Temple places
Excavating cultural sustainability in prehistoric Malta

By Caroline Malone, Reuben Grima, Rowan McLaughlin, Eóin W. Parkinson, Simon Stoddart & Nicholas Vella

Volume 2 of Fragility and Sustainability – Studies on Early Malta, the ERC-funded FRAGSUS Project
Temple places
Temple places
Excavating cultural sustainability in prehistoric Malta

By Caroline Malone, Reuben Grima, Rowan McLaughlin, Eóin W. Parkinson, Simon Stoddart & Nicholas Vella

With contributions by

Illustrations by
Steven Ashley, Caroline Malone, Rowan McLaughlin, Stephen Armstrong, Jeremy Bennett, Catriona Brogan, Petros Chatzimpaloglou, Michelle Farrell, Katrin Fenech, Charles French, Conor McAdams, Finbar McCormick, John Meneely, Alastair Ruffell, Georgia Vince & Nathan Wright

Volume 2 of Fragility and Sustainability – Studies on Early Malta, the ERC-funded FRAGSUS Project
Chapter 1 Archaeological studies of Maltese prehistory for the FRAGSUS Project 2013–18
Caroline Malone, Simon Stoddart, Rowan McLaughlin & Nicholas Vella

1. Introduction
 1.1. Island studies
 1.1.2. Chronology and new scientific studies
 1.1.3. Island criteria
2. Background to FRAGSUS as an archaeological project
3. The Cambridge Gozo Project 1987–95
4. The FRAGSUS Project 2013–18
 1.4.1. Archaeological concerns in Maltese prehistory and the FRAGSUS Project
 1.4.2. Time and artefacts
 1.4.3. Architecture
5. Five research questions
6. The field research programme, 2014–16: the selection of sites for excavation and sampling and the goals for each site
 1.6.1. Taċ-Ċawla
 1.6.2. Santa Verna
 1.6.3. Kordin III
 1.6.4. Skorba
 1.6.5. Ġgantija
 1.6.6. In-Nuffara
7. Additional studies
8. Environmental and economic archaeology
9. Conclusions
2.3.9. Tarxien Cemetery phase
2.3.10. Borg in-Nadur phase
2.3.11. Preferred model summary
2.3.12. Kernel density model
2.3.13. Comparison with other regions
2.4. Non-prehistoric dates
2.5. Discussion
2.6. Conclusion

Chapter 3 Excavations at Taċ-Ċawla, Rabat, Gozo, 2014
Caroline Malone, Rowan McLaughlin, Stephen Armstrong, Jeremy Bennett, Conor McAdams, Charles French, Simon Stoddart & Nathaniel Cutajar
3.1. Introduction
3.1.1. Location and physical setting
3.1.2. History of the site
3.2. The Van der Blom and Veen watching brief
3.2.1. The initial evaluation 1993–4
3.2.2. The archaeological investigation 1993–4
3.2.3. The Horton-Trump 1995 investigation
3.2.4. Pottery phases Għar Dalam (c. 5500 bc)
3.2.5. Tarxien Phase c. 2800 to 2400 bc
3.2.6. Later levels of Punic, Roman and Medieval material c. 800 bc to ad 1500
3.2.7. Post Medieval
3.2.8. The 2014 excavations – methods
3.3. Results of the 1995 work and the 2014 work
3.3.1. Wall (172)
3.3.2. Internal floors and features within the structure: house layers
3.3.3. Level 1 deposits
3.3.4. Level 2 deposits
3.3.5. Level 3 deposits
3.3.6. Level 4 deposits
3.3.7. Level 5 deposits
3.3.8. Level 6 deposits
3.3.9. Level 7 deposits
3.3.10. Level 8 deposits
3.4. Superficial levels and the Roman vine channels
3.4.1. North Baulk and Main Quadrant
3.4.2. Box Trench 5
3.4.3. Box Trench 4 and main (Horton-Trump ‘H’) trench
3.4.4. Box Trench 6
3.4.5. The prehistoric deposits outside the wall east of the stone structure
3.5. The lower levels of extramural occupation
3.5.1. Summary
3.5.2. The Northern Sector
3.5.3. The North Central Sector
3.6. Destruction layers, middens and a torba remnant outside the building wall
3.6.1. The South Central Sector
3.6.2. The South Sector
3.6.3. Summary of the stratigraphic sequence of the eastern exterior of the stone structure
3.6.4. East extent of the Taċ-Ċawla site
3.7. Ancient soils and deposits and the Roman vine channels and pits
3.8. The agricultural channels in the northeast area of the site
3.8.1. The Roman agricultural channel sequence and fills
3.9. Recent historical remains
3.10. The material culture of Taċ-Ċawla
 3.10.1. Ceramics
 3.10.2. Lithics and artefacts
3.11. The plant economy of Taċ-Ċawla
3.12. Summary
 3.12.1. Conclusions and discussion

Chapter 4 Santa Verna
Rowan McLaughlin, Charles French, Eóin W. Parkinson, Sara Boyle, Jeremy Bennett,
Simon Stoddart & Caroline Malone

