
                                                               
                                   

 

 

  

Cambridge-INET Working Paper Series No: 2020/08 

Cambridge Working Papers in Economics: 2021 

 

 

 
EQUILIBRIUM SOCIAL DISTANCING 

 

 

Flavio Toxvaerd 
(University of Cambridge) 

 
 
 

 
 
 
This paper presents an economic model of an epidemic in which susceptible individuals may engage in 
costly social distancing in order to avoid becoming infected. Infected individuals eventually recover and 
acquire immunity, thereby ceasing to be a source of infection to others. Under non-cooperative and 
forward-looking decision making, equilibrium social distancing arises endogenously around the peak of 
the epidemic, when disease prevalence reaches a critical threshold determined by preferences. 
Spontaneous, uncoordinated social distancing thus acts to flatten the curve of the epidemic by reducing 
peak prevalence. In equilibrium, social distancing stops once herd immunity sets in, but acts to extend 
the duration of the epidemic beyond the benchmark of a non-behavioral epidemiological model. 
Comparative statics with respect to the model parameters indicate that the curve becomes flatter (i) the 
more infectious the disease is and (ii) the more severe the health consequences of the disease are for the 
individuals. 

   Cambridge Working Papers in Economics 

Faculty of Economics 



Equilibrium Social Distancing

Flavio Toxvaerd∗, †

Preliminary draft, March 2020.

Abstract. This paper presents an economic model of an epidemic in which

susceptible individuals may engage in costly social distancing in order to avoid

becoming infected. Infected individuals eventually recover and acquire immunity,

thereby ceasing to be a source of infection to others. Under non-cooperative and

forward-looking decision making, equilibrium social distancing arises endogenously

around the peak of the epidemic, when disease prevalence reaches a critical thresh-

old determined by preferences. Spontaneous, uncoordinated social distancing thus

acts to flatten the curve of the epidemic by reducing peak prevalence. In equilib-

rium, social distancing stops once herd immunity sets in, but acts to extend the

duration of the epidemic beyond the benchmark of a non-behavioral epidemiologi-

cal model. Comparative statics with respect to the model parameters indicate that

the curve becomes flatter (i) the more infectious the disease is and (ii) the more

severe the health consequences of the disease are for the individuals.

JEL Classification: C73, I18.

Keywords: Economic epidemiology, social distancing, non-pharmaceutical inter-

ventions, infection control.

“...[the Black Death made people] shun and flee from the sick and all that pertained to

them, and thus doing, each thought to secure immunity for himself”.

- Boccaccio’s The Decameron (1353)

1. Introduction

The world is currently gripped by the COVID-19 pandemic. At the time of writing,

there is no vaccine available against this virus and no antiviral therapies to increase the

speed of recovery. The only available strategies to stem the spread of the disease are

behavioral interventions such as social distancing. Social distancing refers to any non-

pharmaceutical intervention, taken by individuals or by policy makers, which acts to

decrease the contact rate between infected and susceptible individuals.1 Reducing the

∗Faculty of Economics, University of Cambridge. Email: fmot2@cam.ac.uk.
†Generous feedback from Harjoat Bhamra, Frederick Chen, Eli Fenichel, Chryssi Giannitarou, Robert

Rowthorn and Anthony Yates is gratefully acknowledged.
1When social distancing is imposed on a sub-population by a government, it is often referred to as

quarantines; when it is voluntary and chosen by individuals themselves, it is known as self-isolation.
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contact rate is often held to be the central tool to “flatten the curve”, i.e. to reduce

disease incidence and hence the number of infected individuals. In some countries such

as the United Kingdom, governments have refrained from directly imposing restrictions

on individuals and have instead appealed to citizens to act in the interests of society and

to voluntarily withdraw from the public space. The question is then, when left to their

own devices, how much social distancing will there be in equilibrium? And how does

this depend on biological and preference parameters? The United Kingdom’s response to

the COVID-19 pandemic and the scientific research underlying it is heavily predicated on

behavior changes that reduce the contact rate in the population (see Ferguson et al., 2020,

Ferguson et al. 2006 and Halloran et a., 2008). The overwhelming focus of governments’

responses to the epidemic on behavioral responses of the population makes it incumbent

upon researchers to be clear about how and why individuals act as the epidemic unfolds.

What are their constraints and incentives? Will they voluntarily comply with directions

given by public health offi cials or do governments need to compel certain behaviors, as

has now been seen across the world?

On current evidence, much of the thinking around social distancing is based on epi-

demiological simulations and modeling that eschew a nuanced analysis of human behavior

in the face of epidemics. Specifically, most of the modeling is based on assumptions about

how individuals will behave under a set of interventions such as travel restrictions, school

closures and bans on sporting and cultural events and mass gatherings. But since behav-

ior is the central issue, we must be careful about how we model it and strive to incorporate

behavioral considerations more fully into our analysis of disease control. We cannot sim-

ply rely on traditional analyses that do not model behavior but augment these with

ad-hoc interventions that rely on guesses about compliance rates. The standard epidemi-

ological models are an excellent starting point for analysis, but must be made complete

by fully integrating them with more sophisticated models of human decision-making and

behavior. Empirical evidence shows that individuals indeed respond to disease outbreaks

by changing behavior (see e.g. Kumar et al. 2012, Bayham et al., 2015, Bayham and

Fenichel, 2016 and references therein).

Lauren Gardner, a public health expert and modeler of epidemics at Johns Hopkins,

recently stated that

“When people change their behavior, [epidemiological] model parameters are no longer

applicable.”2

In other words, we must revisit the traditional models to fully account for human

behavior. This paper is a contribution towards this goal.

