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Abstract

Environments are increasingly becoming technologized sites of data production. From smart cities to smart forests,

digital networks are analyzing and joining up environmental processes. This commentary focuses on one such under-

studied smart environment, smart forests, as emerging digital infrastructures that are materializing to manage and

mitigate environmental change. How does the digitalization of forests not only change understandings of these environ-

ments but also generate different practices and ontologies for addressing environmental change? I first analyze smart

forests within the expanding area of smart environments, and then discuss five digital practices that characterize smart

forests. Based on this analysis, I suggest that forests are not only becoming highly digital environments but also that

forests are transforming into technologies for managing environmental change. Smart forest interventions therefore

expand the scope of what could count as a technology, especially in the context of data-oriented planetary governance.
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Imagine the replanting of a forest. A common image

that springs to mind might be of individual cultivators

walking a terrain and planting trees by hand. The pro-

cess can be careful yet slow. While these practices are

still important and widespread, start-up drone compa-

nies are now developing digital techniques for mass-

planting forests from the sky. Working toward the

objective of planting a billion trees per year, these tech-

nologies are meant to offer rapid and “industrial-scale”

reforestation techniques to compensate for industrial-

scale deforestation. Forests, digital technologies,

and data analytics are shifting in potentially

“revolutionary” ways through these new approaches

to reforestation and environmental change.
Smart forests are one among many environments

that are increasingly becoming technologized sites of

data collection, processing, and analysis. Not just

drones but also sensors, artificial intelligence, and

robots are transforming forest environments in order

to manage their environmental contributions through

data collection and data analytics. The digital technol-

ogies that comprise these smart environments are

installed on tree trunks and embedded in forest soil
(Figure 1). They are floating airborne through forest
canopies, and they are located in distant clouds and
servers where data analytics unfold. Forest technolo-
gies include unmanned aerial vehicles (UAVs), or
drones, for planting trees and monitoring forest fires;
sensor networks for monitoring forest processes that
(in a play on the “Internet of Things”) have been
dubbed the “Internet of Trees” (Figure 2); Light
Detection and Ranging (LIDAR) scanning for assess-
ing changes in forest structure; machine learning for
automating or responding to forest events such as wild-
fires; remote sensing for detecting changes in forest
cover and detecting deforestation in real time; and
civic apps, platforms for monitoring forest conditions
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and search engines for contributing to reforestation

initiatives.
While these technologies are proliferating, they are

also generating new forms of data and social–political
impacts that have yet to be extensively researched. In
this overview of smart forests, I ask: How does digita-

lization not only change understandings of environ-
ments but also generate different practices and

ontologies for addressing environmental change? To
address this question, I first look at how smart environ-
ments are expanding across multiple different areas.

Second, I consider five specific digital practices that
are materializing within smart forests, including obser-
vation, automation and optimization, datafication,

participation, and transformation and regulation, as
data-based operations with distinct social–political

effects. Third, I consider how the digitalization of
forest environments is leading to a condition where
forests also begin to operate as technologies. In this

sense, I further analyze not just how digital technolo-
gies are remaking forests but also investigate how for-
ests are becoming social–political technologies for

addressing environmental change. Forests and the
social–political relations that sustain them are shifting

so that forests function as technical instruments
informed by data that are meant to mitigate and even
solve the problem of environmental change. Yet this

reworking of forests also involves a reworking of tech-
nology toward new conjugations of humans,
nonhumans and environments—through digital and

data-intensive operations.

Forests are crucial to acting on environmental

change. They are key contributors to the carbon cycle
and biodiversity, as well as air and water quality. Given
the urgency of addressing environmental change, poli-

cymakers, scientists, and communities have identified
forests as important spaces to conserve and cultivate.

Meeting climate targets requires both halting defores-
tation and contributing to practices of mass-scale refor-
estation. In this context, forest practices are emerging

together with environmental policies and sustainable
development goals that attempt to conserve forests as

carbon sinks, and to sustain and cultivate forests as
green infrastructure. In diverse regions around the
world—from Germany to New York City to

Thailand—smart forests are now emerging where dig-
ital technologies are used to manage, monitor, enhance,

and expand these rural and urban spaces in response to
environmental change. There are increasing numbers
and types of smart forests being developed to address

environmental change, at the same time that forests are
under threat from deforestation and land use change.

