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Abstract

The international profile of rare earth elements (REEs) has increased rapidly in recent
years—highlighted by their importance in a wide range of applications including lasers,
wind turbines, medical equipment, mobile phones, cars, electrical vehicles and defence
equipment. Given the increasing demand for these minerals for crucial uses within
the ‘green economy’, securing supply to the major consumers of REEs is essential. At
the international level, the current dominance of China in known reserves, REE based
processing, industries and international trade strengthens the country’s importance in
geopolitical terms. This article provides a background to REEs at the international
level, focussing on mining REEs in southern Jiangxi province in south east China and
highlights the upcoming challenges faced by the sector.

Introduction

This article consists of two main sections: firstly
the importance and geographical location of rare
earth elements (REEs) globally will be discussed,
and secondly the case study of an REE mining
area in Dingnan county (Jiangxi Province) will
be described; the case study [1] included field-
work and work with a number of universities
and government bureaux based in Nanchang, the
capital of Jiangxi Province. A noticeable differ-
ence between REE mining in Dingnan county, as
compared with REE mining in other countries
including Australia and the US, is that in the

former mining has been carried out on populated
areas with agricultural activities.

Rare earth elements (REEs)

Despite their name, REEs are commonly found
in the Earth’s crust. However, the extraction
of individual REEs via mining and processing is
problematic and requires the use of potentially
polluting chemicals. REEs comprise the 15 ele-
ments known as lanthanides and the transition
metal yttrium (Figure 1). Scandium, another
transition metal, is sometimes considered a REE
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Figure 1: Periodic table showing heavy, medium, and light rare earths [1].

due to its presence in REE mineral deposits, but
its status is subject to debate [1].

REEs are commonly divided into heavy (HREEs)
and light REEs (LREEs) according to their
atomic weights, and their association in mined
deposits. For example, scandium and yttrium,
which have a lower atomic weight than LREEs,
are grouped with HREEs because of their paired
electronic configuration: LREEs have unpaired
electrons and HREEs have paired electrons [1].
Some divisions also include medium REEs (ele-
ments between europium and dysprosium).

The International context

The REE mining and processing industry con-
tinues to be not only an important part of the
development and manufacture of high-end tech-
nologies, but also a geopolitical tool in an increas-
ingly unstable and unpredictable global market.
The high-end technologies referred to will mostly
be related to the development of ‘green economy’
and the transition towards low-carbon economies.
There are several comprehensive reviews within
the REEs sector; for example, the report from the
British Geological Survey which includes informa-
tion on REE deposits worldwide, their extraction
and processing routes, the specification of uses

in new technologies and substitutes, REE mining
developments, and global trade [1]. Disruptions
to supply chains caused by tariff changes and
geopolitics pose important issues for the global
REE economy [2].

Figure 2 shows estimates of the projected de-
mand for REEs by end-use sector [2] and how the
demand is divided across different REEs, while
Table 1 summarises the overall demand for REEs
by end-use sector [2, 3]. The existing and future
demand for REEs is projected to increase, and
the demand will be dominated by neodymium
(Nd), terbium (Tb) and Dysprosium (Dy). These
elements are required to manufacture magnets
used in wind turbines and other applications for
renewable energy globally.

There are two stages in the exploitation of REEs
resources: the first is mining, which is mainly
surface mining, and the second is the processing
and extraction of individual REEs.

Figure 3 shows the overall distribution of REE
mines, deposits and reserves globally. The main
concentrations of these minerals are to be found
in China and Australia, with other important
reserves in Brazil, India, Malaysia, Russia and
Vietnam.. Apart from these REE reserves, many
other countries–like Burundi and Malawi, as well
as Denmark (Greenland), Norway and Sweden–
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Figure 2: Projected demand for REEs by end-use sector. Reprinted with permission from [2].
Copyright 2020 American Chemical Society.

Table 1: Uses of key REEs by sector. Italic: REEs used in metallic state; bold: REEs used in oxidised
state. Data from [3].