This paper analyzes social distancing by means of a continuous-time, infinite-horizon

2https://www.nytimes.com/2020/03/13/us/coronavirus-deaths-estimate.html?referringSource=articleShare
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economic-epidemiological model of an infectious disease. A closed population of indi-

viduals face a disease of the susceptible-infected-removed variety, which is an appropri-

ate setting for analyzing the spread of COVID-19.3 At each instant, individuals non-

cooperatively decide whether to engage in costly social distancing and in doing so, trade

off the benefits of social interactions against the risk of contracting the communicable

disease.

I find that each individual’s optimal strategy is described succinctly in terms of a

threshold infection probability, which depends on aggregate disease prevalence. For suf-

ficiently low disease prevalence, as may be found at the beginning or the end of an

epidemic, the risks from social interactions are small and thus individuals choose not to

socially distance themselves. For higher levels of disease prevalence, the risk of exposure

may outweigh the benefits and so individuals switch to social distancing. In this case,

aggregate equilibrium disease prevalence remains constant through time until suffi ciently

many individuals have gone through the cycle susceptible → infected → recovered to

cause disease prevalence to fall without further social distancing. In a sense, individuals’

equilibrium social distancing decisions act as a flow rate regulator between healthy and

recovered individuals, where the underlying uncontrolled flow rates are determined by

the biological features of the disease.

The analysis emphasizes that while the equilibrium extent of social distancing is not

socially optimal, aggregate equilibrium infection across the epidemic is lower than what

a traditional non-economic epidemiological analysis would suggest. In other words, a

purely non-behavioral model would tend to overstate the severity of the epidemic relative

to one that features rational behavior. While this by no means implies that equilibrium

is socially optimal, it does mean that the worst-case scenario under a laissez-faire policy

is not that predicted by purely biological considerations.4

To further contrast the predictions of the economic model with those of a purely epi-

demiological model, I characterize the equilibrium dynamics in terms of several properties

of the aggregate disease dynamics, namely in terms of peak prevalence, duration and fi-

nal size distribution. I find that equilibrium social distancing will tend to reduce peak

prevalence, increase duration and decrease cumulative incidence, which can be thought

of as an inverse measure of herd immunity. Interestingly, I find that the comparative

statics predictions of the of economic model are the reverse of those in the uncontrolled

epidemiological model. For example, peak prevalence and cumulative incidence are both

increasing in the infectiousness of the disease in the biological model, whereas they are

3This model is also known as that of a general epidemic. See Kermack and McKendrick (1927) for
the original treatment. Disease-induced deaths can be incorporated explicitly in the model but are not
considered in order to simplify the exposition.

4In the present model, equilibrium will not be socially optimal since individuals do not internalize
the positive externalities that flow from their decisions to socially distance themselves.
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decreasing in the economic model. This is because the endogenously determined social

distancing decisions of the individuals react to higher infectiousness by engaging in more

protective behavior.

The formal economic analysis of social distancing is sparse. Sethi (1978) analyzes the

problem of a social planner in the context of the simpler susceptible-infected-susceptible

SIS model of disease in which recovered individuals are not immune to further infection.

Chen et al. (2011), Gersovitz (2010) and Toxvaerd (2019) consider equilibrium social

distancing in the SIS model under decentralized decision-making, while Rowthorn and

Toxvaerd (2015) consider the interaction between social distancing and treatment with an-

tivirals, both in equilibrium and under central planning. Toxvaerd and Rowthorn (2020)

consider the equilibrium and socially optimal inducement of immunity via vaccination and

treatment. Reluga (2010) analyzes a differential game model of social distancing with

a finite horizon, no discounting and (eventual) vaccination. Chen (2012) studies social

distancing in the susceptible-infected-recovered SIR model under more general matching

functions than the standard mass-action specification used in the epidemiological litera-

ture and finds that for some specifications of the matching function, there may be scope

for multiple Nash equilibria at each point in time, making it diffi cult to predict the course

of the epidemic.

In contrast to these papers, I consider an SIR framework in which individuals are

perfectly forward-looking but where each is small relative to a large population, thereby

side-stepping the diffi culties involved in differential games. Furthermore, in the present

setting there is a unique equilibrium path through the epidemic, allowing me not only

to predict of the course of the epidemic (within the model) but also to perform mean-

ingful comparative statics with respect to biological and preference parameters. Last,

Fenichel et al (2011) and Fenichel (2013) consider social distancing in the SIR model

when individuals have concave utility functions. Fenichel (2013) considers the properties

of decentralized equilibrium and socially optimal social distancing when susceptible, in-

fected and recovered individuals can vary their exposure levels differentially. He argues

that in such a setting, a second-best policy that requires all individuals to socially distance

themselves to the same extent may be inferior to a laissez-faire policy. Here, the main

focus is on the differences between the dynamics under equilibrium behavior and those

in the uncontrolled epidemiological model. In addition, the dependence of the dynamics

on preference parameters is explored and the present results are thus complementary to

his analysis.

The paper is organized as follows. In Section 2, I present the economic-epidemiological

model and briefly review the classical analysis of the susceptible-infected-recovered model.

This is to set the stage for the subsequent analysis of individual decision-making and
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Figure 1: States and Flows in the SIR Model.

characterization of equilibrium dynamics under social distancing, contained in Section 3.

In Section 4, I discuss the results and conclude.

2. The Model

The model is an economic extension of the classical susceptible-infected-recovered model

and is simple to describe. Time is continuous and runs indefinitely. A closed population

consists of a continuum [0, 1] of infinitely lived individuals who can at each instant t ≥ 0

each be in one of three states, namely susceptible or infected or recovered. The measure

of susceptible individuals is S(t), the measure of infected (and infectious) individuals is

I(t) and the measure of recovered individuals is R(t). Because the population size is

normalized to one, these measures can be interpreted as fractions. Henceforth, I(t) shall

be referred to as disease prevalence.