4.1. Introduction
4.2. The site
 4.2.1. Location and physical setting
 4.2.2. History of the site
 4.2.3. The 1911 excavations
 4.2.4. The 1961 excavations
 4.2.5. The Cambridge Gozo Survey
 4.2.6. The 2014 Survey
4.3. The 2015 excavations
 4.3.1. Methodology
 4.3.2. Trench A
 4.3.3. Trench B
 4.3.4. Trench C
 4.3.5. Trench D
 4.3.6. Trench D western extension
 4.3.7. Trench D northern extension
 4.3.8. Trench E
 4.3.9. Keyhole investigations between Trenches C, D and E
 4.3.10. Trench F
 4.3.11. Trench G
4.4. Soil micromorphology and geochemistry
 4.4.1. Introduction
 4.4.2. Physical and elemental characterization
 4.4.3. Summary of earthen floor micromorphology
 4.4.4. Conclusion
4.5. Discussion
 4.5.1. Pre-temple features and deposits
 4.5.2. The prehistoric temple at Santa Verna
 4.5.3. Destruction and collapse of the temple
 4.5.4. Evidence of Punic, Roman and Arab phases
 4.5.5. The medieval chapel of Santa Verna
 4.5.6. Previous excavation campaigns at the site
4.6. The megalithic survey
4.7. Summary and conclusions

Chapter 5 Ġgantija
Catriona Brogan, Charles French, Sean Taylor, Jeremy Bennett,
Eóin W. Parkinson, Rowan McLaughlin, Simon Stoddart & Caroline Malone

5.1. Introduction
5.2. Location and physical setting of the site
5.3. History of the site
 5.3.1. Museum Department excavations
5.4. 2014 survey and excavations
 5.4.1. Methodology
5.4.2. Results 174
5.5. 2015 excavations 180
 5.5.1. Excavation rationale 180
 5.5.1. Methodology 180
 5.5.1. Excavation results 181
5.6. Discussion 187
 5.6.1. Introduction 187
 5.6.2. Pre-temple features and deposits 187
 5.6.3. Stone structure 189
 5.6.4. Modern activity 191
5.7. Conclusion 191

Chapter 6 Kordin III 193
Rowan McLaughlin, Catriona Brogan, Eóin W. Parkinson,
Ella Samut-Tagliaferro, Simon Stoddart, Nicholas Vella & Caroline Malone

6.1. Introduction 193
6.2. The site 193
 6.2.1. Location and physical setting 193
 6.2.2. History of the site 194
6.3. Methodology and personnel 199
6.4. Results: Trench I 201
 6.4.1. Trench IA 201
 6.4.2. Trench IB 208
 6.4.2. Trench IB 208
 6.4.3. Trench IC 212
6.5. Results: Trench II 214
 6.5.1. Trench IIA 214
 6.5.2. Trench IIB 215
6.6. Results: Trench III 217
6.7. Results: Trench IV 219
 6.7.1. Trench IVA 219
 6.7.2. Trench IVB 219
6.8. Discussion 220
 6.8.1. Palaeosols 220
 6.8.2. Possible Skorba phase features 221
 6.8.3. Mġarr phase layers 221
 6.8.4. Pre-temple Ġgantija phase layers 221
 6.8.5. The megalithic ‘temple’ and its date 221
 6.8.6. Later activity 222
 6.8.7. Re-arrangement of the megaliths 222
6.9. Conclusion 223

Chapter 7 Skorba 227
Catriona Brogan, Eóin W. Parkinson, Rowan McLaughlin, Charles French
& Caroline Malone

7.1. Introduction 227
7.2. The site 227
 7.2.1. Location and physical setting 227
 7.2.2. History of the site 228
 7.2.3. The 1961–63 campaign 228
7.3. Methodology of the 2016 campaign 230
7.4. Results 231
 7.4.1. Northern corner 232
 7.4.2. Central sondage 232
Chapter 8
In-Nuffara
Stephen Armstrong, Catriona Brogan, Anthony Bonanno, Charles French, Rowan McLaughlin, Eóin W. Parkinson, Simon Stoddart & Caroline Malone

8.1. Introduction
8.2. The site
 8.2.1. Location and physical setting
 8.2.2. History of the site
8.3. Surface survey
8.4. The 2015 excavations
 8.4.1. Excavation rationale
 8.4.2. Methodology and personnel
 8.4.3. Results
 8.4.4. Geoarchaeological report
8.5. Discussion
 8.5.1. The Bronze Age settlement at In-Nuffara and contemporary use of the rock-cut pit
 8.5.2. The silos and their construction
 8.5.3. Site abandonment and later activity at In-Nuffara
 8.5.4. Punic, Roman and later activity at In-Nuffara
8.6. Conclusions
8.7. The pottery from In-Nuffara
 8.7.1. Introduction: In-Nuffara pottery overview report
 8.7.2. The catalogue
 8.7.3. Catalogue numbers
8.8. Characteristics and manufacture
 8.8.1. Fabric
 8.8.2. Surface treatment
 8.8.3. Decoration
8.9. Comparanda
 8.9.1. Noteworthy missing shapes
 8.9.1. Unique representations, without parallels elsewhere
8.10. Stratigraphic context and date
8.11. Recent archaeometric results
8.12. Impact of the above on the In-Nuffara assemblage
8.13. Concluding remarks
8.14. Catalogue of Bronze Age pottery from In-Nuffara

Chapter 9
Economy, environment and resources in prehistoric Malta

9.1. The environment of early Malta
9.2. Material resources
 9.2.1. Indigenous materials
 9.2.2. Exotic materials: their origins and distribution
9.3. Economy and foodways
 9.3.1. Introduction: the lines of evidence
9.3.2. Palaeoecology
9.3.3. Plant remains

9.4. Faunal remains: mammal bone
9.4.1. Introduction
9.4.2. Fragmentation
9.4.3. Species distribution
9.4.4. Sheep/goat
9.4.5. Cattle and pig

