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A vibration -based bridge scour monitoring technique  

Kasun Danushka Kariyawasam Katukoliha Gamage 

Abstract  

Historically, the most common cause of bridge failure has been ñscourò ï the gradual erosion 

of soil around bridge foundations due to rapid water flow. A reliable technique to monitor scour 

could potentially guide timely repair and, in turn, mitigate the risk of future scour-induced bridge 

failure. Currently, there are various, mostly underwater, techniques employed by bridge 

managers to monitor scour, ranging from diving inspections to autonomous underwater 

vehicles; however, none have gained wide acceptance. A particular disadvantage of 

underwater monitoring techniques is that the equipment underwater is relatively difficult to 

install and prone to damage from fast-flowing water and debris. 

One possible solution might be to use a vibration-based method to monitor scour indirectly, 

using changes in dynamic modal parameters (e.g. the natural frequency of vibration) captured 

by sensors mounted on the bridge deck or piers above the water level. There has been 

extensive research into the use of vibration-based monitoring methods to identify other causes 

of failure, such as cracking and deterioration in bridge superstructures; however, this has 

proven to be ineffective in practice, as the expected sensitivities in modal parameters were 

only single-digit percentages and therefore insufficient to overcome environmental/operational 

sensitivity. In contrast to superstructure damage, scour is a special damage case, which 

changes a boundary condition of the bridge in the form of an increase in effective pier height 

as a result of the lowering of the ground level and therefore, significant changes in modal 

parameters can be expected. Recently, this concept has been studied primarily using 

numerical modelling simulations of a hypothetical integral bridge with piled foundations. Only 

one modal parameter ï natural frequency ï was investigated in most of these studies and it 

was predicted to change by up to double-digit percentages due to scour. Although such a high 

change could potentially overcome environmental and operational sensitivities, a critical 

problem is that this has been difficult to observe in practice with experiments on either real 

field bridges or small-scale soil-structure models. Another problem is that there is little 

knowledge of the applicability of this technique to different types of bridges and forms of scour.  

This research proposes a vibration-based technique based on a combination of three vibration 

parameters (spectral density, mode shape and natural frequency), which were studied using 

first-of-a-kind experiments and numerical modelling simulations on various types of bridges 

and forms of scour. A field trial was carried out on a bridge with pre-existing scour, which was 

monitored for ambient vibrations throughout a repair process involving controlled scour 
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backfilling, i.e., ñscour in reverseò. The effect of this scour backfilling was captured by 

measuring changes in two of these parameters, mode shape and spectral density, derived 

from the ambient vibrations. The mode shapes, in particular, showed the potential to localise 

the presence of scour to a specific pier. The most commonly measured vibration parameter of 

natural frequency was also observed from ambient vibrations, but this did not capture the 

effects of backfilling due to high measurement uncertainties.  

In order to study all three of these vibration parameters in a controlled environment, a 

centrifuge model testing programme was developed. These tests considered small-scale 

models representing three full-scale bridges with different bridge deck and foundation 

configurations (i.e. integral/ simply supported decks and shallow/deep foundations) and two 

forms of scour (i.e. local/global). The observed results of these small-scale centrifuge models 

were used to calibrate numerical models of full-scale bridges representative of these centrifuge 

models. Numerical simulation techniques were also developed to simulate the experimentally 

observed effects of local and global scour.  

These centrifuge experiments and the associated numerical modelling found that vibration-

based methods have broad applicability for bridges, although only some parameters showed 

sufficient sensitivity to be viable as a monitoring technique in certain types of bridges. For 

example, the centrifuge bridge models with a shallow foundation did not show a significant 

change in natural frequency or mode shapes, but they did show a significant change in modal 

spectral density. This research therefore concludes that a vibration-based scour monitoring 

technique, examining the combined effect of natural frequency, mode shape and spectral 

density parameters, has significant potential to measure and even localise the change of scour 

depths at bridge foundations. 
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Chapter 1   

Introduction  

This chapter provides the background to this research on vibration-based bridge scour 

monitoring. The research project is introduced with the problem statement, the list of 

objectives, the research methodology adopted, and an overview of the innovative aspects of 

the research. Finally, the content of the various chapters is summarised.  

1.1 Background  

Bridges are the lynchpins of any rail or road network, allowing safe and efficient passage for 

people and goods traffic across various physical obstacles. Bridges overcome these obstacles 

while providing seamless connectivity for rail or road traffic. Such connectivity, however, 

cannot be taken for granted, as bridges can, and sometimes do, fail. There are many potential 

causes of bridge failure, such as overloading, earthquakes, fire and corrosion. Nevertheless, 

one cause of failure stands out ï scour. Recent surveys have indicated that scour and related 

hydraulic causes account for more than 50% of bridge failures around the world (Wardhana 

and Hadipriono, 2003; Hunt, 2009)  

Scour is the result of the erosion of soil around bridge foundations due to the action of fast-

flowing water. Extensive scour around the foundations results in deep pits, which are 

commonly referred to as scour holes. The creation of such scour holes removes soil, which 

was previously supporting the bridge foundations. Such loss of soil support, especially during 

flooding, can lead to a rapid reduction in bridge support stiffness, and even catastrophic 

collapse (Arneson et al., 2012). A large number of such bridge collapses in the past have 

resulted in the loss of human lives, severe transport disruption and economic loss 

(Construction Industry Research and Information Association (CIRIA), 2015). These collapses 

could have been avoided if scour had been detected early and remedial action taken to mitigate 

the scour-induced damage.  

