω − am)2

(r − r+)(r − r−)
Φ− (2Mr−ω − am)2

(r − r+)(r − r−)
Φ

+(r2 + a2 cos2 θ + 2M(r + 2M))ω2Φ +∇S2Φ = 0,

(7.4)

where r− = M −
√
M2 − a2 and ∆ = (r − r+)(r − r−) = r2 − 2Mr + a2.

This equation separates into a radial and angular part. The resulting equations

remain seemingly rather complicated, but both are dramatically simplified in the
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following limit,

ωM � 1, (7.5)

which corresponds to the situation whereby the soft mode wavelength is large

compared to the radius of curvature.

In this situation the geometry naturally divides into a ‘near’ region,

r � 1

ω
(7.6)

and a ‘far’ region,

r �M. (7.7)

One can then solve the equations in the two regions and then match the solutions

along a suitable surface in the matching region,

M � r � 1

ω
. (7.8)

It is important to note that this is not a near region in the sense of near-

horizon geometries, but a near region of the phase space. It is this near region of

the phase space that exhibits the conformal symmetry. Further discussion about

the distinction between the near region of phase space and the near region of

spacetime can be found in [79].

By focusing in on the ‘near region’ (7.6), the angular part of the Klein-Gordon

equation reduces to the standard Laplacian on the 2-sphere, which is solved by

spherical harmonics. The radial equation is more complicated however, and is

given by,

[
∂r∆∂r +

(2Mr+ω − am)2

(r − r+)(r+ − r−)
− (2Mr−ω − am)2

(r − r−)(r+ − r−)

]
R(r) = `(`+ 1)R(r). (7.9)

We will write this as,

[
∂r∆∂r +

α(r+)2

(r − r+)(r+ − r−)
− α(r−)2

(r − r−)(r+ − r−)

]
R(r) = `(`+ 1)R(r). (7.10)

83



This equation is solved by hypergeometric functions of r, and therefore fall into

representations of SL(2,R). This is a first suggestion of a conformal symmetry

in the solution space. To understand this conformal symmetry, it is useful to

introduce a set of ‘conformal’ coordinates, defined in [79] by

w+ =

√
r − r+

r − r−
e2πTR(φ−ΩRt),

w− =

√
r − r+

r − r−
e2πTL(φ−ΩLt),

y =

√
r+ − r−
r − r−

eπTL(φ−ΩLt)+πTR(φ−ΩRt),

(7.11)

where TL, TR and ΩL,ΩR are constants to be determined.

In [79], two sets of vector fields are defined locally, each of which forms an

SL(2,R) Lie bracket algebra as follows. The first set is,

H1 = i∂+,

H0 = i(w+∂+ +
1

2
y∂y),

H−1 = i(w+2∂+ + w+y∂y − y2∂−),

(7.12)

which satisfies,

[H0, H±1] = ∓iH±1,

[H−1, H1] = −2iH0.
(7.13)

The second set of vector fields, which commute with the first, are defined,

H̄1 = i∂−,

H̄0 = i(w−∂− +
1

2
y∂y),

H̄−1 = i(w−2∂− + w−y∂y − y2∂+),

(7.14)

which satisfies a corresponding SL(2,R) algebra. In fact, the scalar wave

equation for angular momentum ` can be written in this region [79] in terms of
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these vector fields as,

H2Φ = H̄2Φ = `(`+ 1)Φ, (7.15)

where

H2 = H̄2 = −H2
0 +

1

2
(H1H−1 +H−1H1) (7.16)

is the SL(2,R) quadratic Casimir. The conformal weights of the field Φ are

(hL, hR) = (`, `). (7.17)

A suitably modified formula applies to spinning fields.

In terms of the Boyer-Lindquist coordinates, the Casimir is [120]

H2 =− r+ − r−
(r − r+)(4πTR)2

(
∂φ +

TL + TR
TL(ΩL − ΩR)

(∂t + ΩR∂φ)

)2

+
r+ − r−

(r − r−)(4πTR)2

(
∂φ +

TL − TR
TL(ΩL − ΩR)

(∂t + ΩR∂φ)

)2

+ ∂r∆∂r,

. (7.18)

In order to match this equation with equation (7.10), we must have,

α(r±) =
r+ − r−
4πTR

(
−m+

TL ± TR
TL(ΩL − ΩR)

(ω − ΩRm)

)
. (7.19)

These equations admit the following solution,

ΩR = 0, ΩL = a
2M2 , (7.20)

with temperatures,

TL =
r+ + r−

4πa
, TR =

r+ − r−
4πa

. (7.21)

Thus the conformal coordinates are given by (7.11) with these definitions of ΩL,R

and TL,R.

These coordinates most clearly express the hidden conformal symmetry acting

on massless scalar fields in the phase space, as can be seen from the solutions to

the wave equation in the background Kerr spacetime. More detail about these
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conformal coordinates will be discussed in section 7.2.4.

7.1.2 Scattering

Another signal of the symmetry comes from the near region contribution to the

soft absorption cross sections6.

The absorption probability can be written,

Pabs ∼ sinh

(
4πMr+

r+ − r−
(ω −mΩ)

) ∣∣Γ(1 + `− 2iMω)
∣∣2

×
∣∣Γ(1 + `− i 4M2

r+ − r−
ω + i

4Mr+Ω

r+ − r−
m)
∣∣2, (7.22)

with (ω,m) the soft mode energy and axial component of angular momentum.

If we assume that there is a dual CFT at temperatures (TL, TR) as defined in

(7.21), a next step may be to rewrite this absorption cross section in terms of

these temperatures. We find,

Pabs ∼ T 2hL−1
L T 2hR−1

R sinh(
ωL
2TL

+
ωR
2TR

)
∣∣Γ(hL+i

ωL
2πTL

)
∣∣2∣∣Γ(hR+i

ωR
2πTR

)
∣∣2. (7.23)

Here the left and right soft mode energies are

ωL =
2M2

a
ω, ωR =

2M2

a
ω −m. (7.24)

The left/right temperatures and entropies are thermodynamically conjugate, as

follows from

δSBH =
ωL
TL

+
ωR
TR
, (7.25)

where SBH = 2πMr+ is the Kerr black hole entropy. Inserting ω = δM and

m = δJ into the expression (7.25), along with the definitions of the temperatures,

recovers the second law of black hole thermodynamics,

THδSBH = δM − ΩδJ, (7.26)

6See [79] for a discussion of the range of validity of this expression.
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where the Hawking temperature is

TH =
1

8π

r+ − r−
mr+

. (7.27)

Equation (7.23) is precisely the well-known formula for the absorption cross

section of an energy (ωL, ωR) excitation of a 2D CFT at temperatures (TL, TR).

This motivates the hypothesis that the Kerr black hole is itself a thermal 2D

CFT and transforms under a Vir L ⊗ Vir R action. Motivated by this, in the

spirit of [27, 28], in section 7.5 below we explicitly realize the hidden conformal

symmetry in the form of Vir L⊗Vir R diffeos which act non-trivially on the black

hole horizon.

It is worth noting however, that there may also exist, as in the Kerr/CFT

context [127], an alternate holographic formulation with a left

Virasoro-Kac-Moody symmetry, where the Kac-Moody zero mode generates

right-moving translations [169], which surprisingly in some cases provides an

alternate explanation for example of formulae like (7.23). Indeed with the

exciting recent progress in understanding the underlying warped conformal field

theories [170–172] this latter possibility is looking the more plausible for the

case of Kerr/CFT. Investigation of hidden Virasoro-Kac-Moody symmetries for

generic Kerr black holes is left to future work.

Nevertheless, we are left with the tantalizing possibility that we may be

able to find a real microscopic description of the entropy of four dimensional

astrophysical black holes in terms of microstates living on the horizon. In the

following sections we will explore different approaches to this problem.
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7.2 Useful coordinate systems

We have just seen that the Kerr black hole admits a hidden conformal

symmetry in the near region of phase space. In a similar manner to the

previously discussed cases of BTZ and NHEK, if one assumes the black hole is

dual to a two dimensional CFT, one can use the Cardy formula to compute the

entropy. For the case of the Kerr black hole, it has been observed that if

cL = cR = 12J , the Cardy formula reproduces the correct Bekenstein-Hawking

entropy.

In the following sections we make some headway with finding an actual

explanation of this entropy. This involves finding a set of diffeomorphisms on

the black hole horizon which obey Virasoro algebras and can display the hidden

conformal symmetry. We calculate the corresponding charges and central

terms, and discover that we must add a Wald-Zoupas counterterm to remove

certain obstructions. We find such a counterterm and the resulting central

charges are found to be cL = cR = 12J .

Before we do this however, we will go through different ways of setting up

the problem and the various merits of different coordinate systems.

7.2.1 Boyer-Lindquist coordinates

The Kerr solution is the generic rotating black hole solution to Einstein’s

equations. As given previously in (6.1), in Boyer-Lindquist coordinates, the

metric is

ds2 =
ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2
((r2 + a2)dφ− adt)2 − ∆

ρ2
(dt− a sin2 θdφ)2. (7.28)

This metric exhibits coordinate singularities at the future and past horizons,

r = r± and so is not well adapted to calculations that are performed on these

surfaces.
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7.2.2 Eddington-Finkelstein coordinates

It is possible to remove the coordinate singularities at r = r± and define

coordinates that are smooth for all r > 0. One example of coordinates with

these properties are the Eddington-Finkelstein coordinates. In terms of

calculating horizon charges, these will allow for computations that explicitly

take place on the horizon, just as we showed for the case of NHEK in Appendix

E.

Advanced Eddington-Finkelstein coordinates are defined,

v = t+

∫
r2 + a2

∆
dr,

φ̂ = φ+

∫
a

∆
dr.

(7.29)

The Kerr metric becomes

ds2 =

(
−1 +

2Mr

ρ2

)
dv2 + 2dvdr − 4Mar sin2 θ

ρ2
dvdφ̂− 2a sin2 θdrdφ̂

+ ρ2dθ2 +
(r2 + a2)2 −∆a2 sin2 θ

ρ2
dφ̂2,

(7.30)

which is clearly smooth at the horizon.