9.5. Other species
9.6. Mammal bones: discussion
9.6.1. Livestock and religion
9.7. Birds and fish
9.7.1. Bird bones
9.7.2. Fish bones
9.8. Faunal remains: conclusions
9.9. Human remains
9.9.1. Dental wear
9.9.2. Stable isotopes
9.10. Conclusions: the economic basis of prehistoric Malta

Chapter 10 The pottery of prehistoric Malta
CAROLINE MALONE, CATRIONA BROGAN & ROWAN MCLAUGHLIN

10.1. Introduction
10.1.1. History
10.1.2. Dating pottery
10.1.3. Recent research on Maltese pottery

10.2. The FRAGSUS ceramic research programme
10.2.1. Pottery phase descriptions
10.2.2. The typology and recognition of pottery types in Malta
10.2.3. The FRAGSUS pottery analysis: general data from across the sites
10.2.4. Pottery frequency
10.2.5. Phase frequency on the 2014–16 excavated sites
10.2.6. Fragmentation of pottery

10.3. Għar Dalam pottery (Phase 1)
10.3.1. Għar Dalam pottery from FRAGSUS sites
10.3.2. Għar Dalam style representation
10.3.3. Għar Dalam: catalogue descriptions
10.3.4. Għar Dalam: style characteristics
10.3.5. Għar Dalam: fabric, finish and decoration
10.3.6. Regional style

10.4. Skorba pottery (Phase 2)
10.4.1. Skorba (Red and Grey) bowl and jar forms from Santa Verna and Skorba: catalogue descriptions
10.4.2. Skorba general forms: catalogue descriptions
10.4.3. Red Skorba: catalogue descriptions
10.4.4. Forms and shapes

10.5. Żebbuġ pottery (Phase 3)
10.5.1. The Żebbuġ assemblage
10.5.2. Trefontane style: forms
10.5.3. Trefontane
10.5.4. Trefontane-Żebbuġ bowls: catalogue descriptions
10.5.5. Żebbuġ bowls: catalogue descriptions
10.5.6. Żebbuġ cups, handles, lugs, bases and profiles: catalogue descriptions
10.5.7. Żebbuġ jars and bowls: catalogue descriptions
10.5.8. Żebbuġ inverted jars and bowls, sherds and decoration: catalogue descriptions 349
10.5.9. The Żebbuġ assemblage 349
10.6. Mgarr pottery (Phase 4) 351
10.6.1. The FRAGSUS assemblage 351
10.6.2. Mgarr inverted bowls: catalogue descriptions 351
10.6.3. Mgarr patterned sherds and bowls: catalogue descriptions 354
10.6.4. Mgarr decoration 354
10.6.5. Mgarr inverted and everted forms and lugs: catalogue descriptions 355
10.7. Ġgantija pottery (Phase 5) 357
10.7.1. Ġgantija ceramic repertoire 357
10.7.2. Ġgantija everted tapered rim bowls and cups: catalogue descriptions 359
10.7.3. Ġgantija everted rolled rim bowls: catalogue descriptions 359
10.7.4. Ġgantija tapered rim bowls: catalogue descriptions 361
10.7.5. Ġgantija inverted rolled rim jars: catalogue descriptions 363
10.7.6. Ġgantija inverted tapered rim bowls and cups: catalogue descriptions 366
10.7.7. Ġgantija inverted tapered rim bowls: catalogue descriptions 366
10.7.8. Ġgantija rolled rim jars (biconical forms): catalogue descriptions 367
10.7.9. Ġgantija rolled and collared rim jars and bowls: catalogue descriptions 367
10.7.10. Ġgantija deep and tapered rim jars: catalogue descriptions 371
10.7.11. Ġgantija lids, bases and base decorated sherds: catalogue descriptions 373
10.7.12. Ġgantija handles, lugs and decorated sherds: catalogue descriptions 373
10.8. Saflieni pottery (Phase 6) 374
10.8.1. Saflieni vessels and sherds: catalogue descriptions 374
10.8.2. Discussion of Saflieni ceramics 376
10.9. Tarxien pottery (Phase 7) 376
10.9.1. The Tarxien assemblage 376
10.9.2. Tarxien open carinated bowls and cups: catalogue descriptions 376
10.9.3. Tarxien small carinated bowls and cups: catalogue descriptions 378
10.9.4. Tarxien inverted jars and bowls: catalogue descriptions 381
10.9.5. Tarxien textured and rusticated surface vessels: catalogue descriptions 384
10.9.6. Tarxien rusticated coarseware and larger vessels: catalogue descriptions 384
10.9.7. Tarxien two-sided patterned vessels, lids and bases: catalogue descriptions 386
10.9.8. Tarxien handles and lugs: catalogue descriptions 389
10.10. Early Bronze Age pottery 389
10.10.1. Pottery from Thermi-Tarxien Cemetery phases 391
10.10.2. Thermi and Early Bronze Age pottery from Taċ-Ċawla: catalogue descriptions 393
10.10.3. Bronze Age and Thermi pottery: catalogue descriptions 395
10.11. Conclusions 397

Chapter 11 Small finds and lithics: reassessing the excavated artefacts and their sources in prehistoric Malta 399
Caroline Malone, Petros Chatzimpaloglou & Catriona Brogan

