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1 Introduction and summary

Local quantum field theories can be formulated on curved spaces preserving the existence of

nilpotent fermionic symmetries by coupling to a background off-shell supergravity and solv-

ing the relevant generalized Killing spinor equations in order to have (twisted) covariantly

constant supersymmetry parameters [1]. For conformal field theories with supergravity

duals, there exists a dual gravity construction: by looking at the conformal boundary of

asymptotically locally AdS solutions to a gauged supergravity that is a consistent trunca-

tion of ten- or eleven-dimensional supergravity, we realize curved backgrounds of relevant

deformations of superconformal field theories [2].

Both approaches have been extensively studied in a number of dimensions and with

different numbers of conserved supercharges. An extreme case is constructed when the al-

lowed background is an arbitrary manifold, which is achieved via the topological twist [3].

This case has been famously studied in four dimensions to recover the theory of Donald-

son’s invariants, and phrased in terms of coupling to four-dimensional N = 2 off-shell

supergravity [4, 5]: the associated vector bundle to the SU(2)R gauge bundle is identified

with the bundle of self-dual two-forms on the background manifold, and it is possible to

appropriately choose the background SU(2)R connection in order to cancel the self-dual

part of the Levi-Civita spin connection. In this way, effectively a chiral projection of the

relevant Killing spinor equation becomes an equation on flat space, and it is always possible

to solve it, finding a chiral constant spinor on any curved background. For superconformal

field theories, the corresponding construction of the topologically twisted supersymmetric

background from gauged five-dimensional supergravity has been considered in [6].

A similar construction can be performed on Riemannian manifolds with an isometry:

in this case, the Killing vector is used to define the conserved supercharge, and the field

theory observables include a sector defining an equivariant cohomology with respect to the

isometry. This construction, called the Ω background, was first introduced on R4 using
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rotations in the two transverse planes [7], and then presented in generality by Nekrasov

and Okounkov on an arbitrary manifold [8].1 Its applications have been numerous and

influential, including a crucial rôle in the formulation of the AGT correspondence [9].

Again, as for the topological twist, this construction can be formulated in terms of coupling

to a background N = 2 off-shell supergravity [5], and one can also formulate the dual

supergravity background, as was outlined in the conclusions of [6].

In the latter paper, we showed that under certain assumptions of smoothness and

existence of the bulk solution, the holographic Ward identity corresponding to the su-

persymmetric topological twist held. That is, given a curved background with a certain

geometric structure on it, (Md, g), the AdS/CFT dictionary [10, 11] associates to it an

asymptotically locally hyperbolic solution of an appropriate gauged supergravity theory

(Yd+1, G) such that (Md, [g]) arises as the conformal boundary. Moreover, in a gravity

saddle point approximation

Z[Md] = e−S[Yd+1] , (1.1)

where Z is the partition function of the gauge theory (in a particular limit dependent on

the rank of the gauge group), and S is the holographically renormalized supergravity on-

shell action. Since for the topologically twisted theory Z is independent of the background

Riemannian metric, so should be the on-shell action, as was proved in [6, 12]. Moreover,

the renormalized on-shell action of smooth filling supergravity solutions with the boundary

conditions of the topological twist vanishes [12].

In this short note, we extend the first computation to an asymptotically locally hy-

perbolic solution with boundary conditions defining the Ω background, as we summarised

in the conclusions of [6]. For a four-dimensional N = 2 theory formulated on an Ω back-

ground, we investigate the dependence of the supersymmetric partition function on the

Killing vector and on the background metric, showing that it depends on the choice of

isometry.

More specifically, the main difference between the setup here and the setup of [6] is that

there a pair of antisymmetric tensor fields B± had been consistently set to zero, whereas the

boundary conditions of the Ω background necessarily require them to be non-vanishing.

Even though here we study the independence of the on-shell action from variations of

the boundary metric preserving an isometry, we do not evaluate the on-shell action for a

concrete solution to the theory. It would be very interesting to include the contributions

of the B± fields in the rest of the results of [12]. For instance, the Ω background at the

boundary requires the existence of two Killing spinors in the bulk. This means that instead

of defining a (twisted) SU(2) structure, as it is the case for a single (twisted) spinor in five

dimensions, the two of them define an identity structure. Studying this G-structure could

be instrumental in finding a supersymmetric solution or in evaluating observables for a

general class of solutions, assuming their existence. Indeed, in contrast to the Donaldson-

Witten twist, an explicit supergravity solution dual to the Ω deformation on R4 has been

given in [13]. In fact, it is tempting to conjecture that the existence of a Killing vector in

the bulk arising from a boundary Killing vector may be a hint into a connection between

1We will also refer to the general construction as the Ω deformation.
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the equivariant localization at the boundary and the computation of the on-shell action in

the supergravity bulk in terms of the contributions from the fixed-point sets of the bulk

Killing vector, as in the four-dimensional case [14].

Finally, the effective supergravity constructions of [6, 13] and this note are supposed to

capture the features of topological subsectors of the physical AdS/CFT duality. It would

be interesting to investigate their relation to the twisting constructions of [15, 16].

