Abbreviations used in the markdown/comments of this script

  • LR: Logistic regression
  • FLR: Factorial Logistic regreesion
  • OLR: Ordinal logistic regression
  • KW: Kruskal-Wallis test
  • OR: Odds ratio
  • CI: Confidence interval (two-sided 95% confidence)
  • glm: Generalised linear model
  • CS: career stage
  • PNTA: Prefer not to answer

A quick introduction to the statistical tests and choices

This section intends to give a high level explanation to the code that follows. The information provided in this section does NOT supercede the methods section of the report - please always regard to the information provided in the report as final.

Independent variables

We checked mainly for the effect of 2 independent variables on the responses: - Gender - men vs women (variable name: All_Gender_clean) - Career stages - PhDs vs Postdocs vs Early career PIs vs mid-career PIs vs late-career PIs (variable: Supporter_CareerStage_clean) We had respondents of other genders and career stages, but for this report, we chose to only analyse these groups because they had a reasonable and comparable number of samples. (If you’d like to look into other groups specifically, you’re more than welcomed!)

For some questions we also checked the effect of whether someone is a supporter on their response (variable name: Provided_Support_clean). Supporter status is determined based on their response to the statemnet “I have provided support to someone who was doing research and who was struggling with their mental health”. We compared respondents who answered “No” and one of the “yes” options to this statement. For some questions we also wanted to see if early career PI stands up from other career stages. For this, we run either (1) Kruskal-Wallis test between early PI and others pooled together; or (2) pairwise comparison between early PIs and all other groups. In the second case, Sidak correction was applied posthoc. ### Dependent variables, i.e. the response A wide variety of questions were asked - we focussed our statistical analyses on two types of responses (or responses that could be logically recoded to one of the following two types): - Categorical, and in most cases, binary, i.e. Yes/No - Ordinal, i.e. Likert scale type responses

For categorical responses, we modelled response using (binomial) logistic regression. We ran 3 seperate models - one with genders as predictors, the second with career stages (CS) as a predictors, and the final with both as predictors. For gender, men is always the baseline indicator variable, and for CS, PhD is always the baseline indicator variable. The first two models provide the reported p-values, odds ratios (OR, obtained with exp(coef()) and confidence intervals of the OR (two-sided 95% confidenece, obtained with exp(confint())). This final factorial logistic regression allows us to check for interactions between gender and CS.

For ordinal responses, we modelled responses using ordinal logistic regression (OLR). We ran 2 seperate models - one with genders as predictors, the second with career stages (CS) as a predictors. For gender, men is always the baseline indicator variable, and for CS, PhD is always the baseline indicator variable. These give the ORs and CIs reported. As the ordinal responses we’ve obtained are usually not normally distributed (code not reported here, but normality was tested using Shapiro.test()), we chose to use the Kruskal-Wallis test to test for the effect of gender/CS on the ordinal responses. To check for any interactions between the two independent variables we also split the data into groups by one independent variable and used the chi-square test to check for the effect of the other independent variable (i.e. within all women, is there an effect of CS, etc).

Initialising

Load and inspect data structure

data=read.csv("../mh-data/cleandata2604 REDACTED.csv")
# colnames(data)

##Filtering the data Looking at only 2 independent variables:

  1. Gender (label: “All_Gender_clean”): Man -1, Woman -3

  2. Career stage (label “Supporter_CareerStage_clean”):

  • A PhD student-3;
  • A postdoctoral researcher (postdoc) - 4;
  • A group leader (less than 5 years’ experience)- 6
  • A group leader (5 to 10 years’ experience) -7
  • A group leader (10 or more years’ experience) -8
genderCS=data[data$All_Gender_clean %in% c(1,3) & data$Supporter_CareerStage_clean %in% c(3,4,6,7,8), ]
genderCS$All_Gender_clean=as.factor(genderCS$All_Gender_clean)
genderCS$Supporter_CareerStage_clean=as.factor(genderCS$Supporter_CareerStage_clean)
dim(genderCS)
## [1] 1255  196
levels(genderCS$All_Gender_clean)=c("Men", "Women")
levels(genderCS$Supporter_CareerStage_clean)=c("PhD students", "Postdocs", "Group leaders (<5yr)", "Group leaders (5-10yr)", "Group leaders (>10yr)")

the eLife colour palette

eGreen="#346A2D"
eLime="#7DB441"
eBlue="#06589C"
eSky="#2997D4"
ePurple="#881350"
eFuschia="#D81F62"
eGrey="#666B6E"

ePalette=c(eGreen, eLime, eGrey, eSky, eBlue)

Q28xQ04 Gender x Career stage (CS) (Section 2, Panel 1)

chi-square

gender=genderCS[,c("Supporter_CareerStage_clean","All_Gender_clean")]
dim(gender)[1] #this gives N
## [1] 1255
table(gender)
##                            All_Gender_clean
## Supporter_CareerStage_clean Men Women
##      PhD students           160   374
##      Postdocs               123   233
##      Group leaders (<5yr)    66    89
##      Group leaders (5-10yr)  48    43
##      Group leaders (>10yr)   77    42
chisq.test(table(gender))
## 
##  Pearson's Chi-squared test
## 
## data:  table(gender)
## X-squared = 62.364, df = 4, p-value = 9.236e-13

Q28xQ04 Gender x Career stage (CS) (Graph 2.1.2)

gender$Supporter_CareerStage_clean=factor(gender$Supporter_CareerStage_clean) #be careful when rerunning this line

# This als all other eps images will be output to your code directory inside the images sub-folder
#eps("images/CareerStage_gender.eps", width=1000, height=578)
graphdata = gender %>%
  group_by(Supporter_CareerStage_clean, All_Gender_clean) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'Supporter_CareerStage_clean' (override with `.groups` argument)
ggplot(graphdata, aes(x=Supporter_CareerStage_clean, y=perc, fill=All_Gender_clean)) +
  geom_bar(stat="identity") +
  theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5), text=element_text(size=20))+
  geom_text(aes(label=round(perc, digit=1)), size=8, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", size=3, title="During my supporting role, I was:") +
    guides(fill=guide_legend(reverse=TRUE)) +
  guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=c(eFuschia, ePurple))

ggsave("2-1-2.png")
## Saving 7 x 5 in image

Q01 Providing support

Dependent variable: Provided_Support

  • 1- No
  • 2 - Yes, 1 individual
  • 3 - Yes, 1-5
  • 4- Yes, >5

Treat Dependent variable as ordinal

Provided_Support=genderCS[,c("Provided_Support", "Supporter_CareerStage_clean", "All_Gender_clean")]
Provided_Support=Provided_Support[Provided_Support$Provided_Support %in% seq(1,4), ] #remove NAs and some choices
dim(Provided_Support)[1] #N
## [1] 1254
Provided_Support$Provided_Support=as.factor(Provided_Support$Provided_Support)
table(Provided_Support)
## , , All_Gender_clean = Men
## 
##                 Supporter_CareerStage_clean
## Provided_Support PhD students Postdocs Group leaders (<5yr)
##                1            0        0                    0
##                2           35       25                   17
##                3           91       78                   43
##                4           34       20                    6
##                 Supporter_CareerStage_clean
## Provided_Support Group leaders (5-10yr) Group leaders (>10yr)
##                1                      0                     0
##                2                      7                    10
##                3                     39                    52
##                4                      2                    15
## 
## , , All_Gender_clean = Women
## 
##                 Supporter_CareerStage_clean
## Provided_Support PhD students Postdocs Group leaders (<5yr)
##                1            1        0                    0
##                2           62       37                   10
##                3          245      147                   67
##                4           66       48                   12
##                 Supporter_CareerStage_clean
## Provided_Support Group leaders (5-10yr) Group leaders (>10yr)
##                1                      0                     0
##                2                      9                     8
##                3                     27                    18
##                4                      7                    16

Providing support x gender

exp(coef(polr(Provided_Support~All_Gender_clean, data=Provided_Support, Hess=TRUE, method="logistic")))
## All_Gender_cleanWomen 
##               1.24383
exp(confint(polr(Provided_Support~All_Gender_clean, data=Provided_Support, Hess=TRUE, method="logistic")))
## Waiting for profiling to be done...
##     2.5 %    97.5 % 
## 0.9852717 1.5713866
kruskal.test(Provided_Support ~ All_Gender_clean, data=Provided_Support)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Provided_Support by All_Gender_clean
## Kruskal-Wallis chi-squared = 3.3578, df = 1, p-value = 0.06689

Providing support x Career stage

exp(coef(polr(Provided_Support~Supporter_CareerStage_clean, data=Provided_Support, Hess=TRUE, method="logistic")))
##               Supporter_CareerStage_cleanPostdocs 
##                                         1.0478760 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         0.8164628 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         0.7695144 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         1.4508723
exp(confint(polr(Provided_Support~Supporter_CareerStage_clean, data=Provided_Support, Hess=TRUE, method="logistic")))
## Waiting for profiling to be done...
##                                                       2.5 %   97.5 %
## Supporter_CareerStage_cleanPostdocs               0.7957483 1.379945
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.5699034 1.170022
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.4942601 1.199812
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.9633699 2.181784
kruskal.test(Provided_Support~Supporter_CareerStage_clean, data=Provided_Support)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Provided_Support by Supporter_CareerStage_clean
## Kruskal-Wallis chi-squared = 7.2295, df = 4, p-value = 0.1242

chisq for intersections [NOT REPORTED – EMMY]

#split by career stages, gender effect
chisq.test(table(Provided_Support[Provided_Support$Supporter_CareerStage_clean==levels(Provided_Support$Supporter_CareerStage_clean)[1],c("Provided_Support","All_Gender_clean")]))
## Warning in
## chisq.test(table(Provided_Support[Provided_Support$Supporter_CareerStage_clean
## == : Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(Provided_Support[Provided_Support$Supporter_CareerStage_clean ==     levels(Provided_Support$Supporter_CareerStage_clean)[1],     c("Provided_Support", "All_Gender_clean")])
## X-squared = 4.2632, df = 3, p-value = 0.2344
chisq.test(table(Provided_Support[Provided_Support$Supporter_CareerStage_clean==levels(Provided_Support$Supporter_CareerStage_clean)[2],c("Provided_Support","All_Gender_clean")]))
## Warning in
## chisq.test(table(Provided_Support[Provided_Support$Supporter_CareerStage_clean
## == : Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(Provided_Support[Provided_Support$Supporter_CareerStage_clean ==     levels(Provided_Support$Supporter_CareerStage_clean)[2],     c("Provided_Support", "All_Gender_clean")])
## X-squared = NaN, df = 3, p-value = NA
chisq.test(table(Provided_Support[Provided_Support$Supporter_CareerStage_clean==levels(Provided_Support$Supporter_CareerStage_clean)[3],c("Provided_Support","All_Gender_clean")]))
## Warning in
## chisq.test(table(Provided_Support[Provided_Support$Supporter_CareerStage_clean
## == : Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(Provided_Support[Provided_Support$Supporter_CareerStage_clean ==     levels(Provided_Support$Supporter_CareerStage_clean)[3],     c("Provided_Support", "All_Gender_clean")])
## X-squared = NaN, df = 3, p-value = NA
chisq.test(table(Provided_Support[Provided_Support$Supporter_CareerStage_clean==levels(Provided_Support$Supporter_CareerStage_clean)[4],c("Provided_Support","All_Gender_clean")]))
## Warning in
## chisq.test(table(Provided_Support[Provided_Support$Supporter_CareerStage_clean
## == : Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(Provided_Support[Provided_Support$Supporter_CareerStage_clean ==     levels(Provided_Support$Supporter_CareerStage_clean)[4],     c("Provided_Support", "All_Gender_clean")])
## X-squared = NaN, df = 3, p-value = NA
chisq.test(table(Provided_Support[Provided_Support$Supporter_CareerStage_clean==levels(Provided_Support$Supporter_CareerStage_clean)[5],c("Provided_Support","All_Gender_clean")]))
## Warning in
## chisq.test(table(Provided_Support[Provided_Support$Supporter_CareerStage_clean
## == : Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(Provided_Support[Provided_Support$Supporter_CareerStage_clean ==     levels(Provided_Support$Supporter_CareerStage_clean)[5],     c("Provided_Support", "All_Gender_clean")])
## X-squared = NaN, df = 3, p-value = NA
#split by gender, career effect (same as KW above)
chisq.test(table(Provided_Support[Provided_Support$All_Gender_clean==levels(Provided_Support$All_Gender_clean)[1],c("Provided_Support","Supporter_CareerStage_clean")]))
## Warning in chisq.test(table(Provided_Support[Provided_Support$All_Gender_clean
## == : Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(Provided_Support[Provided_Support$All_Gender_clean == levels(Provided_Support$All_Gender_clean)[1],     c("Provided_Support", "Supporter_CareerStage_clean")])
## X-squared = NaN, df = 12, p-value = NA
chisq.test(table(Provided_Support[Provided_Support$All_Gender_clean==levels(Provided_Support$All_Gender_clean)[2],c("Provided_Support","Supporter_CareerStage_clean")]))
## Warning in chisq.test(table(Provided_Support[Provided_Support$All_Gender_clean
## == : Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(Provided_Support[Provided_Support$All_Gender_clean == levels(Provided_Support$All_Gender_clean)[2],     c("Provided_Support", "Supporter_CareerStage_clean")])
## X-squared = 18.362, df = 12, p-value = 0.1051

Q02 Not_ProvidedSupport (Section 2, Panel 2)

Dependent variable:Not_ProvidedSupport

  • 1: No
  • 2: Yes, once
  • 3: Yes, a few times
  • 4: Yes, often
  • 5: I’m not sure -removed
  • 6: PNTA -removed
NotProvidedSupport=genderCS[,c("Not_ProvidedSupport", "All_Gender_clean", "Supporter_CareerStage_clean")]
summary(NotProvidedSupport) #there are some NAs
##  Not_ProvidedSupport All_Gender_clean         Supporter_CareerStage_clean
##  Min.   :1.000       Men  :474        PhD students          :534         
##  1st Qu.:2.000       Women:781        Postdocs              :356         
##  Median :3.000                        Group leaders (<5yr)  :155         
##  Mean   :2.655                        Group leaders (5-10yr): 91         
##  3rd Qu.:3.000                        Group leaders (>10yr) :119         
##  Max.   :6.000
#clean
NotProvidedSupport=NotProvidedSupport[(NotProvidedSupport$Not_ProvidedSupport %in% seq(1:4)),]
dim(NotProvidedSupport)[1] #this gives N
## [1] 1131
#factorise
NotProvidedSupport[NotProvidedSupport$Not_ProvidedSupport==1, "Not_ProvidedSupport"]="No"
NotProvidedSupport[NotProvidedSupport$Not_ProvidedSupport==2, "Not_ProvidedSupport"]="Yes, once"
NotProvidedSupport[NotProvidedSupport$Not_ProvidedSupport==3, "Not_ProvidedSupport"]="Yes, a few times"
NotProvidedSupport[NotProvidedSupport$Not_ProvidedSupport==4, "Not_ProvidedSupport"]="Yes, often"
NotProvidedSupport$Not_ProvidedSupport=factor(NotProvidedSupport$Not_ProvidedSupport, levels=c("Yes, often", "Yes, a few times", "Yes, once",  "No"))

Not provided support x gender graph

graphdata = NotProvidedSupport %>%
  group_by(All_Gender_clean, Not_ProvidedSupport) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'All_Gender_clean' (override with `.groups` argument)
#eps("images/NotProvidedSupport_gender.eps", width=1000, height=578) #[NOT REPORTED]
ggplot(graphdata, aes(x=All_Gender_clean, y=perc, fill=Not_ProvidedSupport)) +
  geom_bar(stat="identity") +
  theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5), text=element_text(size=20))+
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="I have been in a situation when I thought someone in academia needed help, but I couldn’t or didn’t provide
support") +
    scale_x_discrete(limits = rev(levels(graphdata$Supporter_CareerStage_clean))) +
  guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=ePalette)
## Warning: Unknown or uninitialised column: `Supporter_CareerStage_clean`.

dev.off()
## null device 
##           1

Not provided support x CS graph (Graph 2.2.2)

graphdata = NotProvidedSupport %>%
  group_by(Supporter_CareerStage_clean,Not_ProvidedSupport) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'Supporter_CareerStage_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/NotProvidedSupport_CS.eps", width=1000, height=578)
ggplot(graphdata, aes(x=Supporter_CareerStage_clean, y=perc, fill=Not_ProvidedSupport)) +
  geom_bar(stat="identity") +
  theme_minimal() +
      theme(plot.title = element_text(hjust = 0.5), text=element_text(size=10), legend.position="bottom", legend.text = element_text(size=7))+
  geom_text(aes(label=round(perc, digit=1)), size=2.5, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="I have been in a situation when I thought someone in academia needed help, \nbut I couldn’t or didn’t provide
support") +
  guides(fill=guide_legend(reverse=TRUE)) +
  #coord_flip() +
  scale_fill_manual(name="", values=ePalette)

ggsave(dpi=700, "2-2-2-v3.png")
## Saving 7 x 5 in image
dev.off()
## null device 
##           1

Stats (Section 2, panel 2)

recode to Yes - 1 / No-0 Model: FLR

# recoding response to binary variable
NotProvidedSupport$Not_ProvidedSupport_binary=NotProvidedSupport$Not_ProvidedSupport
levels(NotProvidedSupport$Not_ProvidedSupport_binary)=c(1, 1, 1, 0)
NotProvidedSupport$Not_ProvidedSupport_binary=as.numeric(NotProvidedSupport$Not_ProvidedSupport_binary)
NotProvidedSupport[NotProvidedSupport$Not_ProvidedSupport_binary=="2", "Not_ProvidedSupport_binary"]=0

# LR intersection between gender and CS
NotProvidedSupport_glm=glm(Not_ProvidedSupport_binary~Supporter_CareerStage_clean*All_Gender_clean, data=NotProvidedSupport, family="binomial")
summary(NotProvidedSupport_glm)
## 
## Call:
## glm(formula = Not_ProvidedSupport_binary ~ Supporter_CareerStage_clean * 
##     All_Gender_clean, family = "binomial", data = NotProvidedSupport)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.8757  -1.1894   0.7257   0.7352   1.1655  
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                              1.57022
## Supporter_CareerStage_cleanPostdocs                                     -0.42159
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         -0.82300
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       -0.94161
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        -1.54205
## All_Gender_cleanWomen                                                   -0.40015
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                0.45123
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    0.26912
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen -0.01715
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   1.89180
##                                                                         Std. Error
## (Intercept)                                                                0.21555
## Supporter_CareerStage_cleanPostdocs                                        0.31164
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            0.35824
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          0.37722
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           0.32064
## All_Gender_cleanWomen                                                      0.25028
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.37548
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      0.44894
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    0.51470
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     0.54138
##                                                                         z value
## (Intercept)                                                               7.285
## Supporter_CareerStage_cleanPostdocs                                      -1.353
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          -2.297
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        -2.496
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         -4.809
## All_Gender_cleanWomen                                                    -1.599
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 1.202
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.599
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  -0.033
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    3.494
##                                                                         Pr(>|z|)
## (Intercept)                                                             3.22e-13
## Supporter_CareerStage_cleanPostdocs                                     0.176108
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         0.021597
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       0.012554
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        1.51e-06
## All_Gender_cleanWomen                                                   0.109862
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen               0.229457
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen   0.548872
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen 0.973413
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen  0.000475
##                                                                            
## (Intercept)                                                             ***
## Supporter_CareerStage_cleanPostdocs                                        
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         *  
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       *  
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        ***
## All_Gender_cleanWomen                                                      
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen  ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1308.5  on 1130  degrees of freedom
## Residual deviance: 1269.0  on 1121  degrees of freedom
## AIC: 1289
## 
## Number of Fisher Scoring iterations: 4
# LR gender
summary(glm(Not_ProvidedSupport_binary~All_Gender_clean, data=NotProvidedSupport, family="binomial")) #glm summary with p-values
## 
## Call:
## glm(formula = Not_ProvidedSupport_binary ~ All_Gender_clean, 
##     family = "binomial", data = NotProvidedSupport)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6506  -1.5954   0.7692   0.8107   0.8107  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             0.9440     0.1071   8.811   <2e-16 ***
## All_Gender_cleanWomen   0.1224     0.1378   0.889    0.374    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1308.5  on 1130  degrees of freedom
## Residual deviance: 1307.7  on 1129  degrees of freedom
## AIC: 1311.7
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Not_ProvidedSupport_binary~All_Gender_clean, data=NotProvidedSupport, family="binomial"))) #OR (men as baseline)
##           (Intercept) All_Gender_cleanWomen 
##              2.570248              1.130252
exp(confint(glm(Not_ProvidedSupport_binary~All_Gender_clean, data=NotProvidedSupport, family="binomial"))) #CI
## Waiting for profiling to be done...
##                           2.5 %   97.5 %
## (Intercept)           2.0897373 3.181804
## All_Gender_cleanWomen 0.8616905 1.479460
# LR Career stage
summary(glm(Not_ProvidedSupport_binary~Supporter_CareerStage_clean, data=NotProvidedSupport, family="binomial")) #glm summary with p-values
## 
## Call:
## glm(formula = Not_ProvidedSupport_binary ~ Supporter_CareerStage_clean, 
##     family = "binomial", data = NotProvidedSupport)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7480  -1.3670   0.6995   0.7315   0.9990  
## 
## Coefficients:
##                                                   Estimate Std. Error z value
## (Intercept)                                         1.2830     0.1093  11.743
## Supporter_CareerStage_cleanPostdocs                -0.1012     0.1727  -0.586
## Supporter_CareerStage_cleanGroup leaders (<5yr)    -0.6123     0.2134  -2.870
## Supporter_CareerStage_cleanGroup leaders (5-10yr)  -0.8477     0.2487  -3.409
## Supporter_CareerStage_cleanGroup leaders (>10yr)   -0.8012     0.2246  -3.567
##                                                   Pr(>|z|)    
## (Intercept)                                        < 2e-16 ***
## Supporter_CareerStage_cleanPostdocs               0.557970    
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.004105 ** 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.000653 ***
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.000361 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1308.5  on 1130  degrees of freedom
## Residual deviance: 1283.8  on 1126  degrees of freedom
## AIC: 1293.8
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Not_ProvidedSupport_binary~Supporter_CareerStage_clean, data=NotProvidedSupport, family="binomial"))) #OR (PhD as baseline)
##                                       (Intercept) 
##                                         3.6074766 
##               Supporter_CareerStage_cleanPostdocs 
##                                         0.9037547 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         0.5420841 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         0.4284032 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         0.4488034
exp(confint(glm(Not_ProvidedSupport_binary~Supporter_CareerStage_clean, data=NotProvidedSupport, family="binomial"))) #CI
## Waiting for profiling to be done...
##                                                       2.5 %    97.5 %
## (Intercept)                                       2.9240898 4.4893393
## Supporter_CareerStage_cleanPostdocs               0.6451819 1.2708518
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.3579850 0.8275075
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.2640113 0.7017920
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.2897130 0.7000910

Q05 How often do they support someone who is officially their responsibility (Section 3, Panel 1)

Dependent variable: Supporter_Officially

  • 1: No - not my official job
  • 2: Yes - my official job

(remove 3- not sure, and 4 - PNTA)

Model: First individual factors (Gender, CS), then Factorial logistical regression Supporter_Officially ~ Supporter_CareerStage * All_Gender_clean) to check for interactions

#subsetting data and recording response to binary
Officially=genderCS[,c("Supporter_Officially", "Supporter_CareerStage_clean", "All_Gender_clean")]
Officially=Officially[Officially$Supporter_Officially %in% seq(1,2), ] #remove NAs and some choices
dim(Officially)[1]
## [1] 1207
Officially[Officially$Supporter_Officially==1, "Supporter_Officially"]=0 #recoding No->0 and Yes->1 for binom modelling
Officially[Officially$Supporter_Officially==2, "Supporter_Officially"]=1

# LR gender
summary(glm(Supporter_Officially~All_Gender_clean, data=Officially, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Supporter_Officially ~ All_Gender_clean, family = "binomial", 
##     data = Officially)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7837  -0.7837  -0.5795  -0.5795   1.9325  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            -1.0230     0.1069  -9.571  < 2e-16 ***
## All_Gender_cleanWomen  -0.6763     0.1467  -4.609 4.05e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1192.8  on 1206  degrees of freedom
## Residual deviance: 1171.7  on 1205  degrees of freedom
## AIC: 1175.7
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Supporter_Officially~All_Gender_clean, data=Officially, family="binomial"))) #OR (men as baseline)
##           (Intercept) All_Gender_cleanWomen 
##             0.3595166             0.5084953
exp(confint(glm(Supporter_Officially~All_Gender_clean, data=Officially, family="binomial"))) #CI
## Waiting for profiling to be done...
##                           2.5 %    97.5 %
## (Intercept)           0.2905011 0.4418647
## All_Gender_cleanWomen 0.3811990 0.6779330
# LR CS
summary(glm(Supporter_Officially~Supporter_CareerStage_clean, data=Officially, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Supporter_Officially ~ Supporter_CareerStage_clean, 
##     family = "binomial", data = Officially)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4509  -0.3619  -0.2476  -0.2476   2.6459  
## 
## Coefficients:
##                                                   Estimate Std. Error z value
## (Intercept)                                        -3.4696     0.2539 -13.667
## Supporter_CareerStage_cleanPostdocs                 0.7769     0.3361   2.311
## Supporter_CareerStage_cleanGroup leaders (<5yr)     3.7912     0.3069  12.353
## Supporter_CareerStage_cleanGroup leaders (5-10yr)   3.7505     0.3345  11.213
## Supporter_CareerStage_cleanGroup leaders (>10yr)    4.0928     0.3255  12.573
##                                                   Pr(>|z|)    
## (Intercept)                                         <2e-16 ***
## Supporter_CareerStage_cleanPostdocs                 0.0208 *  
## Supporter_CareerStage_cleanGroup leaders (<5yr)     <2e-16 ***
## Supporter_CareerStage_cleanGroup leaders (5-10yr)   <2e-16 ***
## Supporter_CareerStage_cleanGroup leaders (>10yr)    <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1192.85  on 1206  degrees of freedom
## Residual deviance:  749.92  on 1202  degrees of freedom
## AIC: 759.92
## 
## Number of Fisher Scoring iterations: 6
exp(coef(glm(Supporter_Officially~Supporter_CareerStage_clean, data=Officially, family="binomial"))) #OR (PhD as baseline)
##                                       (Intercept) 
##                                         0.0311284 
##               Supporter_CareerStage_cleanPostdocs 
##                                         2.1746154 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                        44.3103448 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                        42.5439189 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                        59.9087838
exp(confint(glm(Supporter_Officially~Supporter_CareerStage_clean, data=Officially, family="binomial"))) #CI
## Waiting for profiling to be done...
##                                                         2.5 %       97.5 %
## (Intercept)                                        0.01814131   0.04940077
## Supporter_CareerStage_cleanPostdocs                1.13130138   4.26963302
## Supporter_CareerStage_cleanGroup leaders (<5yr)   24.89038704  83.38081578
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 22.56652408  84.20421287
## Supporter_CareerStage_cleanGroup leaders (>10yr)  32.43059228 116.79151129
# FLR gender-CS interactions
summary(glm(Supporter_Officially~Supporter_CareerStage_clean*All_Gender_clean, data=Officially, family="binomial"))
## 
## Call:
## glm(formula = Supporter_Officially ~ Supporter_CareerStage_clean * 
##     All_Gender_clean, family = "binomial", data = Officially)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4632  -0.3706  -0.2792  -0.2331   2.6904  
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                             -3.22552
## Supporter_CareerStage_cleanPostdocs                                      0.43523
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          3.71800
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        3.40784
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         3.87611
## All_Gender_cleanWomen                                                   -0.36630
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                0.51278
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    0.07449
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  0.56964
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   0.28625
##                                                                         Std. Error
## (Intercept)                                                                0.41628
## Supporter_CareerStage_cleanPostdocs                                        0.57002
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            0.49651
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          0.51474
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           0.48651
## All_Gender_cleanWomen                                                      0.52540
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.70645
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      0.63228
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    0.68303
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     0.67812
##                                                                         z value
## (Intercept)                                                              -7.748
## Supporter_CareerStage_cleanPostdocs                                       0.764
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           7.488
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         6.621
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          7.967
## All_Gender_cleanWomen                                                    -0.697
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 0.726
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.118
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.834
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.422
##                                                                         Pr(>|z|)
## (Intercept)                                                             9.30e-15
## Supporter_CareerStage_cleanPostdocs                                        0.445
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         6.98e-14
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       3.58e-11
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        1.62e-15
## All_Gender_cleanWomen                                                      0.486
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.468
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      0.906
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    0.404
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     0.673
##                                                                            
## (Intercept)                                                             ***
## Supporter_CareerStage_cleanPostdocs                                        
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         ***
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       ***
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        ***
## All_Gender_cleanWomen                                                      
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1192.85  on 1206  degrees of freedom
## Residual deviance:  748.41  on 1197  degrees of freedom
## AIC: 768.41
## 
## Number of Fisher Scoring iterations: 6

How often do they support someone who is officially their responsibility x gender graph (Graph 3.1.2)

Officially[Officially$Supporter_Officially==0, "Supporter_Officially"]="No"
Officially[Officially$Supporter_Officially==1, "Supporter_Officially"]="Yes"
Officially$Supporter_Officially=factor(Officially$Supporter_Officially)
#ImpactPersonal$Impact_Personal=factor(ImpactPersonal$Impact_Personal, levels=c("No","Yes"))
graphdata =Officially %>%
  group_by(All_Gender_clean, Supporter_Officially) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'All_Gender_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/Officially_gender.eps", width=1000, height=578)
ggplot(graphdata, aes(x=All_Gender_clean, y=perc, fill=Supporter_Officially)) +
  geom_bar(stat="identity") +
  theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5), text=element_text(size=12), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 16))+
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="It was part of my official job description to be in charge of the person I helped") +
    guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=c(eBlue, eGreen))

ggsave(dpi=1000, "3-1-2.png", limitsize = FALSE)
## Saving 7 x 5 in image
dev.off()
## null device 
##           1

How often do they support someone who is officially their responsibility x career graph (Graph 3.1.1)

graphdata = Officially %>%
  group_by(Supporter_CareerStage_clean, Supporter_Officially) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'Supporter_CareerStage_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/Officially_CS.eps", width=1000, height=578)
ggplot(graphdata, aes(x=Supporter_CareerStage_clean, y=perc, fill=Supporter_Officially,)) +
  geom_bar(stat="identity") +
  theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5), text=element_text(size=12), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 16))+
  geom_text(aes(label=round(perc, digit=1)), size=3.5, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="It was part of my official job description \nto be in charge of the person I helped") +
    guides(fill=guide_legend(reverse=TRUE)) +
  scale_x_discrete(limits = rev(levels(graphdata$Supporter_CareerStage_clean))) +
  coord_flip() +
  scale_fill_manual(name="", values=c(eBlue, eGreen))

ggsave(dpi=1000, "3-1-1.png", limitsize = FALSE)
## Saving 7 x 5 in image
dev.off()
## null device 
##           1

Q06 MH at the time of support (Section 2, Panel 3)

Response (label: “Supporter_MH”): No-1 , Yes-2 (Not sure-3, and PNTA-4 are removed for binomial modelling)

Model: Factorial logistical regression Supporter_MH ~ Supporter_CareerStage * All_Gender_clean)