Similarly, retarded time coordinates are defined by

u = t−
∫
r2 + a2

∆
dr,

φ̃ = φ−
∫

a

∆
dr

(7.31)

and the metric becomes

ds2 =

(
−1 +

2Mr

ρ2

)
du2 − 2dudr − 4Mar sin2 θ

ρ2
dudφ̃− 2a sin2 θdrdφ̃

+ ρ2dθ2 +
(r2 + a2)2 −∆a2 sin2 θ

ρ2
dφ̃2.

(7.32)

To deal with the region H+
⋂
H−, one needs either Kruskal-type coordinates
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or conformal coordinates.

7.2.3 Kruskal coordinates

We can find the Kerr metric close to the bifurcation surface in Kruskal-like

coordinates. To my knowledge the form of the metric presented here is new and

cannot be found elsewhere in the literature. The simple expression found here

may be very useful for understanding the bifurcate structure of the Kerr black

hole. The calculation and coordinate transformations required to produce such

a metric are shown in detail in Appendix F.

Using the advanced and retarded coordinates, v and u defined previously, we

can define Kruskal-like coordinates,

U = −e−κu,

V = eκv,
(7.33)

where U is defined with a minus sign so that U increases as u increases. The

surface gravity, κ is defined,

κ =
r+ − r−
4Mr+

. (7.34)

The co-rotating angular coordinate is

dφ+ = dφ− Ω+dt, (7.35)

and thus

dφ = dφ+ +
1

2
Ω+(du+ dv), (7.36)

where Ω+ = a
2Mr+

is the angular velocity of the horizon.

To leading and subleading order around r = r+, the Kerr metric in the new
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‘Kruskal’ coordinates is,

ds2 = 2ρ2
+dUdV + ρ2

+dθ
2 +

(r2
+ + a2)2 sin2 θ

ρ2
+

dφ2
+

− a sin2 θ

r+ρ2
+

(3r2
+ + a2r2

+ + a2r2
+ cos2 θ − a4 cos2 θ)(UdV − V dU)dφ+ + · · · ,

(7.37)

where ρ2
+ = r2

+ + a2 cos2 θ.

This new form of the metric will be most useful in understanding behaviour at

the bifurcation surface, since it is an expansion in small U, V (see Appendix F for

an explanation of this limit). All other versions of the Kerr metric in Kruskal-like

coordinates involve much more complicated expressions. See e.g. [173]. The same

is true for many other versions of near-horizon Kerr metrics in other coordinate

systems.

7.2.4 Conformal coordinates

As presented in section 7.1.1, with the constants as determined by examining

the near-region wave equation, conformal coordinates are [79]

w+ =

√
r − r+

r − r−
e2πTRφ,

w− =

√
r − r+

r − r−
e2πTLφ− t

2M ,

y =

√
r+ − r−
r − r−

eπ(TR+TL)φ− t
4M .

(7.38)

The past horizon is at w+ = 0, the future horizon at w− = 0 and the bifurcation

surface Σbif at w± = 0. The inverse transformation is

φ =
1

4πTR
ln
w+(w+w− + y2)

w−
,

r = r+ + 4πaTR
w+w−

y2
,

t =
M(TR + TL)

TR
ln
w+

w−
+
M(TL − TR)

TR
ln(w+w− + y2).

(7.39)
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Under azimuthal identification φ→ φ+ 2π one finds

w+ ∼ e4π2TRw+, w− ∼ e4π2TLw−, y ∼ e2π2(TR+TL)y. (7.40)

This is the same as the identification which turns AdS3 in Poincaré coordinates

into BTZ with temperatures (TL, TR) where the w± plane becomes thermal

Rindler space [153]. It is for this reason that conformal coordinates are

well-adapted to an analysis of 4D black holes, mirroring that of the 3D BTZ

black holes. For BTZ we concluded that the black hole is dual to a thermal

CFT, and here we also see the possibility that the Kerr black hole is dual to a

CFT with temperatures (TL, TR). If so, this gives physical meaning to the

constants TL, TR given in the conformal coordinates and defined by (7.21) as

thermal left and right-moving temperatures.

To leading and subleading order around the bifurcation surface, the Kerr

metric becomes

ds2 =
4ρ2

+

y2
dw+dw− +

16J2 sin2 θ

y2ρ2
+

dy2 + ρ2
+dθ

2

− 2w+(8πJ)2TR(TR + TL)

y3ρ2
+

dw−dy

+
8w−

y3ρ2
+

(
− (4πJ)2TL(TR + TL) + (4J2 + 4πJa2(TR + TL) + a2ρ2

+) sin2 θ
)
dw+dy

+ · · · ,

(7.41)

where corrections are at least second order in (w+, w−). The volume element is

εθy+− =
8J sin θρ2

+

y3
+ · · · . (7.42)

In terms of the advanced coordinates, the conformal coordinates become,

w+ = e2πTRφ̂,

w− = (r − r+)e2πTLφ̂e−
v

2M e
r

2M ,

y = (r+ − r−)
1
2 eπ(TR+TL)φ̂e−

v
4M e

r
4M ,

(7.43)
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from which we can clearly see that H+ is the surface w− = 0, w+ and y are finite.

Similarly, in terms of the retarded time coordinates,

w+ =
r − r+

r − r−
e2πTRφ̃,

w− =
1

r − r−
e2πTLφ̃e−

u
2M e−

r
2M ,

y =
r+ − r−
r − r−

eπ(TR+TL)φ̃e−
u

4M e−
r

4M ,

(7.44)

and thus on H−, w+ = 0 and w− and y are finite.

Note that on the future endpoints of the future and past horizons, H+
+ and

H−+, we see that y → 0, but on the past endpoints, H+
− and H−−, we find that y

becomes infinite.

7.3 Heuristic derivation

We will now use the conformal coordinates to give a brief heuristic argument for

the existence of a central charge in the Kerr spacetime.

In conformal coordinates, we redefine the w− coordinate by,

w− = w̃−
4M2a2 sin2 θ

ρ4
+

. (7.45)

Holding θ fixed, we may then rewrite the 3-dimensional metric as,

ds2 = `2dw̃
−dw+ + dy2

y2
+ q−y

w+

y3
dw̃−dy + q+y

w̃−

y3
dw+dy, (7.46)

where

` =
4J sin θ

ρ+

(7.47)

and q±y depend only on θ (which is held fixed). Thus for fixed angle θ, the

Kerr metric in conformal coordinates around the bifurcation surface begins to

resemble AdS3, although it has extra terms.

A BTZ black hole can be specified by the dimensionless quantities TL, TR and

the dimensionful horizon radius x+, all of which are determined by the intrinsic
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and extrinsic geometry of the horizon7. In terms of the inner horizon x− and the

AdS3 radius `, these are

TL =
x+ + x−

2π`
, TR =

x+ − x−
2π`

. (7.48)

Hence ` is expressed in terms of these horizon quantities as

`(TL, TR, x+) =
x+

π(TL + TR)
. (7.49)

The central charge is then determined from the horizon geometry via the Brown-

Henneaux formula as

c =
3`

2
=

3x+

2π(TL + TR)
. (7.50)

For Kerr we have,

x+ =
2Mr+ sin θ

ρ+

, π(TR + TL) =
r+

2a
. (7.51)

The horizon geometry of a fixed θ-leaf can be realized as that of a BTZ black

hole in an AdS3 with radius as in (7.47),

` =
4J sin θ

ρ+

. (7.52)

This suggests that if we use it to compute the central charge from the same

vector field that we used in BTZ (as done above) we should get

c(θ) =
3`

2
=

6J sin θ

ρ+

. (7.53)

Integrating one finds,

c =

∫ π

0

c(θ)ρ+dθ = 12J. (7.54)

This strongly suggests that the Kerr black hole may also have a central charge

c = 12J . It also suggests that for fixed θ, the appropriate vector field is the same

7Up to a choice of normalization for the null generator which must also be specified.
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as that used in the case of the BTZ black hole.

The flaw in this naive argument is that the fixed θ-leaves do not fully decouple

in the naive Iyer-Wald charge formula. The decoupling can only be achieved after

the addition of a counterterm. We will see the constraints on this counterterm

and a possible candidate for it in the following sections.

7.4 Vector fields

As suggested by the heuristic derivation of the central charge given above, the

vector field in question for the case of the Kerr black hole should resemble that

used for BTZ. We therefore consider the vector fields in conformal coordinates,

ζ(ε) = ε∂+ +
1

2
∂+ε y∂y, (7.55)

where ε is any function of w+. These obey the Lie bracket algebra,

[ζ(ε), ζ(ε̃)] = ζ(ε∂+ε̃− ε̃∂+ε). (7.56)

We wish to restrict ε so that ζ is invariant under 2π azimuthal rotations (7.40).

A complete set of such functions is

εn = 2πTR(w+)
1+ in

2πTR . (7.57)

The corresponding vector fields ζn ≡ ζ(εn) obey the centreless VirR algebra

[ζm, ζn] = i(n−m)ζn+m. (7.58)

The zero mode is

ζ0 = 2πTR(w+∂+ +
1

2
y∂y) = ∂φ +

2M2

a
∂t = −iωR, (7.59)

where the right moving energy ωR is defined in (7.24).

95



Similarly, we can define a ‘left-moving’ vector field,

ζ̄n = ε̄n∂− +
1

2
∂−ε̄ny∂y,

ε̄n = 2πTL(w−)
1+ in

2πTL ,

(7.60)

with

ζ̄0 = −2M2

a
∂t = iωL. (7.61)

This obeys the centreless VirL algebra

[ζ̄m, ζ̄n] = i(n−m)ζ̄n+m, (7.62)

and the two sets of vector fields commute with one another

[ζm, ζ̄n] = 0. (7.63)

Note that the Vir L ⊗ Vir R action maps the ‘θ-leaves’ of fixed polar angle to

themselves.

The Frolov-Thorne vacuum density matrix for a Kerr black hole is (up to

normalization)

ρFT = e
− ω
TH

+ Ωm
TH , (7.64)

where TH = r+−r−
8πMr+

and Ω = a
2Mr+

are the Hawking temperature and angular

velocity of the horizon, with ω and m being interpreted here as energy and

angular momentum operators. Rewriting this in terms of the eigenvalues of the

zero modes, ζ0 and ζ̄0, one finds simply

ρFT = e
−ωR
TR
−ωL
TL . (7.65)

This is a restatement of the fact that ωR,L is thermodynamically conjugate to

TR,L.