Outline. In section 2 we very briefly review the structure of the supergravity theory of

interest and summarize the relevant steps of the holographic renormalization procedure.

In section 3 we present the expansion of the supersymmetry equations, and we conclude

in section 4 by computing the relevant variation of the on-shell action. Throughout the

paper, we will heavily rely on the notation and results introduced in our previous work [6],

to which we refer the reader for some of the details in the computations that we are leaving

out of the succinct exposition.

2 5d N = 4+ supergravity

2.1 Lagrangian and equations of motion

The five-dimensional gauged supergravity that is relevant to us is the N = 4+ Romans’

theory with gauged SU(2) × U(1) [17]. This theory is a consistent truncation of type

IIB supergravity on S5 [18] and of eleven-dimensional supergravity on N6 spaces [19].

Therefore, the results obtained here apply to Ω twists of N = 4 SYM and to (some)

conformal field theories of class S [20] (the choice of theory being dependent on the uplift).2

In this context, a computation involving a supersymmetric black hole solution to Romans’

N = 4+ theory has already been precisely matched to a supersymmetric Rényi entropy

computed in N = 4 SYM [24].

The bosonic dynamical sector of the Euclidean continuation of N = 4+ Romans’

supergravity includes the metric Gµν , the dilaton φ, an SU(2)R gauge field AIµ, a U(1)R
gauge field Aµ, and two real antisymmetric tensors Bα charged under U(1)R.3 We adopt

the same conventions used in [6], and we consistently define the complex combinations

B± ≡ B1 ± iB2 and the scalar X ≡ e
− 1√

6
φ
. The curvatures are F = dA and FI =

dAI − 1
2ε
IJKAJ ∧ AK , and we define the covariant derivative H± = dB± ∓ iA ∧ B±.

The Wick-rotated action is

I =− 1

2κ2
5

∫ [
R ∗1− 3X−2dX ∧ ∗dX + 4(X2 + 2X−1) ∗1− 1

2
X4F ∧ ∗F

− 1

4
X−2 (FI ∧ ∗F I + B− ∧ ∗B+) +

1

8
B− ∧H+ − 1

8
B+ ∧H−

− i

4
FI ∧ F I ∧ A

]
.

(2.1)

2In fact, a string/M-theoretic construction of the Ω deformation has been proposed [21–23], and it

would be interesting to investigate the connections with our work in the truncated five-dimensional gauged

supergravity.
3More precisely, in order to have real solutions to the equations of motion we need to require A to be

purely imaginary, so the gauged subgroup is SO(1, 1) with connection C = iA.
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The associated equations of motion are

d(X−1 ∗ dX) =
1

3
X4F ∧ ∗F − 1

12
X−2 (FI ∧ ∗F I + B− ∧ ∗B+)

− 4

3
(X2 −X−1) ∗ 1 ,

(2.2)

d(X−2 ∗ FI) = εIJKX
−2 ∗ FJ ∧ AK − iFI ∧ F , (2.3)

d(X4 ∗ F) = − i

4
FI ∧ F I − i

4
B− ∧ B+ , (2.4)

H± = ±X−2 ∗ B± , (2.5)

Rµν = 3X−2∂µX∂νX −
4

3
(X2 + 2X−1)Gµν +

1

2
X4

(
FµρFνρ −

1

6
GµνF2

)
+

1

4
X−2

(
FIµρFIνρ −

1

6
Gµν(FI)2 + B−(µ

ρB+
ν)ρ −

1

6
GµνB−ρσB+ρσ

)
,

(2.6)

where F2 ≡ FµνFµν , (FI)2 ≡
∑3

I=1FIµνFIµν .

The four gravitini and four dilatini present in the Lorentzian theory transform in the

4 of the global R-symmetry group Sp(2) ∼= Spin(5), and so does the spinor supersymmetry

parameter ε. However, since we have gauged the subgroup SU(2)R × U(1)R, we naturally

split the generators of the Clifford algebra Cliff(5, 0) corresponding to Spin(5) into ΓI ,

I = 1, 2, 3, on which SU(2) acts in the 3, and Γα, α = 4, 5, on which U(1) acts in the 2.

The condition to have a supersymmetric solution is the vanishing of the variations of the

gravitini and dilatini, which in Euclidean signature read

0 = Dµε+
i

3
γµ

(
X +

1

2
X−2

)
Γ45ε

+
i

24
(γµ

νρ − 4δνµγ
ρ)
(
X−1

(
FIνρΓI +Bα

νρΓα
)

+X2Fνρ
)
ε ,

(2.7)

0 =

√
3

2
iγµX−1∂µXε+

1√
3

(
X −X−2

)
Γ45ε

+
1

8
√

3
γµν
(
X−1

(
FIµνΓI +Bα

µνΓα
)
− 2X2Fµν

)
ε .