At each instant, the population mixes homogeneously. This corresponds to pair-wise

random matching where each individual has an equal chance of meeting any other indi-

vidual, irrespective of the health status of the two matched individuals. A match between

an infected and a susceptible individual may infect the susceptible. The rate at which

infection is transferred in such a match, absent social distancing, is denoted by β > 0.

This parameter captures the infectivity of the disease. Recovered individuals are immune

to further infection and also cannot carry the disease. Coupled with the assumption of

homogeneous mixing, this means that the aggregate rate at which susceptible individuals

become infected is given by βI(t)S(t). This means that the rate of new infection, or

disease incidence, is proportional to disease prevalence. The basic model compartments

with states and flow rates is illustrated in Figure 1.

Last, infected individuals spontaneously recover at rate γ ≥ 0. This means that on

aggregate, the rate at which recovery occurs is γI(t). Throughout, I will maintain the

following assumption:
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Assumption 1: β > γ ≥ 0.

This assumption makes the analysis more interesting and will be explained below. To

model the possibility of engaging in social distancing, assume that the individuals can

affect the rate of infection by controlling the rate at which they expose themselves to

infection. In particular, at each instant t ≥ 0, each individual i ∈ S(t) non-cooperatively

chooses exposure level εi(t) ∈ [0, 1], at personal cost (1− εi(t))c ≥ 0. Effectively, this re-

duces the rate of infection for the individual to εi(t)βI(t). This formalization captures the

notion that, ceteris paribus, exposure is desirable. Equivalently, this means that engaging

in social distancing is costly to the individual. In this analysis, infected and recovered

(and therefore immune) individuals have no private benefits from social distancing and

are assumed to not engage in any preventive efforts.

To complete the economic model, assume that the individuals in the susceptible,

infected and recovered classes earn flow payoffs πS , πI and πR respectively and discount

the future at rate ρ > 0. It will be assumed that

πS ≥ πR ≥ πI

In contrast to most of the literature on controlled epidemics, I allow for the possibility

that πS > πR. This case captures the possibility of after-effects, i.e. that although an

individual recovers from the disease, it may have negative long-term consequences on

health and well-being to have been infected.

In what follows, I will impose the following restriction:

Assumption 2: c < β
(ρ+γ)(ρ+β)

[(ρ+ γ)πS − πI + (γ/ρ)πR].

This assumption ensures that social distancing is state dependent in equilibrium.

2.1. The Epidemiological Benchmark. In this subsection, the classical SIR model

will briefly reviewed. This is to help build intuition for the equilibrium analysis and to

better contrast the equilibrium dynamics with those in the uncontrolled biological model.

The dynamics of the epidemic is described by the following system of differential

equations:

Ṡ(t) = −βI(t)S(t) (1)

İ(t) = I(t) [βS(t)− γ] (2)

Ṙ(t) = γI(t) (3)

S(t) = 1− I(t)−R(t) (4)

S(0) = S0 > γ/β, I(0) = I0, S0 + I0 = 1 (5)
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Figure 2: Dynamics of susceptible, infected and recovered in classical SIR model.

It follows from the equations that Ṡ(t) ≤ 0 and Ṙ(t) ≥ 0, but it turns out that the

evolution of disease prevalence I(t) is non-monotonic. The restriction that S0 > γ/β

ensures that the epidemic can take hold in the population. With this assumption in

place, the overall behavior of the system can be described as follows. The measure of

susceptible individuals S(t) decreases over time while the measure of recovered individuals

increases over time. In contrast, the measure of infected individuals initially increases,

peaks when S(t) = γ/β and then tends to zero. The basic evolution of the uncontrolled,

non-behavioral SIR epidemic is illustrated in Figure 2.

Let I denote the peak prevalence of the epidemic. The level I is the highest possible

disease prevalence when there is no social distancing whatsoever. Peak prevalence for the

SIR epidemic is

I ≡ S0 + I0 −
γ

β
+
γ

β
log

(
γ

βS0

)
(6)

The SIR model cannot be fully characterized analytically. Nevertheless, the limiting

distribution of health states can be characterized, which shall prove useful in the analysis

of the economic model below. Well-known steps lead to the central result in epidemiology

that the final epidemic size is characterized by the equations5

S(∞) = 1−R(∞) = S(0) exp (−R(∞)R0) ≥ 0 (7)

where R0 ≡ β/γ is the basic rate of reproduction.

The basic rate of reproduction represents how many secondary infections are caused

5See Brauer and Castillo-Chavez (2012).
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by the insertion of a single infected individual into a fully susceptible population. The

second equation in (7) defines R(∞) implicitly and the first equation defines S(∞) as the

residual, which is possible since I(∞) = 0. The limiting proportions S(∞) and R(∞)

are easily found for particular parameterizations of the model. As is to be expected,

cumulative incidence R(∞) is an increasing function of the infectivity parameter β and

a decreasing function of the rate of spontaneous recovery γ.

There are two important insights that follow from equation (7). First, in the limit the

disease must die out and no infected individuals remain. Second, and more importantly,

when the disease dies out, there is generically a positive measure of susceptibles remaining

in the population. This shows that what causes the disease to die out is not that there

is eventually a lack of susceptibles that can be infected. Rather, it dies out because the

measure of recovered individuals, which must grow over time, becomes so large that the

contact between infected and susceptible individuals becomes too rare for the infection

to be passed on. Infected individuals have increasingly long sequences of matches with

recovered individuals (or between themselves) and so, on expectation, will recover before

having the opportunity to pass on the infection to a susceptible individual. Thus with

increasing frequency, the chains of infection are broken. The remaining susceptible indi-

viduals are said to be protected by herd (or population) immunity as they benefit from

the protection that the recovered individuals give.

