A search for magnetic monopoles and high-electric-charge objects is presented using 34.4 fb⁻¹ of 13 TeV pp collision data collected by the ATLAS detector at the LHC during 2015 and 2016. The considered signature is based upon high ionization in the transition radiation tracker of the inner detector associated with a pencil-shape energy deposit in the electromagnetic calorimeter. The data were collected by a dedicated trigger based on the tracker high-threshold hit capability. The results are interpreted in models of Drell-Yan pair production of stable particles with two spin hypotheses (0 and 1/2) and masses ranging from 200 to 4000 GeV. The search improves by approximately a factor of 5 the constraints on the direct production of magnetic monopoles carrying one or two Dirac magnetic charges and stable objects with electric charge in the range $20 \leq |z| \leq 60$ and extends the charge range to $60 < |z| \leq 100$.

DOI: 10.1103/PhysRevLett.124.031802

The symmetry between electric and magnetic charge in Maxwell’s equations and the explanation for electric charge quantization resulting from Dirac’s quantum description of the magnetic monopole [1,2] are compelling arguments for its existence. Neither the spin nor the mass of a Dirac monopole is theoretically constrained. While monopoles appearing in grand unification theories [3,4] typically have masses of the order of the unification scale, some extensions of the standard model predict electroweak monopoles with masses as low as 4 TeV [5–9]. TeV-mass monopoles can be produced in the early Universe thermally or via the Kibble mechanism [10,11] in cosmological scenarios with a low reheat temperature after inflation [12].

Dirac’s argument predicts the fundamental magnetic charge to be $g_m = N g_D e c$ (In this definition, g_m is in SI units and g_D is a dimensionless quantity.), where $g_D = 1/(2\alpha) = 68.5$ is the Dirac charge, α is the fine structure constant, N is an integer number, e is the unsigned electron charge, and c is the speed of light in vacuum. This implies that a high-velocity Dirac monopole of magnetic charge $|g| = g_D$ would interact with matter in a manner similar to that of an ion of electric charge $|z| = 68.5$, where z is in units of e. Since the energy loss is proportional to the square of the charge, a monopole with $|g| = g_D$ would deposit 4700 times more energy by ionization than a proton. The high stopping power also results in the production of a large number of δ rays. These two features result in a high-ionization signature that is also expected in the case of exotic stable high-electric-charge objects (HECOs), which may include, for example, aggregates of ud-, [13] or s-quark matter [14], Q balls [15,16], and micro black-hole remnants [17].

This Letter presents a search for magnetic monopoles and HECOs, collectively referred to as highly ionizing particles, or HIPs, using 34.4 fb⁻¹ of 13 TeV proton-proton (pp) collision data collected by the ATLAS detector at the CERN Large Hadron Collider (LHC) during 2015 and 2016. Events containing at least one high-ionization object are selected. The results are interpreted in models of spin-0 and spin-1/2 Drell-Yan pair production of stable particles carrying one or two Dirac magnetic charges or an electric charge in the range $20 \leq |z| \leq 100$ with masses ranging from 200 to 4000 GeV.

Should monopoles exist in the mass range accessible to a particle accelerator, they could be copiously produced at the LHC. If they were detected, the measured mass and coupling would severely restrict cosmological scenarios. Since the numerous searches for monopoles of cosmological origin in cosmic rays and in matter [18,19] have limited sensitivity to TeV-mass HIPs, the cross-section limits for low-mass HIPs from searches at colliders [20–34] are 6–9 orders of magnitude more stringent. The first LHC searches for HECOs and monopoles were made by the ATLAS Collaboration in 8 TeV pp collisions [24,25] by exploiting the high-ionization signature. The higher collision energy, the 5 times larger dataset and improvements in the trigger extend the sensitivity of the present search. While the previous search studied $|g| \leq 1.5 g_D$, the present search considers monopoles up to $|g| = 2 g_D$, which are motivated by Schwinger, who showed that N must be even for particles...
possessing both electric and magnetic charge. The ATLAS monopole searches are complementary to those performed using the dedicated MoEDAL experiment, which uses an induction technique to detect the magnetic flux of monopoles trapped in matter. While MoEDAL is sensitive to magnetic charges up to $5 g_D$, the present ATLAS search is able to set significantly better cross-section constraints for $1 g_D$ and $2 g_D$, the charge range in which it has a good acceptance.