Part I – The excavated artefacts 399
11.1. Introduction 399
11.2. Small finds – ‘Temple’ Culture artefacts 399
11.2.1. Stone artefacts – querns and ground stone 399
11.2.2. Ceramic objects, figurines 403
11.2.3. Shell, beads 403
11.2.4. Bone tools and artefacts 403
11.3. Lithic tools: raw materials and technology 406
11.3.1. Chert – Santa Verna 410
11.3.2. Obsidian – Santa Verna 412
11.3.3. Chert – Taċ-Ċawla 412

xi
11.3.4. Obsidian and chert – Tač-Ċawla
11.3.5. Chert and obsidian – Ġgantija
11.3.6. Chert and obsidian – Skorba
11.3.7. Chert and obsidian – Kordin III

11.4. Discussion

Part II – The lithic sources

11.5. Assessing the lithic assemblages and sourcing chert artefacts
11.6. Lithic provenance

11.6.1. Geological background and chert rocks

11.7. Materials and methods

11.7.1. Field research
11.7.2. Laboratory research
11.7.3. Chert sources of Malta and Sicily
11.7.4. Geochemical examination

11.8. Lithic assemblages

11.8.1. Macroscopic examination
11.8.2. Mineralogical examination
11.8.3. Geochemical examination

11.9. Summary and conclusions

11.10. Integration with FRAGSUS

Chapter 12

Megalithic site intervisibility: a novel phenomenological approach
Josef Caruana & Katya Stroud

12.1. Introduction
12.2. GIS and the study of the Neolithic in Malta

12.2.1. Technical background and crucial advances in pixel coverage

12.3. The Neolithic landscape

12.3.1. Project aims
12.3.2. Methodology

12.4. QGIS and associated analyses

12.5. The parameters used

12.5.1. Height
12.5.2. Extent of view
12.5.3. Height of observer
12.5.4. Curvature

12.6. Assumptions and limitations

12.7. Results and observations

12.7.1. Correlation analysis

12.8. Agglomerative hierarchical clustering

12.9. Conclusion

Chapter 13

Conclusions
Caroline Malone, Catriona Brogan, Reuben Grima, Eóin W. Parkinson,
Rowan McLaughlin, Simon Stoddart & Nicholas Vella

13.1. Introduction

13.2. Excavation, sampling and some lessons learnt

13.2.1. Challenges and opportunities
13.2.2. Excavation and recording methods
13.2.3. Public engagement

13.3. New discoveries

13.3.1. Prehistoric settlement
13.3.2. ‘Temples’ and their evolution
13.3.3. Dating and the culture sequence
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3.4. Material culture</td>
<td>476</td>
</tr>
<tr>
<td>13.4. The bigger picture</td>
<td>478</td>
</tr>
<tr>
<td>13.4.1. The FRAGSUS questions revisited</td>
<td>479</td>
</tr>
<tr>
<td>13.5. Postscript</td>
<td>482</td>
</tr>
<tr>
<td>References</td>
<td>483</td>
</tr>
<tr>
<td>Index</td>
<td>503</td>
</tr>
</tbody>
</table>

Appendices (online only)

Appendix to Chapter 2
- A2.1. AMS radiocarbon dates 513
- A2.2. Chronological Query Language (CQL2) definition of the preferred model 516

Appendix to Chapter 3
- A3.1. Tač-Ċawla context register 518
- A3.2. Small find register 546
- A3.3. Soil samples 557
- A3.4. Pottery numbers and frequency by context and phase 559
- A3.5. Pottery weights 566
- A3.6. AMS dates 572
- A3.7. Tač-Ċawla: micromorphological analysis of the occupation deposits 573
- A3.8. Short report on the environmental samples and handpicked shells from the Tač-Ċawla, Gozo, excavation 587
- A3.9. Tač-Ċawla Roman materials from the agricultural channels 597

Appendix to Chapter 4
- A4.1. Santa Verna context register 611
- A4.2. Small find register 614
- A4.3. Pottery counts and frequency by context and phase 618
- A4.4. AMS dates 622
- A4.5. Santa Verna: soil micromorphology of the temple floor sequence 622
- A4.6. Physical properties of the Santa Verna megaliths 628

Appendix to Chapter 5
- A5.1. Ġgantija context register 631
- A5.2. Finds register 2014 WC Section 632
- A5.3. Pottery counts and frequency by context and phase 633
- A5.4. AMS dates 635
- A5.5. Geoarchaeology report: micromorphology 636
- A5.6. Harris Matrix diagram of stratigraphic sequence of Test Pit 1 640

Appendix to Chapter 6
- A6.1. Kordin III context register 641
- A6.2. Small find register 647
- A6.3. Pottery register by number in context and phase 652
- A6.4. AMS dates 656
- A6.5. Kordin III soil sample register 657
- A6.6. SV, LOI, RF Loss of Ignition, etc., soil samples 660
- A6.7. Kordin marine shell register 661
Appendix to Chapter 7

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7.1. Skorba context register</td>
<td>665</td>
</tr>
<tr>
<td>A7.2. Small find register</td>
<td>665</td>
</tr>
<tr>
<td>A7.3. Pottery database</td>
<td>666</td>
</tr>
<tr>
<td>A7.4. AMS dates</td>
<td>667</td>
</tr>
<tr>
<td>A7.5. Skorba soil samples</td>
<td>668</td>
</tr>
<tr>
<td>A7.6. OSL (optically stimulated luminescence) sample list</td>
<td>668</td>
</tr>
<tr>
<td>A7.7. Soil micromorphology and geochemistry</td>
<td>669</td>
</tr>
</tbody>
</table>