The basic rate of reproduction plays a central role here. If R0 < 1, then infection

cannot take hold in the population. If R0 > 1, then infection first flares up and then

tapers off. In the characterization of equilibrium social distancing, the basic rate of

reproduction will play a prominent role as well, not as an aim in itself, but as a feature

of the equilibrium dynamics.

The economic version of the model inherits a number of simplifying assumptions

from the classical model. First, there is only one disease and one level (or severity)

of infection. In particular, this rules out the possibility of superinfection by different

strains of the disease. Second, the incubation period has zero length. This means that

the moment that an individual is infected coincides with the onset of symptoms, so no

infected individual acts under the mistaken belief that he or she is susceptible. Last,

once an individual becomes infected, he or she immediately becomes infectious to other

individuals (i.e. the latency period has zero length). Relaxing any of these assumptions

constitutes possible extensions of the present work.

Last, the analysis is based on the implicitly assumption that only susceptibles ever

engage in social distancing, as strictly self-interested infected or recovered individuals

face no risks from social interactions.
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3. Equilibrium Social Distancing

In making a decision on how much preventive effort to engage in, the individual must

trade off the net benefits of remaining susceptible (through costly prevention) and the

net benefits of exposure (with its inherent risks of becoming infected). But since the

transition from infected to recovered is beyond the influence of the individual, he or

she may treat the problem as one with only two (health) states, namely susceptible and

non-susceptible.

Let S(t) denote the set of susceptibles at time t ≥ 0. For an individual i ∈ S(t),

the social distancing decision influences his or her probability of becoming infected. Let

pi(t) ∈ [0, 1] denote that probability at instant t ≥ 0. The problem to be solved by a

susceptible individual is then given by

max
εi(t)∈[0,1]

∫ ∞
0

e−ρt {(1− pi(t))[πS − (1− εi(t))c] + pi(t)VI} dt (8)

s.t. ṗi(t) = εi(t)βI(t)(1− pi(t)), pi(0) = pi0 (9)

where the value of transitioning into the infected state can be calculated as6

VI =
1

ρ+ γ

[
πI + γ

πR
ρ

]
(10)

The value can be understood as follows. Once infected, the individual experiences flow

utility πI until he or she recovers. From then on, the individual earns flow utility πR in

perpetuity. The recovery date is governed by a Poisson process with rate γ and cannot

be influenced by the individual.7 The value VI is simply the expected discounted lifetime

utility of an individual in the infected state. Last, observe that

lim
γ→0

VI =
πI
ρ
, lim

γ→∞
VI =

πR
ρ

(11)

In steady state, ṗi(t) = 0. Assuming that the agent has positive exposure, this means

that in steady state, either the individual has become infected at some point in time

t ≥ 0 so pi(t) = 1 (but has recovered since), or infection has died out so I(t) = 0 before

the individual became infected, in which case he or she remains susceptible in perpetuity.

Note that no individual can influence the evolution of disease prevalence and this

is thus taken as exogenously given. Thus each individual’s problem is solved on the

background of the aggregate evolution of the infectious disease. This is in turn described

6See the Appendix for the derivation.
7For equilibrium models with treatment augmented recovery, see Rowthorn and Toxvaerd (2015) for

the SIS case with no immunity and Toxvaerd and Rowthorn (2020) for the SIR case with immunity.
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by the following modified logistic growth equation, which is a function of the aggregate

social distancing efforts across the population of susceptibles:

İ(t) = I(t) [ε(t)βS(t)− γ] , ε(t) ≡
∫
i∈S(t)

I(t)−1εi(t)di (12)

Letting η(t) denote the current-value costate variable, the individual’s current-value

Hamiltonian is given by

H = pi(t)
1

ρ+ γ

[
πI +

γ

ρ
πR

]
+(1−pi(t))[πS−(1−εi(t))c]+η(t)εi(t)βI(t)(1−pi(t)) (13)

The optimality condition, supposing that pi(t) < 1, is given by

∂H

∂εi(t)
= η(t)βI(t) + c = 0 (14)

Thus the privately optimal policy for an individual (i.e. his or her best response function)

is given by

εi(t) =


0 for − η(t)βI(t) > c

ε for − η(t)βI(t) = c

1 for − η(t)βI(t) < c

(15)

for any constant ε ∈ [0, 1]. At first blush, this may seem like a bang-bang type solution but

as will become clear, in equilibrium the solution will have a bang-singular-bang nature.

This means that for some intervals of time (or equivalently, for some levels of disease

prevalence), the best response of individuals will be bang-bang and switch between ε∗i (t) =

0 and ε∗i (t) = 1. But during a phase around the peak of the epidemic, the best responses

will be a singular solution determined by the aggregate measure of susceptibles remaining

in the population.

The evolution of the current-value multiplier is given by

η̇(t) = ρη(t)− ∂H

∂pi(t)
(16)

= η(t)[ρ+ εi(t)βI(t)] + [πS −
πI + (γ/ρ)πR

ρ+ γ
− (1− εi(t))c] (17)

Using the indifference condition (14) with the equation η̇(t) = 0 to eliminate η(t) yields

the critical threshold of disease prevalence

I∗ ≡ ρc

β
(
πS − πI+(γ/ρ)πR

ρ+γ
− c
) (18)
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β γ c ρ πS πI πR
I∗ — + + +/— — + +
I + — 0 0 0 0 0

Table 1: Comparative statics of peak prevalence levels.

Under Assumption 2, I∗ ∈ (0, 1).8 Now the optimal strategy of a susceptible individual

can be expressed in terms of disease prevalence as follows:

εi(t) =


0 for I(t) > I∗

ε for I(t) = I∗

1 for I(t) < I∗
(19)

for any constant ε ∈ [0, 1].

The comparative statics of the threshold value I∗ and peak prevalence I are listed in

Table 1.