(2.8)

Here the gauge covariant derivative is

Dµε ≡ ∇µε+
1

2
AµΓ45ε+

1

2
AIµΓI45ε , (2.9)

and γµ generate the spacetime Clifford algebra. For the R-symmetry Clifford algebra, we

choose the following generators

ΓI = σ3 ⊗ σI , Γ4 = σ1 ⊗ 12 , Γ5 = σ2 ⊗ 12 , (2.10)

where σI are the Pauli matrices, so that we may write

ε =

(
ε+

ε−

)
, (2.11)

denoting by ε± the projection onto the ±i eigenspaces of Γ45, respectively. In this way,

there is a natural splitting of the equations between the two eigenspaces.
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2.2 Perturbative expansion

For an asymptotically locally hyperbolic solution, we may assume that the fields have a

Fefferman-Graham expansion in a neighbourhood of the conformal boundary in terms of a

radial coordinate z.

We take the metric to have the form

Gµνdxµdxν =
1

z2
dz2 +

1

z2
gijdx

idxj =
1

z2
dz2 + hijdx

idxj , (2.12)

and we assume the expansions

gij = g0
ij + z2g2

ij + z4
(
g4
ij + h0

ij(log z)2 + h1
ij log z

)
+ o(z4) , (2.13)

B± =
1

z
b± + dz ∧B±1 + z(b±2 log z + b±3 ) + z dz ∧ (B±2 log z +B±3 )

+ z2(b±4 log2 z + b±5 log z + b±6 ) + z2dz ∧ (B±4 log2 z +B±5 log z +B±6 )

+ o(z2) ,

(2.14)

A = a + z2(a1 log z + a2) + o(z3) , (2.15)

X = 1 + z2 (X1 log z +X2) + z4(X3 log z +X4) + o(z4) , (2.16)

AI = AI + z2(aI1 log z + aI2) + o(z2) . (2.17)

Note that we have already used gauge freedom to remove some of the fields that would

be present in the most generic expansion, and set to zero those that vanish because of

the equations of motion. We would then substitute these forms into the equations of

motion (2.2)–(2.6) and find relations between the coefficients of the expansion. This is

done in generality in [6]. Here, we will summarize the results with the boundary conditions

fixed to be the twisted ones.

In fact, we assume that the spinor has a Fefferman-Graham-like expansion in a neigh-

bourhood of the conformal boundary

ε± = z−1/2ε± + z1/2η± + z3/2(log z ε̃3,± + ε3,±) + z5/2(log z ε̃5,± + ε5,±)

+ z7/2
(
(log z)2 ε̊7,± + log z ε̃7,± + ε7,±)+ o(z7/2) ,

(2.18)

and substitute this form in the generalized Killing spinor equations (2.7) and (2.8). At the

lowest order in z we obtain the boundary generalized Killing spinor equations

D(0)
i ε± − i

4
b±ijγ

jε∓ ∓ γiη± = 0 , (2.19)

where the covariant derivative is

D(0)
i ≡ ∇

(0)
i ±

i

2
ai +

i

2
AIi σI , (2.20)

and the boundary dilatino equations

6D(0) 6D(0)ε± − iDi(b±)ijγ
jε∓ +

(
4X1 +

1

3
R

)
ε± ∓ 2i f · ε± = 0 . (2.21)

– 5 –
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These equations correspond to the supersymmetry equations for off-shell Euclidean N =

2 conformal supergravity in four dimensions, which have been originally studied in the

context of rigid supersymmetric backgrounds in [5, 25].

As already discussed in [6] in general, and in [5, 13] for the specific case of the Ω

background on R4, we may solve the equations (2.19) and (2.21) on a Riemannian four-

manifold (M4, g, ξ) with an isometry generated by the Killing vector ξ by setting

X1 = − 1

12
R , a = 0 , b− = 0 , b+ = 2(dξ[)− , (2.22)

D(0)
i ε+ = 0 , ε− = iξ[ · ε+ , η+ = 0 , η− = − i

4
dξ[ · ε+ , (2.23)

where R = R(g) is the curvature scalar of the boundary metric g ≡ g0, [ is the musical

isomorphism using g and (dξ[)− is the anti-self-dual part of dξ[ with respect to the Hodge

dual defined by the boundary metric. We also introduce the Clifford product of a k-form

ω and a spinor ε as ω · ε ≡ 1
k!ωi1...ikγ

i1...ikε. Notice that, differently from the case of the

topological twist, b+ 6= 0 and so are ε−, η−. However, finding a covariantly constant spinor

ε+ again requires identifying the SU(2)R gauge bundle with the self-dual part of the spin

connection. This allows ε to exist on an arbitrary Riemannian manifold, even if not spin,

as it becomes a section of the tensor product bundle S+ ⊗ V , where S+ is, on a spin

manifold, the positive chirality spin bundle, and V is the rank 2 vector bundle associated

to the SU(2)R gauge bundle. Thus, we have a SpinSU(2) structure.4 Concretely, choosing

the γ matrices

γā =

(
0 iσā
−iσā 0

)
, γ4̄ =

(
0 −12

−12 0

)
, γz̄ =

(
12 0

0 −12

)
, (2.24)

we find that D(0)
i ε+ = 0 is solved by the following choice

AIi =
1

2
JIjk(ω

(0)
i )jk , (ε+)iα = (iσ2)iαc , (2.25)

where ω(0) is the spin connection on the boundary, and JIij = ηI
ij

eiie
j
j is a triplet of globally

SU(2)-twisted self-dual two-forms which in a vierbein basis have the same components

as the self-dual ’t Hooft symbols. Moreover, we have indices i = 1, 2 for the doublet of

spinors and α = 1, 2 for the positive chirality components, and we choose c ∈ R to have a

symplectic Majorana spinor.