Appendix to Chapter 8

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A8.1. In-Nuffara context register</td>
<td>675</td>
</tr>
<tr>
<td>A8.2. Small find register</td>
<td>675</td>
</tr>
<tr>
<td>A8.3. Palynological analysis of samples from In-Nuffara</td>
<td>675</td>
</tr>
<tr>
<td>A8.4. AMS dates</td>
<td>676</td>
</tr>
<tr>
<td>A8.5. Soil sample register</td>
<td>677</td>
</tr>
<tr>
<td>A8.6. In-Nuffara: soil micromorphology of selected pit fills</td>
<td>678</td>
</tr>
</tbody>
</table>

Appendix to Chapter 9

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A9.1. Palaeobotanical assemblages</td>
<td>691</td>
</tr>
<tr>
<td>A9.2. Zooarchaeological assemblages</td>
<td>691</td>
</tr>
</tbody>
</table>

Appendix to Chapter 10

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A10.1. Drawn pottery</td>
<td>723</td>
</tr>
<tr>
<td>A10.2. Ceramic thin section analysis of Temple Period, Neolithic and Bronze Age material from Malta</td>
<td>724</td>
</tr>
<tr>
<td>A10.3. Phase sequence and forms after Evans (1971) and Trump (1966, 1989)</td>
<td>725</td>
</tr>
</tbody>
</table>

Appendix to Chapter 11

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A11.1. Worked stone artefacts</td>
<td>763</td>
</tr>
<tr>
<td>A11.2. Terracotta and shell artefacts</td>
<td>763</td>
</tr>
<tr>
<td>A11.3. Worked bone and shell artefacts</td>
<td>764</td>
</tr>
<tr>
<td>A11.4. Taċ-Ċawla obsidian assemblage, length and width</td>
<td>764</td>
</tr>
<tr>
<td>A11.5. Chert and obsidian numbers from the FRAGSUS sites</td>
<td>765</td>
</tr>
<tr>
<td>A11.6. Geological description and analysis of lithic samples</td>
<td>766</td>
</tr>
</tbody>
</table>

Contributors

Stephen Armstrong
Archaeology, College of Humanities, University of Exeter, UK
Email: sa622@exeter.ac.uk

Stephen Ashley
Norfolk Museums Service, Shirehall, Market Avenue, Norwich, UK
Email: steven.ashley@norfolk.gov.uk

Dr Jennifer Bates
Dept. of Anthropology, Penn Museum, University of Pennsylvania
Email: jenbates@sas.upenn.edu

Jeremy Bennett
Department of Archaeology, University of Cambridge, Cambridge, UK
Email: jmb241@cam.ac.uk

Prof. Anthony Bonanno
Department of Classics & Archaeology, University of Malta, Msida, Malta
Email: anthony.bonanno@um.edu.mt

Dr Sara Boyle (now Stewart)
Ordnance Survey of Northern Ireland, Land & Property Services, Lanyon Plaza, 7 Lanyon Place, Town Parks, Belfast, Northern Ireland

Dr Catriona Brogan
14 Glennmanus Village, Portrush, Antrim, Northern Ireland
Email: cbrogan03@qub.ac.uk

Dr Josef Caruana
Head Office Heritage Malta, Ex Royal Naval Hospital, Kalkara, Malta
Email: josef.caruana@gov.mt

Letizia Ceccarelli
Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’, Politecnico di Milano, P.zza Leonardo da Vinci, 32, 20133 Milano, Italy
Email: letizia.ceccarelli@polimi.it

Dr Petros Chatzimpaloglou
Department of Archaeology, University of Cambridge, Cambridge, UK
Email: pc529@cam.ac.uk

Nathaniel Cutajar
Head Office Heritage Malta, Ex Royal Naval Hospital, Kalkara, Malta
Email: nathaniel.cutajar@gov.mt

Dr Michelle Farrell
Centre for Agroecology, Water and Resilience, School of Energy, Construction and Environment, Coventry University, Coventry, UK
Email: ac5086@coventry.ac.uk

Dr Katrin Fenech
Department of Classics & Archaeology, University of Malta, Msida, Malta
Email: kafinech@um.edu.mt

Prof. Charles French
Department of Archaeology, University of Cambridge, Cambridge, UK
Email: caif2@cam.ac.uk

Dr Reuben Grima
Department of Conservation and Built Heritage, University of Malta, Msida, Malta
Email: reuben.grima@um.edu.mt

Sheila Hamilton Dyer
Department of Archaeology and Anthropology, Bournemouth University, Bournemouth, UK
Email: shamiltondyer@bournemouth.ac.uk

Prof. Christopher O. Hunt
Faculty of Science, Liverpool John Moores University, Liverpool, UK
Email: c.o.hunt@ljmu.ac.uk

Prof. Caroline Malone
School of Natural and Built Environment, Queen’s University, Belfast, Northern Ireland
Email: c.malone@qub.ac.uk

Conor McAdams
Centre for Archaeological Science School of Earth and Environmental Sciences, University of Wollongong, New South Wales, Australia
Email: cm065@uowmail.edu.au

Dr Finbar McCormick
Emeritus, School of Natural and Built Environment, Queen’s University, Belfast, Northern Ireland
Email: f.mccormick@qub.ac.uk
Dr Rowan McLaughlin
School of Natural and Built Environment, Queen’s
University, Belfast, Northern Ireland
Email: r.mclaughlin@qub.ac.uk

John Meneely
School of Natural and Built Environment, Queen’s
University, Belfast, Northern Ireland
Email: j.meneely@qub.ac.uk

Dr Jacob Morales Mateos
Departamento de ciencias historicas, Universidad de
Las Palmas de Gran Canaria, Spain
Email: jacobmoralesmateos@gmail.com