It is noteworthy that peak prevalence I for the purely biological model is increasing

in the infectiousness of the disease β, while the maximum equilibrium prevalence I∗ is

in fact decreasing in β. Similarly, peak prevalence is decreasing in the recovery rate γ in

the biological model but increasing in γ in the economic model. Thus the economic and

the biological models offer sharply different predictions about how the characteristics of

the disease will influence the course of the epidemic. That increased infectiousness will

decrease individuals’ incentives to self-protection is a feature also seen in the work of

Philipson and Posner (1993), Geoffard and Philipson (1996), Fenichel (2013) and Tox-

vaerd (2019). It can be understood as follows.

Controlling for behavior, i.e. holding behavior fixed, higher infectiousness necessar-

ily leads to more infected individuals. This is intuitive and in fact what the classical

epidemiological model predicts. But in the behavioral model, behavior is not fixed but

endogenously determined and changes as the environment changes. This is because the

society in the economic model is populated by utility maximising individuals who each

weigh the costs and benefits of social distancing. For these individuals, as the infectious-

ness increases, social distancing becomes more attractive because exposure now leads to

a higher probability of becoming infected. As a result, individuals respond to increased

infectiousness by scaling back exposure and socially distancing themselves. On aggre-

gate, this behavioral response acts to curb disease incidence and hence decrease peak

prevalence.

8Assumption 2 ensures that I∗ < 1. The assumption also implies the weaker condition (ρ+ γ) c <
[(ρ+ γ)πS − πI + (γ/ρ)πR], which ensures that I∗ > 0.
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3.1. No Social Distancing Scenario. Next, I turn to the characterization of the

equilibrium social distancing choices and the concomitant behavior of the dynamics of

the epidemic. There are two cases to consider, namely I∗ < I and I∗ ≥ I and each

scenario will be characterized in turn. When I∗ ≥ I, the disease is not very serious as

seen from the perspective of individuals themselves and thus they never engage in any

social distancing. That is, disease prevalence in the uncontrolled biological model never

reaches levels that prompt individuals to engage in preventive effort. The equilibrium

path of disease prevalence therefore exactly coincides with that in the classical SIR model,

with infection peaking at I. This is not a trivial case, since it highlights an important

feature of continual prevention. Namely, in this type of equilibrium, it is quite possible

that a very large proportion will become infected at some point along the way, and that

all individuals know this. The key reason for there not being an incentive to engage in

social distancing is that the intertemporal distribution of infections is suffi ciently spread

out, i.e. the infection curve is already suffi ciently flat, such that at no given moment

is the probability of infection suffi ciently high to merit costly prevention. In a nutshell,

what matters for prevention is the intensity of the epidemic rather than the duration of

the epidemic.

3.2. Social Distancing Scenario. In the case where I∗ < I, equilibrium becomes

more complicated. Denote by S∗(t), I∗(t) and R∗(t) the paths of susceptible, infected

and recovered individuals under equilibrium social distancing and define the following

threshold values:

t ≡ min{t ≥ 0 : I(t) = I∗} (20)

t ≡ min{t ≥ 0 : S∗(t) = γ/β} (21)

Disease prevalence will be defined as naturally decreasing if disease incidence is nega-

tive in the absence of social distancing. In other words, disease prevalence is naturally

decreasing when even with no preventive behaviour, there are suffi ciently few remain-

ing susceptibles to ensure that the number of infected individuals declines. Then, the

uncontrolled epidemic becomes naturally decreasing at time t̃, defined implicitly by

t̃ ≡ min{t ≥ 0 : S(t) = γ/β}

Because social distancing induces (weakly) lower disease incidence for all t, it has to be

that I∗(t) ≤ I(t). But this implies that

S∗(t̃) > S(t̃) = γ/β
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In other words, at the point in time at which disease prevalence on the uncontrolled

path starts decreasing, the equilibrium disease incidence would be positive (i.e. disease

prevalence would increase) were the individuals to cease social distancing. This means

that in a sense, in equilibrium social distancing prolongs the duration of the epidemic.

To use a phrase much discussed in recent policy debates, in equilibrium the individuals

will act to “flatten the curve” out of an uncoordinated desire for self-preservation.

Equilibrium behavior can now be characterized as follows:

Proposition: If I∗ < I, then in a symmetric equilibrium, exposure at time t ≥ 0 for

each individual i ∈ S(t) is given by

ε∗i (t) =

{
γ

βS(t)
for t ∈ (t, t)

1 for t /∈ (t, t)
(22)

Proof: From the best response function of the individuals, it follows that if I(t) > I∗,

then all individuals will engage in full social distancing, thereby bringing down disease

incidence. Similarly, if I(t) < I∗, then all individuals will fully expose themselves to

infection, thereby increasing disease incidence. There are two cases to consider. If dis-

ease prevalence is naturally decreasing, then full exposure will continue to be optimal

indefinitely. If disease prevalence is not naturally decreasing, then it will move towards

the level I∗. Therefore, in equilibrium, disease prevalence must remain constant until it

becomes naturally decreasing. Setting İ(t) = 0 yields the required aggregate exposure

level (and thus the individual mixing probabilities) as

ε∗(t) =
γ

βS(t)
(23)

and the result follows �

The Proposition shows that in equilibrium, individuals engage in no social distancing

until a suffi ciently large proportion of the population has become infected. Once it has

taken suffi cient hold, they switch to a mixed strategy equilibrium in which they attach

increasingly high probability to no social distancing. The probability increases as the

measure of susceptibles decreases. One can view the strategy of individuals as akin to a

thermostat that switches off and on as the temperature is above or below a desired level.

An immediate result of the Proposition is as follows:

Corollary: During the equilibrium social distancing phase, individuals gradually reduce
their social distancing efforts despite the infection probability not decreasing.