Sector REEs Uses

Phosphors Eu, Y, Tb, Nd,
Er, Gd, (Ce, Pr)

LED, lasers, flat panel display, fluorescent lamps, Xray
imaging, optical sensors, fibre optics

Catalyst and Chem-
ical Process

La, Ce, (Pr, Nd) Petroleum refining, automotive catalysts, diesel addi-
tive, water treatment

Ceramics and Glass Ce, La, Pr, Nd,
Gd, Er, Ho

Polishing media, UV resistant glass, thermal glass, ca-
pacitors, sensors, colourants, refractories, fuel cells,
super-conductors

Metal alloys Ce, La, Pr, Nd, Y NimH batteries, Superalloys, Al-Mg alloys, steel
Magnets Nd, Pr, Sm, (Tb,

Dy)
Motors and genertors, HD drives, microphones and
speakers, MRI machines, defence industry, magnetic
refrigeration

Other Fertilisers, pigments, nuclear energy, medical tracers

have these resources, but mining is currently ex-
ploratory or there is relatively small production.
[4].

The dominance of China in the resourcing, mining
and processing of REEs (Table 2) has increased
the dependence of the rest of the world, partic-
ularly the US and the EU, who are the main
importers, on REE supply from China. REEs are
considered to be critical minerals and therefore of
major importance to economic development and
geopolitical strategy [5, 6]. Supply security is of
crucial importance for the US [6], where REEs
imported from China are employed in the defence
industry. During the recent trade disputes be-
tween China and the US, China had threatened

to curtail REE exports to the US, highlighting
the geopolitical power these elements have [7].

The US, EU and other major users of REEs are
prospecting for alternative, non-chinese sources of
REEs in a number of countries including Norway,
Sweden, and more recently Greenland. Initial ge-
ological exploration indicates that there are con-
siderable deposits of REEs in Greenland–in many
cases associated with uranium–and this attracted
investments from both Australian and Chinese
companies1. Exploitation may develop after envi-
ronmental impact assessments have been carried
out and the mining companies have received gov-
ernment approval.

1Chinese companies are increasingly investing in REE mining and REE resources outside of China in order
to better conserve some of the national REE resources.
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Figure 3: Global mining of REEs. Reprinted from the US Geological Survey [4].

Environmental risks and REE
mining

The environmental risks associated with mining
REEs, as with other surface mining, are associ-
ated with air pollution and soil and groundwater
contamination, with consequent impacts on local
human populations, biodiversity, agriculture and
other land use (Table 3). The presence of radioac-
tive elements, notably thorium and uranium and
other LREEs, is a further risk at the processing
level (water leachate, formation of dust); however
the overall risks from radiation are considered to
be small. A review from Ault and colleagues dis-
cusses further environmental and social aspects
of REEs industries [8].

Table 2: Current reserves of REEs worldwide (in
metric tons of rare earths oxide equivalent). Data
from the US Geological Survey [4].

Country Reserves (metric tons)

China 44 Million
Brazil 22 Million

Vietnam 22 Million
Russia 12 Million
India 6.9 Million

Australia 3.4 Million
United States 1.4 Million
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Process Element Risk Hazard
level

Mining Open Pit Land consumption –
Waste rock storage Leachate of rain water into groundwater

(e.g. heavy metal contamination)
Medium

Damming Tailing dam collapse due to poor construc-
tion, overtopping, seismic event

High

Milling
and
Flotation

Impoundment areas: water
basins with extraction chemi-
cals and tailings (small-sized
particles with large surface
area)

Leachate of rain water into groundwater
(e.g. heavy metal and radioactive contami-
nation)

High

Land use –
Dust (e.g. heavy metal and radioactive
contamination)

Medium

Further
process-
ing

– Air emission Low

– Waste water Low

Table 3: Ecological risks at different steps of REEs mining. Data adapted from [9].
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REEs in China

The main deposits of REEs in China are found in
the provinces of Fujian, Hainan, Jiangxi, Guan-
dong and Guanxi in South East China (Figure 4)
[10, 11]. In 2016, a non-profit organisation called
China Water Risk compiled a comprehensive re-
view of the Chinese REE extraction sector and
its future challenges, including assessments of the
resource base, market share, and the history of
illegal mining and its environmental consequences
[10].