This text then considers how these digital and data-
based reworkings of forests potentially lead to
significant changes in environmental engagement and

planetary governance.

Smart environments: From smart cities to

smart forests

While there is now extensive research on smart cities

and data, other “smart” environments have been less

Figure 1. Experimental forest with sensors, photo by author.
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well studied within the social sciences.1 Smart cities
research has focused on the complex entanglements
of digital technologies, governance, and social–political
life (Antenucci, 2019; Datta, 2015; Dourish, 2016;
Gabrys, 2014b; Marvin et al., 2016; Tironi and
Valderrama, 2018). However, environments that are
becoming sites for smartification such as forests have
yet to be extensively analyzed for their social and polit-
ical impacts, even when forests have been test sites for
developing smart city technologies (Cuff et al., 2008;
Gabrys, 2016a; cf. Bakker and Ritts, 2018). For
instance, digital technologies facilitate practices orient-
ed toward measurement, data collection, and automa-
tion, often by expert or elite actors through processes
that can exacerbate inequalities. These dynamics have
been extensively studied within online spaces and in
relation to economic and racial inequality (Benjamin,
2019; Eubanks, 2017; Noble, 2018), yet are less well
understood in relation to the environmental inequal-
ities that materialize or are reinforced, especially in
locations that span from the urban to the rural, and
from the Global North to the Global South.2 The influ-
ence of emerging digital technologies on the inhabited
and social spaces of forests is less well documented. At
the same time, diverse types of “forests” can emerge
through digital technologies, which differently sense,
value, and assess forest processes and relations
(Gabrys, 2012). The promissory aspects of the
Internet of Trees thus present as many points of con-
sideration as the more comprehensively discussed
Internet of Things. Research in this area is needed in
order to further establish how these technologies both
enable and constrain particular modes of governance
and engagement with forests. Without this research, the
development of smart environments such as smart for-
ests runs the risk of producing social–political inequi-
ties and undemocratic governance, as has been

identified with smart cities (Shelton et al., 2015;
Zook, 2017).

Smart cities literature has demonstrated how the
digital rewiring of environments has consequences for
the experience, governance, and organization of smart
urban environments (Bulkeley et al., 2016; Luque-
Ayala and Marvin, 2015; Rose, 2017). Furthermore,
“smart” is a contested term, operationalized by tech-
nology companies, governments, NGOs, and commu-
nity groups to advance distinct development or
governance agendas (Hollands, 2008; cf. Dalton
et al., 2019; Schick and Winthereik, 2013). The prolif-
eration of smart technologies, infrastructures, and ini-
tiatives can shift the locus of governance from often
local or urban governmental actors to more remote
and global corporate actors that control technologies
and networks, thereby transforming governance and
participation (Barns et al., 2017; Meng and DiSalvo,
2018; Shelton and Lodato, 2019). While some insights
from smart cities and smart infrastructure literature are
transferrable to an understanding of wider smart envi-
ronments, there also are numerous unstudied effects
and transformations that are unique to these locations.
By focusing on overlooked environments, technologies,
and communities, research on smart environments such
as forests can investigate what “smart” as a concept
and development framework operationalizes within a
wider range of locations.

Such research can also address how planetary gov-
ernance, democratic engagement, and environmental
processes and relations are transformed through these
technologies. These transformations can have
deleterious consequences that are obscured by techno-
optimistic narratives that promote connecting technol-
ogy with “nature” at a “planetary scale.” Technology
companies, along with researchers, are beginning to
focus more centrally on developing digital solutions

Figure 2. Internet of Trees, European Space Agency.
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to environmental problems, from “AI for Earth,” to
the Internet of Trees for sensor-based forest manage-
ment (Joppa, 2017; Microsoft, n.d.; World Economic
Forum, 2018). Digital technologies are used to monitor
forest health and disease, track logging activities, pre-
dict changes in forest structure, optimize resource use,
and map urban forest networks (Campbell, 2017; Lu
et al., 2010). Moreover, the increasing occurrence of
forest fires worldwide is now spurring the development
of drones, wireless sensor networks, and machine learn-
ing to detect and extinguish fires as they occur in real
time (Borba Neumann et al., 2018). Smart forestry
might even appear to be an augmentation, promotion,
and advancement of the smart city, as the controversial
Sidewalk Labs development by Alphabet in Toronto
has emphasized the benefits of smart ecosystems as
part of its smart urban infrastructures (cf.
Nitoslawskia et al., 2019).