# Subsetting data and recoding response to binary
MH=genderCS[,c("Supporter_MH", "Supporter_CareerStage_clean", "All_Gender_clean")]
MH=MH[MH$Supporter_MH %in% seq(1,2), ] #remove NAs and some choices
dim(MH)[1] #this gives N
## [1] 1125
MH[MH$Supporter_MH==1, "Supporter_MH"]=0 #recoding No->0 and Yes->1 for binom modelling
MH[MH$Supporter_MH==2, "Supporter_MH"]=1
MH_glm=glm(Supporter_MH~Supporter_CareerStage_clean*All_Gender_clean, data=MH, family="binomial")
summary(MH_glm)
## 
## Call:
## glm(formula = Supporter_MH ~ Supporter_CareerStage_clean * All_Gender_clean, 
##     family = "binomial", data = MH)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0022  -0.9647   0.5380   0.8109   1.7866  
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                               1.2256
## Supporter_CareerStage_cleanPostdocs                                      -0.6125
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          -1.6029
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        -1.7489
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         -2.5951
## All_Gender_cleanWomen                                                     0.6341
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                -0.3038
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    -0.1542
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  -0.5809
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   -0.0756
##                                                                         Std. Error
## (Intercept)                                                                 0.2011
## Supporter_CareerStage_cleanPostdocs                                         0.2828
## Supporter_CareerStage_cleanGroup leaders (<5yr)                             0.3327
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                           0.3741
## Supporter_CareerStage_cleanGroup leaders (>10yr)                            0.3522
## All_Gender_cleanWomen                                                       0.2571
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                   0.3600
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen       0.4333
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen     0.5234
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen      0.5197
##                                                                         z value
## (Intercept)                                                               6.096
## Supporter_CareerStage_cleanPostdocs                                      -2.166
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          -4.818
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        -4.675
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         -7.368
## All_Gender_cleanWomen                                                     2.466
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                -0.844
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    -0.356
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  -1.110
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   -0.145
##                                                                         Pr(>|z|)
## (Intercept)                                                             1.09e-09
## Supporter_CareerStage_cleanPostdocs                                       0.0303
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         1.45e-06
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       2.94e-06
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        1.73e-13
## All_Gender_cleanWomen                                                     0.0136
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 0.3988
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.7219
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.2671
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.8843
##                                                                            
## (Intercept)                                                             ***
## Supporter_CareerStage_cleanPostdocs                                     *  
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         ***
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       ***
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        ***
## All_Gender_cleanWomen                                                   *  
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1443.0  on 1124  degrees of freedom
## Residual deviance: 1223.7  on 1115  degrees of freedom
## AIC: 1243.7
## 
## Number of Fisher Scoring iterations: 4
# LR gender
summary(glm(Supporter_MH~All_Gender_clean, data=MH, family="binomial")) #glm and p-values
## 
## Call:
## glm(formula = Supporter_MH ~ All_Gender_clean, family = "binomial", 
##     data = MH)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6090  -1.2662   0.8003   0.8003   1.0911  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            0.20634    0.09719   2.123   0.0337 *  
## All_Gender_cleanWomen  0.76793    0.12906   5.950 2.68e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1443.0  on 1124  degrees of freedom
## Residual deviance: 1407.4  on 1123  degrees of freedom
## AIC: 1411.4
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Supporter_MH~All_Gender_clean, data=MH, family="binomial"))) #OR (men as baseline)
##           (Intercept) All_Gender_cleanWomen 
##              1.229167              2.155293
exp(confint(glm(Supporter_MH~All_Gender_clean, data=MH, family="binomial"))) #CI
## Waiting for profiling to be done...
##                          2.5 %   97.5 %
## (Intercept)           1.016462 1.488235
## All_Gender_cleanWomen 1.674328 2.777481
# LR CS
summary(glm(Supporter_MH~Supporter_CareerStage_clean, data=MH, family="binomial")) #glm and p-values
## 
## Call:
## glm(formula = Supporter_MH ~ Supporter_CareerStage_clean, family = "binomial", 
##     data = MH)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.9076  -0.9746   0.5948   0.8531   1.6921  
## 
## Coefficients:
##                                                   Estimate Std. Error z value
## (Intercept)                                         1.6426     0.1245  13.194
## Supporter_CareerStage_cleanPostdocs                -0.8192     0.1742  -4.704
## Supporter_CareerStage_cleanGroup leaders (<5yr)    -1.7449     0.2116  -8.246
## Supporter_CareerStage_cleanGroup leaders (5-10yr)  -2.1405     0.2595  -8.247
## Supporter_CareerStage_cleanGroup leaders (>10yr)   -2.8012     0.2533 -11.058
##                                                   Pr(>|z|)    
## (Intercept)                                        < 2e-16 ***
## Supporter_CareerStage_cleanPostdocs               2.56e-06 ***
## Supporter_CareerStage_cleanGroup leaders (<5yr)    < 2e-16 ***
## Supporter_CareerStage_cleanGroup leaders (5-10yr)  < 2e-16 ***
## Supporter_CareerStage_cleanGroup leaders (>10yr)   < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1443.0  on 1124  degrees of freedom
## Residual deviance: 1234.7  on 1120  degrees of freedom
## AIC: 1244.7
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Supporter_MH~Supporter_CareerStage_clean, data=MH, family="binomial"))) #OR (PhDs as baseline)
##                                       (Intercept) 
##                                        5.16883117 
##               Supporter_CareerStage_cleanPostdocs 
##                                        0.44078641 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                        0.17465801 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                        0.11759779 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                        0.06073975
exp(confint(glm(Supporter_MH~Supporter_CareerStage_clean, data=MH, family="binomial"))) #CI
## Waiting for profiling to be done...
##                                                        2.5 %     97.5 %
## (Intercept)                                       4.07557055 6.64410256
## Supporter_CareerStage_cleanPostdocs               0.31268313 0.61936110
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.11496592 0.26378398
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.07006469 0.19431557
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.03640658 0.09852935

MH at the time of support x gender graph (graph 2.3.3)

# This will save the image to your local code folder
#eps("images/SupporterMH_gender.eps", width=1000, height=578)
MH[MH$Supporter_MH==0, "Supporter_MH"]="No"
MH[MH$Supporter_MH==1, "Supporter_MH"]="Yes"
MH$Supporter_MH=factor(MH$Supporter_MH)

graphdata = MH %>%
  group_by(All_Gender_clean, Supporter_MH) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'All_Gender_clean' (override with `.groups` argument)
ggplot(graphdata, aes(x=All_Gender_clean, y=perc, fill=Supporter_MH)) +
  geom_bar(stat="identity") +
  theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5), text=element_text(size=12), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 16))+
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="As I was providing support, I was struggling with my own mental health:") +
  guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=c(eBlue, eGreen))

ggsave(dpi=1000, "2-3-3-v2.png")
## Saving 7 x 5 in image
dev.off()
## null device 
##           1

MH at the time of support x CS graph (Graph 2.3.5)

# This will save the image to your local code folder
#eps("images/SupporterMH_CS.eps", width=1000, height=578)
graphdata = MH %>%
  group_by(Supporter_CareerStage_clean, Supporter_MH) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'Supporter_CareerStage_clean' (override with `.groups` argument)
ggplot(graphdata, aes(x=Supporter_CareerStage_clean, y=perc, fill=Supporter_MH)) +
  geom_bar(stat="identity") +
  theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5), text=element_text(size=12), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 16))+
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="As I was providing support, I was struggling with my own mental health") +
    guides(fill=guide_legend(reverse=TRUE)) +
  scale_x_discrete(limits = rev(levels(graphdata$Supporter_CareerStage_clean))) +
  coord_flip() +
  scale_fill_manual(name="", values=c(eBlue, eGreen))

ggsave(dpi=1000, "2-3-5-v1.png")
## Saving 7 x 5 in image
dev.off()
## null device 
##           1

Q07 Helping more than one person at the time (Section 2, Panel 3)

Dependent variable: Supporter_NumberReceivers

  • 1: No (just one person)
  • 2: Yes (more than one person)

Model: First individual factors (Gender, CS), then Factorial logistical regression Supporter_NumberReceivers ~ Supporter_CareerStage * All_Gender_clean) to check for interactions

# Subsetting data and recoding response to binary
NumberReceivers=genderCS[,c("Supporter_NumberReceivers", "Supporter_CareerStage_clean", "All_Gender_clean")]
NumberReceivers=NumberReceivers[NumberReceivers$Supporter_NumberReceivers %in% seq(1,2), ] #remove NAs and some choices
dim(NumberReceivers)[1] #N
## [1] 1183
NumberReceivers[NumberReceivers$Supporter_NumberReceivers==1, "Supporter_NumberReceivers"]=0 #recoding No->0 and Yes->1 for binom modelling
NumberReceivers[NumberReceivers$Supporter_NumberReceivers==2, "Supporter_NumberReceivers"]=1

#LR gender
summary(glm(Supporter_NumberReceivers~All_Gender_clean, data=NumberReceivers, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Supporter_NumberReceivers ~ All_Gender_clean, family = "binomial", 
##     data = NumberReceivers)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6950  -1.3821   0.7369   0.7369   0.9857  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            0.46928    0.09721   4.827 1.38e-06 ***
## All_Gender_cleanWomen  0.69566    0.13018   5.344 9.10e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1431.7  on 1182  degrees of freedom
## Residual deviance: 1403.1  on 1181  degrees of freedom
## AIC: 1407.1
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Supporter_NumberReceivers~All_Gender_clean, data=NumberReceivers, family="binomial"))) #OR (men as baseline)
##           (Intercept) All_Gender_cleanWomen 
##              1.598837              2.005029
exp(confint(glm(Supporter_NumberReceivers~All_Gender_clean, data=NumberReceivers, family="binomial"))) #CI
## Waiting for profiling to be done...
##                          2.5 %   97.5 %
## (Intercept)           1.323121 1.937416
## All_Gender_cleanWomen 1.553825 2.588992
#LR CS
summary(glm(Supporter_NumberReceivers~Supporter_CareerStage_clean, data=NumberReceivers, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Supporter_NumberReceivers ~ Supporter_CareerStage_clean, 
##     family = "binomial", data = NumberReceivers)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6712  -1.3349   0.7541   0.7952   1.0525  
## 
## Coefficients:
##                                                   Estimate Std. Error z value
## (Intercept)                                         1.1121     0.1039  10.699
## Supporter_CareerStage_cleanPostdocs                -0.1229     0.1614  -0.762
## Supporter_CareerStage_cleanGroup leaders (<5yr)    -0.3888     0.2028  -1.917
## Supporter_CareerStage_cleanGroup leaders (5-10yr)  -0.8110     0.2405  -3.372
## Supporter_CareerStage_cleanGroup leaders (>10yr)   -0.7492     0.2148  -3.488
##                                                   Pr(>|z|)    
## (Intercept)                                        < 2e-16 ***
## Supporter_CareerStage_cleanPostdocs               0.446196    
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.055192 .  
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.000746 ***
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.000487 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1431.7  on 1182  degrees of freedom
## Residual deviance: 1410.8  on 1178  degrees of freedom
## AIC: 1420.8
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Supporter_NumberReceivers~Supporter_CareerStage_clean, data=NumberReceivers, family="binomial"))) #OR (PhD as baseline)
##                                       (Intercept) 
##                                         3.0406504 
##               Supporter_CareerStage_cleanPostdocs 
##                                         0.8843137 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         0.6778893 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         0.4444284 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         0.4727607
exp(confint(glm(Supporter_NumberReceivers~Supporter_CareerStage_clean, data=NumberReceivers, family="binomial"))) #CI
## Waiting for profiling to be done...
##                                                       2.5 %    97.5 %
## (Intercept)                                       2.4884495 3.7415024
## Supporter_CareerStage_cleanPostdocs               0.6450783 1.2151196
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.4571324 1.0134795
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.2778975 0.7150942
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.3108053 0.7224488
#FLR gender-CS interactions
summary(glm(Supporter_NumberReceivers~Supporter_CareerStage_clean*All_Gender_clean, data=NumberReceivers, family="binomial"))
## 
## Call:
## glm(formula = Supporter_NumberReceivers ~ Supporter_CareerStage_clean * 
##     All_Gender_clean, family = "binomial", data = NumberReceivers)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7570  -1.2346   0.7148   0.8412   1.1330  
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                              0.85678
## Supporter_CareerStage_cleanPostdocs                                     -0.38387
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         -0.56909
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       -0.72325
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        -0.75142
## All_Gender_cleanWomen                                                    0.37750
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                0.45274
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    0.41816
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen -0.02553
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   0.39953
##                                                                         Std. Error
## (Intercept)                                                                0.17792
## Supporter_CareerStage_cleanPostdocs                                        0.26345
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            0.31060
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          0.34777
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           0.29058
## All_Gender_cleanWomen                                                      0.21956
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.33617
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      0.41697
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    0.48832
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     0.46776
##                                                                         z value
## (Intercept)                                                               4.815
## Supporter_CareerStage_cleanPostdocs                                      -1.457
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          -1.832
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        -2.080
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         -2.586
## All_Gender_cleanWomen                                                     1.719
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 1.347
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     1.003
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  -0.052
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.854
##                                                                         Pr(>|z|)
## (Intercept)                                                             1.47e-06
## Supporter_CareerStage_cleanPostdocs                                      0.14509
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          0.06691
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        0.03755
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         0.00971
## All_Gender_cleanWomen                                                    0.08555
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                0.17807
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    0.31593
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  0.95831
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   0.39304
##                                                                            
## (Intercept)                                                             ***
## Supporter_CareerStage_cleanPostdocs                                        
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         .  
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       *  
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        ** 
## All_Gender_cleanWomen                                                   .  
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1431.7  on 1182  degrees of freedom
## Residual deviance: 1387.9  on 1173  degrees of freedom
## AIC: 1407.9
## 
## Number of Fisher Scoring iterations: 4

graph for Helping more than one person at the time x gender (Graph 2.3.4)

NumberReceivers[NumberReceivers$Supporter_NumberReceivers==0, "Supporter_NumberReceivers"]="No"
NumberReceivers[NumberReceivers$Supporter_NumberReceivers==1, "Supporter_NumberReceivers"]="Yes"
NumberReceivers$Supporter_NumberReceivers=factor(NumberReceivers$Supporter_NumberReceivers)
#ImpactPersonal$Impact_Personal=factor(ImpactPersonal$Impact_Personal, levels=c("No","Yes"))

# This will save the image to your local code folder
#eps("images/NumberReceivers_gender.eps", width=1000, height=578)
graphdata = NumberReceivers %>%
  group_by(All_Gender_clean, Supporter_NumberReceivers) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'All_Gender_clean' (override with `.groups` argument)
ggplot(graphdata, aes(x=All_Gender_clean, y=perc, fill=Supporter_NumberReceivers)) +
  geom_bar(stat="identity") +
  theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5), text=element_text(size=12), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 16))+
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="I was helping more than one person \nat the same time (in my professional and personal life)") +
    guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=c(eBlue, eGreen))

ggsave(dpi=1000, "2-3-4.png", limitsize=FALSE)
## Saving 7 x 5 in image
dev.off()
## null device 
##           1

graph for Helping more than one person at the time x CS (Graph 2.3.6)

graphdata = NumberReceivers %>%
  group_by(Supporter_CareerStage_clean, Supporter_NumberReceivers) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'Supporter_CareerStage_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/NumberReceivers_CS.eps", width=1000, height=578)
ggplot(graphdata, aes(x=Supporter_CareerStage_clean, y=perc, fill=Supporter_NumberReceivers)) +
  geom_bar(stat="identity") +
  theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5), text=element_text(size=12), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 16))+
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="I was helping more than one person at the same time \n(in my professional and personal life)") +
    guides(fill=guide_legend(reverse=TRUE)) +
  scale_x_discrete(limits = rev(levels(graphdata$Supporter_CareerStage_clean))) +
  
  coord_flip() +
  scale_fill_manual(name="", values=c(eBlue, eGreen))

ggsave(dpi=1000, "2-3-6.png", limitsize = FALSE)
## Saving 7 x 5 in image
dev.off()
## null device 
##           1

Q13 Missing resources for person supported (Section 3, Panel 4)

Filter down to people who picked at least 1 of the 6 options:

  • Receiver_Missing_Personal
  • Receiver_Missing_Institutions
  • Receiver_Missing_Peers
  • Receiver_Missing_Managers
  • Receiver_Missing_Pro
  • Receiver_Missing_OutPro
#subsetting data and reocoding variables
Receiver_Missing=genderCS[(genderCS$Receiver_Missing_Personal==1 | genderCS$Receiver_Missing_Institutions==1 | genderCS$Receiver_Missing_Peers==1 | genderCS$ Receiver_Missing_Managers==1 | genderCS$Receiver_Missing_Pro==1 | genderCS$Receiver_Missing_OutPro==1), ]
Receiver_Missing=genderCS[,c("Receiver_Missing_Personal", "Receiver_Missing_Institutions", "Receiver_Missing_Peers", "Receiver_Missing_Managers", "Receiver_Missing_Pro", "Receiver_Missing_OutPro", "Supporter_CareerStage_clean","All_Gender_clean")]
dim(Receiver_Missing)[1]
## [1] 1255
#fill all na with 0
Receiver_Missing[is.na(Receiver_Missing)]=0

Receiver_Missing_Personal (Yes/No) xCS xGender xCSxGender

Dependent variable -

  • 0 - didn’t select this option
  • 1 - did select this option - i.e. Missing personal support

Model: Factorial logistical regression

summary(glm(Receiver_Missing_Personal~All_Gender_clean, data=Receiver_Missing, family="binomial")) #LR gender
## 
## Call:
## glm(formula = Receiver_Missing_Personal ~ All_Gender_clean, family = "binomial", 
##     data = Receiver_Missing)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7077  -0.7077  -0.6913  -0.6913   1.7599  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            -1.2568     0.1106 -11.363   <2e-16 ***
## All_Gender_cleanWomen  -0.0528     0.1410  -0.374    0.708    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1309.5  on 1254  degrees of freedom
## Residual deviance: 1309.4  on 1253  degrees of freedom
## AIC: 1313.4
## 
## Number of Fisher Scoring iterations: 4
summary(glm(Receiver_Missing_Personal~Supporter_CareerStage_clean, data=Receiver_Missing, family="binomial")) #LR CS
## 
## Call:
## glm(formula = Receiver_Missing_Personal ~ Supporter_CareerStage_clean, 
##     family = "binomial", data = Receiver_Missing)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8061  -0.6999  -0.6999  -0.6186   1.8697  
## 
## Coefficients:
##                                                    Estimate Std. Error z value
## (Intercept)                                       -1.281891   0.104943 -12.215
## Supporter_CareerStage_cleanPostdocs               -0.274554   0.174767  -1.571
## Supporter_CareerStage_cleanGroup leaders (<5yr)    0.324592   0.207840   1.562
## Supporter_CareerStage_cleanGroup leaders (5-10yr)  0.255252   0.260010   0.982
## Supporter_CareerStage_cleanGroup leaders (>10yr)   0.007388   0.245412   0.030
##                                                   Pr(>|z|)    
## (Intercept)                                         <2e-16 ***
## Supporter_CareerStage_cleanPostdocs                  0.116    
## Supporter_CareerStage_cleanGroup leaders (<5yr)      0.118    
## Supporter_CareerStage_cleanGroup leaders (5-10yr)    0.326    
## Supporter_CareerStage_cleanGroup leaders (>10yr)     0.976    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1309.5  on 1254  degrees of freedom
## Residual deviance: 1301.2  on 1250  degrees of freedom
## AIC: 1311.2
## 
## Number of Fisher Scoring iterations: 4
summary(glm(Receiver_Missing_Personal~Supporter_CareerStage_clean*All_Gender_clean, data=Receiver_Missing, family="binomial")) #LR gender-CS interactions
## 
## Call:
## glm(formula = Receiver_Missing_Personal ~ Supporter_CareerStage_clean * 
##     All_Gender_clean, family = "binomial", data = Receiver_Missing)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8880  -0.7040  -0.6938  -0.5706   1.9471  
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                             -1.23676
## Supporter_CareerStage_cleanPostdocs                                     -0.03175
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         -0.07542
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        0.13815
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        -0.10152
## All_Gender_cleanWomen                                                   -0.06479
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen               -0.39962
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    0.64993
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  0.21432
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   0.23992
##                                                                         Std. Error
## (Intercept)                                                                0.18932
## Supporter_CareerStage_cleanPostdocs                                        0.28861
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            0.35567
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          0.38334
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           0.33873
## All_Gender_cleanWomen                                                      0.22747
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.36444
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      0.43995
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    0.52768
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     0.51175
##                                                                         z value
## (Intercept)                                                              -6.533
## Supporter_CareerStage_cleanPostdocs                                      -0.110
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          -0.212
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         0.360
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         -0.300
## All_Gender_cleanWomen                                                    -0.285
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                -1.097
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     1.477
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.406
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.469
##                                                                         Pr(>|z|)
## (Intercept)                                                             6.46e-11
## Supporter_CareerStage_cleanPostdocs                                        0.912
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            0.832
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          0.719
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           0.764
## All_Gender_cleanWomen                                                      0.776
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.273
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      0.140
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    0.685
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     0.639
##                                                                            
## (Intercept)                                                             ***
## Supporter_CareerStage_cleanPostdocs                                        
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           
## All_Gender_cleanWomen                                                      
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1309.5  on 1254  degrees of freedom
## Residual deviance: 1295.8  on 1245  degrees of freedom
## AIC: 1315.8
## 
## Number of Fisher Scoring iterations: 4

Receiver_Missing_Managers xCS xGender xCSxGender

Missing: Support from supervisors and managers as above

#LR gender
summary(glm(Receiver_Missing_Managers~All_Gender_clean, data=Receiver_Missing, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Receiver_Missing_Managers ~ All_Gender_clean, family = "binomial", 
##     data = Receiver_Missing)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.3857  -1.1810   0.9825   0.9825   1.1738  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           0.008439   0.091864   0.092    0.927    
## All_Gender_cleanWomen 0.469062   0.117721   3.985 6.76e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1712.4  on 1254  degrees of freedom
## Residual deviance: 1696.5  on 1253  degrees of freedom
## AIC: 1700.5
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Receiver_Missing_Managers~All_Gender_clean, data=Receiver_Missing, family="binomial"))) #OR (men as baseline)
##           (Intercept) All_Gender_cleanWomen 
##              1.008475              1.598494
exp(confint(glm(Receiver_Missing_Managers~All_Gender_clean, data=Receiver_Missing, family="binomial"))) #CI
## Waiting for profiling to be done...
##                           2.5 %   97.5 %
## (Intercept)           0.8422231 1.207599
## All_Gender_cleanWomen 1.2694232 2.014094
#LR CS
summary(glm(Receiver_Missing_Managers~Supporter_CareerStage_clean, data=Receiver_Missing, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Receiver_Missing_Managers ~ Supporter_CareerStage_clean, 
##     family = "binomial", data = Receiver_Missing)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6233  -0.7386   0.7895   0.8313   1.8317  
## 
## Coefficients:
##                                                   Estimate Std. Error z value
## (Intercept)                                        1.00586    0.09773  10.293
## Supporter_CareerStage_cleanPostdocs               -0.12082    0.15210  -0.794
## Supporter_CareerStage_cleanGroup leaders (<5yr)   -2.16563    0.21225 -10.203
## Supporter_CareerStage_cleanGroup leaders (5-10yr) -2.47671    0.28616  -8.655
## Supporter_CareerStage_cleanGroup leaders (>10yr)  -2.43472    0.25188  -9.666
##                                                   Pr(>|z|)    
## (Intercept)                                         <2e-16 ***
## Supporter_CareerStage_cleanPostdocs                  0.427    
## Supporter_CareerStage_cleanGroup leaders (<5yr)     <2e-16 ***
## Supporter_CareerStage_cleanGroup leaders (5-10yr)   <2e-16 ***
## Supporter_CareerStage_cleanGroup leaders (>10yr)    <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1712.4  on 1254  degrees of freedom
## Residual deviance: 1425.5  on 1250  degrees of freedom
## AIC: 1435.5
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Receiver_Missing_Managers~Supporter_CareerStage_clean, data=Receiver_Missing, family="binomial"))) #OR (PhD as baseline)
##                                       (Intercept) 
##                                        2.73426573 
##               Supporter_CareerStage_cleanPostdocs 
##                                        0.88618926 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                        0.11467771 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                        0.08401880 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                        0.08762255
exp(confint(glm(Receiver_Missing_Managers~Supporter_CareerStage_clean, data=Receiver_Missing, family="binomial"))) #CI
## Waiting for profiling to be done...
##                                                        2.5 %    97.5 %
## (Intercept)                                       2.26372323 3.3214728
## Supporter_CareerStage_cleanPostdocs               0.65822609 1.1953860
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.07482926 0.1722600
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.04656520 0.1438613
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.05239933 0.1411885
#FLR gender x CS interactions
summary(glm(Receiver_Missing_Managers~Supporter_CareerStage_clean*All_Gender_clean, data=Receiver_Missing, family="binomial"))
## 
## Call:
## glm(formula = Receiver_Missing_Managers ~ Supporter_CareerStage_clean * 
##     All_Gender_clean, family = "binomial", data = Receiver_Missing)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6429  -0.7585   0.7749   0.8161   2.0745  
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                              0.90756
## Supporter_CareerStage_cleanPostdocs                                     -0.10249
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         -2.21974
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       -2.00617
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        -2.50149
## All_Gender_cleanWomen                                                    0.14175
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen               -0.01848
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    0.11628
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen -1.07129
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   0.28903
##                                                                         Std. Error
## (Intercept)                                                                0.17467
## Supporter_CareerStage_cleanPostdocs                                        0.26190
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            0.34810
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          0.37633
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           0.35080
## All_Gender_cleanWomen                                                      0.21079
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.32195
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      0.44014
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    0.61794
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     0.51791
##                                                                         z value
## (Intercept)                                                               5.196
## Supporter_CareerStage_cleanPostdocs                                      -0.391
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          -6.377
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        -5.331
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         -7.131
## All_Gender_cleanWomen                                                     0.672
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                -0.057
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.264
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  -1.734
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.558
##                                                                         Pr(>|z|)
## (Intercept)                                                             2.04e-07
## Supporter_CareerStage_cleanPostdocs                                        0.696
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         1.81e-10
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       9.77e-08
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        9.97e-13
## All_Gender_cleanWomen                                                      0.501
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.954
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      0.792
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    0.083
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     0.577
##                                                                            
## (Intercept)                                                             ***
## Supporter_CareerStage_cleanPostdocs                                        
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         ***
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       ***
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        ***
## All_Gender_cleanWomen                                                      
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen .  
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1712.4  on 1254  degrees of freedom
## Residual deviance: 1420.8  on 1245  degrees of freedom
## AIC: 1440.8
## 
## Number of Fisher Scoring iterations: 4

Receiver_Missing_Peers xCS xGender xCSxGender

Missing: Support from peers and colleagues as above

summary(glm(Receiver_Missing_Peers~All_Gender_clean, data=Receiver_Missing, family="binomial")) #LR Gender
## 
## Call:
## glm(formula = Receiver_Missing_Peers ~ All_Gender_clean, family = "binomial", 
##     data = Receiver_Missing)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8152  -0.8152  -0.8091   1.5896   1.5976  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -0.93111    0.10200  -9.129   <2e-16 ***
## All_Gender_cleanWomen -0.01768    0.12949  -0.137    0.891    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1489.4  on 1254  degrees of freedom
## Residual deviance: 1489.4  on 1253  degrees of freedom
## AIC: 1493.4
## 
## Number of Fisher Scoring iterations: 4
summary(glm(Receiver_Missing_Peers~Supporter_CareerStage_clean, data=Receiver_Missing, family="binomial")) #LR CS
## 
## Call:
## glm(formula = Receiver_Missing_Peers ~ Supporter_CareerStage_clean, 
##     family = "binomial", data = Receiver_Missing)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8739  -0.8692  -0.7633   1.5150   1.8695  
## 
## Coefficients:
##                                                   Estimate Std. Error z value
## (Intercept)                                       -0.77867    0.09319  -8.356
## Supporter_CareerStage_cleanPostdocs                0.01300    0.14714   0.088
## Supporter_CareerStage_cleanGroup leaders (<5yr)   -0.77752    0.23137  -3.360
## Supporter_CareerStage_cleanGroup leaders (5-10yr) -0.30534    0.25859  -1.181
## Supporter_CareerStage_cleanGroup leaders (>10yr)  -0.76178    0.25789  -2.954
##                                                   Pr(>|z|)    
## (Intercept)                                        < 2e-16 ***
## Supporter_CareerStage_cleanPostdocs               0.929619    
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.000778 ***
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.237680    
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.003138 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1489.4  on 1254  degrees of freedom
## Residual deviance: 1467.2  on 1250  degrees of freedom
## AIC: 1477.2
## 
## Number of Fisher Scoring iterations: 4
summary(glm(Receiver_Missing_Peers~Supporter_CareerStage_clean*All_Gender_clean, data=Receiver_Missing, family="binomial")) #LR gender-CS interactions
## 
## Call:
## glm(formula = Receiver_Missing_Peers ~ Supporter_CareerStage_clean * 
##     All_Gender_clean, family = "binomial", data = Receiver_Missing)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.9489  -0.8381  -0.7687   1.4246   2.0544  
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                             -0.56453
## Supporter_CareerStage_cleanPostdocs                                     -0.02073
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         -1.41647
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       -0.53408
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        -1.12495
## All_Gender_cleanWomen                                                   -0.31094
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                0.03044
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    0.98788
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  0.34171
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   0.70114
##                                                                         Std. Error
## (Intercept)                                                                0.16445
## Supporter_CareerStage_cleanPostdocs                                        0.24986
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            0.41144
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          0.37169
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           0.35463
## All_Gender_cleanWomen                                                      0.19981
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.30968
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      0.49908
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    0.52268
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     0.52920
##                                                                         z value
## (Intercept)                                                              -3.433
## Supporter_CareerStage_cleanPostdocs                                      -0.083
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          -3.443
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        -1.437
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         -3.172
## All_Gender_cleanWomen                                                    -1.556
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 0.098
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     1.979
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.654
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    1.325
##                                                                         Pr(>|z|)
## (Intercept)                                                             0.000598
## Supporter_CareerStage_cleanPostdocs                                     0.933884
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         0.000576
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       0.150750
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        0.001513
## All_Gender_cleanWomen                                                   0.119667
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen               0.921704
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen   0.047770
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen 0.513262
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen  0.185207
##                                                                            
## (Intercept)                                                             ***
## Supporter_CareerStage_cleanPostdocs                                        
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         ***
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        ** 
## All_Gender_cleanWomen                                                      
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen   *  
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1489.4  on 1254  degrees of freedom
## Residual deviance: 1460.4  on 1245  degrees of freedom
## AIC: 1480.4
## 
## Number of Fisher Scoring iterations: 4

Receiver_Missing_Institutions xCS xGender xCSxGender

Missing Institutional measures (e.g. extensions, intermission) as above

#LR gender
summary(glm(Receiver_Missing_Institutions~All_Gender_clean, data=Receiver_Missing, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Receiver_Missing_Institutions ~ All_Gender_clean, 
##     family = "binomial", data = Receiver_Missing)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.9656  -0.9656  -0.9005   1.4052   1.4823  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -0.69315    0.09744  -7.114 1.13e-12 ***
## All_Gender_cleanWomen  0.17207    0.12236   1.406     0.16    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1636.8  on 1254  degrees of freedom
## Residual deviance: 1634.8  on 1253  degrees of freedom
## AIC: 1638.8
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Receiver_Missing_Institutions~All_Gender_clean, data=Receiver_Missing, family="binomial"))) #OR (men as baseline)
##           (Intercept) All_Gender_cleanWomen 
##              0.500000              1.187755
exp(confint(glm(Receiver_Missing_Institutions~All_Gender_clean, data=Receiver_Missing, family="binomial"))) #CI
## Waiting for profiling to be done...
##                           2.5 %    97.5 %
## (Intercept)           0.4121782 0.6040748
## All_Gender_cleanWomen 0.9352946 1.5112643
#LR CS
summary(glm(Receiver_Missing_Institutions~Supporter_CareerStage_clean, data=Receiver_Missing, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Receiver_Missing_Institutions ~ Supporter_CareerStage_clean, 
##     family = "binomial", data = Receiver_Missing)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.0708  -0.9255  -0.9114   1.2879   1.9728  
## 
## Coefficients:
##                                                   Estimate Std. Error z value
## (Intercept)                                       -0.25607    0.08726  -2.935
## Supporter_CareerStage_cleanPostdocs               -0.40772    0.14189  -2.873
## Supporter_CareerStage_cleanGroup leaders (<5yr)   -0.37006    0.18983  -1.950
## Supporter_CareerStage_cleanGroup leaders (5-10yr) -0.77057    0.25339  -3.041
## Supporter_CareerStage_cleanGroup leaders (>10yr)  -1.53569    0.27612  -5.562
##                                                   Pr(>|z|)    
## (Intercept)                                        0.00334 ** 
## Supporter_CareerStage_cleanPostdocs                0.00406 ** 
## Supporter_CareerStage_cleanGroup leaders (<5yr)    0.05124 .  
## Supporter_CareerStage_cleanGroup leaders (5-10yr)  0.00236 ** 
## Supporter_CareerStage_cleanGroup leaders (>10yr)  2.67e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1636.8  on 1254  degrees of freedom
## Residual deviance: 1591.0  on 1250  degrees of freedom
## AIC: 1601
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Receiver_Missing_Institutions~Supporter_CareerStage_clean, data=Receiver_Missing, family="binomial"))) #OR (PhD as baseline)
##                                       (Intercept) 
##                                         0.7740864 
##               Supporter_CareerStage_cleanPostdocs 
##                                         0.6651630 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         0.6906897 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         0.4627506 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         0.2153076
exp(confint(glm(Receiver_Missing_Institutions~Supporter_CareerStage_clean, data=Receiver_Missing, family="binomial"))) #CI
## Waiting for profiling to be done...
##                                                       2.5 %    97.5 %
## (Intercept)                                       0.6519265 0.9179939
## Supporter_CareerStage_cleanPostdocs               0.5029068 0.8773680
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.4738088 0.9983312
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.2768263 0.7504722
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.1214232 0.3606857
#FLR gender-CS interactions
summary(glm(Receiver_Missing_Institutions~Supporter_CareerStage_clean*All_Gender_clean, data=Receiver_Missing, family="binomial"))
## 
## Call:
## glm(formula = Receiver_Missing_Institutions ~ Supporter_CareerStage_clean * 
##     All_Gender_clean, family = "binomial", data = Receiver_Missing)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.0831  -0.9508  -0.8958   1.2936   2.0720  
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                             -0.22596
## Supporter_CareerStage_cleanPostdocs                                     -0.35930
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         -0.33366
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       -1.10904
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        -1.79633
## All_Gender_cleanWomen                                                   -0.04303
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen               -0.07776
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen   -0.07369
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  0.64980
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   0.61840
##                                                                         Std. Error
## (Intercept)                                                                0.15912
## Supporter_CareerStage_cleanPostdocs                                        0.24639
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            0.30132
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          0.38940
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           0.38876
## All_Gender_cleanWomen                                                      0.19029
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.30165
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      0.38983
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    0.51811
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     0.56253
##                                                                         z value
## (Intercept)                                                              -1.420
## Supporter_CareerStage_cleanPostdocs                                      -1.458
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          -1.107
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        -2.848
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         -4.621
## All_Gender_cleanWomen                                                    -0.226
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                -0.258
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    -0.189
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   1.254
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    1.099
##                                                                         Pr(>|z|)
## (Intercept)                                                               0.1556
## Supporter_CareerStage_cleanPostdocs                                       0.1448
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           0.2682
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         0.0044
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        3.83e-06
## All_Gender_cleanWomen                                                     0.8211
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 0.7966
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.8501
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.2098
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.2716
##                                                                            
## (Intercept)                                                                
## Supporter_CareerStage_cleanPostdocs                                        
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       ** 
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        ***
## All_Gender_cleanWomen                                                      
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1636.8  on 1254  degrees of freedom
## Residual deviance: 1587.8  on 1245  degrees of freedom
## AIC: 1607.8
## 
## Number of Fisher Scoring iterations: 4