Unlike searches using the induction technique, the present search is sensitive to high-charge HECOs in addition to monopoles. It is complementary to the low-charge HECO searches performed by ATLAS ($2 \leq |z| \leq 7$ and $|\eta| \leq 8$) and CMS, all of which used muon triggers. A muon trigger is not appropriate for high-charge HECOs, which typically stop in the electromagnetic calorimeter, due to the charge-square dependence of dE/dx. In LHC run 1, ATLAS probed electric charges up to $|z| = 60$ via the high-ionization signature. The present analysis is able to probe HECOs up to $|z| = 100$, thereby reaching the previously unexplored charge range predicted for ud-quark matter.

The present search exploits the very characteristic high-ionization signature of HIPs in the ATLAS detector. The ATLAS transition radiation tracker (TRT), which is the outermost tracker of the inner detector, consists of a barrel ($|\eta| < 1.0$ and radius $0.563 \text{ m} < r < 1.066 \text{ m}$) and a forward endcap ($|\eta| > 1.0$). At the nominal interaction point (IP) in the center of the detector and the z axis coinciding with the axis of the beam pipe, the x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle as $\eta = -\ln \tan(\theta/2)$, with 4-mm-diameter straws oriented parallel to the beam line, and two end caps ($0.77 < |\eta| < 2.0$) with straws oriented radially. In LHC run 2, 56% of the straws were filled with xenon gas while the others were filled with argon gas. Energy deposits in a TRT straw greater than 200 eV, called low-threshold (LT) hits, are used for tracking. The high-threshold (HT) hits, which result from energy deposits exceeding 6 keV in Xe (2 keV in Ar) are typically used for electron identification, but can also indicate the presence of a highly ionizing particle. A 2 T superconducting solenoid surrounds the TRT. The lead/liquid-Argon (LAr) barrel electromagnetic (EM) calorimeter lies outside the solenoid in the $|\eta| < 1.475$ region. It is divided into three shower-depth layers: EM1, EM2, and EM3, with accordion-shape electrodes and lead absorbers. The EM2 layer has the largest sampling depth (16 to $20X_0$); its cell granularity is $\Delta \eta \times \Delta \phi = 0.025 \times 0.025$. In the $|\eta| < 1.8$ region, an additional presampler layer is used to measure the energy lost in front of the calorimeter. As a HIP traverses the TRT, a localized region of high ionization density with many HT hits from both the HIP and the δ rays is produced in its wake. HIPs slow down (and usually stop) in the EM calorimeter, where they leave a pencil-shape energy deposit since they do not induce a shower, being much heavier than the electron.

Signal efficiency estimates rely heavily on simulations, which use the geant4 framework to model the HIP propagation and behavior in ATLAS. The detector simulation includes the full ATLAS geometry, descriptions of monopole acceleration in the solenoidal magnetic field, ionization energy losses in matter, δ-electron production along the HIP trajectory, and a model accounting for electron-ion recombination in the LAr EM calorimeter. For monopoles, the trajectory in the solenoidal magnetic field is straight in the $r-\phi$ plane and bends in the $r-z$ plane, and the Bethe-Bloch formula is modified to account for the velocity-dependent Lorentz force. The interaction of HIPs with matter is independent of HIP spin.