From now on, to simplify notation in the remainder of this note, we will drop the

superscript (0) as all geometrical quantities will be with respect to the boundary metric.

With the choice of SU(2) gauge field (2.25), the self-dual two-forms JI satisfy a number of

identities that will be relevant for our later computations, including

JIijJ
I
kl = gikgjl − gilgjk + εijkl , (2.26)

∇iJIjk = εIJKA
J
i JKjk . (2.27)

4These G-structures originally appeared in the supergravity literature [26–28], and have more recently

been used also in the context of phases of quantum field theories, e.g. [29, 30].

– 6 –
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Moreover, identifying the connection on the (vector bundle associated to the) gauge

bundle and the self-dual part of the spin connection implies a relation between the two

curvatures, which takes the form

F Iij =
1

2
JIklR

kl
ij , (2.28)

where Rijkl is the boundary Riemann tensor.

With the boundary conditions (2.23) that define a supersymmetric background com-

patible with the generic Nekrasov-Okounkov twist, the antisymmetric tensors have the

following expansions

B+ =
1

z
2(dξ[)− + dz ∧ (−2ξ Ric) + z(b+2 log z + b+3 )

+ z2(b+5 log z + b+6 ) + z2dz ∧ (B+
5 log z +B+

6 ) + o(z2) ,
(2.29)

B− = z b−3 + z2dz ∧ ∗db−3 + o(z2) , (2.30)

where the terms on the right hand side satisfy a number of equations that can be determined

by expanding (2.5), including

(b+2 )− =− 1

6
R (dξ[)− , (2.31)

(b+3 )− =− 1

2
b+2 +

8X2 +R

4
(dξ[)− + ∗

(
Ric ◦ (dξ[)−

)
− d (ξ Ric) (2.32)

B+
5 =− ∗db+2 −

1

3
Rξ Ric , (2.33)

∗b−3 =− b−3 , (2.34)

here (Ric ◦ (dξ[)−)ij ≡ Ric
k

[i (dξ[)−|k|j], and we have not written the next few equations at

subleading orders as they are not relevant for our purposes.

2.3 Holographic renormalization

The holographic renormalization of the divergences of the on-shell action has been con-

sidered in full generality5 in [6] (with earlier work on the Lorentzian version of the theory

in [31]). We evaluate the Euclidean action (2.1) on a solution, add the Gibbons-Hawking-

York term and counterterms required to cancel the divergences [32–34], and find the value

of the on-shell action in the limit where we remove the cutoff δ

S = lim
δ→0

(Ion−shell + IGHY + Icounterterm) . (2.35)

Having the finite on-shell action, we can compute the boundary VEVs

〈Tij〉 =
2
√
g

δS

δgij
, 〈Ξ〉 =

1
√
g

δS

δX1
,

〈J i
I 〉 =

1
√
g

δS

δAIi
, 〈 Ji〉 =

1
√
g

δS

δai
, 〈Υ±,ij〉 =

2
√
g

δS

δb±ij
.

(2.36)

5In this subsection we do not apply the boundary conditions (2.23).

– 7 –
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A straightforward computation then leads to the following finite expressions

〈Tij〉 =
1

κ2
5

[
2g4

ij +
1

2
h1
ij −

1

2
gij(4t

(4) − 2t(2,2) + u(1))− 3gijX
2
2 − 3gijX1X2 − g2

ijt
(2)

+
1

4

(
∇k∇ig2

jk +∇k∇jg2
ik −∇2g2

ij −∇i∇jt(2)
)
− 1

4
gij

(
∇k∇lg2

lk −∇2t(2)
)

+
1

4
gij
(
g2
klR

kl
)
− 1

4
g2
ijR

− 1

8

[
(b+)(i

k(b−3 )j)k + (b−)(i
k(b+3 )j)k −

1

4
gij
(
〈b+, b−3 〉+ 〈b−, b+3 〉

)]
+

1

8
(b+)(i|k|(g

2)kl(b−)j)l

]
, (2.37)

〈Ξ〉 =
3

κ2
5

X2 , (2.38)

〈J I
i 〉 = − 1

4κ2
5

[
(aI1)i + 2(aI2)i − i

(
∗ (a ∧ F I)

)
i

]
, (2.39)

〈 Ji〉 = − 1

2κ2
5

[(a1)i + 2(a2)i] , (2.40)

〈Υ±,ij〉 =
1

16κ2
5

[
1

2
t(2)(b∓)ij ∓ 2(∗(g2 ◦ b∓))ij − (b∓3 )ij ± (∗b∓3 )ij

]
, (2.41)

where we have defined 〈α, β〉 = αi1···ipβ
i1···ip and Rij = Rij − 1

4(b+)(i
k(b−)j)k. As stan-

dard in AdS/CFT, these expressions contain a number of terms that are not determined

by the boundary conditions and the perturbative expansion of the equations of motion:

g4
ij , X2, a

I
2, a2, b

±
3 .