Vibration-based scour monitoring is an indirect monitoring technique to detect scour at bridge 

foundations. It aims to identify changes in bridge vibration properties to detect scour. Vibrations 

are typically present in bridges as a result of ambient excitations caused by vehicle and wind 

excitation. Bridge vibrations can also be generated artificially. Any bridge will have its own 

inherent vibration properties, such as natural frequency. Such vibration-based properties 

remain constant under normal circumstances when bridge stiffness, mass and damping are 

unchanged. However, scour is an exceptional circumstance, which can result in a reduction in 

stiffness due to the loss of soil support around the bridge foundations. Therefore, scour results 

in changes in modal properties, for example, natural frequency (Prendergast and Gavin, 2014). 
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Hence, simply by monitoring bridge vibrations, any changes in scour depth around the piers 

could potentially be captured, in theory at least, as a change in vibration property. 

An example set-up of vibration-based scour monitoring is shown in Figure 1.1. Here, vehicles 

passing over the bridge generate small ambient structural vibrations, which are continuously 

captured by an accelerometer mounted near the top of the pier. The accelerometer 

measurements can then be analysed to estimate vibration properties such as natural 

frequency, which do not change under normal circumstances, thus indicating the ñstructural 

healthò of the bridge. When scour occurs, the vibration properties change as a result of the 

change in bridge stiffness, allowing detection of the presence of scour. This method is 

particularly appealing for bridges that usually experience a degree of continuous ambient 

excitation, which can be measured using continuous real-time remote monitoring techniques. 

Additionally, unlike most other monitoring techniques, there is no requirement for 

instrumentation to be installed underwater, making vibration-based techniques reliable and 

durable even during heavy flooding. 

 

Figure 1.1 An example set-up of the vibration-based bridge scour monitoring technique  

Vibration-based techniques have been studied extensively, although the primary focus has 

been on the detection of local structural damage (e.g. crack detection of superstructure 

beams). However, these studies found insufficient sensitivity of vibration parameters such as 

the natural frequency to reliably identify the location or extent of the damage. For example, 

even when there was extensive damage, in the form of cracks up to half the depth of a bridge 

beam or pier, the resulting changes in fundamental frequency were found to be of the same 

order as the expected effects of environmental changes (such as temperature) and operational 

load effects (Farrar et al., 1994; Peeters and Roeck, 2001; Kim, Yun and Yi, 2003; Caetano 

and Magalha, 2009; Koo, Brownjohn and Cole, 2010; Döhler et al., 2014).  Such localised 
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structural damage results in only local changes in stiffness and/or damping and therefore 

relatively small changes in the frequencies of global vibration modes.  Scour, however, is a 

special damage case ï effectively it causes a change of boundary condition at the bridge 

foundations. Such a change of boundary condition would result in a global stiffness reduction 

and therefore significantly greater changes in natural frequency of lower-order global modes 

of vibration. A simple model of a cantilever column idealising a bridge pier illustrates this 

(Figure 2.13); the natural frequencies of the column are inversely proportional to the square of 

the exposed length, if it is assumed to be fully fixed at ground level. In practice, the support at 

the base of a pier is dependent on the soil stiffness, and this would need to be taken into 

account for any vibration analysis.  

Vibration-based studies targeting scour have emerged relatively recently and have indicated 

much higher frequency sensitivities than those measured as a result of local structural 

damage. Several numerical studies have estimated a 30 ï 40% change in natural frequency 

for a 50% loss of pile embedment (Klinga and Alipour, 2015; Prendergast, Hester and Gavin, 

2016a). Such high sensitivity in natural frequency due to scour indicates its potential for use in 

early scour indication. Therefore, vibration-based scour monitoring techniques, such as those 

using natural frequency, have significant potential to safeguard bridges from scour-induced 

failure and make rail and road networks more resilient.  

1.2 Problem statement  

Bridge scour is a dynamic and complex process that depends on the properties of water flow, 

sediments in the bed of the water body and properties of bridge substructure (Deng and Cai, 

2010). Hence, the scour depth estimated using empirical formulae could often have a 

significant degree of error in the real scenario. Therefore, in situ scour monitoring is vital to 

detecting bridge scour and hence indicating when countermeasures or repairs are necessary. 