Receiver_Missing_Pro xCS xGender xCSxGender

Missing Support from mental health professionals within the institution as above

summary(glm(Receiver_Missing_Pro~All_Gender_clean, data=Receiver_Missing, family="binomial")) #LR Gender
## 
## Call:
## glm(formula = Receiver_Missing_Pro ~ All_Gender_clean, family = "binomial", 
##     data = Receiver_Missing)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.0458  -1.0458  -0.9774   1.3149   1.3916  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -0.49062    0.09464  -5.184 2.17e-07 ***
## All_Gender_cleanWomen  0.17300    0.11920   1.451    0.147    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1694.8  on 1254  degrees of freedom
## Residual deviance: 1692.7  on 1253  degrees of freedom
## AIC: 1696.7
## 
## Number of Fisher Scoring iterations: 4
summary(glm(Receiver_Missing_Pro~Supporter_CareerStage_clean, data=Receiver_Missing, family="binomial")) #LR CS
## 
## Call:
## glm(formula = Receiver_Missing_Pro ~ Supporter_CareerStage_clean, 
##     family = "binomial", data = Receiver_Missing)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.0761  -1.0677  -0.9719   1.2913   1.5285  
## 
## Coefficients:
##                                                   Estimate Std. Error z value
## (Intercept)                                       -0.26369    0.08730  -3.020
## Supporter_CareerStage_cleanPostdocs               -0.24115    0.13996  -1.723
## Supporter_CareerStage_cleanGroup leaders (<5yr)   -0.03529    0.18442  -0.191
## Supporter_CareerStage_cleanGroup leaders (5-10yr)  0.02074    0.22854   0.091
## Supporter_CareerStage_cleanGroup leaders (>10yr)  -0.53211    0.21643  -2.459
##                                                   Pr(>|z|)   
## (Intercept)                                        0.00252 **
## Supporter_CareerStage_cleanPostdocs                0.08489 . 
## Supporter_CareerStage_cleanGroup leaders (<5yr)    0.84823   
## Supporter_CareerStage_cleanGroup leaders (5-10yr)  0.92768   
## Supporter_CareerStage_cleanGroup leaders (>10yr)   0.01395 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1694.8  on 1254  degrees of freedom
## Residual deviance: 1686.4  on 1250  degrees of freedom
## AIC: 1696.4
## 
## Number of Fisher Scoring iterations: 4
summary(glm(Receiver_Missing_Pro~Supporter_CareerStage_clean*All_Gender_clean, data=Receiver_Missing,  family="binomial")) #FLR gender-CS interactions
## 
## Call:
## glm(formula = Receiver_Missing_Pro ~ Supporter_CareerStage_clean * 
##     All_Gender_clean, family = "binomial", data = Receiver_Missing)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.1073  -1.0520  -0.8733   1.2840   1.5829  
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                             -0.30228
## Supporter_CareerStage_cleanPostdocs                                     -0.46497
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          0.05866
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        0.13523
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        -0.61401
## All_Gender_cleanWomen                                                    0.05504
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                0.33884
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen   -0.15174
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen -0.21649
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   0.27346
##                                                                         Std. Error
## (Intercept)                                                                0.15992
## Supporter_CareerStage_cleanPostdocs                                        0.25124
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            0.29510
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          0.33090
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           0.29868
## All_Gender_cleanWomen                                                      0.19088
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.30291
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      0.37974
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    0.46466
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     0.45141
##                                                                         z value
## (Intercept)                                                              -1.890
## Supporter_CareerStage_cleanPostdocs                                      -1.851
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           0.199
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         0.409
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         -2.056
## All_Gender_cleanWomen                                                     0.288
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 1.119
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    -0.400
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  -0.466
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.606
##                                                                         Pr(>|z|)
## (Intercept)                                                               0.0587
## Supporter_CareerStage_cleanPostdocs                                       0.0642
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           0.8424
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         0.6828
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          0.0398
## All_Gender_cleanWomen                                                     0.7731
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 0.2633
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.6895
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.6413
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.5447
##                                                                          
## (Intercept)                                                             .
## Supporter_CareerStage_cleanPostdocs                                     .
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        *
## All_Gender_cleanWomen                                                    
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1694.8  on 1254  degrees of freedom
## Residual deviance: 1682.6  on 1245  degrees of freedom
## AIC: 1702.6
## 
## Number of Fisher Scoring iterations: 4

Receiver_Missing_OutPro xCS xGender xCSxGender

Missing Support from health professionals outside of the institution as above

summary(glm(Receiver_Missing_OutPro~All_Gender_clean, data=Receiver_Missing, family="binomial")) #LR gender
## 
## Call:
## glm(formula = Receiver_Missing_OutPro ~ All_Gender_clean, family = "binomial", 
##     data = Receiver_Missing)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6795  -0.6795  -0.6080  -0.6080   1.8864  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            -1.5943     0.1226 -13.001   <2e-16 ***
## All_Gender_cleanWomen   0.2460     0.1512   1.627    0.104    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1227.8  on 1254  degrees of freedom
## Residual deviance: 1225.1  on 1253  degrees of freedom
## AIC: 1229.1
## 
## Number of Fisher Scoring iterations: 4
summary(glm(Receiver_Missing_OutPro~Supporter_CareerStage_clean, data=Receiver_Missing, family="binomial")) #LR CS
## 
## Call:
## glm(formula = Receiver_Missing_OutPro ~ Supporter_CareerStage_clean, 
##     family = "binomial", data = Receiver_Missing)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7825  -0.6404  -0.6404  -0.6131   1.8783  
## 
## Coefficients:
##                                                   Estimate Std. Error z value
## (Intercept)                                       -1.48023    0.11135 -13.293
## Supporter_CareerStage_cleanPostdocs               -0.09588    0.17940  -0.534
## Supporter_CareerStage_cleanGroup leaders (<5yr)    0.21080    0.22378   0.942
## Supporter_CareerStage_cleanGroup leaders (5-10yr)  0.45359    0.26266   1.727
## Supporter_CareerStage_cleanGroup leaders (>10yr)   0.05137    0.25748   0.200
##                                                   Pr(>|z|)    
## (Intercept)                                         <2e-16 ***
## Supporter_CareerStage_cleanPostdocs                 0.5930    
## Supporter_CareerStage_cleanGroup leaders (<5yr)     0.3462    
## Supporter_CareerStage_cleanGroup leaders (5-10yr)   0.0842 .  
## Supporter_CareerStage_cleanGroup leaders (>10yr)    0.8419    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1227.8  on 1254  degrees of freedom
## Residual deviance: 1223.1  on 1250  degrees of freedom
## AIC: 1233.1
## 
## Number of Fisher Scoring iterations: 4
summary(glm(Receiver_Missing_OutPro~Supporter_CareerStage_clean*All_Gender_clean, data=Receiver_Missing, family="binomial")) #FLR gender-CS interactions
## 
## Call:
## glm(formula = Receiver_Missing_OutPro ~ Supporter_CareerStage_clean * 
##     All_Gender_clean, family = "binomial", data = Receiver_Missing)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8876  -0.6792  -0.6489  -0.4727   2.1200  
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                             -1.55060
## Supporter_CareerStage_cleanPostdocs                                     -0.58493
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          0.32682
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        0.21560
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         0.04652
## All_Gender_cleanWomen                                                    0.09954
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                0.68683
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen   -0.17983
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  0.50722
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   0.10525
##                                                                         Std. Error
## (Intercept)                                                                0.20806
## Supporter_CareerStage_cleanPostdocs                                        0.35958
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            0.35995
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          0.41183
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           0.36137
## All_Gender_cleanWomen                                                      0.24632
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.41584
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      0.46246
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    0.54120
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     0.53795
##                                                                         z value
## (Intercept)                                                              -7.453
## Supporter_CareerStage_cleanPostdocs                                      -1.627
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           0.908
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         0.524
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          0.129
## All_Gender_cleanWomen                                                     0.404
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 1.652
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    -0.389
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.937
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.196
##                                                                         Pr(>|z|)
## (Intercept)                                                             9.16e-14
## Supporter_CareerStage_cleanPostdocs                                       0.1038
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           0.3639
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         0.6006
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          0.8976
## All_Gender_cleanWomen                                                     0.6861
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 0.0986
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.6974
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.3487
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.8449
##                                                                            
## (Intercept)                                                             ***
## Supporter_CareerStage_cleanPostdocs                                        
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           
## All_Gender_cleanWomen                                                      
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen               .  
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1227.8  on 1254  degrees of freedom
## Residual deviance: 1215.0  on 1245  degrees of freedom
## AIC: 1235
## 
## Number of Fisher Scoring iterations: 4

Q14 Length of support (Section 3, panel 2)

Dependent variable: Lenght_Support (note the typo) Recode

  • 0- less than six months
    • 1: Less than six months
    • 4: I’m still supporting, <6 mo
  • 1- more than six months
    • 2: 6mo-1yr
    • 3: >1yr
    • 5: I’m still supporting, >6 mo (ignore 6- not sure and 7- PNTA)

Model: Factorial Logistical regression: Length_Support ~ Gender * CS

#subsetting data and recoding response to binary
Length_Support=genderCS[,c("Lenght_Support", "Supporter_CareerStage_clean", "All_Gender_clean")]
colnames(Length_Support)[1]="Length_Support"
Length_Support=Length_Support[Length_Support$Length_Support %in% seq(1,5), ] #remove NAs and some choices
dim(Length_Support)[1] #this gives N
## [1] 1207
#recode
Length_Support[Length_Support$Length_Support==1, "Length_Support"]=0 
Length_Support[Length_Support$Length_Support==4, "Length_Support"]=0 
Length_Support[Length_Support$Length_Support==2, "Length_Support"]=1
Length_Support[Length_Support$Length_Support==3, "Length_Support"]=1
Length_Support[Length_Support$Length_Support==5, "Length_Support"]=1 

#LR gender
summary(glm(Length_Support~All_Gender_clean, data=Length_Support, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Length_Support ~ All_Gender_clean, family = "binomial", 
##     data = Length_Support)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6548  -1.6443   0.7661   0.7739   0.7739  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             1.0524     0.1069   9.842   <2e-16 ***
## All_Gender_cleanWomen   0.0233     0.1358   0.172    0.864    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1373.2  on 1206  degrees of freedom
## Residual deviance: 1373.1  on 1205  degrees of freedom
## AIC: 1377.1
## 
## Number of Fisher Scoring iterations: 4
#LR CS
summary(glm(Length_Support~Supporter_CareerStage_clean, data=Length_Support, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Length_Support ~ Supporter_CareerStage_clean, family = "binomial", 
##     data = Length_Support)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7574  -1.6042   0.7594   0.8011   0.8040  
## 
## Coefficients:
##                                                   Estimate Std. Error z value
## (Intercept)                                         1.0960     0.1029  10.650
## Supporter_CareerStage_cleanPostdocs                -0.1324     0.1585  -0.835
## Supporter_CareerStage_cleanGroup leaders (<5yr)    -0.1241     0.2083  -0.596
## Supporter_CareerStage_cleanGroup leaders (5-10yr)   0.2081     0.2784   0.747
## Supporter_CareerStage_cleanGroup leaders (>10yr)    0.1191     0.2421   0.492
##                                                   Pr(>|z|)    
## (Intercept)                                         <2e-16 ***
## Supporter_CareerStage_cleanPostdocs                  0.404    
## Supporter_CareerStage_cleanGroup leaders (<5yr)      0.551    
## Supporter_CareerStage_cleanGroup leaders (5-10yr)    0.455    
## Supporter_CareerStage_cleanGroup leaders (>10yr)     0.623    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1373.2  on 1206  degrees of freedom
## Residual deviance: 1370.8  on 1202  degrees of freedom
## AIC: 1380.8
## 
## Number of Fisher Scoring iterations: 4
#FLR gender-CS interactions
summary(glm(Length_Support~Supporter_CareerStage_clean*All_Gender_clean, data=Length_Support, family="binomial")) 
## 
## Call:
## glm(formula = Length_Support ~ Supporter_CareerStage_clean * 
##     All_Gender_clean, family = "binomial", data = Length_Support)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.8078  -1.5220   0.7671   0.7683   0.8683  
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                              1.15418
## Supporter_CareerStage_cleanPostdocs                                     -0.37293
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         -0.19441
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        0.05884
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         0.16757
## All_Gender_cleanWomen                                                   -0.08155
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                0.36923
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    0.10260
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  0.28559
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen  -0.20412
##                                                                         Std. Error
## (Intercept)                                                                0.19386
## Supporter_CareerStage_cleanPostdocs                                        0.27558
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            0.33825
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          0.39436
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           0.34168
## All_Gender_cleanWomen                                                      0.22875
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.33802
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      0.43180
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    0.57059
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     0.50464
##                                                                         z value
## (Intercept)                                                               5.954
## Supporter_CareerStage_cleanPostdocs                                      -1.353
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          -0.575
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         0.149
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          0.490
## All_Gender_cleanWomen                                                    -0.356
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 1.092
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.238
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.501
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   -0.404
##                                                                         Pr(>|z|)
## (Intercept)                                                             2.62e-09
## Supporter_CareerStage_cleanPostdocs                                        0.176
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            0.565
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          0.881
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           0.624
## All_Gender_cleanWomen                                                      0.721
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.275
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      0.812
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    0.617
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     0.686
##                                                                            
## (Intercept)                                                             ***
## Supporter_CareerStage_cleanPostdocs                                        
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           
## All_Gender_cleanWomen                                                      
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1373.2  on 1206  degrees of freedom
## Residual deviance: 1368.7  on 1197  degrees of freedom
## AIC: 1388.7
## 
## Number of Fisher Scoring iterations: 4
#effect of gender on response
kruskal.test(Length_Support ~ All_Gender_clean, data=Length_Support)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Length_Support by All_Gender_clean
## Kruskal-Wallis chi-squared = 0.029399, df = 1, p-value = 0.8639
#effect of CS on response
kruskal.test(Length_Support ~ Supporter_CareerStage_clean, data=Length_Support)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Length_Support by Supporter_CareerStage_clean
## Kruskal-Wallis chi-squared = 2.39, df = 4, p-value = 0.6644

(This alternative is not reported) Alternative recode

  • 0- less than six months
    • 1: Less than six months
    • 4: I’m still supporting, <6 mo
  • 1- 6 mo to 1 yr
    • 2: 6mo-1yr
  • 2- >1 yr
    • 3: >1yr

ignore 5

Length_Support=genderCS[,c("Lenght_Support", "Supporter_CareerStage_clean", "All_Gender_clean")]
colnames(Length_Support)[1]="Length_Support"
Length_Support=Length_Support[Length_Support$Length_Support %in% seq(1,4), ] #remove NAs and some choices
dim(Length_Support)[1] #this gives N
## [1] 842
#recode
Length_Support[Length_Support$Length_Support==1, "Length_Support"]=0 
Length_Support[Length_Support$Length_Support==4, "Length_Support"]=0 
Length_Support[Length_Support$Length_Support==2, "Length_Support"]=1
Length_Support[Length_Support$Length_Support==3, "Length_Support"]=2

summary(glm(Length_Support~All_Gender_clean, data=Length_Support, family="gaussian"))
## 
## Call:
## glm(formula = Length_Support ~ All_Gender_clean, family = "gaussian", 
##     data = Length_Support)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.99407  -0.95446   0.04554   1.00593   1.04554  
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            0.99407    0.04573  21.739   <2e-16 ***
## All_Gender_cleanWomen -0.03961    0.05905  -0.671    0.503    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.7046912)
## 
##     Null deviance: 592.26  on 841  degrees of freedom
## Residual deviance: 591.94  on 840  degrees of freedom
## AIC: 2098.8
## 
## Number of Fisher Scoring iterations: 2
summary(glm(Length_Support~Supporter_CareerStage_clean, data=Length_Support, family="gaussian"))
## 
## Call:
## glm(formula = Length_Support ~ Supporter_CareerStage_clean, family = "gaussian", 
##     data = Length_Support)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.15385  -0.93137   0.03143   1.03143   1.10417  
## 
## Coefficients:
##                                                   Estimate Std. Error t value
## (Intercept)                                        0.96857    0.04477  21.632
## Supporter_CareerStage_cleanPostdocs               -0.07274    0.07020  -1.036
## Supporter_CareerStage_cleanGroup leaders (<5yr)   -0.03720    0.09425  -0.395
## Supporter_CareerStage_cleanGroup leaders (5-10yr)  0.18527    0.11313   1.638
## Supporter_CareerStage_cleanGroup leaders (>10yr)   0.12555    0.10129   1.239
##                                                   Pr(>|t|)    
## (Intercept)                                         <2e-16 ***
## Supporter_CareerStage_cleanPostdocs                  0.300    
## Supporter_CareerStage_cleanGroup leaders (<5yr)      0.693    
## Supporter_CareerStage_cleanGroup leaders (5-10yr)    0.102    
## Supporter_CareerStage_cleanGroup leaders (>10yr)     0.216    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.7016467)
## 
##     Null deviance: 592.26  on 841  degrees of freedom
## Residual deviance: 587.28  on 837  degrees of freedom
## AIC: 2098.1
## 
## Number of Fisher Scoring iterations: 2
summary(glm(Length_Support~Supporter_CareerStage_clean*All_Gender_clean, data=Length_Support, family="gaussian"))
## 
## Call:
## glm(formula = Length_Support ~ Supporter_CareerStage_clean * 
##     All_Gender_clean, family = "gaussian", data = Length_Support)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.17143  -0.93151   0.03659   1.01923   1.15957  
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                              0.98077
## Supporter_CareerStage_cleanPostdocs                                     -0.14034
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          0.01923
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        0.19066
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         0.17713
## All_Gender_cleanWomen                                                   -0.01735
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                0.10844
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen   -0.10992
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen -0.02074
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen  -0.17625
##                                                                         Std. Error
## (Intercept)                                                                0.08227
## Supporter_CareerStage_cleanPostdocs                                        0.11940
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            0.14746
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          0.16395
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           0.13827
## All_Gender_cleanWomen                                                      0.09813
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.14812
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      0.19340
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    0.23066
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     0.21707
##                                                                         t value
## (Intercept)                                                              11.921
## Supporter_CareerStage_cleanPostdocs                                      -1.175
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           0.130
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         1.163
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          1.281
## All_Gender_cleanWomen                                                    -0.177
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 0.732
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    -0.568
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  -0.090
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   -0.812
##                                                                         Pr(>|t|)
## (Intercept)                                                               <2e-16
## Supporter_CareerStage_cleanPostdocs                                        0.240
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            0.896
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          0.245
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           0.201
## All_Gender_cleanWomen                                                      0.860
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.464
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      0.570
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    0.928
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     0.417
##                                                                            
## (Intercept)                                                             ***
## Supporter_CareerStage_cleanPostdocs                                        
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           
## All_Gender_cleanWomen                                                      
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.7038992)
## 
##     Null deviance: 592.26  on 841  degrees of freedom
## Residual deviance: 585.64  on 832  degrees of freedom
## AIC: 2105.8
## 
## Number of Fisher Scoring iterations: 2

Q17c Impact_draining (Section 4, Panel 3 and Section 4, Panel 4)

Response: Impact_draining (1-5), PNTA(6) is removed

Model: Ordinal logistical regression

#subset
ImpactDraining=genderCS[,c("Impact_Draining", "All_Gender_clean", "Supporter_CareerStage_clean")]
summary(ImpactDraining) #there are some NAs
##  Impact_Draining All_Gender_clean         Supporter_CareerStage_clean
##  Min.   :1.000   Men  :474        PhD students          :534         
##  1st Qu.:4.000   Women:781        Postdocs              :356         
##  Median :4.000                    Group leaders (<5yr)  :155         
##  Mean   :4.068                    Group leaders (5-10yr): 91         
##  3rd Qu.:5.000                    Group leaders (>10yr) :119         
##  Max.   :6.000                                                       
##  NA's   :5
#clean
ImpactDraining=ImpactDraining[(ImpactDraining$Impact_Draining %in% seq(1:5)),]
dim(ImpactDraining)[1] #this gives N
## [1] 1242
#factorise
ImpactDraining$Impact_Draining=as.factor(ImpactDraining$Impact_Draining)

Impact_draining x gender stats (Section 4, panel 3)

exp(coef(polr(Impact_Draining~All_Gender_clean, data=ImpactDraining, Hess=TRUE, method="logistic"))) #OR (men as baseline)
## All_Gender_cleanWomen 
##              1.439005
exp(confint(polr(Impact_Draining~All_Gender_clean, data=ImpactDraining, Hess=TRUE, method="logistic"))) #CI
## Waiting for profiling to be done...
##    2.5 %   97.5 % 
## 1.164422 1.778559
kruskal.test(Impact_Draining ~ All_Gender_clean, data=ImpactDraining) #effect of gender on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Impact_Draining by All_Gender_clean
## Kruskal-Wallis chi-squared = 11.334, df = 1, p-value = 0.000761

Impact Draining x CS (Section 4, panel 4)

exp(coef(polr(Impact_Draining~Supporter_CareerStage_clean, data=ImpactDraining, Hess=TRUE, method="logistic"))) # OR (PhD as baseline)
##               Supporter_CareerStage_cleanPostdocs 
##                                         0.8308404 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         1.6016706 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         0.9114593 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         0.7460091
exp(confint(polr(Impact_Draining~Supporter_CareerStage_clean, data=ImpactDraining, Hess=TRUE, method="logistic"))) #CI
## Waiting for profiling to be done...
##                                                       2.5 %   97.5 %
## Supporter_CareerStage_cleanPostdocs               0.6486015 1.064394
## Supporter_CareerStage_cleanGroup leaders (<5yr)   1.1383083 2.267367
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.6031863 1.383784
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.5170316 1.078493
kruskal.test(Impact_Draining ~ Supporter_CareerStage_clean, data=ImpactDraining) #effect of CS on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Impact_Draining by Supporter_CareerStage_clean
## Kruskal-Wallis chi-squared = 15.29, df = 4, p-value = 0.004136
# multiway kruskal wallis
## CSpairs=combinations(n=5, r=2, v=levels(ImpactDraining$Supporter_CareerStage_clean), repeats.allowed = F)
# Compare between early PIs and other CSs only
## this requires the package "MHTdiscrete"
CSpairs=cbind(rep("Group leaders (<5yr)", 4), levels(ImpactDraining$Supporter_CareerStage_clean)[c(1,2,4,5)])
ImpactDrainingCSKW=data.frame(CS1=c(), CS2=c(), X2=c(), N=c(), df=c(), pVal=c(), adjpVal=c()) 
for (i in 1:dim(CSpairs)[1]) {
  comparedData=ImpactDraining[(ImpactDraining$Supporter_CareerStage_clean==CSpairs[i,1]|ImpactDraining$Supporter_CareerStage_clean==CSpairs[i,2]),]
  KW=kruskal.test(Impact_Draining ~ Supporter_CareerStage_clean, data=comparedData) #effect of CS on response
  ImpactDrainingCSKW=rbind(ImpactDrainingCSKW, data.frame(CS1=CSpairs[i,1], CS2=CSpairs[i,2], X2=as.numeric(KW$statistic), N=dim(comparedData)[1], df=as.numeric(KW$parameter), pVal=as.numeric(KW$p.value)))
}

ImpactDrainingCSKW$adjpVal=Sidak.p.adjust(ImpactDrainingCSKW$pVal)
ImpactDrainingCSKW
##                    CS1                    CS2        X2   N df         pVal
## 1 Group leaders (<5yr)           PhD students  7.269973 680  1 0.0070116865
## 2 Group leaders (<5yr)               Postdocs 12.494864 507  1 0.0004080724
## 3 Group leaders (<5yr) Group leaders (5-10yr)  4.776699 244  1 0.0288473645
## 4 Group leaders (<5yr)  Group leaders (>10yr) 10.288929 273  1 0.0013383071
##       adjpVal
## 1 0.027753140
## 2 0.001631291
## 3 0.110491767
## 4 0.005342492

Impact Draining x early PI vs others (PhD/postdoc/midPI/latePI)

# code a new variable based on genderCS$Supporter_CareerStage_clean, 1= early PI, 0=PhD/postdoc/midPI/latePI
genderCS$earlyPI=rep("Group leaders (<5yr)", nrow(genderCS))
genderCS[(genderCS$Supporter_CareerStage_clean!="Group leaders (<5yr)"),"earlyPI"]="Other career stages"
genderCS$earlyPI=as.factor(genderCS$earlyPI)

#redo subsetting
ImpactDrainingPI=genderCS[,c("Impact_Draining", "All_Gender_clean", "earlyPI")]
summary(ImpactDrainingPI) #there are some NAs
##  Impact_Draining All_Gender_clean                 earlyPI    
##  Min.   :1.000   Men  :474        Group leaders (<5yr): 155  
##  1st Qu.:4.000   Women:781        Other career stages :1100  
##  Median :4.000                                               
##  Mean   :4.068                                               
##  3rd Qu.:5.000                                               
##  Max.   :6.000                                               
##  NA's   :5
#clean
ImpactDrainingPI=ImpactDrainingPI[(ImpactDrainingPI$Impact_Draining %in% seq(1:5)),]
dim(ImpactDrainingPI)[1] #this gives N
## [1] 1242
#factorise
ImpactDrainingPI$Impact_Draining=as.factor(ImpactDrainingPI$Impact_Draining)

#kruskal wallis
kruskal.test(Impact_Draining ~ earlyPI, data=ImpactDrainingPI)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Impact_Draining by earlyPI
## Kruskal-Wallis chi-squared = 11.726, df = 1, p-value = 0.0006162

Impact_draining x gender graph (graph 4.3.1)

levels(ImpactDraining$Impact_Draining)=c("Strongly disagree", "Somewhat disagree", "Neither agree or disagree", "Somewhat agree", "Strongly agree")
ImpactDraining$Impact_Draining=factor(ImpactDraining$Impact_Draining, levels=c("Strongly agree", "Somewhat agree", "Neither agree or disagree", "Somewhat disagree", "Strongly disagree"))
graphdata = ImpactDraining %>%
  group_by(All_Gender_clean, Impact_Draining) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'All_Gender_clean' (override with `.groups` argument)
#graphdata$perc=0
#graphdata[graphdata$All_Gender_clean=="Women",]=mutate(graphdata[graphdata$All_Gender_clean=="Women",], perc=n/sum(n))
#graphdata[graphdata$All_Gender_clean=="Men",]=mutate(graphdata[graphdata$All_Gender_clean=="Men",], perc=n/sum(n))

# This will save the image to your local code folder
#eps("images/ImpactDraining_gender.eps", width=1000, height=578)
ggplot(graphdata, aes(x=All_Gender_clean, y=perc, fill=Impact_Draining)) +
  geom_bar(stat="identity") +
  theme_minimal() +
      theme(plot.title = element_text(hjust = 0.5), text=element_text(size=12), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 16), legend.position="bottom", legend.text = element_text(size=7))+
  geom_text(aes(label=round(perc, digit=1)), size=3, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="The experience was emotionally draining or stressful") +
    guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=ePalette)

ggsave(dpi=1000, "4-3-1.png", limitsize = FALSE)
## Saving 7 x 5 in image
#dev.off()

Impact_draining x career graph (graph 4.4.1)

#levels(ImpactDraining$Impact_Draining)=c("Strongly disagree", "Somewhat disagree", "Neither agree or #disagree", "Somewhat agree", "Strongly agree")
#ImpactDraining$Impact_Draining=factor(ImpactDraining$Impact_Draining, levels=c("Strongly agree", "Somewhat agree", "Neither agree or disagree", "Somewhat disagree", "Strongly disagree"))
graphdata = ImpactDraining %>%
  group_by(Supporter_CareerStage_clean, Impact_Draining) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'Supporter_CareerStage_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/ImpactDraining_CS.eps", width=1000, height=578)
ggplot(graphdata, aes(x=rev(Supporter_CareerStage_clean), y=rev(perc), fill=rev(Impact_Draining))) +
  geom_bar(stat="identity") +
  theme_minimal() +
      theme(plot.title = element_text(hjust = 0.5), text=element_text(size=12), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 16), legend.position="bottom", legend.text = element_text(size=7))+
  geom_text(aes(label=round(rev(perc), digit=1)), size=3.5, position=position_stack(vjust=0.5), color="white") +
  scale_x_discrete(limits = rev(levels(ImpactDraining$Supporter_CareerStage_clean))) +
  labs(x="", y="Percentage", title="The experience was emotionally draining or stressful") +
    guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=ePalette)

ggsave(dpi=1000, "4-4-1.png", limitsize = FALSE)
## Saving 7 x 5 in image
#dev.off()

It looks like career stage 6 (early PIs) are the only group more likely to find it more draining than PhDs (career stage 3, also the intercept here).