For future reference the only non-zero covariant derivatives of ζ on the
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bifurcation surface Σbif are

∇+ζ
+ = −Γ−y−ζ

y, ∇−ζ− = Γ−y−ζ
y,

∇+ζ
y = ∂+ζ

y, ∇θζ
y = Γyθyζ

y, ∇yζ
θ = Γθyyζ

y,
(7.66)

while the only non-zero metric deviations on the bifurcation surface are

Lζgy+ = gyy∂+ζ
y, Lζg+− = gy−∂+ζ

y. (7.67)

Similar formulae apply to ζ̄.

It is instructive to consider these vector fields in the Kruskal-like coordinates

(7.37). The first vector field, ζ, becomes

ζU = −U 2πTL
TL + TR

(
TR +

in

2π

)
V

in
2πTR einφ+ ,

ζV = V
2πTR
TL + TR

(
TL −

in

2π

)
V

in
2πTR einφ+ ,

ζφ+ =
1

TL + TR

(
TR +

in

2π

)
V

in
2πTR einφ+ . (7.68)

The zero mode is

ζ0 =
TR

TL + TR

(
2πTL(V ∂V − U∂U) + ∂φ+

)
. (7.69)

The second vector field, ζ̄, becomes

ζ̄U = U
2πTL

TL + TR

(
TR −

in

2π

)
U

in
2πTL einφ+ ,

ζ̄V = −V 2πTR
TL + TR

(
TL +

in

2π

)
U

in
2πTL einφ+ ,

ζ̄φ+ =
1

TL + TR

(
TL +

in

2π

)
U

in
2πTL einφ+ . (7.70)

The zero mode is

ζ̄0 =
TL

TL + TR

(
2πTR(U∂U − V ∂V ) + ∂φ+

)
. (7.71)
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ζ preserves the future horizon whereas ζ̄ preserves the past horizon. The vector

field ζ can be changed into ζ̄ and vice versa by making the transformation,

U ←→ V, TL ←→ TR. (7.72)

7.5 Central charge computation

In this section we construct the linearized covariant charges δQn ≡ δQ(ζn, h; g)

associated to the diffeos ζn acting on the horizon. Formally, the linearized charges

are expected to generate the linearized action, via Dirac brackets, of ζn on the on-

shell linearized fluctuation h around a fixed background g. The formal argument

proceeds from the fact that they reduce to the covariant symplectic form with

one argument the ζ-transformed perturbation h. However, in practice many

subtleties arise when attempting to verify such expectations. Among other things

one must reduce, via gauge fixing and the application of the constraints, with

careful analyses of zero modes and boundary conditions, to a physical phase

space on which the symplectic form is non-degenerate. Various obstructions

may arise, such as non-integrability of the charges or violations of associativity

which necessitate the addition of boundary counterterms as discussed for example

in [58,83–86].

In the much simpler case of horizon supertranslations of Schwarzschild, it

was verified in full detail [28] that the linearized charges δQf do indeed generate

the linearized symmetries as expected. Moreover, the δQf were in this case

recently explicitly integrated to the full horizon supertranslation charges Qf
[58]. The δQn of interest here are significantly more complicated than their

supertranslation counterparts δQf . We leave a comprehensive analysis of δQn
in the style of [28] to future work, and the present analysis should therefore be

regarded as a preliminary first step.

The construction of covariant charges was outlined in section 4. The general

form for the linearized charge associated to a diffeo ζ on a surface Σ with
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boundary ∂Σ is [85]

δQ = δQIW + δQX . (7.73)

Here the Iyer-Wald charge is

δQIW (ζ, h; g) =
1

16π

∫
∂Σ

∗FIW , (7.74)

with FIWab explicitly given by (4.34)

FIWab =
1

2
∇aζbh+∇ah

c
bζc +∇cζa h

c
b +∇ch

c
a ζb −∇ah ζb − a↔ b, (7.75)

where the variation hab is defined by gab → gab + hab and h = habgab.

The Wald-Zoupas counterterm is

δQX =
1

16π

∫
∂Σ

ιζ(∗X), (7.76)

as given in (4.41) where X is a spacetime one-form constructed from the

geometry. As explained previously, the precise form of this counterterm is not

well understood. Our case involves a surface Σ with interior boundary on the

far past of the future horizon, namely the bifurcation surface Σbif at w± = 0.

The boundary charge on ∂Σ = Σbif is the black hole contribution to the charge.

We will find below consistency conditions that require a nonzero X. A

candidate that enables them to be satisfied is simply

X = 2dxah b
a Ωb, (7.77)

where Ωa is the Há́iček one-form,

Ωa = qcan
b∇clb, (7.78)

a measure of the rotational velocity of the horizon. Here the null vectors `a and

na are both normal to Σbif and normalized such that ` · n = −1. ` (n) is taken
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to be normal to the future (past) horizon. ` and n must be invariant under 2π

rotations which act in conformal coordinates as (7.40). This is satisfied by

` ∼ y
2TR

TR+TL ∂+, n ∼ y
2TL

TR+TL ∂− (7.79)

on Σbif
8. qab = gab + `anb + na`b is the induced metric on Σbif .

9

As a check on the normalization, we note that

δQ(∂t, δMg; g) = 1. (7.80)

Here δMg is the linearized variation of the Kerr metric at fixed J . The Wald-

Zoupas term δQX does not contribute to this computation.

We are especially interested in the central term in the Virasoro charge

algebra. When the charge is integrable and there is a well-defined (invertible

and associative) Dirac bracket {, } on the reduced phase space, or in quantum

language when Qm is realized as an operator generating the diffeo ζn on a

Hilbert space, one has, as shown in section 4,

{Qn,Qm} = (m− n)Qm+n +Km,n, (7.81)

where the central term is given by

Km,n = δQ(ζn,Lζmg; g). (7.82)

Moreover, under these conditions, it has been proven (as reviewed in [106]) that

the central term must be constant on the phase space and given, for some

constant cR by

Km,n =
cRm

3

12
δm+n, (7.83)

8These conditions uniquely fix ` and n up to a smooth rescaling under which Xa → ∂aφ. We
could fix this ambiguity by demanding e.g. that Ω be divergence-free on Σbif but this condition
will not be relevant at the order to which we work.

9See for example [174] for a nice review of hypersurface geometry in the context of black
holes.
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up to terms which can be set to zero by shifting the charges.

In order to evaluate the charge and the central terms we must specify falloffs

for hab near ∂Σ = Σbif . One might demand that all components of hab (which

is always required to be on shell) approach finite functions at Σbif at some rate

as in [58]. However, this condition is violated by the hab produced by the large

diffeos ζn. We accordingly augment the phase space to allow for these pure

gauge modes as well as the on-shell non-gauge modes that approach finite values

at Σbif .
10 These oscillate periodically in the affine time along the null generators

and do not approach a definite value at Σbif , which is at infinite affine distance

from any finite point on the horizon. Were they not pure gauge, such oscillating

perturbations would have infinite energy flux and would be physically excluded.

In the (non-affine) null coordinate w+ along the horizon these modes can have

poles at w+ = 0. We will find that the charges are nevertheless well-defined and

have a smooth w+ → 0 limit with such pure gauge excitations. Moreover, the

emergence of a non-vanishing central term relies on the poles: since ζ is actually

tangent to Σbif precisely at w+ = 0, the δQX vanishes unless the perturbation

produces a w+-pole in X. In fact, in [58] it was shown that central terms cannot

appear in the absence of poles. We will define and compute these central terms

by working at small w+ and then taking the limit. This amounts to approaching

Σbif along the future horizon.

To compute the central term we take ζ = ζm and hab = Lζngab.

As a first step, it is useful to examine the integrability of the Iyer-Wald term.

As shown in section 4.2, the Iyer-Wald charge can be written in the form (4.39),

k[h, g] = δQN
ζ [g]− ιζΘ[h, g], (7.84)

where the first term on the right hand side is the variation of the Noether

charge density and the second term depends on the presymplectic potential. As

10The details of these rates are important for a complete investigation of integrability. We
also restrict here to the phase space of fixed J . This is an analogue of fixing the number of
branes in string theory, which indeed in some cases is U -dual to the higher-dimensional angular
momentum.
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explained earlier, the existence of the second term means that the Iyer-Wald

charge is not necessarily integrable. However, as shown in Appendix C.1, for

the specific class of functions that we are considering, it is possible to

demonstrate that this term is integrable when evaluated on the bifurcation

surface. This means that integrability arguments do not in themselves demand

a counterterm when our specific choice of vector field is used and the

bifurcation surface is chosen as the surface on which the charges are evaluated.

However, we will see below that we are nevertheless required to add a non-zero

Wald-Zoupas counterterm due to other conditions.

To evaluate the central term we will return to the explicit expression for the

Iyer-Wald charge integrand, Fab. It turns out that nonzero contributions to Km,n

from δQIW come only from the component F−yIW in the form

1

16π

∫
Σbif

dθdw+εθ+−yF
−y
IW . (7.85)

The range of w+ ∼ e4π2TRw+ goes to zero as Σbif is approached, so this expression

naively vanishes. However, using the relation

lim
w+

0 →0

∫ w+
0 e

4π2TR

w+
0

dw+

w+
= 4π2TR, (7.86)

such terms can nevertheless contribute as ∂+ζ
y and h−y develop 1

w+ poles for

w+ → 0. One finds, after some algebra,

F−yIW = −4hy−m ζynΓ−y−, (7.87)

where

h−ym = g+−∂+ζ
y
m (7.88)

has the requisite pole in w+. Integrating over the sphere gives

KIWm,n = 2J
TR

TL + TR
m3δn+m. (7.89)
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Temperature dependence of the central term (7.89) violates the theorem [106]

that it must be constant on the phase space. Hence there is an obstruction

to constructing and integrating the charges δQIW with well-defined associative

Dirac brackets, the existence of which is assumed in the theorem. We seek to

remove this obstruction on the phase space of constant J by a suitable choice of

X. However, we wish to stress the absence of this obstruction is necessary, but

not a priori sufficient, for δQ to exist as an operator on a Hilbert space with all

the desired properties. This is left to future investigations. Moreover, we have

not shown that the choice of counterterm considered here is unique.