Dr Anthony Pace
UNESCO Cultural Heritage, Valletta, Malta
Email: anthonypace@cantab.net

Dr Eóin Parkinson
Department of Classics & Archaeology, University
of Malta, Msida, Malta
Email: ewparkinson24@gmail.com

Prof. Paula Reimer
School of Natural and Built Environment, Queen’s
University, University Road, Belfast, Northern Ireland
Email: p.j.reimer@qub.ac.uk

Dr Alistair Ruffell
School of Natural and Built Environment, Queen’s
University, University Road, Belfast, Northern Ireland
Email: a.ruffell@qub.ac.uk

Ella Samut-Tagliaferro
Formerly of the Superintendence of Cultural Heritage, Malta

Prof. Patrick J. Schembri
Department of Biology, University of Malta, Msida, Malta
Email: patrick.j.schembri@um.edu.mt

Dr Simon Stoddart
Department of Archaeology, University of Cambridge, Cambridge, UK
Email: ss16@cam.ac.uk

Katya Stroud
Head Office Heritage Malta, Ex Royal Naval Hospital, Kalkara, Malta
Email: katya.stroud@gov.mt

Dr Sean Taylor
Department of Archaeology, University of Cambridge, Cambridge, UK
Email: st435@cam.ac.uk

Prof. Nicholas C. Vella
Faculty of Arts, University of Malta, Msida, Malta
Email: nicholas.vella@um.edu.mt

Dr Nathan Wright
School of Social Science, The University of Queensland, Brisbane, Australia
Email: n.wright@uq.edu.au
Figures