We may be able to Chi-square here to show early career PIs are significantly different from other career stages? My concern is big differences in sample sizes

Chi squares for interactions between CS and gender [NOT REPORTED]

#split by career stages, gender effect
chisq.test(table(ImpactDraining[ImpactDraining$Supporter_CareerStage_clean==levels(ImpactDraining$Supporter_CareerStage_clean)[1],c("Impact_Draining","All_Gender_clean")]))
## Warning in
## chisq.test(table(ImpactDraining[ImpactDraining$Supporter_CareerStage_clean == :
## Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(ImpactDraining[ImpactDraining$Supporter_CareerStage_clean ==     levels(ImpactDraining$Supporter_CareerStage_clean)[1], c("Impact_Draining",     "All_Gender_clean")])
## X-squared = 1.2496, df = 4, p-value = 0.8699
chisq.test(table(ImpactDraining[ImpactDraining$Supporter_CareerStage_clean==levels(ImpactDraining$Supporter_CareerStage_clean)[2],c("Impact_Draining","All_Gender_clean")]))
## 
##  Pearson's Chi-squared test
## 
## data:  table(ImpactDraining[ImpactDraining$Supporter_CareerStage_clean ==     levels(ImpactDraining$Supporter_CareerStage_clean)[2], c("Impact_Draining",     "All_Gender_clean")])
## X-squared = 3.1639, df = 4, p-value = 0.5308
chisq.test(table(ImpactDraining[ImpactDraining$Supporter_CareerStage_clean==levels(ImpactDraining$Supporter_CareerStage_clean)[3],c("Impact_Draining","All_Gender_clean")]))
## Warning in
## chisq.test(table(ImpactDraining[ImpactDraining$Supporter_CareerStage_clean == :
## Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(ImpactDraining[ImpactDraining$Supporter_CareerStage_clean ==     levels(ImpactDraining$Supporter_CareerStage_clean)[3], c("Impact_Draining",     "All_Gender_clean")])
## X-squared = 6.2074, df = 4, p-value = 0.1842
chisq.test(table(ImpactDraining[ImpactDraining$Supporter_CareerStage_clean==levels(ImpactDraining$Supporter_CareerStage_clean)[4],c("Impact_Draining","All_Gender_clean")]))
## Warning in
## chisq.test(table(ImpactDraining[ImpactDraining$Supporter_CareerStage_clean == :
## Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(ImpactDraining[ImpactDraining$Supporter_CareerStage_clean ==     levels(ImpactDraining$Supporter_CareerStage_clean)[4], c("Impact_Draining",     "All_Gender_clean")])
## X-squared = 6.2421, df = 4, p-value = 0.1818
chisq.test(table(ImpactDraining[ImpactDraining$Supporter_CareerStage_clean==levels(ImpactDraining$Supporter_CareerStage_clean)[5],c("Impact_Draining","All_Gender_clean")]))
## Warning in
## chisq.test(table(ImpactDraining[ImpactDraining$Supporter_CareerStage_clean == :
## Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(ImpactDraining[ImpactDraining$Supporter_CareerStage_clean ==     levels(ImpactDraining$Supporter_CareerStage_clean)[5], c("Impact_Draining",     "All_Gender_clean")])
## X-squared = 14.345, df = 4, p-value = 0.006273
#split by gender, career effect (same as KW above)
chisq.test(table(ImpactDraining[ImpactDraining$All_Gender_clean==levels(ImpactDraining$All_Gender_clean)[1],c("Impact_Draining","Supporter_CareerStage_clean")]))
## Warning in chisq.test(table(ImpactDraining[ImpactDraining$All_Gender_clean == :
## Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(ImpactDraining[ImpactDraining$All_Gender_clean == levels(ImpactDraining$All_Gender_clean)[1],     c("Impact_Draining", "Supporter_CareerStage_clean")])
## X-squared = 20.268, df = 16, p-value = 0.2084
chisq.test(table(ImpactDraining[ImpactDraining$All_Gender_clean==levels(ImpactDraining$All_Gender_clean)[2],c("Impact_Draining","Supporter_CareerStage_clean")]))
## Warning in chisq.test(table(ImpactDraining[ImpactDraining$All_Gender_clean == :
## Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(ImpactDraining[ImpactDraining$All_Gender_clean == levels(ImpactDraining$All_Gender_clean)[2],     c("Impact_Draining", "Supporter_CareerStage_clean")])
## X-squared = 20.323, df = 16, p-value = 0.206

Q17d Impact Time (Seciont 4, Panel 3)

#Subsetting
ImpactTime=genderCS[,c("Impact_Time", "All_Gender_clean", "Supporter_CareerStage_clean")]
#clean
ImpactTime=ImpactTime[(ImpactTime$Impact_Time %in% seq(1:5)),]
dim(ImpactTime)[1] #N
## [1] 1241
#factorise
ImpactTime$Impact_Time=as.factor(ImpactTime$Impact_Time)
table(ImpactTime$Impact_Time)
## 
##   1   2   3   4   5 
##  80 189 218 406 348

Impact Time x gender (Section 4, Panel 3)

exp(coef(polr(Impact_Time~All_Gender_clean, data=ImpactTime, Hess=TRUE, method="logistic"))) #OR (men as baseline)
## All_Gender_cleanWomen 
##               1.43038
exp(confint(polr(Impact_Time~All_Gender_clean, data=ImpactTime, Hess=TRUE, method="logistic"))) #CI
## Waiting for profiling to be done...
##    2.5 %   97.5 % 
## 1.164197 1.758101
kruskal.test(Impact_Time ~ All_Gender_clean, data=ImpactTime) #effect of gender on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Impact_Time by All_Gender_clean
## Kruskal-Wallis chi-squared = 11.577, df = 1, p-value = 0.0006679

Impact Time x Career stage

exp(coef(polr(Impact_Time~Supporter_CareerStage_clean, data=ImpactTime, Hess=TRUE, method="logistic"))) #OR (PhD as baseline)
##               Supporter_CareerStage_cleanPostdocs 
##                                         0.9808452 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         1.5752583 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         1.0570449 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         1.1509917
kruskal.test(Impact_Time ~ Supporter_CareerStage_clean, data=ImpactTime) #effect of CS on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Impact_Time by Supporter_CareerStage_clean
## Kruskal-Wallis chi-squared = 8.9056, df = 4, p-value = 0.0635

Impact Time x gender graph (graph 4.3.2)

levels(ImpactTime$Impact_Time)=c("Strongly disagree", "Somewhat disagree", "Neither agree or disagree", "Somewhat agree", "Strongly agree")
ImpactTime$Impact_Time=factor(ImpactTime$Impact_Time, levels=c("Strongly agree", "Somewhat agree", "Neither agree or disagree", "Somewhat disagree", "Strongly disagree"))
graphdata = ImpactTime %>%
  group_by(All_Gender_clean, Impact_Time) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'All_Gender_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/ImpactTime_gender.eps", width=1000, height=578)
ggplot(graphdata, aes(x=All_Gender_clean, y=perc, fill=Impact_Time)) +
  geom_bar(stat="identity") +
  theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5), text=element_text(size=12), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 16), legend.position="bottom", legend.text = element_text(size=7))+
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="The experience took a lot of my time") +
    guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=ePalette)

ggsave(dpi=1000, "4-3-2.png", limitsize = FALSE)
## Saving 7 x 5 in image
dev.off()
## null device 
##           1

Impact Time x Career stage graph

graphdata = ImpactTime %>%
  group_by(Supporter_CareerStage_clean, Impact_Time) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'Supporter_CareerStage_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/ImpactTime_CS.eps", width=1000, height=578)
ggplot(graphdata, aes(x=Supporter_CareerStage_clean, y=perc, fill=Impact_Time)) +
  geom_bar(stat="identity") +
  theme_minimal() +
      theme(plot.title = element_text(hjust = 0.5), text=element_text(size=20), legend.position="bottom", legend.text = element_text(size=7))+
  scale_x_discrete(limits = rev(levels(ImpactTime$Supporter_CareerStage_clean))) +
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="The experience took a lot of my time") +
    guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=ePalette)

dev.off()
## null device 
##           1

Q17e Impact work (Section 4, Panel 3 and Section 4, Panel 4)

#Subset
ImpactWork=genderCS[,c("Impact_Work", "All_Gender_clean", "Supporter_CareerStage_clean")]
#clean
ImpactWork=ImpactWork[(ImpactWork$Impact_Work %in% seq(1:5)),]
dim(ImpactWork)[1]
## [1] 1235
#factorise
ImpactWork$Impact_Work=as.factor(ImpactWork$Impact_Work)
table(ImpactWork$Impact_Work)
## 
##   1   2   3   4   5 
## 340 239 227 276 153

Impact work x gender (Section 4, Panel 3)

exp(coef(polr(Impact_Work~All_Gender_clean, data=ImpactWork, Hess=TRUE, method="logistic"))) #OR (men as baseline)
## All_Gender_cleanWomen 
##              1.236169
exp(confint(polr(Impact_Work~All_Gender_clean, data=ImpactWork, Hess=TRUE, method="logistic"))) #CI
## Waiting for profiling to be done...
##    2.5 %   97.5 % 
## 1.007312 1.517617
kruskal.test(Impact_Work ~ All_Gender_clean, data=ImpactWork) #effect of gender on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Impact_Work by All_Gender_clean
## Kruskal-Wallis chi-squared = 4.1104, df = 1, p-value = 0.04262

Impact work x Career stage (Section 4, Panel 4)

exp(coef(polr(Impact_Work~Supporter_CareerStage_clean, data=ImpactWork, Hess=TRUE, method="logistic"))) #OR (PhD as baseline)
##               Supporter_CareerStage_cleanPostdocs 
##                                          1.052155 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                          2.255425 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                          1.477751 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                          1.099569
exp(confint(polr(Impact_Work~Supporter_CareerStage_clean, data=ImpactWork, Hess=TRUE, method="logistic"))) #CI
## Waiting for profiling to be done...
##                                                       2.5 %   97.5 %
## Supporter_CareerStage_cleanPostdocs               0.8274488 1.337784
## Supporter_CareerStage_cleanGroup leaders (<5yr)   1.6313683 3.122104
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.9903085 2.206576
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.7715605 1.565985
kruskal.test(Impact_Work ~ Supporter_CareerStage_clean, data=ImpactWork) #effect of CS on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Impact_Work by Supporter_CareerStage_clean
## Kruskal-Wallis chi-squared = 26.305, df = 4, p-value = 2.747e-05
## multiway kruskal wallis
# Compare between early PIs and other CSs onl
## this requires the package "MTHdiscrete", and having run the similar analysis in the Impact draining section
ImpactWorkCSKW=data.frame(CS1=c(), CS2=c(), X2=c(), N=c(), df=c(), pVal=c()) 
for (i in 1:dim(CSpairs)[1]) {
  comparedData=ImpactWork[(ImpactWork$Supporter_CareerStage_clean==CSpairs[i,1]|ImpactWork$Supporter_CareerStage_clean==CSpairs[i,2]),]
  KW=kruskal.test(Impact_Work ~ Supporter_CareerStage_clean, data=comparedData) #effect of CS on response
  ImpactWorkCSKW=rbind(ImpactWorkCSKW, data.frame(CS1=CSpairs[i,1], CS2=CSpairs[i,2], X2=as.numeric(KW$statistic), N=dim(comparedData)[1], df=as.numeric(KW$parameter), pVal=as.numeric(KW$p.value)))
}
ImpactWorkCSKW$adjpVal=Sidak.p.adjust(ImpactWorkCSKW$pVal)
ImpactWorkCSKW
##                    CS1                    CS2        X2   N df         pVal
## 1 Group leaders (<5yr)           PhD students 23.078118 680  1 1.555510e-06
## 2 Group leaders (<5yr)               Postdocs 18.083088 504  1 2.114714e-05
## 3 Group leaders (<5yr) Group leaders (5-10yr)  3.208835 238  1 7.324162e-02
## 4 Group leaders (<5yr)  Group leaders (>10yr) 10.020563 272  1 1.548022e-03
##        adjpVal
## 1 6.222024e-06
## 2 8.458587e-05
## 3 2.623233e-01
## 4 6.177724e-03

Impact work x PI vs others

#redo subsetting
ImpactWorkPI=genderCS[,c("Impact_Work", "All_Gender_clean", "earlyPI")]
summary(ImpactWorkPI) #there are some NAs
##   Impact_Work    All_Gender_clean                 earlyPI    
##  Min.   :1.000   Men  :474        Group leaders (<5yr): 155  
##  1st Qu.:1.000   Women:781        Other career stages :1100  
##  Median :3.000                                               
##  Mean   :2.764                                               
##  3rd Qu.:4.000                                               
##  Max.   :6.000                                               
##  NA's   :6
#clean
ImpactWorkPI=ImpactWorkPI[(ImpactWorkPI$Impact_Work %in% seq(1:5)),]
dim(ImpactWorkPI)[1] #this gives N
## [1] 1235
#factorise
ImpactWorkPI$Impact_Work=as.factor(ImpactWorkPI$Impact_Work)

#kruskal wallis
kruskal.test(Impact_Work ~ earlyPI, data=ImpactWorkPI)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Impact_Work by earlyPI
## Kruskal-Wallis chi-squared = 22.576, df = 1, p-value = 2.02e-06

Impact work x gender graph (Graph 4.3.4)

levels(ImpactWork$Impact_Work)=c("Strongly disagree", "Somewhat disagree", "Neither agree or disagree", "Somewhat agree", "Strongly agree")
ImpactWork$Impact_Work=factor(ImpactWork$Impact_Work, levels=c("Strongly agree", "Somewhat agree", "Neither agree or disagree", "Somewhat disagree", "Strongly disagree"))
graphdata = ImpactWork %>%
  group_by(All_Gender_clean, Impact_Work) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'All_Gender_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/ImpactWork_gender.eps", width=1000, height=578)
ggplot(graphdata, aes(x=All_Gender_clean, y=perc, fill=Impact_Work)) +
  geom_bar(stat="identity") +
  theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5), text=element_text(size=12), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 16), legend.position="bottom", legend.text = element_text(size=7))+
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="The experience negatively impacted my academic work") +
    guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=ePalette)

ggsave(dpi=1000, "4-3-4 GOOD.png", limitsize = FALSE)
## Saving 7 x 5 in image
dev.off()
## null device 
##           1

Impact work x Career stage graph (Graph 4.4.2)

graphdata = ImpactWork %>%
  group_by(Supporter_CareerStage_clean, Impact_Work) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'Supporter_CareerStage_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/ImpactWork_CS.eps", width=1000, height=578)
ggplot(graphdata, aes(x=Supporter_CareerStage_clean, y=perc, fill=rev(Impact_Work))) +
  geom_bar(stat="identity") +
  theme_minimal() +
      theme(plot.title = element_text(hjust = 0.5), text=element_text(size=12), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 16), legend.position="bottom", legend.text = element_text(size=7))+
  scale_x_discrete(limits = rev(levels(ImpactWork$Supporter_CareerStage_clean))) +
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="The experience negatively impacted my academic work") +
    guides(fill=guide_legend(reverse=FALSE)) +
  coord_flip() +
  scale_fill_manual(name="", values=ePalette)

ggsave(dpi=1000, "4-4-2.png", limitsize = FALSE)
## Saving 7 x 5 in image
dev.off()
## null device 
##           1

chisq for intersections [NOT REPORTED]

#split by career stages, gender effect
chisq.test(table(ImpactWork[ImpactWork$Supporter_CareerStage_clean==levels(ImpactWork$Supporter_CareerStage_clean)[1],c("Impact_Work","All_Gender_clean")]))
## 
##  Pearson's Chi-squared test
## 
## data:  table(ImpactWork[ImpactWork$Supporter_CareerStage_clean == levels(ImpactWork$Supporter_CareerStage_clean)[1],     c("Impact_Work", "All_Gender_clean")])
## X-squared = 6.4905, df = 4, p-value = 0.1654
chisq.test(table(ImpactWork[ImpactWork$Supporter_CareerStage_clean==levels(ImpactWork$Supporter_CareerStage_clean)[2],c("Impact_Work","All_Gender_clean")]))
## 
##  Pearson's Chi-squared test
## 
## data:  table(ImpactWork[ImpactWork$Supporter_CareerStage_clean == levels(ImpactWork$Supporter_CareerStage_clean)[2],     c("Impact_Work", "All_Gender_clean")])
## X-squared = 6.6388, df = 4, p-value = 0.1562
chisq.test(table(ImpactWork[ImpactWork$Supporter_CareerStage_clean==levels(ImpactWork$Supporter_CareerStage_clean)[3],c("Impact_Work","All_Gender_clean")]))
## 
##  Pearson's Chi-squared test
## 
## data:  table(ImpactWork[ImpactWork$Supporter_CareerStage_clean == levels(ImpactWork$Supporter_CareerStage_clean)[3],     c("Impact_Work", "All_Gender_clean")])
## X-squared = 1.8403, df = 4, p-value = 0.7651
chisq.test(table(ImpactWork[ImpactWork$Supporter_CareerStage_clean==levels(ImpactWork$Supporter_CareerStage_clean)[4],c("Impact_Work","All_Gender_clean")]))
## 
##  Pearson's Chi-squared test
## 
## data:  table(ImpactWork[ImpactWork$Supporter_CareerStage_clean == levels(ImpactWork$Supporter_CareerStage_clean)[4],     c("Impact_Work", "All_Gender_clean")])
## X-squared = 6.5609, df = 4, p-value = 0.161
chisq.test(table(ImpactWork[ImpactWork$Supporter_CareerStage_clean==levels(ImpactWork$Supporter_CareerStage_clean)[5],c("Impact_Work","All_Gender_clean")]))
## Warning in chisq.test(table(ImpactWork[ImpactWork$Supporter_CareerStage_clean
## == : Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(ImpactWork[ImpactWork$Supporter_CareerStage_clean == levels(ImpactWork$Supporter_CareerStage_clean)[5],     c("Impact_Work", "All_Gender_clean")])
## X-squared = 14.276, df = 4, p-value = 0.006464
#split by gender, career effect (same as KW above)
chisq.test(table(ImpactWork[ImpactWork$All_Gender_clean==levels(ImpactWork$All_Gender_clean)[1],c("Impact_Work","Supporter_CareerStage_clean")]))
## Warning in chisq.test(table(ImpactWork[ImpactWork$All_Gender_clean ==
## levels(ImpactWork$All_Gender_clean)[1], : Chi-squared approximation may be
## incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(ImpactWork[ImpactWork$All_Gender_clean == levels(ImpactWork$All_Gender_clean)[1],     c("Impact_Work", "Supporter_CareerStage_clean")])
## X-squared = 30.103, df = 16, p-value = 0.01747
chisq.test(table(ImpactWork[ImpactWork$All_Gender_clean==levels(ImpactWork$All_Gender_clean)[2],c("Impact_Work","Supporter_CareerStage_clean")]))
## 
##  Pearson's Chi-squared test
## 
## data:  table(ImpactWork[ImpactWork$All_Gender_clean == levels(ImpactWork$All_Gender_clean)[2],     c("Impact_Work", "Supporter_CareerStage_clean")])
## X-squared = 35.752, df = 16, p-value = 0.003132

Q17f Impact personal (Section 4, Panel 3 and Section 4, Panel 4)

ImpactPersonal=genderCS[,c("Impact_Personal", "All_Gender_clean", "Supporter_CareerStage_clean")]
#clean
ImpactPersonal=ImpactPersonal[(ImpactPersonal$Impact_Personal %in% seq(1:5)),]
dim(ImpactPersonal)[1]
## [1] 1235
#factorise
ImpactPersonal$Impact_Personal=as.factor(ImpactPersonal$Impact_Personal)
table(ImpactPersonal$Impact_Personal)
## 
##   1   2   3   4   5 
## 124 126 156 456 373

Impact personal x gender stats (Section 4, Panel 3)

exp(coef(polr(Impact_Personal~All_Gender_clean, data=ImpactPersonal, Hess=TRUE, method="logistic"))) #OR (men as baseline)
## All_Gender_cleanWomen 
##              1.462125
exp(confint(polr(Impact_Personal~All_Gender_clean, data=ImpactPersonal, Hess=TRUE, method="logistic"))) #CI
## Waiting for profiling to be done...
##    2.5 %   97.5 % 
## 1.186809 1.802054
kruskal.test(Impact_Personal ~ All_Gender_clean, data=ImpactPersonal) #effect of gender on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Impact_Personal by All_Gender_clean
## Kruskal-Wallis chi-squared = 12.646, df = 1, p-value = 0.0003765

Impact personal x Career stage (Section 4, Panel 4)

exp(coef(polr(Impact_Personal~Supporter_CareerStage_clean, data=ImpactPersonal, Hess=TRUE, method="logistic"))) #OR (PhD as baseline)
##               Supporter_CareerStage_cleanPostdocs 
##                                         0.7817945 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         0.8789771 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         0.8183547 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         0.4916460
exp(confint(polr(Impact_Personal~Supporter_CareerStage_clean, data=ImpactPersonal, Hess=TRUE, method="logistic"))) #CI
## Waiting for profiling to be done...
##                                                       2.5 %    97.5 %
## Supporter_CareerStage_cleanPostdocs               0.6109090 1.0002763
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.6330860 1.2218076
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.5489079 1.2234210
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.3439982 0.7027375
kruskal.test(Impact_Personal ~ Supporter_CareerStage_clean, data=ImpactPersonal) #effect of CS on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Impact_Personal by Supporter_CareerStage_clean
## Kruskal-Wallis chi-squared = 16.143, df = 4, p-value = 0.002833

Impact personal x gender graph (Graph 4.3.3)

levels(ImpactPersonal$Impact_Personal)=c("Strongly disagree", "Somewhat disagree", "Neither agree or disagree", "Somewhat agree", "Strongly agree")
ImpactPersonal$Impact_Personal=factor(ImpactPersonal$Impact_Personal, levels=c("Strongly agree", "Somewhat agree", "Neither agree or disagree", "Somewhat disagree", "Strongly disagree"))
# This will save the image to your local code folder
#eps("images/ImpactPersonal_gender.eps", width=1000, height=578)
graphdata = ImpactPersonal %>%
  group_by(All_Gender_clean, Impact_Personal) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'All_Gender_clean' (override with `.groups` argument)
ggplot(graphdata, aes(x=All_Gender_clean, y=perc, fill=Impact_Personal)) +
  geom_bar(stat="identity") +
  theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5), text=element_text(size=12), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 16), legend.position="bottom", legend.text = element_text(size=7))+
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="The experience had an impact on my personal life") +
    guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=ePalette)

ggsave(dpi=1000, "4-3-3.png", limitsize = FALSE)
## Saving 7 x 5 in image
dev.off()
## null device 
##           1

Impact personal x Career stage (Graph 4.4.3)

#split by gender
kruskal.test(Impact_Personal ~ Supporter_CareerStage_clean, data=ImpactPersonal[ImpactPersonal$All_Gender_clean==levels(ImpactPersonal$All_Gender_clean)[1],])
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Impact_Personal by Supporter_CareerStage_clean
## Kruskal-Wallis chi-squared = 20.688, df = 4, p-value = 0.0003651
kruskal.test(Impact_Personal ~ Supporter_CareerStage_clean, data=ImpactPersonal[ImpactPersonal$All_Gender_clean==levels(ImpactPersonal$All_Gender_clean)[2],])
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Impact_Personal by Supporter_CareerStage_clean
## Kruskal-Wallis chi-squared = 0.42513, df = 4, p-value = 0.9804
#split by career stages, gender effect
chisq.test(table(ImpactPersonal[ImpactPersonal$Supporter_CareerStage_clean==levels(ImpactPersonal$Supporter_CareerStage_clean)[1],c("Impact_Personal","All_Gender_clean")]))
## 
##  Pearson's Chi-squared test
## 
## data:  table(ImpactPersonal[ImpactPersonal$Supporter_CareerStage_clean ==     levels(ImpactPersonal$Supporter_CareerStage_clean)[1], c("Impact_Personal",     "All_Gender_clean")])
## X-squared = 2.504, df = 4, p-value = 0.6439
chisq.test(table(ImpactPersonal[ImpactPersonal$Supporter_CareerStage_clean==levels(ImpactPersonal$Supporter_CareerStage_clean)[2],c("Impact_Personal","All_Gender_clean")]))
## 
##  Pearson's Chi-squared test
## 
## data:  table(ImpactPersonal[ImpactPersonal$Supporter_CareerStage_clean ==     levels(ImpactPersonal$Supporter_CareerStage_clean)[2], c("Impact_Personal",     "All_Gender_clean")])
## X-squared = 11.282, df = 4, p-value = 0.02358
chisq.test(table(ImpactPersonal[ImpactPersonal$Supporter_CareerStage_clean==levels(ImpactPersonal$Supporter_CareerStage_clean)[3],c("Impact_Personal","All_Gender_clean")]))
## 
##  Pearson's Chi-squared test
## 
## data:  table(ImpactPersonal[ImpactPersonal$Supporter_CareerStage_clean ==     levels(ImpactPersonal$Supporter_CareerStage_clean)[3], c("Impact_Personal",     "All_Gender_clean")])
## X-squared = 10.307, df = 4, p-value = 0.03556
chisq.test(table(ImpactPersonal[ImpactPersonal$Supporter_CareerStage_clean==levels(ImpactPersonal$Supporter_CareerStage_clean)[4],c("Impact_Personal","All_Gender_clean")]))
## Warning in
## chisq.test(table(ImpactPersonal[ImpactPersonal$Supporter_CareerStage_clean == :
## Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(ImpactPersonal[ImpactPersonal$Supporter_CareerStage_clean ==     levels(ImpactPersonal$Supporter_CareerStage_clean)[4], c("Impact_Personal",     "All_Gender_clean")])
## X-squared = 4.2477, df = 4, p-value = 0.3735
chisq.test(table(ImpactPersonal[ImpactPersonal$Supporter_CareerStage_clean==levels(ImpactPersonal$Supporter_CareerStage_clean)[5],c("Impact_Personal","All_Gender_clean")]))
## 
##  Pearson's Chi-squared test
## 
## data:  table(ImpactPersonal[ImpactPersonal$Supporter_CareerStage_clean ==     levels(ImpactPersonal$Supporter_CareerStage_clean)[5], c("Impact_Personal",     "All_Gender_clean")])
## X-squared = 8.6889, df = 4, p-value = 0.06936
#split by gender, career effect (same as KW above)
chisq.test(table(ImpactPersonal[ImpactPersonal$All_Gender_clean==levels(ImpactPersonal$All_Gender_clean)[1],c("Impact_Personal","Supporter_CareerStage_clean")]))
## 
##  Pearson's Chi-squared test
## 
## data:  table(ImpactPersonal[ImpactPersonal$All_Gender_clean == levels(ImpactPersonal$All_Gender_clean)[1],     c("Impact_Personal", "Supporter_CareerStage_clean")])
## X-squared = 42.832, df = 16, p-value = 0.0002962
chisq.test(table(ImpactPersonal[ImpactPersonal$All_Gender_clean==levels(ImpactPersonal$All_Gender_clean)[2],c("Impact_Personal","Supporter_CareerStage_clean")]))
## Warning in chisq.test(table(ImpactPersonal[ImpactPersonal$All_Gender_clean == :
## Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(ImpactPersonal[ImpactPersonal$All_Gender_clean == levels(ImpactPersonal$All_Gender_clean)[2],     c("Impact_Personal", "Supporter_CareerStage_clean")])
## X-squared = 16.755, df = 16, p-value = 0.4016
graphdata = ImpactPersonal %>%
  group_by(Supporter_CareerStage_clean, Impact_Personal) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'Supporter_CareerStage_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/ImpactPersonal_CS.eps", width=1000, height=578)
ggplot(graphdata, aes(x=Supporter_CareerStage_clean, y=perc, fill=Impact_Personal)) +
  geom_bar(stat="identity") +
  theme_minimal() +
      theme(plot.title = element_text(hjust = 0.5), text=element_text(size=12), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 16), legend.position="bottom", legend.text = element_text(size=7))+
  scale_x_discrete(limits = rev(levels(ImpactPersonal$Supporter_CareerStage_clean))) +
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="The experience had an impact on my personal life") +
    guides(fill=guide_legend(reverse=TRUE)) +
 coord_flip() +
  scale_fill_manual(name="", values=ePalette)

ggsave(dpi=1000, "4-4-3-TRY.png", limitsize = FALSE)
## Saving 7 x 5 in image
#dev.off()

Q12 Professional support for the receiver (Section 3, Panel 2)

Dependent variable: Receiver_ProfessionalHelp

Original question: During the time I was supporting them, the person received at least some professional help * 1: No * 2: Yes, it started before I started supporting them * 3: Yes, it started after I started supporting them * 4: Yes, but I’m unsure when it started (remove 5- not sure, and 6 - PNTA)

We would like to check if respondents supported someone who doesn’t have professional support at the time the support was offered.

hence recode to: * 0: No(1), and (3) Yes it started after * 1: Yes, it started before (2) removing 2- unsure.

Model: First individual factors (Gender, CS), then Factorial logistical regression Supporter_NumberReceivers ~ Supporter_CareerStage * All_Gender_clean) to check for interactions

# subsetting data and recoding response to binary
Receiver_ProfessionalHelp=genderCS[,c("Receiver_ProfessionalHelp", "Supporter_CareerStage_clean", "All_Gender_clean")]
#recode andclean
Receiver_ProfessionalHelp[(Receiver_ProfessionalHelp$Receiver_ProfessionalHelp %in% c(1,3)),"Receiver_ProfessionalHelp"]=0
Receiver_ProfessionalHelp[(Receiver_ProfessionalHelp$Receiver_ProfessionalHelp %in% c(2)),"Receiver_ProfessionalHelp"]=1
Receiver_ProfessionalHelp=Receiver_ProfessionalHelp[Receiver_ProfessionalHelp$Receiver_ProfessionalHelp %in% seq(0,1), ] #remove NAs and some choices
dim(Receiver_ProfessionalHelp)[1]
## [1] 873
#LR gender
summary(glm(Receiver_ProfessionalHelp~All_Gender_clean, data=Receiver_ProfessionalHelp, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Receiver_ProfessionalHelp ~ All_Gender_clean, family = "binomial", 
##     data = Receiver_ProfessionalHelp)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8531  -0.8531  -0.8216   1.5410   1.5812  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -0.82345    0.12180  -6.761 1.37e-11 ***
## All_Gender_cleanWomen -0.08906    0.15378  -0.579    0.563    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1056.4  on 872  degrees of freedom
## Residual deviance: 1056.0  on 871  degrees of freedom
## AIC: 1060
## 
## Number of Fisher Scoring iterations: 4
#LR CS
summary(glm(Receiver_ProfessionalHelp~Supporter_CareerStage_clean, data=Receiver_ProfessionalHelp, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Receiver_ProfessionalHelp ~ Supporter_CareerStage_clean, 
##     family = "binomial", data = Receiver_ProfessionalHelp)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.1362  -0.7644  -0.7608   1.2191   1.6620  
## 
## Coefficients:
##                                                   Estimate Std. Error z value
## (Intercept)                                       -1.09179    0.11674  -9.352
## Supporter_CareerStage_cleanPostdocs                0.01087    0.19268   0.056
## Supporter_CareerStage_cleanGroup leaders (<5yr)    0.54656    0.23048   2.371
## Supporter_CareerStage_cleanGroup leaders (5-10yr)  0.37617    0.28514   1.319
## Supporter_CareerStage_cleanGroup leaders (>10yr)   0.99415    0.25005   3.976
##                                                   Pr(>|z|)    
## (Intercept)                                        < 2e-16 ***
## Supporter_CareerStage_cleanPostdocs                 0.9550    
## Supporter_CareerStage_cleanGroup leaders (<5yr)     0.0177 *  
## Supporter_CareerStage_cleanGroup leaders (5-10yr)   0.1871    
## Supporter_CareerStage_cleanGroup leaders (>10yr)  7.01e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1056.4  on 872  degrees of freedom
## Residual deviance: 1036.0  on 868  degrees of freedom
## AIC: 1046
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Receiver_ProfessionalHelp~Supporter_CareerStage_clean, data=Receiver_ProfessionalHelp, family="binomial"))) #OR (PhD as baseline)
##                                       (Intercept) 
##                                         0.3356164 
##               Supporter_CareerStage_cleanPostdocs 
##                                         1.0109329 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         1.7272996 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         1.4566893 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         2.7024205
exp(confint(glm(Receiver_ProfessionalHelp~Supporter_CareerStage_clean, data=Receiver_ProfessionalHelp, family="binomial"))) #CI
## Waiting for profiling to be done...
##                                                       2.5 %    97.5 %
## (Intercept)                                       0.2657445 0.4201863
## Supporter_CareerStage_cleanPostdocs               0.6904333 1.4709849
## Supporter_CareerStage_cleanGroup leaders (<5yr)   1.0941086 2.7055760
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.8212745 2.5234654
## Supporter_CareerStage_cleanGroup leaders (>10yr)  1.6529346 4.4158696
#FLR gender-CS interactions
summary(glm(Receiver_ProfessionalHelp~Supporter_CareerStage_clean*All_Gender_clean, data=Receiver_ProfessionalHelp, family="binomial"))
## 
## Call:
## glm(formula = Receiver_ProfessionalHelp ~ Supporter_CareerStage_clean * 
##     All_Gender_clean, family = "binomial", data = Receiver_ProfessionalHelp)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.2278  -0.7893  -0.7809   1.2858   1.7537  
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                             -1.29578
## Supporter_CareerStage_cleanPostdocs                                      0.09808
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          0.98212
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        1.00810
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         1.04447
## All_Gender_cleanWomen                                                    0.28924
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen               -0.12290
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen   -0.69226
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen -1.27453
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   0.07985
##                                                                         Std. Error
## (Intercept)                                                                0.22133
## Supporter_CareerStage_cleanPostdocs                                        0.36105
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            0.37427
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          0.40701
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           0.36557
## All_Gender_cleanWomen                                                      0.26068
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.42709
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      0.47950
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    0.60620
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     0.52025
##                                                                         z value
## (Intercept)                                                              -5.854
## Supporter_CareerStage_cleanPostdocs                                       0.272
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           2.624
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         2.477
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          2.857
## All_Gender_cleanWomen                                                     1.110
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                -0.288
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    -1.444
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  -2.102
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.153
##                                                                         Pr(>|z|)
## (Intercept)                                                             4.79e-09
## Supporter_CareerStage_cleanPostdocs                                      0.78589
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          0.00869
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        0.01325
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         0.00428
## All_Gender_cleanWomen                                                    0.26718
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                0.77353
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    0.14882
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  0.03551
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   0.87801
##                                                                            
## (Intercept)                                                             ***
## Supporter_CareerStage_cleanPostdocs                                        
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         ** 
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       *  
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        ** 
## All_Gender_cleanWomen                                                      
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen *  
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1056.4  on 872  degrees of freedom
## Residual deviance: 1029.4  on 863  degrees of freedom
## AIC: 1049.4
## 
## Number of Fisher Scoring iterations: 4