The central government in China produces ex-
port quotas for REE production by province (Fig-
ure 5), although in some cases these quotas are
circumvented by illegal mining and exports. Ille-
gal activities have been stopped in large part by
central government policing [10]. This measure
has led to a fall in REE production in China,
which resulted in Chinese imports of some REE
ores from the USA, Myanmar, and Vietnam.
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Figure 10: The control quotas for the production of REEs in China [18] 
Source:  Ministry of Industry and Information Technology (MIIT) quoted in ADB and Naree 
report (2019) 
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Abandoned REE mine sites--in what is a mainly rural area--continue to offer challenges for 
central and peripheral provinces. The contamination of REE surface mining in China and its 
impacts on resources, the environment, and public health has been noted by several scientists 
in China and internationally \citep{pagano2015health,huang2016protecting,rim2016effects}.  
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Rare earths mining in Jiangxi
Province: background and costs

This section is based on survey fieldwork commis-
sioned by the Asian Development Bank (ADB)
and which was in part managed by the author in
2018 in Dignan county, which is located in the
south of Jiangxi province, one of the most impor-
tant centres of REE mining in the province. The
contrast between REE mining in Dingnan and
other REE mining areas in northern China, Aus-
tralia and the USA are the fact that the mining
in Dingnan County–now ceased after government
intervention–was carried out in a populated area

with agriculture and other economic activities
which were disrupted by REE mining.

The aim of the project in the Jiangxi province was
to assess the impacts of REEs mining on the local
physical, economic and ecological environments,
as well as comparing the legal implications with
other countries and international approaches to
the remediation of mining areas. It was appar-
ent that the remediation options for abandoned
mines–including phasing and cost effectiveness–
had not been comprehensively planned in the
project area.

It is estimated that Jiangxi Province produces
38% of the total HREE and 50.3% of high grade
REEs production in China [10]. These figures
show how important REE mining and processing
are to the Jiangxi and national economies via
direct and indirect employment in mining and
remediation: in fact, mining accounts for 4.4%
of provincial GDP. The distribution of mining
provincial GDP value by sub sector is shown in
Figure 6.

The physical impacts of the REE surface mining
in Ganzhou Prefecture (Jiangxi province) are il-
lustrated in Figure 7, showing the the landscape
before and after the mining activities. Estimates
of the relationship between remediation costs and
the sales income of the REEs industry in Ganzhou
Prefecture in 2011 [14], show that while past re-
mediation costs totalled US$ 5.8 billion, the sales
income of REEs was only US$ 4.7 billion while
the annual profit of Ganzhou’s REEs industry
was only US$ 0.3 billion over 10 years.

Abandoned REE mine sites–in what is a mainly
rural area–continue to offer challenges for central
and peripheral provinces. The contamination of
REE surface mining in China and its impacts
on resources, the environment, and public health
have been noted by several scientists in China
and internationally [15–17].

Rare earths mining in Jiangxi
Province: environmental impact

The main environmental impacts in the Jiangxi
mining have been the movement of REE leachates
from the surface mining into surface water courses
and groundwater (Table 3). Contamination origi-
nated from both in situ mining and from tailing

6 Cambridge Journal of Science & Policy, Vol 1 (2020), Issue 2
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Figure 6: Contribution per extraction activity to the Jiangxi provincial GDP for the mining sector
(13.5 Billion USD – 4.4 per cent of the total provincial GDP) [12].
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Figure 11: Comparison of the satellite photo of a rare earth mine in Ganzhou before (April 

2005) and after (February 2009) pool leaching and heap leaching processes are 
adopted (Source: \citep{guo2012}). 
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A B

Figure 8: A) Heap leaching and a tailing site in Anyuan County, Ganzhou Prefecture. B) Biore-
mediation on abandoned REE mining areas in Jiangxi Province. Reproduced with permission from
[12].
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ponds; in one case, a potential cause may be the
failure of a tailing storage dam. Additionally, the
surface mining of REEs causes physical problems
to the geography of the territory, including land
slips, the loss of vegetation cover that results in
soil erosion (Figure 8A), damage to crop produc-
tion (specifically rice), and loss of biodiversity.

