GEOLOGICAL SURVEY OF CANADA

Archean and Paleoproterozoic cratonic rocks of Baffin Island


2020

Advance copy of a contribution to

GEOLOGICAL SURVEY OF CANADA BULLETIN 608

Geological synthesis of Baffin Island (Nunavut) and the Labrador–Baffin Seaway

Edited by L.T. Dafoe and N. Bingham-Kosłowski
GEOLOGICAL SURVEY OF CANADA

Archean and Paleoproterozoic cratonic rocks of Baffin Island


2020

Advance copy of a contribution to

GEOLOGICAL SURVEY OF CANADA BULLETIN 608

Geological synthesis of Baffin Island (Nunavut) and the Labrador–Baffin Seaway

Edited by L.T. Dafoe and N. Bingham-Koslowski

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified. You are asked to:

• exercise due diligence in ensuring the accuracy of the materials reproduced;
• indicate the complete title of the materials reproduced, and the name of the author organization; and
• indicate that the reproduction is a copy of an official work that is published by Natural Resources Canada (NRCan) and that the reproduction has not been produced in affiliation with, or with the endorsement of, NRCan.

Commercial reproduction and distribution is prohibited except with written permission from NRCan. For more information, contact NRCan at nrcan.copyrightdroitdauteur.nrcan@canada.ca.

Permanent link: https://doi.org/10.4095/321824

This publication is available for free download through GEOSCAN (https://geoscan.nrcan.gc.ca/).

Recommended citation

Abstract: Archean and Paleoproterozoic cratonic rocks of Baffin Island define four stacked structural levels that are juxtaposed within the middle Paleoproterozoic Trans-Hudson Orogen. From north to south, and highest to lowest structural level, these comprise: 1) the Archean Rae Craton, unconformably overlain along its southern margin by middle Paleoproterozoic supracrustal cover (Piling Group) and stratigraphically similar units of the Hoare Bay Group on Cumberland Peninsula; 2) Archean to middle Paleoproterozoic metaplutonic units and middle Paleoproterozoic metasedimentary cover (Lake Harbour Group), collectively termed the ‘Meta Incognita microcontinent’; 3) middle Paleoproterozoic orthogneiss, interpreted as a deformed arc–magmatic terrane (Narsajuaq terrane) or alternatively as Narsajuaq-age intrusions emplaced in the Meta Incognita microcontinent; and 4) Archean orthogneiss, interpreted as the northern continuation of the lower-plate Superior Craton, and associated middle Paleoproterozoic continental-margin supracrustal cover (Povungnituk Group).

Résumé : Les roches cratoniques de l’Archéen et du Paléoprotérozoïque de l’île de Baffin définissent un empilement de quatre niveaux structuraux qui sont juxtaposés dans l’orogène trans-hudsonien du Paléoprotérozoïque moyen. Du nord au sud, et du plus haut au plus bas niveau structural, ceux-ci comprennent : 1) le craton de Rae de l’Archéen, recouvert en discordance le long de sa marge sud par des roches supracrustales de couverture du Paléoprotérozoïque moyen (Groupe de Piling) et des unités stratigraphiquement semblables du Groupe de Hoare Bay dans la péninsule Cumberland; 2) des unités métaplu- toniques de l’Archéen au Paléoprotérozoïque moyen et des roches mésèsédimentaires de couverture du Paléoprotérozoïque moyen (Groupe de Harbour Lake), collectivement dénommées « microcontinent de Meta Incognita »; 3) des orthogneiss du Paléoprotérozoïque moyen, qui correspondaient à un terrane d’arc magmatique déformé (terrane de Narsajuaq) ou à des intrusions d’âge Narsajuaq mises en place dans le microcontinent de Meta Incognita; et 4) des orthogneiss de l’Archéen, qui constituaient le prolongement nord du craton du lac Supérieur (plaque inférieure), et des roches supracrustales de couverture de la marge continentale associée du Paléoprotérozoïque moyen (Groupe de Povungnituk).
PREVIOUS WORK

Although Martin Frobisher’s second and third voyages in 1577 and 1578, directed as they were to searching for gold, had a geological connotation (Hogarth et al., 1994), geological investigation of Baffin Island properly began with fossils recovered at Silliman’s Fossil Mount (Fig. 1) by C.F. Hall in 1861; this collection indicated the existence of Ordovician strata and the affinities of these strata to North American sections (Hall, 1865; Miller et al., 1954). In 1885, R. Bell of the Geological Survey of Canada (GSC) made a brief examination of the area around Amadjuaq Bay on the southern coast of Baffin Island (Fig. 1; Bell, 1885) and, in 1897, he carried out a coastal reconnaissance between Big Island and Chorkbak Inlet (Fig. 1; Bell, 1901).

In 1926–1927, L.J. Weeks and M.H. Haycock built Canada’s first Arctic research station and overwintered in Pangnirtung (Fig. 1). They carried out studies around the head of Cumberland Sound and west from Nettilling Fiord to Nettilling Lake (Fig. 1; Weeks, 1928a, b). In 1927, the Putnam Baffin Island Expedition explored the northern coast of Foxe Peninsula and traversed inland from Bowman Bay to Putnam Highland, documenting part of the extensive Paleozoic cover between Amadjuaq Lake and Foxe Basin (Fig. 1; Putnam, 1928).

Reconnaissance geological investigations of southern Baffin Island by the GSC resumed in 1949 when Y.O. Fortier and W.L. Davison examined the coast of Meta Incognita Peninsula, and in addition made four traverses across the peninsula. Davison continued the coastal studies in 1950 and 1951, and carried out detailed mapping near Kimmirut (Fig. 1; Davison, 1959a). In 1950, he mapped the northern shore of Frobisher Bay and the eastern coast of Hall Peninsula as far north as Cape St. David (Fig. 1). The following season, he continued coastal mapping west from Kimmirut to Chorkbak Inlet (Fig. 1; Davison, 1959b), while G.C. Riley carried out geological investigations along the shores of Cumberland Sound to Cape St. David (Fig. 1; Riley, 1959). Studies of the northern shore of Hudson Strait were continued in 1952 under the direction of Y.O. Fortier, and the shoreline was mapped between Chorkbak Inlet and the former community of Nuwata (Fig. 1), on western Foxe Peninsula.

Low-grade iron deposits discovered on southern Baffin Island during the preceding work were staked in 1956–1957 by Ultra Shawkey Mines Ltd. Interest in the economic possibilities of southern Baffin Island led the GSC to undertake more detailed work and, in 1958, R.G. Blackadar commenced mapping at a scale of 1 inch to 4 miles. He mapped the Mingo Lake and Macdonald Island map areas between 1958 and 1960 (Blackadar, 1959, 1960, 1961, 1967a, b) and the Andrew Gordon Bay and Cory Bay map areas in 1961 and 1964 (Blackadar, 1962, 1967c).

Reconnaissance mapping of Baffin Island south of latitude 66°N was completed in 1965 during ‘Operation Amadjuaq’, a fixed-wing- and helicopter-supported project. Bedrock mapping was carried out across eighteen 1:250 000 NTS map areas and these data, together with those derived from published and unpublished GSC maps, were compiled into three regional bedrock maps published at 1:506 880 scale by Blackadar (1967c, d, e). This was followed by a series of helicopter-home operations in central Baffin Island (e.g. Morgan, 1983; Henderson, 1985). Bedrock mapping at 1:50 000 scale was conducted by the GSC in 1994 across a 2800 km² area centred on Eqe Bay (Fig. 1), west-central Baffin Island. Mapping results, geochronological and geochemical data were presented in Bethune and Scammell (1997, 2003a, b). Subsequently, modern geoscience knowledge has been provided by field campaigns featuring helicopter-assisted foot traverses in: 1) southern Baffin Island (1995–1997; green shading in Fig. 1); 2) central Baffin Island (2000–2002; orange shading in Fig. 1); 3) southwestern Baffin Island (2006; yellow shading in Fig. 1); 4) Cumberland Peninsula (2009–2011; pale pink shading in Fig. 1); 5) Hall Peninsula (2012–2014; blue shading in Fig. 1); 6) Meta Incognita Peninsula (2014; purple shading in Fig. 1); and 7) in the Clearwater Fiord–Sylvia

Figure 1. Summary of bedrock mapping campaigns undertaken south of latitude 70°N, on Baffin Island, Nunavut. Bold numbers denote map references in chronological order, which are listed in Appendix A. Coloured shading highlights areas where field campaigns were conducted, as described in the text.
Grinnell Lake area (2015; pale red shading in Fig. 1). The latter project effectively completed the framework bedrock mapping of southern Baffin Island (Weller et al., 2015; St-Onge et al., 2016).

North of latitude 70°N, reconnaissance geological mapping was conducted by G.D. Jackson and R.G. Blackadar in 1965–1968 as part of two bedrock mapping operations on northern Baffin Island (Fig. 2; Blackadar et al., 1968a–h; Jackson and Davidson, 1975a, b; Jackson and Morgan, 1978; Jackson et al., 1979; Jackson, 1984). Mapping involved helicopter traverses with stops spaced approximately 8 km apart, supplemented by more detailed targeted work to examine the stratigraphy of supracrustal rocks, including exposures in the Mary River area (Fig. 2), where Archean greenstone belts host world-class iron deposits. In 1987, a bedrock geological map of Borden Peninsula was published (Fig. 2; Jackson and Sangster, 1987) and, in 1988, a geological map focused on the Mesoproterozoic Fury and Hecla Group was released (Fig. 2; Chandler, 1988). Jackson et al. (1975) and Jackson (2000) presented a summary of the bedrock geology of northern Baffin Island, including descriptions of lithological units and preliminary accounts of metamorphism, deformation and economic mineralization. Detailed sketch maps of the iron-bearing Mary River Group were subsequently released (Jackson, 2006).

In 2003–2005, the Canada-Nunavut Geoscience Office completed targeted bedrock mapping as a subcomponent of the 2003–2005 North Baffin project, in which surficial geology was the primary focus. Resulting 1:50 000 scale maps were published in Young et al. (2004), together with an interpreted structural–stratigraphic framework. More recently, targeted and 1:100 000 scale bedrock mapping was conducted under the Geo-mapping for Energy and Minerals program North Baffin Island Bedrock Mapping activity (2017–2018; blue shading in Fig. 2) to bring bedrock mapping and geoscience knowledge to an equal level with that achieved on southern Baffin Island (e.g. St-Onge et al., 2015c; Weller et al., 2015).

The geological and tectonic synthesis of the Archean and Paleoproterozoic cratonic units of Baffin Island presented in this paper relies in part on original field observations and descriptions of rock formations that have been previously published by the co-authors in several field reports. Chief amongst these are the following publications, to which the reader is referred for further information: St-Onge et al. (2015b, c), Weller et al. (2015), Skipton et al. (2017), and Saumur et al. (2018).

TECTONIC FRAMEWORK

Baffin Island forms part of the northeastern (Quebec–Baffin) segment of the Trans-Hudson Orogen (THO), which is a collisional/accretionary orogenic belt that extends in a broad arcuate corridor from northeastern to south-central North America (Hoffman, 1988; Lewry and Collerson, 1990). The THO formed during the final phase of growth of the Nuna supercontinent, and sensu lato records closure of the Manikewan Ocean between the lower Superior and upper Churchill plates from ca. 1.92 to 1.80 Ga. In detail, the northeastern THO is a composite collision zone that comprises tectonostratigraphic assemblages accumulated on, or accreted to, the northern margin of the lower-plate Archean Superior Craton and involved a series of short-duration tectonothermal events, which encompass specific accretionary phases within the much larger orogenic system during 120 Ma of gradual ocean-basin closure (St-Onge et al., 2006, 2007, 2009; Corrigan et al., 2009; Corrigan, 2012; Weller and...

Figure 2. Summary of bedrock mapping campaigns undertaken north of latitude 70°N on Baffin Island, Nunavut. Bold numbers denote map references in chronological order, which are listed in Appendix A. Coloured shading highlights areas where field campaigns were conducted, as described in the text.
Four orogen-scale stacked structural levels have been identified in the eastern THO (Fig. 3). From north to south, and highest to lowest structural level, these comprise:

- **Level 4** – The eastern Rae Craton (Bothune and Scammell, 2003a; Skipton et al., 2017; Saumur et al., 2018), consisting of Archean basement orthogneiss, felsic plutonic rocks and supracrustal packages, unconformably overlain along its southern margin by middle Paleoproterozoic supracrustal cover (Piling Group; Partin et al., 2014a; Wodicka et al., 2014) and stratigraphically similar units of the Hoare Bay Group on Cumberland Peninsula (Sanborn-Barrie et al., 2017). A middle Paleoproterozoic felsic plutonic suite (Qikiqtarjuaq plutonic suite; Sanborn-Barrie et al., 2011, 2013; Rayner et al., 2012) intrudes both the cratonic basement and supracrustal cover strata.

- **Level 3** – Archean to middle Paleoproterozoic gneissic and meta-plutonic units and middle Paleoproterozoic metasedimentary cover units (Lake Harbour Group; Jackson and Taylor, 1972), collectively termed the ‘Meta Incognita microcontinent’ by St-Onge et al. (2000a), which represents crust rifted from the Rae Craton, or the Superior Craton, or that is exotic to both.

- **Level 2** – Middle Paleoproterozoic, dominantly monzogranitic to granodioritic orthogneiss, interpreted as a deformed arc-magmatic terrane (Narsajuaq terrane; Scott, 1997; Wodicka and Scott, 1997; Thériault et al., 2001; St-Onge et al., 2009) or alternatively as Narsajuaq-age intrusions emplaced in Level 3 (Corrigan et al. 2009).

- **Level 1** – Archean tonalitic to granitic orthogneiss, interpreted as the northern continuation of the lower-plate Superior Craton crystalline basement, and associated middle Paleoproterozoic continental-margin supracrustal cover (Povungnituk Group; St-Onge et al., 1996).

Levels 3 and 4 are intruded by the Qikiqtarjuaq plutonic suite (Sanborn-Barrie et al., 2011, 2013; Rayner et al., 2012), dated between ca. 1896 and 1886 Ma (Rayner, 2017), and the Cumberland batholith, which comprises various granitoid phases dated at ca. 1865 and 1845 Ma (Whalen et al., 2010; Rayner, 2015; 2017). The Cumberland batholith has been interpreted as an Andean-type batholith (St-Onge et al., 2009), or as the result of postcollisional lithospheric delamination and mantle upwelling (Whalen et al., 2010). Level 4 is unconformably overlain by the Mesoproterozoic sedimentary and volcanic units of the Borden and Fury and Hecla basins (Chandler, 1988; Jackson, 2000). All levels are cut by ca. 720 Ma basaltic dykes of the Franklin swarm, which were emplaced during plume magmatism associated with the breakup of the Rodinia Supercontinent (Heaman et al., 1992). Levels 3 and 4 are unconformably overlain by Cambro–Ordovician clastic and carbonate sedimentary strata (Blackadar, 1967e; Blackadar et al., 1968a–h), whereas Level 4 is also unconformably overlain by Cretaceous sandstone (Jackson and Davidson, 1975b; Jackson et al., 1975) and Paleocene volcanic and sedimentary strata (Clarke and Upton, 1971).

The four structural levels were progressively accreted from north to south across a series of, in part, cryptic crustal sutures during long-lived deformation associated with the THO. The oldest of these sutures, the Level 3–4 ‘Baffin suture’ (Fig. 3), is proposed to have resulted from accretion of the Meta Incognita microcontinent to the Rae Craton between 1915 ± 8 Ma (the youngest, most precise maximum age constraint for the Piling Group; Wodicka et al., 2014) and 1896 ± 8 Ma (the oldest dated phase of the Qikiqtarjuaq plutonic suite; Rayner 2017). Evidence of this suture is relatively sparse due to postaccretion magmatism engulfing the putative suture zone but includes the presence of distinct and opposite-facing, shelf-to-basin stratigraphic sequences (St-Onge et al., 2009; Weller et al., 2015). To the north of the proposed suture lies the stratigraphically south-facing Piling Group, which comprises a continental-margin sequence, characterized by basal shallow-marine...
continental-margin clastic and carbonate-platform strata, overlain by a volcano-sedimentary rift package that includes iron-formation, and capped by deep-water turbidites (Partin et al., 2014a; Wodicka et al., 2014). To the south of the proposed suture lies the Lake Harbour Group, which grades basinward to the north and comprises a clastic–carbonate continental-margin sequence (Scott et al., 1997, 2002a). Stratigraphic differences with the Piling Group include the presence of a basal orthoquartzite and the absence of iron-formation and greywacke. Further evidence for the proposed suture includes north-verging thrust imbrication of Piling Group strata in Level 3 (Corrigan et al., 2001, 2009; Scott et al., 2002b, 2003), as well as thrust imbrication of basement-cover panels in Level 3 that predate emplacement of the Cumberland batholith (St-Onge et al., 2007).

The Level 2–3 ‘Soper River suture’ (Fig. 3) records the accretion of the Narsajuaq magmatic arc to the composite Rae–Meta Incognita continental margin. Formation of the suture is bracketed between 1845 ± 2 Ma, the age of the youngest intra-oceanic phase in the arc (Dunphy and Ludden, 1998), and 1842 ±5/−3 Ma, the age of the oldest Andean-type phase of the Narsajuaq Arc (Scott, 1997). Deformation in the hanging wall of the Soper River suture is both extensive and penetrative, and manifest as a regional synmetamorphic amphibolite- to granulite-facies metamorphic foliation (St-Onge et al., 2007).

The Level 1–2 ‘Bergeron suture’ (Fig. 3) formed during terminal collision of the Superior Craton with the amalgamated mantle of upper-plate terranes (collectively the Churchill plate or peri-Churchill collage) and is bracketed between 2820 ±4/−3 Ma, the age of the youngest dated plutonic unit in the hanging wall of the suture (Scott and Wodicka, 1998), and 1795 ± 2 Ma, the age of an undeformed dyke that crosses the suture (Wodicka and Scott, 1997). This event resulted in localized retrograde amphibolite-facies metamorphism of granulite-facies rocks in the upper plate of the collision on southern Baffin Island, specifically along reactivated segments of the Soper River suture and associated fluid-infiltration zones (St-Onge et al., 2000b).

**ARCHEAN RAE CRATON (LEVEL 4)**

On Baffin Island, the Rae Craton comprises 2901 ± 3 to 2706 ± 3 Ma granodioritic to monzogranitic orthogneiss and temporally distinct volcano-sedimentary sequences, namely the 2833 ± 3 to 2731 ± 6 Ma Meso- to Neoarchean Mary River Group and the younger ca. 2740 to 2725 Ma Neoarchean Eqe Bay and Isortoq greenstone belts, all of which are intruded by 2731 ± 3 to 2658 ±16/−14 Ma granodioritic to monzogranitic and rare tonalitic plutonic rocks (Fig. 4; Jackson et al., 1990; Scott and de Kemp, 1999; Jackson, 2000; Wodicka et al., 2002b; Bethune and Scammell, 2003a; Scott et al., 2003; Young et al., 2004, 2007; Johns and Young, 2006; Skipton et al., 2019). The Archean units of northern Baffin Island have been correlated with the Prince Albert and Repulse Bay blocks (or north Rae Domain) of the Rae Craton, the latter extending from central Nunavut to at least northern Baffin Island (Jackson and Berman, 2000; Pehrsson et al., 2011, 2013; Snyder et al., 2013; St-Onge et al., 2015a). In their type area west of Foxe Basin, the correlative Prince Albert and Repulse Bay blocks are characterized by ca. 2.97–2.60 Ga granite-greenstone belts with isotopic evidence of Eo- to Mesoproterozoic cratonic basement (e.g. Wodicka et al., 2011; Corrigan et al., 2013; LaFlamme et al., 2014).

On northern Baffin Island, the Archean crust of the Rae Craton is truncated by the Isortoq Fault (Jackson, 2000) and unconformably overlain by the Paleoproterozoic Piling Group (Fig. 4). Both fault and cover have been interpreted as corresponding to the northern margin of the ca. 1.92–1.80 Ma Himalayan-scale accretionary/collisional THO (St-Onge et al., 2002). The Isortoq Fault is considered to record northwest-directed thrusting of the Piling Group and underlying crystalline basement over Archean crust of northern Baffin Island at ca. 1850–1820 Ma (Jackson, 2000; Jackson and Berman, 2000; Bethune and Scammell, 2003; Saumur et al., 2018).

Paleoproterozoic felsic plutonic rocks, ranging in age from 1887 ±7/−4 to ca. 1805 Ma and including the northernmost components of the Cumberland batholith, intrude the Piling Group and Rae Craton rocks (see below; Jackson et al., 1990; Henderson and Henderson, 1994; Wodicka and Scott, 1997; Scott and Wodicka, 1998; Scott, 1999; Wodicka et al., 2002b, 2014; Bethune and Scammell, 2003b; Gagné et al., 2009; Whalen et al., 2010).

**Archean basement gneiss**

Archean basement orthogonality of the Rae Craton on Baffin Island (Fig. 4) mainly comprises granodiorite, tonalite, and monzogranite. Crystallization ages for units interpreted as basement to the Mary River Group (see ‘Mary River Group’ section), east and north of Mary River (Fig. 4), are 2851 ±20/−17 Ma for a tonalite gneiss (Jackson et al., 1990), ca. 2900 Ma for a granodiorite gneiss (Young et al., 2007; M. Young, unpub. data, 2007), and 2901 ± 3 Ma for a
flows or shallow subvolcanic intrusions. Mafic rocks that lack definitive volcanic textures may represent thick layers of fine-grained carbonate (Fig. 5a). The centimetre-scale gneissosity defined by alternating mafic- and felsic-rich bands is generally accompanied by decimetre- to metre-scale compositional banding resulting from the transposition of different rock types.

**Mary River Group**

The Mary River Group comprises mafic metavolcanic rocks with intervening strata of siliciclastic units, banded iron-formation, felsic to intermediate metavolcanic rocks and ultramafic silts/volcanic rocks. Existing U–Pb data indicate at least two temporally distinct volcanic episodes. North of the type locality at Mary River (Fig. 4), Skipton et al. (2019) documented ages of 2833 ± 3 Ma and 2829 ± 5 Ma for felsic intermediate volcanism, whereas they reported a considerably younger crystallization age of 2731 ± 6 Ma for a dacite north of the 'Felsenmeer flats' area (Fig. 4). In the Eqe Bay and Isortoq greenstone belts in the Eqe Bay area (Fig. 4), intermediate–felsic volcanic occurrence occurred between ca. 2740 and 2725 Ma (Bethune and Scammell, 2003a).

In general, the stratigraphy of the Neaorarchean Mary River Group comprises a lower section of dominantly mafic metavolcanic rocks with smaller psammitic quartzite, overlain by iron-formation, and an upper sequence of psammitic quartzite and felsic–intermediate metavolcanic rocks with minor mafic metavolcanic units. Ultramafic rocks form low-volume, discontinuous layers at various stratigraphic levels (Jackson, 2000; Young et al., 2004; Johns and Young, 2006; Bros and Johnston, 2017; Skipton et al., 2017; Saumur et al., 2018).

**Mafic metavolcanic (and subvolcanic) rocks**

Mafic metavolcanic rocks are fine- to medium-grained and contain hornblende-plagioclase±actinolite±clinopyroxene±magnetite±biotite±quartz±garnet±chlorite± epidote assemblages. The rocks are typically equigranular or characterized by hornblende, or plagioclase, that forms medium-grained crystals within a fine-grained matrix. Contacts are commonly, defined by alternating mafic and felsic layers 5–50 mm thick that may reflect primary layering. Relict volcanic textures occur locally, including fine-grained plagioclase-rich clasts or coarse-grained hornblende/clinopyroxene pods within a fine-grained mafic matrix, or layered bomb- or lens-shaped mafic clasts (Fig. 5c, d). In rare cases, mafic volcanic deposits contain thin layers of fine-grained carbonate (Fig. 5d). Fine- to medium-grained mafic rocks that lack definitive volcanic textures may represent thick flows or shallow subvolcanic intrusions.

**Banded iron-formation**

The Mary River Group hosts Neoarchean oxido- and silicate-facies banded iron-formation. Iron-formation is typically 3–10 m thick, composed predominantly of Fe-bearing and locally forms bodies that can be more than 100 m thick and extend for tens of kilometres along strike (MacLeod, 2012). The group hosts nine high-grade iron deposits that are currently tenured to Baffinland Iron Mines Corporation, most notably the Deposit No. 1 mine at Mary River (Fig. 4). The high-grade iron ore is interpreted to have formed from banded iron-formation that underwent pervasive desilification resulting from circulation of hot, alkaline brines (MacLeod, 2012). The deposits are described in detail in a number of studies (Jackson, 2000, 2006; Young et al., 2004; MacLeod, 2012). The oxide-facies banded iron-formation is characterized by 0.1–3 cm scale banding of magnetite (+hematite) and chert (Fig. 5e), with local occurrences of massive magnetite beds up to 10 m thick. Silicate-facies banded iron-formation is less common and comprises alternating bands of quartz, magnetite, and cummingtonite-grunerite-garnet that are 0.1–3 cm thick (Fig. 5f). Whereas some banded iron-formation has orange and/or purple gossanous weathering, most weather dark grey, grey-blue or dark brown. Outside the banded iron-formation, isolated ironstone layers are relatively common within mafic and ultramafic volcanic units, forming centimetre- to decimetre-scale bands of granular magnetite±hematite.

**Andesite and rhyolite**

Intermediate rocks are less common than mafic units in the Mary River Group. Although they contain higher proportions of plagioclase and quartz, intermediate volcanic and subvolcanic rocks have the same metamorphic mineral assemblages and similar textures as their mafic counterparts, described above.

Rhyolite is overlain by banded iron-formation and underlain by psammitine in the Tuktulivark area (Fig. 4). The rhyolite is aphanitic apart from fine-grained muscovite and millimetre-scale quartz bands, which are parallel to compositional banding defined by alternating pale yellow and cream-coloured bands up to 1 cm thick.

**Ultramafic rocks**

Ultramafic rocks form a relatively minor component of the Mary River Group, and recent field observations (Skipton et al., 2017; Saumur et al., 2018) suggest that they are not as spatially extensive as indicated by previous studies (e.g. Davidson et al., 1979). Ultramafic rocks, which form discontinuous layers, typically comprise aligned orthopyroxene phenocrysts within a beige or light grey to black, fine-grained to aphanitic groundmass, suggesting a subvolcanic or volcanic origin (i.e. komatiite). Spinifex texture, diagnostic of quenched komatiite flow sequences, was not observed, possibly owing to extensive recrystallization and/or deformation. In places, ultramafic rocks form medium- to coarse-grained intrusive bodies that contain clinopyroxene ±orthopyroxene±hornblende±olivine.

**Psammitite, quartzite, semipelite, peltite**

Concordant with volcanic strata, siliciclastic sequences are mostly up to approximately 10 m thick (hundreds of metres thick at Tuktulivark; Fig. 4). Muscovite±biotite psammitine is most common. Quartzite contains muscovite±biotite±garnet and is in sharp contact with (structurally) underlying monzogranite. Peltite and semipelite contain chlorite-muscovite±biotite±garnet±staurolite±magnetite, with staurolite locally forming porphyroblasts up to 7 cm long. Garnet is euhedral and typically 0.5–1 cm in size, reaching 5 cm locally.

**Plutonic rocks**

Quartzofeldspathic intrusions include foliated to massive monzonte–granodiorite–monzogranite (±K-feldspar or plagioclase megacrysts) and aplitic to pegmatitic syenite dykes. An age of 2709 ±3 Ma is reported for monzonte near Paquet Bay (Fig. 4; Jackson et al., 1990), whereas an age of 2731 ±3 Ma is documented for a monzogranite east of Mary River (Fig. 4; Skipton et al., 2019). Further south, six calcalkaline granite–granodiorite intrusions near Eqe Bay (Fig. 4) yielded similar ages ranging from ca. 2726 to 2714 Ma, and thus appear in part contemporaneous with, and to outlast, the younger phase of Mary River Group volcanism (Bethune and Scammell, 2003a).

**Monzogranite–granodiorite**

Medium-grained biotite-hornblende-magnetite monzogranite–granodiorite (Fig. 5g) is widespread in the Rae Craton of Baffin Island. Plutons are homogeneous and typically weakly foliated, but range from massive to strongly foliated, and can occur as L- or L±S-tectonite. Potassium-feldspar megacrysts (±1.5 cm) occur in marginal localities. The intrusions locally contain enclaves of diorite or gabbro, and rarely enclaves (<1 m to 10–20 m) of fine-grained, foliated, mafic volcanic rocks interpreted as Mary River Group. Weakly foliated monzogranite is observed to cut granodiorite gneiss in several localities.

Feldspar-megacrystic monzogranite to monodiorite intrusions form 1–10 km scale plutons and are characterized by euhedral, weakly compositionally zoned megacrysts (2–5 cm) of either K-feldspar or plagioclase feldspar within a medium- to coarse-grained groundmass. Mafic minerals include biotite±hornblende±magnetite. The plutons locally exhibit a weak tectonic lineation or foliation, but are typically massive due to their coarse grain size and low proportion of mafic minerals. Megacrysts are locally aligned, potentially indicative of primary magmatic flow.
Figure 5. Rae Craton basement gneiss and Mary River Group strata, northern Baffin Island (modified from Skipton et al., 2017). a) Gneiss composed of granodiorite with bands of quartz diorite and monzogranite (hammer for scale). Photograph by D.R. Skipton. NRCan photo 2018-338. b) Gneiss composed of quartz diorite with monzogranite bands and gabbro enclaves/bands; folded and boudinaged gneissic bands are crosscut by a pegmatic syenogranite dyke (hammer for scale). Photograph by D.R. Skipton. NRCan photo 2018-339. c) Mafic metavolcanic rock preserving volcanic layering (S_0) composed of a fine-grained matrix and pods of coarse-grained clinopyroxene (Cpx), plagioclase (Pl) and hornblende (Hbl), interpreted as volcanic clasts (scale marker = 7 cm). Photograph by D.R. Skipton. NRCan photo 2018-340. d) Clinopyroxene (Cpx)–hornblende (Hbl)-bearing mafic metavolcaniclastic rock with layers of fine-grained carbonate (± crystalline calcite) and volcanic layering (S_0) (hammer for scale). Photograph by E.R. Bros. NRCan photo 2018-341. e) Oxide-facies banded iron-formation near the Tuktuliarvik area (Fig. 4), composed of alternating layers (S_i) of magnetite (Mag) and chert (scale marker is 8 cm long). Photograph by D.R. Skipton. NRCan photo 2018-342. f) Silicate-facies banded iron formation in the Tuktuliarvik area (Fig. 4), consisting of alternating layers (S_i) of quartz (Qtz), magnetite (Mag) and cummingtonite (Cum)–grunerite (Gru)–garnet (Grt) (hammer for scale). Photograph by D.R. Skipton. NRCan photo 2018-343. g) Homogeneous biotite (Bt) monzogranite. Photograph by B.M. Saumur. NRCan photo 2018-344. h) Gabbro and leucogabbro layers (S_i) within a layered mafic–ultramafic intrusion (scale bar = 7 cm). Photograph by M.R. St-Onge. NRCan photo 2018-345. Mineral abbreviations after Whitney and Evans (2010).
Syenogranite

The youngest documented felsic plutonic phase comprises coarse-grained to pegmatitic, massive biotite+magnetite syenogranite dykes, 5 cm to 3 m wide. The dykes intrude the granodiorite–tonalite–monzogranite gneiss (Fig. 5b), monzogranite–granodiorite intrusions, and rarely the Mary River Group, including the banded iron-formation. Hornblende or clinoptyroxene occurs locally in pegmatic syenogranite dykes that cut hornblende-bearing plutonic units or mafic enclaves.

Diorite, gabbro, and hornblendite enclaves

Medium-grained hornblende+biotite+clinopyroxene diorite and gabbro enclaves occur within granodiorite–tonalite–monzogranite gneiss (commonly forming bands; Fig. 5a, b) and monzogranite–granodiorite intrusions; medium- to coarse-grained hornblendite enclaves are less common. Enclaves are generally foliated, less than 1 m in size, comprise less than 10% of outcrop volume and are oriented parallel to the tectonic fabrics in the host rocks.

Layered mafic–ultramafic bodies

Mafic–ultramafic intrusions comprise 100 to 500 m thick layers of gabbro/diorite with hornblende clinoptyroxenite and/or websterite. Within gabbroic portions, primary decimetre-scale, rhythmic compositional layering is defined by varying proportions of plagioclase and clinoptyroxene (or hornblende after clinoptyroxene), producing alternating bands of leucogabbro and gabbro (Fig. 5b). Layering is irregular along strike, exhibiting truncations and layer-scale deformation that possibly reflect dynamic magmatic conditions.

PALEOPROTERozoic southern margin of the Rae Craton (level 4)

The Paleoproteozoic Piling Group on central Baffin Island (Fig. 6) comprises shallow-water siliciclastic–carbonate strata, mafic–ultramafic volcanic rocks, and deep-water basin strata (e.g. Morgan et al., 1976; Henderson et al., 1979; Henderson and Tippett, 1980; Tippett, 1985; Jackson, 2000; Corrigan et al., 2001; Scott et al., 2002b, 2003; St-Onge et al., 2005; Partin et al., 2014a; Wodicka et al., 2014). The shallow-water strata and volcanic rocks are generally regarded as having accumulated as a result of regional crustal extension along the southeastern margin of the Archean Rae Craton (e.g. Rainbird et al., 2010), followed by deposition of the deep-water strata in a foreland or proto-ocean basin (Partin et al., 2014a; Wodicka et al., 2014). Subsequently, all stratigraphic units were deformed and metamorphosed during the ca. 1.92–1.80 Ga Trans-Hudson Orogeny (Corrigan et al., 2001; Scott et al., 2002b; St-Onge et al., 2006; Gagné et al., 2009). The Piling Group (Fig. 6) forms part of an extensive cover sequence on the Rae Craton, with stratigraphic correlative extensions from the western Churchill Province on mainland Nunavut (e.g. Pehrby, Amer, Ketyet River, Chantrey, and Montresor groups; Jackson and Taylor, 1972; Taylor, 1982; Rainbird et al., 2010), across Baffin Island (Hoare Bay Group; St-Onge et al., 2009), to western Greenland (Karrat and Anap nunâ groups; Escher and Pulvertaft, 1976; Henderson and Pulvertaft, 1987; Garde and Steenfelt, 1999).

Piling Group

The Piling Group is divided into five formations (Morgan, 1983; Tippett, 1985), which comprise, in ascending stratigraphic order, the Dewar Lakes, Flint Lake, Astarte River, and Longstaff Bluff formations (Fig. 6, 7).

Dewar Lakes formation

The Dewar Lakes formation can be subdivided into three members (Scott et al., 2003), the lowest of which comprises thinly bedded, muscovite-rich quartzite, grey- to pink-weathering psammite, and feldspathic quartzite (Fig. 7a). The overlying, and by far the most widespread, middle member comprises medium to thickly bedded sillimanite+muscovite-rich quartzite (Fig. 7b) characterized by dominantly southward-directed cross-stratification. The upper member comprises thin beds of quartzite to psammite and rusty semipelite to pelite (Fig. 7e). The overall thickness of the Dewar Lakes formation varies significantly from less than 1 m to locally over 1000 m. Thickness variability may reflect primary sedimentary depocentres (Tippett, 1985; Jackson, 2000; Scott et al., 2003). Basal quartzite and rare psammite of the lower Dewar Lakes formation are in stratigraphic (locally reworked) unconformable contact with underlying Archean orthogneissic and plutonic rocks, and the formation is interpreted as a clastic sheet deposited on Rae cratonic basement. The dominance of quartz over feldspar and the presence of rock fragments throughout the formation suggest a relatively high degree of sedimentological
maturity (Tippett, 1985). Most of the Dewar Lakes formation was likely deposited in a shallow marine environment (e.g. Tippett, 1985; de Kemp et al., 2002a, b).

**Flint Lake formation**

White- to grey-weathering dolostone, marble, and calc-silicate strata of the Flint Lake formation (Fig. 7d) interlayered with lesser semipelitic, pelite, quartzite, iron-formation, and chert, stratigraphically overlie the upper member of the Dewar Lakes formation (Morgan et al., 1976; Corrigan et al., 2001; Scott et al., 2002b; St-Onge et al., 2005). The exposed thickness of this formation varies considerably both along and across strike, from several metres to 500–1000 m (Fig. 6). The overall decrease in carbonate material toward the south led Scott et al. (2002b, 2003) to suggest that the Flint Lake formation originally formed a relatively narrow (75–100 km wide) south-facing carbonate shelf adjacent and parallel to the southeastern edge of the Rae Craton, with significant along-strike variation in primary thickness.

**Bravo Lake formation**

The Bravo Lake formation forms a nearly continuous, 120 km long, east-trending mafic volcanic belt in the southern part of the Piling structural basin (Fig. 6). Like the Flint Lake formation, it conformably overlies the siliciclastic rocks of the upper Dewar Lakes formation, which suggests that the lithologically distinct carbonate and volcanic sequences occupy an equivalent stratigraphic position within the Piling Group (de Kemp et al., 2002a, b; Scott et al., 2003). Based on lithostratigraphic and structural considerations, the Bravo Lake formation, and in places the Dewar Lakes formation, are interpreted to have been tectonically juxtaposed against the younger Longstaff Bluff formation across a north- to northwest-directed thrust fault (Fig. 6; Tippett, 1985; Corrigan et al., 2001; de Kemp et al., 2002a, b; Stacey and Pattison, 2003). The Bravo Lake formation has an estimated thickness of 1.0–2.5 km and can be subdivided into two sequences (Modeland and Francis, 2003, 2004; Johns et al., 2006).

The lower sequence is dominated by pillowed, subalkaline, tholeiitic to picritic basaltic flows (Fig. 7e) and volcaniclastic rocks with iron-formation and rare intrusive mafic to ultramafic sills. The upper sequence comprises volcanioclastic rocks and mostly alkaline basaltic flows intruded by numerous ultramafic to mafic alkaline sills (Fig. 7f) and locally abundant partially sheeted dykes at its base. A succession of siliciclastic rocks 10 to 300 m thick, including quartzite, semipelitic, pelite, and calc-silicate, separates the two sequences and represents a key regional stratigraphic marker. The mafic magmas range in composition from tholeiitic in the lower sequence to dominantly alkaline in the upper sequence, strikingly similar to that of modern ocean-island basalt suites (e.g. Modeland and Francis, 2004; Partin et al., 2014a). Detailed mapping suggests that the mafic–ultramafic volcanism occurred in a low-energy, shallow submarine environment (de Kemp et al., 2002a, b; Johns et al., 2006). Based on its stratigraphic setting and chemical composition, the Bravo Lake formation is interpreted to have formed in a rift setting (i.e. intracontinental rift or incipient oceanic rift; Jackson, 2000; Johns et al., 2006; Corrigan et al., 2009; Wodicka et al., 2014) or foredeep.
setting (Partin et al., 2014a), underlain by variably enriched mantle (Modeland and Francis, 2004). The structural trends of the sheeted dykes within the upper sequence indicate offset rifting within strike-slip pull-apart basins (Johns et al., 2006). Scattered mafic sills occur within the underlying Dewar Lakes formation and Archean basement, and the overlying Longstaff Bluff formation (Tippett, 1985; St-Onge et al., 2005). These rocks show a close geochemical correspondence with mafic–ultramafic rocks from the Bravo Lake formation, indicating a potential cogenetic relationship (Tippett, 1984, 1985; Gladstone and Francis, 2003) and suggesting that, in part, Bravo Lake magmatism continued after deposition of the Longstaff Bluff formation.

**Astarte River formation**

Rusty-weathering graphic pelite, semipelite, and minor sulphide-facies iron-formation of the Astarte River formation (Fig. 7g) directly overlie carbonate rocks of the Flint Lake formation in the northwest, siliciclastic rocks of the Dewar Lakes formation in the central part of the Piling structural basin, and mafic volcanic rocks of the Bravo Lake formation in the south (Fig. 6; Scott et al., 2003). This sulphide-rich (pyrite-pyrrhotite) sequence is estimated to be over 500 m thick and marks a relatively abrupt transition from shallow-water sedimentation and volcanism to deep-water sedimentation, suggesting the onset of a tectonic process that rapidly increased rates of subsidence and led to drowning of the Flint Lake carbonate platform.

**Longstaff Bluff formation**

The Longstaff Bluff formation, the uppermost stratigraphic component of the Piling Group (Fig. 6), is a 3–5 km thick, monotonous succession of feldspathic psammite and greywacke, subordinate semipelitic, and rare pelite interpreted as turbidite (e.g. Henderson et al., 1979; Henderson and Tippett, 1980; Tippett, 1985; Jackson, 2000; Scott et al., 2002b). These rocks are distinguished from the quartz-rich rocks of the Dewar Lakes formation by their greater mica content (notably biotite) and the dominance of plagioclase relative to K-feldspar (Tippett, 1985). Primary sedimentary features are best preserved in the dominantly low-metamorphic-grade area and type locality for the Longstaff Bluff formation northeast of Nauja Bay (Fig. 6). In this region, individual psammite beds display normally graded bedding (Fig. 7h), generally indicating an upright sequence. Other primary structures such as crossbeds, scours, and ripples are less common (Forester and Gray, 1966; Morgan et al., 1975; Jackson, 2000; Scott et al., 2003; St-Onge et al., 2005). Paleocurrents measured from these structures in the middle and upper parts of the Longstaff Bluff formation indicate an apparent east–west sediment transport. The composition of the turbidite rocks (e.g. euhedral feldspar crystals and crystal fragments, blue quartz, and mafic minerals) suggests derivation from at least in part, a volcanic source area (Jackson, 2000; Corrigan et al., 2001; Scott et al., 2002b). Calcareous pseudoclasts (Fig. 7i), interpreted as metamorphosed carbonate concretions, are ubiquitous. According to most workers, the Longstaff Bluff formation is considered to extend as migmatitic metasedimentary rocks south of the Bravo Lake formation (Fig. 6; e.g. Tippett, 1985; Henderson and Henderson, 1994; St-Onge et al. 2005).

Field relationships indicate that Longstaff Bluff turbiditic beds stratigraphically overlie both rusty pelite of the Astarte River formation (Fig. 7j) and volcanic rocks of the Bravo Lake formation. The character of the better preserved northern Longstaff Bluff formation, including the generally fine-grained nature of the turbidite rocks, the dominance of normal-graded bedding, and the lateral continuity in bedding thicknesses, combine to suggest that the bedded strata represent distal-facies turbidite (e.g. Henderson and Tippett, 1980) deposited on the suprafan lobe portion of an outer submarine fan (Tippett, 1985). Most workers have suggested that the deep-water deposits signal a dramatic change in tectonic conditions, with the clastic detritus originating in a foreland, molasse-type basin and/or a fragmented proto-ocean basin (e.g. Jackson, 2000; Corrigan et al., 2001, 2009; Scott et al., 2002; St-Onge et al., 2005; Partin et al., 2014a; Wodicka et al., 2014). Wodicka et al. (2014) have specifically suggested a two-component source with possible input from the Snowbird tectonic zone to the west and the Bravo Lake formation more locally.

**Piling Group age constraints**

The U–Pb zircon and carbon-isotope chemostratigraphy data presented by Partin et al. (2014a) and Wodicka et al. (2014) provide important insights into the depositional ages of principal sedimentary units of the Piling Group and the timing of Bravo Lake formation mafic–ultramafic volcanism and sill emplacement. The youngest detrital zircon grains from samples collected in the lower, middle, and upper members of the Dewar Lakes formation have yielded highly variable, but progressively younger, maximum ages of deposition of ca. 2725 Ma, 2719 ± 22 Ma, 2312 ± 23 Ma, and 2159 ± 16 Ma, respectively (Wodicka et al., 2014). The youngest U–Pb zircon age from adjacent basement rocks (2658 ±16/14 Ma; St-Onge et al., 2003).
accumulation (e.g. Cawood and Nemchin, 2001; Bradley, 2008). In the overlying Flint Lake formation, δ¹⁸O values suggest formation of the carbonate platform after ca. 2.06 Ga (Partin et al., 2014a). The chronostratigraphic age constraints are consistent with the maximum age constraint of 2.16 Ga for the upper Dewar Lakes formation.

Field relationships, geochemistry, and age constraints suggest that magmatic activity related to the Bravo Lake formation occurred over a period of approximately 100 Ma. Two indirect lines of evidence indicate that theleithic to picritic volcanism within the lower Bravo Lake sequence may have commenced as early as ca. 1980 Ma. A 1979 ± 13 Ma anhedral zircon fragment in a trachyte dyke (Wodicka et al., 2014) could represent a xenocryst incorporated into the trachytic melt during ascent through the lower Bravo Lake formation volcanic pile. Similarly, 1980 ± 11 Ma detrital zircon grains within quartzose semipelite, taken from a channel near the base of the lower Bravo Lake formation, could be derived from erosion of adjacent lava flows or volcanioclastic rocks (Wodicka et al., 2014). Upper Bravo Lake formation magmatism is constrained at or before 1923 ± 15 Ma (Wodicka et al., 2014), the age of the upper Bravo Lake trachyte dyke with a syenogranitic origin (Johns et al., 2006). A maximum depositional age of 1940 ± 28 Ma for a lithic metawacke from the upper Bravo Lake formation (Partin et al., 2014a) is consistent with this interpretation. The youngest magmatism possibly related to the Bravo Lake formation, consisting of highly differentiated sills, occurred at 1897 ± 10-5 Ma (Wodicka et al., 2014) and 1883.3 ± 4.7 Ma (Henderson and Parrish, 1992), following deposition of the Longstaff Bluff formation.

Five Longstaff Bluff formation detrital zircon samples have yielded maximum ages of deposition of 1964 ± 9 Ma and 1931 ± 4 Ma for samples located in the high-grade area south of the Bravo Lake formation (i.e. southern Longstaff Bluff formation), and 1923 ± 7 Ma, 1915 ± 8 Ma and 1883 ± 38 Ma for samples taken north of the volcanic belt (i.e. northern Longstaff Bluff formation; Partin et al., 2014a; Wodicka et al., 2014), with the differences in ages possibly indicating diachronous deposition between the northern and southern parts of the Longstaff Bluff formation. Minimum age constraints are obtained from a 1897 +7/-4 Ma rapakivi-textured, K-feldspar megacrystic monzogranite intrusive into the southern turbiditic strata (Fig. 6; Wodicka et al., 2014), a unit possibly correlative (Sanborn-Barrie et al., 2017) with the Qikiqtarjuaq plutonic suite of Rayner et al. (2012) and Sanborn-Barrie et al. (2013), and from in situ ages of 1878 ± 25 Ma and 1875 ± 31 Ma for metamorphic monazite growth in northern deposits of the Longstaff Bluff formation (Gagné et al., 2009).

**Hoare Bay Group**

The Hoare Bay Group (Jackson, 1971, 1998) is a Paleoproterozoic supracrustal sequence exposed on central Cumberland Peninsula, eastern Baffin Island (Fig. 8). Traditionally, the group has been correlated with, and interpreted as, a deep-water equivalent of the Piling Group of central Baffin Island (Fig. 6; Jackson and Taylor, 1972; St-Onge et al., 2006). Recent bedrock mapping on Cumberland Peninsula (Sanborn-Barrie and Young, 2011; Sanborn-Barrie et al., 2013a) has further highlighted the broad lithological similarities between the Hoare Bay and Piling groups, as well as differences in the chemistry of the volcanic units; published regional syntheses (e.g. St-Onge et al., 2009) have suggested both groups may also broadly correlate with the Karrat and Anap nunâ groups of West Greenland (Hamilton, 2014).

The Hoare Bay Group is a clastic-dominated succession, the lower part of which consists of gravel, semipelite and psammitic, minor orthoquartzite, marble and calc-silicate, and ultramafic–mafic volcanic and intrusive rocks. The middle part of the group, the focus of study by Keim et al. (2011) and Keim (2012), is composed of ultramafic–mafic volcanic rocks and their intrusive equivalents (Totnes Road formation) and overlain by a sequence dominated by iron-formation (Clephane Bay formation). Psammitic, semipelite, and minor ultramafic–mafic volcanic and intrusive rocks comprise the upper part of the Hoare Bay Group (Hamilton, 2014).

**Lower Hoare Bay Group**

The lower Hoare Bay Group comprises staurolite, andalusite- and sillimanite-bearing pelite and semipelite interlayered with lesser quartzite (Fig. 9a), psammitic, and siliceous marble (Hamilton, 2014). Lithological layering occurs at a millimetre- to decimetre-scale. Lenticular hornblendite bodies that locally crosscut the compositional layering in the pelitic host rocks are interpreted as feeder dykes and sills to one of three overlying ultramafic–mafic volcanic units (Mackay, 2011; Keim, 2012; Whalen et al., 2012), which locally preserve a pyroclastic texture with lapilli- and bomb-sized fragments. Massive varieties occasionally contain plagioclase-rich, millimetre-wide varioles (Hamilton, 2014).

**Middle Hoare Bay Group**

Stratigraphically above the uppermost pelite of the lower Hoare Bay Group, a sharp contact defines the base of the Totnes Road formation (Keim, 2012). In the type Totnes Road locality (Fig. 8), the formation comprises plagioclase-hornblende schist and gneiss,
locally with clinopyroxene. Some layers are characterized by millimetre-wide, plagioclase-rich varioles (Fig. 9b), whereas others have a fragmental texture (Fig. 9c). Chemical analyses of the volcanic rocks suggest that they comprise Karasjok-type komatiite, komatiitic basalt, and tholeiitic basalt (Keim et al., 2011; Keim, 2012).

Several types of iron-formation, collectively referred to as the ‘Clephane Bay formation’ (Keim, 2012), overlie the Totnes Road formation. Silicate-facies iron-formation is represented by garnet-quartz-grunerite+magnetite layers (Storey, 2012), whereas sulphide-facies iron-formation is gossanous, recessively weathering, pyrite- and graphite-rich, and contains quartz, grunerite, and garnet in various proportions. Oxide-facies iron-formation (quartz and magnetite) can be layered on a millimetre to centimetre scale. The iron-formation is associated with graphite-rich shale and biotite-muscovite-bearing pelite (Fig. 9d; Sanborn-Barrie and Young, 2011; Sanborn-Barrie et al., 2011, 2013a; Keim et al., 2011; Keim, 2012).

Upper Hoare Bay Group

The upper Hoare Bay Group consists of a thick package of biotite+muscovite semipelite and psammitte (Fig. 9e). Layering is on the centimetre- to decimetre-scale, graded bedding has been observed, and the strata are interpreted as metamorphosed wacke (Hamilton, 2014). Locally, the turbiditic beds contain elongated pods of calc-silicate that are interpreted as metamorphosed calcareous strata and concretions (Fig. 9f).

Hoare Bay Group age constraints

On eastern Baffin Island, the lowermost quartz-rich rocks of the Hoare Bay Group were initially derived from 2.99 to 2.71 Ga Archean sources (Fig. 8; Sanborn-Barrie et al., 2017), similar in age to underlying or nearby basement rocks (Rayner et al., 2012). Overlying upper Hoare Bay Group psammitic–semipelitic rocks were derived from both Archean (2.80–2.69 Ga) and Paleoproterozoic (1.99–1.97 Ga) sources (Sanborn-Barrie et al., 2017).

In contrast to the middle–upper (or northern) Longstaff Bluff formation of the Piling Group, clastic rocks of the Hoare Bay Group lack detrital peaks of ca. 2.58–2.55 Ga and 1.92 Ga (Wodicka et al., 2014), with the youngest detrital zircon grains consistently establishing a maximum depositional age of 1.96 Ga (Sanborn-Barrie et al., 2017). The absence of a 1.92 Ga detrital peak in the Hoare Bay succession, may reflect diachronous deposition, with sedimentation in eastern Baffin Island predating that to the northwest. The influx of Paleoproterozoic detritus into the Hoare Bay basin after 1.96 Ga points to uplift and exhumation of an extensive belt of 1.99 to 1.97 Ga plutonic rocks potentially corresponding to either the Taltson and Thelon magmatic zones (van Breemen et al., 1987, 1992; McDonough et al., 2000) to the west, 1.99 to 1.98 Ga orthogneiss of the Prudhoe Land complex in West Greenland (Nutman et al., 2008) to the north, or both (Sanborn-Barrie et al., 2017).
Qikiqtarjuaq plutonic suite

Both the Archean basement gneiss of the southeastern Rae Craton and the overlying Paleoproterozoic cover strata of the Hoare Bay Group are cut by foliated, locally K-feldspar-phyric granodiorite±monzogranite±quartz diorite plutons that form a plutonic belt exposed between Pangnirtung and Qikiqtarjuaq (Fig. 8). This plutonic belt, which forms the spectacular peaks of the Auyuittuq National Park and was designated the ‘Qikiqtarjuaq plutonic suite’ by Sanborn-Barrie et al. (2011, 2013) and Rayner et al. (2012), seems to extend across the Baffin suture into the Meta Incognita microcontinent (Rayner, 2017; Fig. 3). Seven samples from this belt have yielded similar crystallization ages between 1896 and 1886 Ma, including:

- a biotite-hornblende-magnetite monzogranite near Pangnirtung (Fig. 8) and a biotite-hornblende-garnet granodiorite exposed 50 km northeast of Pangnirtung dated at 1894 ± 5 Ma and 1889 ± 3 Ma, respectively (Rayner et al., 2012)
- three samples of orthopyroxene-bearing monzogranite from the head, and west, of Cumberland Sound (Fig. 10) with crystallization ages between 1896 ± 8 Ma and 1887 ± 4 Ma (Rayner, 2017)
- two fine-grained biotite monzogranite samples exposed west of Nettilling Fiord (Fig. 1) with crystallization ages of 1891 ± 7 Ma and 1886 ± 5 Ma (Rayner, 2017). An orthopyroxene-bearing tonalite from further south on Hall Peninsula (Fig. 10), dated by Scott (1999) at 1890 ±3–2 Ma, might also belong to the Qikiqtarjuaq plutonic suite. The ages for the plutonic suite are distinctly older than those for the ca. 1865–1845 Ma Cumberland batholith (Whalen et al., 2010; Rayner, 2015, 2017) described below.

ARCHEAN TO PALEOPROTEROZOIC META INCOGNITA MICROCONTINENT (LEVEL 3)

The Meta Incognita microcontinent or terrane (St-Onge et al., 2000a), which includes much of southern Baffin Island (Fig. 10), is considered to have accreted to the southern Rae Craton between 1915 ± 8 Ma (the youngest, most precise maximum age constraint for the Piling Group; Wodicka et al., 2014) and 1896 ± 8 Ma (the oldest dated phase of the Qikiqtarjuaq plutonic suite; Rayner 2017). The microcontinent comprises: 1) a clastic-carbonate-shelf succession (Lake Harbour Group) and its crystalline basement; 2) an overlying micaeous quartzite succession (Blandford Bay assemblage); 3) a western feldspathic quartzite-dominated clastic sequence (Lona Bay sequence); 4) a mafic volcanic sequence (Schooner Harbour sequence); and 5) an extensive suite of quartz diorite to monzogranitic plutons (Cumberland batholith) that intrude both the platformal strata and underlying crystalline basement. Orthogneiss samples from the stratigraphic basement to the Lake Harbour Group have yielded Archean ages between 3019 ± 5 and 2701 ± 2 Ma (Scott, 1998, 1999; Rayner, 2014, 2015; From et al., 2015), and a Paleoproterozoic age of 1950 ±6/-4 Ma (Scott and Wodicka, 1998). A 2310 ± 3 Ma granitic clast from a conglomerate with primitive mantle δ18O values and positive εHf values, and interpreted to have derived from the Meta Incognita microcontinent, provides additional evidence for Paleoproterozoic juvenile crust (Partin et al., 2014b). Plutons of the Cumberland batholith have yielded ages between 1865 ± 10 and 1845 ± 19 Ma (Jackson et al., 1990; Wodicka and Scott, 1997; Scott and Wodicka, 1998; Scott, 1999, Whalen et al., 2010; Rayner, 2015, 2017).

**Figure 10.** Geology of the Meta Incognita microcontinent, Narsajuaq Arc terrane, and the Superior Craton, southern Baffin Island (after Harrison et al., in press).
Basement orthogneiss

The basement gneiss exposed on Hall Peninsula (Fig. 10) comprises a complex assortment of polydeformed and polynematophased plutonic rocks collectively termed the ‘Archean orthogneiss complex’ (From et al., 2013). The complex and similar units on Meta Incognita Peninsula and Foxe Peninsula (Fig. 10) are composed mostly of gneissic to migmatic orthopyroxene-biotite-hornblende tonalite to porphyroclastic monzogranite with subsidiary components of well foliated to relatively massive biotite syenogranite, and boudinaged and discontinuous layers of hornblende-orthopyroxene-clinopyroxene diorite to quartz diorite (Fig. 11a; Blackadar, 1967c, d, e; Sanborn-Barrie et al., 2008; From et al., 2014; Steenkamp and St-Onge, 2014; St-Onge et al., 2015c).

Based on lithological similarities, overlying cover sequences, geochronological constraints and aeromagnetic characteristics, different cratonic correlations have been proposed for the basement gneiss of the Meta Incognita microcontinent. These include correlations with the Rae Craton of northern Baffin Island (Fig. 4) and western Greenland (Hoffman, 1988), gneiss underlying the Core Zone in northeastern Quebec (St-Onge et al., 2009), the Asiaat domain of central western Greenland (Hollis et al., 2006a, b; Thrane and Connelly, 2006; St-Onge et al., 2009), and/or the Nain Craton of northern Labrador (Scott, 1999; Connelly, 2001; Wardle et al., 2002).

Alternately, the basement gneiss of Meta Incognita microcontinent may represent a unique and distinct crustal component (Whalen et al., 2010).

Lake Harbour Group

Quartzite, marble, psammitie and semipelitie mapped on the eastern and western peninsulas of southern Baffin Island are lithologically similar to the metasedimentary strata of the contiguous Lake Harbour Group in its type locality of Kimmirut (Fig. 10; St-Onge et al., 1996, 1998; Scott et al., 1997). Two lithologically and geographically distinct sequences can be recognized. Over much of southern Baffin Island, the Lake Harbour Group is composed of quartzite, garnetiferous psammitie, minor semipelitie and pelite, structurally overlain by laterally continuous to boudinaged bands of pale grey to white marble and calc-silicate rocks (‘Kimmirut sequence’; Scott et al., 1997). In contrast, extensive garnetiferous psammitie interlayered with pelite and/or semipelitie, with less than 5% marble and calc-silicate rocks (‘Markham Bay sequence’; Scott et al., 1997), is exposed on the eastern islands and bluffs of Meta Incognita Peninsula, as well as in the Markham Bay area (Fig. 10). Both sequences are cut by generally concordant sheets of mafic to ultramafic rocks (Frobisher suite; Liikane et al., 2015).

Psammite, quartzite, semipelite and pelite

Compositional layers within psammite range from centimetres to tens of centimetres in thickness and can be traced for up to tens of metres along strike. They are generally defined by variations in the modal abundance of quartz, plagioclase, biotite, garnet, sillimanite, cordierite and garnet-sillimanite melt (Fig. 11b). Garnet-sillimanite pelite typically occurs as thin layers within garnet-biotite semipelite, the latter subordinate within the psammite. Psammite and semipelite are generally rusty weathering due to trace amounts of disseminated graphite, pyrite and chalcopyrite.

Quartzite occurs as discrete layers (Fig. 11c) several metres to several hundred metres thick. The layers compositionally range from orthoquartzite to feldspathic quartzite, commonly contain graphite, garnet-sillimanite and are strongly recrystallized. Primary sedimentary features were not observed. White leucogranite, rich in anorthite and sillimanite, is a ubiquitous constituent cutting the siliciclastic package, generally occurring as concordant layers or pods <0.5 m thick, but locally several tens of metres thick.

Marble and calc-silicate

Calcic-carbonatic rocks are medium to coarse grained, locally with compositional layering defined by varied modal proportions of calcite, forsterite, humite, diopside, tremolite, phlogopite, spinel, apatite and, rarely, wollastonite. Individual layers range from centimetres to metres in thickness and can be traced for tens of metres along strike. Calc-silicate rocks are commonly interlayered with siliciclastic rocks and generally associated with marble. Locally, the calcic-carbonatic strata include layers of calcic-carbonatic grit with abundant 1–2 mm detrital quartz grains (Fig. 11d). Thicknesses of calcic-carbonatic units typically range from several decametres to about 1 km north of Kimmirut (Fig. 10). Individual marble units can be traced from 5 to 25 km along strike. No primary structures were observed in the calcic-carbonatic rocks.

Blandford Bay assemblage

In the Blandford Bay area (Fig. 10), rocks of the Blandford Bay assemblage are found disconformably overlying those of the Lake Harbour Group (Scott et al., 1997).

Pelite

Rusty-weathering pelite is thinly bedded and commonly forms sections several hundreds of metres thick. Garnet, sillimanite, disseminated pyrite and minor chalcopyrite are found throughout. Compositional graded beds are observed locally and comprise coarser psammatic bases that pass into pelitic tops, consistent with turbidite deposits. A gradational contact separates this unit from overlying feldspathic quartzite.
**Feldspathic quartzite**

Light to dark grey-weathering feldspathic quartzite, typically medium- to coarse-grained, forms the dominant siliciclastic component of the Blandford Bay assemblage (Fig. 11e). Homogeneous sections up to 500 m thick are common and form prominent ridges with individual beds generally 10–20 cm thick but reaching up to 2 m in places. Steenka and Suidgeest (1986, 1987) described exposures of dominantly massive and subordinate planar-laminated quartzite on the northern shore of Blandford Bay display well-developed upright crossbedding.

**Lona Bay sequence**

A succession of relatively homogeneous arenaceous rocks is exposed on southwestern Foxe Peninsula, in the southern part of Baffin Island. This sequence, informally designated the ‘Lona Bay sequence’ (Fig. 10; Sanborn-Barrie et al., 2008), consists of cream- to buff-weathering quartzose rocks that are typically well bedded (Fig. 11f). In general, beds 10 to 30 cm thick are highlighted by variations in grain size, cross-stratification, and distribution of metamorphic porphyroblasts. Although locally these rocks consist of muscovite with porphyroplastic texture, their aluminous character is more typically reflected by the occurrence of white-weathering, 0.5–2 cm long knots of sillimanite±muscovite±K-feldspar±magnetite (faserkiesel texture). The Lona Bay sequence primarily forms a broad, open antiform defined by shallow, west-dipping beds exposed at Schooner Harbour in the west (Fig. 10), and shallow east-dipping beds east of Lona Bay. Toward the stratigraphic top of the exposed sequence, several conglomeratic horizons (Fig. 11 g), ranging from 20 cm to 1 m in thickness, are interbedded with the arenaceous rocks. These conglomerates are inferred to be intraformational with respect to the upper Lona Bay sequence.

On southeastern Foxe Peninsula, arenaceous rocks including muscovitic quartzite overlie semipelitic and marble strata interpreted as middle to upper Lake Harbour Group. The arenaceous rocks are oriented in the same direction as the Lona Bay sequence and have been correlated with it based on composition, texture, and creamy weathering. If the correlation is correct and the contact relation is stratigraphic rather than tectonic, it suggests that the Lona Bay sequence is younger than the Lake Harbour Group and may conformably overlie it (Sanborn-Barrie et al., 2008).

**Schooner Harbour sequence**

A heterogeneous volcanic-rock-bearing supracrustal belt that structurally overlies the arenaceous strata of the Lona Bay sequence extends across southern Foxe Peninsula for approximately 100 km, from Schooner Harbour in the west, to the West Foxe Islands in the east. Kilometre-scale belts of amphibolite also occur north and northeast of this main corridor. The Schooner Harbour sequence (Fig. 10) consists of basaltic to andesitic composition and include lapilli tuff (Fig. 11h) and variolitic strata. Heterogeneous units characterized by epidote-rich layers and lenses are common throughout the Schooner Harbour sequence. Extrusive rocks of ultramafic composition are exposed along the coast near Schooner Harbour, where brilliant green-weathering rocks with a subtle fragmental texture appear to represent komatiitic lapilli stone. Inland, silver-green-weathering chlorite schist interlayered with fine-grained basalt and psammite is interpreted as a highly strained and hydrated ultramafic horizon (Sanborn-Barrie et al., 2008). Rocks of andesitic composition exposed on the West Foxe Islands (Fig. 10) comprise a well bedded pyroclastic sequence that commonly shows normal grading of lithic fragments (Fig. 11i). At this locality, both matrix and fragments are commonly pyroxene-phryric. Rare, thin, cream-weathered siliceous units may represent a minor component of flow-banded rhyolite, or chert.

Low in the exposed Schooner Harbour sequence, clastic rocks associated with the volcanic units include fine-grained pelite, slate, and schist that contain medium-pressure staurolite-andalusite-garnet assemblages (Simy et al., 2009). White-weathering orthoquartzite occurs as 1 m thick horizons that alternate with amphibolite, with more psammitic units upsection. Polymeric conglomerate with flattened pebbles of granite, foliated tonalite, quartzite, and psammite are also present as discontinuous horizons generally less than 1 m thick. Bedded or laminaed clasts of pelitic and psammitic volcanosedimentary rocks are a minor component of the Schooner Harbour sequence (Sanborn-Barrie et al., 2008).

**Age constraints for Meta Incognita microcontinent cover sequences**

Five recent mapping campaigns on southern Baffin Island (Fig. 1) have documented that the composition, association, and context of metasedimentary rocks southwest of Cumberland Sound (Weller et al., 2015), on the adjacent Hall Peninsula (e.g. Rayner et al., 1997; Rayner, 2014), on eastern Meta Incognita Peninsula (St-Onge et al. 2015c), on western Meta Incognita Peninsula (Scott et al., 2002a), and in the Markham Bay–Cape Dorset area (Scott et al., 2002a; Sanborn-Barrie et al., 2008) are similar and can be correlated with the type Lake Harbour Group assemblage in the Kimmirut assemblage of western Meta Incognita Peninsula (St-Onge et al., 1996; Scott et al., 1997, 2002a).

A subset of Lake Harbour Group quartzite samples from eastern Hall and Meta Incognita peninsulas (Fig. 10), interpreted as locally derived basal sedimentary rocks, preserved mostly Archean detrital ages. Significant modes have been documented at 2.92, 2.85–2.80, 2.78–2.77, 2.72, and 2.68–2.67 Ga, and minor ones at 3.30–3.20 Ga (Scott et al., 2002a; Rayner, 2014, 2015). Two samples also contain minor Paleoproterozoic detritus, one of which provides a maximum depositional age of 2010 ± 19 Ma for the basal Lake Harbour Group (Wodicka et al., 2008).

Siliciclastic and carbonate samples from stratigraphically higher levels of the Lake Harbour Group yield dominantly Paleoproterozoic detritus but tend to fall into one of two provenance-profile types. The first type is characterized by detrital zircon grains yielding distinctive age peaks at 2.60–2.50, 2.40–2.30, 2.20, 2.14–2.08, 1.97–1.95 and 1.93–1.91 Ga (Scott et al., 2002a; Rayner, 2014, 2015, 2017). Older Archean detritus is generally defined by a single zircon mode sample from Beekman Peninsula (Fig. 11) immediately east of Hall Peninsula, which contains significant secondary populations yielding ages between 2.95 and 2.55 Ga (Rayner, 2014). Overall, the detritus from the first provenance-profile type is inferred to be sourced from local underlying Meta Incognita microcontinent basement (Wodicka et al., 2010; Rayner, 2017). In contrast, the detritus in the second provenance-profile type is almost exclusively Paleoproterozoic in age, with dominant peaks between 2.10 and 1.87 Ga (Scott et al., 2002a, Rayner, 2014, 2015, 2017). The psammitic- and quartzite-rich rocks of the second type define a belt from Cumberland Sound to the eastern tip of Meta Incognita Peninsula and share many similarities with the Tasiuyuk paragneiss of northern Labrador (e.g. Scott et al., 2002a).

The maximum age of deposition of the first and second provenance-profile types in the Lake Harbour Group is very similar at 1906 ± 9 and 1907 ± 9 Ma, respectively (Rayner, 2014). The intrusive Frobisher suite, with an estimated age of ca. 1900 Ma (and possibly as old as 1922 ± 12 Ma; Liikane et al., 2015), provides a minimum age constraint for the clastic-carbonate-shelf succession.

Feldspathic quartzite of the Blandford Bay assemblage contains detritus of exclusively Archean age, in contrast to the Paleoproterozoic rocks of the stratigraphically underlying Lake Harbour Group. Although Frobisher suite, with an estimated age of ca. 1900 Ma (and possibly as old as 1922 ± 12 Ma; Liikane et al., 2015), provides a minimum age constraint for the clastic-carbonate-shelf succession.

**Frobisher suite**

Generally concordant sheets of medium- to coarse-grained, massive to weakly foliated peridotite, pyroxenite, layered peridotite- gabbro, and homogeneous gabbro occur within the Lake Harbour Group, the Blandford Bay assemblage and the lower part of the Schooner Harbour sequence (Fig. 10; St-Onge et al., 1996, 1998, 2015b; Scott et al., 1997; Sanborn-Barrie et al., 2008; Mackay and Ansdel, 2014; Steenkamp et al., 2014). These mafic to ultramafic rocks are collectively designated the ‘Frobisher suite’ by Liikane et al. (2015). Individual units are typically 10 to 100 m thick, although some reach a few hundred metres in thickness and extend up to several kilometres along strike. They are dark green- to reddish- brown-weathering psammitic or sub-psammitic units that form prominent ridges and extend to adjacent supracrustal host rocks (Fig. 11j).

**Metagabroic textures and compositional layering at the centimetre to metre scale defined**

GSC Bulletin 608

16
by variations in modal abundance of clinopyroxene, orthopyroxene, hornblende, and plagioclase are commonly preserved in the mafic bodies (Fig. 11k). The concordant nature, tabular shape, and sharp contacts of these bodies all indicate they are sills. Ultramafic bodies, either clinopyroxene-orthopyroxene-hornblende metapyroxenite or olivine-clinopyroxene-orthopyroxene metaperidotite, are common. In numerous localities, the ultramafic rocks are compositionally layered with many sills containing disseminated sulphide, some associated with a ferricrete, which consists of medium to coarse clastic sediment cemented by an iron oxy-hydroxide (Fig. 11l). A full field description of the mafic and ultramafic rocks on southern Baffin Island is provided in St-Onge et al. (2015b) and Liikane et al. (2015).

The occurrence of the ultramafic to mafic sills emplaced in the sedimentary units of the Lake Harbour Group and lower Schooner Harbour sequence suggests that the intrusive units may represent hypabyssal feeders to the mafic to ultramafic Schooner Harbour volcanic sequence (Sanborn-Barrie et al., 2008).

The layered mafic–ultramafic sills define a magmatic suite that characterizes the whole of the Meta Incognita microcontinent, as exposed on southern Baffin Island (Liikane et al., 2015). The size and distribution of the mantle-derived rocks suggest that they are the product of a major large igneous province event with a study of the petrology, geochemistry, and associated mineralization presented in Liikane (2017). A sample of Frobisher suite leucogabbro from south-central Meta Incognita Peninsula has yielded an igneous zircon crystallization age of 1922 ± 12 Ma (Liikane et al., 2015).

Cumberland batholith

The southern Rae Craton, the Piling Group cover sequence, and the crystalline and supracrustal units of Meta Incognita microcontinent are cut by plutonic rocks of the Cumberland batholith (Fig. 6, 10). The batholith is dominated by granitic phases dated between 1865 ± 10 and 1845 ± 19 Ma (Jackson et al., 1990; Wodicka and Scott, 1997; Scott and Wodicka, 1998; Scott, 1999; Whalen et al., 2010; Rayner, 2015, 2017) and has been interpreted as an Andean-type batholith (St-Onge and Wodicka, 1998; Scott, 1999; Whalen et al., 2010; Rayner, 2017). A sample of Frobisher suite leucogabbro from southern Baffin Island (Liikane et al., 2015) cut the garnet-biotite±magnetite monzogranite. The dykes are typically fine grained, with 1 to 5 mm ililage garnet phenocrysts and mats of sillimanite. The presence of sillimanite suggests that the leucogranite is derived from muscovite-dehydration melting of metasedimentary units (e.g. Weller et al., 2015), rather than being a highly fractionated component of the plutonic suite.

Pink- to orange-weathering, medium- to coarse-grained, massive to foliated biotite±orthopyroxene±magnetite monzogranite, with distinctive K-feldspar megacrysts (Fig. 12d), occurs throughout large parts of southern Baffin Island. Potassium-feldspar phenocrysts form augen up to 10 cm wide and locally display rapakivi textures (ovoid alkali feldspar mantled by plagioclase feldspar). Megacrystic monzogranite from Meta Incognita Peninsula was dated by Rayner (2015) at 1845 ± 19 Ma.

PALEOPROTEROZOIC NARSJUAAQ ARC TERRANE (LEVEL 2)

The Narsjuaq Arc terrane is considered to be represented by two temporally and petrologically distinct magmatic suites: an older intracratonic suite exposed on the Ungava Peninsula of northern Quebec (Fig. 3) and a younger Andean-margin-type suite (Dunphy and Ludden, 1998), exposed both in northern Quebec and southern Baffin Island (Fig. 10). The older suite includes calc-alkaline layered
diorite-tonalite gneiss (Fig. 13a), and tholeiitic to calc-alkaline basaltic andesite (Fig. 13b) to rhyolite, dated between 1863 ± 2 Ma and 1845 ± 2 Ma (St-Onge et al., 1992; Machado et al., 1993; R.R. Parrish, unpub. data, 1989). The older magmatic suite is interpreted as an island-arc assemblage built on Paleoproterozoic oceanic crust and a sliver of Archean continental crust (Thérailt et al., 2001). The younger suite comprises crosscutting, foliated to massive, monzodiorite to granite plutons dated between 1842 ± 5-3 Ma and 1820 ± 4-3 Ma (Fig. 3, Machado et al., 1993; Scott, 1997; Scott and Wodicka, 1998; Rayner, 2017; R.R. Parrish, unpub. data, 1989) and interpreted as having been emplaced in a continental-margin arc setting (Dunphy and Ludden, 1998; Thérailt et al., 2001).

Crosscutting field relationships (St-Onge et al., 1998) indicate that the oldest unit of the younger magmatic suite of Narsajuaq Arc on southern Baffin Island is a layered, fine- to medium-grained, grey to buff orthopyroxene-biotite±hornblende±garnet tonalitic orthogneiss with subordinate grey orthopyroxene-biotite=hornblende granodiorite layers, and pink monzogranite sheets and veins (Fig. 13c). Lenses, layers and locally discordant dykes of dark hornblende-biotite-clino.pyroxene=orthopyroxene quartz diorite, up to several metres thick, commonly form an integral component of the orthogneiss. The tonalitic, granodioritic, and quartz dioritic components are cut by concordant to discordant veins of medium-grained orthopyroxene-biotite±hornblende monzogranite and by rare coarse-grained hornblende-biotite=orthopyroxene syenogranite. Grey anorhostite layers up to several tens of metres thick and over 1 km in strike length also occur.

Large areas of Narsajuaq Arc (Fig. 10) on southern Baffin Island are underlain by medium-grained, gneissic to massive orthopyroxene-biotite±hornblende monzogranite (Fig. 13d) that intrudes the layered tonalite-monzogranite gneiss described above. Coarse-grained and locally megacrystic layers can reach 100 m in thickness. A hornblende-clinopyroxene-orthopyroxene-biotite quartz diorite phase is common.

![Figure 13. Magmatic components of Narsajuaq Arc terrane, northern Quebec and southern Baffin Island. (a) Calc-alkaline layered diorite-tonalite gneiss, older suite of Narsajuaq Arc terrane, Ungava Peninsula, Quebec (hammer for scale). Photograph by M.R. St-Onge. NRCan photo 2018-373. (b) Calc-alkaline basaltic andesite, older suite of Narsajuaq Arc terrane, Ungava Peninsula, Quebec (hammer for scale). Photograph by M.R. St-Onge. NRCan photo 2018-383. (c) Tonalite-granodiorite gneiss with quartz diorite layers and crosscutting monzogranite dykes, younger suite of Narsajuaq Arc terrane, southern Baffin Island (geologist for scale). Photograph by M.R. St-Onge. NRCan photo 2018-384. (d) Massive monzogranite, younger suite of Narsajuaq Arc terrane, southern Baffin Island (height of boulder on right is 2 m). Photograph by M.R. St-Onge. NRCan photo 2018-385.

Paleoproterozoic Orogenic Belts and Plate Geometries

Within Baffin Island, the constituent Archean cratons, attendant Paleoproterozoic cover sequences, microcontinental blocks, and continental magmatic arcs, as described above, were assembled during a period of global amalgamation that occurred between ca. 1.9 and 1.8 Ga (St-Onge et al., 2009). Documentation of the geometry, age, structural evolution, magmatic context, and metamorphic framework of the intervening deformation zones and orogenic belts allows the relative upper plate versus lower plate geometry to be established in each case (Fig. 3). This in turn allows the tectonic evolution of Baffin Island during the Paleoproterozoic to be modelled as a series
of cumulative accretion–collision events contributing to the south-erly growth (present co-ordinates) of the Nuna Supercontinent culminating at ca. 1.8 Ga.

Qimivvik crustal shortening

Deformation along the northern margin of the Rae Craton in the Qimivvik area of northern Baffin Island (Fig. 3) is characterized by southwest-vergent crustal shortening that juxtaposed Archean crystalline basement over cover strata, potentially due to thrust faulting (Skipton et al., 2017). The peak metamorphic assemblage in pelite contains garnet, sillimanite, cordierite, K-feldspar, and foliation is defined by aligned biotite and compositional banding. Pelite hosts foliation-parallel leucogranite layers that are consistent with mica dehydration melting and peak metamorphism at upper amphibolite- to granulite-facies conditions. Southwest-vergent folding of leucogranite layers suggests that peak metamorphism conditions were associated with pre- to syntectonic deformation. However, cliff exposures also reveal subvertical leucogranite dykes that stem from the leucogranite melt network within the pelitic metasedimentary rocks, and which crosscut the contact with the overlying basement orthogneiss. Preliminary in situ U-Pb ages of monazite in pelitic rocks, and which crosscut the contact with the overlying basement orthogneiss. Preliminary in situ U-Pb ages of monazite in pelite indicates a protracted tectonometamorphic his-tory culminating at ca. 1.8 Ga rims (D. Skipton, pers. comm., 2018).

Foxe fold belt

Deformation along the southern margin of the Rae Craton within the Foxe fold belt of central Baffin Island (Fig. 3) is character-ized by early north-verging, thin-skinned imbrication and tight intrafolial isoclinal folding of the Piling Group, followed by northeast-trending upright folding of both Paleoproterozoic cover and Archean basement, and subsequent open northwest-trending, thick-skinned crossfolding (Scott et al., 2003). Metamorphic grade increases from greenschist facies at higher structural levels to grano-lite facies at lower structural levels and in proximity to the plutonic units of the Qikiqtarjuaq plutonic suite (Gagné et al., 2009; Wodicka et al., 2014).

The proposed Baffin suture (St-Onge et al., 2006) separating the Archean Rae Craton and its flanking, southern Paleoproterozoic continental-margin sedimentary and volcanic sequences (Piling and Hoare Bay groups) from accreted tectonic elements to the south (Meta Incognita microcontinent and associated Lake Harbour Group) trends east from the Foxe Basin to the head of Cumberland Sound (Fig. 3). Closing across the proposed suture is thought to postdate 1915 ± 8 Ma (the youngest, most precise maximum age constraint for the Piling Group; Wodicka et al., 2014) and predate emplacement of the 1896 ± 8 Ma to 1886 ± 5 Ma Qikiqtarjuaq plutonic suite (Rayner, 2017). Enfoldsment of the cryptic suture zone by younger, voluminous granitic plutons precludes any direct constraints on the polarity of the Baffin suture (St-Onge et al., 2009; Weller et al., 2015), although Corrigan et al. (2009) have presented arguments for a north-directed sense of vergence.

Dorset fold belt

Convergence between the southern margin of the Meta Incognita microcontinent and crustal domains to the south led to development of the Dorset fold belt and formation of the north-dipping Soper River suture (Fig. 3). Closing of the suture is bracketed between 1845 ± 2 Ma, the age of the youngest unit associated with the intra-oceanic phase of the accreted Narsajuaq Arc (Fig. 3; Dunphy and Ludden, 1998) and 1842 ±5/±3 Ma (Scott, 1997), the age of the oldest plutonic unit of the continental-margin arc phase of the Narsajuaq Arc (St-Onge et al., 2007).

Deformation in the Dorset fold belt includes:

• structural repetition and truncation of distinct tectonostratigraphic units yielding an overall south-southwest-verging ramp-flat fault geometry (Scott et al., 1997)
• associated tight to isoclinal folding during south- to southwest-directed deformation (Sanborn-Barron et al., 2008)
• development of a penetrative granulite-facies compositional fabric
• formation of ribbon mylonites and transposition of crosscutting intrusive units into parallelism in the vicinity of the Soper River suture
• later, open crossfolding and localized dextral transcurrent shearing oriented northwest–southeast.
Syntectonic granulite-facies regional metamorphism associated with emplacement of the Cumberland batholith and closure of the Soper River suture is bracketed between ca. 1849 and 1835 Ma (St-Onge et al., 2007).

The south-to-southwest-verging thrusting and folding documented within the Dorset fold belt and the location of the Cumberland batholith continental-margin arc rocks in the northern hanging wall of the suture suggest that the Meta Incognita microcontinent occupied an upper plate position with respect to the Narsajuaq Arc to the south (Fig. 3) during convergence across the Soper River suture.

Cape Smith belt

Within the Cape Smith belt of northern Quebec and southernmost Baffin Island (Fig. 3), parautochthonous sedimentary and volcanic strata along the northern margin of the Superior Craton are imbricated by thrust faults above a regional basal décollement (Lucas, 1989; St-Onge et al., 2001). Fault displacement was in a southerly direction, with thin-skinned imbrication and associated folding occurring in a piggyback sequence toward the southern foreland. Thrust deformation was initiated after 1870 ± 4 Ma, the age of the youngest unit within the parautochthonous Superior Craton cover sequence.

A distinct suite of late or ‘out-of-sequence’ thrust faults that post-date the thin-skinned structures re-imbricate the cover units of the Superior Craton (Lucas, 1989). These younger south-verging structures are thick-skinned (involving both crystalline basement and Palaeoproterozoic cover units) and are collisional in origin as they can be linked to the terrane boundary faults of the Narsajuaq Arc terrane and Purtuniq ophiolite in northern Quebec (Fig. 3; St-Onge et al., 2001). The late faults truncate the metamorphic isograds within the Cape Smith belt at 1820 ±4/-3 and 1815 ±4 Ma (Bégoin, 1992). They predate the age of emplacement of postkinematic syenite plugs and syenogranite dykes at 1795 ±2 to 1758 ±2 Ma (St-Onge et al., 2006).

Regional, Barrovian-type, kyanite–sillimanite-grade metamorphism is associated with early thin-skinned thrusting of cover units along the northern margin of the Superior Craton (Bégoin, 1992). Metamorphism is bracketed between 1820 ±4/-3 and 1815 ±4 Ma and is interpreted as a consequence of the relaxation of isotherms in the tectonically thickened thrust belt (St-Onge and Lucas, 1991).

A south-verging tectonic boundary or crustal suture (Bergeron suture; Fig. 3) separates the northern Superior margin strata from allochthonous crustal elements to the north (St-Onge et al., 1999, 2001). An hiatus, with, and sitting in the hanging wall of, the Bergeron suture are the crustal components of an obducted 1998 ± 2 Ma ophiolite (Watts group; Parrish, 1989; Scott et al., 1992, 1999), as well as the plutonic, volcanic, and sedimentary components of the Narsajuaq Arc (described above). Preservation of the ophiolite and the higher structural levels it represents within the Cape Smith belt is entirely a function of the late-t to postcollisional, crustal-scale, orogen-parallel folding and orogen-perpendicular crossfolding that characterize the southern margin of the Trans-Hudson Orogen in northern Quebec (Lucas and Byrne, 1992). Closure of the Bergeron suture, and collision of the upper plate with the Superior Craton, is bracketed between 1820 ±4/-3 Ma (youngest component of the Narsajuaq Arc) and 1795 ±2 Ma (the age of an undeformed crosscutting syenogranite pegmatite dyke) (St-Onge et al., 2006).

The architecture of the foreland thin- to thick-skinned thrust–fold belt, the geometry of the Bergeron suture, the regional Barrovian metamorphism developed within the Cape Smith belt, as well as the recent documentation of high-pressure eclogite in the crystalline basement footwall (Weller and St-Onge, 2017) corroborate the lower plate position of the Superior Craton during its collision with the accreted terranes to the north (Fig. 3).

CONCLUSIONS

Documentation of the Archean and Paleoproterozoic bedrock units and structures on Baffin Island as synthesized in this paper allows identification of an internally consistent, north-to-south sequence of accretionary and collisional tectonic events during the Paleoproterozoic (Fig. 3). These tectonic events (itemized below) first resulted in the growth of a composite upper-plate domain around the crustal nucleus represented by the Rae Craton. Initial assembly of the upper-plate (Churchill) domain was then followed by collision with the southern, lower-plate Superior Craton, which resulted in the terminal collisional phase of the Trans-Hudson Orogeny and significantly added to the landmass of the emerging Laurentian Craton.

Based on available tectonostratigraphic, structural, and geochronological data for Baffin Island, the tectonic events that characterize the accretionary–collisional growth of northeast Laurentia during the middle Paleoproterozoic are as follows (Fig. 3):

- deformation along the northern margin of the Rae Craton at ca. 1.90 Ga (Qimmivik area)
- accumulation of a stratigraphically south-facing, rift-to-continental-margin sequence in a fragmented proto-Greenland basin setting developed along the southern margin of the Rae Craton between ca. 1.92 and 1.91 Ga
- north–south convergence and accretion of the Meta Incognita microcontinent to the southern margin of the Rae Craton across the Baffin suture between ca. 1.91 and 1.90 Ga (Foxe fold belt)
- accretion of the Narsajuaq Arc terrane to the southern margin of the growing Churchill Domain at ca. 1.845 Ga (Dorset fold belt)
- collision of the lower plate Superior Craton with the composite upper-plate Churchill Domain between ca. 1.82 and 1.795 Ga (Cape Smith belt)

ACKNOWLEDGMENTS


The authors gratefully acknowledge the careful reviews of this contribution by David Corrigan and Christopher Harrison.

REFERENCES


GSC Bulletin 608