Professional support for the receiver x (PhD+ Postdoc) vs PIs

Code new variable PI: - 0: PhD+ postdoc - 1: PIs of all stages

genderCS$PI="Group leaders"
genderCS[(genderCS$Supporter_CareerStage_clean==levels(genderCS$Supporter_CareerStage_clean)[1] | genderCS$Supporter_CareerStage_clean==levels(genderCS$Supporter_CareerStage_clean)[2]),'PI']="PhDs and Postdocs"
genderCS$PI=as.factor(genderCS$PI)
genderCS$PI=relevel(genderCS$PI, "PhDs and Postdocs") #relevel so that "PhDs and postdocs"" is baseline
summary(genderCS$PI)
## PhDs and Postdocs     Group leaders 
##               890               365
# redo subsetting
# subsetting data and recoding response to binary
Receiver_ProfessionalHelp=genderCS[,c("Receiver_ProfessionalHelp", "Supporter_CareerStage_clean", "PI", "All_Gender_clean")]
#recode andclean
Receiver_ProfessionalHelp[(Receiver_ProfessionalHelp$Receiver_ProfessionalHelp %in% c(1,3)),"Receiver_ProfessionalHelp"]=0
Receiver_ProfessionalHelp[(Receiver_ProfessionalHelp$Receiver_ProfessionalHelp %in% c(2)),"Receiver_ProfessionalHelp"]=1
Receiver_ProfessionalHelp=Receiver_ProfessionalHelp[Receiver_ProfessionalHelp$Receiver_ProfessionalHelp %in% seq(0,1), ] #remove NAs and some choices
dim(Receiver_ProfessionalHelp)[1]
## [1] 873
#LR
summary(glm(Receiver_ProfessionalHelp~PI, data=Receiver_ProfessionalHelp, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Receiver_ProfessionalHelp ~ PI, family = "binomial", 
##     data = Receiver_ProfessionalHelp)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.9967  -0.7621  -0.7621   1.3696   1.6602  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.08780    0.09287 -11.713  < 2e-16 ***
## PIGroup leaders  0.64668    0.15778   4.098 4.16e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1056.4  on 872  degrees of freedom
## Residual deviance: 1039.8  on 871  degrees of freedom
## AIC: 1043.8
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Receiver_ProfessionalHelp~PI, data=Receiver_ProfessionalHelp, family="binomial"))) #OR (PhD as baseline)
##     (Intercept) PIGroup leaders 
##       0.3369565       1.9091843
exp(confint(glm(Receiver_ProfessionalHelp~PI, data=Receiver_ProfessionalHelp, family="binomial"))) #CI
## Waiting for profiling to be done...
##                    2.5 %    97.5 %
## (Intercept)     0.280071 0.4031764
## PIGroup leaders 1.400248 2.6003179
### Professional support for the receiver x gender graph [NOT REPORTED]
Receiver_ProfessionalHelp[Receiver_ProfessionalHelp$Receiver_ProfessionalHelp==0, "Receiver_ProfessionalHelp"]="No"
Receiver_ProfessionalHelp[Receiver_ProfessionalHelp$Receiver_ProfessionalHelp==1, "Receiver_ProfessionalHelp"]="Yes"
Receiver_ProfessionalHelp$Receiver_ProfessionalHelp=factor(Receiver_ProfessionalHelp$Receiver_ProfessionalHelp)
#ImpactPersonal$Impact_Personal=factor(ImpactPersonal$Impact_Personal, levels=c("No","Yes"))
graphdata =Receiver_ProfessionalHelp %>%
  group_by(All_Gender_clean, Receiver_ProfessionalHelp) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'All_Gender_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/ReceiverProfessionalHelp_gender.eps", width=1000, height=578)
ggplot(graphdata, aes(x=All_Gender_clean, y=perc, fill=Receiver_ProfessionalHelp)) +
  geom_bar(stat="identity") +
  theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5), text=element_text(size=20))+
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="During the time I was supporting them, the person received at least some professional help") +
    guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=c(eBlue, eGreen))

dev.off()
## null device 
##           1

Professional support for the receiver career graph

graphdata = Receiver_ProfessionalHelp %>%
  group_by(Supporter_CareerStage_clean, Receiver_ProfessionalHelp) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'Supporter_CareerStage_clean' (override with `.groups` argument)
### Professional support for the receiver, PhDs& postdocs vs PIs graph (New graph 3.2.1?) 
graphdata = Receiver_ProfessionalHelp %>%
  group_by(PI, Receiver_ProfessionalHelp) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'PI' (override with `.groups` argument)
# This will save the image to your local code folder
ggplot(graphdata, aes(x=PI, y=perc, fill=Receiver_ProfessionalHelp)) +
  geom_bar(stat="identity") +
  theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5), text=element_text(size=12), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 16), legend.text = element_text(size=7))+ 
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="During the time I was supporting them, the person received at least some professional help") +
    guides(fill=guide_legend(reverse=TRUE)) +
  scale_x_discrete(limits = rev(levels(graphdata$PI))) +
  coord_flip() +
  scale_fill_manual(name="", values=c(eBlue, eGreen))

ggsave(dpi=1000, "3-2-1.png", limitsize = FALSE)
## Saving 7 x 5 in image
dev.off()
## null device 
##           1

Q17a Comfortable_withMH (Seciont 6, Panel 1)

Model: ordinal logsitic regression

#Subset
ComfortablewithMH=genderCS[,c("Comfortable_withMH", "All_Gender_clean", "Supporter_CareerStage_clean")]
#clean
ComfortablewithMH=ComfortablewithMH[(ComfortablewithMH$Comfortable_withMH %in% seq(1:5)),]
dim(ComfortablewithMH)[1]
## [1] 1246
#factorise
ComfortablewithMH$Comfortable_withMH=as.factor(ComfortablewithMH$Comfortable_withMH)
table(ComfortablewithMH$Comfortable_withMH)
## 
##   1   2   3   4   5 
##  52 173 113 391 517

Comfortable_withMH x gender

exp(coef(polr(Comfortable_withMH~All_Gender_clean, data=ComfortablewithMH, Hess=TRUE, method="logistic"))) #OR (men as baseline)
## All_Gender_cleanWomen 
##              1.276734
exp(confint(polr(Comfortable_withMH~All_Gender_clean, data=ComfortablewithMH, Hess=TRUE, method="logistic"))) #CI
## Waiting for profiling to be done...
##    2.5 %   97.5 % 
## 1.034486 1.575691
kruskal.test(Comfortable_withMH ~ All_Gender_clean, data=ComfortablewithMH) #effect of gender on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Comfortable_withMH by All_Gender_clean
## Kruskal-Wallis chi-squared = 5.1423, df = 1, p-value = 0.02335

Comfortable_withMH x CS

exp(coef(polr(Comfortable_withMH~Supporter_CareerStage_clean, data=ComfortablewithMH, Hess=TRUE, method="logistic"))) #OR (PhD as baseline)
##               Supporter_CareerStage_cleanPostdocs 
##                                         0.9371691 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         0.6524247 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         0.6759996 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         0.8628607
exp(confint(polr(Comfortable_withMH~Supporter_CareerStage_clean, data=ComfortablewithMH, Hess=TRUE, method="logistic"))) #CI
## Waiting for profiling to be done...
##                                                       2.5 %    97.5 %
## Supporter_CareerStage_cleanPostdocs               0.7318633 1.2006074
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.4719229 0.9027507
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.4459509 1.0276223
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.5986961 1.2469950
kruskal.test(Comfortable_withMH ~ Supporter_CareerStage_clean, data=ComfortablewithMH) #effect of CS on baseline
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Comfortable_withMH by Supporter_CareerStage_clean
## Kruskal-Wallis chi-squared = 8.8764, df = 4, p-value = 0.06426

Comfortable_withMH x gender graph (Graph 6.1.3)

levels(ComfortablewithMH$Comfortable_withMH)=c("Strongly disagree", "Somewhat disagree", "Neither agree or disagree", "Somewhat agree", "Strongly agree")
ComfortablewithMH$Comfortable_withMH=factor(ComfortablewithMH$Comfortable_withMH, levels=c("Strongly agree", "Somewhat agree", "Neither agree or disagree", "Somewhat disagree", "Strongly disagree"))

graphdata = ComfortablewithMH %>%
  group_by(All_Gender_clean, Comfortable_withMH) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'All_Gender_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/ComfortablewithMH_gender.eps", width=1000, height=578)
ggplot(graphdata, aes(x=rev(All_Gender_clean), y=rev(perc), fill=rev(Comfortable_withMH))) +
  geom_bar(stat="identity") +
  theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5), text=element_text(size=12), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 16), legend.position="bottom", legend.text = element_text(size=7))+
  geom_text(aes(label=round(rev(perc), digit=1)), size=3.5, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="I was comfortable discussing mental health problems") +
    guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=ePalette)

ggsave(dpi=1000, "6-1-3.png", limitsize = FALSE)
## Saving 7 x 5 in image
dev.off()
## null device 
##           1

Comfortable_withMH x CS graph

graphdata = ComfortablewithMH %>%
  group_by(Supporter_CareerStage_clean, Comfortable_withMH) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'Supporter_CareerStage_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/ComfortablewithMH_CS.eps", width=1000, height=578)
ggplot(graphdata, aes(x=Supporter_CareerStage_clean, y=perc, fill=Comfortable_withMH)) +
  geom_bar(stat="identity") +
  theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5), text=element_text(size=20))+
  scale_x_discrete(limits = rev(levels(ComfortablewithMH$Supporter_CareerStage_clean))) +
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="I was comfortable discussing mental health problems") +
    guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=ePalette)

dev.off()
## null device 
##           1

Q17b Confident_withMH (Section 6, Panel 1)

Model: ordinal logsitic regression

#Subset
ConfidentwithMH=genderCS[,c("Confident_withMH", "All_Gender_clean", "Supporter_CareerStage_clean")]
#clean
ConfidentwithMH=ConfidentwithMH[(ConfidentwithMH$Confident_withMH %in% seq(1:5)),]
dim(ConfidentwithMH)[1]
## [1] 1251
#factorise
ConfidentwithMH$Confident_withMH=as.factor(ConfidentwithMH$Confident_withMH)
table(ConfidentwithMH$Confident_withMH)
## 
##   1   2   3   4   5 
## 100 292 219 478 162

Confident_withMH x gender

exp(coef(polr(Confident_withMH~All_Gender_clean, data=ConfidentwithMH, Hess=TRUE, method="logistic"))) #OR (men as baseline)
## All_Gender_cleanWomen 
##             0.9797103
exp(confint(polr(Confident_withMH~All_Gender_clean, data=ConfidentwithMH, Hess=TRUE, method="logistic"))) #CI
## Waiting for profiling to be done...
##     2.5 %    97.5 % 
## 0.7966081 1.2046537
kruskal.test(Confident_withMH ~ All_Gender_clean, data=ConfidentwithMH) #effect of gender on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Confident_withMH by All_Gender_clean
## Kruskal-Wallis chi-squared = 0.037494, df = 1, p-value = 0.8465

Confident_withMH x CS

exp(coef(polr(Confident_withMH~Supporter_CareerStage_clean, data=ConfidentwithMH, Hess=TRUE, method="logistic"))) #OR (PhD as baseline)
##               Supporter_CareerStage_cleanPostdocs 
##                                         0.9544268 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         0.6795118 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         0.8960816 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         1.3411865
exp(confint(polr(Confident_withMH~Supporter_CareerStage_clean, data=ConfidentwithMH, Hess=TRUE, method="logistic"))) #CI
## Waiting for profiling to be done...
##                                                       2.5 %    97.5 %
## Supporter_CareerStage_cleanPostdocs               0.7495507 1.2154293
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.4916361 0.9389662
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.5987433 1.3439043
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.9348656 1.9273882
kruskal.test(Confident_withMH ~ Supporter_CareerStage_clean, data=ConfidentwithMH) #effect of CS on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Confident_withMH by Supporter_CareerStage_clean
## Kruskal-Wallis chi-squared = 9.9089, df = 4, p-value = 0.04199
## multiway kruskal wallis
## this requries the package 'gtools'
## CSpairs=combinations(n=5, r=2, v=levels(ConfidentwithMH$Supporter_CareerStage_clean), repeats.allowed = F)
# Compare between early PIs and other CSs only
## this requires the package "MTHdiscrete"
CSpairs=cbind(rep("Group leaders (<5yr)", 4), levels(ImpactDraining$Supporter_CareerStage_clean)[c(1,2,4,5)])
ConfidentwithMHCSKW=data.frame(CS1=c(), CS2=c(), X2=c(), N=c(), df=c(), pVal=c()) 
for (i in 1:dim(CSpairs)[1]) {
  comparedData=ConfidentwithMH[(ConfidentwithMH$Supporter_CareerStage_clean==CSpairs[i,1]|ConfidentwithMH$Supporter_CareerStage_clean==CSpairs[i,2]),]
  KW=kruskal.test(Confident_withMH ~ Supporter_CareerStage_clean, data=comparedData) #effect of CS on response
  ConfidentwithMHCSKW=rbind(ConfidentwithMHCSKW, data.frame(CS1=CSpairs[i,1], CS2=CSpairs[i,2], X2=as.numeric(KW$statistic), N=dim(comparedData)[1], df=as.numeric(KW$parameter), pVal=as.numeric(KW$p.value)))
}

ConfidentwithMHCSKW$adjpVal=Sidak.p.adjust(ConfidentwithMHCSKW$pVal)
ConfidentwithMHCSKW
##                    CS1                    CS2       X2   N df        pVal
## 1 Group leaders (<5yr)           PhD students 5.384519 686  1 0.020316188
## 2 Group leaders (<5yr)               Postdocs 3.810071 511  1 0.050945296
## 3 Group leaders (<5yr) Group leaders (5-10yr) 1.312923 245  1 0.251866056
## 4 Group leaders (<5yr)  Group leaders (>10yr) 8.892148 274  1 0.002863996
##      adjpVal
## 1 0.07882164
## 2 0.18873081
## 3 0.68673099
## 4 0.01140686

Confident_with MH x early PI vs others

Make sure you run the corresponding “impact draining” chunk (under heading “### Impact Draining x early PI vs others (PhD/postdoc/midPI/latePI)”) before running this (need to have early PI variable in genderCS)

#redo subsetting
ConfidentwithMHPI=genderCS[,c("Confident_withMH", "All_Gender_clean", "earlyPI")]
summary(ConfidentwithMHPI) #there are some NAs
##  Confident_withMH All_Gender_clean                 earlyPI    
##  Min.   :1.000    Men  :474        Group leaders (<5yr): 155  
##  1st Qu.:2.000    Women:781        Other career stages :1100  
##  Median :4.000                                                
##  Mean   :3.252                                                
##  3rd Qu.:4.000                                                
##  Max.   :6.000                                                
##  NA's   :2
#clean
ConfidentwithMHPI=ConfidentwithMHPI[(ConfidentwithMHPI$Confident_withMH %in% seq(1:5)),]
dim(ConfidentwithMHPI)[1] #this gives N
## [1] 1251
#factorise
ConfidentwithMHPI$Confident_withMH=as.factor(ConfidentwithMHPI$Confident_withMH)

#kruskal wallis
kruskal.test(Confident_withMH ~ earlyPI, data=ConfidentwithMHPI)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Confident_withMH by earlyPI
## Kruskal-Wallis chi-squared = 6.3366, df = 1, p-value = 0.01183

Confident_withMH x gender graph

levels(ConfidentwithMH$Confident_withMH)=c("Strongly disagree", "Somewhat disagree", "Neither agree or disagree", "Somewhat agree", "Strongly agree")
ConfidentwithMH$Confident_withMH=factor(ConfidentwithMH$Confident_withMH, levels=c("Strongly agree", "Somewhat agree", "Neither agree or disagree", "Somewhat disagree", "Strongly disagree"))
graphdata = ConfidentwithMH %>%
  group_by(All_Gender_clean, Confident_withMH) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'All_Gender_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/ConfidentwithMH_gender.eps", width=1000, height=578)
ggplot(graphdata, aes(x=All_Gender_clean, y=perc, fill=Confident_withMH)) +
  geom_bar(stat="identity") +
  theme_minimal() +
     theme(plot.title = element_text(hjust = 0.5), text=element_text(size=20))+
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="I was confident in my ability to do or say the right thing") +
    guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=ePalette)

dev.off()
## null device 
##           1

Confident_withMH x CS graph (Graph 6.1.4)

graphdata = ConfidentwithMH %>%
  group_by(Supporter_CareerStage_clean, Confident_withMH) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'Supporter_CareerStage_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/ConfidentwithMH_CS.eps", width=1000, height=578)
ggplot(graphdata, aes(x=Supporter_CareerStage_clean, y=perc, fill=Confident_withMH)) +
  geom_bar(stat="identity") +
  theme_minimal() +
      theme(plot.title = element_text(hjust = 0.5), text=element_text(size=12), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 16), legend.position="bottom", legend.text = element_text(size=7))+
  scale_x_discrete(limits = rev(levels(ConfidentwithMH$Supporter_CareerStage_clean))) +
  geom_text(aes(label=round(perc, digit=1)), size=3, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="I was confident in my ability to do or say the right thing") +
    guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=ePalette)

ggsave(dpi=1000, "6-1-4 GOOD.png", limitsize = FALSE)
## Saving 7 x 5 in image
dev.off()
## null device 
##           1

Q18a Impact Rewarding (Seciont 4, Panel 1)

Model: ordinal logistic regression

#subsetting
ImpactRewarding=genderCS[,c("Impact_Rewarding", "All_Gender_clean", "Supporter_CareerStage_clean")]
#clean
ImpactRewarding=ImpactRewarding[(ImpactRewarding$Impact_Rewarding %in% seq(1:5)),]
dim(ImpactRewarding)[1]
## [1] 1243
#factorise
ImpactRewarding$Impact_Rewarding=as.factor(ImpactRewarding$Impact_Rewarding)
table(ImpactRewarding$Impact_Rewarding)
## 
##   1   2   3   4   5 
##  30  98 270 445 400

gender

exp(coef(polr(Impact_Rewarding~All_Gender_clean, data=ImpactRewarding, Hess=TRUE, method="logistic"))) #OR (men as baseline)
## All_Gender_cleanWomen 
##              0.952375
kruskal.test(Impact_Rewarding ~ All_Gender_clean, data=ImpactRewarding) #effect of gender on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Impact_Rewarding by All_Gender_clean
## Kruskal-Wallis chi-squared = 0.2094, df = 1, p-value = 0.6472

CS

exp(coef(polr(Impact_Rewarding~Supporter_CareerStage_clean, data=ImpactRewarding, Hess=TRUE, method="logistic"))) #OR (men as baseline)
##               Supporter_CareerStage_cleanPostdocs 
##                                         1.0672600 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         0.6867169 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         0.7174809 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         0.9056449
kruskal.test(Impact_Rewarding ~ Supporter_CareerStage_clean, data=ImpactRewarding) #effect of CS on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Impact_Rewarding by Supporter_CareerStage_clean
## Kruskal-Wallis chi-squared = 8.9339, df = 4, p-value = 0.06277

Q18b Impact Positive Difference

Model: ordinal logistic regression

#Subsetting
ImpactPositiveDifference=genderCS[,c("Impact_PositiveDifference", "All_Gender_clean", "Supporter_CareerStage_clean")]
#clean
ImpactPositiveDifference=ImpactPositiveDifference[(ImpactPositiveDifference$Impact_PositiveDifference %in% seq(1:5)),]
dim(ImpactPositiveDifference)[1]
## [1] 1241
#factorise
ImpactPositiveDifference$Impact_PositiveDifference=as.factor(ImpactPositiveDifference$Impact_PositiveDifference)
table(ImpactPositiveDifference$Impact_PositiveDifference)
## 
##   1   2   3   4   5 
##  14  33 234 548 412

Impact Positive Difference x gender

exp(coef(polr(Impact_PositiveDifference~All_Gender_clean, data=ImpactPositiveDifference, Hess=TRUE, method="logistic"))) #OR (men as baseline)
## All_Gender_cleanWomen 
##             0.9596224
kruskal.test(Impact_PositiveDifference ~ All_Gender_clean, data=ImpactPositiveDifference) #effect of gender on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Impact_PositiveDifference by All_Gender_clean
## Kruskal-Wallis chi-squared = 0.14425, df = 1, p-value = 0.7041

Impact Positive Difference x CS

exp(coef(polr(Impact_PositiveDifference~Supporter_CareerStage_clean, data=ImpactPositiveDifference, Hess=TRUE, method="logistic"))) #OR PhD as baseline
##               Supporter_CareerStage_cleanPostdocs 
##                                         1.1737603 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         0.9169238 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         1.2814621 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         1.1194034
kruskal.test(Impact_PositiveDifference ~ Supporter_CareerStage_clean, data=ImpactPositiveDifference) #effect of CS on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Impact_PositiveDifference by Supporter_CareerStage_clean
## Kruskal-Wallis chi-squared = 3.582, df = 4, p-value = 0.4655

Q20d Support Receiver (Section 4, Panel 1)

Model: ordinal logistic regression

#subset
SupportReceiver=genderCS[,c("Support_Receiver", "All_Gender_clean", "Supporter_CareerStage_clean")]
#clean
SupportReceiver=SupportReceiver[(SupportReceiver$Support_Receiver %in% seq(1:5)),]
dim(SupportReceiver)[1]
## [1] 1227
#factorise
SupportReceiver$Support_Receiver=as.factor(SupportReceiver$Support_Receiver)
table(SupportReceiver$Support_Receiver)
## 
##   1   2   3   4   5 
##  27  58  87 362 693

gender

exp(coef(polr(Support_Receiver~All_Gender_clean, data=SupportReceiver, Hess=TRUE, method="logistic"))) #OR (men as baseline)
## All_Gender_cleanWomen 
##              1.016317
kruskal.test(Support_Receiver ~ All_Gender_clean, data=SupportReceiver) # effect of gender on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Support_Receiver by All_Gender_clean
## Kruskal-Wallis chi-squared = 0.020246, df = 1, p-value = 0.8869

CS

exp(coef(polr(Support_Receiver~Supporter_CareerStage_clean, data=SupportReceiver, Hess=TRUE, method="logistic"))) #OR (PhD as baseline)
##               Supporter_CareerStage_cleanPostdocs 
##                                         1.2207761 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         0.6228073 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         0.8558125 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         0.8469562
kruskal.test(Support_Receiver ~ Supporter_CareerStage_clean, data=SupportReceiver) #effect of CS on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Support_Receiver by Supporter_CareerStage_clean
## Kruskal-Wallis chi-squared = 14.34, df = 4, p-value = 0.006285

Q18c Impact Beacon (Section 4, Panel 1)

Model: ordinal logistic regression

#subset
ImpactBeacon=genderCS[,c("Impact_Beacon", "All_Gender_clean", "Supporter_CareerStage_clean")]
#clean
ImpactBeacon=ImpactBeacon[(ImpactBeacon$Impact_Beacon %in% seq(1:5)),]
dim(ImpactBeacon)[1]
## [1] 1161
#factorise
ImpactBeacon$Impact_Beacon=as.factor(ImpactBeacon$Impact_Beacon)
table(ImpactBeacon$Impact_Beacon)
## 
##   1   2   3   4   5 
## 118 137 334 350 222

Impact Beacon x gender

exp(coef(polr(Impact_Beacon~All_Gender_clean, data=ImpactBeacon, Hess=TRUE, method="logistic"))) #OR (men as baseline)
## All_Gender_cleanWomen 
##              1.426692
exp(confint(polr(Impact_Beacon~All_Gender_clean, data=ImpactBeacon, Hess=TRUE, method="logistic"))) #CI
## Waiting for profiling to be done...
##    2.5 %   97.5 % 
## 1.153487 1.765366
kruskal.test(Impact_Beacon ~ All_Gender_clean, data=ImpactBeacon) #effect of gender on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Impact_Beacon by All_Gender_clean
## Kruskal-Wallis chi-squared = 10.694, df = 1, p-value = 0.001075

Impact Beacon x CS

exp(coef(polr(Impact_Beacon~Supporter_CareerStage_clean, data=ImpactBeacon, Hess=TRUE, method="logistic"))) #OR (PhD as baseline)
##               Supporter_CareerStage_cleanPostdocs 
##                                          1.124024 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                          1.403487 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                          1.222366 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                          1.545442
kruskal.test(Impact_Beacon ~ Supporter_CareerStage_clean, data=ImpactBeacon) #effect of CS on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Impact_Beacon by Supporter_CareerStage_clean
## Kruskal-Wallis chi-squared = 7.7745, df = 4, p-value = 0.1002

Q20a Support Institutions (Section 5, Panel 2)

Model: ordinal logistic regression

SupportInstitution=genderCS[,c("Support_Institution", "All_Gender_clean", "Supporter_CareerStage_clean")]
#clean
SupportInstitution=SupportInstitution[(SupportInstitution$Support_Institution %in% seq(1:5)),]
dim(SupportInstitution)[1]
## [1] 1104
#factorise
SupportInstitution$Support_Institution=as.factor(SupportInstitution$Support_Institution)
table(SupportInstitution$Support_Institution)
## 
##   1   2   3   4   5 
## 436 245 255 124  44

Support Institutions x gender

exp(coef(polr(Support_Institution~All_Gender_clean, data=SupportInstitution, Hess=TRUE, method="logistic"))) #OR (men as baseline)
## All_Gender_cleanWomen 
##             0.7659521
exp(confint(polr(Support_Institution~All_Gender_clean, data=SupportInstitution, Hess=TRUE, method="logistic"))) #CI
## Waiting for profiling to be done...
##     2.5 %    97.5 % 
## 0.6145262 0.9546073
kruskal.test(Support_Institution ~ All_Gender_clean, data=SupportInstitution) #effect of gender on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Support_Institution by All_Gender_clean
## Kruskal-Wallis chi-squared = 5.6368, df = 1, p-value = 0.01759

Support Institutions x CS

exp(coef(polr(Support_Institution~Supporter_CareerStage_clean, data=SupportInstitution, Hess=TRUE, method="logistic"))) # OR (PhD as baseline)
##               Supporter_CareerStage_cleanPostdocs 
##                                          1.019736 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                          2.624482 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                          2.016627 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                          5.248899
exp(confint(polr(Support_Institution~Supporter_CareerStage_clean, data=SupportInstitution, Hess=TRUE, method="logistic"))) #CI 
## Waiting for profiling to be done...
##                                                       2.5 %   97.5 %
## Supporter_CareerStage_cleanPostdocs               0.7818768 1.329219
## Supporter_CareerStage_cleanGroup leaders (<5yr)   1.8744130 3.680966
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 1.3235401 3.072055
## Supporter_CareerStage_cleanGroup leaders (>10yr)  3.5424203 7.802391
kruskal.test(Support_Institution ~ Supporter_CareerStage_clean, data=SupportInstitution) #effect on CS on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Support_Institution by Supporter_CareerStage_clean
## Kruskal-Wallis chi-squared = 92.751, df = 4, p-value < 2.2e-16

Support Institution x gender graph (Graph 5.2.4)

levels(SupportInstitution$Support_Institution)=c("Strongly disagree", "Somewhat disagree", "Neither agree or disagree", "Somewhat agree", "Strongly agree")
SupportInstitution$Support_Institution=factor(SupportInstitution$Support_Institution, levels=c("Strongly agree", "Somewhat agree", "Neither agree or disagree", "Somewhat disagree", "Strongly disagree"))
graphdata = SupportInstitution %>%
  group_by(All_Gender_clean, Support_Institution) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'All_Gender_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/SupportInstitution_gender.eps", width=1000, height=578)
ggplot(graphdata, aes(x=All_Gender_clean, y=perc, fill=Support_Institution)) +
  geom_bar(stat="identity") +
  theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5), text=element_text(size=12), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 16), legend.position="bottom", legend.text = element_text(size=7))+
  geom_text(aes(label=round(perc, digit=1)), size=3, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="I feel supported or valued by my institution \n(e.g. managers, department) for the help I was providing") +
    guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=ePalette)

ggsave(dpi=1000, "5-2-4.png", limitsize = FALSE)
## Saving 7 x 5 in image
dev.off()
## null device 
##           1

Support instituions x CS graph (Graph 5.2.5)

graphdata = SupportInstitution %>%
  group_by(Supporter_CareerStage_clean, Support_Institution) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'Supporter_CareerStage_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/SupportInstitution_CS.eps", width=1000, height=578)
ggplot(graphdata, aes(x=Supporter_CareerStage_clean, y=perc, fill=Support_Institution)) +
  geom_bar(stat="identity") +
  theme_minimal() +
      theme(plot.title = element_text(hjust = 0.5), text=element_text(size=12), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 16), legend.position="bottom", legend.text = element_text(size=7))+
  scale_x_discrete(limits = rev(levels(SupportInstitution$Supporter_CareerStage_clean))) +
  geom_text(aes(label=round(perc, digit=1)), size=3, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="I feel supported or valued by my institution (e.g. managers, department) for the help I was providing") +
    guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=ePalette)

ggsave(dpi=1000, "5-2-5.png", limitsize = FALSE)
## Saving 7 x 5 in image
dev.off()
## null device 
##           1

Q20b Support colleagues (Section 5, Panel 2)

Model: ordinal logistic regression

#subset
SupportColleagues=genderCS[,c("Support_Colleagues", "All_Gender_clean", "Supporter_CareerStage_clean")]
#clean
SupportColleagues=SupportColleagues[(SupportColleagues$Support_Colleagues %in% seq(1:5)),]
dim(SupportColleagues)[1]
## [1] 1111
#factorise
SupportColleagues$Support_Colleagues=as.factor(SupportColleagues$Support_Colleagues)
table(SupportColleagues$Support_Colleagues)
## 
##   1   2   3   4   5 
## 151 181 293 339 147

Support colleagues x gender

exp(coef(polr(Support_Colleagues~All_Gender_clean, data=SupportColleagues, Hess=TRUE, method="logistic"))) #OR (men as baseline)
## All_Gender_cleanWomen 
##             0.8551606
exp(confint(polr(Support_Colleagues~All_Gender_clean, data=SupportColleagues, Hess=TRUE, method="logistic"))) #CI
## Waiting for profiling to be done...
##     2.5 %    97.5 % 
## 0.6887148 1.0614565
kruskal.test(Support_Colleagues ~ All_Gender_clean, data=SupportColleagues) #effect of gender on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Support_Colleagues by All_Gender_clean
## Kruskal-Wallis chi-squared = 2.0173, df = 1, p-value = 0.1555

Support colleagues x CS

exp(coef(polr(Support_Colleagues~Supporter_CareerStage_clean, data=SupportColleagues, Hess=TRUE, method="logistic"))) #OR (PhD as baseline)
##               Supporter_CareerStage_cleanPostdocs 
##                                          1.040821 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                          1.150612 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                          1.071028 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                          2.401214
exp(confint(polr(Support_Colleagues~Supporter_CareerStage_clean, data=SupportColleagues, Hess=TRUE, method="logistic"))) #CI
## Waiting for profiling to be done...
##                                                       2.5 %   97.5 %
## Supporter_CareerStage_cleanPostdocs               0.8063473 1.343653
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.8295246 1.597604
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.6971757 1.647557
## Supporter_CareerStage_cleanGroup leaders (>10yr)  1.6387705 3.530297
kruskal.test(Support_Colleagues ~ Supporter_CareerStage_clean, data=SupportColleagues) #effect of CS on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Support_Colleagues by Supporter_CareerStage_clean
## Kruskal-Wallis chi-squared = 20.333, df = 4, p-value = 0.0004293

Support colleagues x gender graph

levels(SupportColleagues$Support_Colleagues)=c("Strongly disagree", "Somewhat disagree", "Neither agree or disagree", "Somewhat agree", "Strongly agree")
SupportColleagues$Support_Colleagues=factor(SupportColleagues$Support_Colleagues, levels=c("Strongly agree", "Somewhat agree", "Neither agree or disagree", "Somewhat disagree", "Strongly disagree"))
graphdata = SupportColleagues %>%
  group_by(All_Gender_clean, Support_Colleagues) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'All_Gender_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/SupportColleagues_gender.eps", width=1000, height=578)
ggplot(graphdata, aes(x=All_Gender_clean, y=perc, fill=Support_Colleagues)) +
  geom_bar(stat="identity") +
  theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5), text=element_text(size=20))+
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="I felt supported or valued by my colleagues (e.g. other members of the lab) for the help I was providing") +
    guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=ePalette)

dev.off()
## null device 
##           1

Support colleagues x CS graph

graphdata = SupportColleagues %>%
  group_by(Supporter_CareerStage_clean, Support_Colleagues) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'Supporter_CareerStage_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/SupportColleagues_CS.eps", width=1000, height=578)
ggplot(graphdata, aes(x=Supporter_CareerStage_clean, y=perc, fill=Support_Colleagues)) +
  geom_bar(stat="identity") +
  theme_minimal() +
      theme(plot.title = element_text(hjust = 0.5), text=element_text(size=20))+
  scale_x_discrete(limits = rev(levels(SupportColleagues$Supporter_CareerStage_clean))) +
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="I felt supported or valued by my colleagues (e.g. other members of the lab) for the help I was providing") +
    guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=ePalette)

dev.off()
## null device 
##           1

Q20c Support Personal (Section 5, Panel 2)