Having the expressions for the one-point functions, we may consider specific variations

of the fields and compute the holographic Ward identities [10, 35]. For instance, we find

that the Weyl anomaly takes the form

AW = − 1

κ2
5

(
〈T ii〉+ 2〈Ξ〉X1 −

1

2
〈Υ+, b+〉 − 1

2
〈Υ−, b−〉

)
= − 1

8κ2
5

[
RijR

ij − 1

3
R2 + 12X2

1 − 〈f, f〉 −
1

2
〈F I , F I〉 − 〈Db+,Db−〉

]
.

(2.42)

Notice that the gravitational part reproduces the standard expression for the Weyl anomaly

of a four-dimensional superconformal field theory — corrected by the b± fields — since

RijR
ij − 1

3R
2 = 1

2(C2 − E). Moreover, the expression corresponds to that obtained in [31]

for the Lorentzian version of the theory and to the bosonic part of the Lagrangian of N = 2

conformal supergravity [36].

Analogously, one can compute the holographic Ward identity corresponding to the

boundary R-symmetry by performing a gauge transformation at the boundary

− i ∗ d ∗ 〈J〉 =
1

2

〈
〈Υ+〉, b+

〉
− 1

2

〈
〈Υ−〉, b−

〉
. (2.43)

This can be equivalently expressed using the one-point function (2.40) and the form of

a1, a2 fixed by the equations of motion as a constraint

d
(
b+ ∧ ∗Db− − b− ∧ ∗Db+

)
+ 2F I ∧ F I = 0 . (2.44)

– 8 –
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With the boundary conditions of the Nekrasov-Okounkov twist (2.23), we find the same

integrated condition as in [6] in terms of the Euler characteristic χ and signature σ of the

boundary four-manifold

2χ(M4) + 3σ(M4) = 0 . (2.45)

This becomes a constraint on the topology of the boundary in order to have a smooth filling.

Notice that in both the topological and the Nekrasov-Okounkov twists, the expression for

Weyl anomaly (2.42) reduces to

AW =
1

32κ2
5

(E + P) , (2.46)

which when integrated imposes the same constraint as the vanishing of the U(1)R anomaly

equation, (2.45).

Finally, for completeness, one can compute the divergence of the holographic SU(2)R-

current, for which we find

D ∗ 〈J I〉 = − i

4κ2
5

f ∧ F I . (2.47)

3 Expansion of the supersymmetry equations

In order to evaluate the holographic Ward identity corresponding to the variation of the

action, we need additional relations between the subleading terms in the expansion of the

fields (2.13)–(2.17), which we find from the expansion in the bulk of the supersymmetry

equations (2.7) and (2.8). It is particularly useful to project the two equations on the two

eigenspaces of Γ45, using the splitting (2.11). We find that the projections of the dilatino

equations (2.8) are

0 =

√
3

2
iγµX−1∂µXε

+ +
i√
3

(
X −X−2

)
ε+

+
1

8
√

3
γµν
(
X−1FIµνσIε+ +X−1B+

µνε
− − 2X2Fµνε+

)
,

(3.1)

0 =

√
3

2
iγµX−1∂µXε

− − i√
3

(
X −X−2

)
ε−

+
1

8
√

3
γµν
(
−X−1FIµνσIε− +X−1B−µνε+ − 2X2Fµνε−

)
,

(3.2)

whilst the projection of the gravitino equations (2.7) are

0 = ∂µε
+ +

1

4
Ωµ

mnγmnε
+ +

i

2
Aµε+ +

i

2
AIµσIε+ −

1

3
γµ

(
X +

1

2
X−2

)
ε+

+
i

24
(γµ

νρ − 4δνµγ
ρ)
(
X−1FIνρσIε+ +X−1B+

νρε
− +X2Fνρε+

) (3.3)

0 = ∂µε
− +

1

4
Ωµ

mnγmnε
− − i

2
Aµε− +

i

2
AIµσIε− +

1

3
γµ

(
X +

1

2
X−2

)
ε−

+
i

24
(γµ

νρ − 4δνµγ
ρ)
(
−X−1FIνρσIε− +X−1B−νρε+ +X2Fνρε−

)
.

(3.4)
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Notice that the B± terms mix the two eigenspaces: in [6], B± ≡ 0 and we could

work with the consistently truncated theory where ε− ≡ 0. This is not true in this case,

as already clear from the leading order terms in the expansion of the spinor in (2.23).

However, the components of the spinor in the −i eigenspace of Γ45 are determined, at least

to the order relevant for us, by those in the +i eigenspace (for instance, we see this already

in (2.23)). Order by order, it is possible to prove that this statement is true and that the ε−

component of the equation reduces to some geometric identity involving the Killing vector.