The impacts of REE mining in the Dingnan
county and other counties in the Jiangxi Province
go beyond the province’s borders. The pollutants
from REE mining in Jiangxi flow into the Gan-
jiang and Dongjiang rivers and from here into
the Yangtze and Pearl rivers and other Chinese
streams [10]. It is not yet clear how this impacts
water quality, human and animal health and local
economies beyond the mining region.

The concentration of dissolved REEs in the Gan-
jiang river is elevated when compared with the
Chinese national average. In particular, the water
concentration of europium (Eu), lanthanium (La),
lutetium (Lu), samarium (Sm), terbium (Tb) and
ytterbium (Yb) in REE mining areas ranged from
0.004 (Lu) to 2.412 (La) µg/L [18]. These results
emphasise the need for a regional and catchment
approach to the management of REE mining and
associated effluents [18].

Health impacts of REE surface
mining

The impact of REEs on health has been linked
to indirect atmospheric pollution from mining
and associated inhalation [18, 19], as well as the
presence of heavy metals in soils, which are often
directly associated with REE mining [19].

Although the mining of REEs has been halted
by government edict in Dingnan County, there
are still some small pockets of illegal mining and
the health impacts of the extraction activities
still persist. Village surveys in Dingnan County
show the views of respondents concerning health
issues; 36.03% of respondents considered that
the number of serious diseases—including vari-
ous cancers–increased since the commencement
of REE mining [12]. Exposure to contaminated
water from surface and groundwater sources, as

well as atmospheric pollution from mining dust
may have been REE-mining factors related to the
surge of health issues2.

Remediation of REE mining
areas

Phytoremediation is an acknowledged approach
to the remediation of mining areas [20], where
vegetation is planted to extract and store heavy
metals from the soil. In China the practice of
phytoremediation, biochar (a charcoal-like sub-
stance derived from burning of biomass) [21] and
associated remediation approaches is nationally
widespread [12] and the challenges of mining and
land remediation have been recognised [22].

Phytoremediation has been used in Dingnan and
other counties of Jiangxi province to compen-
sate for agricultural activities in a populated area
where there is a predominance of heavy metals
in the soils, common in REE mining areas. This
involves planting certain species of trees, grasses
and other flora. The plants used depend in part
on the geochemistry of the soils which may af-
fect the success of uptake [23, 24], for instance
citrus trees have been used in Dingnan county
(Figure 8B) [12]. The combined use of biochar in
Dingnan county has been successful so far, how-
ever the success of these remediation operations
depends on the planting of indigenous plants that
are resistant to heavy metal contamination, while
being suited to the local soil and climatic condi-
tions.

Policy Issues and conclusions

The importance of REEs for green investments
and the demand and supply balance for REEs
globally has raised several policy issues in coun-
tries with the highest demand: these include the
security of supply and the development of alter-
native raw materials as well as the policy issues
relating to the environmental, economic and so-
cial aspects of REE mining.

The regulation of REE and other mining varies
from country to country. In Europe, guidelines for

2The absence of historical health records for the local incidence of different diseases makes it difficult to
prove causation between REE mining and different diseases.
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best practice have been produced [25], however
the exploitation of REEs is still at the exploratory
stage; in China, the application of environmental
legislation is not always effective, because it is
unclear and depends on the monitoring of mining
exploitation. It is also generally recognised that
pre-mining environmental impacts assessments
(EIAs) are important before and during mining
activities.

Measures need to be taken to lessen the EU and
USA reliance on the current main source of sup-
ply in China. Alternatives to REEs are also being
used and developed in a number of research insti-
tutes. These alternatives include cerium – cobalt
compounds (CeCO3 ) and cobalt compounds with
iron germanium (Fe3Ge) for use in batteries for
electical vehicles. There is also research on the
use of copper (Cu) as a potential replacement
for REEs in rotating machines and direct drive
generators in wind turbines. A further line of
research is the recycling of REEs. The feasibil-
ity of alternatives will also depend on their cost
effectiveness and the quality of performance in
applications, as compared with the mining of
widely diffused REEs, such as neodymium (Nd)
and Dysprosium (Dy) [1]. Green economic devel-
opment will also depend on the extent to which
countries can use alternative sources to REEs for
low-carbon applications.
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