Model: ordinal logistic regression

#subset
SupportPersonal=genderCS[,c("Support_Personal", "All_Gender_clean", "Supporter_CareerStage_clean")]
#clean
SupportPersonal=SupportPersonal[(SupportPersonal$Support_Personal %in% seq(1:5)),]
dim(SupportPersonal)[1]
## [1] 1125
#factorise
SupportPersonal$Support_Personal=as.factor(SupportPersonal$Support_Personal)
table(SupportPersonal$Support_Personal)
## 
##   1   2   3   4   5 
##  51  94 280 409 291

Support Personal x gender

exp(coef(polr(Support_Personal~All_Gender_clean, data=SupportPersonal, Hess=TRUE, method="logistic"))) #OR (men as baseline)
## All_Gender_cleanWomen 
##             0.9921087
kruskal.test(Support_Personal ~ All_Gender_clean, data=SupportPersonal) #effect of gender on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Support_Personal by All_Gender_clean
## Kruskal-Wallis chi-squared = 0.0053151, df = 1, p-value = 0.9419

Support Personal x CS

exp(coef(polr(Support_Personal~Supporter_CareerStage_clean, data=SupportPersonal, Hess=TRUE, method="logistic"))) #OR (PhD as baseline)
##               Supporter_CareerStage_cleanPostdocs 
##                                         1.0396756 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         0.8833687 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         0.6973069 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         1.7224356
exp(confint(polr(Support_Personal~Supporter_CareerStage_clean, data=SupportPersonal, Hess=TRUE, method="logistic"))) #CI
## Waiting for profiling to be done...
##                                                       2.5 %   97.5 %
## Supporter_CareerStage_cleanPostdocs               0.8047695 1.343481
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.6317658 1.235267
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.4618079 1.053534
## Supporter_CareerStage_cleanGroup leaders (>10yr)  1.1663603 2.552038
kruskal.test(Support_Personal ~ Supporter_CareerStage_clean, data=SupportPersonal) #effect of CS on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Support_Personal by Supporter_CareerStage_clean
## Kruskal-Wallis chi-squared = 13.295, df = 4, p-value = 0.00992

Support Personal x gender graph

levels(SupportPersonal$Support_Personal)=c("Strongly disagree", "Somewhat disagree", "Neither agree or disagree", "Somewhat agree", "Strongly agree")
SupportPersonal$Support_Personal=factor(SupportPersonal$Support_Personal, levels=c("Strongly agree", "Somewhat agree", "Neither agree or disagree", "Somewhat disagree", "Strongly disagree"))

# This will save the image to your local code folder
#eps("images/SupportPersonal_gender.eps", width=1000, height=578)
graphdata = SupportPersonal %>%
  group_by(All_Gender_clean, Support_Personal) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'All_Gender_clean' (override with `.groups` argument)
ggplot(graphdata, aes(x=All_Gender_clean, y=perc, fill=Support_Personal)) +
  geom_bar(stat="identity") +
  theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5), text=element_text(size=20))+
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="I felt supported or valued by my friends, partners and family outside of academia for the help I was providing") +
  coord_flip() +
  scale_fill_manual(name="", values=ePalette)

dev.off()
## null device 
##           1

Support Personal x CS graph

graphdata = SupportPersonal %>%
  group_by(Supporter_CareerStage_clean, Support_Personal) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'Supporter_CareerStage_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/SupportPersonal_CS.eps", width=1000, height=578)
ggplot(graphdata, aes(x=Supporter_CareerStage_clean, y=perc, fill=Support_Personal)) +
  geom_bar(stat="identity") +
  theme_minimal() +
      theme(plot.title = element_text(hjust = 0.5), text=element_text(size=20))+
  scale_x_discrete(limits = rev(levels(SupportPersonal$Supporter_CareerStage_clean))) +
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="I felt supported or valued by my friends, partners and family outside of academia for the help I was providing") +
    guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=ePalette)

dev.off()
## null device 
##           1

Q21 Need and access to emotional support (Section 5, Panel 1)

Filter down to people who picked at least 1 of the 6 meaningful options (i.e. not PNTA or unsure):

  • Support_Emotional_No
  • Support_Emotional_NoFind
  • Support_Emotional_Institution
  • Support_Emotional_Colleagues
  • Support_Emotional_Personal
  • Support_Emotional_Other_Dummy
Support_Emotional=genderCS[!is.na(genderCS$Support_Emotional_No==1 | genderCS$Support_Emotional_NoFind==1 | genderCS$Support_Emotional_Institution==1 | genderCS$Support_Emotional_Colleagues==1 | genderCS$Support_Emotional_Personal==1 | genderCS$Support_Emotional_Other_Dummy==1),]
Support_Emotional=Support_Emotional[,c("Support_Emotional_No", "Support_Emotional_NoFind", "Support_Emotional_Institution","Support_Emotional_Colleagues" , "Support_Emotional_Personal", "Supporter_CareerStage_clean","All_Gender_clean")]
dim(Support_Emotional)[1]
## [1] 1184
#fill all na with 0
Support_Emotional[is.na(Support_Emotional)]=0

Support_Emotional_No (Yes/No) x Gender // xCS

Dependent variable -

  • 0 - didn’t select this option
  • 1 - did select this option - i.e. DON’T NEED EMOTIONAL SUPPORT

Model: Factorial logistical regression

#LR gender
summary(glm(Support_Emotional_No~All_Gender_clean, data=Support_Emotional, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Support_Emotional_No ~ All_Gender_clean, family = "binomial", 
##     data = Support_Emotional)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.9565  -0.6881  -0.6881   1.4157   1.7645  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -0.54460    0.09846  -5.531 3.18e-08 ***
## All_Gender_cleanWomen -0.77544    0.13348  -5.810 6.27e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1379.8  on 1183  degrees of freedom
## Residual deviance: 1346.0  on 1182  degrees of freedom
## AIC: 1350
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Support_Emotional_No~All_Gender_clean, data=Support_Emotional, family="binomial"))) #OR (men as baseline)
##           (Intercept) All_Gender_cleanWomen 
##             0.5800712             0.4605009
exp(confint(glm(Support_Emotional_No~All_Gender_clean, data=Support_Emotional, family="binomial"))) #CI
## Waiting for profiling to be done...
##                           2.5 %    97.5 %
## (Intercept)           0.4774083 0.7024838
## All_Gender_cleanWomen 0.3542797 0.5980024
#LR CS
summary(glm(Support_Emotional_No~Supporter_CareerStage_clean, data=Support_Emotional, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Support_Emotional_No ~ Supporter_CareerStage_clean, 
##     family = "binomial", data = Support_Emotional)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.1338  -0.7976  -0.7197   1.2217   1.7246  
## 
## Coefficients:
##                                                   Estimate Std. Error z value
## (Intercept)                                       -1.21865    0.10614 -11.481
## Supporter_CareerStage_cleanPostdocs                0.23645    0.16239   1.456
## Supporter_CareerStage_cleanGroup leaders (<5yr)   -0.01223    0.22454  -0.054
## Supporter_CareerStage_cleanGroup leaders (5-10yr)  0.35999    0.26118   1.378
## Supporter_CareerStage_cleanGroup leaders (>10yr)   1.11511    0.21411   5.208
##                                                   Pr(>|z|)    
## (Intercept)                                        < 2e-16 ***
## Supporter_CareerStage_cleanPostdocs                  0.145    
## Supporter_CareerStage_cleanGroup leaders (<5yr)      0.957    
## Supporter_CareerStage_cleanGroup leaders (5-10yr)    0.168    
## Supporter_CareerStage_cleanGroup leaders (>10yr)  1.91e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1379.8  on 1183  degrees of freedom
## Residual deviance: 1351.4  on 1179  degrees of freedom
## AIC: 1361.4
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Support_Emotional_No~Supporter_CareerStage_clean, data=Support_Emotional, family="binomial"))) #OR (PhDs as baseline)
##                                       (Intercept) 
##                                         0.2956298 
##               Supporter_CareerStage_cleanPostdocs 
##                                         1.2667382 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         0.9878415 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         1.4333088 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         3.0498931
exp(confint(glm(Support_Emotional_No~Supporter_CareerStage_clean, data=Support_Emotional, family="binomial"))) #CI
## Waiting for profiling to be done...
##                                                       2.5 %    97.5 %
## (Intercept)                                       0.2391124 0.3626434
## Supporter_CareerStage_cleanPostdocs               0.9203645 1.7405027
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.6291522 1.5207163
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.8473504 2.3679512
## Supporter_CareerStage_cleanGroup leaders (>10yr)  2.0033880 4.6438774
#FLR gender-CS interactions
summary(glm(Support_Emotional_No~Supporter_CareerStage_clean*All_Gender_clean, data=Support_Emotional, family="binomial"))
## 
## Call:
## glm(formula = Support_Emotional_No ~ Supporter_CareerStage_clean * 
##     All_Gender_clean, family = "binomial", data = Support_Emotional)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.2917  -0.8446  -0.6478   1.0673   1.9728  
## 
## Coefficients:
##                                                                          Estimate
## (Intercept)                                                             -0.753772
## Supporter_CareerStage_cleanPostdocs                                      0.047202
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          0.084722
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       -0.008368
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         1.018464
## All_Gender_cleanWomen                                                   -0.701018
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                0.272608
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen   -0.421692
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  0.493757
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen  -0.410973
##                                                                         Std. Error
## (Intercept)                                                               0.175035
## Supporter_CareerStage_cleanPostdocs                                       0.266454
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           0.320385
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         0.367966
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          0.290166
## All_Gender_cleanWomen                                                     0.221465
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 0.337458
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.467203
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.528394
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.470801
##                                                                         z value
## (Intercept)                                                              -4.306
## Supporter_CareerStage_cleanPostdocs                                       0.177
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           0.264
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        -0.023
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          3.510
## All_Gender_cleanWomen                                                    -3.165
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 0.808
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    -0.903
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.934
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   -0.873
##                                                                         Pr(>|z|)
## (Intercept)                                                             1.66e-05
## Supporter_CareerStage_cleanPostdocs                                     0.859393
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         0.791442
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       0.981856
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        0.000448
## All_Gender_cleanWomen                                                   0.001549
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen               0.419190
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen   0.366744
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen 0.350072
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen  0.382705
##                                                                            
## (Intercept)                                                             ***
## Supporter_CareerStage_cleanPostdocs                                        
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        ***
## All_Gender_cleanWomen                                                   ** 
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1379.8  on 1183  degrees of freedom
## Residual deviance: 1323.3  on 1174  degrees of freedom
## AIC: 1343.3
## 
## Number of Fisher Scoring iterations: 4

Support_Emotional_NoFind x Gender // xCS

As above

#LR gender
summary(glm(Support_Emotional_NoFind~All_Gender_clean, data=Support_Emotional, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Support_Emotional_NoFind ~ All_Gender_clean, family = "binomial", 
##     data = Support_Emotional)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7021  -0.7021  -0.6425  -0.6425   1.8327  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            -1.2746     0.1149 -11.098   <2e-16 ***
## All_Gender_cleanWomen  -0.1984     0.1487  -1.335    0.182    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1179.9  on 1183  degrees of freedom
## Residual deviance: 1178.2  on 1182  degrees of freedom
## AIC: 1182.2
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Support_Emotional_NoFind~All_Gender_clean, data=Support_Emotional, family="binomial"))) #OR (men as baseline)
##           (Intercept) All_Gender_cleanWomen 
##             0.2795389             0.8200500
exp(confint(glm(Support_Emotional_NoFind~All_Gender_clean, data=Support_Emotional, family="binomial")))#CI
## Waiting for profiling to be done...
##                           2.5 %    97.5 %
## (Intercept)           0.2220724 0.3485369
## All_Gender_cleanWomen 0.6134713 1.0992745
#LR CS
summary(glm(Support_Emotional_NoFind~Supporter_CareerStage_clean, data=Support_Emotional, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Support_Emotional_NoFind ~ Supporter_CareerStage_clean, 
##     family = "binomial", data = Support_Emotional)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7410  -0.7410  -0.5807  -0.5570   1.9697  
## 
## Coefficients:
##                                                   Estimate Std. Error z value
## (Intercept)                                        -1.1522     0.1043 -11.049
## Supporter_CareerStage_cleanPostdocs                -0.6325     0.1876  -3.371
## Supporter_CareerStage_cleanGroup leaders (<5yr)    -0.2001     0.2298  -0.871
## Supporter_CareerStage_cleanGroup leaders (5-10yr)  -0.1470     0.2856  -0.515
## Supporter_CareerStage_cleanGroup leaders (>10yr)   -0.5424     0.2768  -1.959
##                                                   Pr(>|z|)    
## (Intercept)                                        < 2e-16 ***
## Supporter_CareerStage_cleanPostdocs               0.000748 ***
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.383868    
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.606697    
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.050096 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1179.9  on 1183  degrees of freedom
## Residual deviance: 1166.3  on 1179  degrees of freedom
## AIC: 1176.3
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Support_Emotional_NoFind~Supporter_CareerStage_clean, data=Support_Emotional, family="binomial"))) #OR (PhD as baseline)
##                                       (Intercept) 
##                                         0.3159269 
##               Supporter_CareerStage_cleanPostdocs 
##                                         0.5312374 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         0.8186093 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         0.8632607 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         0.5813797
exp(confint(glm(Support_Emotional_NoFind~Supporter_CareerStage_clean, data=Support_Emotional, family="binomial"))) #CI
## Waiting for profiling to be done...
##                                                       2.5 %    97.5 %
## (Intercept)                                       0.2565420 0.3862451
## Supporter_CareerStage_cleanPostdocs               0.3651036 0.7628461
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.5148326 1.2709867
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.4809342 1.4823633
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.3287440 0.9787698
#FLR gender-CS interactions
summary(glm(Support_Emotional_NoFind~Supporter_CareerStage_clean*All_Gender_clean, data=Support_Emotional, family="binomial"))
## 
## Call:
## glm(formula = Support_Emotional_NoFind ~ Supporter_CareerStage_clean * 
##     All_Gender_clean, family = "binomial", data = Support_Emotional)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7981  -0.7209  -0.6501  -0.4991   2.0710  
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                             -1.01160
## Supporter_CareerStage_cleanPostdocs                                     -0.39717
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         -0.22054
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        0.03077
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        -0.99587
## All_Gender_cleanWomen                                                   -0.20342
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen               -0.40783
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen   -0.01135
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen -0.55035
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   0.97413
##                                                                         Std. Error
## (Intercept)                                                                0.18464
## Supporter_CareerStage_cleanPostdocs                                        0.30109
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            0.35546
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          0.38558
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           0.40016
## All_Gender_cleanWomen                                                      0.22383
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.38759
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      0.46858
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    0.60063
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     0.56525
##                                                                         z value
## (Intercept)                                                              -5.479
## Supporter_CareerStage_cleanPostdocs                                      -1.319
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          -0.620
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         0.080
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         -2.489
## All_Gender_cleanWomen                                                    -0.909
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                -1.052
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    -0.024
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  -0.916
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    1.723
##                                                                         Pr(>|z|)
## (Intercept)                                                             4.28e-08
## Supporter_CareerStage_cleanPostdocs                                       0.1871
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           0.5350
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         0.9364
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          0.0128
## All_Gender_cleanWomen                                                     0.3634
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 0.2927
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.9807
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.3595
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.0848
##                                                                            
## (Intercept)                                                             ***
## Supporter_CareerStage_cleanPostdocs                                        
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        *  
## All_Gender_cleanWomen                                                      
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen  .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1179.9  on 1183  degrees of freedom
## Residual deviance: 1157.4  on 1174  degrees of freedom
## AIC: 1177.4
## 
## Number of Fisher Scoring iterations: 4

Support_Emotional_Institution x Gender // xCS

As above

#LR gender
summary(glm(Support_Emotional_Institution~All_Gender_clean, data=Support_Emotional, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Support_Emotional_Institution ~ All_Gender_clean, 
##     family = "binomial", data = Support_Emotional)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.3021  -0.3021  -0.3021  -0.2622   2.6030  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            -3.3534     0.2627  -12.77   <2e-16 ***
## All_Gender_cleanWomen   0.2889     0.3174    0.91    0.363    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 401.75  on 1183  degrees of freedom
## Residual deviance: 400.90  on 1182  degrees of freedom
## AIC: 404.9
## 
## Number of Fisher Scoring iterations: 6
#LR CS
summary(glm(Support_Emotional_Institution~Supporter_CareerStage_clean, data=Support_Emotional, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Support_Emotional_Institution ~ Supporter_CareerStage_clean, 
##     family = "binomial", data = Support_Emotional)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.3381  -0.3381  -0.2649  -0.2202   2.7319  
## 
## Coefficients:
##                                                   Estimate Std. Error z value
## (Intercept)                                        -2.8332     0.1945 -14.570
## Supporter_CareerStage_cleanPostdocs                -0.8742     0.4073  -2.147
## Supporter_CareerStage_cleanGroup leaders (<5yr)    -0.7363     0.5430  -1.356
## Supporter_CareerStage_cleanGroup leaders (5-10yr)  -0.1625     0.5480  -0.297
## Supporter_CareerStage_cleanGroup leaders (>10yr)   -0.4990     0.5447  -0.916
##                                                   Pr(>|z|)    
## (Intercept)                                         <2e-16 ***
## Supporter_CareerStage_cleanPostdocs                 0.0318 *  
## Supporter_CareerStage_cleanGroup leaders (<5yr)     0.1751    
## Supporter_CareerStage_cleanGroup leaders (5-10yr)   0.7668    
## Supporter_CareerStage_cleanGroup leaders (>10yr)    0.3597    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 401.75  on 1183  degrees of freedom
## Residual deviance: 395.42  on 1179  degrees of freedom
## AIC: 405.42
## 
## Number of Fisher Scoring iterations: 6
exp(coef(glm(Support_Emotional_Institution~Supporter_CareerStage_clean, data=Support_Emotional, family="binomial"))) #OR (PhD as baseline)
##                                       (Intercept) 
##                                        0.05882353 
##               Supporter_CareerStage_cleanPostdocs 
##                                        0.41717791 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                        0.47887324 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                        0.85000000 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                        0.60714286
exp(confint(glm(Support_Emotional_Institution~Supporter_CareerStage_clean, data=Support_Emotional, family="binomial"))) #CI
## Waiting for profiling to be done...
##                                                        2.5 %     97.5 %
## (Intercept)                                       0.03926516 0.08439725
## Supporter_CareerStage_cleanPostdocs               0.17555276 0.88573845
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.14006152 1.24581479
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.24683438 2.23869209
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.17713690 1.58624590
#FLR gender-CS interactions
summary(glm(Support_Emotional_Institution~Supporter_CareerStage_clean*All_Gender_clean, data=Support_Emotional, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Support_Emotional_Institution ~ Supporter_CareerStage_clean * 
##     All_Gender_clean, family = "binomial", data = Support_Emotional)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.3949  -0.3582  -0.2561  -0.2144   2.7544  
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                             -3.17805
## Supporter_CareerStage_cleanPostdocs                                     -0.41468
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         -0.22314
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       -0.58315
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        -0.01379
## All_Gender_cleanWomen                                                    0.46396
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen               -0.64169
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen   -0.77634
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  0.78493
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen  -0.93568
##                                                                         Std. Error
## (Intercept)                                                                0.41667
## Supporter_CareerStage_cleanPostdocs                                        0.71841
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            0.83083
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          1.09399
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           0.72156
## All_Gender_cleanWomen                                                      0.47125
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.87703
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      1.11845
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    1.26714
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     1.26283
##                                                                         z value
## (Intercept)                                                              -7.627
## Supporter_CareerStage_cleanPostdocs                                      -0.577
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          -0.269
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        -0.533
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         -0.019
## All_Gender_cleanWomen                                                     0.985
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                -0.732
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    -0.694
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.619
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   -0.741
##                                                                         Pr(>|z|)
## (Intercept)                                                              2.4e-14
## Supporter_CareerStage_cleanPostdocs                                        0.564
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            0.788
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          0.594
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           0.985
## All_Gender_cleanWomen                                                      0.325
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.464
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      0.488
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    0.536
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     0.459
##                                                                            
## (Intercept)                                                             ***
## Supporter_CareerStage_cleanPostdocs                                        
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           
## All_Gender_cleanWomen                                                      
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 401.75  on 1183  degrees of freedom
## Residual deviance: 392.74  on 1174  degrees of freedom
## AIC: 412.74
## 
## Number of Fisher Scoring iterations: 6

Support_Emotional_Colleagues x Gender // xCS

As above

#LR gender
summary(glm(Support_Emotional_Colleagues~All_Gender_clean, data=Support_Emotional, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Support_Emotional_Colleagues ~ All_Gender_clean, 
##     family = "binomial", data = Support_Emotional)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7442  -0.7442  -0.6083  -0.6083   1.8859  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            -1.5933     0.1267 -12.579  < 2e-16 ***
## All_Gender_cleanWomen   0.4510     0.1530   2.947  0.00321 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1231.1  on 1183  degrees of freedom
## Residual deviance: 1222.1  on 1182  degrees of freedom
## AIC: 1226.1
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Support_Emotional_Colleagues~All_Gender_clean, data=Support_Emotional, family="binomial"))) #OR (men as baseline)
##           (Intercept) All_Gender_cleanWomen 
##              0.203252              1.569840
exp(confint(glm(Support_Emotional_Colleagues~All_Gender_clean, data=Support_Emotional, family="binomial"))) #CI
## Waiting for profiling to be done...
##                           2.5 %    97.5 %
## (Intercept)           0.1574342 0.2588495
## All_Gender_cleanWomen 1.1672347 2.1278937
#LR CS
summary(glm(Support_Emotional_Colleagues~Supporter_CareerStage_clean, data=Support_Emotional, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Support_Emotional_Colleagues ~ Supporter_CareerStage_clean, 
##     family = "binomial", data = Support_Emotional)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7645  -0.7090  -0.6692  -0.5807   1.9304  
## 
## Coefficients:
##                                                   Estimate Std. Error z value
## (Intercept)                                       -1.25276    0.10714 -11.692
## Supporter_CareerStage_cleanPostdocs               -0.12979    0.17364  -0.747
## Supporter_CareerStage_cleanGroup leaders (<5yr)    0.17233    0.21836   0.789
## Supporter_CareerStage_cleanGroup leaders (5-10yr)  0.08961    0.27768   0.323
## Supporter_CareerStage_cleanGroup leaders (>10yr)  -0.44183    0.27792  -1.590
##                                                   Pr(>|z|)    
## (Intercept)                                         <2e-16 ***
## Supporter_CareerStage_cleanPostdocs                  0.455    
## Supporter_CareerStage_cleanGroup leaders (<5yr)      0.430    
## Supporter_CareerStage_cleanGroup leaders (5-10yr)    0.747    
## Supporter_CareerStage_cleanGroup leaders (>10yr)     0.112    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1231.1  on 1183  degrees of freedom
## Residual deviance: 1226.4  on 1179  degrees of freedom
## AIC: 1236.4
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Support_Emotional_Colleagues~Supporter_CareerStage_clean, data=Support_Emotional, family="binomial"))) #OR (PhD as baseline)
##                                       (Intercept) 
##                                         0.2857143 
##               Supporter_CareerStage_cleanPostdocs 
##                                         0.8782772 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         1.1880734 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         1.0937500 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         0.6428571
exp(confint(glm(Support_Emotional_Colleagues~Supporter_CareerStage_clean, data=Support_Emotional, family="binomial"))) #CI
## Waiting for profiling to be done...
##                                                       2.5 %    97.5 %
## (Intercept)                                       0.2306011 0.3511131
## Supporter_CareerStage_cleanPostdocs               0.6228445 1.2313162
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.7676586 1.8104257
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.6215545 1.8554734
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.3628349 1.0848971
#FLR gender-CS interactions
summary(glm(Support_Emotional_Colleagues~Supporter_CareerStage_clean*All_Gender_clean, data=Support_Emotional, family="binomial")) #glm and p-values
## 
## Call:
## glm(formula = Support_Emotional_Colleagues ~ Supporter_CareerStage_clean * 
##     All_Gender_clean, family = "binomial", data = Support_Emotional)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8203  -0.7511  -0.6860  -0.4717   2.1219  
## 
## Coefficients:
##                                                                          Estimate
## (Intercept)                                                             -1.609438
## Supporter_CareerStage_cleanPostdocs                                     -0.111226
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          0.282567
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        0.628609
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        -0.530628
## All_Gender_cleanWomen                                                    0.488097
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen               -0.002905
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen   -0.077517
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen -0.893562
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   0.553356
##                                                                         Std. Error
## (Intercept)                                                               0.219089
## Supporter_CareerStage_cleanPostdocs                                       0.342564
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           0.381223
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         0.403216
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          0.433235
## All_Gender_cleanWomen                                                     0.251475
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 0.397999
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.467872
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.577990
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.579884
##                                                                         z value
## (Intercept)                                                              -7.346
## Supporter_CareerStage_cleanPostdocs                                      -0.325
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           0.741
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         1.559
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         -1.225
## All_Gender_cleanWomen                                                     1.941
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                -0.007
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    -0.166
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  -1.546
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.954
##                                                                         Pr(>|z|)
## (Intercept)                                                             2.04e-13
## Supporter_CareerStage_cleanPostdocs                                       0.7454
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           0.4586
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         0.1190
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          0.2206
## All_Gender_cleanWomen                                                     0.0523
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 0.9942
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.8684
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.1221
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.3400
##                                                                            
## (Intercept)                                                             ***
## Supporter_CareerStage_cleanPostdocs                                        
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           
## All_Gender_cleanWomen                                                   .  
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1231.1  on 1183  degrees of freedom
## Residual deviance: 1214.1  on 1174  degrees of freedom
## AIC: 1234.1
## 
## Number of Fisher Scoring iterations: 4

Support_Emotional_Personal x Gender // xCS

As above

#LR gender
summary(glm(Support_Emotional_Personal~All_Gender_clean, data=Support_Emotional, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Support_Emotional_Personal ~ All_Gender_clean, 
##     family = "binomial", data = Support_Emotional)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.2284  -1.2284  -0.9491   1.1273   1.4244  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -0.56404    0.09872  -5.714 1.10e-08 ***
## All_Gender_cleanWomen  0.68310    0.12316   5.546 2.92e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1636.2  on 1183  degrees of freedom
## Residual deviance: 1604.8  on 1182  degrees of freedom
## AIC: 1608.8
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Support_Emotional_Personal~All_Gender_clean, data=Support_Emotional, family="binomial"))) #OR (men as baseline)
##           (Intercept) All_Gender_cleanWomen 
##             0.5689046             1.9800100
exp(confint(glm(Support_Emotional_Personal~All_Gender_clean, data=Support_Emotional, family="binomial"))) #CI
## Waiting for profiling to be done...
##                           2.5 %    97.5 %
## (Intercept)           0.4679493 0.6892667
## All_Gender_cleanWomen 1.5570387 2.5238231
#LR CS
summary(glm(Support_Emotional_Personal~Supporter_CareerStage_clean, data=Support_Emotional, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Support_Emotional_Personal ~ Supporter_CareerStage_clean, 
##     family = "binomial", data = Support_Emotional)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.2029  -1.1272  -0.8909   1.2284   1.4940  
## 
## Coefficients:
##                                                   Estimate Std. Error z value
## (Intercept)                                       -0.11919    0.08925  -1.336
## Supporter_CareerStage_cleanPostdocs                0.17909    0.14125   1.268
## Supporter_CareerStage_cleanGroup leaders (<5yr)    0.17400    0.18810   0.925
## Supporter_CareerStage_cleanGroup leaders (5-10yr) -0.41712    0.24309  -1.716
## Supporter_CareerStage_cleanGroup leaders (>10yr)  -0.59993    0.21703  -2.764
##                                                   Pr(>|z|)   
## (Intercept)                                         0.1817   
## Supporter_CareerStage_cleanPostdocs                 0.2048   
## Supporter_CareerStage_cleanGroup leaders (<5yr)     0.3550   
## Supporter_CareerStage_cleanGroup leaders (5-10yr)   0.0862 . 
## Supporter_CareerStage_cleanGroup leaders (>10yr)    0.0057 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1636.2  on 1183  degrees of freedom
## Residual deviance: 1619.3  on 1179  degrees of freedom
## AIC: 1629.3
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Support_Emotional_Personal~Supporter_CareerStage_clean, data=Support_Emotional, family="binomial"))) #OR (PhD as baseline)
##                                       (Intercept) 
##                                         0.8876404 
##               Supporter_CareerStage_cleanPostdocs 
##                                         1.1961244 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         1.1900517 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         0.6589444 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         0.5488478
exp(confint(glm(Support_Emotional_Personal~Supporter_CareerStage_clean, data=Support_Emotional, family="binomial"))) #CI
## Waiting for profiling to be done...
##                                                       2.5 %    97.5 %
## (Intercept)                                       0.7448872 1.0571082
## Supporter_CareerStage_cleanPostdocs               0.9069908 1.5782485
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.8230520 1.7222213
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.4055372 1.0548842
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.3557587 0.8346663
#FLR gender-CS interactions
summary(glm(Support_Emotional_Personal~Supporter_CareerStage_clean*All_Gender_clean, data=Support_Emotional, family="binomial")) #glm and p-values
## 
## Call:
## glm(formula = Support_Emotional_Personal ~ Supporter_CareerStage_clean * 
##     All_Gender_clean, family = "binomial", data = Support_Emotional)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.345  -1.197  -0.849   1.158   1.665  
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                              -0.5179
## Supporter_CareerStage_cleanPostdocs                                       0.1569
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           0.1259
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        -0.5807
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         -0.3169
## All_Gender_cleanWomen                                                     0.5632
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 0.0698
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.2146
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.5355
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   -0.2392
##                                                                         Std. Error
## (Intercept)                                                                 0.1688
## Supporter_CareerStage_cleanPostdocs                                         0.2557
## Supporter_CareerStage_cleanGroup leaders (<5yr)                             0.3091
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                           0.3869
## Supporter_CareerStage_cleanGroup leaders (>10yr)                            0.3014
## All_Gender_cleanWomen                                                       0.1995
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                   0.3083
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen       0.3953
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen     0.5109
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen      0.4570
##                                                                         z value
## (Intercept)                                                              -3.068
## Supporter_CareerStage_cleanPostdocs                                       0.614
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           0.407
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        -1.501
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         -1.051
## All_Gender_cleanWomen                                                     2.823
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 0.226
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.543
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   1.048
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   -0.523
##                                                                         Pr(>|z|)
## (Intercept)                                                              0.00215
## Supporter_CareerStage_cleanPostdocs                                      0.53941
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          0.68374
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        0.13342
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         0.29313
## All_Gender_cleanWomen                                                    0.00476
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                0.82089
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    0.58726
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  0.29460
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   0.60069
##                                                                           
## (Intercept)                                                             **
## Supporter_CareerStage_cleanPostdocs                                       
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          
## All_Gender_cleanWomen                                                   **
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1636.2  on 1183  degrees of freedom
## Residual deviance: 1592.2  on 1174  degrees of freedom
## AIC: 1612.2
## 
## Number of Fisher Scoring iterations: 4

Q15 Supporter action advocacy (Section 3, Panel 3)

Answered to Q15: When supporting the person (select all that applies), I advocated for the person within my institution

Exclude everyone that only answered PNTA and/or unsure, or did not check any options at all

#subset
Supporter_Actions_Advocacy=genderCS[!is.na(genderCS$Supporter_Actions_OpenUp==1|genderCS$Supporter_Actions_Resources==1|genderCS$Supporter_Actions_HelpResources==1|genderCS$Supporter_Actions_Emotional==1|genderCS$Supporter_Actions_Advice==1|genderCS$Supporter_Actions_Work==1|genderCS$Supporter_Actions_Personal==1|genderCS$Supporter_Actions_Crisis==1|genderCS$Supporter_Actions_Adjustments==1|genderCS$Supporter_Actions_Advocacy==1|genderCS$Supporter_Actions_Other_Dummy==1),c("Supporter_Actions_Advocacy", "Supporter_CareerStage_clean", "All_Gender_clean")]

dim(Supporter_Actions_Advocacy)[1] #N
## [1] 1247
#fill all na with 0
Supporter_Actions_Advocacy[is.na(Supporter_Actions_Advocacy)]=0