0.1 David Trump and John Evans together at the Deya Conference, Mallorca. xxxii
0.2 Joseph Magro Conti at Kordin. xl
1.1 Early excavation images of Tarxien in 1915 during the superficial clearance. 5
1.2 Xagħra Broctorff Circle excavations from 1987–94. 7
1.3 The Cambridge Gozo Survey 1987–95, recording landscape features and surface scatters. 8
1.4 General view of Taċ-Ċawla, 2014, and members of the 2014 team. 15
1.5 General views of work at Santa Verna, 2015. 16
1.6 General views of work at Kordin III, 2015. 17
1.7 General views of work at Skorba, 2015. 18
1.8 General views of work at Ġgantija, 2016. 19
1.9 General views of work at In-Nuffara, 2015. 20
1.10 Ceramic processing and finds work. 22
1.11 Location map of sites investigated by the FRAGSUS Project. 23
1.12 Research intensity on Maltese prehistory. 24
1.13 Images of scholars and fieldworkers of Maltese prehistory. 25
1.14 Research pioneers of prehistoric Malta. 26
2.1 OxCal plot of phases of Maltese prehistory. 34
2.2 Kernel density estimates for radiocarbon-dated phases of Maltese prehistoric sites. 35
2.3 KDE models of archaeological phases and the density of dated charcoal from sediment cores. 35
2.4 KDEs of the temporal distribution of Maltese radiocarbon dates. 36
3.1 Site location map. 40
3.2 Site location details. 41
3.3 Site layout of Trench E in 1994. 43
3.4 Location of scatters surveyed in 1960s and trial trenches in 1993 and 1995. 44
3.5 General trench layout in 1995: section, trench photograph and stone figurine. 46
3.6 Site layout in 2014. 49
3.7 The excavated stone structures and the remnant vine channels and pits. 50
3.8 The double-sided structure wall and related post- and stake holes. 51
3.9 The exterior face of the wall (172) in the eastern zone. 52
3.10 The relationship of wall (287) in BT5 to extramural and internal levels. 53
3.11 Wall contexts of the Neolithic structure and digital scan of stone walls. 54
3.12 Structure wall in BT5. 55
3.13 Structure wall in BT6. 55
3.14 Recording and excavation of the North Baulk inside the structure. 55
3.15 Section drawings of BT5. 57
3.16 Section drawings of BT6 and exploratory trench. 58
3.17 Location of main box trenches. 58
3.18 The lower cobble layers and underlying terra rossa in BT6. 59
3.19 Plan showing locations of principal contexts in Level 1. 59
3.20 BT6, revealing bedrock overhang, floors and foundation deposits. 60
3.21 View of the excavations in the western extent of the site. 60
3.22 The stony cobbled and bedrock base in the eastern quadrant. 61
3.23 Plan showing location of principal contexts in Level 2. 61
3.24 Sections cut through structure floors – north side of 1995 trench. 62
3.25 Level 3 deposits within the ‘house’ structure. 63
3.26 Re-cut 1995 trench recording location of BT4. 64
3.27 Layers revealed in BT4. 64
3.28 The 1995 trench recorded in 2014. 65
3.29 Level 4 showing main cobble deposits. 66
3.30 View of the trenches through the eastern half of the structure. 66
3.31 Level 5 showing main cobble deposits. 67
3.32 Section record of the North Baulk. 68
3.33. Photograph of baulk in the North West Quadrant. 68
3.34. The cleaning and recording of the North Baulk. 70
3.35. The cleaned floor in Level 7 in the east of the structure. 70
3.36. Level 6 yellow brown deposits. 71
3.37. Cleaned floor deposit in Context (195), showing charcoal and burnt lenses. 72
3.38. Section cut through floors close to the stone wall. 72
3.39. Level 7 deposits – dark lenses and floors. 73
3.40. Location of the main Level 8 deposits. 74
3.41. General view looking south of excavation beyond the 1995 trench. 74
3.42. View of the extramural layers visible in BT5. 76
3.43. View of the intermediate stage of excavation of BT6. 77
3.44. View of the excavation of the internal floors and structure wall. 77
3.45. Internal floors and remnant walls of the structure. 78
3.46. The wall structures looking west. 78
3.47. Upper excavation levels of the area to the north of the stone structure. 79
3.48. Partially cleared vine pits. 80
3.49. View of the late stages of excavation showing walls and bedrock. 80
3.50. Vine pits (8) and (9) and the emerging stones of wall (172). 81
3.51. The sequence of contexts in the extra-mural deposits in Level 1 and Level 2. 82
3.52. Northeast Sector postholes and reconstruction plan. 84
3.53. Intermediate levels in the extramural area and upper prehistoric levels in the extramural area. 86
3.54. Exposed bedrock in the area immediately outside wall (172). 87
3.55. Postholes under excavation. 88
3.56. Section of (268) longitudinal W–E, and cross sections N–S. 89
3.57. The external cobbled area (210), dumps and displaced wall stones. 90
3.58. Primary contexts around the structure walls and cleared bedrock in the Main Quadrant. 90
3.59. Location of stone spread (178). 92
3.60. View of the north-facing section of the mini baulk and floors within the structure. 93
3.61. Southwest-facing section of BT3. 93
3.62. Contexts in southern extramural zone. 94
3.63. Southern extramural zone with rock-cut and primary features. 94
3.64. Plan of the east zone of excavation, showing the parallel vine pits/channels. 97
3.65. Excavated rock features in the southeast excavation area. 97
3.66. Excavations in the southeast area in 2014. 97
3.67. Plan of Context (109), section record, and clay oven fragments and drawing. 99
3.68. Obsidian core and associated pottery. 100
3.69. Sections and location plan recording the stratigraphy in the southeast area of excavation. 101
3.70. Box Trench profiles and their numbered contexts. 102
3.71. Sandstone quern in situ in Context (120) between Channels 2 and 3. 105
3.72. Layout of the vine pit/agricultural channels across the excavation area. 106
3.73. Differential coloration of the agricultural channels, looking west. 107
3.74. The agricultural features during excavation. 108
3.75. The excavated vine pits and features in plan and profile east of the stone structure (172). 109
3.76. The mollusc pits in section and plan. 110
3.77. Photographs of the sectioned snail pit. 110
3.78. Excavation of the shallow deposits on the east side of the site. 112
3.79. Bedrock features along the east baulk of the excavation, showing potential posthole and torba deposits. 112
3.80. Post-medieval kiln or burning pit, showing rubble base and circular edge. 113
3.81. Possible layout of the Neolithic domestic structures at Taċ-Ċawla. 115
3.82. Taċ-Ċawla, main trench early in the excavation. 116
3.83. The site at the close of the 2014 season. 116
3.84. Later phases of activity at Taċ-Ċawla: Classical and Thermi phases. 118
3.85. Temple Period phases of activity at Taċ-Ċawla: Tarxien and Ġgantija phases. 118
Earlier phases of activity at Taċ-Ċawla: Żebbuġ and Skorba phases.
Lithic distribution at Taċ-Ċawla.
Pottery-lithic distributions at Taċ-Ċawla – summed probability plots.
The FRAGSUS teams during the 2014 season.
Location map of Santa Verna.
‘Plan of a Phoenician Temple’: preparatory drawing from Houël’s 1789 engravings.
The 2014 plan of Santa Verna.
Selection of photos from the 1911 excavations at Santa Verna.
The 1961 Trench ‘A’.
Density of Early Neolithic pottery found in the Santa Verna survey.
Density of Early Temple Period pottery found in the Santa Verna survey.
Relative proportion of sherds recovered from north and east of Santa Verna.
Relative proportion of sherds recovered from west of Santa Verna.
Ground penetrating radarograms of Santa Verna.
The Santa Verna megaliths partially enveloped with vegetation.
Site scan of Santa Verna at close of excavation.
2015 trench layout showing major megaliths.
Post-excavation photo of Trench A, showing bedrock, looking west.
Snail figurines from Santa Verna, 2015.
Post-excavation photo of Trench B, showing terra rossa, looking east.
Obsidian blade (SF19) from Context (8).
Sherd of stamped pottery from (17), similar to Sicilian Stentinello ware.
Post-excavation plan of Santa Verna temple.
Vertical section of Trump 1961 trench and location of micromorphology samples.
Saddle quern fragment embedded within torba floor (23).
Vertical section of 1911 sondage [54].
南面的垂直剖面图。
Threshold stone (57), with Context (59) in the background.
Fragment of a rim of a large stone bowl from Context (58).
Stones (59) as they were in 1911 (left) and 2015 (right).
The western edge surface (21) and floor (121), also showing 1911 sondage (120).
Detail of preserved plaster at the edge of floor (121).
Layer (116), a patch of torba of presumed Skorba date.
Trench D, northeast facing vertical section showing Cut [76] into pre-Temple deposits.
‘Fire pit’ feature in surface (21).
South-facing vertical section of sondage in Trench E.
The lobed wall (91) of the outer right temple apse running through Trench E.
Polygonal ‘tiles’, Context (92).
Obsidian arrowhead from (52) (SF132).
Photograph from Bradley (1912) of workers at Santa Verna.
Post-excavation laser scans.
Photograph of the keyhole investigations between Trenches C, D and E.
Photograph of chert objects from topsoil (13) in Trench F.
Thin section photomicrographs from Santa Verna and Ġgantija.
Għar Dalam pottery from Context (8) in Trench B.
Painted ware photomicrographs from Santa Verna and Żebbuġ style.
Bayesian model multiplot for the Żebbuġ phase and construction of Santa Verna.
Plans of Santa Verna on discovery and with 2015 excavation features alongside extant megaliths.
Site profile from north to south.
Photograph of tiles (92) taken at the time of their discovery.
Outline plans of the Santa Verna temple.
Outline plan of the Santa Verna temple, with Ġgantija as a comparison.
Tarxien phase sherds from (33), the foundation of the Phase V floor.
Extract from Ashby et al.’s (1913) plan, overlain with the excavation results.