Even during repairs to bridge foundations, the measurement of scour depth can be important. 

There are examples where the repairs themselves have led to additional scour (Department 

for Transport UK, 2016). These problems could potentially be addressed by a reliable, real-

time remote scour monitoring technique.  

Various techniques have been used to monitor bridge scour, ranging from scuba divers using 

crude depth-measuring instrumentation underwater to high-tech autonomous underwater 

vehicles using sonar-based systems. Many of these current techniques only measure scour 

depths at a single location and/or are susceptible to damage from debris in the fast-flowing 

water, whilst others are labour-intensive and expensive (Prendergast and Gavin, 2014). Only 

some provide real-time data or information on the extent and depth of scour. These challenges 

hinder the ability of bridge engineers to assess the risk associated with scour-related damage 

to the same degree of confidence as is possible with other types of damage. This could 
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perhaps be one of the reasons behind a significant number of scour-induced bridge failures 

around the world (Melville and Coleman, 2000; Hunt, 2009; Ko et al., 2010; Dikanski et al., 

2016). Hence, there is an immense need for a reliable scour monitoring technique that could 

reliably ensure the safety of bridge assets.  

A vibration-based scour monitoring technique has significant potential since no equipment has 

to be underwater, and it has real-time remote monitoring capabilities. However, there are only 

a few field trials on real bridges, and almost all of them have found it difficult to prove the 

viability of this technique (Section 2.4.1.2). Testing scour monitoring techniques in practice is 

difficult ï a monitoring system would need to be installed on a candidate bridge with no 

guarantee of measuring any scour within the timespan of the project. On the other hand, full-

scale testing of controlled scouring of a bridge is not viable because of the costs involved, and 

tests on scaled-down soil-structure models at normal gravity are unable to simulate the real 

natural frequencies of a full-scale structure because of the incorrect scaling of the soil 

properties (explained in detail in Section 4.2). Centrifuge modelling can be used to eliminate 

this problem by allowing full-scale (also referred to as prototype-scale in centrifuge modelling) 

stress levels to exist within a small-scale model (Madabhushi, 2014). However, to the authorôs 

knowledge, centrifuge modelling has not yet been used for vibration-based testing of bridges.   

Another important consideration is whether or not vibration parameters of a bridge is less 

sensitive to ñlocal scourò than to ñglobal scourò and how to simulate these different effects 

numerically, which has not yet been examined (see Chapter 2). As shown in Figure 1.2, local 

scour involves only a local lowering of the bed level immediately around the foundation; and 

global scour involves lowering of the bed soil level uniformly everywhere (Sumer, Bundgaard 

and Fredsøe, 2005; Mohamed, 2012). In global scour, Case (1), the scoured ground level has 

no overburden pressure and thus no stiffness provided by the soil at that level; thus, the full-

scour profile looks as if it has shifted down by the depth of scour. In contrast, with local scour, 

Case (2), the scoured ground level has some retention of overburden stress, and thus some 

stiffness, due to the remaining soil surrounding the scour hole. This reduced influence on 

stiffness may result in the natural frequencies and other modal parameters being less sensitive 

to local scour than to global scour; thus, this aspect requires detailed examination for the 

development of this monitoring technique.  
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Figure 1.2 Soil-structure interaction change from no scour to global and local scour  

According to Bao and Liu (2016), there are significant gaps in research related to the 

performance of this monitoring technique for different shapes of scour, different types of 

bridges and locations of sensors. Additional research gaps also exist in relation to vibration-

based scour monitoring parameters other than natural frequency, as discussed in Chapter 2. 

The research objectives of this project were chosen to answer these research problems. 

1.3 Objectives of the research  

The main objective of this research was to examine the potential of vibration-based techniques 

for monitoring bridge scour. The following sub-objectives have been considered in the 

research: 

1. To understand the comparative feasibility of vibration-based and other scour 

monitoring techniques available in the literature. 

2. To evaluate the field viability of vibration-based scour monitoring. 

3. To discover vibration-based parameters other than the natural frequencies for 

detecting scour. 

4. To develop a small-scale centrifuge experimental regime for testing the broad 

applicability of the identified parameters for different types of: 

a. foundation (piled/shallow pad); 

b. bridge deck (integral/simply supported); 

c. scour (global/local). 

5. To develop numerical techniques for simulating local and global scour in different 

bridge configurations. 
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1.4 Methodology  

The research objectives were achieved by following the methodology shown in Figure 1.3. This 

methodology is explained below. 

1. Compare scour monitoring techniques 

A detailed literature review first compared twelve different scour monitoring techniques, 

including sonar, single-use devices and vibration-based methods. The comparative 

limitations and advantages of these monitoring techniques indicated that a vibration-

based technique has significant potential for reliable, real-time remote monitoring. 

Therefore, a vibration-based technique was chosen for further research. 