#factorise
Supporter_Actions_Advocacy$Supporter_Actions_Advocacy=as.factor(Supporter_Actions_Advocacy$Supporter_Actions_Advocacy)
table(Supporter_Actions_Advocacy$Supporter_Actions_Advocacy)
## 
##   0   1 
## 943 304

Supporter_Action_Advocacy x gender // x CS

#LR gender
summary(glm(Supporter_Actions_Advocacy~All_Gender_clean, data=Supporter_Actions_Advocacy, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Supporter_Actions_Advocacy ~ All_Gender_clean, 
##     family = "binomial", data = Supporter_Actions_Advocacy)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7585  -0.7585  -0.7409  -0.7409   1.6894  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -1.09861    0.10630 -10.335   <2e-16 ***
## All_Gender_cleanWomen -0.05407    0.13555  -0.399     0.69    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1385.2  on 1246  degrees of freedom
## Residual deviance: 1385.0  on 1245  degrees of freedom
## AIC: 1389
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Supporter_Actions_Advocacy~All_Gender_clean, data=Supporter_Actions_Advocacy, family="binomial"))) #OR (men as baseline)
##           (Intercept) All_Gender_cleanWomen 
##             0.3333333             0.9473684
exp(confint(glm(Supporter_Actions_Advocacy~All_Gender_clean, data=Supporter_Actions_Advocacy, family="binomial"))) #CI
## Waiting for profiling to be done...
##                           2.5 %    97.5 %
## (Intercept)           0.2696083 0.4091423
## All_Gender_cleanWomen 0.7271645 1.2375270
#LR CS
summary(glm(Supporter_Actions_Advocacy~Supporter_CareerStage_clean, data=Supporter_Actions_Advocacy, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Supporter_Actions_Advocacy ~ Supporter_CareerStage_clean, 
##     family = "binomial", data = Supporter_Actions_Advocacy)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.9741  -0.7585  -0.6305  -0.6305   1.8511  
## 
## Coefficients:
##                                                   Estimate Std. Error z value
## (Intercept)                                        -1.5145     0.1133 -13.365
## Supporter_CareerStage_cleanPostdocs                 0.4159     0.1668   2.494
## Supporter_CareerStage_cleanGroup leaders (<5yr)     0.5572     0.2122   2.626
## Supporter_CareerStage_cleanGroup leaders (5-10yr)   1.0156     0.2452   4.142
## Supporter_CareerStage_cleanGroup leaders (>10yr)    0.9450     0.2219   4.258
##                                                   Pr(>|z|)    
## (Intercept)                                        < 2e-16 ***
## Supporter_CareerStage_cleanPostdocs                0.01264 *  
## Supporter_CareerStage_cleanGroup leaders (<5yr)    0.00864 ** 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 3.44e-05 ***
## Supporter_CareerStage_cleanGroup leaders (>10yr)  2.06e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1385.2  on 1246  degrees of freedom
## Residual deviance: 1355.7  on 1242  degrees of freedom
## AIC: 1365.7
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Supporter_Actions_Advocacy~Supporter_CareerStage_clean, data=Supporter_Actions_Advocacy, family="binomial"))) #OR (PhDs as baseline)
##                                       (Intercept) 
##                                         0.2199074 
##               Supporter_CareerStage_cleanPostdocs 
##                                         1.5157895 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         1.7458647 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         2.7609023 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         2.5728532
exp(confint(glm(Supporter_Actions_Advocacy~Supporter_CareerStage_clean, data=Supporter_Actions_Advocacy, family="binomial"))) #CI
## Waiting for profiling to be done...
##                                                       2.5 %    97.5 %
## (Intercept)                                       0.1751382 0.2732252
## Supporter_CareerStage_cleanPostdocs               1.0925284 2.1023615
## Supporter_CareerStage_cleanGroup leaders (<5yr)   1.1450254 2.6349638
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 1.6971979 4.4487705
## Supporter_CareerStage_cleanGroup leaders (>10yr)  1.6581630 3.9646690
#FLR gender-CS interactions
summary(glm(Supporter_Actions_Advocacy~Supporter_CareerStage_clean*All_Gender_clean, data=Supporter_Actions_Advocacy, family="binomial"))
## 
## Call:
## glm(formula = Supporter_Actions_Advocacy ~ Supporter_CareerStage_clean * 
##     All_Gender_clean, family = "binomial", data = Supporter_Actions_Advocacy)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.0974  -0.7642  -0.6434  -0.5997   1.8997  
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                              -1.6247
## Supporter_CareerStage_cleanPostdocs                                       0.4933
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           0.6439
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         0.8362
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          1.1208
## All_Gender_cleanWomen                                                     0.1550
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                -0.1051
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    -0.1142
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.4424
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   -0.3443
##                                                                         Std. Error
## (Intercept)                                                                 0.2146
## Supporter_CareerStage_cleanPostdocs                                         0.3002
## Supporter_CareerStage_cleanGroup leaders (<5yr)                             0.3499
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                           0.3782
## Supporter_CareerStage_cleanGroup leaders (>10yr)                            0.3184
## All_Gender_cleanWomen                                                       0.2527
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                   0.3614
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen       0.4426
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen     0.5069
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen      0.4757
##                                                                         z value
## (Intercept)                                                              -7.572
## Supporter_CareerStage_cleanPostdocs                                       1.643
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           1.840
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         2.211
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          3.521
## All_Gender_cleanWomen                                                     0.613
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                -0.291
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    -0.258
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.873
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   -0.724
##                                                                         Pr(>|z|)
## (Intercept)                                                             3.67e-14
## Supporter_CareerStage_cleanPostdocs                                     0.100338
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         0.065739
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       0.027012
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        0.000431
## All_Gender_cleanWomen                                                   0.539570
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen               0.771129
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen   0.796369
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen 0.382821
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen  0.469272
##                                                                            
## (Intercept)                                                             ***
## Supporter_CareerStage_cleanPostdocs                                        
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         .  
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                       *  
## Supporter_CareerStage_cleanGroup leaders (>10yr)                        ***
## All_Gender_cleanWomen                                                      
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1385.2  on 1246  degrees of freedom
## Residual deviance: 1353.2  on 1237  degrees of freedom
## AIC: 1373.2
## 
## Number of Fisher Scoring iterations: 4

Q22 Needing practical information (Section 6, Panel 2)

Dependent variable: Support_Practical

  • 1: No, did not need info
  • 2: No, already had info
  • 3: Yes, need info

(remove 4- not sure, 5 - PNTA and 6- other)

3 approaches:

  • chi square (but cannot check for intersect)
  • turn the 3 options into 3 x [yes/no]s
  • multinomial logistic regression

FINAL APPROACH (immediately following here) recode dependent variable: - No - 1 and 2 - Yes - 3 Run as binomial logistic regression ### Needing practical information x Gender x CS xGenderxCS (Section 6, Panel 2)

#Subset
Support_Practical=genderCS[,c("Support_Practical", "Supporter_CareerStage_clean", "All_Gender_clean")]
#Recode 
Support_Practical=Support_Practical[Support_Practical$Support_Practical %in% seq(1,3),] #remove options 4&5
Support_Practical[Support_Practical$Support_Practical %in% c(1,2), "Support_Practical"]=0
Support_Practical[Support_Practical$Support_Practical==3, "Support_Practical"]=1
# LR gender
summary(glm(Support_Practical~All_Gender_clean, data=Support_Practical, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Support_Practical ~ All_Gender_clean, family = "binomial", 
##     data = Support_Practical)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.5579  -1.4592   0.8397   0.8397   0.9196  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             0.6419     0.1084   5.924 3.15e-09 ***
## All_Gender_cleanWomen   0.2192     0.1392   1.574    0.115    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1249.9  on 1002  degrees of freedom
## Residual deviance: 1247.4  on 1001  degrees of freedom
## AIC: 1251.4
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Support_Practical~All_Gender_clean, data=Support_Practical, family="binomial"))) #OR (men as baseline)
##           (Intercept) All_Gender_cleanWomen 
##              1.900000              1.245048
exp(confint(glm(Support_Practical~All_Gender_clean, data=Support_Practical, family="binomial"))) #CI
## Waiting for profiling to be done...
##                           2.5 %   97.5 %
## (Intercept)           1.5397399 2.355546
## All_Gender_cleanWomen 0.9469236 1.634964
# LR CS
summary(glm(Support_Practical~Supporter_CareerStage_clean, data=Support_Practical, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Support_Practical ~ Supporter_CareerStage_clean, 
##     family = "binomial", data = Support_Practical)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7941  -1.4736   0.8586   0.9073   0.9772  
## 
## Coefficients:
##                                                    Estimate Std. Error z value
## (Intercept)                                        0.674998   0.104198   6.478
## Supporter_CareerStage_cleanPostdocs                0.133219   0.168781   0.789
## Supporter_CareerStage_cleanGroup leaders (<5yr)    0.711296   0.235585   3.019
## Supporter_CareerStage_cleanGroup leaders (5-10yr) -0.001269   0.262539  -0.005
## Supporter_CareerStage_cleanGroup leaders (>10yr)  -0.183877   0.223993  -0.821
##                                                   Pr(>|z|)    
## (Intercept)                                       9.29e-11 ***
## Supporter_CareerStage_cleanPostdocs                0.42994    
## Supporter_CareerStage_cleanGroup leaders (<5yr)    0.00253 ** 
## Supporter_CareerStage_cleanGroup leaders (5-10yr)  0.99614    
## Supporter_CareerStage_cleanGroup leaders (>10yr)   0.41170    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1249.9  on 1002  degrees of freedom
## Residual deviance: 1237.4  on  998  degrees of freedom
## AIC: 1247.4
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Support_Practical~Supporter_CareerStage_clean, data=Support_Practical, family="binomial")))
##                                       (Intercept) 
##                                         1.9640288 
##               Supporter_CareerStage_cleanPostdocs 
##                                         1.1424998 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         2.0366300 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         0.9987320 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         0.8320379
exp(confint(glm(Support_Practical~Supporter_CareerStage_clean, data=Support_Practical, family="binomial")))
## Waiting for profiling to be done...
##                                                       2.5 %   97.5 %
## (Intercept)                                       1.6045696 2.414938
## Supporter_CareerStage_cleanPostdocs               0.8219678 1.593839
## Supporter_CareerStage_cleanGroup leaders (<5yr)   1.2989290 3.280392
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.6018136 1.690628
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.5381918 1.297426
#FLR gender-CS interactions
summary(glm(Support_Practical~Supporter_CareerStage_clean*All_Gender_clean, data=Support_Practical, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Support_Practical ~ Supporter_CareerStage_clean * 
##     All_Gender_clean, family = "binomial", data = Support_Practical)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.919  -1.366   0.840   0.885   1.048  
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                               0.4329
## Supporter_CareerStage_cleanPostdocs                                       0.5322
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           0.6203
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         0.2603
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         -0.1205
## All_Gender_cleanWomen                                                     0.3496
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                -0.5793
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.2664
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  -0.3888
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.1982
##                                                                         Std. Error
## (Intercept)                                                                 0.1853
## Supporter_CareerStage_cleanPostdocs                                         0.3031
## Supporter_CareerStage_cleanGroup leaders (<5yr)                             0.3525
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                           0.3870
## Supporter_CareerStage_cleanGroup leaders (>10yr)                            0.3034
## All_Gender_cleanWomen                                                       0.2244
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                   0.3652
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen       0.4814
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen     0.5317
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen      0.4873
##                                                                         z value
## (Intercept)                                                               2.336
## Supporter_CareerStage_cleanPostdocs                                       1.756
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           1.760
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         0.673
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         -0.397
## All_Gender_cleanWomen                                                     1.558
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                -1.586
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.553
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  -0.731
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.407
##                                                                         Pr(>|z|)
## (Intercept)                                                               0.0195
## Supporter_CareerStage_cleanPostdocs                                       0.0791
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           0.0785
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         0.5012
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          0.6913
## All_Gender_cleanWomen                                                     0.1193
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 0.1127
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.5799
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.4646
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.6841
##                                                                          
## (Intercept)                                                             *
## Supporter_CareerStage_cleanPostdocs                                     .
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         .
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         
## All_Gender_cleanWomen                                                    
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1249.9  on 1002  degrees of freedom
## Residual deviance: 1230.6  on  993  degrees of freedom
## AIC: 1250.6
## 
## Number of Fisher Scoring iterations: 4
### Needing practical information x CS pairwise
# Compare between early PIs and other CSs only
## this requires the package "MHTdiscrete"
CSpairs=cbind(rep("Group leaders (<5yr)", 4), levels(ImpactDraining$Supporter_CareerStage_clean)[c(1,2,4,5)])
Support_PracticalCSKW=data.frame(CS1=c(), CS2=c(), X2=c(), N=c(), df=c(), pVal=c()) 
for (i in 1:dim(CSpairs)[1]) {
  comparedData=Support_Practical[(Support_Practical$Supporter_CareerStage_clean==CSpairs[i,1]|Support_Practical$Supporter_CareerStage_clean==CSpairs[i,2]),]
  comparedData$Support_Practical=as.factor(comparedData$Support_Practical)
  comparedData$Supporter_CareerStage_clean=droplevels(comparedData$Supporter_CareerStage_clean) #drop levels to avoid incorrect chisq approx
 # KW=kruskal.test(Support_Practical ~ Supporter_CareerStage_clean, data=comparedData) #effect of CS on response
  chisq=chisq.test(table(comparedData[,c("Support_Practical", "Supporter_CareerStage_clean")]))
#  Support_PracticalCSKW=rbind(Support_PracticalCSKW, data.frame(CS1=CSpairs[i,1], CS2=CSpairs[i,2], X2=as.numeric(KW$statistic), df=as.numeric(KW$parameter), pVal=as.numeric(KW$p.value)))
    Support_PracticalCSKW=rbind(Support_PracticalCSKW, data.frame(CS1=CSpairs[i,1], CS2=CSpairs[i,2], X2=as.numeric(chisq$statistic), N=dim(comparedData)[1], df=as.numeric(chisq$parameter), pVal=as.numeric(chisq$p.value)))
}
Support_PracticalCSKW$adjpVal=Sidak.p.adjust(Support_PracticalCSKW$pVal)
Support_PracticalCSKW
##                    CS1                    CS2       X2   N df        pVal
## 1 Group leaders (<5yr)           PhD students 8.706275 552  1 0.003171165
## 2 Group leaders (<5yr)               Postdocs 4.909109 406  1 0.026715415
## 3 Group leaders (<5yr) Group leaders (5-10yr) 4.326939 217  1 0.037513645
## 4 Group leaders (<5yr)  Group leaders (>10yr) 8.922114 248  1 0.002817382
##      adjpVal
## 1 0.01262445
## 2 0.10265514
## 3 0.14182013
## 4 0.01122199
Support_Practical=genderCS[,c("Support_Practical", "Supporter_CareerStage_clean", "All_Gender_clean")]
chisq.test(table(Support_Practical[,c("Support_Practical", "All_Gender_clean")]))
## Warning in chisq.test(table(Support_Practical[, c("Support_Practical",
## "All_Gender_clean")])): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(Support_Practical[, c("Support_Practical", "All_Gender_clean")])
## X-squared = 12.896, df = 5, p-value = 0.02437
chisq.test(table(Support_Practical[,c("Support_Practical", "Supporter_CareerStage_clean")]))
## Warning in chisq.test(table(Support_Practical[, c("Support_Practical",
## "Supporter_CareerStage_clean")])): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(Support_Practical[, c("Support_Practical", "Supporter_CareerStage_clean")])
## X-squared = 58.601, df = 20, p-value = 1.17e-05

Approach 2: turn the 3 options into 3 x [yes/no]s [not reported]

#Subset
Support_Practical=genderCS[,c("Support_Practical", "Supporter_CareerStage_clean", "All_Gender_clean")]
#Factorise
Support_Practical$Support_Practical=as.factor(Support_Practical$Support_Practical)
#recode and clean
Support_Practical=cbind(sapply(levels(Support_Practical$Support_Practical), function(x) as.integer(x==Support_Practical$Support_Practical)), Support_Practical[2:3])
Support_Practical=Support_Practical[,c(2,3,4,7,8)] #remove some options
#rename columns
colnames(Support_Practical)=c("NoNeed", "Had", "Need", "Supporter_CareerStage_clean", "All_Gender_clean")

Choosing option 1 - No, I did not need the information

# LR gender
summary(glm(NoNeed~All_Gender_clean, data=Support_Practical, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = NoNeed ~ All_Gender_clean, family = "binomial", 
##     data = Support_Practical)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6335  -0.6335  -0.5232  -0.5232   2.0280  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            -1.5041     0.1192 -12.617  < 2e-16 ***
## All_Gender_cleanWomen  -0.4155     0.1606  -2.587  0.00968 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1047.1  on 1246  degrees of freedom
## Residual deviance: 1040.5  on 1245  degrees of freedom
##   (8 observations deleted due to missingness)
## AIC: 1044.5
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(NoNeed~All_Gender_clean, data=Support_Practical, family="binomial"))) #OR (men as baseline)
##           (Intercept) All_Gender_cleanWomen 
##             0.2222222             0.6600000
exp(confint(glm(NoNeed~All_Gender_clean, data=Support_Practical, family="binomial"))) #CI
## Waiting for profiling to be done...
##                           2.5 %    97.5 %
## (Intercept)           0.1748478 0.2791723
## All_Gender_cleanWomen 0.4819197 0.9051816
# LR CS
summary(glm(NoNeed~Supporter_CareerStage_clean, data=Support_Practical, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = NoNeed ~ Supporter_CareerStage_clean, family = "binomial", 
##     data = Support_Practical)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6712  -0.5804  -0.5467  -0.5256   2.1016  
## 
## Coefficients:
##                                                   Estimate Std. Error z value
## (Intercept)                                        -1.6958     0.1201 -14.116
## Supporter_CareerStage_cleanPostdocs                -0.1294     0.1953  -0.663
## Supporter_CareerStage_cleanGroup leaders (<5yr)    -0.2137     0.2680  -0.797
## Supporter_CareerStage_cleanGroup leaders (5-10yr)  -0.3960     0.3561  -1.112
## Supporter_CareerStage_cleanGroup leaders (>10yr)    0.3200     0.2581   1.240
##                                                   Pr(>|z|)    
## (Intercept)                                         <2e-16 ***
## Supporter_CareerStage_cleanPostdocs                  0.508    
## Supporter_CareerStage_cleanGroup leaders (<5yr)      0.425    
## Supporter_CareerStage_cleanGroup leaders (5-10yr)    0.266    
## Supporter_CareerStage_cleanGroup leaders (>10yr)     0.215    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1047.1  on 1246  degrees of freedom
## Residual deviance: 1042.6  on 1242  degrees of freedom
##   (8 observations deleted due to missingness)
## AIC: 1052.6
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(NoNeed~Supporter_CareerStage_clean, data=Support_Practical, family="binomial")))
##                                       (Intercept) 
##                                         0.1834452 
##               Supporter_CareerStage_cleanPostdocs 
##                                         0.8786505 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         0.8075881 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         0.6729901 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         1.3771502
exp(confint(glm(NoNeed~Supporter_CareerStage_clean, data=Support_Practical, family="binomial")))
## Waiting for profiling to be done...
##                                                       2.5 %    97.5 %
## (Intercept)                                       0.1439909 0.2307417
## Supporter_CareerStage_cleanPostdocs               0.5961332 1.2836426
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.4666066 1.3410920
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.3164114 1.2959563
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.8169176 2.2557908
#FLR gender-CS interactions
summary(glm(NoNeed~Supporter_CareerStage_clean*All_Gender_clean, data=Support_Practical, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = NoNeed ~ Supporter_CareerStage_clean * All_Gender_clean, 
##     family = "binomial", data = Support_Practical)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7528  -0.5478  -0.5338  -0.4972   2.1951  
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                              -1.3477
## Supporter_CareerStage_cleanPostdocs                                      -0.4731
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          -0.1564
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        -0.8041
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          0.2317
## All_Gender_cleanWomen                                                    -0.5288
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 0.5220
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    -0.2821
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.6524
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   -0.3567
##                                                                         Std. Error
## (Intercept)                                                                 0.1954
## Supporter_CareerStage_cleanPostdocs                                         0.3264
## Supporter_CareerStage_cleanGroup leaders (<5yr)                             0.3742
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                           0.5113
## Supporter_CareerStage_cleanGroup leaders (>10yr)                            0.3287
## All_Gender_cleanWomen                                                       0.2484
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                   0.4078
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen       0.5485
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen     0.7150
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen      0.5988
##                                                                         z value
## (Intercept)                                                              -6.897
## Supporter_CareerStage_cleanPostdocs                                      -1.449
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          -0.418
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        -1.573
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          0.705
## All_Gender_cleanWomen                                                    -2.129
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 1.280
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    -0.514
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.912
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   -0.596
##                                                                         Pr(>|z|)
## (Intercept)                                                              5.3e-12
## Supporter_CareerStage_cleanPostdocs                                       0.1472
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           0.6760
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         0.1158
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          0.4809
## All_Gender_cleanWomen                                                     0.0333
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 0.2006
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.6070
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.3615
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.5515
##                                                                            
## (Intercept)                                                             ***
## Supporter_CareerStage_cleanPostdocs                                        
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           
## All_Gender_cleanWomen                                                   *  
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1047.1  on 1246  degrees of freedom
## Residual deviance: 1032.4  on 1237  degrees of freedom
##   (8 observations deleted due to missingness)
## AIC: 1052.4
## 
## Number of Fisher Scoring iterations: 4

Choosing option 2 - No, I have already received information before

# LR gender
summary(glm(Had~All_Gender_clean, data=Support_Practical, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Had ~ All_Gender_clean, family = "binomial", data = Support_Practical)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.4883  -0.4883  -0.4883  -0.4419   2.1794  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            -2.2773     0.1583 -14.388   <2e-16 ***
## All_Gender_cleanWomen   0.2108     0.1949   1.082    0.279    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 838.09  on 1246  degrees of freedom
## Residual deviance: 836.90  on 1245  degrees of freedom
##   (8 observations deleted due to missingness)
## AIC: 840.9
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Had~All_Gender_clean, data=Support_Practical, family="binomial"))) #OR (men as baseline)
##           (Intercept) All_Gender_cleanWomen 
##             0.1025641             1.2347161
exp(confint(glm(Had~All_Gender_clean, data=Support_Practical, family="binomial"))) #CI
## Waiting for profiling to be done...
##                            2.5 %    97.5 %
## (Intercept)           0.07417135 0.1381601
## All_Gender_cleanWomen 0.84728128 1.8227017
#LR CS
summary(glm(Had~Supporter_CareerStage_clean, data=Support_Practical, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Had ~ Supporter_CareerStage_clean, family = "binomial", 
##     data = Support_Practical)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6219  -0.4775  -0.4775  -0.4430   2.4347  
## 
## Coefficients:
##                                                   Estimate Std. Error z value
## (Intercept)                                        -2.1139     0.1402 -15.075
## Supporter_CareerStage_cleanPostdocs                -0.1579     0.2304  -0.685
## Supporter_CareerStage_cleanGroup leaders (<5yr)    -0.7971     0.3892  -2.048
## Supporter_CareerStage_cleanGroup leaders (5-10yr)   0.5690     0.3090   1.841
## Supporter_CareerStage_cleanGroup leaders (>10yr)    0.3222     0.2971   1.084
##                                                   Pr(>|z|)    
## (Intercept)                                         <2e-16 ***
## Supporter_CareerStage_cleanPostdocs                 0.4932    
## Supporter_CareerStage_cleanGroup leaders (<5yr)     0.0406 *  
## Supporter_CareerStage_cleanGroup leaders (5-10yr)   0.0656 .  
## Supporter_CareerStage_cleanGroup leaders (>10yr)    0.2783    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 838.09  on 1246  degrees of freedom
## Residual deviance: 826.08  on 1242  degrees of freedom
##   (8 observations deleted due to missingness)
## AIC: 836.08
## 
## Number of Fisher Scoring iterations: 5
exp(coef(glm(Had~Supporter_CareerStage_clean, data=Support_Practical, family="binomial"))) #OR (PhD as baseline)
##                                       (Intercept) 
##                                         0.1207627 
##               Supporter_CareerStage_cleanPostdocs 
##                                         0.8539474 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                         0.4506504 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                         1.7665497 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                         1.3801170
exp(confint(glm(Had~Supporter_CareerStage_clean, data=Support_Practical, family="binomial"))) #CI
## Waiting for profiling to be done...
##                                                        2.5 %    97.5 %
## (Intercept)                                       0.09079219 0.1574771
## Supporter_CareerStage_cleanPostdocs               0.53884742 1.3335462
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.19486697 0.9140110
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.93845737 3.1742942
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.75127402 2.4240553
#FLR gender-CS interactions
summary(glm(Had~Supporter_CareerStage_clean*All_Gender_clean, data=Support_Practical, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Had ~ Supporter_CareerStage_clean * All_Gender_clean, 
##     family = "binomial", data = Support_Practical)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6416  -0.4916  -0.4887  -0.3438   2.4864  
## 
## Coefficients:
##                                                                          Estimate
## (Intercept)                                                             -2.268684
## Supporter_CareerStage_cleanPostdocs                                     -0.530338
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         -0.775839
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        0.659246
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         0.476924
## All_Gender_cleanWomen                                                    0.216393
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                0.517716
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    0.006751
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen -0.082862
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen  -0.216393
##                                                                         Std. Error
## (Intercept)                                                               0.271225
## Supporter_CareerStage_cleanPostdocs                                       0.474459
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           0.650149
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         0.472825
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          0.423821
## All_Gender_cleanWomen                                                     0.316908
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 0.543432
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.813301
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.635612
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.633195
##                                                                         z value
## (Intercept)                                                              -8.365
## Supporter_CareerStage_cleanPostdocs                                      -1.118
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          -1.193
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         1.394
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          1.125
## All_Gender_cleanWomen                                                     0.683
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 0.953
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.008
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  -0.130
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   -0.342
##                                                                         Pr(>|z|)
## (Intercept)                                                               <2e-16
## Supporter_CareerStage_cleanPostdocs                                        0.264
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            0.233
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          0.163
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           0.260
## All_Gender_cleanWomen                                                      0.495
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.341
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      0.993
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    0.896
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     0.733
##                                                                            
## (Intercept)                                                             ***
## Supporter_CareerStage_cleanPostdocs                                        
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           
## All_Gender_cleanWomen                                                      
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 838.09  on 1246  degrees of freedom
## Residual deviance: 822.37  on 1237  degrees of freedom
##   (8 observations deleted due to missingness)
## AIC: 842.37
## 
## Number of Fisher Scoring iterations: 5

Choosing option 3 - Yes I needed information

#LR Gender
summary(glm(Need~All_Gender_clean, data=Support_Practical, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Need ~ All_Gender_clean, family = "binomial", data = Support_Practical)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.296  -1.296   1.063   1.063   1.140  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)            0.08885    0.09205   0.965    0.334
## All_Gender_cleanWomen  0.18678    0.11722   1.593    0.111
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1715.8  on 1246  degrees of freedom
## Residual deviance: 1713.2  on 1245  degrees of freedom
##   (8 observations deleted due to missingness)
## AIC: 1717.2
## 
## Number of Fisher Scoring iterations: 3
exp(coef(glm(Need~All_Gender_clean, data=Support_Practical, family="binomial"))) #OR (men as baseline)
##           (Intercept) All_Gender_cleanWomen 
##              1.092920              1.205363
exp(confint(glm(Need~All_Gender_clean, data=Support_Practical, family="binomial"))) #CI
## Waiting for profiling to be done...
##                           2.5 %   97.5 %
## (Intercept)           0.9126118 1.309485
## All_Gender_cleanWomen 0.9579020 1.516837
#LR CS
summary(glm(Need~Supporter_CareerStage_clean, data=Support_Practical, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Need ~ Supporter_CareerStage_clean, family = "binomial", 
##     data = Support_Practical)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6014  -1.2048   0.8061   1.1415   1.1502  
## 
## Coefficients:
##                                                   Estimate Std. Error z value
## (Intercept)                                        0.06429    0.08700   0.739
## Supporter_CareerStage_cleanPostdocs                0.02074    0.13755   0.151
## Supporter_CareerStage_cleanGroup leaders (<5yr)    0.89300    0.19938   4.479
## Supporter_CareerStage_cleanGroup leaders (5-10yr)  0.17865    0.22842   0.782
## Supporter_CareerStage_cleanGroup leaders (>10yr)   0.18915    0.20427   0.926
##                                                   Pr(>|z|)    
## (Intercept)                                          0.460    
## Supporter_CareerStage_cleanPostdocs                  0.880    
## Supporter_CareerStage_cleanGroup leaders (<5yr)   7.51e-06 ***
## Supporter_CareerStage_cleanGroup leaders (5-10yr)    0.434    
## Supporter_CareerStage_cleanGroup leaders (>10yr)     0.354    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1715.8  on 1246  degrees of freedom
## Residual deviance: 1692.5  on 1242  degrees of freedom
##   (8 observations deleted due to missingness)
## AIC: 1702.5
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Need~Supporter_CareerStage_clean, data=Support_Practical, family="binomial"))) #OR (PhD as baseline)
##                                       (Intercept) 
##                                          1.066406 
##               Supporter_CareerStage_cleanPostdocs 
##                                          1.020959 
##   Supporter_CareerStage_cleanGroup leaders (<5yr) 
##                                          2.442457 
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 
##                                          1.195604 
##  Supporter_CareerStage_cleanGroup leaders (>10yr) 
##                                          1.208228
exp(confint(glm(Need~Supporter_CareerStage_clean, data=Support_Practical, family="binomial"))) #CI
## Waiting for profiling to be done...
##                                                       2.5 %   97.5 %
## (Intercept)                                       0.8992690 1.265002
## Supporter_CareerStage_cleanPostdocs               0.7796964 1.337207
## Supporter_CareerStage_cleanGroup leaders (<5yr)   1.6634233 3.640113
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.7654491 1.878551
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.8108139 1.808527
#FLR gender-CS interactions
summary(glm(Need~Supporter_CareerStage_clean*All_Gender_clean, data=Support_Practical, family="binomial")) #glm and p-value
## 
## Call:
## glm(formula = Need ~ Supporter_CareerStage_clean * All_Gender_clean, 
##     family = "binomial", data = Support_Practical)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7280  -1.2181   0.7135   1.1113   1.2419  
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                             -0.15028
## Supporter_CareerStage_cleanPostdocs                                      0.21588
## Supporter_CareerStage_cleanGroup leaders (<5yr)                          0.77599
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        0.31734
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         0.28034
## All_Gender_cleanWomen                                                    0.30779
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen               -0.27808
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    0.30488
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen -0.14634
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   0.04767
##                                                                         Std. Error
## (Intercept)                                                                0.15856
## Supporter_CareerStage_cleanPostdocs                                        0.24076
## Supporter_CareerStage_cleanGroup leaders (<5yr)                            0.30311
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                          0.33024
## Supporter_CareerStage_cleanGroup leaders (>10yr)                           0.27805
## All_Gender_cleanWomen                                                      0.18987
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                  0.29364
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen      0.40899
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen    0.46424
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen     0.43495
##                                                                         z value
## (Intercept)                                                              -0.948
## Supporter_CareerStage_cleanPostdocs                                       0.897
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           2.560
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         0.961
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          1.008
## All_Gender_cleanWomen                                                     1.621
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                -0.947
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.745
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  -0.315
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.110
##                                                                         Pr(>|z|)
## (Intercept)                                                               0.3432
## Supporter_CareerStage_cleanPostdocs                                       0.3699
## Supporter_CareerStage_cleanGroup leaders (<5yr)                           0.0105
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                         0.3366
## Supporter_CareerStage_cleanGroup leaders (>10yr)                          0.3133
## All_Gender_cleanWomen                                                     0.1050
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                 0.3436
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen     0.4560
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen   0.7526
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen    0.9127
##                                                                          
## (Intercept)                                                              
## Supporter_CareerStage_cleanPostdocs                                      
## Supporter_CareerStage_cleanGroup leaders (<5yr)                         *
## Supporter_CareerStage_cleanGroup leaders (5-10yr)                        
## Supporter_CareerStage_cleanGroup leaders (>10yr)                         
## All_Gender_cleanWomen                                                    
## Supporter_CareerStage_cleanPostdocs:All_Gender_cleanWomen                
## Supporter_CareerStage_cleanGroup leaders (<5yr):All_Gender_cleanWomen    
## Supporter_CareerStage_cleanGroup leaders (5-10yr):All_Gender_cleanWomen  
## Supporter_CareerStage_cleanGroup leaders (>10yr):All_Gender_cleanWomen   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1715.8  on 1246  degrees of freedom
## Residual deviance: 1686.0  on 1237  degrees of freedom
##   (8 observations deleted due to missingness)
## AIC: 1706
## 
## Number of Fisher Scoring iterations: 4

Needing practical information x gender graph

Support_Practical=genderCS[,c("Support_Practical", "Supporter_CareerStage_clean", "All_Gender_clean")]
#Subset
Support_Practical=genderCS[,c("Support_Practical", "Supporter_CareerStage_clean", "All_Gender_clean")]
#Recode 
Support_Practical=Support_Practical[Support_Practical$Support_Practical %in% seq(1,3),] #remove options 4&5
Support_Practical[Support_Practical$Support_Practical %in% c(1,2), "Support_Practical"]="No"
Support_Practical[Support_Practical$Support_Practical==3, "Support_Practical"]="Yes"

#ImpactPersonal$Impact_Personal=factor(ImpactPersonal$Impact_Personal, levels=c("No","Yes"))
graphdata =Support_Practical %>%
  group_by(All_Gender_clean, Support_Practical) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'All_Gender_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/SupportPractical_gender.eps", width=1000, height=578)
ggplot(graphdata, aes(x=All_Gender_clean, y=perc, fill=Support_Practical)) +
  geom_bar(stat="identity") +
  theme_minimal() +
    theme(plot.title = element_text(hjust = 0.5), text=element_text(size=12), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 16), legend.position="bottom", legend.text = element_text(size=7))+
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="
       I needed practical information \n(e.g. advice, guidelines, training...) \nto help me in my supporting role.") +
    guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=c(eBlue, eGreen))

ggsave(dpi=1000, "6-2-2 (not reported).png", limitsize = FALSE)
## Saving 7 x 5 in image
dev.off()
## null device 
##           1

Needing practical information x CS graph (Graph 6.2.2)

graphdata = Support_Practical %>%
  group_by(Supporter_CareerStage_clean, Support_Practical) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'Supporter_CareerStage_clean' (override with `.groups` argument)
# This will save the image to your local code folder
#eps("images/SupportPractical_CS.eps", width=1000, height=578)
ggplot(graphdata, aes(x=Supporter_CareerStage_clean, y=perc, fill=Support_Practical)) +
  geom_bar(stat="identity") +
  theme_minimal() +
  theme(plot.title = element_text(hjust = 0.5), text=element_text(size=12), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 16), legend.text = element_text(size=7))+
  geom_text(aes(label=round(perc, digit=1)), size=3, position=position_stack(vjust=0.5), color="white") +
  scale_x_discrete(limits = rev(levels(graphdata$Supporter_CareerStage_clean))) +
  labs(x="", y="Percentage", title="I needed practical information \n(e.g. advice, guidelines, training...) to help me \nin my supporting role.") + 
    guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=c(eBlue, eGreen))

ggsave(dpi=1000, "6-2-2.png", limitsize = FALSE)
## Saving 7 x 5 in image
dev.off()
## null device 
##           1

Model: Multinomial logistic regression (not reported)

Makes the most sense to use “Yes, I needed information” (option 3) as the baseline. This tests whether gender/CS has an effect of a respondent choosing the other two responses (“No, I did not need information” and “No, I had already received information before”) over the baseline.