The expansion of the equations is analogous to what had been studied in [6], so here

we will be very brief, referring the reader to the previous paper for more detail. From the

first few orders of the bulk dilatino on ε+ (3.1), we find the following relations between the

bosonic fields

aI1 JI =
1

4
dR , (3.5)

aI2 JI =− 2ia2 −
1

8
dR− 3 dX2 + ξ b−3 , (3.6)

3∇i∇jX2 = D(i(a
I
2)kJIj)k − 2i∇(i(a2)j) −

1

8
∇i∇jR+∇(i(ξ b−3 )j) . (3.7)

The contraction of the latter leads to

3∇2X2 =
1

2
〈DaI2, JI〉 −

1

16
(E + P)− 1

4
〈(dξ[)−, b−3 〉 −

1

8
∇2R+ 〈ξ[, ∗db−3 〉 . (3.8)

We then expand the bulk gravitino on ε+ (3.3), both in the radial direction and along

the boundary, with the SO(4) gauge choice of frame (e(2))ii = 1
2(g2)i

j
eji , (e(2))i

i
= −1

2ei
j
(g2)j

i
.

We then find a few expressions for the fields that are already fixed by the expansions of

the bosonic equations of motion, and

h1
ij =

1

192
gijR

2 +
1

12
gijRX2 −

1

24
∇i∇jR−

1

48
gij∇2R

− 1

8

(
R k
i Rjk +RikljR

kl −∇2Rij −
1

2
εkmn(jR

klRmni)l

)
,

(3.9)

4g4
ij + h1

ij = 2∇i∇j
(
X2 +

1

24
R

)
+ 2i∇(i(a2)j) +

(
X2 −

1

12
R

)
Rij

+ gij

(
−1

6
RX2 − 2X2

2 +
1

12
RijR

ij

)
+

1

4
RikR

k
j

− 1

8
εmnkjRmnliR

l
k +

1

4
RikljR

kl +
1

3

[
2DaI2 − ∗DaI2

]
(i|k| J

Ik
j)

+
1

2
(b−3 )

k
(i (dξ[)+

j)k +
1

3
〈∗db−3 , ξ

[〉 gij − ξ[(i(∗db
−
3 )j) −∇(i

(
ξ b−3

)
j)
.

(3.10)

Showing the equivalence of the expansion of the bosonic and fermionic equations of motion

requires a number of identities from differential geometry, as already pointed out in [6],

and a few manipulations of the differential forms based on their duality properties. Here

we mention one that is particularly useful for the following as well: for two anti-self-dual

two-forms α, β

α
k

(i βj)k =
1

4
〈α, β〉 gij . (3.11)

– 10 –
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4 Variation of the action

The holographic Ward identity for the variation of the renormalised on-shell action (2.35)

with respect to a generic variation of the non-zero boundary fields is

δS =δgS + δAIS + δX1S + δb+S

=

∫
∂Y5=M4

[
1

2
Tijδg

ij + J i
I δA

I
i + ΞδX1 +

1

2
Υ+,ijδb+ij

]
vol4 ,

(4.1)

since we keep a and b− fixed to zero in order to preserve the boundary conditions (2.23). As

in previous uses of relations of this type, such as [6, 12], the variation of the on-shell action

is necessarily a boundary term provided that the bulk does not have any singularities or

internal boundaries, or there would be additional contributions from those loci where the

equations of motion are not satisfied. We focus on smooth fillings, but this could be too

narrow in general. It is possible that singular gravitational fillings provide the dominant

contribution to the to the saddle point approximation in (1.1). If this was the case, a

relevant question could then be: what kind of singularities should we allow in Y5 so that

the holographic Ward identity still holds? Nevertheless, note that, as in [6], our results

would not be spoiled by mild singularities, depending on the radial behaviour of the fields

near them.

The boundary conditions (2.23) relate the variation of the boundary fields AI and X1

to that of the metric, since the former are clearly fixed in terms of the latter. Thus, we

can write the sum of the first three contributions to (4.1) as

δgS + δAIS + δX1S =
1

4κ2
5

∫
M4

(
Tijδgij + DS

)
vol4 , (4.2)

where DS is a total derivative, which we ignore assuming that M4 is a closed manifold. We

can then use the expressions for the one-point functions (2.37)–(2.40), together with the

boundary conditions, to write

Tij = 4g4
ij + h1

ij − 4gij

(
t(4) − 1

2
t(2,2) − 1

8
u(1)

)
− 6gijX

2
2 − 2g2

ijt
(2)

+
1

2

(
∇k∇ig2

jk +∇k∇jg2
ik −∇2g2

ij −∇i∇jt(2)
)

+
1

2
gij
(
g2
klR

kl
)
− 1

2
g2
ijR (4.3)

−
(
X2Rij + gij∇2X2 −∇i∇jX2

)
− 1

2

[
Dk(aI1 + 2aI2)i JIjk

]
.

Here there have been explicit cancellations involving 〈(dξ[)−, b−3 〉 so that formally this

effective stress-energy tensor is the same as in [6]. Note, however, that there are implicit

contributions from the antisymmetric tensor fields through 4g4
ij + h1

ij etc.