In this way, digital technologies are often presented
as necessary if unproblematic tools for meeting ambi-
tious environmental objectives, including climate
change targets that are often more planetary in scope.
For instance, the 2011 Bonn Challenge associated with
the International Union for Conservation of Nature
(Dave et al., 2017) and the New York Declaration on
Forests (2014) have expressed a commitment to restore
150 million hectares of deforested and degraded land
worldwide by 2020, and 350 million hectares by 2030.
However, this objective would require planting an esti-
mated 300 billion trees in less than two decades. Drone
companies are therefore developing “precision forest-
ry” techniques to undertake mass aerial planting of
billions of trees per year to meet climate objectives.3

Yet the locations and communities that would be
involved in these practices are often underspecified
when focusing on forests as a problem of metrics,
data, and digital devices. At the same time, reforesta-
tion initiatives are at turns promoted and critiqued,
and often the contestations over the benefits of these
measures are based on environmental data that is
meant to prove or question whether the preservation
or augmentation of forests will have its stated effects,
irrespective of communities’ social–political engage-
ment with these forests.4

Many of these assessments of environmental change,
along with mitigating actions to be taken, are based on
environmental datasets that translate into practices of
environmental management and planetary governance
(see also Gabrys, 2016b). These practices are based on
intersecting and expanding environmental datasets that
present the problem of environmental change through
a particular set of metrics that in turn legitimate spe-
cific technological interventions to meet targets for
averting environmental catastrophe. Such practices
could be oriented toward planetary governance

objectives for meeting climate change targets, but
could lead to less responsive governance practices in
actual forest contexts. Moreover, while they can poten-
tially introduce new and additional problems for
social–political inequality related to environments and
land use, these same technologies can also contribute to
the very problem of environmental change that they
would avert by requiring significant energy and mate-
rial resources for computer hardware and data process-
ing (Dobbe and Whittaker, 2019; Gabrys, 2011, 2014a).
The increased production of data, as well as advance-
ment in data analytics and automation, are promoted
as strategies for more effectively managing forest eco-
systems (Pinho et al., 2018). Decisions can be taken
about how to manage forests based on digital sys-
tems—indeed these decisions are seen to be “less vul-
nerable to politicization” (Joppa, 2017). Yet as
extensive research in digital social research and science
and technology studies demonstrates, the use of digital
technologies does not elide politics, but rather can
inform and extend politics into new engagements.
The following section identifies five key digital practices
that are materializing for forest management and plan-
etary governance that give rise to pressing social–polit-
ical concerns.

Digital practices for governing

environmental change

From cryptocoin for forest protection to contestations
over satellite data tracking Amazon deforestation,
through to sensor networks forming an Internet of
Trees, forests are transforming through digital technol-
ogies for addressing environmental change. I outline
here how these social–political effects include digital
practices of observation (Benson, 2010; Helmreich,
2009; Lehman, 2018), automation and optimization
(Mackenzie, 2017; Stacey and Suchman, 2012), data-
fication (Lippert, 2016; Nafus, 2016), participation
(Isin and Ruppert, 2015), and technological regulation
and transformation (Ascui et al., 2018). By attending to
these transforming intersections of environments, data,
digital technologies and social life, it might be possible
to more fully identify and address the consequences of
smartification as a response to the planetary crisis of
environmental change.

Observation

There are numerous ways that digital technologies have
contributed to the observation of forests. Some of these
practices are not new, with remote sensing of forests
having taken place for many decades now. However,
the scale of observation, along with the fusion of
remote sensing with additional and new digital
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technologies, is contributing to what is arguably a trans-
formed condition of planetary and forest observation
(cf. Goldstein, 2019; Loukissas, 2016; Nadim, 2016).
Because forests are increasingly situated as key resources
to preserve and manage, environmental change objec-
tives are driving the demand for new technologies of
observation to ensure the integrity of forests. For
instance, because up to 80% of deforestation has now
been attributed to corporate supply chains, there are an
increasing number of digital technologies from remote
sensing to blockchain that are used to monitor, scan,
and validate supply chains of forest-intensive products,
including timber as well as palm oil, soy, and beef (cf.
Howson et al., 2019). Through the use of such observa-
tional technologies, however, forests might primarily
become visible as stores of timber or carbon sinks, but
not as sites that sustain cultural narratives or indigenous
cosmologies. In other words, observational technologies
could always already assume that the forest is a resource
to be managed (de la Cadena 2015).