 

2. Find research gaps 

The state of knowledge of the vibration-based scour monitoring technique was studied 

to identify research gaps. A number of research gaps were identified related to the lack 

of field studies and small-scale-model experiments, lack of understanding on the 

potential of this monitoring technique in different bridge types and forms of scour, the 

lack of numerical scour simulation techniques, and relying primarily on only one modal 

parameter. The research programme was then planned to address these research 

gaps. 

 

3. Examine the feasibility of vibration-based scour monitoring (Nine Wells Bridge) 

The feasibility of natural frequency-based scour monitoring was examined next. The 

natural frequencies were estimated by creating a numerical model for Nine Wells 

Bridge, a three-span semi-integral bridge recently built in Cambridge. This bridge was 

studied because its field measurements of natural frequency were already available 

from a previous study of Whelan et al. (2010). These field measurements could be used 

to validate the numerical model created. This validated numerical model simulated two 

hypothetical damage cases: (i) scour damage to two bridge pier foundations; and (ii) 

crack damage to the deck. The aim of this feasibility study was to assess whether 

natural frequencies based scour damage detection has greater potential than natural 

frequency based deck damage detection, which has proven to be ineffective in practice 

due to insufficient sensitivity (Section 2.4.1). This feasibility study was an important 

step of verification before proceeding to the next experimental steps. 

 

4. Trial in the field (Baildon Bridge) 

A field trial was conducted at Baildon Bridge in Bradford, in the UK, to study the 

potential of the vibration-based scour monitoring technique in practice. Baildon Bridge 

was found to have been scoured under part of one pier, and the scoured region was 
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due to be backfilled as part of a repair programme. It thus provided a rare opportunity 

to monitor a bridge in both a scoured and a repaired state (ñscour in reverseò). The 

ambient vibration characteristics of this bridge were measured throughout the repair 

period using a set of accelerometers. The foundation-bed profiles were measured 

before and after repair using sonar scanning to aid numerical modelling. Three 

vibration-based parameters were studied: the common parameter of natural 

frequencies, and two parameters that had not been studied in previous research, 

namely, mode shape and spectral density. The changes in bridge natural frequencies 

and mode shapes due to scour were predicted numerically and compared with 

measured experimental findings. 

 

5. Study with small-scale bridge models 

The three potentially scour-sensitive parameters, namely, natural frequency, mode 

shape and spectral density, needed to be tested in a controlled environment to assess 

their potential for different bridge configurations and scour types. As such an 

experiment is not feasible in the field or at full-scale, small-scale testing was crucial. A 

small-scale testing programme was therefore developed using geotechnical centrifuge 

modelling. Centrifuge modelling is an experimental method used to test small-scale 

models at the correct stress levels, thus providing a platform to study full-scale dynamic 

behaviour changes of the bridge using only a small-scale model (Madabhushi, 2014).  

Four small-scale bridge models were constructed in the sand to represent three 

different full-scale hypothetical bridges representing shallow/deep foundations and 

integral/simply supported decks. Although the possibility of replicating Baildon Bridge 

properties in a small-scale laboratory model was initially attempted, uncertainties in the 

definition of boundary conditions led to the selection of alternative, hypothetical integral 

bridge models, of which boundary conditions were known and could be modelled more 

reliably.   

Simplified versions of the bridges had to be considered in small-scale as a result of the 

space limitation in the standard container used in centrifuge testing, and in order to limit 

the number of joints required to fabricate. Only one small-scale model represented the 

entire hypothetical bridge (deck and foundations), while all of the others represented 

the different standalone foundations (ñsimplifiedò versions) of the full-scale bridges. 

Corresponding ñsmall-scale simplified" bridge models (i.e. small-scale standalone 

foundations) do not represent the ñfull-scaleò bridges but a ñfull-scale simplifiedò version 

of the bridge (i.e. full-scale standalone foundation). These simplified models were 

sufficient to capture changes in dynamic behaviour due to the effects of the scour cases 

being modelled, and, in turn, to calibrate numerical models of the simplified bridges. 

Two controlled types of scour were considered, namely, local scour and global scour 
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(Figure 1.2); and these were simulated in the experiment by vacuum suction of the soil. 

Automatic impact hammers were developed to excite the models; however, ambient 

vibration was also present during testing. The effect of water in the soil was not explicitly 

modelled based on the assumption that natural frequency sensitivities would not 

change as a result of soil saturation (see Section 2.4.1.4).  

In order to confirm the results of the centrifuge tests and to support numerical 

modelling, fixed base tests were conducted for all bridge models providing fixed bases 

at the soil surface level of all scour depths considered. At any given scour depth, the 

fixed base test provides an upper bound natural frequency estimate to the 

corresponding centrifuge test, with soil, since soil provides a lower stiffness than a fixed 

base. The sensitivities of the considered modal parameters of small-scale simplified 

models were brought to their full-scale (ñfull-scale simplifiedò) by applying appropriate 

scaling factors. 