#subset
Support_Practical=genderCS[,c("Support_Practical", "Supporter_CareerStage_clean", "All_Gender_clean")]
Support_Practical=Support_Practical[Support_Practical$Support_Practical %in% seq(1,3), ] #remove NAs and some choices
dim(Support_Practical)[1] #N
## [1] 1003
Support_Practical$Support_Practical=as.factor(Support_Practical$Support_Practical) #factorise
#reorder factor to make "Yes, I needed information" the baseline
Support_Practical$Support_Practical=relevel(Support_Practical$Support_Practical, "3")
levels(Support_Practical$Support_Practical)= c("Yes, I needed information", "No, I did not need information", "No, I had already received information before")

#multinomial model -> p-values (2-tailed z test)

# Effect of gender
SP_gender=multinom(Support_Practical~All_Gender_clean, data=Support_Practical)
## # weights:  9 (4 variable)
## initial  value 1101.908126 
## iter  10 value 835.460887
## iter  10 value 835.460886
## final  value 835.460886 
## converged
summary(SP_gender)
## Call:
## multinom(formula = Support_Practical ~ All_Gender_clean, data = Support_Practical)
## 
## Coefficients:
##                                               (Intercept) All_Gender_cleanWomen
## No, I did not need information                  -1.055119            -0.4365019
## No, I had already received information before   -1.725203             0.1043311
## 
## Std. Errors:
##                                               (Intercept) All_Gender_cleanWomen
## No, I did not need information                  0.1252083             0.1674830
## No, I had already received information before   0.1636321             0.2013519
## 
## Residual Deviance: 1670.922 
## AIC: 1678.922
# Z-statistics and p-value using Wald tests
SP_gender_z=summary(SP_gender)$coefficients/summary(SP_gender)$standard.errors #Z statistics
(1-pnorm(abs(SP_gender_z), 0, 1))*2 #p-values
##                                               (Intercept) All_Gender_cleanWomen
## No, I did not need information                          0           0.009154068
## No, I had already received information before           0           0.604351393
exp(coef(SP_gender)) #effect size (baseline IV is men, and baseline response is "yes")
##                                               (Intercept) All_Gender_cleanWomen
## No, I did not need information                  0.3481512             0.6462933
## No, I had already received information before   0.1781369             1.1099679
exp(confint(SP_gender)) 
## , , No, I did not need information
## 
##                           2.5 %    97.5 %
## (Intercept)           0.2723895 0.4449849
## All_Gender_cleanWomen 0.4654444 0.8974111
## 
## , , No, I had already received information before
## 
##                           2.5 %    97.5 %
## (Intercept)           0.1292617 0.2454922
## All_Gender_cleanWomen 0.7480307 1.6470298
# Effect of career stage
SP_CS=multinom(Support_Practical~Supporter_CareerStage_clean, data=Support_Practical)
## # weights:  18 (10 variable)
## initial  value 1101.908126 
## iter  10 value 830.236732
## final  value 829.937190 
## converged
summary(SP_CS)
## Call:
## multinom(formula = Support_Practical ~ Supporter_CareerStage_clean, 
##     data = Support_Practical)
## 
## Coefficients:
##                                               (Intercept)
## No, I did not need information                  -1.202753
## No, I had already received information before   -1.566422
##                                               Supporter_CareerStage_cleanPostdocs
## No, I did not need information                                         -0.1203630
## No, I had already received information before                          -0.1520059
##                                               Supporter_CareerStage_cleanGroup leaders (<5yr)
## No, I did not need information                                                     -0.5200135
## No, I had already received information before                                      -1.0726390
##                                               Supporter_CareerStage_cleanGroup leaders (5-10yr)
## No, I did not need information                                                       -0.4264911
## No, I had already received information before                                         0.4071852
##                                               Supporter_CareerStage_cleanGroup leaders (>10yr)
## No, I did not need information                                                       0.1761153
## No, I had already received information before                                        0.1949468
## 
## Std. Errors:
##                                               (Intercept)
## No, I did not need information                  0.1259291
## No, I had already received information before   0.1456258
##                                               Supporter_CareerStage_cleanPostdocs
## No, I did not need information                                          0.2042085
## No, I had already received information before                           0.2386308
##                                               Supporter_CareerStage_cleanGroup leaders (<5yr)
## No, I did not need information                                                      0.2734716
## No, I had already received information before                                       0.3938729
##                                               Supporter_CareerStage_cleanGroup leaders (5-10yr)
## No, I did not need information                                                        0.3680575
## No, I had already received information before                                         0.3214260
##                                               Supporter_CareerStage_cleanGroup leaders (>10yr)
## No, I did not need information                                                       0.2691657
## No, I had already received information before                                        0.3081486
## 
## Residual Deviance: 1659.874 
## AIC: 1679.874
# Z-statistics and p-value using Wald tests
SP_CS_z=summary(SP_CS)$coefficients/summary(SP_CS)$standard.errors #Z statistics
(1-pnorm(abs(SP_CS_z), 0, 1))*2 #p-values
##                                               (Intercept)
## No, I did not need information                          0
## No, I had already received information before           0
##                                               Supporter_CareerStage_cleanPostdocs
## No, I did not need information                                          0.5555847
## No, I had already received information before                           0.5241303
##                                               Supporter_CareerStage_cleanGroup leaders (<5yr)
## No, I did not need information                                                    0.057233076
## No, I had already received information before                                     0.006463086
##                                               Supporter_CareerStage_cleanGroup leaders (5-10yr)
## No, I did not need information                                                        0.2465531
## No, I had already received information before                                         0.2052237
##                                               Supporter_CareerStage_cleanGroup leaders (>10yr)
## No, I did not need information                                                       0.5129182
## No, I had already received information before                                        0.5269696
exp(coef(SP_CS)) #effect size
##                                               (Intercept)
## No, I did not need information                  0.3003661
## No, I had already received information before   0.2087910
##                                               Supporter_CareerStage_cleanPostdocs
## No, I did not need information                                          0.8865986
## No, I had already received information before                           0.8589833
##                                               Supporter_CareerStage_cleanGroup leaders (<5yr)
## No, I did not need information                                                      0.5945125
## No, I had already received information before                                       0.3421045
##                                               Supporter_CareerStage_cleanGroup leaders (5-10yr)
## No, I did not need information                                                        0.6527957
## No, I had already received information before                                         1.5025824
##                                               Supporter_CareerStage_cleanGroup leaders (>10yr)
## No, I did not need information                                                        1.192576
## No, I had already received information before                                         1.215246
exp(confint(SP_CS))
## , , No, I did not need information
## 
##                                                       2.5 %    97.5 %
## (Intercept)                                       0.2346712 0.3844518
## Supporter_CareerStage_cleanPostdocs               0.5941615 1.3229687
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.3478417 1.0161094
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.3173118 1.3429764
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.7036742 2.0211576
## 
## , , No, I had already received information before
## 
##                                                       2.5 %    97.5 %
## (Intercept)                                       0.1569476 0.2777593
## Supporter_CareerStage_cleanPostdocs               0.5380985 1.3712215
## Supporter_CareerStage_cleanGroup leaders (<5yr)   0.1580861 0.7403277
## Supporter_CareerStage_cleanGroup leaders (5-10yr) 0.8002764 2.8212176
## Supporter_CareerStage_cleanGroup leaders (>10yr)  0.6643053 2.2231098

multinomial LR - Career stages pairwise analyses

using multinomial to compare between all career stages, pairwise

#reverse CSpairs column order to not have early PIs on the baseline
CSpairs=CSpairs[,c(2,1)]
#new dataframe
SupportPracticalCSMLR=data.frame(CS1=c(), CS2=c(), response=c(), z=c(), edf=c(), pVal=c(), OR=c(), CIlower=c(), CIupper=c()) 
for (i in 1:dim(CSpairs)[1]) {
  comparedData=Support_Practical[(Support_Practical$Supporter_CareerStage_clean==CSpairs[i,1]|Support_Practical$Supporter_CareerStage_clean==CSpairs[i,2]),]
  comparedData$Supporter_CareerStage_clean=droplevels(comparedData$Supporter_CareerStage_clean) #drop levels to avoid levels with 0 values producing NaNs
  comparedData$Supporter_CareerStage_clean=relevel(comparedData$Supporter_CareerStage_clean, CSpairs[i,1]) #put the baseline first in factor level!
  model=multinom(Support_Practical~Supporter_CareerStage_clean, data=comparedData)
  # Z-statistics and p-value using Wald tests
  z=summary(model)$coefficients/summary(model)$standard.errors #Z statistics- from this line onwards, code produces 4 values, one for each non-baseline response, and intercept and CS2 over CS1. We ignore the intercept values (recording column 2)
  pVal=(1-pnorm(abs(z), 0, 1))*2 #p-values
  or=exp(coef(model)) #effect size
  CI=exp(confint(model)) #CI - [3,4] for first repsonse, [7,8] for second
  SupportPracticalCSMLR=rbind(SupportPracticalCSMLR, 
                              data.frame(CS1=CSpairs[i,1], CS2=CSpairs[i,2], response=rownames(z)[1], z=z[1,2], df=model$edf, pVal=pVal[1,2], OR=or[1,2], CIlower=CI[3], CIupper=CI[4]),
                              data.frame(CS1=CSpairs[i,1], CS2=CSpairs[i,2], response=rownames(z)[2], z=z[2,2], df=model$edf, pVal=pVal[2,2], OR=or[2,2], CIlower=CI[7], CIupper=CI[8]))
}
## # weights:  9 (4 variable)
## initial  value 606.433983 
## iter  10 value 444.278831
## final  value 444.278808 
## converged
## # weights:  9 (4 variable)
## initial  value 446.036589 
## iter  10 value 306.419345
## final  value 306.385782 
## converged
## # weights:  9 (4 variable)
## initial  value 238.398867 
## iter  10 value 153.370530
## final  value 153.370528 
## converged
## # weights:  9 (4 variable)
## initial  value 272.455848 
## iter  10 value 186.325810
## final  value 186.325736 
## converged
SupportPracticalCSMLR
##                      CS1                  CS2
## 1           PhD students Group leaders (<5yr)
## 2           PhD students Group leaders (<5yr)
## 3               Postdocs Group leaders (<5yr)
## 4               Postdocs Group leaders (<5yr)
## 5 Group leaders (5-10yr) Group leaders (<5yr)
## 6 Group leaders (5-10yr) Group leaders (<5yr)
## 7  Group leaders (>10yr) Group leaders (<5yr)
## 8  Group leaders (>10yr) Group leaders (<5yr)
##                                        response          z df        pVal
## 1                No, I did not need information -1.9006683  4 0.057345477
## 2 No, I had already received information before -2.7228910  4 0.006471340
## 3                No, I did not need information -1.3726343  4 0.169866053
## 4 No, I had already received information before -2.2350517  4 0.025413953
## 5                No, I did not need information -0.2215956  4 0.824628732
## 6 No, I had already received information before -3.1832592  4 0.001456272
## 7                No, I did not need information -2.0479815  4 0.040561817
## 8 No, I had already received information before -2.7814155  4 0.005412242
##          OR   CIlower   CIupper
## 1 0.5946760 0.3844602 1.0163466
## 2 0.3421955 0.2777661 0.7404714
## 3 0.6705548 0.3649348 1.1864957
## 4 0.3982676 0.2597834 0.8928736
## 5 0.9106214 0.3862392 2.0844225
## 6 0.2277518 0.5500803 0.5663421
## 7 0.4985416 0.5709868 0.9705276
## 8 0.2815239 0.4320394 0.6877366

Q32c All_MH

Q32c All_MH x gender x Supporter Status (no career stage here)

Looking at 2 independent variables:

  1. Gender (label: “All_Gender_clean”): Man -1, Woman -3

  2. Supporter/ Not supporter (label “Provided_Support”):

recode to new variable “Provided_Support_clean”

  • 1- No - recode to “No”
  • 2 - Yes, to one individual - recode to “Yes”
  • 3 - Yes, to between one and five individuals - recode to “Yes”
  • 4 - Yes, to more than five individuals - recode to “Yes”
  • 5 - I am not sure - remove
  • 6 - Prefer not to answer - remove
#Filtering by gender and supporter status
genderSupport=data[data$All_Gender_clean %in% c(1,3) & data$Provided_Support %in% seq(1,4),]

#recode Supporter/not Supporter - Provided_Support_clean
genderSupport$Provided_Support_clean=genderSupport$Provided_Support
genderSupport[genderSupport$Provided_Support==1, "Provided_Support_clean"]="No"
genderSupport[genderSupport$Provided_Support %in% seq(2,4), "Provided_Support_clean"]="Yes"

genderSupport$All_Gender_clean=as.factor(genderSupport$All_Gender_clean)
genderSupport$Provided_Support_clean=as.factor(genderSupport$Provided_Support_clean)

levels(genderSupport$All_Gender_clean)=c("Men", "Women")
dim(genderSupport)
## [1] 1697  197

Q01xQ28 Supporter vs gender (Section 2, Panel 1)

Chi-square & Logistical regression

gender=genderSupport[,c("Provided_Support_clean","All_Gender_clean")]
dim(gender)[1] #this gives N
## [1] 1697
table(gender)
##                       All_Gender_clean
## Provided_Support_clean Men Women
##                    No  100   110
##                    Yes 530   957
chisq.test(table(gender)) #not reported
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(gender)
## X-squared = 10.801, df = 1, p-value = 0.001015
summary(glm(Provided_Support_clean~All_Gender_clean, data=genderSupport, family="binomial")) 
## 
## Call:
## glm(formula = Provided_Support_clean ~ All_Gender_clean, family = "binomial", 
##     data = genderSupport)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1317   0.4665   0.4665   0.5879   0.5879  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             1.6677     0.1090   15.30  < 2e-16 ***
## All_Gender_cleanWomen   0.4956     0.1484    3.34 0.000838 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1270.5  on 1696  degrees of freedom
## Residual deviance: 1259.4  on 1695  degrees of freedom
## AIC: 1263.4
## 
## Number of Fisher Scoring iterations: 4
exp(coef(glm(Provided_Support_clean~All_Gender_clean, data=genderSupport, family="binomial"))) #OR (men as baseline)
##           (Intercept) All_Gender_cleanWomen 
##              5.300000              1.641509
exp(confint(glm(Provided_Support_clean~All_Gender_clean, data=genderSupport, family="binomial"))) #CI
## Waiting for profiling to be done...
##                          2.5 %   97.5 %
## (Intercept)           4.301614 6.598465
## All_Gender_cleanWomen 1.226278 2.195431

filtering by response to All_MH

ordinal logistical regression: 1-5 strongly disagree - strongly agree

AllMH=genderSupport[,c("All_MH", "All_Gender_clean", "Provided_Support_clean")]
#clean
AllMH=AllMH[(AllMH$All_MH %in% seq(1:5)),]
dim(AllMH)[1]
## [1] 1676
#factorise
AllMH$All_MH=as.factor(AllMH$All_MH)
table(AllMH$All_MH)
## 
##    1    2    3    4    5 
##   88   79   87  357 1065

All_MH x gender (Section 1, last paragraph)

exp(coef(polr(All_MH~All_Gender_clean, data=AllMH, Hess=TRUE, method="logistic"))) #OR (men as baseline)
## All_Gender_cleanWomen 
##              1.748233
exp(confint(polr(All_MH~All_Gender_clean, data=AllMH, Hess=TRUE, method="logistic"))) #CI
## Waiting for profiling to be done...
##    2.5 %   97.5 % 
## 1.433968 2.131327
kruskal.test(All_MH ~ All_Gender_clean, data=AllMH) #effect of gender on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  All_MH by All_Gender_clean
## Kruskal-Wallis chi-squared = 30.623, df = 1, p-value = 3.133e-08

All_MH x Supporter

exp(coef(polr(All_MH~Provided_Support_clean, data=AllMH, Hess=TRUE, method="logistic"))) #OR (non-supporters are baseline)
## Provided_Support_cleanYes 
##                  1.263584
kruskal.test(All_MH ~Provided_Support_clean, data=AllMH) #effect of supporter status on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  All_MH by Provided_Support_clean
## Kruskal-Wallis chi-squared = 2.5083, df = 1, p-value = 0.1133

All_MH x gender graph

##reordering factors order for the graph
levels(AllMH$All_MH)=c("Strongly disagree", "Somewhat disagree", "Neither agree or disagree", "Somewhat agree", "Strongly agree")
AllMH$All_MH=factor(AllMH$All_MH, levels=c("Strongly agree", "Somewhat agree", "Neither agree or disagree", "Somewhat disagree", "Strongly disagree"))

#graph split by gender
graphdata = AllMH %>%
  group_by(All_Gender_clean, All_MH) %>%
  summarize(n=n()) %>%
  mutate(perc=n*100/sum(n))
## `summarise()` regrouping output by 'All_Gender_clean' (override with `.groups` argument)
#tiff("AllMH_gender.tiff", width=1000, height=578)
ggplot(graphdata, aes(x=All_Gender_clean, y=perc, fill=All_MH)) +
  geom_bar(stat="identity") +
  theme_minimal() +
     theme(plot.title = element_text(hjust = 0.5), text=element_text(size=20))+
  geom_text(aes(label=round(perc, digit=1)), size=4, position=position_stack(vjust=0.5), color="white") +
  labs(x="", y="Percentage", title="I have gone through times in my life when my mental health was poor") +
    guides(fill=guide_legend(reverse=TRUE)) +
  coord_flip() +
  scale_fill_manual(name="", values=ePalette)

#dev.off()

All_MH x Supporter

exp(coef(polr(All_MH~Provided_Support_clean, data=AllMH, Hess=TRUE, method="logistic"))) #OR (non-supporters are baseline)
## Provided_Support_cleanYes 
##                 0.7913638
kruskal.test(All_MH ~Provided_Support_clean, data=AllMH) #effect of supporter status on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  All_MH by Provided_Support_clean
## Kruskal-Wallis chi-squared = 2.5083, df = 1, p-value = 0.1133

Chisq for intersections [NOT REPORTED]

# #split by supporter status, gender effect
# summary(AllMH$Provided_Support)
# chisq.test(table(AllMH[AllMH$Provided_Support_clean==levels(AllMH$Provided_Support_clean)[1],c("All_MH","All_Gender_clean")]))
# chisq.test(table(AllMH[AllMH$Provided_Support_clean==levels(AllMH$Provided_Support_clean)[2],c("All_MH","All_Gender_clean")]))
# #split by gender, supporter status (same as KW above)
# chisq.test(table(AllMH[AllMH$All_Gender_clean==levels(AllMH$All_Gender_clean)[1],c("All_MH","Provided_Support_clean")]))
# chisq.test(table(AllMH[AllMH$All_Gender_clean==levels(AllMH$All_Gender_clean)[2],c("All_MH","Provided_Support_clean")]))

Q32d All_UnderstandingMH (Section 1, last paragraph)

ordinal logistical regression: 1-5 strongly disagree - strongly agree

AllUnderstandingMH=genderSupport[,c("All_UnderstandingMH", "All_Gender_clean", "Provided_Support_clean")]
#clean
AllUnderstandingMH=AllUnderstandingMH[(AllUnderstandingMH$All_UnderstandingMH %in% seq(1:5)),]
dim(AllUnderstandingMH)[1]
## [1] 1685
#factorise
AllUnderstandingMH$All_UnderstandingMH=as.factor(AllUnderstandingMH$All_UnderstandingMH)
table(AllUnderstandingMH$All_UnderstandingMH)
## 
##   1   2   3   4   5 
##  45 142 248 745 505

All_UnderstandingMH x gender

exp(coef(polr(All_UnderstandingMH~All_Gender_clean, data=AllUnderstandingMH, Hess=TRUE, method="logistic"))) #OR (men as baseline)
## All_Gender_cleanWomen 
##              1.645369
exp(confint(polr(All_UnderstandingMH~All_Gender_clean, data=AllUnderstandingMH, Hess=TRUE, method="logistic"))) #CI
## Waiting for profiling to be done...
##    2.5 %   97.5 % 
## 1.369448 1.977934
kruskal.test(All_UnderstandingMH ~ All_Gender_clean, data=AllUnderstandingMH) #effect of gender on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  All_UnderstandingMH by All_Gender_clean
## Kruskal-Wallis chi-squared = 28.132, df = 1, p-value = 1.133e-07

All_UnderstandingMH x Supporter

exp(coef(polr(All_UnderstandingMH~Provided_Support_clean, data=AllUnderstandingMH, Hess=TRUE, method="logistic"))) #OR (non-supporters as baseline)
## Provided_Support_cleanYes 
##                  1.143644
kruskal.test(All_UnderstandingMH ~Provided_Support_clean, data=AllUnderstandingMH) #effect of supporter status on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  All_UnderstandingMH by Provided_Support_clean
## Kruskal-Wallis chi-squared = 0.94881, df = 1, p-value = 0.33

Q32c All_MH x career stage

Looking at the single indepedent variable - present career stage. This is because this section focuses on understanding the population that filled in the survey

  1. CS (label: “All_CurrentRole_clean”): PhD - 3, postdoc -4, earlyPI - 6, midPI- 7, late PI -8 drop all other stages
AllCS=data[data$All_CurrentRole_clean %in% c(3,4,6,7,8), ] #subset
AllCS$All_CurrentRole_clean=as.factor(AllCS$All_CurrentRole_clean) #factorise
dim(AllCS) 
## [1] 1501  196
levels(AllCS$All_CurrentRole_clean)=c("PhD students", "Postdocs", "Group leaders (<5yr)", "Group leaders (5-10yr)", "Group leaders (>10yr)")

Filter All_MH response as before

#subset
AllMH_CS=AllCS[,c("All_MH", "All_CurrentRole_clean")]
#clean
AllMH_CS=AllMH_CS[(AllMH_CS$All_MH %in% seq(1:5)),]
dim(AllMH_CS)[1] #N
## [1] 1488
#factorise
AllMH_CS$All_MH=as.factor(AllMH_CS$All_MH)
table(AllMH_CS$All_MH)
## 
##   1   2   3   4   5 
##  85  66  78 331 928

All_MH x CS (Section 1, last paragraph)

ordinal logistic regression, single Indepedent variable

exp(coef(polr(All_MH~All_CurrentRole_clean, data=AllMH_CS, Hess=TRUE, method="logistic"))) #OR (men as baseline)
##               All_CurrentRole_cleanPostdocs 
##                                   0.8131627 
##   All_CurrentRole_cleanGroup leaders (<5yr) 
##                                   0.4493026 
## All_CurrentRole_cleanGroup leaders (5-10yr) 
##                                   0.3492036 
##  All_CurrentRole_cleanGroup leaders (>10yr) 
##                                   0.1881167
exp(confint(polr(All_MH~All_CurrentRole_clean, data=AllMH_CS, Hess=TRUE, method="logistic"))) #CI
## Waiting for profiling to be done...
##                                                 2.5 %    97.5 %
## All_CurrentRole_cleanPostdocs               0.6168290 1.0699657
## All_CurrentRole_cleanGroup leaders (<5yr)   0.3253815 0.6203544
## All_CurrentRole_cleanGroup leaders (5-10yr) 0.2359750 0.5180630
## All_CurrentRole_cleanGroup leaders (>10yr)  0.1326973 0.2659600
kruskal.test(All_MH ~ All_CurrentRole_clean, data=AllMH_CS) #effect of CS on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  All_MH by All_CurrentRole_clean
## Kruskal-Wallis chi-squared = 114.25, df = 4, p-value < 2.2e-16

Q1x Q32 Supporter vs CS

chi-square (not reported) and logistic regression

#subset
CSSupport=AllCS[,c("Provided_Support","All_CurrentRole_clean")]
CSSupport$Provided_Support_clean=CSSupport$Provided_Support
CSSupport=CSSupport[!is.na(CSSupport$Provided_Support),] #remove NA
CSSupport[CSSupport$Provided_Support==1, 'Provided_Support_clean']=0
CSSupport[CSSupport$Provided_Support %in% seq(2,4), 'Provided_Support_clean']=1
CSSupport=CSSupport[CSSupport$Provided_Support_clean %in% c(0,1), c("Provided_Support_clean", "All_CurrentRole_clean")]

dim(CSSupport)[1] #this gives N
## [1] 1391
table(CSSupport)
##                       All_CurrentRole_clean
## Provided_Support_clean PhD students Postdocs Group leaders (<5yr)
##                      0           64       52                   25
##                      1          345      423                  188
##                       All_CurrentRole_clean
## Provided_Support_clean Group leaders (5-10yr) Group leaders (>10yr)
##                      0                     11                     7
##                      1                    109                   167
chisq.test(table(CSSupport)) #not reported
## 
##  Pearson's Chi-squared test
## 
## data:  table(CSSupport)
## X-squared = 17.353, df = 4, p-value = 0.00165
summary(glm(Provided_Support_clean~All_CurrentRole_clean, data=CSSupport, family="binomial")) 
## 
## Call:
## glm(formula = Provided_Support_clean ~ All_CurrentRole_clean, 
##     family = "binomial", data = CSSupport)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5350   0.4385   0.4815   0.4997   0.5834  
## 
## Coefficients:
##                                             Estimate Std. Error z value
## (Intercept)                                   1.6847     0.1361  12.378
## All_CurrentRole_cleanPostdocs                 0.4115     0.2003   2.054
## All_CurrentRole_cleanGroup leaders (<5yr)     0.3329     0.2527   1.318
## All_CurrentRole_cleanGroup leaders (5-10yr)   0.6088     0.3444   1.768
## All_CurrentRole_cleanGroup leaders (>10yr)    1.4874     0.4090   3.637
##                                             Pr(>|z|)    
## (Intercept)                                  < 2e-16 ***
## All_CurrentRole_cleanPostdocs               0.039947 *  
## All_CurrentRole_cleanGroup leaders (<5yr)   0.187657    
## All_CurrentRole_cleanGroup leaders (5-10yr) 0.077108 .  
## All_CurrentRole_cleanGroup leaders (>10yr)  0.000276 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 988.79  on 1390  degrees of freedom
## Residual deviance: 969.27  on 1386  degrees of freedom
## AIC: 979.27
## 
## Number of Fisher Scoring iterations: 5
exp(coef(glm(Provided_Support_clean~All_CurrentRole_clean, data=CSSupport, family="binomial"))) #OR (PhD as baseline)
##                                 (Intercept) 
##                                    5.390625 
##               All_CurrentRole_cleanPostdocs 
##                                    1.509030 
##   All_CurrentRole_cleanGroup leaders (<5yr) 
##                                    1.395014 
## All_CurrentRole_cleanGroup leaders (5-10yr) 
##                                    1.838208 
##  All_CurrentRole_cleanGroup leaders (>10yr) 
##                                    4.425672
exp(confint(glm(Provided_Support_clean~All_CurrentRole_clean, data=CSSupport, family="binomial"))) #CI
## Waiting for profiling to be done...
##                                                 2.5 %    97.5 %
## (Intercept)                                 4.1604363  7.099635
## All_CurrentRole_cleanPostdocs               1.0203209  2.241046
## All_CurrentRole_cleanGroup leaders (<5yr)   0.8600750  2.324661
## All_CurrentRole_cleanGroup leaders (5-10yr) 0.9714635  3.794156
## All_CurrentRole_cleanGroup leaders (>10yr)  2.1211088 10.800584

Q32d All_UnderstandingMH x career stage (Section 1, last paragraph)

ordinal logistical regression: 1-5 strongly disagree - strongly agree

AllUnderstandingMH_CS=AllCS[,c("All_UnderstandingMH", "All_CurrentRole_clean")]
#clean
AllUnderstandingMH_CS=AllUnderstandingMH_CS[(AllUnderstandingMH_CS$All_UnderstandingMH %in% seq(1:5)),]
dim(AllUnderstandingMH_CS)[1]
## [1] 1496
#factorise
AllUnderstandingMH_CS$All_UnderstandingMH=as.factor(AllUnderstandingMH_CS$All_UnderstandingMH)
table(AllUnderstandingMH_CS$All_UnderstandingMH)
## 
##   1   2   3   4   5 
##  42 135 220 667 432
exp(coef(polr(All_UnderstandingMH~All_CurrentRole_clean, data=AllUnderstandingMH_CS, Hess=TRUE, method="logistic"))) #OR (PhD as baseline)
##               All_CurrentRole_cleanPostdocs 
##                                   0.8415217 
##   All_CurrentRole_cleanGroup leaders (<5yr) 
##                                   0.7849314 
## All_CurrentRole_cleanGroup leaders (5-10yr) 
##                                   0.5921041 
##  All_CurrentRole_cleanGroup leaders (>10yr) 
##                                   0.7440227
exp(confint(polr(All_UnderstandingMH~All_CurrentRole_clean, data=AllUnderstandingMH_CS, Hess=TRUE, method="logistic"))) #CI
## Waiting for profiling to be done...
##                                                 2.5 %    97.5 %
## All_CurrentRole_cleanPostdocs               0.6666041 1.0619965
## All_CurrentRole_cleanGroup leaders (<5yr)   0.5843670 1.0543121
## All_CurrentRole_cleanGroup leaders (5-10yr) 0.4125412 0.8500038
## All_CurrentRole_cleanGroup leaders (>10yr)  0.5376563 1.0298044
kruskal.test(All_UnderstandingMH ~ All_CurrentRole_clean, data=AllUnderstandingMH_CS) #effect of CS on response
## 
##  Kruskal-Wallis rank sum test
## 
## data:  All_UnderstandingMH by All_CurrentRole_clean
## Kruskal-Wallis chi-squared = 9.7721, df = 4, p-value = 0.04445