The introduction, expansion, and interconnection of
observational technologies within forest environ-
ments—whether through remote sensing, ubiquitous
computing, or supply-chain monitoring—raise the
question of how smart forests emerge as particular
developments for managing environmental change
and policy. From forest sites in Brazil, Paraguay, to
Indonesia and Thailand, the ways that forests are
observed also informs how they are governed and man-
aged—not just for environmental change objectives but
also for resource extraction. Observational technolo-
gies of tracking and tracing specifically configure, as
well as propose, ways of acting on forests (Bj€ork
et al., 2011). Technologies and techniques for observing
deforestation mobilize and legitimate distinct actors to
address this problem, while multiple other actors are
often excluded from these same sites of social–political
relevance and action. Observation is further entangled
with strategies such as transparency and auditing
(Ananny and Crawford, 2018; Asdal, 2008;
Ballestero, 2012), which are proposed as ways to
better manage the problem of deforestation but that
also present distinct limits to the actors and practices
that might be involved in evidentiary techniques. The
analysis of observational technologies and networks is
then a key area of study for understanding how forests
become a global environmental problem through spe-
cific observational practices, as well as the social–polit-
ical effects of these environmental data practices.

Automation and optimization

Forest fires are now increasingly common around the
world, and the surge in fire frequency and intensity has
been attributed to climate-change related factors. In

response, technologies for detecting and suppressing
fires have emerged that use artificial intelligence, infra-
red video, image software, wireless sensor networks,
and UAVs to detect and manage fires. Digital technol-
ogies are now becoming automated and optimized
components within forest ecosystems. At the same
time, the management of fire landscapes has direct con-
sequences for communities living in forests and forest-
edge landscapes. The distribution and ongoing
operation of these digital infrastructures can influence
forest land-use activities and have differential effects
for communities that may benefit to greater or lesser
degree from these warning and mitigation systems if
deployed at scale.

From locations spanning the northern boreal forests
to the Mediterranean to the western areas of North
America, automation and optimization techniques are
being developed to manage environmental change in
the form of increased fires. The consequences of auto-
mating forest management functions in these ways,
however, have not been studied in detail. The develop-
ment and installation of monitoring technologies will
raise questions about who organizes and runs these
networks, and how data is gathered, stored, and oper-
ationalized. Techniques of automation and optimiza-
tion could align or conflict with existing forest
practices across stakeholder groups, from scientists to
community groups and citizen scientists, and create
power imbalances around the digital forest practices
that are implemented. Smart forest projects using arti-
ficial intelligence, wireless sensor networks, and UAVs
to detect and manage real-time forest events especially
in the form of forest fires demonstrate how distinct
decisions are made about what to automate and opti-
mize—and that these are not de-politicized decisions,
but rather emerge as differently configured political
engagements that span machine logics, data analytics,
situated forests practices, policy, and environmental
change. Moreover, as the processes of artificial intelli-
gence change through ongoing engagement with these
environments, different social–political encounters
emerge as they are informed by digital operations.
These practices also register within a securitization of
environments, where the tracking and tracing opera-
tions of drones (Suchman et al., 2017) and the distinct
regimes of local, national, or planetary governance,
security, and control that these technologies generate
(Kaplan and Parks, 2017) become central to the man-
agement of environmental change.

Datafication

Forests are now sites of intensive data production. Not
only do they generate data from advancing practices of
earth observation but also they are locations where
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sensors, LIDAR, and other data-generating technolo-
gies such as Internet of Trees networks monitor envi-
ronmental conditions. Real-time data from these
installations is meant to allow for an immediate under-
standing of forest dynamics, which in turn are meant to
provide an indication of related events in nearby envi-
ronments. Data becomes a distinct object and tool of
governance, where environmental processes and enti-
ties are increasingly datafied in order to address envi-
ronmental change. Forest-specific data analytics such
as “Treemetrics” are meant to offer new techniques for
resource management, environmental governance, and
decision-making. And datafied social networks present
new data-oriented ways to facilitate care for forest
spaces. In these conjugations of “trees, people and
data” (Svendsen and Gunther, 2016), new approaches
to land management then occur through mapping and
analyzing forest-related networks.