The obstruction is eliminated by including the Wald-Zoupas contribution

KXm,n = δQX(ζn,Lζmg; g), which after integration over Σbif gives

KXm,n = J
TL − TR
TL + TR

m3δn+m. (7.90)

Adding terms (7.89) and (7.90) then yields the central charge

cR = 12J. (7.91)

7.6 Left movers

In order to compute the left-moving charges on Σbif , it is necessary to evaluate

(7.73) with ζ = ζ̄m and h̄ab = Lζ̄ngab. Now the relevant contribution to K̄m,n

comes only from F+y
IW . On the past horizon, the range of w− ∼ e4π2TLw− now

goes to zero as Σbif is approached but again one finds the appearance of poles

for w− → 0, coming from terms such as ∂−ζ̄
y and h̄+y. F+y

IW can be evaluated to

be,

F+y
IW = −4h̄y+

m ζ̄nΓ+
+y, (7.92)

where

h̄+y
m = g+−∂−ζ̄

y
m (7.93)
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has a pole in w−. Integrating over the sphere gives

K̄IWm,n = 2J
TL

TR + TL
m3δm+n. (7.94)

Since Σbif is being approached from the past horizon, the vector fields `a and

na are now defined so that ` is normal to the past horizon and n is normal to

the future horizon. Again, both are null and satisfy ` · n = −1. An analysis of

the periodicities gives

` ∼ y
2TL

TR+TL ∂−, n ∼ y
2TR

TR+TL ∂+. (7.95)

The resulting term involving X integrates to

K̄Xm,n = J
TR − TL
TR + TL

m3δm+n. (7.96)

The sum of these two terms yields

cL = 12J. (7.97)

Without the counterterm, the sum of the charges resulting only from the Iyer-

Wald term gives, cL + cR = 24J . We note that the Wald-Zoupas counterterm

δQX contributes only to cL − cR and not cL + cR and hence may be related to

the holographic gravitational anomalies discussed in [175]. This setup bears an

interesting resemblance to Chern-Simons theory, which might provide a model

for the general framework for the counterterm, leaving the enticing possibility

that there is somehow a Chern-Simons theory living on the boundary of the

horizon.

7.7 Reproducing entropy and discussion of Hilbert spaces

In this section we will show how the central charges derived above can lead to

the black hole entropy. We will consider this entropy for the limiting case of the
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Schwarzschild black hole and then discuss how the black hole Hilbert space may

be contained within the Hilbert space of states outside the black hole.

7.7.1 CFT and Cardy entropy

As outlined in section 5.3.1, the statistical entropy of a CFT is given by Cardy’s

formula,

SCardy =
π2

3
(cLTL + cRTR). (7.98)

Using cL = cR = 12J as given above and the temperature formulae (7.21) yields

the Bekenstein-Hawking area-entropy law for the generic Kerr black hole,

SBH = SCardy = 2πMr+ =
Area

4
. (7.99)

This shows that the entropy of the Kerr black hole can be understood in terms

of microstates on the horizon and soft hair really does account for the black hole

entropy. It is an inherently holographic picture. While a very illuminating result,

this is not a solution to the information paradox but merely a hopeful step in

the right direction. In section 9 we will discuss the limitations and further work

needed in order that one might properly resolve the information paradox.

7.7.2 Schwarzschild limit

The Schwarzschild black hole is the generic non-rotating black hole. It is the Kerr

black hole in the limit that the rotation parameter a→ 0. Looking back at the

results of the previous sections, using (7.21), one sees that in this limit the left

and right temperatures diverge and the central charges go to zero. This means

that an analysis of the Schwarzschild black hole, following the steps outlined

above, would have failed. However, despite these apparent degeneracies, the

final result for the entropy is finite as the rotation becomes zero and does hold

for the case of the Schwarzschild black hole. Further work is needed to properly

understand how to find the central charges and corresponding Cardy formula in

this context.
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7.7.3 Discussion of Hilbert spaces

In this section we give a formal argument that, whenever black hole microstates

are in representations of large-diffeomorphism-generated Virasoro algebras, as

conjectured for Kerr in the previous sections, the black hole Hilbert space must

be contained within the Hilbert space of states outside the black hole. The

observations apply equally to the case discussed here and to the stringy black

holes with near-AdS3 regions. Our argument is a refined and sharpened version

of those made elsewhere from different perspectives and is perhaps in the general

spirit, if not the letter, of black hole complementarity.11

Consider a hypersurface Σdiv which divides the black hole spacetime into a

black hole region and an asymptotically flat region with a hole. Σdiv may be

taken to be the stretched horizon, the event horizon or in stringy cases the outer

boundary of an AdS region: for the purposes of microstate counting the difference

will be subleading and the distinction irrelevant. For a scalar field theory on

such a fixed geometry it is reasonably well understood how to decompose the

full Hilbert space Hfull of scalar excitations on a complete spacelike slice which

goes through the black hole12 as a product of ‘black hole’ and ‘exterior’ Hilbert

spaces HBH and Hext, following the Minkowski decomposition into the left and

right Rindler Hilbert spaces. Roughly speaking, one expects the tensor product

factorization,

Hfull = Hext ⊗HBH. (7.100)

For full quantum gravity, or even for linearized gravitons, it is not understood

how to make such a decomposition. Nevertheless, in the stringy cases if Σdiv is

taken to be the outer boundary of an AdS region, a practical working knowledge

of how to proceed is well-established.

Let us nevertheless imagine that we have achieved such a decomposition which

makes sense at leading semiclassical order for any of the above choices of Σdiv.

11See [176] for a recent review.
12We consider here black holes such as those formed in a collapse process with no second

asymptotic region, so that complete spacelike slices with only one asymptotic boundary exist.
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A state in the full Hilbert space may then be expressed as a sum over product

states,13

|Ψfull〉 =
∑
A,b

cAb|ΨA
ext〉|Ψb

BH〉. (7.101)

The existence of such a decomposition is presumed in many discussions of black

hole information. Consider a set of diffeos ζn, defined everywhere in the

spacetime, which all vanish near spatial infinity, but in a neighbourhood of Σdiv

becomes a pair of Virasoro algebras which act nontrivially on the black hole.

Since the diffeos vanish at infinity, the associated full charges must annihilate

the full quantum state,

Q(ζn)full|Ψfull〉 = 0. (7.102)

On the other hand, beginning with the asymptotic surface integral expression

for Qfull and integrating by parts we have

Q(ζn)full = Q(ζn)ext +Q(ζn)BH. (7.103)

Equation (7.102) then becomes

∑
A,b

cAb(Q(ζn)ext|ΨA
ext〉)|Ψb

BH〉 = −
∑
A,b

cAb|ΨA
ext〉Q(ζn)BH|Ψb

BH〉. (7.104)

By assumption the black hole microstates transform non-trivially under the

Virasoro algebra so neither side of the equation vanishes for all n.

In the generic case, absent any extra symmetries such as supersymmetry, we

expect HBH to be composed of Virasoro representations with highest weight hk,

where each hk is distinct. A black hole microstate is then uniquely determined by

specifying the representation in which it lies and location therein. In that case,

(7.104) can be satisfied only if Hext contains all the conjugate representations,

and the constants cAb are chosen so that |Ψfull〉 is a Virasoro singlet. At first the

13Very likely we will actually need an integral over Hilbert spaces corresponding to different
boundary conditions on Σdiv [177–180] but we suppress this important point for notational
brevity.
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conclusion that the exterior state should transform under the Virasoro action

may seem strange. But at second thought, the exterior region has an inner

boundary on which ζn necessarily acts non-trivially, so this is entirely plausible.

Given this state of affairs, it follows immediately that the specific black hole

microstate inHBH is fully determined by complete measurement of the microstate

in Hext: it is the unique element in the conjugate representation which forms a

singlet with the exterior state. Instead of (7.100) we therefore have

Hfull = Hext. (7.105)

That is, factorization of the Hilbert space with the inclusion of gravity fails in

the most extreme possible way: there are no independent interior black hole

microstates at all! This is of course a pleasing conclusion since the independent

interior microstates are at the root of the information paradox.

For supersymmetric black holes, Bogomolny bounds enforce degeneracies in

the weights hk and the argument leading to (7.105) no longer works.

Nevertheless, one may hope for a related mechanism, perhaps along the lines

discussed in [181, 182] using discrete rather than continuous gauge symmetries,

preventing an unwanted independent black hole Hilbert space.
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8 The Kerr-Newman black hole

In this section we add charge Q and generalize the previous work [78] to the

Kerr-Newman black hole. The addition of charge to the black hole is shown to

require a minimal modification to this construction which then reproduces the

Bekenstein-Hawking entropy for the Kerr-Newman black hole.

A Kerr black hole is characterized by two quantities, the mass M and spin J .

It therefore cannot correspond to a general thermal state in a (parity symmetric)

2D CFT, which would be described by three parameters: the central charge

cL = cR and left and right temperatures TL and TR. What happens is that

the Kerr black hole corresponds to thermal states with temperatures related by

T 2
L = T 2

R + 1.

Interestingly the addition of charge relaxes the constraint between TR and

TL which can be independently varied. Moreover, the conformal-coordinate

expression for the near horizon geometry in terms of TR and TL given in [78] is

unchanged, and the analysis proceeds in a nearly identical fashion to that of

the neutral black hole. In particular, the macroscopic area law for

Kerr-Newman also follows from the assumption of a Cardy formula governing

the edge Hilbert space at the horizon.

8.1 Hidden conformal symmetry

We follow closely [108], in which the notion of hidden conformal symmetry was

generalized from Kerr to Kerr-Newman black holes.

As explained in section 7.1, hidden conformal symmetry of the 4D Kerr

black hole was identified [79] by examining the scalar wave equation of soft

modes in the near-horizon region of phase space. In this region the solutions

are hypergeometric functions of r which fall into representations of an SL(2,R)

conformal symmetry. The scalar wave equation can be written as the Casimir

operator of a set of vector fields either with an SL(2,R)L or SL(2,R)R Lie

bracket algebra. These ‘hidden’ symmetries are broken by the azimuthal

angular identification. This allows for a canonical identification of left and right
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temperatures TL and TR (see formulae below).