The contribution from the variation of b+ is slightly subtler. We are considering

variations of the metric that preserve the Riemannian structure of the manifold with the

isometry (M4, g, ξ), so δξ = 0, but δξ[ 6= 0. Moreover, b+ = 2dξ−, so we also have

contributions from the variation of the Hodge dual. Overall, we find

δ
(

(dξ[)−ab

)
= (d(ξ δg))−ab +

1

2

√
gεpcabδgpq(dξ

[)qc − 1

4
(∗dξ[)ab gmnδgmn , (4.4)
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and the contribution to the holographic Ward identity of the one-point function Υ+,ij

in (2.41) evaluates to

1

2
Υ+,ijδb+ij =

1

4κ2
5

[(
ξ[(i(∗db

−
3 )j) −

1

2
(b−3 )

k
(i (dξ[)+

j)k

)
δgij −∇i

(
b−,ij3 δgjkξ

k
)]

. (4.5)

As in the previous expression, we can ignore the total derivative, since we assume that M4

is closed, so we can overall write

δS =
1

4κ2
5

∫
M4

T̃ijδgij . (4.6)

We report here the values of the combinations of bosonic fields in (4.3) from [6] with

the boundary conditions (2.23)

g2
ij =− 1

2

(
Rij −

1

6
Rgij

)
, t(2) = −1

6
R , (4.7)

−4gij

(
t(4) − 1

2
t(2,2) − 1

8
u(1)

)
= gij

(
8X2

2 +
1

6
RX2 −

1

48
(P + E)− 1

12
〈(dξ[)−, b−3 〉

+
1

8
RklR

kl − 1

36
R2

)
. (4.8)

Substituting these expressions in (4.3) together with the expression (3.10) and adding the

contribution (4.5), we find

T̃ij = 3∇i∇jX2 + 2i∇(i(a2)j) +
1

4
∇2Rij −

1

4
RikR

k
j −

1

4
RikljR

kl

+ gij

(
−∇2X2 −

1

24
∇2R− P + E

48
+

1

3
〈db−, ξ[〉+

1

24
〈(dξ[)−, b−3 〉

)
− 1

8
εmnkjRmnliR

l
k −∇(i(ξ b−3 )j) +

1

3

[
2DaI2 − ∗DaI2

]
(i|k| J

Ik
j)

− 1

2
Dk
(
aI1 + 2aI2

)
(i

JIj)k −
1

8
gij〈(dξ[)−, b−3 〉 .

(4.9)

Now we use the equations (3.7) and (3.8) coming from supersymmetry, together with the

expression for aI1 from the bosonic equations of motion, to arrive at

T̃ij =
1

4
∇2Rij −

1

8
∇i∇jR+

1

4
∇k∇lRjkli −

1

4
RikR

k
j −

1

4
RikljR

kl

− 1

6
gij
(
DaI2

)kl
JIkl +

1

3
[2DaI2 − ∗(DaI2)](i|k|J

Ik
j) − (DaI2)(i|k|J

Ik
j)

+
1

8
εj
kmn(2∇k∇mRni −RmnilRkl)

+
1

8
gij〈(dξ[)−, b−3 〉 −

1

8
gij〈(dξ[)−, b−3 〉 .

(4.10)

The first three lines vanish, as explained in [6]: the first line as a consequence of the

contracted Bianchi identity, the second line because of the self-duality properties of JI ,

and the third line is zero after applying the Ricci identity for a rank-two covariant tensor

– 12 –
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and the first Bianchi identity. The final line, which collates the entire contribution of the

antisymmetric tensors, is trivially zero. Overall, we find that

δS =
1

4κ2
5

∫
M4

T̃ijδgij = 0 . (4.11)

Let us comment on this result. At first glance, it seems that the above result holds for

any variation δgij of the boundary metric, since we have not needed to use Lξδg = 0 as

anticipated in [6]. However, we must recall that the class of boundary manifolds we are

considering is restricted, as we are computing T̃ on a supersymmetric background with

a fixed Killing vector field. Thus, we are considering the variation of a functional on a

constrained subset of its domain, and we cannot conclude that the vanishing result holds

everywhere in the domain: a generic variation of the metric would take us outside of the

locus where T̃ has been evaluated.

On the other hand, we can verify that the action does indeed depend on the choice of

isometry by allowing ξ to vary. The vector field ξ enters only in the definition of b+, so

it changes (4.5), adding to it a term proportional to δξ. The result is that (4.6) becomes

(apart from total derivative terms)

δS =
1

4κ2
5

∫
M4

(
T̃ijδgij +∇j(b−3 )ji δξ

i
)
. (4.12)

Recall that b−3 is not determined by the boundary data, nor is its divergence. Therefore,

we conclude that in absence of additional information about the structure of the bulk the

on-shell action does depend on the choice of isometry, as expected from field theory.

Note that both results have been reached in the minimal holographic renormalization

scheme. However, supersymmetry may require the inclusion of additional finite countert-

erms, as happens with scalars [37–41], or it could have even been anomalous, as pointed

out and clarified in [42–47].

Acknowledgments

We would like to thank James Sparks for insightful comments on the manuscript. The

work of PBG has been supported by the STFC consolidated grant ST/P000681/1. PR is

funded through the STFC grant ST/L000326/1.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP

06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

[2] C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on Curved Spaces and Holography,

JHEP 08 (2012) 061 [arXiv:1205.1062] [INSPIRE].

– 13 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP06(2011)114
https://doi.org/10.1007/JHEP06(2011)114
https://arxiv.org/abs/1105.0689
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0689
https://doi.org/10.1007/JHEP08(2012)061
https://arxiv.org/abs/1205.1062
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.1062


J
H
E
P
1
0
(
2
0
1
9
)
1
1
5

[3] E. Witten, Topological Quantum Field Theory, Commun. Math. Phys. 117 (1988) 353

[INSPIRE].
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[18] H. Lü, C.N. Pope and T.A. Tran, Five-dimensional N = 4, SU(2)×U(1) gauged supergravity

from type IIB, Phys. Lett. B 475 (2000) 261 [hep-th/9909203] [INSPIRE].

[19] J.P. Gauntlett and O. Varela, D = 5 SU(2)×U(1) Gauged Supergravity from D = 11

Supergravity, JHEP 02 (2008) 083 [arXiv:0712.3560] [INSPIRE].

[20] D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

[21] S. Hellerman, D. Orlando and S. Reffert, String theory of the Omega deformation, JHEP 01

(2012) 148 [arXiv:1106.0279] [INSPIRE].

[22] S. Hellerman, D. Orlando and S. Reffert, The Omega Deformation From String and

M-theory, JHEP 07 (2012) 061 [arXiv:1204.4192] [INSPIRE].

[23] D. Orlando and S. Reffert, Deformed supersymmetric gauge theories from the fluxtrap

background, Int. J. Mod. Phys. A 28 (2013) 1330044 [arXiv:1309.7350] [INSPIRE].

– 14 –

https://doi.org/10.1007/BF01223371
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,117,353%22
https://doi.org/10.1016/0370-2693(88)91234-8
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B212,51%22
https://doi.org/10.1007/JHEP10(2013)218
https://arxiv.org/abs/1308.1102
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1102
https://doi.org/10.1007/JHEP12(2017)039
https://arxiv.org/abs/1707.08575
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.08575
https://doi.org/10.4310/ATMP.2003.v7.n5.a4
https://doi.org/10.4310/ATMP.2003.v7.n5.a4
https://arxiv.org/abs/hep-th/0206161
https://inspirehep.net/search?p=find+EPRINT+hep-th/0206161
https://doi.org/10.1007/0-8176-4467-9_15
https://doi.org/10.1007/0-8176-4467-9_15
https://arxiv.org/abs/hep-th/0306238
https://inspirehep.net/search?p=find+EPRINT+hep-th/0306238
https://doi.org/10.1007/s11005-010-0369-5
https://arxiv.org/abs/0906.3219
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.3219
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://arxiv.org/abs/hep-th/9802150
https://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
https://doi.org/10.1016/S0370-2693(98)00377-3
https://arxiv.org/abs/hep-th/9802109
https://inspirehep.net/search?p=find+EPRINT+hep-th/9802109
https://doi.org/10.1007/JHEP09(2018)100
https://arxiv.org/abs/1804.08625
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.08625
https://doi.org/10.1103/PhysRevD.100.021901
https://doi.org/10.1103/PhysRevD.100.021901
https://arxiv.org/abs/1903.05095
https://inspirehep.net/search?p=find+EPRINT+arXiv:1903.05095
https://arxiv.org/abs/1906.11249
https://inspirehep.net/search?p=find+EPRINT+arXiv:1906.11249
https://arxiv.org/abs/1606.00365
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.00365
https://arxiv.org/abs/1812.09257
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.09257
https://doi.org/10.1016/0550-3213(86)90398-6
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B267,433%22
https://doi.org/10.1016/S0370-2693(00)00073-3
https://arxiv.org/abs/hep-th/9909203
https://inspirehep.net/search?p=find+EPRINT+hep-th/9909203
https://doi.org/10.1088/1126-6708/2008/02/083
https://arxiv.org/abs/0712.3560
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.3560
https://doi.org/10.1007/JHEP08(2012)034
https://arxiv.org/abs/0904.2715
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.2715
https://doi.org/10.1007/JHEP01(2012)148
https://doi.org/10.1007/JHEP01(2012)148
https://arxiv.org/abs/1106.0279
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.0279
https://doi.org/10.1007/JHEP07(2012)061
https://arxiv.org/abs/1204.4192
https://inspirehep.net/search?p=find+EPRINT+arXiv:1204.4192
https://doi.org/10.1142/S0217751X13300445
https://arxiv.org/abs/1309.7350
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.7350


J
H
E
P
1
0
(
2
0
1
9
)
1
1
5

[24] M. Crossley, E. Dyer and J. Sonner, Super-Rényi entropy &amp; Wilson loops for N = 4
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