Decisions about what to measure and monitor, the
formation of evidence in support of environmental
change objectives, and the extent to which this data is
able to effect change are part of a complex set of
social–political struggles about how to make forests
matter. The production of data in forests is neither
self-evident nor is it all-encompassing, since some for-
ests might also be sites of more focused study and
attention, while others become less central in science
and policy discussions—often depending upon the
carbon storage potential of forests (Ehrenstein and
Muniesa, 2013; Gabrys, 2009). Yet the use of data tech-
nologies and practices in multiple forests worldwide,
from Internet of Things (IoT) to data analytics and
carbon emissions monitoring, are informing how envi-
ronmental change objectives are formed and addressed.
Distinct digital practices transform forests into data in
order to act on environmental change. (cf. Latour,
1999; Walford, 2012). Yet as often as not, these prac-
tices leave out accounts of environments that do not fit
with prevailing modes of research, governance, or
social–political interaction (Bowker, 2000; Lippert,
2015). The politics of expertise that emerge through
the datafication of forests can also influence whether
citizen data is able to register as an alternative or
admissible form of evidence, and whether diverging
governance objectives can co-exist. The struggles that
emerge over data in and about forests are not merely a
matter of creating a more comprehensive account of
environmental processes. Instead, they can challenge
the social–political conditions and cosmologies by
which forests come to be relevant (cf. Verran, 2002).
By analyzing the social and political consequences of
the increasing datafication of forests (Turnhout et al.,
2013; cf. Couldry and Yu, 2018), it might be possible to
attend to how emissions inventories, resource metrics,
and related policy instruments align or conflict with

community processes for valuing and evaluating

forests.

Participation

From platforms such as Global Forest Watch and

open-source software such as I-tree, as well as defores-

tation alerts and hotlines, and participatory mapping

of forest boundaries using GPS and Open Street Map

to establish community rights, there are a number of

technologies emerging that are meant to enable partic-

ipation with forests and forest protection. In addition,

civic apps and search engines variously provide mech-

anisms to support reforestation measures, from the

Treedom platform for supporting tree planting and cal-

culating carbon offsets to the Ecosia search engine that

donates a portion of profits to reforestation initiatives

around the world. Digital technologies are promoting

new and forest-specific forms of participation, which

also intervene in various ways in forest conditions,

thereby redistributing and changing forms of forest

governance and engagement.
Whether through deforestation “watch” platforms,

apps for reporting illegal logging, or monitoring tech-

nologies such as acoustic sensors or camera traps for

capturing poaching, participatory technologies make

the forest present, senseable, and actionable in certain

ways, for distinct actors, and through specific datasets.

These participatory apps, platforms, and sensing devi-

ces are often most oriented toward tracking deforesta-

tion, while also supporting and funding reforestation

initiatives, through what might be referred to as

“mediatized worlds” (Hepp and Krotz, 2014). Such

participatory technologies often operate as part of the

usual matrix of smart city toolkits, but it is less well

understood how they could facilitate or reshape civic

engagement with forests and environmental change.

These digital modes of engagement could propagate

distinct exclusions while enabling or delimiting specific

engagements with diverse and situated forest commu-

nities (cf. Agrawal, 2001; Brammer et al., 2016).

Moreover, while urban forests are on the rise, larger

and more remote forests are increasingly engaged with

through participatory technologies and practices that

facilitate engagement with these often-distant environ-

ments. For better or worse, these same dynamics of

remote participation could introduce specific regimes

of power and politics in the control and management

of forests that come to be seen as planetary resources,

as occurred recently with the fires in the Amazon. By

considering civic technologies for forest engagement

within the larger context of environmental participa-

tion (Chilvers and Kearnes, 2016; Lane et al. 2011)

and planetary governance, it might be possible to
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consider how digital technologies facilitate or impede

distinct modes of participation.