Another way to glimpse the symmetry as shown in section 7.1 is from the

near region contribution to the soft scalar absorption cross section

Pabs ∼ T 2hL−1
L T 2hR−1

R sinh(
ωL
2TL

+
ωR
2TR

)
∣∣Γ(hL + i

ωL
2πTL

)
∣∣2∣∣Γ(hR + i

ωR
2πTR

)
∣∣2,(8.1)

where for a scalar hL = hR = ` with ` the angular momentum and ωL,R are

thermodynamically conjugate to TL,R. This precisely matches that of the

absorption cross section of an energy (ωL, ωR) excitation of a 2D CFT at

temperatures (TL, TR).

This structure is perhaps a hint that a hidden conformal symmetry, which

acts not just on the geometry but on the phase space, is relevant to the structure

of all black holes, not just extremal ones. As shown for the case of Kerr in section

7.7.1, with central charges cL = cR = 12J , the Cardy formula reproduces the

entropy of the black hole [79]. It is of interest to try to push this speculative idea

further in various directions and make it more explicit.14

This hidden conformal symmetry was subsequently shown to also be present

in the case of 4D Kerr-Newman black holes [108, 109, 183, 184]. Here, the near-

horizon neutral scalar wave equation for soft modes exhibits this same behaviour,

with the additional constraint,

ωQ� 1. (8.2)

The Kerr-Newman entropy is

SBH = π(r2
+ + a2) = π(2Mr+ −Q2). (8.3)

where the outer event horizon r+ and the inner Cauchy horizon r− are defined

by

r± = M ±
√
M2 − a2 −Q2, (8.4)

14One interesting direction would be to investigate the crossover Kac-Moody structure
discussed in [169].
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and a = J
M
. The first law is

THδSBH = δM − ΩδJ − ΦδQ, (8.5)

where TH is the Hawking temperature, given by

TH =
r+ − r−

4π(r2
+ + a2)

, (8.6)

the angular velocity of the horizon Ω is

Ω =
a

r2
+ + a2

, (8.7)

and Φ is the electric potential of the Kerr-Newman black hole,

Φ =
Qr+

r2
+ + a2

. (8.8)

The first law may also be written

δSBH =
δEL
TL

+
δER
TR

, (8.9)

where

δEL =
2M2 −Q2

a
δM +

Q(Q2 − 2M2)

2J
δQ,

δER =
2M2 −Q2

a
δM − δJ − QM

a
δQ,

(8.10)

and the left and right temperatures are defined by,

TL =
r+ + r−

4πa
− Q2

4πMa
,

TR =
r+ − r−

4πa
.

(8.11)

For a neutral scalar

δM = ω, δJ = m, δQ = 0, (8.12)
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with ω and m being the soft mode scalar energy and angular momentum

operators. The Frolov-Thorne vacuum density matrix for such a scalar is (up to

normalization)

ρFT = e
− ω
TH

+ Ωm
TH = e

− δER
TR
− δEL

TL . (8.13)

The left/right energies are then given in terms of the left/right-moving

frequencies by [109],

δEL = ωL =
2M2 −Q2

a
ω,

δER = ωR =
2M2 −Q2

a
ω −m,

(8.14)

with (ω,m) the soft mode energy and axial component of angular momentum.

Using these modified definitions for Kerr-Newman, one then finds that the soft

scalar absorption (8.1), originally derived for Kerr, remains valid.

In [78] and as shown here in earlier sections, this numerological discussion

was brought into sharper focus for the case of the Kerr black hole by providing a

set of Vir L ⊗ Vir R vector fields which generate the full symmetry. These vector

fields were used to compute the central charges in the covariant phase space

formalism. Here, the same argument is followed, with minor modifications, for

the case of the Kerr-Newman black hole.

8.2 Conformal coordinates

The Kerr-Newman metric in Boyer-Lindquist coordinates is

ds2 = −
(∆− a2 sin2 θ

ρ2

)
dt2 +

((r2 + a2)2 −∆a2 sin2 θ

ρ2

)
sin2 θdφ2

−
(2a2 sin2 θ(r2 + a2 −∆)

ρ2

)
dφdt+

ρ2

∆
dr2 + ρ2dθ2,

(8.15)

where

ρ2 = r2 + a2 cos2 θ, ∆ = r2 + a2 +Q2 − 2Mr. (8.16)
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The gauge field A is

A = −Qr
ρ2

(dt− a sin2 θdφ). (8.17)

Conformal coordinates are [79]

w+ =

√
r − r+

r − r−
e2πTRφ,

w− =

√
r − r+

r − r−
e2πTLφ− t

2M ,

y =

√
r+ − r−
r − r−

eπ(TR+TL)φ− t
4M .

(8.18)

These are the same as defined in [79] for the case of Kerr, but note the different

Q-dependent definitions of the temperatures (8.11) are used here. As before, it

can be shown that the past horizon is at w+ = 0, the future horizon at w− = 0

and the bifurcation surface Σbif is at w± = 0. Under azimuthal identification

φ→ φ+ 2π, the coordinates again have the periodicities,

w+ ∼ e4π2TRw+, w− ∼ e4π2TLw−, y ∼ e2π2(TR+TL)y. (8.19)

Writing the Kerr-Newman metric in conformal coordinates, to leading and

subleading order around the bifurcation surface, we get

ds2 =
4ρ2

+

y2
dw+dw− +

16J2 sin2 θ

y2ρ2
+

dy2 + ρ2
+dθ

2

− 2w+(8πJ)2TR(TR + TL)

y3ρ2
+

dw−dy

+
8w−

y3ρ2
+

(
− (4πJ)2TL(TR + TL) + (4J2 + 4πJa2(TR + TL) + a2ρ2

+) sin2 θ
)
dw+dy

+ · · · ,

(8.20)

where corrections are at least second order in (w+, w−). This metric takes

precisely the same form as the Kerr black hole (as in (7.41)), but again with

different definitions of TL, TR and hence of w+, w−, y.
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8.3 Conformal vector fields

Consider the same set of vector fields presented earlier in (7.55), but now with

the new coordinate definitions and new temperatures,

ζn = εn∂+ +
1

2
∂+εny∂y, εn = 2πTR(w+)

1+ in
2πTR ,

ζ̄n = ε̄n∂− +
1

2
∂−ε̄ny∂y, ε̄n = 2πTL(w−)

1+ in
2πTL ,

(8.21)

so that ζ and ζ̄ are invariant under 2π azimuthal rotations (8.19). These vector

fields commute with one another and each obey a centreless Virasoro algebra,

[ζm, ζn] = i(n−m)ζn+m, (8.22)

and similarly for ζ̄. Their zero modes are

ζ0 = 2πTR(w+∂+ +
1

2
y∂y) = ∂φ +

2M2 −Q2

a
∂t = −iωR,

ζ̄0 = 2πTL(w−∂− +
1

2
y∂y) = −2M2 −Q2

a
∂t = iωL

(8.23)

where the right and left moving energies ωR, ωL are defined in (8.14).

8.4 Covariant charges

Here we employ the construction of covariant charges as in section 4, in which

we begin with the Lagrangian,

L =

√
−g

16π
(R− FabF ab), (8.24)

where R is the Ricci scalar and F = dA is the electromagnetic field strength.

Upon varying the field strength, δAa and the metric, δgab = hab in the

Lagrangian, we get the presymplectic potential three-form, Θ = ∗θ, where

θ[h, g, A, F ] = (θG[h, g] + θE[A,F ])adx
a (8.25)
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where θG is the gravitational part of the presymplectic potential, as given in

(4.30),

θaG[h, g] = − 1

16π
(∇bh

ab −∇ah) (8.26)

and θE is the part arising from the electromagnetic piece of the Lagrangian,

θaE[A,F ] = − 1

4π
F abδAb. (8.27)

When the metric variation is due to a diffeo ζ and A has a gauge transformation

λ (which will be fixed below), i.e.

δgab = hab = Lζgab,

δAa = (LζA)a +∇aλ, (8.28)

then provided the background field equations are satisfied, the Noether charge

density two-form, QN = ∗QN , is defined from (4.38) and gives rise to,

(Qab
N )G = − 1

16π
(∇aζb −∇bζa),

(Qab
N )E = − 1

4π
F ab(Acζ

c + λ). (8.29)

The general form for the linearized charge associated to a diffeo ζ on a surface

Σ with boundary ∂Σ is (4.17)

δQ =
1

16π

∫
∂Σ

k, (8.30)

where the symplectic 2-form charge integrand can be found from (4.16). With

k = ∗(kG + kE), the gravitational part is the same as in (4.34),

kabG =
1

16π

[1
2
∇aζbh+∇ahcbζc +∇cζ

a hbc +∇ch
ac ζb −∇ah ζb

]
− (a↔ b).

(8.31)
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This makes up the Iyer-Wald charge (previously written as FIWab). The part due

to the electromagnetic field strength is [185],

kabE = − 1

8π

[
(δF ab− h

2
F ab+2F adhbd)(Acζ

c+λ)+F abδAcζ
c−2F acδAcζ

b
]
−(a↔ b).

(8.32)

Let us first consider the electromagnetic part of the charge. At this stage we

fix the gauge freedom λ with the judicious choice

λ = −Acζc (8.33)

so that all but the last two terms in kabE vanish. On the future horizon, where

w− = 0, the components that contribute to the integral are k−yE and k−+
E . Since

ζ− = 0, all terms in the calculation involve the components of the electromagnetic

field strength where one index is w−, i.e. either F−y, F−+ or the F−θ components.

It is straightforward to compute these components in conformal coordinates and

one finds that they are either zero or linear in w−. Since the metric contains no

poles in w−, these components will vanish on the future horizon. This means

that there is no contribution to the charge integral from kE. Therefore the entire

contribution to the charge arises from the gravitational part.

As explained in the previous sections, the construction of these covariant

charges involves many subtleties and ambiguities. The Iyer-Wald charge

associated to the diffeomorphisms ζn is built from the symplectic form when

the metric variation is due to this diffeomorphism. This formalism alone is

found to be inadequate for the construction of well-defined charges, as

integrability and associativity may be violated, necessitating the addition of

certain counterterms. It is equally possible that counterterms may arise for the

electromagnetic part of the charge, due to similar ambiguities. However, since

the electromagnetic part as defined gives zero contribution to the charge, one

can not use arguments from integrability or associativity to motivate such an

addition.

We may now proceed exactly as before. The general form for the linearized
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charge associated to a diffeo ζ on a surface Σ with boundary ∂Σ is as before [85]

δQ = δQIW + δQX , (8.34)

where the Iyer-Wald charge is generated from the gravitational part of the

presymplectic form as given above (7.73) and the Wald-Zoupas counterterm is

of the form (4.41). As shown for the case of Kerr, the choice of counterterm for

the gravitational case is not well-understood, but without a counterterm, there

is an obstruction to defining integrable charges which canonically generate the

symmetry. This obstruction can be eliminated by the same counterterm choice

(7.77) given above in which

X = 2dxah b
a Ωb. (8.35)

As explained, it has not been shown that this choice is unique in eliminating

the obstruction or that the charges so obtained do indeed canonically generate

the symmetry. We nevertheless continue to use this formalism to construct the

charges for the Kerr-Newman black hole.

Since the Kerr-Newman metric (8.20) is identical to the corresponding metric

in Kerr (albeit with different definitions of the temperatures), the calculations of

the charges with respect to the same vector fields will be identical. The resulting

central terms are therefore,

cL = cR = 12J. (8.36)

8.5 The area law

Using cL = cR = 12J as given above, the temperature formulae (8.11) and the

Cardy formula (5.69) yields the Bekenstein-Hawking area-entropy law for generic

Kerr-Newman black holes,

SBH = SCardy = π(2Mr+ −Q2) =
Area

4
. (8.37)

117



9 Resolving the information paradox - further work

The above calculations of the entropy from microstates on the black hole horizon

are extremely suggestive. However, the argument presented above is by no means

a derivation of the entropy, nor does it resolve the information paradox, which

remains one of the greatest mysteries in black hole physics. While we might

still be very far from any resolution, the recent progress outlined above has

demonstrated a fruitful direction to continue to explore.

One important feature of the above approach that is still not well understood

is the precise nature of the Wald-Zoupas counterterm. Ultimately, it must be fully

determined by the Dirac brackets. Computing these to find the charges whose

brackets generate the symmetries will clinch the argument for the existence and

identities of the counterterms. This calculation is left to future work.

Once the appropriate form of the counterterm has been determined, a natural

next step is to discover whether this new formulation is universal. As shown,

the results hold for both Kerr and Kerr-Newman black hole spacetimes, but

beyond this it would be interesting to look at higher dimensional space-times,

and to consider allowing for supersymmetry. A supersymmetric extension of the

horizon generators for N = 1, 2 and 4 will appear shortly. This will allow some

insight into the precise nature of the CFT that exists on the black hole horizon.

The current formulation involves using two Virasoro algebras, one on the past

and one on the future horizon. While this fits in nicely with the idea of left and

right moving CFTs and allows for application of the Cardy formula, the use of

the past horizon is somewhat uncomfortable. Another possibility as suggested

above is that on the future horizon, we have both a Virasoro and a Kac-Moody

algebra, and together these can reproduce the entropy [169].

In terms of the bigger picture of the information paradox, there remain many

unanswered questions, including: Does this entropy account for all the black

hole’s information? How does information in collapse get encoded into the field

theory? How can we reconcile this approach with the species problem? A final

resolution of the information paradox requires that these questions be addressed.
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10 Conclusion

In this thesis, we have considered the action of large gauge transformations on

both null infinity and the black hole horizon.

The first part of this thesis involved extending the known BMS group of

symmetry transformations that preserve the structure of null infinity, to allow

for conformal symmetry. This resulted in a conformal BMS group, an infinite

extension of the flat space conformal group, analogous to the BMS group, an

infinite extension of the flat space Poincaré group. Constructing the algebra

of this new conformal BMS group involved taking into account an important

subtlety: the vector fields that generate the group cause perturbations in the

metric, but they are themselves metric dependent. This means that instead of

the usual Lie bracket, a modified bracket is required. This modified bracket was

developed and the resulting algebra analysed in detail.

The latter part of this thesis involved looking at large gauge transformations

in the context of black holes. We began with an overview of the AdS/CFT

correspondence, exploring three-dimensional gravity and the BTZ black hole. We

gave a brief recap of conformal field theory and showed how the Cardy formula

can be used to compute the entropy. We hypothesised that the BTZ black hole

is dual to a two-dimensional conformal field theory and showed that the Cardy

entropy precisely matches the black hole entropy, computed from Bekenstein-

Hawking area law.

We then moved away from the AdS/CFT correspondence to consider four

dimensional gravity, exploring the extreme Kerr black hole and then ultimately

examining the case of the generic Kerr black hole. By looking at the hidden

conformal symmetry in the near region of the phase space, we found motivation

for the idea that the Kerr black hole is itself dual to a two-dimensional thermal

conformal field theory. We found a set of Virasoro generators which realize

this symmetry and act non-trivially on the black horizon. The covariant phase

space formalism provides a formula for the Virasoro charges as surface integrals

on the horizon. The path taken to reach such formulae however involve many
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subtleties and ambiguities, meaning that it is possible that one can add additional

terms, or counterterms. Integrability and associativity of the charge algebra were

shown to require the inclusion of ‘Wald-Zoupas’ counterterms. A counterterm

satisfying the known consistency requirement was constructed and yields central

charges cL = cR = 12J . Assuming the existence of a quantum Hilbert space on

which these charges generate the symmetries, as well as the applicability of the

Cardy formula, the central charges reproduce the macroscopic area-entropy law

for generic Kerr black holes. We have thus shown that it is possible to reproduce

the macroscopic area law by using microstates on the horizon. This is not a

solution to the information paradox, but hopefully a useful step in the right

direction.
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A The modified bracket of CBMS

As explained in section 3.1, computing the algebra of the conformal BMS group

required a delicate examination of the effect of each vector field on the spacetime,

and how this would affect the action of a subsequent transformation. Here is a

worked example for the commutator of two different supertranslations, giving

[T1, T2] = 0. (A.1)

We start by considering the action of a supertranslation, generated by the

function g,

T1 = g ∂u +
1

2
D2g ∂r −

1

r
DAg ∂A . (A.2)

The ordinary commutator of this supertranslation, together with another

supertranslation, T2, generated by the function f , gives,

[T1, T2] =

[
g ∂u +

1

2
D2g ∂r −

1

r
DAg ∂A, f ∂u +

1

2
D2f ∂r −

1

r
DAf ∂A

]
,

=
1

2r
(DAfDAD

2g −DAgDAD
2f) ∂r

+
1

2r2
(D2gDAf −D2fDAg + 2DBgDBD

Af − 2DBfDBD
Ag)∂A .

(A.3)

This has the form,

[T1, T2] =
1

r
A ∂r +

1

r2
BA∂A , (A.4)

where A and B are functions of the two-sphere only.

By considering dimensions, this implies that

µu2 = 0 , (A.5)

and we write

µr2 =
1

r
Â , (A.6)
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and

µA2 =
1

r2
B̂A . (A.7)

Under the action of the first supertranslation the resulting infinitesimal

changes to the metric are given by,

ĥuA = −1

2
DA(2g +D2g) ,

ĥAB = −r(2DADBg − γABD2g) ,

(A.8)

with all other components zero.

Then, under the action of the second supertranslation, T2, on the metric there

will be extra second order terms, K̂ab, given by,

K̂ab =µc2 ∂cgab + T c2 ∂cĥab + ∂aT
c
2 ĥbc + ∂aµ

c
2gbc + ∂bµ

cgac + ∂bT
c
2 ĥac

− 1

2
gab ∂cµ

c
2 −

1

2
ĥab ∂cT

c
2 −

1

2
gabΓ

c
cdµ

d − 1

2
ĥabΓ

c
cdT

d
2 −

1

2
gabδΓ

c
cdT

d
2 .

(A.9)

The relevant Christoffel symbols and perturbations are given by,

ΓAAr =
2

r
,

δΓrrA =
1

2r
DA(D2 + 2)g ,

δΓAAB = − 1

2r
DB(D2 + 2)g .

(A.10)

Thus, explicitly calculating the second order changes to the metric,

K̂rA = 0 = gruDAµ
u + gAB ∂rµ

B + ∂rT
B
2 ĥAB,

= −r2γ̂AB

(
2

r3
B̂A

)
− 1

r
DBf(2DADBg − γABD2g) ,

(A.11)

Therefore,

B̂A = −1

2
DBf(2DADBg − γABD2g) . (A.12)
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K̂AB = O(r) = r2(DAµB +DBµA −
1

2
γAB(∂uµ

u + ∂rµ
r +DCµ

C − 2

r
µr))

+DAT
C
2 ĥBC +DBT

C
2 ĥAC +DAT

u
2 ĥuB +DBT

u
2 ĥuA

+ T r2 ∂rĥAB + TC2 DC ĥAB −
1

2
ĥABDCT

C
2 −

1

r
ĥABT

r
2

− 1

2
r2γABδΓ

c
cdT

d
2 .

(A.13)

Since

ĥAA = 0 , (A.14)

then,

K̂A
A = r2DAµ

A − r2 ∂rµ
r + 2rµr + 2DATB2 ĥAB + 2DAT u2 ĥuA − r2δΓccdT

d
2 ,

= 2rµr − r2 ∂rµ
r + r2DAµ

A + 2DADBf(2DADBg − γABD2g)

−DAfDA(D2 + 2)g,

= 3Â− 1

2
DADBf(2DADBg − γABD2g)− 1

2
DBf(2D2DBg −DBD

2g)

+ 2DADBf(2DADBg − γABD2g)−DAfDA(D2 + 2)g,

= 3Â+ 3DADBfDADBg −
3

2
D2f D2g − 3

2
DBf DBD

2g − 3DAfDAg .

(A.15)

Since

∂r

(
det
(gAB
r2

))
= 0 , (A.16)

we have,

Â =
1

2
DBfDBD

2g −DADBfD
ADBg +

1

2
D2fD2g +DAfDAg . (A.17)
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Thus,

µu2 = 0 ,

µr2 =
1

r

(
1

2
DBfDBD

2g −DADBfD
ADBg +

1

2
D2fD2g +DAfDAg

)
,

µA2 =
1

2r2
DBf(2DADBg − γABD2g) .

(A.18)

When we perform the same set of calculations using first the action of T2,

followed by T1, we get the same results for µa1, with f↔g.

Therefore, we can calculate,

δµa = µa2 − µa1 , (A.19)

to find,

δµu = 0 ,

δµr =
1

2r
(DBfDBD

2g −DBgDBD
2f) ,

δµA =
1

2r2
(DBg(2DADBf − γABD2f)−DBf(2DADBg − γABD2g))

=
1

2r2
(D2gDAf −D2fDAg + 2DBgDBD

Af − 2DBfDBD
Ag) .

(A.20)

These terms exactly cancel those arising from the ordinary commutator, and so

upon subtracting these off, we find that,

[T1, T2] = 0 . (A.21)

B Proof of surface charge formula

In this section we will prove the following formula, as given in (4.16),

kζ [δΦ,Φ] = δQN
ζ [δΦ,Φ]− ιζΘ[δΦ,Φ]. (B.1)

This proof follows that given in [131], with intermediate steps stem from [186].
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The starting point is the Noether current, Jζ , defined in (4.10), as

Jζ = Θ[δζΦ,Φ]− ζ · L. (B.2)

Variation of the current gives

δJζ = δΘ[δζΦ,Φ]− ζ · δL, (B.3)

since the vector field ζ is not a dynamical variable and so is not affected by the

variation. Using (4.9) we have,

δL = EΦδΦ + dΘ[δΦ,Φ]

≈ dΘ[δΦ,Φ], (B.4)

where the second line follows when the equations of motion are satisfied and

EΦ = 0. Cartan’s “magic formula” tells us that δζΘ = ζ · dΘ + d(ζ · Θ) and

therefore,

δJζ ≈ δΘ[δζΦ,Φ]− ζ · dΘ[δΦ,Φ],

= δΘ[δζΦ,Φ]− δζΘ[δΦ,Φ] + d(ζ ·Θ). (B.5)

Since δJζ = dδQN
ζ , we find

δΘ[δζΦ,Φ]− δζΘ[δΦ,Φ] = d(δQN
ζ − ζ ·Θ). (B.6)

The left hand side of this expression can be identified as ω[δζΦ, δΦ,Φ]. Since

ω[δΦ, δζΦ,Φ] ≈ dkζ [δΦ,Φ], (B.7)

we see that

kζ [δΦ,Φ] = δQN
ζ [δΦ,Φ]− ζ ·Θ[δΦ,Φ] (B.8)
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and thus we arrive at our original expression (4.16).

C Integrability of ιζθ

In section 4 we derived an expression for the charge variation, Qζ in terms of

a Noether charge and the presymplectic form (4.39). This charge variation is

not, in general integrable, since although the Noether term is exact, the term

arising from the presymplectic potential is not. Here we will show this explicitly.

Ignoring factors, the presymplectic potential θ is given for general relativity by

θa = ∇bh
ab −∇ah

= ∂bh
ab + Γabch

bc + Γbbch
ac − gab∂b(gcdhcd).

(C.1)

If we now vary this with δgab = kab, δgab = −kab, δΓabc = 1
2
(∇akbc−∇bk

a
c −∇ck

a
b )

and δhab = 0, we get,

δθa = δΓabch
bc + δΓbbch

ac − kab∂b(gcdhcd) + gab∂b(kcdh
cd)

=
1

2
hbc(∇akbc −∇bk

a
c −∇ck

a
b )−

1

2
hac∇ck − kac∇ch+∇a(kcdh

cd).
(C.2)

We fix the gauge such that h = k = 0 and so under antisymmetry of k ↔ h, we

get

(δ2θ1 − δ1θ2)a =
1

2
hbc(∇akbc −∇bk

a
c −∇ck

a
b )− (k ↔ h) (C.3)

Since this does not identically vanish, we must conclude that θ is not in general

integrable.

C.1 Our special case

In this section we will demonstrate that, for the specific class of functions

considered in section 7.4, when evaluated on the bifurcation surface, the

charges turn out to be integrable.

The potentially non-integrable term as shown above comes from the
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presymplectic potential. The antisymmetrized variation of θ− is (C.3)

(δ2θ1 − δ1θ2)− =
1

2
hbc(∇−kbc −∇bk

−
c −∇ck

−
b )− (k ↔ h). (C.4)

In our case, metric perturbations are generated by the vector field ζ, given by

(7.55), i.e. δgab = hab = (Lζg)ab. To first order in w+ there are three non-zero

components of hab. These are:

h+y, h−y, hyy. (C.5)

This means that the variation of θ− with our specific perturbation hab is explicitly,

(δ2θ1 − δ1θ2)− = h−y(∇−k−y −∇−k−y −∇yk
−
−)

+ h+y(∇−k+y −∇+k
−
y −∇yk

−
+)

+
1

2
hyy(∇−kyy −∇yk

−
y −∇yk

−
y )

− (h↔ k)

(C.6)

We can now go through line by line, noting that the only non-zero components

of hab to first order in w+ are,

h+y, h−y, h+−. (C.7)

The first line gives,

(1) =h−y(∇−k−y −∇−k−y −∇yk
−
−)− (h↔ k)

=h−y(g+−(∂+k−y − Γ+
+yk−+)− (∂−k

−
y − Γ−−yk

−
− + Γ−−yk

y
y)

− (∂yk
−
− − Γ−−yk

−
− + Γ−y−k

−
−)− (h↔ k)

=h−y(g+−(∂+k−y − Γ+
+yk+− − ∂−k+y + Γ−−yk+−)

− ∂y(g+−k+−)− (h↔ k)

(C.8)

127



Now,

h−y = g+−∂+ζ
y (C.9)

and

k+− = g−y∂+ζ̃
y (C.10)

Thus the combination

h−yk+− − (ζ ↔ ζ̃) = 0, (C.11)

so terms of this form in (C.8) vanish, since they are multiplied simply by

connection components which are functions only of the coordinates. We also

have ∂−k+y = 0 and so

(1) = g+−h−y∂+k−y − (h↔ k). (C.12)

Now,

k−y = ζ̃+∂+g−y + ζ̃y∂yg−y + g−y∂y ζ̃
y

= ζ̃+∂+g−y −
2

y
ζ̃yg−y.

(C.13)

Thus

∂+k−y = (∂+ζ̃
+ − 2

y
ζ̃y)∂+g−y −

2

y
g−y∂+ζ̃

y

= −2

y
g−y∂+ζ̃

y. (C.14)

Therefore,

(1) = g+−h−y∂+k−y − (h↔ k)

= g+−g+−∂+ζ
y(−2

y
g−y∂+ζ̃

y)− (ζ ↔ ζ̃)

= 0, (C.15)

since this is symmetric in ζ, ζ̃.
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The second line gives,

(2) = h+y(∇−k+y −∇+k
−
y −∇yk

−
+)− (h↔ k)

= −h+y(∂yk
−
+ + Γ−y−k

−
+ − Γ+

+yk
−
+)

= 0, (C.16)

since k++ = 0 to first order on the bifurcation surface.

The third line gives,

(3) =
1

2
hyy(∇−kyy − 2∇yk

−
y )− (h↔ k)

=
1

2
hyy(−2g−+Γ+

+yk+y − 2(∂y(g
−+k+y) + Γ−−yk

−
y − Γyyyk

−
y ))− (h↔ k).

(C.17)

Every term in (C.17) is, to first order on the bifurcation surface, of the form

hyyk+y, (C.18)

multiplied by some function of the coordinates. But,

hyy = −2g+y∂+ζ
y, (C.19)

and

k+y = gyy∂+ζ̃
y, (C.20)

so

hyyk+y − (h↔ k) = −2g+y∂+ζ
ygyy∂+ζ̃

y − (ζ ↔ ζ̃) = 0. (C.21)

This means that although θ− is in general not integrable, for the specific

functions that we are considering, we find, on the bifurcation surface,

(δ2θ1 − δ1θ2)− = 0. (C.22)
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D BTZ charges on the horizon

We will consider a similar computation of the charges to that in section 5.3.2 but

now the calculation will explicitly take place on the horizon of the black hole.

It is worth noting that although the original calculation of the BTZ central

charge by Brown and Henneaux was performed at infinity, an extension away

from infinity is possible. Although the integrals in (5.71) are taken over S1
∞,

the integrands are independent of the radial coordinate, and thus we may in

fact perform this integral at other points in the spacetime and achieve the same

result.

Nonetheless, we will use a different coordinate system, that will be more

aligned with the methods used for the Kerr black hole. We consider the AdS3

spacetime in Poincaré coordinates, with the line element

ds2 = l2
dw+dw− + dy2

y2
(D.1)

where w± are unrestricted and y ≥ 0. These coordinates do not cover the

entirety of AdS3. The BTZ black hole is the quotient of AdS3 found by making

the identifications

w+ → e4π2TRw+,

w− → e4π2TLw−,

y → e2π2(TL+TR)y. (D.2)

The parameters TL and TR can be related to the mass and angular momentum

of the black hole and l by

M =
π2

2
TLTR (D.3)

and

J =
π2l

4
(T 2

L − T 2
R). (D.4)

The past and future (outer) horizons are the surfaces w+ = 0 and w− = 0
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respectively and spatial infinity is at y = 0.

TL and TR are related to r+ and r− by

TL =
r+ + r−

2πl
(D.5)

and

TR =
r+ − r−

2πl
(D.6)

Armed with the diffeomorphism found previously for BTZ, we can now

consider the following vector field in these coordinates,

ζn = εn(w+)∂+ +
1

2
y∂+εn∂y,

εn = 2πTR(w+)
1+ in

2πTR .

(D.7)

The Lie bracket is again the centreless Virasoro algebra. Another vector field

defined,

ζ̃n = ε̃n(w−)∂− +
1

2
y∂−ε̃n∂y,

ε̃n = 2πTL(w−)
1+ in

2πTL ,

(D.8)

also obeys a centreless Virasoro algebra and commutes with the first set of vector

fields. These diffeomorphisms are now used to calculate the central charges cL

and cR for the BTZ black hole on the horizons, H±.

In order to compute the charges and any central terms, following the covariant

phase space formalism explained in section 4, we need to calculate the integral,

δQIW (ζ, h; g) =
1

16π

∫
∂Σ3

kIW , (D.9)

where the integral is computed over the future horizon.

If the charges contain non-zero central terms in their algebra, we will find

that (D.9) will be non-vanishing. The central terms in the algebra between the
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charges Qm,Qn, built from the vector fields ζn, ζ̄m will be of the form,

Kζ,ζ̄ [Φ̄] =

∫
∂Σ

kζ [δζ̄Φ̄, Φ̄], (D.10)

assuming at this stage that there are no additional counterterms.

The general formula for the central term is

Kζm,ζ̄n =
c

12
m3δm+n,0 (D.11)

up to terms that can be set to zero by shifting the zero modes. This means that

in order to determine the value of the central charge, c, it will be sufficient to

look only at those terms in (4.34) which could contribute to cubics in m.

To evaluate the central term we will return to the explicit expression for the

Iyer-Wald charge integrand, Fab,

(FIW )ab =
1

2
∇aζbh+∇ah

c
bζc +∇cζa h

c
b +∇ch

c
a ζb −∇ah ζb − (a↔ b).

(D.12)

As explained in section 4.3, when the variation h is also generated by a vector

field ζ̄, we can add the divergence of a three-form to simplify the expression and

end up with an equivalent expression,

(F ′)ab = (F )ab +∇cAabc

= Rabcdζ
cζ̄d + 2∇cζa∇cζ̄b −D∇aζ̄b + D̄∇aζb − (a↔ b), (D.13)

where D = ∇aζ
a.

The vector field involves one derivative of εm, and therefore to find a cubic

term in the central charge we must have at least one derivative of the vector field.

This means that the term involving the Riemann tensor in (D.13) cannot possibly

contribute to the central charge c in (D.11). The vector field is also divergence

free, which means that we are left with an extremely simple expression for the
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only terms that can contribute to the cubics of c:

(Fcubics)ab = 2∇cζa∇cζ̄b − 2∇cζb∇cζ̄a. (D.14)

We will first use the right-moving vector fields, ζ and consider an integral

over the bifurcation surface, where w+ = w− = 0. This surface is explored in

section 7.5 for the case of Kerr. It turns out that nonzero contributions to Km,n

from δQIW come only from the component F−yIW in the form

1

16π

∫
dθdw+εθ+−yF

−y
IW . (D.15)

This integral is discussed in more detail in section 7.5. We have,

F−y = 2∇cζ
−∇cζ̄y − (ζ ↔ ζ̄)

= 2g+−∇−ζ−∇+ζ̄
y − (ζ ↔ ζ̄)

= 2g+−Γ−−yζ
y∂+ζ̄

y − (ζ ↔ ζ̄)

= −y
3

`2
ε′ε̄′′ − (ζ ↔ ζ̄). (D.16)

Since

εθ+−y =
`3

2y3
(D.17)

after performing the θ integral in (D.15) and integrating by parts over w+, we

have

Km,n =
`

8

∫ e4π
2TR

1

dw+εmε̄
′′′
n . (D.18)

Inserting the mode expansions for εn, we get a pole in w+, a feature which,

as we discover during the discussion for the Kerr case, turns out to be essential.

We can integrate to find the cubic term and the result is

cR =
3`

2
. (D.19)
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Repeating the calculation for the other, left-moving vector field, ζ̃, we find cL =

3`/2. Thus we obtain the same charges as the original computation by Brown and

Henneaux but now this calculation has explicitly been done on the bifurcation

surface, a section of the horizon.

We can now imagine that there is a conformal field theory that exists on

the horizon of the BTZ black hole. We can again use the Cardy formula, to

find the entropy of the CFT, yielding exactly the Bekenstein-Hawking entropy,

as we discovered earlier in section 5.3.2. While the extension onto the horizon

may have been computationally almost trivial, its implications are profound. It

suggests that the entropy of the BTZ black hole can be completely recovered by

looking at microstates on the horizon.

E NHEK charge computation on the horizon

In order to explicitly compute the charges on the horizon of NHEK, we will define

the NHEK geometry in advanced coordinates, by setting,

v = T − 1

R
,

φ̃ = φ̂− lnR. (E.1)

In these new (v,R, θ, φ̃) coordinates, the metric (6.13) then becomes,

ds2 = 2JΩ2
(
−R2dv2 + 2dvdR + dθ2 + Λ2(dφ̃+Rdv)2

)
. (E.2)

The vector field (6.18) is (excluding the extra term (6.20))

ζan =

(
−ε
′
n

R
,−Rε′n, 0, εn + ε′n

)
, (E.3)

where we now define

εn = eimφ̃, ε′n = ∂φ̃εn. (E.4)
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Just as for the case of BTZ, here the vector field is divergence free. It also

involves just one derivative of ε, and therefore we are again left with an extremely

simple expression for the only terms that can contribute to the cubics of c:

(Fcubics)ab = 2∇cζa∇cζ̃b − 2∇cζb∇cζ̃a. (E.5)

Evaluating this on a surface of fixed v,R, and integrating over the angular

coordinates results in a central charge,

cL = 12J. (E.6)

Again, we find the same result but on the horizon of the black hole. Thus, using

the Cardy formula again reproduces the entropy of the extreme Kerr black hole.

F Kerr metric in Kruskal-like coordinates

The metric is

ds2 =
ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2
((r2 + a2)dφ− adt)2 − ∆

ρ2
(dt− a sin2 θdφ)2. (F.1)

Using the advanced and retarded coordinates, v and u defined in (7.29) and

(7.31), we have

dt =
1

2
(du+ dv),

dr =
∆

2(r2 + a2)
(dv − du). (F.2)

The co-rotating angular coordinate is

dφ+ = dφ− Ω+dt, (F.3)

and thus

dφ = dφ+ +
1

2
Ω+(du+ dv), (F.4)
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where Ω+ = a
2Mr+

is the angular velocity of the horizon.

The metric becomes,

ds2 =
∆ρ2

r(r2 + a2)
(dv − du)2 + ρ2dθ2 +

sin2 θ

ρ2

(
(r2 + a2)dφ+ + F [r](du+ dv)

)2

− ∆

ρ2

(
G[θ](du+ dv)− a sin2 θdφ+

)2
, (F.5)

where the functions F and G are defined,

F [r] =
a

4Mr+

(r2 − r2
+),

G[θ] =
ρ2

+

2(r2
+ + a2)

, (F.6)

where

ρ2
+ = r2

+ + a2 cos2 θ. (F.7)

Expanding the metric close to the horizon, to leading and subleading orders

around r = r+, the metric becomes,

ds2 =−
(r − r+)(r+ − r−)ρ2

+

2(r2
+ + a2)2

dudv + ρ2
+dθ

2 +
(r2

+ + a2)2 sin2 θ

ρ2
+

dφ2
+

+
a sin2 θ(r − r+)

ρ2
+(r2

+ + a2)

(
3r3

+ + a2r+ + 2a2(r+ −M) cos2 θ
)

(du+ dv)dφ+.

(F.8)

Define Kruskal coordinates,

U = −e−κu,

V = eκv, (F.9)

where the minus sign in the definition of U is there so that U increases as u

increases. The surface gravity, κ is defined,

κ =
r+ − r−
4Mr+

. (F.10)
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The inverse transformation,

u = −1

κ
ln(−U),

v =
1

κ
ln(V ) (F.11)

defines the exterior region, where V > 0, U < 0.

In order to specify the metric in these coordinates in as simple a way as

possible, one must perform a trick as follows. We have,

v, u = t±
∫

(r2 + a2)

(r − r+)(r − r−)
dr,

= t±
[
r +

2Mr+

r+ − r−
ln(

r − r+

r+ − r−
)− 2Mr−

r+ − r−
ln(

r − r−
r+ − r−

) + lnC
] (F.12)

where C is some arbitrary constant of integration.

Now consider the product,

UV = eκ(v−u)

=− exp
[r+ − r−

2Mr+

(
r +

2Mr+

r+ − r−
ln(

r − r+

r+ − r−
)

− 2Mr−
r+ − r−

ln(
r − r−
r+ − r−

) + lnC
)]

=−De
r(r+−r−)

r2++a2 r − r+

r+ − r−

(
r − r−
r+ − r−

)−( 2Mr−
r2++a2

)
,

(F.13)

where the constant C has been absorbed into the new constant D.

Thus, near r = r+, the term in brackets is approximately 1 and we get,

UV ≈ −De
r+(r+−r−)

r2++a2 r − r+

r+ − r−
. (F.14)

We can choose the constant D to be,

D = e
− r+(r+−r−)

r2++a2
. (F.15)
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Therefore

UV ≈ − r − r+

r+ − r−
. (F.16)

Then, the coefficient of the dudv metric component is,

−
(r − r+)(r+ − r−)ρ2

+

2(r2
+ + a2)2

dudv

≈−
(r − r+)(r+ − r−)ρ2

+

2(r2
+ + a2)2

1

κ2

dUdV

UV

≈ ρ2
+

8M2r2
+

(r2
+ + a2)2

dUdV

≈ 2ρ2
+dUdV

(F.17)

This means that the zeroth order metric is

ds2
0 = 2ρ2

+dUdV + ρ2
+dθ

2 +
(r2

+ + a2)2 sin2 θ

ρ2
+

dφ2
+ (F.18)

and hence
√
−g = (r2

+ + a2)ρ2
+ sin θ. (F.19)

The first order correction is

−a sin2 θ

r+ρ2
+

(3r2
+ + a2r2

+ + a2r2
+ cos2 θ − a4 cos2 θ)(UdV − V dU)dφ+. (F.20)

Therefore, to leading and subleading order around r = r+, the Kerr metric

in Kruskal-like coordinates is,

ds2 = 2ρ2
+dUdV + ρ2

+dθ
2 +

(r2
+ + a2)2 sin2 θ

ρ2
+

dφ2
+

− a sin2 θ

r+ρ2
+

(3r2
+ + a2r2

+ + a2r2
+ cos2 θ − a4 cos2 θ)(UdV − V dU)dφ+ + · · · .

(F.21)

To my knowledge this metric does not appear elsewhere in the literature. All

other versions of the Kerr metric in Kruskal coordinates involve much more

complicated expressions. See eg [173].
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