The Drell-Yan (DY) pair-production process is used to estimate the kinematic distributions and cross sections of spin-0 and spin-$1/2$ HIPs in the relevant ranges of charge and mass. The MadGraph5_@NLO event generator was used to model leading-order HIP DY pair production from the initial pp state via quark-antiquark annihilation into a virtual photon. The charge-squared dependence of the HIP coupling to the photon implies divergences in the perturbative expansion beyond leading order, which are additional simulated pp collisions overlaid on each event according to the distribution of the number of pp interactions per bunch crossing, μ, in the data. Fully simulated HIP Monte Carlo (MC) samples are computationally intensive due to the high ionization. To minimize the number of such MC samples, model-independent efficiency maps, finely binned in kinetic energy and $|\eta|$, are produced from fully simulated single-particle samples of a given mass and charge. The spin-0 DY HIP four vectors from the generator are used to sample the maps in order to derive the spin-0 DY HIP selection efficiencies. The DY spin-$1/2$ selection efficiencies are derived from fully simulated DY samples, which are also used to validate the results obtained by sampling the efficiency maps and to assign a modeling uncertainty. The selection efficiencies for spin-0 DY HIPs are higher than for spin-$1/2$ because they have more central η and harder kinetic energy distributions.

Incomplete knowledge of the simulation parameters translates into systematic uncertainties in the signal efficiencies. These uncertainties are estimated by varying the parameters within a range corresponding to an uncertainty of 1 standard deviation, as described in more detail in...
Ref. [27]. The dominant uncertainties are those due to the
descriptions of the detector material and of electron-ion
recombination in the EM calorimeter, each with an average
relative uncertainty of 7%. Other relevant parameters
include the dependence of the multiplicity of TRT LT hits
on pileup μ, the HIP energy-loss calculation as well as the
yield and range of δ electrons, and the fraction of
energy cross talk between adjacent EM calorimeter cells.
Additional uncertainties unrelated to detector effects
include the uncertainty from MC statistics and the system-
atic uncertainty due to imprecise modeling or deriving DY
efficiencies from the single-particle maps.

ATLAS uses a two-level trigger system [54]. Level 1 is a
hardware-based trigger that defines calorimeter “regions of
interest” (ROI). A dedicated software-based high-level
trigger (HLT), which imposes requirements on the number
and fraction of TRT HT hits in a narrow region around the
ROI, started collecting data in October 2015. The level-1
seed requires transverse energy $E_T > 22$ GeV in the electro-
magnetic calorimeter. ROI candidates with $E_T < 50$ GeV
in conjunction with an E_T-dependent minimum of 1 to 2 GeV
of energy in the hadronic calorimeter are vetoed. This
unavoidable hadronic veto requirement, which improves
rejection of hadrons in analyses using electrons and photons,
limits the sensitivity to low-charge HIPs, which often
penetrate to the hadronic calorimeter. In contrast to the
8 TeV search [27], this veto on an energy deposit in the
hadronic calorimeter is not applied to ROI candidates with
$E_T > 50$ GeV, thereby increasing the acceptance for the
HIPs that do not stop in the EM calorimeter. Following the
level-1 trigger, the HLT is used to select HIP candidates with
HT hits in the TRT. The counting is done in an r-ϕ wedge of
size 10 mrad, where two trigger variables, $N_{HT,\text{trig}}$ and
$f_{HT,\text{trig}}$, are used to define the number and fraction of TRT
HT hits, respectively. The HLT selection criteria are defined
as $N_{HT,\text{trig}} > 30$ and $f_{HT,\text{trig}} > 0.5$ to control the rate while
maintaining high signal efficiency for high-charge HIPs. In
addition, a pseudorapidity requirement of $|\eta| < 1.7$ is
applied to avoid the forward regions, which contain more
backgrounds due to multijet events producing a higher rate
of level-1 trigger seeds.

In this search, the HIP signal sensitivity is governed by
the DY kinematic distributions and the dependence of the
stopping power on two variables: the square of the charge
and the velocity relative to the speed-of-light β. For
HECOs, dE/dx is proportional to $1/\beta^2$ whereas it varies
as $\ln \beta^2$ for monopoles [42,43]. The main source of signal
loss is due to HIPs failing to produce a level-1 trigger ROI,
because they either stop before the EM calorimeter (e.g.,
high-charge HIPs), deposit too little energy in the calor-
imeter or penetrate to the hadronic calorimeter and invoke
the veto (e.g., low-charge HIPs). The probability for a HIP
from DY pair production to induce a level-1 trigger signal is
around 60% for HECOs with $|z| = 20$ and 55% for
monopoles with $|g| = g_D$ and decreases to 18% for
$|z| = 60$ and 10% for $|g| = 2g_D$. For HIPs with $|\eta| <
1.375$ that pass the level-1 trigger, the efficiency to satisfy
the HLT and the remaining offline selection, described
below, is generally 25% to 60%.