Tarxien phase pottery from Santa Verna found in 1911.

Photographs showing the discovery of a Globigerina Limestone slab.

Schematic plan showing megaliths categorized by volume.

Digital laser scan, showing stones placed to overlap adjacent members.

Location map of Ġgantija.

Hœîl’s (1787) engraving of the Xagħra Brochtorff Circle and Ġgantija Temples.

Lacroix’s illustrations of notable artefacts kept by Bayer from Ġgantija.

The trilithon structure and retaining wall as depicted by Brocktorff (1820s).

Smyth’s engraving (1829) of Ġgantija.

The fault line at Ġgantija revealed through GPR.

Orthophotograph of the Ġgantija temples showing resistivity results for the ‘olive grove’.

Plan of Trench 1/2014.

Trench 2/2014 after excavation.

Vertical section of Trench 3/2014 showing the wall structure, Context (2004).

Mid-excavation plan of Trench 3/2014 showing the wall structure, Context (2004).

Photograph of Trench 3/2014 in the olive grove, looking south.

The southeast-facing vertical section beneath the former office/WC.

Section drawing of the southeast-facing section showing in situ megaliths and stratified deposits.

Typical Tarxien phase sherds recovered from Context (2012).

Plan of Ġgantija showing the location of Trench 1/2014 ext. (1) and Trench 1/2015 (2).

East-facing vertical section drawing of Trench 1/2014 ext.

Southeast-facing vertical section drawing of Trench 1/2014 ext.

Trench 1/2014 ext. post-excavation, with in situ megalith.

Two Ġgantija phase cups recovered from Context (004).

Post-excavation plan of Trench 1/2015.

Post-excavation plan of sondage at the base of Trench 1/2015.

Superficial vertical section in Trench 1/2015, with micromorphology sample locations.

Deep vertical section at the base of Trench 1/2015, with micromorphology sample locations.

Photograph of the excavated ramp structure.

Pottery from Context (1002)/(1003).

Mid-excavation photograph of Trench 1/2015.

Trench 1A and 1C contexts.

Bayesian model of the radiocarbon dates from sondages in Trench I.

Plan of eastern end of Trench I.

Photograph of torba floor (89) and sondage in Context (97).

Photographic section and section record of (70) and (71).

Mġarr pottery from midden deposit (71).
6.22. Small features in Trench 1B.
6.23. Possible stone pendant (SF132), from Context (67).
6.24. The smashed threshold stone (SfM model).
6.25. The smashed threshold in context.
6.26. Photo-model of megalithic wall (6) and fragments of plaster (15).
6.27. Section drawing of plaster fragments in Context (14).
6.28. Fragment of plaster with pigment (SF15) from topsoil in Trench IB.
6.29. Post-exavation photograph of [37] and [42] looking west.
6.30. Struck chert (SF109) from Context (31).
6.31. North-facing section in Trench 1C.
6.32. East-facing section in Trench 1C.
6.33. South-facing section in Trench 1C.
6.34. Sherd of Mgarr pottery from (93) and slingstone from (5).
6.35. Mid-excavation photograph of Trench IC showing (93) after removal of (78).
6.37. Torba floor (151) and related layers.
6.38. Plan and photographs of Trench II.
6.39. Trench III showing excavation progress.
6.40. Pottery and obsidian artefacts.
6.41. Trench IV showing excavation progress.
6.43. Sectioned deposits revealing ‘modern’ tin cup beneath megalith.
6.44. View of excavations before site closure, Trench I.
6.45. Laser scan of Trench I.
6.46. The team at Kordin.
7.1. Location map of Skorba.
7.2. Map of Skorba and nearby Temple Period sites and local topography.
7.3. Trump’s (1966) excavation plan of Skorba with locations of 2011/2016 excavations.
7.4. Trench M during excavation in 2011.
7.5. Work during the 1961 excavation season with position of the 2016 trench indicated.
7.6. Location of the 2016 trench.
7.7. Photograph of the 2015 trench.
7.9. Southwest-facing vertical section of the trench.
7.10. Harris matrix for the 2015 excavation at Skorba.
7.11. Shell beads (SF5) recovered from the FRAGSUS excavation at Skorba.
7.12. Section of northwest end of trench, exposing Trump’s sondage cut.
7.13. Drawings of southeast-facing section (Trump’s ‘Y’) and the Għar Dalam wall stratigraphy.
7.15. Deposits in the eastern corner.
7.16. Photograph of the wall.
7.17. Photograph of initial clearance of the trench.
7.18. Southeast-facing section of the trench, showing OSL sampling locations.
7.19. The column extracted for OSL dating in the northeast corner.
7.20. Views of the 2016 excavations at Skorba.
8.1. Location map of In-Nuffara.
8.2. View of In-Nuffara mesa and the Ramla Valley.
8.3. