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Machine learning is a specific application of artificial intelligence that allows computers to 
learn and improve from data and experience via sets of algorithms, without the need for 
reprogramming. In the field of energy storage, machine learning has recently emerged as a 
promising modelling approach to determine the state of charge, state of health and remaining 
useful life of batteries. In this review, we first discuss the two most studied types of battery 
models in the literature for battery state prediction: the equivalent circuit and physics-based 
models. Based on the current limitations of these models, we showcase the promise of 
various machine learning techniques for fast and accurate battery state prediction. Finally, we
highlight the major challenges involved, especially in accurate modelling over length and 
time, performing in-situ calculations and high-throughput data generation.

1 Introduction

With rising concerns about global warming, electrification of transport has emerged as an 
important vision in many countries in recent years. The successful development of electric 
vehicles (EVs) depends highly on the cycling performance, cost, and safety of the batteries. 
Rechargeable lithium-ion (Li-ion) batteries are currently the best choice for EVs due to their 
reasonable energy density and cycle life.1 Further research and development on Li-ion 
batteries will lead to even higher energy density and more complicated battery dynamics, 

where the efficiency and safety of such batteries will become a concern.  An advanced battery
management system (BMS) that can monitor and optimize battery behavior and safety is thus 
essential for the entire electrification system.2 

Today, one of the major barriers to widespread adoption of EVs is range anxiety. The ability 
of a BMS to accurately determine the state of charge (SOC) and state of health (SOH) of 
batteries, and hence the estimated driving range, will alleviate this problem. In addition, 
reliable prediction of remaining useful life (RUL) will allow batteries to be used to their 
fullest potential and maximum life expectancy before replacement or disposal. Knowledge of 
the RUL of spent batteries will also enable their re-deployment in less demanding, second life
applications such as stationary grid storage. If we are able to sort manufactured cells based on
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their expected lifetime using early-cycle data, we can further accelerate the testing, 
validation, and development process of new batteries. In summary, accurate prediction of the 
current and future state of batteries will open up vast opportunities in battery manufacturing, 
usage, and optimization.3,4 

SOC and SOH are the two most important parameters in battery management and are 
generally defined as:

SOC=
C current

C full

×100 %

SOH=
C full

Cnominal

×100 %

where C current is the capacity of the battery in its current state, C full is the capacity of the 
battery in its fully charged state, Cnominal is the nominal capacity of the brand new battery.2 

In essence, SOC denotes the capacity of the battery in its current state compared to the 
capacity in its fully charged state (equivalent of a fuel gauge), while SOH describes the 
capacity of the battery in its fully charged state compared to the nominal capacity when brand
new. By convention, SOC is 100% when the battery is fully charged and 0% when it is 
empty, while SOH is 100% at the time of manufacture and reaches 80% at end of life (EOL). 
In the battery manufacturing industry, EOL is often defined as the point at which the actual 
capacity at full charge drops to 80% of its nominal value.2 The remaining number of 
charge/discharge cycles until the battery reaches EOL is the RUL of the battery. Current 
BMSs can determine the SOC of Li-ion batteries within 0.6% to 6.5%,5 but are unable to 
predict the SOH and RUL of batteries accurately.6 

The traditional methods for SOC estimation include ampere-hour counting estimation; open 
circuit voltage based estimation; impedance based estimation; model-based estimation; Fuzzy
logic; Kalman filter and observer.4–14 Among all these methods, the major advantage of the 
model-based method is its ability to be used for on-line applications. In fact, equivalent 
circuit models (ECMs) are currently the main battery models that are widely used in the BMS
of EVs for on-line SOC estimations due to their low computational demand. But the accuracy
is usually limited to the range that the model has been parameterized. A further improvement 
on model-based method is to develop physics-based models (PBMs). The most studied PBM 
model is called the pseudo two-dimensional (P2D) model which provides insights into the 
internal dynamics of the batteries. However, the governing equations are complicated and 
require a high computational cost to solve, making it less practical for on-line applications. 
Moreover, the traditional PBM model does not take into account the details of materials 
information, which is vital for understanding degradation behavior related to SOC, SOH and 
RUL of batteries. In section 2, we will discuss in detail the intrinsic characteristics of these 
two most studied models (ECM and PBM) in the literature.

Despite the progress in developing more accurate and fast models for on-line SOC and SOH 
estimations, there remains a clear tradeoff between the computational efficiency and the 
accuracy of model-based predictions. Recently, data-driven models (DDMs) have drawn 
much attention. Combined with machine learning techniques, these models are able to make 
predictions without prior knowledge of the system (Figure 1). Machine learning techniques 
including neural network, support-vector machine, random forest, and regression techniques 



have been applied to predict the SOC, SOH, and RUL of batteries. In section 3, we 
summarize the recent works on how various machine learning techniques can be applied for 
battery state predictions and provide insight into the predictabilities of these techniques. 
Machine learning techniques that can accurately model over length and time, and perform in-
situ calculations, allow us to incorporate domain knowledge such as materials information 
into a new explainable model. In addition, the fidelity of the model depends strongly on the 
size and quality of the data set. High-throughput computation and experimentation is one 
approach that can produce huge volumes of precise data within well-controlled conditions. 
The major challenges involved, together with our perspective on the future development of 
data-driven machine learning for battery state predictions, will be discussed in section 4. For 
the ease of reference, the common acronyms in battery modelling research are listed in Table 
1.

Table 1. Definition of common acronyms for battery modelling used in the main text.

Abbreviation Definition Abbreviation Definition

EV electric vehicle SPM single particle model

BMS
battery management

system
PBM physics-based model

SOC state of charge ROM reduced order model

SOH state of health P2D
pseudo two-
dimensional

RUL remaining useful life DDM data-driven model

EOL end of life PDE
partial differential

equation

ECM equivalent circuit model ODE
ordinary differential

equation

Figure 1. A machine learning approach for state of charge (SOC), state of health (SOH) and 
remaining useful life (RUL) predictions of Li-ion batteries.

2 Current Battery Models

Battery modelling is the core part of a BMS and is vital for maintaining safe and optimal 
operation of the battery pack. A battery model combining various estimation techniques can 
be used not only to determine the current state of an operating battery (e.g. SOC) but also 
predict its ‘future’ state (e.g. SOH and RUL). In the literature, the most studied battery 
models for Li-ion batteries are ECMs, PBMs and, more recently, DDMs with machine 



learning techniques. Each model has its own merits and challenges. For example, ECMs are 
computationally efficient and thus suitable for online battery status predictions (e.g. SOC), 
but attaining high accuracy remains a challenge. PBMs provide internal information about a 
battery such as the Li-ion concentration within the electrodes and electrolytes, but solving the
governing partial differential equations (PDEs) requires significant computational resources 
and a large number of input parameters. Also, a battery model needs to work with sufficient 
random access memory which is used to store the instant data for  a BMS. The memory 
requirement depends highly on the complexity of the modelling equations. In this section, the
intrinsic characteristics of ECMs and PBMs, and the strategies commonly used to improve 
their adaptability and predictability will be discussed.

ECMs15–25 are currently the major models that are widely used in the BMS of EVs for online 
SOC estimations due to their ability to predict battery behavior in real time. The models are 
essentially derived from empirical knowledge and experimental data in which the batteries 
are represented by groups of electrical components such as resistors and capacitors, forming 
resistor-capacitor networks (Figure 2) that are used to monitor the battery’s behavior at 
different time constants associated with the diffusion and charge-transfer processes.15 Typical
ECMs are the Rint models,16 the hysteresis models,17,18 the Randles models,19–21 and the 
resistor-capacitor or Thevenin models.22–25 Despite their computational efficiency, ECMs 
generally show limited accuracy in predicting battery characteristics across a range of 
operation conditions such as ageing and dynamics environments in real-life applications, due 
to parameterization of model parameters based on laboratory conditions. In addition, the lack 
of physics-based information of the system states and parameters makes it hard to predict the 
SOH and RUL of batteries precisely. 

PBMs should offer more accurate battery models. The pioneering work of full physics-based 
Li-ion battery models is the development of a P2D porous electrode model, which is based on
porous electrode theory, concentrated solution theory, and the Bulter-Volmer kinetic 
equations (Figure 2).26,27 The model delivers insights into the internal dynamics of batteries 
such as lithium ion diffusion, Ohmic effects, and electrochemical kinetics. This opens the 
possibility of analyzing the battery’s degradation mechanisms, predicting the SOC and SOH 
with ageing effects, and designing optimal charging strategies. However, the P2D model is 
generally described by a number of PDEs and is considered a full order PBM. Solving the 
PDEs require intensive computations which makes it impractical to embed the P2D model 
into a controller of a BMS for real-time applications.28 

The bottleneck of applying the full PBM in the BMS for EVs lies in the computational 
complexity. As such, simplifying the PBMs is the main strategy to reduce the computation 
demand, but approximations must retain sufficient physical information to accurately predict 
battery behavior. One of the most studied simplified models is the single particle model 
(SPM) (Figure 2).29–31 The key assumptions of the model are that a spherical particle 
represents each electrode, and the concentration and potential effects in the solution phase are
neglected. With such approximations, the computational time is reduced significantly. 
However, the SPM model is inaccurate for high-rate simulations,32 though efforts to improve 
this limit are ongoing.33–36

The PDEs that govern battery behavior in the P2D model are non-linear, so reducing the 
order of the equations is another approach to build a practical PBM. The models are 
commonly known as reduced order models (ROMs) which comprise fewer ordinary 
differential equations (ODEs). In addition, reformulation of P2D model37 is another approach 
to develop a more efficient yet accurate model. Typical approaches to construct ROMs or 
reformulated P2D model are through mathematical techniques such as parabolic profiles 



approximations,38,39 proper orthogonal decomposition;40 residue grouping technique;41 the 
Padé approximations;42 or polynomial profiles.43 Using polynomial profiles for solid 
concentration is the most common method; it is mathematically simple and computationally 
fast, but prediction accuracy is reduced by the assumption that the profile coefficients are 
temperature and age independent.

In addition, degradation of materials within a battery  is closely related to the SOC, SOH and 
RUL. Exploring the degradation behavior of batteries hence requires simulations at the 
materials level. Multiscale modelling that includes density functional theory, molecular 
dynamics, and phase field method can be used to study the degradation mechanisms of 
batteries. Incorporating these physics information in a battery model is challenging, but it can
significantly improve the accuracy and explainability of battery state predictions.

In summary, the main challenge of current battery models lies in achieving an appropriate 
balance between model fidelity and computational complexity, as shown in the plot of 
accuracy vs. CPU time proposed by Subramanian and co-workers (Figure 2).32 Recently, 
DDMs with machine learning techniques are gaining importance due to their immense 
potential in achieving high accuracy with low computational cost. In the next section, we will
discuss state-of-the-art machine learning techniques for battery state prediction. 

Figure 2. Accuracy vs. CPU time for equivalent circuit model (ECM), single particle model 
(SPM) and pseudo two-dimensional (P2D) model. Data-driven model (DDM) with machine 
learning is a type of battery model that is promising for fast and accurate battery state 
predictions.

3 Machine Learning for Battery State Prediction 

We often want to predict the future behavior of a battery, for example to understand how 
much further an EV can drive, or how to design a battery that will have the best behavior in 
the field. Often, we are interested in the SOC of the battery within a single charge/discharge 
cycle, or the SOH of the battery spanning many charge/discharge cycles. Having two relevant
time-scales will make predictions particularly challenging. All of these problems can be 
summarized as the fact that we need a function that inputs the current state of the battery to 
predict future behavior. A promising approach is machine learning - a flexible but efficient 
fitting function with no underlying physical knowledge. Table 2 summarizes the approaches 
taken by a range of authors over the past few years.3,4,44–69 We first summarize the input and 



output parameters captured by the different modelling approaches and battery systems 
analyzed, before we focus on the advantages and disadvantages of the various machine 
learning techniques for predictive analytics of batteries. We then summarize the most useful 
machine learning algorithms to predict SOH, SOC, and RUL. Finally, we offer a perspective 
on the future outlook and opportunities in modern machine learning and data generation to 
better understand and predict battery behavior.

3.1 Battery parameters: inputs & outputs

In order to understand, design, and predict battery properties, a range of variables that 
captures their full behavior must be incorporated. Usually some variables are either ignored 
or held constant to simplify the model. The possible input variables for a machine learning 
model can be split into continuous, integer, and categorical. Continuous variables can take 
any value and include the current flow, the internal structure, the geometry, and the 
temperature. Integer variables include the number of charge/discharge cycles that the battery 
has gone through. Categorical variables take particular values that cannot be sorted into a list,
examples include the type of battery: Li-ion, nickel-metal hydride, or lead-acid. A machine 
learning method should ideally be able to input continuous, integer, and categorical variables 
in order to make predictions.

The outputs can be classed into two main categories: (1) short-time scale over a single 
charge/discharge cycle to understand the SOC, and (2) long time-scale over many 
charge/discharge cycles to understand the SOH. The first approach is to predict the evolution 
of the battery during a single charge/discharge cycle. Endpoints predicted can include the 
SOC, the current rate, and the concentration and size of defects formed within the battery. By
tracking the evolution during a charge/discharge cycle, the model can address any point in the
lifetime of a battery and extrapolate forward in time, but it is susceptible to accumulating 
errors if applied over too many charge/discharge cycles.

The second approach is to predict the evolution of the battery from the same point cycle-to-
cycle over many cycles. This approach can be readily applied across hundreds of cycles 
covering the entire lifetime of the battery, but cannot be applied during a given cycle, and can
start from and propagate to only a particular defined point during the cycle, for example when
fully charged. In Table 2, machine learning models are seen to successfully predict the 
evolution of battery properties. The accuracy level attained in terms of the averaged 
percentage error of these works is 4.1 % for SOC, 3.8 % for SOH, and 4.1 % for RUL.



Table 2. Summary of recent work on machine learning for battery state predictions.
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Severson et al. 3  ✓ ✓ ✓ ✓ ✓   ✓ 9.1
Nuhic et al. 4  ✓ ✓ ✓ ✓ ✓   ✓ 6.4
Guo et al. 44  ✓ ✓ ✓ ✓   ✓ 8.7
Wu et al. 45 ✓  ✓  ✓  ✓ 7
Zahid et al. 46 ✓ ✓ ✓ ✓ ✓ ✓ 0.1
Chemali et al. 47 ✓ ✓ ✓ ✓  ✓ 2.4
Jiménez-Bermejo et al. 48 ✓ ✓ ✓ ✓  ✓ 1.3
Mansouri et al. 49 ✓ ✓ ✓ ✓ ✓   ✓ 3.3
Donato et al. 50 ✓ ✓ ✓ ✓ ✓  ✓ 13
Huang et al. 51  ✓ ✓ ✓ ✓  ✓ 3
Ren et al. 52 ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓ 6.7
Khumprom et al. 53 ✓ ✓ ✓ ✓   ✓ 0.6
Sahinoglu et al. 54  ✓ ✓ ✓ ✓  ✓ 0.8
Álvarez Antón et al. 55  ✓ ✓ ✓ ✓  ✓ 12
Tong et al. 56 ✓ ✓ ✓ ✓  ✓ 3.8
Kang et al. 57 ✓ ✓ ✓ ✓  ✓ 10
Hu et al. 58 ✓ ✓ ✓  ✓ 1.7 
Wu et al. 59 ✓ ✓ ✓ ✓  ✓ 3
Wu et al. 60 ✓ ✓ ✓   ✓ 5
Hu et al. 61  ✓ ✓ ✓ ✓ ✓  ✓ 2.1
Berecibar et al. 62 ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓ 1.6 
Richardson et al. 63  ✓ ✓ ✓ ✓ ✓   ✓ 3.2
Zhang et al. 64 ✓ ✓ ✓ ✓   ✓ 1.2
Hu et al. 65  ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.2
Tseng et al. 66  ✓ ✓ ✓ ✓   ✓ 0.2
Hussein et al. 67 ✓ ✓ ✓ ✓  ✓ 1.5
Yang et al. 68 ✓ ✓ ✓   ✓ 5 
Dawson-Elli et al. 69 ✓ ✓ ✓ ✓ 5

Note: For Refs 4, 44, 45, 48, 49, 50, 54, 55, 58, 62, 63, 65, 67, and 68, the percentage errors 
are estimated from the root mean square errors using the approach described in section 3 in 
the main text. For Refs 53 and 64, the percentage error in RUL is estimated from the (error in
cycle predicted /actual cycle) ×100%

3.2 Machine learning techniques

Machine learning uses a general fitting function with optimizable parameters tuned to deliver 
the desired behavior, usually a fit to experimental training data. The function can then make 
predictions for other battery systems. Below we discuss two main issues: (1) how to validate 



the fitting function and (2) the selection of the fitting function. Finally, we summarize the 
most appropriate machine learning methods to predict different battery properties.

A key question is how to validate the machine learning model once it has been fitted to the 
data. Like all fitting functions with optimizable parameters, machine learning models can be 
susceptible to over-fitting – perfectly fitting the training data by introducing unphysical 
features that would poorly reproduce parts of the underlying function not present in the 
training data. To properly validate the model, a common procedure is to hold back some of 
the data, unseen to the model, to later benchmark the fitting function through calculation of 
an error metric. This metric is most commonly the root mean square error that can itself be 
recast as the coefficient of determination by dividing by the variance of the data to deliver a 
metric that is independent of scaling the data, or as a percentage by simply dividing by the 
range of the data. We outline two standard protocols: in the first, known as “hold out”, the 
model is trained on a fraction of the total available data (typically 80%), and then the 
accuracy is gauged by testing against the remaining (typically 20%) data that was withheld 
from the training process. The second protocol is “cross-validation” where the hold-out 
procedure is repeated on several (typically five) randomly selected fractions of the available 
data, which provides an averaged measure of performance over several train-test splits. The 
minimization of the error metric allows the correct hyper-parameters to be obtained, 
including the number of optimizable parameters, and delineate the performance of different 
models. With the validation strategy in place, we now review the advantages and 
disadvantages of the fitting functions previously used to model the behavior of batteries, 
which are summarized in Table 2.

3.2.1 Linear regression

The straightforward fitting of a straight line (one input dimension) or a hyperplane (multiple 
input dimensions) to the data is probably the simplest model possible, and consequentially 
can deliver insights into the underlying physics. The model has the form

y=m⋅ x+c

where y is the output, x are the vector of input variables, m is the vector of fitting parameters 
corresponding to the gradients, and c the fitting parameter for the shift. The fitting parameters
are often selected by minimizing a mean-square error cost function.

The robustness of the fit can be improved through singular value decomposition, which 
circumvents singular solutions. This approach is clear, robust, and fast, and furthermore 
requires a minimal amount of training information to form a model. However, regression is 
not just limited to fit just a straight line, as many batteries will display non-linear behavior. 
To capture this behavior, we can expand the method to be non-linear, by including quadratic 
and higher order terms in the fit, by analogy to a Taylor expansion.

A linear model that combined nine battery descriptors was used by Severson et al3 to predict 
the RUL of lithium iron phosphate/graphite cells after 100 charge/discharge cycles. The 
model input the current cycle number, voltage, current flow, and capacity to predict the RUL 
with a typical error of 9.1%. The simple linear model allows fast computational time for 
training and predictions that can be directly deployed in devices.

3.2.2 Random forest / tree and support-vector machine

Random forest involves a set of generalized classification trees, each trained with randomly 
selected data. The split of each layer is often chosen to maximize the reduction in variance of 
the remaining training data. A new query passes down the trees to deliver an ensemble of 



predictions that are averaged to give the expected value alongside an uncertainty. The 
average prediction at x is

y=
1
T ∑∑Θt (xi , x) y i

where t  index the T  trees, (x i , y i) is the ith data point, and should x i and x be in the same leaf 
then Θt( xi , x) is the reciprocal of number of entries in that leaf, and is otherwise 0. A random 
forest is most straightforward to train with categorical data. The random forest is accurate, 
easy to train, and robust against outliers, but the function delivered is often discrete rather 
than smooth.

An example of the successful application of a tree method to predict the RUL of a Li-ion 
battery is demonstrated by Mansourei et al.49 Focusing on batteries in unmanned aerial 
vehicles, the authors aimed to extend the flying time window. The authors found that the 
random forest approach that inputs simply the variation of voltage with time delivered a 
typical prediction error in the RUL of 3.3%, outperforming linear models, a support-vector 
machine, and a neural network. 

Support-vector machine is a generalization of the random forest where the functions trained 
are simultaneously classified in a multidimensional space rather than split along one input 
direction. Where the training data is scarce, this approach can improve the quality of the fit, 
but it comes at the cost of significantly increased computational demands. The support-vector
machine protocol is effective on sparse data,70 particularly when augmented by factorization 
machines.71

Nuhic et al4 used a support-vector machine to predict both the SOH and RUL of lithium ion 
batteries. The support-vector machine took account of the voltage, capacity, cycle number, 
and temperature to estimate SOH between successive cycles within 6.4%, and showed that 
the SOH and RUL was strongly influenced by environmental and load conditions. 

3.2.3 Gaussian processes

This is a stochastic method that delivers a probability distribution of possible predictions

p( y )=N (μ (x) , σ2
(x))

where p( y )=N  is a normal distribution with modified mean μ(x ) and variance σ 2
( x) derived

from the covariance of the training data.72 Although there is no cost function, the covariance 
itself comprises a statistical prior distribution, often taken to be a normal distribution in the 
distance of predicted point from the training data. This necessitates storing all of the training 
data as the foundation of the model. At run-time, once given the input parameters, it 
calculates the joint probability distribution of the underlying fitting functions, usually 
Gaussian distributions, and the training data. Furthermore, the approach captures the higher 
certainty in our knowledge when making predictions near to known training data, and 
increased uncertainty in the function when making predictions further from the training data 
or when the data is noisy. However, this increased level of insights often means that the 
approach is prohibitively expensive.

Sahinoglu et al54 used Gaussian process regression to estimate the SOC of Li-ion batteries. 
The model uses battery parameters, including voltage, current, and temperature, as inputs. 
The Gaussian processes are shown to deliver predictions for SOC within 0.8% and 
outperform support-vector machine and neural network predictions.



3.2.4 Neural network

The linear fitting method could be extended with a Taylor expansion to capture non-linear 
behavior. However, a more efficient approach is to use several locally non-linear basis 
functions to build a composite function in a neural network. The mathematical form of a 
neural network with a single layer of hidden nodes is

y=D+∑ Ci tanh(A i⋅ x+Bi)

where y is the output, x are the vector of input variables Ai is a vector of fitting parameters,
Bi, C i, and D are further fitting parameters, with a sum over hidden nodes denoted by i. The 
fitting parameters are often selected by optimizing a mean-square error cost function. The 
neural network is more expensive to train, but when a large amount of data is available, it 
often gives the highest possible quality fitting function, hence its widespread use in industry.

In batteries, we are often interested in predicting the evolution of the SOC over a single 
charge/discharge cycle or the evolution of the SOH over several cycles. For these problems 
that focus on the passage of time, a convolutional neural network is helpful. This is a 
specialist fitting function useful on systems that display temporal invariance, fundamentally 
capturing that, for example, the behavior of a battery is independent of the time of day that it 
was used.

Yang et al68 used a neural network to predict the SOH of Li-ion batteries for EVs. Taking in 
the voltage and current through a first-order ECM, a three-layer neural network could predict 
the SOH within 5%. In fact, the majority of studies so far focus on the most commercially 
important system of Li-ion batteries, with only a couple addressing nickel-metal hydride and 
lead-acid batteries. A single study by Zahid et al46 presents a generalized neural network 
model that can address all three battery families. That model inputs voltage, current, power 
dissipation and power to predict the SOC within 0.1%. This is a valuable direction as it 
allows information on one battery system, e.g. Li-ion, to inform the behavior of other systems
that are less well-studied, and furthermore provide guidance for future possible battery 
families. 

3.3 Selection of machine learning approach

The selection of the most appropriate machine learning approach is a multifaceted problem, 
depending on the amount of data available, the quality of results desired, and physical 
interpretability of model required.

Neural networks are probably the industry leading technique in machine learning 
competitions due to the high levels of accuracy that they can attain, so it is not a surprise that 
they are the most widely used approach for predicting battery properties. This is especially 
apparent in the prediction of SOC, where neural networks are adopted and were the preferred 
approach in 10 out of 15 studies (Table 2). SOC systems are characterized by having access 
to a large amount of training data that can be collected at small time steps throughout the 
evolution of the battery, and the neural network performs well on data rich systems. In 
addition, a hybrid optimization technique for the P2D battery model inspired by the neural 
network-based chess engine DeepChess has also been proposed.73

However, the preferred machine learning approach is more nuanced when predicting either 
SOH or RUL. These are typically measured once per cycle, so with training data collected 
once per charge/discharge cycle, the typical datasets are often smaller. Therefore, for 
predicting SOH and RUL, the preferable machine learning techniques adopted are varied, 



with the data heavy requirement of neural networks meaning that they were adopted in just 8 
of 13 studies (Table 2), and a variety of other machine learning techniques were used in the 
others. Here the preferable technique is decided on a case-by-case basis, for example 
Gaussian processes are used44,52,63 not only due to the relative lack of data, but more 
importantly because Gaussian processes can intrinsically predict uncertainties, which is vital 
for making possibly safety-critical health diagnostics.63 The RUL can be expressed in terms 
of number of remaining charge/discharge cycles, an integer rather than continuous quantity, 
making random forest a suitable method. On the other hand, though many machine learning 
approaches are black boxes, a physical understanding of the predictions can be more 
important for safety-critical and scientific applications, meaning that the straightforward 
nature of linear regression can be preferred.62

4 Future Outlook and Opportunities

Here we highlight three long-standing “holy grail” problems for battery state prediction 
where machine learning has the potential to make significant inroads: (1) holistic battery 
modelling that transcends time, length, and mechanism scales, (2) accelerating and 
simplifying calculations to enable them to be done in-situ on the battery itself, and (3) high-
throughput computational and experimental data generation.

4.1 Accurate modelling over length and time

The battery models presented have been fragmented: one works at long and another at short 
length scales, some over one charge/discharge cycle and others over many cycles. This means
that each model captures one particular degradation mechanism well, but neglects other 
factors. The practical use of battery models requires all factors to be captured, with machine 
learning well-positioned to replace each individual model and merge their predictions 
together.

Machine learning models are best used when the underlying functional dependence is not 
known from a PBM. Because of this, machine learning is often referred to as a ‘black box’, 
where datasets enter and predictions emerge, but the process between input and output is 
opaque. The incorporation of domain knowledge into machine learning will help in the 
development of models that are more explainable and interpretable. Moreover, if a PBM is 
available, then machine learning can be applied to capture the remaining difference from the 
experimental data. Although this hybrid approach introduces additional computational cost, it
can deliver more accurate and insightful models with less risk of over-fitting the training 
data.

The models presented from the literature focus either on the prediction of SOC within a 
charge/discharge cycle, or the SOH/RUL over many cycles. There is however a more general 
problem: to predict the long-term SOH, but starting from an arbitrary point in the 
charge/discharge cycle. Machine learning could first use a detailed model to predict until a 
fixed point in a cycle, for example, the state of being fully charged. Next, a SOH model that 
covers integer cycles could be applied to predict the final SOH. This hybrid approach would 
achieve the best of both worlds, and as both the short and long-term behavior models have 
now been developed, there is an opportunity to juxtapose them into a holistic model of 
battery evolution.

4.2 Performing in-situ calculations

Improved battery modelling means that we now have accurate predictions of some battery 
properties. However, these calculations need to be performed using large computing 



resources. In practice, if these calculations were available on the battery itself, then the 
battery could adapt and optimize itself to its use case. This requires much lighter calculations 
that could be achieved through machine learning and can be done on light embedded devices 
on the battery.

First-principles simulations such as density functional theory and molecular dynamics have 
been widely used to study the degradation of materials, e.g. solid electrolyte interphase 
formation and decomposition of electrolytes.74,75 The phase field approach is another physics-
based simulation mainly for studying the evolution of microstructures with various 
morphologies, including lithium dendrite growth7678 and phase separation of active electrode 
materials.7981 Although phase-field modelling has not yet approached full cell simulations, the
simulated results generally match well with experimental data. 

To perform in-situ calculations, the first step is to build a database of historic results from the 
multiscale first-principles and phase field simulations and then train a machine learning 
model. This model is then used as a proxy for the simulations, except if the machine learning 
reports a large uncertainty, when an additional simulation is performed, added to the 
database, and the machine learning model retrained. This cycle of active learning can 
significantly reduce the number of simulations required to understand a system. Machine 
learning can be used in a similar way for experimental design and to shortcut costly 
experiments. Further evidence of the potential for machine learning to shortcut simulations 
comes from studies regarding the mechanical properties of solid electrolytes82 and voltage.83

In fact, every battery in service is different. Due to its particular usage, the behavior of a 
certain battery is unique, and evolves throughout the battery’s service. Therefore, one could 
also develop a bespoke machine learning model for that particular battery, perturbed from the
default, refined by data gathered in service to capture that particular battery’s characteristics 
for accurate on-line predictions.

4.3 High-throughput data generation

Databases underlie all machine learning and data-driven approaches. Compared to the traditional
one-by-one approach, high-throughput technologies can generate a large but high quality 
database in a short time at low cost. Today, high-throughput technologies have been widely 
employed in various fields, e.g. biological and medical sciences, due to the rapid progress in 
automation, robotics, and computational technologies.84–90 

4.3.1 High-throughput computations

With the advancements in computer technology, the discovery of new materials can now be 
performed using high-throughput computations, material databases and machine learning. 
The Materials Project91 and the Open Quantum Materials Database (OQMD)92 offer valuable 
database of simulation results for many battery properties, spanning both electrodes and 
electrolytes. Although initially aimed at screening studies,93 the resource also provides an 
ideal platform for machine learning. 

In general, computational battery material research focuses on two areas: the electrode and 
electrolyte. The development of new electrodes with high voltage, high capacity, high 
chemical stability and low cost are desired. For liquid electrolytes, the general concerns 
include viscosity, volatility, flammability, compatibility with the separator and electrode. As 
such, the focus is on developing new electrolytes with better organic molecules and additives 
that fulfill the requisite properties. For solid-state electrolytes, a faster Li-ion transport 
property and a more stable electrochemical window are desired.  



The combined database and machine learning approach have been applied to design and 
predict the material properties of electrodes such as voltage, crystallinity and chemical 
stability, from atomic scale to mesoscale.83,9499 In addition, such approach has been applied to 
design new liquid electrolytes and additives,100105 and solid-state electrolytes with fast Li-ion 
transport106108 and mechanical82 properties. Such computational techniques provide an 
opportunity for exploring material properties at a lower cost and accelerating the material 
discovery processes. 

Overall, concerted international efforts are needed to promote the sharing of meaningful 
battery data in a standardized and machine-readable form, in order to continue expanding our 
valuable material databases. Such meaningful data should include both positive and negative 
results, as machine learning algorithms need to be able to distinguish between 
batteries/battery materials that work well and those that do not. This culture of sharing and 
collaboration between the computer science and battery communities should be strongly 
encouraged and is expected to drive accelerated scientific research. 

4.3.2 High-throughput experiments

In the field of Li-ion batteries, high-throughput experimental data generation involves several 
aspects, namely material synthesis, material characterization, battery fabrication, and 
electrochemical testing.109–114 With high-throughput synthesis, electrode materials with different 
and optimized compositions can be rapidly prepared for subsequent structural and 
electrochemical analysis, which can speed up the discovery and optimization of electrode 
materials. Currently, thin-film sputtering, pulsed laser deposition, combinatorial robotic, and 
microplate techniques have been developed to synthesize/screen electrode materials and 
electrolytes, as well as optimize the content of additives, in a high-throughput manner.109,115 

These methods are still limited to modulation and tuning of material compositions, which is 
below the typical requirement for diverse machine learning datasets. Currently, high-throughput 
material synthesis remains to be explored for diverse materials with novel microstructures, 
different crystal structures, controllable dopants, interfaces, and defects. 

Material characterization is usually carried out sequentially to measure and ascertain the key 
properties of the electrode materials before incorporation into batteries. In recent years, many 
high-throughput diagnostic tools across a range of methodologies have been invented to perform
routine characterization tasks. For example, high-throughput X-ray diffraction and X-ray 
fluorescence techniques have been developed to collect the crystalline phase and elemental 
information of electrode materials.110,116 However, ex-situ characterization may not reflect the 
true information of the actual charge/discharge states due to changes in the thermodynamic non-
equilibrium phase after relaxation. With in-situ techniques such as X-ray diffraction and X-ray 
absorption spectroscopy, the chemical, structural and thermal evolution of materials, as well as 
the pressure within Li-ion batteries can now be properly monitored.113,114,117 Overall, further work
is required to create fully automated and continuous processes, e.g. by developing advanced 
robotics and algorithms to directly couple the synthesis and characterization tools. 

Automated battery fabrication is crucial as it can accelerate subsequent battery optimization and 
testing based on realistic operating conditions.118 Conventional battery development usually 
starts with small-scale, simplified and discontinuous laboratory equipment, as well as manual 
processes. The electrodes, associated components and entire cells generally have non-optimized 
internal structures and often low mass loading. This is far below the requirements of real-life 
commercial applications and cannot provide reliable data for machine learning. Hence, highly 
integrated Li-ion battery production processes from the initial automatic electrode synthesis to 
the final battery testing systems are necessary for high-throughput precise data generation 



(Figure 3). Ideally, the anode, cathode, binder, and conductive additives can be selected and 
optimized automatically, followed by automatic mixing to prepare electrode slurries. The 
slurries are then coated onto current collectors, calendared into electrode films, and slit into 
appropriate dimensions for automated assembly into batteries, together with electrolyte and 
separator.

Finally, high-throughput electrochemical testing of batteries holds the key to generating huge 
and reliable datasets for machine learning. A variety of electrochemical techniques, including 
cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance 
spectroscopy, can be used to measure the cycle life, rate capability, capacity and impedance of 
batteries with high precision and accuracy (Figure 3). Batteries should be screened quickly in 
parallel based on realistic working conditions (e.g. different current, voltage, power, 
temperature, mass loading, and cell design) to generate huge volumes of meaningful data. Once 
the machine learning models are trained with these data, they can further accelerate the process 
of battery testing, by weeding out potential poor-performing batteries based on their initial 
cycles. For instance, by using the first five cycles, Severson et al3 managed to use a trained 
machine learning model to classify cells into two groups: a ‘low-lifetime’ and a ‘high-lifetime’ 
group, with 4.9% test error. 

Figure 3. High-throughput battery fabrication and testing. Abbreviations: PVDF: 
polyvinylidene fluoride, PTFE: polytetrafluoroethylene, CMC: carboxymethyl cellulose, SP: 
Super P, CNTs: carbon nanotubes, LTO: lithium titanate, Hard C: hard carbon, LFP: lithium 
iron phosphate, LCO: lithium cobalt oxide, NMC: lithium nickel manganese cobalt oxide.

5 Conclusion

Currently, the two most studied models for battery state prediction are the ECMs and PBMs. 
Despite their popularity and continuous development, there remains a clear tradeoff between 
computational efficiency and accuracy when using these models for on-line battery state 
prediction. DDMs with machine learning is a promising way to model batteries that can 
potentially address the dilemma faced by traditional modelling using ECMs or PBMs. 
Currently, most of the machine learning models give ‘black box’ battery state predictions, 
which makes it difficult to generalize to other battery chemistries. The incorporation of 
domain knowledge paves the way for explainable ‘white box’ prediction. Moreover, high-
throughput experimentation, perhaps guided by preliminary machine learning results, is the 
key to provide real-life and high-quality datasets on battery performance for machine 
learning. With the advancement of computational technologies and mathematical algorithms, 
together with the reduced costs of data storage devices and high-throughput experiments, we 



envision data-driven machine learning to be a promising technique for advanced battery 
modelling in the future. 
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