Any data that fail the electron-photon data quality
requirements are discarded as are events flagged as con-
taining noise in the LAr calorimeter. The event selection
then starts by identifying events containing at least one
candidate featuring a topological cluster of EM calorimeter
cells [55] with $E_T > 18$ GeV in the $|\eta| < 1.375$ region.
The remaining selection is based on two powerful background-
discriminating variables, denoted f_{HT} and w. The selected
EM cluster candidates are used to seed the f_{HT} variable,
which is similar to the trigger variable $f_{HT,\text{trig}}$ except that an
8-mm-wide rectangular road is used instead of a 10-mrad
wedge, to better confine the hit counting to the region
closest to the HIP trajectory. The w variable gives a measure
of the lateral energy dispersion of the EM cluster candidate.
For each EM cluster candidate, the associated energy
contained in the presampler, EM1 layer and EM2 layer is
denoted by E_0, E_1, and E_2, respectively. Three w_i
variables ($i = 0, 1, 2$) are defined as the fraction of the
EM cluster energy E_i contained in the two most energetic
cells in the presampler, the four most energetic cells in
EM1, and the five most energetic cells in EM2, respec-
tively. If the cluster energy in layer E_i is confined to a single
cell, then $w_i = 1$, consistent with the narrow shower
expected for HIPs. In each layer, the number of cells is
chosen to optimize the signal efficiency and the discrimi-
nation power between HIPs and electron or jet back-
grounds. The combined lateral energy dispersion w is
thus defined as the average of all w_i ($i = 0, 1, 2$) for
which E_i exceeds 10 GeV (relaxed to 5 GeV for $i = 2$).
The latter requirement ensures that only layers with energy
deposits significantly above the cluster-level noise, which
depends on both the cell-level noise and the cell granularity,
contribute to the w computation. In addition, at least one of
the E_0 and E_1 requirements must be satisfied. The final
selection requirements are $f_{HT} \geq 0.7$ and $w \geq 0.96$, a
choice which maximizes the signal-to-background ratio for
the majority of the signal samples.

Backgrounds are random combinations of rare processes
and need to be estimated directly from the collected data.
Examples of background processes that could yield high
f_{HT} values include overlapping charged particles and noise
in TRT straws. Processes that could yield high w values
include high-energy electrons and noise in EM calorimeter
cells. The background estimation method relies on the fact
that, in the background near the signal region, f_{HT} and w
are largely uncorrelated. Control regions B, C, and D
are defined as sidebands in f_{HT} and w near the signal region A, as shown in Fig. 1. Region A contains 90% or more of the
signal for masses below 4000 GeV for all simulated charges
except $|z| = 20$, where the fraction is 70%. The numbers of
events observed in the control regions are $N_B = 1528,$
$f_{\text{HT}} = w$ in data (color scale) and a typical HIP signal (green squares). The regions for defining the signal (A) and for the background estimate and background validation (B, D, and C) are indicated.

$N_C = 4$, and $N_D = 30375$, and the expected background is calculated as $N^\text{exp} = N_B N_C / N_D = 0.20 \pm 0.11$ (stat) ± 0.40 (syst). The latter uncertainty accounts for the fact that f_{HT} and w each depend on η but in different ways, resulting in a Pearson correlation coefficient of 10%. This uncertainty was obtained by binning the $f_{\text{HT}} - w$ plane into 0.025-unit regions in η and determining the maximum variation of the ratio of the numbers of events in the B and D regions. Simultaneous fits taking possible signal yields into account confirm that signal leakage into the B and C control regions cannot significantly affect the background estimate. As an additional cross-check, the B, C, and D regions are divided into various subregions, within which the background estimation is again performed. The estimated and observed event yields are consistent in all cases.

No event was observed in the signal region A in 34.4 fb$^{-1}$ of 13 TeV pp collision data, consistent with the background expectation. Thus, 95% confidence-level (C.L.) upper limits can be set on production cross sections for various signal hypotheses, using estimates of efficiencies and their corresponding uncertainties for each HIP charge, mass, and spin, as well as the uncertainty in the integrated luminosity (2.2%, estimated following the methods discussed in Ref. [56]). A C.L.$_\text{q}$ [57] frequentist framework implemented in RooStats [58] is used for hypothesis testing and to calculate confidence intervals. The resulting limits are shown as a function of HIP mass in Fig. 2 for monopoles and HECOs in

FIG. 1. Two-dimensional distribution of the two discriminating variables f_{HT} vs w in data (color scale) and a typical HIP signal (green squares). The regions for defining the signal (A) and for the background estimate and background validation (B, D, and C) are indicated.

FIG. 2. Observed 95% confidence-level upper limits on the cross section for Drell-Yan spin-0 (top) and spin-1/2 (bottom) monopole (left) and HECO (right) production as a function of mass (dashed lines with markers). The limits for spin-0 HIPs are more stringent than for spin-1/2 due to the higher selection efficiencies of the former. The theoretical leading-order cross sections are overlaid (solid lines).
the charge ranges where the search is sensitive for DY production with different spins. The mass dependence of the cross-section limits arises from a variation of the efficiencies with the HIP kinetic energy. The cross-section limits are relatively insensitive to the systematic uncertainties, which introduce variations no larger than 12% across all mass-charge-spin points. Model cross-section predictions are shown in Fig. 2 as solid lines. The corresponding mass limits are shown in Table I. Given the uncertainty in the predicted cross sections, these mass limits primarily serve as benchmarks for comparison with other experiments. The MoEDAL experiment [31] is able to set slightly stronger monopole mass limits because they consider photon-fusion pair production in addition to the Drell-Yan mechanism. For most masses, the present cross-section limits obtained for magnetic charge $|g| = 2g_D$ surpass by 1 to 2 orders of magnitude the best previous constraints, also set by MoEDAL [31]. The cross-section limits obtained for HECOs and for monopoles with $|g| = g_D$ surpass by approximately a factor of 5 the best constraints, set by the previous ATLAS analysis [27], and access the range $60 < |z| \leq 100$ for the first time.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; FWF, BMWFW, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, FAPESP, Brazil; NSERC, CFI, NRC, Canada; CERN; CONICYT, Chile; CAS, NSFC, MOST, China; COFECYT, Colombia; VSC CR, MSMT CR, MPO CR, Czech Republic; DNSRC, DNRF, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; MPG, HGF, BMBF, Germany; GSRT, Greece; RGC, Hong Kong SAR, Hong Kong China; Benoziyo Center, ISF, Israel; INFN, Italy; JSPS, MEXT, Japan; JINR; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW, NCN, Poland; FCT, Portugal; MINE/IFA, Romania; NRC Ki, MES of Russia, Russia Federation; MESTD, Serbia; MSSR, Slovakia; ARRS, MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Wallenberg Foundation, Sweden; Cantons of Bern and Geneva, SNSF, SERI, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, NSF, United States of America. In addition, individual groups and members have received support from CRC, Compute Canada, Canarie, BCKDF, Canada; Marie Sklodowska-Curie, COST, ERDF, ERC, Horizon 2020, European Union; ANR, Investissements d’Avenir Labex and Idex, France; AvH, DFG, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF, GIF, Israel; PROMETEO Programme Generalitat Valenciana, CERCA Generalitat de Catalunya, Spain; Leverhulme Trust, The Royal Society, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [59].

\begin{table}
\centering
\caption{Lower limits on the mass of Drell-Yan magnetic monopoles and HECOs (in GeV) at 95\% confidence level in models of spin-0 and spin-1/2 leading-order DY HIP pair production.}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
\text{Spin-0} & $|g| = 1g_D$ & $|g| = 2g_D$ & $|z| = 20$ & $|z| = 40$ & $|z| = 60$ & $|z| = 80$ & $|z| = 100$
\hline
Spin-0 & 1850 & 1725 & 1355 & 1615 & 1625 & 1495 & 1390
\hline
Spin-1/2 & 2370 & 2125 & 1830 & 2050 & 2000 & 1860 & 1650
\hline
\end{tabular}
\end{table}

[1] P. A. M. Dirac, Quantised singularities in the electromagnetic field, Proc. R. Soc. A \textbf{133}, 60 (1931).

(ATLAS Collaboration)

1Department of Physics, University of Adelaide, Adelaide, Australia
2Physics Department, SUNY Albany, Albany, New York, USA
3Department of Physics, University of Alberta, Edmonton, Alberta, Canada
4aDepartment of Physics, Ankara University, Ankara, Turkey
4bIstanbul Aydin University, Istanbul, Turkey
4cDivision of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
6High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
7Department of Physics, University of Arizona, Tucson, Arizona, USA
8Department of Physics, University of Texas at Arlington, Arlington, Texas, USA
9Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10Physics Department, National Technical University of Athens, Zografou, Greece
11Department of Physics, University of Texas at Austin, Austin, Texas, USA
12Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
12bIstanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
12cDepartment of Physics, Bogaziçi University, Istanbul, Turkey
12dDepartment of Physics Engineering, Gaziantep University, Gaziantep, Turkey
13Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
14Institut de Fisica d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
15Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
15aPhysics Department, Tsinghua University, Beijing, China
15bDepartment of Physics, Nanjing University, Nanjing, China
15cUniversity of Chinese Academy of Science (UCAS), Beijing, China
16Institute of Physics, University of Belgrade, Belgrade, Serbia
17Department for Physics and Technology, University of Bergen, Bergen, Norway
18Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
19Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
20Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
21School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
22Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogota, Colombia
23aINFN Bologna and Università di Bologna, Dipartimento di Fisica, Italy
23bINFN Sezione di Bologna, Italy
24Physikalisches Institut, Universität Bonn, Bonn, Germany
25Department of Physics, Boston College, Chestnut Hill, Massachusetts, USA
26Department of Physics, Brandeis University, Waltham, Massachusetts, USA
27Transilvania University of Brasov, Brasov, Romania
27aHoria Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
27bDepartment of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania

PHYSICAL REVIEW LETTERS 124, 031802 (2020)
159b	High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
160	Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel
161	Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
162	Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
163	International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan
164	Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
165	Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
166	Tomsk State University, Tomsk, Russia
167	Department of Physics, University of Toronto, Toronto, Ontario, Canada
168a	TRIUMF, Vancouver, British Columbia, Canada
168b	Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
169	Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
170	Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA
171	Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
172	Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
173	Department of Physics, University of Illinois, Urbana, Illinois, USA
174	Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia—CSIC, Valencia, Spain
175	Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
176	Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
177	Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
178	Department of Physics, University of Warwick, Coventry, United Kingdom
179	Waseda University, Tokyo, Japan
180	Department of Particle Physics, Weizmann Institute of Science, Rehovot, Israel
181	Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
182	Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
183	Department of Physics, Yale University, New Haven, Connecticut, USA
184	Yerevan Physics Institute, Yerevan, Armenia

Deceased.

Also at Department of Physics, King’s College London, London, United Kingdom.

Also at Istanbul University, Department of Physics, Istanbul, Turkey.

Also at Instituto de Física Teorica, IFT-UAM/CSIC, Madrid, Spain.

Also at TRIUMF, Vancouver, British Columbia, Canada.

Also at Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky, USA.

Also at Physics Department, An-Najah National University, Nablus, Palestine.

Also at Department of Physics, California State University, Fresno, USA.

Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.

Also at Physics Dept, University of South Africa, Pretoria, South Africa.

Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.

Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.

Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.

Also at Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.

Also at Università di Napoli Parthenope, Napoli, Italy.

Also at Institute of Particle Physics (IPP), Canada.

Also at Department of Physics, University of Adelaide, Adelaide, Australia.

Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.

Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.

Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa.

Also at Department of Physics, California State University, East Bay, USA.

Also at Institut Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Spain.

Also at Department of Physics, University of Michigan, Ann Arbor, Michigan, USA.

Also at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France.

Also at Graduate School of Science, Osaka University, Osaka, Japan.

Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

Also at Department of Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.

Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.

Also at CERN, Geneva, Switzerland.