This result is noteworthy because it shows that in equilibrium, during the social dis-

tancing phase it is the measure of remaining susceptibles that determines the level of
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social distancing, not the number of infected individuals. In fact, during this plateau

phase, disease incidence stays constant at the critical threshold I∗ and equilibrium social

distancing effort decreases as the measure of susceptibles decreases. During the social

distancing phase, i.e. when the best responses are on the singular segment, efforts to de-

crease exposure to infection are strategic substitutes in that any individual would respond

to more social distancing by others with an increase in exposure. The mixed strategy-

singular solution nature of equilibrium during the social distancing phase is similar in

nature to the steady state equilibrium behavior in Toxvaerd (2019). In that paper, the

disease is of the susceptible-infected-susceptible variety and thus individuals cannot ob-

tain immunity. As a consequence, in steady state S(t) remains constant through time

and thus the mixed strategy weights in the singular solution are constant. In contrast,

with immunity, the measure of susceptibles must decrease over time, explaining why the

equilibrium mixing probabilities must change as time progresses and the state of the

epidemic changes.

The the equilibrium path for disease prevalence and the associated equilibrium social

distancing efforts are illustrated in Figure 3, which also displays the path of disease preva-

lence in the uncontrolled biological model for comparison. As can be seen in the figure,

at the early stages of the epidemic, individuals choose not to make any social distancing

efforts (i.e. they choose to fully expose themselves). This reflects the fact that as disease

prevalence is initially very low (and thus the infection risk from exposure commensurately

small), individuals do not find social distancing measures worthwhile. Similarly, when

the epidemic has run its course and infection has almost died out, individuals will again

opt for full exposure. But at the height of the epidemic, during the phase in which the

uncontrolled epidemic would have peaked, individuals spontaneously act and engage in

social distancing, causing a dampening effect on disease incidence and prevalence.

Corollary: The equilibrium trajectory of the disease during the social distancing phase

is characterized by the system of differential equations

Ṡ∗(t) = −βε∗(t)I∗S∗(t) = −β
(

γ

βS∗(t)

)
I∗S∗(t) = −γI∗ (24)

İ∗(t) = 0 (25)

Ṙ∗(t) = γI∗ (26)

As an aside, the model also an equilibrium in asymmetric strategies. All that is re-

quired on the equilibrium path during the social distancing phase is that on the horizontal

segment of the curve, aggregate exposure must equal ε∗(t); it does not matter how this

comes about. Since on this segment the individuals are indifferent between full social

distancing and full exposure, they are willing to mix between strategies. But it is also
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Figure 3: Equilibrium disease prevalence and social distancing across stages of epidemic.
The blue curve shows disease prevalence and the red curve shows aggregate exposure.

consistent with equilibrium to have a fraction ε∗(t) exposing themselves fully and have

the remainder (1− ε∗(t)) fully socially distancing themselves.
For ease of comparison of disease paths between the non-controlled biological model

and the equilibrium under social distancing, Figures 4, 5 and 6 show the evolution of

individuals in each health state separately, while Figure 9 at the end of the paper shows

all the paths superimposed.

The dynamic equations in the Corollary show another interesting feature, namely

that during the social distancing phase, the measure of susceptible individuals decreases

linearly at a rate −γI∗, while the measure of recovered individuals increases linearly at
rate γI∗. In addition, one sees that the rates of change are proportional to the critical

threshold I∗. In other words, we can relate the speed of change over time during the

social distancing phase to the magnitude of the biological and preference parameters. For

example, an increase in infectivity β will cause the susceptibles to decrease more sharply

and the recovered to increase more sharply. Similarly, the more severe the disease is, as

measured by lower flow utility while infected πI , will likewise make susceptibles decrease

faster and that of the recovered increase faster. The linear segments on the S∗(t) and

R∗(t) curves can be verified in Figures 4 and 6.

Next, consider how a change in the preference parameters influences the social dis-

tancing decisions in equilibrium and how they alter the trajectory of the disease over

time. We will do this in terms of effects on peak prevalence and on the duration of the

plateau phase with elevated disease prevalence. To trace the effects of changes in the
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Figure 4: Paths of susceptible individuals across epidemic. Dashed curve shows path in
epidemiological model; solid curve shows equilibrium path in economic model.

Figure 5: Paths of infected individuals across epidemic. Dashed curve shows path in
epidemiological model; solid curve shows equilibrium path in economic model.
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Figure 6: Paths of recovered individuals across epidemic. Dashed curve shows path in
epidemiological model; solid curve shows equilibrium path in economic model.

preference parameters, we can simply determine how they influence the critical threshold

I∗ and then see what effect this has on the aggregate dynamics. Since the method of

analysis is the same for each of the parameters, I will perform this exercise only for a

change in the flow payoff πI that an individual earns when it is infected. This case is

illustrated in Figure 7, which shows the effects on the trajectory of infected people when

πI is lowered. This corresponds to making the disease more severe in that it has more

dire health consequences. All other parameters are kept fixed. The benchmark case is

shown as a solid black curve while the modified case is shown as a solid blue curve. The

dashed black curve shows the uncontrolled benchmark for reference. Because the disease

is now more severe, individuals have reduced tolerance to infection. This is reflected in a

downward shift in the critical threshold I∗. But this means that social distancing kicks in

earlier in equilibrium and also serves to extend the duration of the epidemic (in the sense

described earlier). As will be explored further below, this also has consequences for the

limiting distribution of the epidemic. As will become clear, although the phase of rela-

tively high disease prevalence is thus increased, the actual number of infected individuals

across the epidemic (i.e. cumulative incidence) actually decreases.

Analysis of the limiting distribution. Till now, I have focused on the evolution

of the epidemic across time, which is useful to analyze inter-dependencies between the

compartments, growth rates and time-domain properties of the disease. But the time

dimension is less useful for determining the limiting properties of the disease, such as the
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Figure 7: How parameters change the intensity and duration of the epidemic under
equilibrium social distancing. Plot shows the evolution of susceptible individuals in the
benchmark model in solid black and the evolution when the disease is more severe (πI is
lower) in solid blue.

cumulative incidence (i.e. the total number of infected individuals across the epidemic)

and how the eventual number of immune and susceptible individuals depend on the initial

conditions. For that purpose, and to further compare the equilibrium disease dynamics

with social distancing to those under the uncontrolled biological model, it is useful to

consider the evolution of infections in the (S(t), I(t))-plane. This is done in Figure 8.

For an arbitrary point in this diagram, the measure of recovered individuals R(t) is

residually determined. For this purpose, note that the dynamics in (S(t), I(t))-space are

characterized by the equation9

I(t) = S0 + I0 − S(t) +
γ

β
log

(
S(t)

S0

)
(27)

To understand the figure, assume that R0 = 0 and pick an initial point (S0, I0). This

point is denoted by a on the curve. I will first describe the uncontrolled dynamics in the

absence of social distancing and then contrast them with the dynamics in equilibrium.

Starting from the initial point a, infection picks up and the susceptible population de-

creases, moving the state of the system along the dashed curve peaking at point f and

ending in some point (S(∞), I(∞)), denoted by g. There are two important points to

9See Hethcote and Waltman (1973), who uses this type of diagram to illustrate the effects of an initial
pulse vaccination of a fraction of the susceptible population.
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notice.

First, the curve showing the uncontrolled dynamics has its maximum at S(t) = γ/β,

irrespective of the initial condition. In other words, all the curves describing the epidemic

in (S(t), I(t))-plane achieve their maximum at the same value of susceptibles. This will

turn out to be important for the characterization of the equilibrium dynamics. If one

chooses another initial state (S ′0, I
′
0) with I

′
0 > I0, indicated by e, then the resulting curve

is simply shifted upwards and never intersects the initial curve. The dynamics under this

higher initial disease prevalence settles on a lower value for S(∞), as can be verified from

the equation that characterizes the final distribution. But note that the shifted curve

also has its maximum at S(t) = γ/β.

Second, generically, the curves intersect the S(t)-axis at a point (S(∞), I(∞)) at

which I(∞) = 0 and S(∞) > 0. In other words, the disease dies out asymptotically,

some individuals remain susceptible and R(∞) = 1−S(∞) become infected at some point

during the epidemic but eventually recover. The limiting fraction R(∞) measures the

aggregate incidence (or total case count) of the epidemic. Next, consider the movement

along the I(t)-dimension. As is clear from the curve, infection initially increases to the

point when S(t) = γ/β and then decreases.

It is important to emphasize that the speeds along these different uncontrolled disease

curves differ and depend on the initial conditions and the parameters β and γ (see Het-

hcote and Waltman, 1973 for details). As will be shown below, the speed of movement

in equilibrium is lower than that in the biological model, as social distancing serves to

reduce the speed by suppressing disease incidence.

Next, I turn to the dynamics under endogenous social distancing. In Figure 8, I plot

the horizontal line corresponding to the equilibrium cutoff I∗ < Ī. In equilibrium, the

initial dynamics from the point a coincide with those of the biological model until the

point b, where I(t) = I∗. At that point, the equilibrium and uncontrolled biological

paths diverge as the individuals start to socially distance themselves. They do so to

an extent that keeps I(t) constant at the critical level. Thus in equilibrium after the

initial stage, the dynamics move horizontally leftward till the point c, at which no further

social distancing is desired by the individuals. As described above, this happens when

the infection becomes naturally decreasing. But on the diagram, one readily verifies this

must happen at a point where S∗(t) = γ/β. Thus once point c is reached, individuals

cease social distancing and thus the dynamics going forward coincide with those of the

uncontrolled biological model but with the modified initial condition (S0, I0) = (γ/β, I∗).

The equilibrium path thus ends at point d, which can be confirmed to lie strictly to the

right of point g.

In both the uncontrolled biological model and in the model with social distancing,
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Figure 8: Disease dynamics in the (S(t), I(t))-plane. Dashed curve shows path in epi-
demiological model; solid curve shows equilibrium path in economic model.
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the infection dies out only asymptotically. Thus the end of the disease cannot be said

to occur faster under social distancing than it otherwise would have under a purely

non-behavioral model. What is possible though is to determine when the disease starts

decreasing naturally under the two scenarios. In the diagram, it is clear that this happens

when the fraction of remaining susceptibles reaches the critical threshold γ/β. But note

that along the uncontrolled biological trajectory, the speed of movement along the curve

in the (S(t), I(t))-plane is

Ṡ(t) = −βI(t)S(t) (28)

= −β
[
S0 + I0 − S(t) +

γ

β
log

(
S(t)

S0

)]
S(t) (29)

In contrast, during the social distancing phase, the speed of movement is

Ṡ(t) = −βI∗S(t) (30)

But since I∗(t) ≤ I∗ for all t ≥ 0, it follows that the starting point of declining infection

happens with a delay under social distancing. Another way to see that infection is

suppressed under social distancing is to recall that in the uncontrolled biological model,

the churn rate is
βS(t)

γ
(31)

In other words, each individual who recovers is replaced by βS(s)/γ new infected indi-

viduals. The dependence of this conversion ratio on the fraction of susceptibles S(t) is

exactly what causes infection to first increase and then decrease. In contrast, under social

distancing, the churn rate is

ε∗(t)βS(t)

γ
=

γ
βS(t)

βS(t)

γ
= 1 (32)

In other words, equilibrium exposure is set such that each individual who recovers is

replaced by exactly one new individual who is infected.

The suppression of incidence in equilibrium also has effects on the progression of

susceptible and recovered individuals. Once social distancing kicks in, as fewer people

become infected, the measure of susceptibles declines less steeply. At the same time, the

measure of recovered grows less rapidly.

Note that since the curves in the (S(t), I(t))-plane do not intersect, we can use the

intersection between the lines I(t) = I∗ and S(t) = γ/β to determine the effects of changes

in parameters on the final size distribution. E.g., for two distinct such intersection points

(which differ because we vary one of the underlying parameters), we can rank the resulting
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β γ c ρ πS πI πR
S∗(∞) + — — +/— + — —
R∗(∞) — + + —/+ — + +
S(∞) — + 0 0 0 0 0
R(∞) + — 0 0 0 0 0

Table 2: Comparative statics of final size distributions.

limiting distributions by following the curves from the initial intersection points to the

S(t)-axis to find the corresponding S(∞)-values.

Using the comparative statics of the critical threshold I∗ in Table 1, we find the

corresponding effects that the biological and preference parameters have on the final size

distribution in the uncontrolled biological model and in the equilibrium in the economic

model. These are given in Table 2.

These comparative statics again show that the results from the equilibrium model may

reverse those of the uncontrolled biological model. For example, increasing infectiousness

β or decreasing the recovery rate γ leads to higher cumulative incidence in the biological

model but to lower cumulative incidence in the economic model. The comparative statics

with respect to the preference parameters have no biological counterpart and so for these,

no comparison is possible.

4. Discussion

This paper has considered the equilibrium amount of social distancing in the context of the

well-known SIR epidemiological model. While simple, this model allows for an intuitive

and clean analysis of the tradeoffs involved in individuals’ decision-making on social

distancing. There are several ways in which the analysis can be enriched. First, rather

than consider a linear cost of social distancing, other cost structures can be considered.

The main insights are robust to this extension. With increasing convex costs of social

distancing, individuals would continually adjust to increasing disease prevalence in the

population.10 Second, the paper has not offered a full welfare analysis of the equilibrium.

It is immediately clear that the equilibrium is in fact not social welfare maximizing.

The reasons is a classical one in this type of model, namely that the individuals in the

population do not internalize the positive externalities flowing from social distancing.

Third, and most interestingly, the analysis has been based on the assumption of a well-

mixed population in which all that matters are the fractions of susceptible, infected and

recovered. A richer model would consider a population with explicit social structure.

This would open up for the possibility that the incentives to socially distance oneself may

10Note also that although costs (and thus the current-value Hamiltonian) is linear, the symmetric
equilibrium is characterised by a singular solution during the social distancing phase. Thus exposure
levels in fact vary continuously with the state during this phase.
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depend on one’s position in the social network. Such an analysis may also be useful in

informing policy, such as the socially optimal design and micro-targeting of quarantines.

Last, the population in this model has been assumed to be homogeneous. With a pop-

ulation that is heterogeneous along some dimension, the qualitative nature of the analysis

would be similar, but aggregate social distancing would change more continuously, creat-

ing a gradual increase and subsequent decrease in social distancing. To see this, suppose

that individuals were heterogeneous in how much they suffered from infection. In that

case, different individuals would have different tolerances to infection risk and this would

mean that each individual would start socially distance itself at different levels of disease

prevalence. Initially, only the very risk intolerant in the population would start socially

distancing but as prevalence increases further, additional individuals would join them. In

this manner, aggregate social distancing would be phased in more smoothly than in the

homogeneous population case, in which all switch to social distancing at the same time.

The heterogeneous population case also suggests the interesting possibility of free-riding

by the more risk tolerant on the efforts of the less risk tolerant. As the latter start socially

distancing themselves, disease incidence is curbed somewhat, thus protecting those indi-

viduals who have not yet reached their individual social distancing thresholds. In fact,

disease prevalence may be curbed so much by the initial social distancing efforts of the

risk intolerant that the most tolerant may never have to engage in any social distancing

and they would in effect be free-riding on the preventive efforts of those who do.
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A. Appendix

In this Appendix, I derive the value of transitioning into the infected state. Let the

recovery date for an infected individual be denoted by T . This date arrives according to

a Poisson process with rate γ ≥ 0.

The value we seek to characterize, namely the net present value of being infected at

instant t ≥ 0 is

VI =

∫ T

t

e−ρuπIdu+

∫ ∞
T

e−ρuπRdu (33)

Consider a utility flow π which can take two values, πI and πR. At time t, the utility

flow starts offwith π = πI . Over the time interval [t, t+dt), the probability of the utility

flow switching to πR is γdt and so the probability of the utility flow not switching πR is

1− γdt. Define
V t
I = Et

∫ ∞
t

e−ρ(u−t)sudu (34)

and assume that st = πI . We do so because for the case where st = πR, we know that

the utility flow gets stuck at πR and so

Et

∫ ∞
t

e−ρ(u−t)πRdu = πREt

∫ ∞
t

e−ρ(u−t)du =
πR
ρ

(35)

Observe also that V t
I is independent of t, by virtue of the infinite horizon and so V

t
I = VI .

Therefore

VI = πIdt+ (1− γdt)e−ρdtVI + γdte−ρdt
πR
ρ

(36)

VI = πIdt+ [1− (ρ+ γ)dt]VI + γdt
πR
ρ

+ o(dt) (37)

0 = πIdt− (ρ+ γ)VIdt+ γdt
πR
ρ

+ o(dt)VIdt =
πI + γ πR

ρ

ρ+ γ
dt+ o(dt). (38)

In the continuous-time limit, we obtain

VI =
1

ρ+ γ

[
πI + γ

πR
ρ

]
(39)

and the result follows �
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Figure 9: Paths of susceptible, infected and recovered individuals across epidemic. Dashed
curves shows paths in epidemiological model; solid curves show equilibrium paths in
economic model.
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