 

6. Numerical modelling study 

The estimated results for the simplified bridges in the centrifuge test do not directly 

represent bridges with bridge decks. Therefore, numerical models were developed to 

extrapolate the experimentally observed results from small-scale simplified models to 

full-scale simplified models, and then to full-scale bridges with bridge decks. Initially, 

numerical models were created for the simplified bridges, both in small- and full-scale, 

but with fixed bases (without soil). The accuracy of the scaling of structures could be 

confirmed by comparison of the natural frequencies estimated by these two models 

with the fixed-based experimental results. Confirming the accuracy of scaling was 

important since there were material property changes from full-scale (reinforced 

concrete) to small-scale (aluminium), and a number of assumptions were made during 

the selection of sections (see Section 4.4.2). Once the scaling from small-scale 

simplified bridges to full-scale simplified brides had been confirmed, the full-scale 

simplified bridges were included with numerical soil-structure interaction, as explained 

in Sections 5.2 and 5.6. These numerical models of full-scale simplified bridges were 

calibrated for the estimated full-scale behaviour of centrifuge tests. Once calibrated, 

techniques were developed to simulate the effects of local and global scour observed 

for different levels of scour depth modelled in the centrifuge tests. These calibrated 

numerical models for full-scale simplified bridges were then extended to the 

corresponding full-scale bridges by adding the bridge deck elements, and later 

simulated for scour using the identified scour simulation techniques. The natural 

frequency and mode shape sensitivities of the centrifuge models were estimated using 

numerical eigenvalue analysis. All numerical modelling was carried out using 

CSiBridge structural analysis software.  
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Figure 1.3 Methodology flow chart 

1.5 Scope of the research  

The research in this thesis focuses on monitoring one cause of bridge failure, namely, scour, 

using structural vibrations. Different types of bridge decks and foundations were considered in 

this research; however, all the bridges considered were reinforced concrete beam-slab type 

bridges. Other bridge types such as masonry arch bridges and suspension bridges are out of 

the scope of this research project, although the numerical and experimental methods 

developed can be extrapolated to these bridges in future studies. Only granular soils 

(sand/gravel) were considered in this research, and therefore, the findings of this research may 

not directly reflect the behaviour expected in a bridge with foundations in cohesive soils (clay). 
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Experimental studies examined three vibration-based parameters, namely, natural 

frequencies, mode shapes and spectral density. The numerical modelling aimed to study 

sensitivities in natural frequencies and mode shapes and to develop techniques to simulate 

the observed effects of scour. Therefore, numerical eigenvalue analysis was considered, which 

only considers undamped free vibration. Damped vibration and more complex soil-bridge-

vehicle interaction models that consider the input excitation of the vehicles can estimate the 

spectral densities; however, such modelling is difficult to validate in practice and thus beyond 

the scope of this research. All numerical modelling in this research is validated by the 

corresponding experimental observations. The structural models were idealised by different 

types of finite elements, and soil-structure interaction was idealised by linear springs based on 

a ñWinkler spring modelò or a ñmacro element spring modelò representation (Section 5.6). Other 

forms of modelling soil-structure interaction, such as continuous elastic half-space, are beyond 

the scope of this research. 

1.6 Innovative aspects of the research  

The research in this thesis made innovative contributions to the area of research, in identifying 

novel vibration-based scour-sensitive approaches to monitoring bridge scour and in conducting 

first-of-a-kind field experiments, laboratory experiments and numerical simulations. 

A key innovation in this research is the identification of two modal parameters, separate to the 

natural frequency, for detecting scour in bridge foundations. The first is using the spectral 

density estimate at the modal peaks, which showed significantly higher sensitivity than the 

commonly studied vibration-based parameter of natural frequency according to both field and 

laboratory experiments. Another scour-sensitive parameter is mode shape, which was found 

to help with both the identification of a change in scour depth and the localisation of which 

foundation was undergoing local scour (Kariyawasam et al., 2019b). Other mode-shape-based 

parameters, such as mode-shape ratio and mode-shape curvature, were recently proposed by 

Malekjafarian et al. (2019) and Elsaid and Seracino (2014) to detect scour (Section 2.4.3). 

However, the research in this thesis found that mode shapes alone can detect and even locate 

the foundations undergoing local scour. 

This research carried out one of the first successful field experiments to showcase the potential 

of ambient vibration-based scour monitoring. Such field studies are essential, since the 

numerical modelling estimates, on which much of the potential of this monitoring technique 

has been based, may not always hold true in the field where there are complex environmental 

and operational conditions to consider. Due to the difficulty of validating this technique in the 

field, different approaches have been attempted in the limited number of previous studies. 

Some studies monitored for scour but unfortunately were not successful in detecting any scour 

within the monitoring period (Masui and Suzuki, 2009; Yao et al., 2010b). Two studies had 
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some success when indirect techniques were used to study different scour depths in medium 

span bridges, one compared the scour levels of different piers using impact vibration (Shinoda, 

Haya and Murata, 2008) and another artificially scoured a bridge and studied ambient vibration 

(Ko et al., 2010).  The research presented in this thesis adopts a new approach of monitoring 

ambient vibrations during backfilling of a scour hole, i.e. ñscour in reverseò of a short-span 

bridge (Kariyawasam et al., 2019c, 2021). This approach was successful in identifying the 

potential of using mode shapes and spectral density for monitoring scour.  

To the authorôs knowledge, this research also developed the first-ever centrifuge experiment 

for testing vibration-based methods for measurement of bridge scour (Kariyawasam et al., 

2020a). The limited number of previous small-scale experiments undertaken outside a 

centrifuge would have experienced some inevitable inaccuracies of soil stiffness scaling 

(Section 4.2). Centrifuge modelling corrects such scaling of soil properties, including stiffness 

properties, making the small-scale centrifuge models more representative of the full-scale 

structures. This research developed a centrifuge modelling technique involving its own 

automatic modal hammer excitation system, which could aid future experimental research on 

vibration-based monitoring techniques. This experimental programme also allowed, for the first 

time, comparison of multiple bridge foundation and superstructure types, and also different 

types of scour in a controlled experimental environment, which helped to identify which 

configurations of bridges have the most potential with this scour monitoring technique.  

Finally, this research provided further development to existing numerical modelling techniques 

used to simulate vibration-based scour monitoring. Previous researchers have mainly adopted 

Winkler spring models of deep piled foundations, where scour was simulated by deleting the 

springs without distinguishing between the effects of local and global scour (Prendergast, 

Hester and Gavin, 2016a). The research in this thesis found that such a ñspring deletingò 

method is appropriate to local scour simulation, but global scour simulation instead requires 

an alternative ñspring loweringò approach (see Section 5.1). A research gap was found, in that 

previous work on numerical modelling only looked at the scour of deep foundation models; 

thus, this research has developed a shallow foundation modelling technique using macro-

element models and a Winkler spring model of soil stiffness.  

These new contributions support bridge engineers in leveraging the potential of vibration-

based scour monitoring of bridges and encourage further development and practical 

implementation of this monitoring technique in the future. 
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1.7 Arrangement of the thesis  

Chapter 1  introduces this research and the thesis. It provides a background to the vibration-

based scour monitoring technique and highlights other aspects of the research, such as the 

objectives and the methodology followed.  

Chapter 2  is a detailed literature review of the fundamentals behind scour, the current scour 

monitoring techniques, and the vibration-based scour monitoring method, in particular.  

Chapter 3  presents two field studies on Nine Wells Bridge and Baildon Bridge. Nine Wells 

Bridge was studied for its feasibility in capturing scour and deck damage. This feasibility study 

was the deciding step before carrying out the experimental research on Baildon Bridge, where 

a field trial was carried out to test the potential of the vibration-based scour monitoring 

technique.  

Chapter 4  presents the development of a centrifuge experiment to test three hypothetical full-

scale bridges with small-scale models. This chapter also discusses the results of the 

experiment in terms of the scour monitoring potential of natural frequency, mode shape and 

spectral density parameters in all the models. 

Chapter 5  presents a numerical modelling study that extrapolates the centrifuge experiment 

results to full-scale bridges. It also assesses the scour simulation techniques for local and 

global scour.  

Chapter 6  ï 8 present a discussion based on all the experimental and numerical research 

carried out, provide suggestions for future research, and finally, summarise the conclusions 

that can be drawn from the findings of this research.  

Unless otherwise noted, natural frequency and frequency, in the following sections of this 

thesis, refer to the fundamental natural frequency of vibration of a bridge or any other structure, 

mode indicates the mode of vibration of a bridge, and scour refers to a certain depth of scour 

at a bridge foundation. Fundamental mode refers to the first mode of vibration or the lowest-

order mode in a mentioned direction. Longitudinal refers to the direction along the length of an 

element, for a horizontal bridge deck, longitudinal is the horizontal direction along the 

centreline. Transverse refers to the horizontal direction normal to the longitudinal direction. 

Lateral refers to any direction in the plane normal to the length of an element, for a vertical 

pile, lateral refers to any horizontal direction. Output-only method refers to a system 

identification method that utilises only the output vibration measurements (i.e. without the input 

excitation measurements). Spectral density or modal spectral density refers to the spectral 

density estimate at a modal peak of a spectral density (e.g. power spectral density) spectrum. 

Centrifuge modelling and centrifuge testing refer to the geotechnical centrifuge modelling 

technique.  
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Chapter 2   

Literature  revie w 

 

 

Scour is the engineering term that refers to the erosion of soil from around structural 

foundations as a result of the action of water (CIRIA, 2015). Higher scour levels around a 

bridge foundation can lead to its instability and even, eventual collapse. Scour is a complex 

process, and its monitoring and evaluation require inter-disciplinary inputs from hydraulic, 

geotechnical and structural engineers.  

This chapter initially introduces the different scour mechanisms and the danger of bridge scour. 

It follows with a review of the existing scour monitoring techniques, with the intention of 

identifying a feasible monitoring technique for further study. The state of knowledge of this 

feasible monitoring technique, the vibration-based scour monitoring technique, was studied in 

detail at the end of this chapter with the aim of finding key research gaps. 

2.1 Scour  mechanisms  

Scour occurs as a result of the interaction between water and bed materials. A bridge 

foundation embedded in any waterbed, a seabed or a riverbed, is therefore prone to scour, 

although only some bridges experience extensive amounts of scour. Seabed scour 

mechanisms have primarily been categorised as local and global scour, based on the resulting 

shape of scour (Sumer, Bundgaard and Fredsøe, 2005; Mohamed, 2012). Riverbed scour 

mechanisms have been categorised as local scour, contraction and natural scour (CIRIA, 

2015), based on the resulting shape and the relative sizes of the bridge opening and the river 

channel.  

2.1.1 Local scour  

Local scour in both the seabed and riverbed results from the direct impact of water on individual 

structural elements. These individual structural elements cause the flow velocity to increase, 

Highlights  

¶ Scour has been reported as the most common cause of bridge failure.  

¶ Based on a detailed review of current scour monitoring techniques, vibration-

based scour monitoring was selected. 

¶ A comprehensive review of the vibration-based scour monitoring literature 

identified the existing research gaps. 
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and hence create vortices that exert erosive forces on the adjacent bed. As this flow velocity 

increase occurs primarily near the structural element, scour occurs only in the immediate 

locality of the structure, as the name implies. Local scour has been researched extensively, 

since it can be tested in laboratories with physical models, and scour estimation formulae for 

a variety of situations have been developed. Based on these formulae, the maximum local 

scour depth near a bridge pier depends on factors such as the width of the pier, flow depth 

and erodibility of the bed materials (CIRIA, 2015; Zampieri et al., 2017). 

Each of the factors that contribute to scour, such as flow rate, sediment characteristics and 

type of structure, has a significant degree of uncertainty or difficulty in making long-term 

predictions. For example, flow condition may change as a result of the changes in the 

catchment use or climate. Hence, the scour depth reaching a particular depth, and causing 

damage to an adjacent bridge, cannot be estimated with the same accuracy as is possible with 

structural design (CIRIA, 2015). 

2.1.2 Contract ion scour  

The second type of scour mechanism of riverbeds, namely, contraction scour, occurs because 

of increased flow velocity resulting from narrowing of a channel. A significant part of the 

contraction is often due to the approach embankments to a bridge, which cause the flow along 

the floodplain to join the main channel and pass through the bridge opening, as shown in  

Figure 2.1. 

 

  Figure 2.1 Contraction scour (CIRIA, 2015) 

2.1.3 Natural scour  

Natural scour (some researchers call this general scour), in contrast to both of the above 

mechanisms, occurs naturally, even without the presence of a structure. This process includes 

long-term bed degradation, channel migration through bank erosion and bend scour. 

Degradation is the long-term erosion of bed material in a river, perhaps over a decade or a 

century, and this affects its longitudinal profile. Bend scour is the additional scour occurring as 
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a result of the curvature of a river. Channel migration involves lateral migration of a river 

channel across its floodplain (Prendergast and Gavin, 2014; CIRIA, 2015). 

2.1.4 Global scour  

Global scour, as the name implies, refers to the lowering of the bed level everywhere (Sumer, 

Bundgaard and Fredsøe, 2005; Mohamed, 2012), as opposed to bed lowering in the locality 

of the foundation (Figure 2.2). In both local and global scour, the scour depth refers to the 

maximum depth measured at the foundation surface relative to the initial position of the bed 

level (Mory et al., 1999). Although global scour has primarily been used with reference to 

structures on a seabed, the shape of global scour is similar to the shape resulting from 

mechanisms of natural and contraction scour in riverbeds. Global scour in the seabed occurs 

as a result of either the diffraction of sea waves by a large structural foundation or the 

morphodynamical changes in the sea bed that are independent of the presence of the 

structural foundation (Mory et al., 1999).  

 

 

Figure 2.2 Shape of a local and global scour 

2.2 The danger of sco ur in bridges  

Bed scour at bridge foundations has been identified as the leading cause of bridge failure in 

New Zealand (Melville and Coleman, 2000), Taiwan (Ko et al., 2010), the USA (Hunt, 2009), 

the UK and around the rest of the world (Dikanski et al., 2016). A study conducted on 500 

bridge failures, which occurred in the period between 1989 and 2000 in the United States, has 

shown that hydraulic causes contribute to 53% of bridge failures (Wardhana and Hadipriono, 

2003). Another two studies in the USA on 823 bridge failures since 1950 (Shirole and Holt, 

1991), and 1502 documented bridge failures from between 1966 and 2005 (Hunt, 2009), 

identified the same finding, i.e. hydraulic causes are the main reason for bridge failure, 

accounting for approximately 60% of the total failures. One survey of 347 bridge failures around 

the world over the period from 1444 A.D. to 2004 found that natural hazard is the primary cause 

of bridge failures (29.3%), of which flooding/scour accounted for 66% and earthquakes 
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contributed to  14% (Imhof, 2004). One more study of 104 bridge collapses in China from 2007 

to 2015 found flooding to be the leading cause, which had contributed to 43% of the collapses, 

and, unfortunately, killed 101 people (Liu, Liu and Yu, 2017). 

The top 10 causes of bridge failures found in Wardhana and Hadipriono (2003) are illustrated 

in Figure 2.3. In comparison to the significant number of failures with hydraulic causes, there 

remains a small number of failures resulting from other causes, such as steel fatigue, 

earthquakes and fire. The hydraulic causes have been further subdivided as flooding (33%) 

and scour (15.5%). These authors presume that the causes identified as flooding could also 

mostly be the result of scour, although given separately to comply with the original sources 

where both terms may have been used interchangeably.  

 

Figure 2.3 Top 10 causes of bridge failures in the US during 1989 and 2000: based on the data from 
Wardhana and Hadipriono(2003) 

Lin et al. (2013) studied 36 bridge failures that occurred as a result of scour in New Zealand, 

the USA and Canada. The main scour mechanism for these bridge failures was identified as 

local scour (64% of the bridge failures), in contrast to global, contraction or natural scour. The 

main component failure was with the bridge piers, as noticed in 61% of the events.  

The scour depths measured at most failure sites of Lin et al. (2013) were between 0.5 and 5 

m, although maximum scour depths as high as 15 m had been recorded. Another study on 

shallow coastal waters has measured scour depths of up to 6.3 m (Rudolph, Bos and 

Luijendijk, 2004). 

Scour induced bridge failure could occur without any prior warning, putting the lives of those 

crossing the bridge in danger. Figure 2.4 shows one of many such bridge failures in the past, 

which occurred because of scour. This collapse caused two train coaches to fall into the river, 

and they were washed away (Bao and Liu, 2016).  
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Figure 2.4 ShiȤTingȤJiang Bridge failed because of scour in 2010 (CNTV, 2010) 

2.3 Scour monitor ing techniques  

Scour monitoring can direct bridge engineers to implement timely countermeasures, thus 

reducing the risk of bridge failure. Scour depth was historically measured using sounding rods 

in shallow waters and lead-weight sounding lines in deeper waters. Today, modern devices 

use non-contact sensing techniques and remote technology, with data transmitted to a logger 

and then to a central office or an online cloud platform. Scour monitoring methods can be 

divided into two main categories based on use, as mentioned below: 

1. Portable equipment 

These techniques are suitable for occasional readings. They are cheaper but do not 

provide a continuous record. 

2. Fixed equipment 

These are mounted on the bridge or in the riverbed and give a continuous record of 

measurements. 

Hunt (2009) surveyed fixed scour monitoring equipment in the USA. As shown in Figure 2.5, 

sonar was found to be the most common type of fixed equipment, with magnetic sliding collar 

coming second. Other equipment, such as tiltmeters, float-out devices, time-domain 

reflectometry and piezometric film sensors had a lower presence. In addition to these, a 

number of new scour monitoring techniques are currently available.  

The following sub-sections explain these scour monitoring techniques, highlighting their 

advantages and limitations. 
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Figure 2.5 Bridge sites based on the type of fixed scour monitoring instruments present (Hunt, 2009) 

2.3.1 Visual inspection  

For site inspections, access can be difficult in flood conditions. A simple method is to place 

indicator stones wrapped in brightly coloured tape and bury these at specific known depths. 

Their appearance or absence can indicate the mobility of the bed material. Alternatively, 

cameras (infrared, if night vision is also needed) can be used to monitor water level, the 

presence of debris and large bridge movement. These are simple methods to implement, but 

they give limited valuable information on scour (CIRIA, 2015).  

2.3.2 Single -use devices  

There are two common single-use devices, namely, float-out devices and tethered buried 

switches. The float-out devices are embedded in a vertical orientation at a desired level. As 

shown in Figure 2.6, when the original ground level (Stage 1) reaches the installed depth of 

the device (Stage 2),  the device simply floats out up to the water surface (Stage 3). When the 

device changes from vertical to horizontal orientation after floating on water (Stage 3), an 

electrical switch triggers and a wireless signal is sent to a data-acquisition system nearby 

(CIRIA, 2015). 

 

Figure 2.6 Simple float-out device   
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