Regulation and transformation

The proliferation of digital technologies within and in

relation to forests is now contributing to distinct prac-

tices for regulating and transforming these environ-

ments. As mentioned at the introduction to this

commentary, “precision forestry” that uses UAVs, sen-

sors, computer models, data analytics, and artificial

intelligence to expedite reforestation initiatives is one

key example of how these initiatives are developing to

automate environmental management. The ways that

more mass-scale and automated planting might alter

environmental engagements is an overlooked area of

research. For instance, planting trees is often discussed

as a civic project that advances and enhances demo-

cratic engagements with environments (B€ackstrand
and L€ovbrand, 2006; Fisher et al., 2015). It is less

clear what the civic or political equivalent of planting

trees by drone might be.
Start-up technology companies worldwide are now

creating digital devices and data practices for regulat-

ing, and in turn, transforming forest environments.

Digital technologies such as UAVs and their networks

are used in support of reforestation and to respond to

specific environmental objectives, policies, and targets

that are often formed through practices of planetary

governance (cf. L€ovbrand and Stripple, 2006). In the

process, these practices are organizing approaches to

forests as technologies that are meant to offer “natural

climate solutions” by optimizing and augmenting forest

processes. As digital devices and data practices prolif-

erate in forests spaces, so too do forests transform into

environmental infrastructures (Bruun Jensen, 2015)

and technologies for responding to and mitigating envi-

ronmental change. These transformations could gener-

ate different relations across human and nonhuman

communities, which are activated or affected by these

emerging techno-ecologies (Hinchliffe, 2007; cf. Kohn,

2013; Puig de la Bellacasa, 2015). The smart forest

becomes at once a space of regulation and transforma-

tion. Technologies that would govern these environ-

ments in order to address and mitigate environmental

change are also transforming them into entities that are

meant to operate as technologies. Smart forest technol-

ogies and systems thus contribute to the reworking of

what a forest is and how it operates. Such a point of

orientation could expand existing approaches to smart

and digital technologies, while reworking conventional

understandings of what counts as a technology, by

researching how forests transform into technologies

through technical and policy interventions.

Conclusion: Questioning planetary

governance through the smart forest

Smart environments are now expanding beyond smart

cities to encompass many different milieus, from smart

forests to smart oceans and smart agriculture.

Technology companies, environmental scientists, and

state actors are contributing to the development and

expansion of these digital systems often to address

the urgent problem of environmental change. But

these ambitions also become evident as emerging plan-

etary modes of governance that have yet to be ade-

quately assessed for their social–political effects.

Technologies that operate at the “scale” of the plane-

tary can operationalize universal and less accountable

interventions into environments (Gabrys, 2018). As a

relatively overlooked area within social sciences

research, the problem of smart environments and the

data that is collected, stored, and operationalized to

manage these spaces is one that requires greater atten-

tion to the social–political relations and inequalities

that emerge with and through these systems, as well

as the transformations that occur when environments

operate as technologies.
“Smart Forests” is the topic of a larger research

project now underway that this text outlines.5 This

project investigates the role of digital devices in recon-

figuring forests as socio-technical ecologies by examin-

ing the power relations and modes of governance that

are generated through digital practices of observation,

automation, optimization, datafication, participation,

regulation, and transformation. These technologies

and operations raise key questions about smart envi-

ronments as they are developing beyond the smart city,

how democratic engagement with environmental

change might be extended or limited, and what

modes of planetary governance are mobilized in rela-

tion to forest spaces, communities and practices. Such a

research focus seeks to demonstrate the consequences

and possibilities that digital technologies have for new

modes of environmental politics and sociality as they

develop in response to environmental change.
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Notes

1. Smart environment are, however, a long-standing and

increasingly popular topic within computer science. For

instance, see Cook and Das (2005).
2. Practices of measurement and inequality are well estab-

lished in relation to forests through analyses of the

REDDþ mechanism and other policy measure to prevent

deforestation. However, the effects of increasingly digital

forms of observation and measurement (as they also scale

up to “smart” development projects) in relation to forest

environments have yet to be extensively studied. On

REDDþ, see for example Gupta et al. (2012) and

Paladino and Fiske (2017).
3. There are also proposals now to plant a trillion trees. See

https://www.trilliontrees.org. Related to the topic of pre-

cision forestry is the emerging body of research on

“precision agriculture” that is of relevance to this discus-

sion, but for which there is no space to address here.
4. For an example of a critique of reforestation proposals,

see http://www.realclimate.org/index.php/archives/2019/

07/can-planting-trees-save-our-climate.
5. Smart Forests, https://smartforests.net.
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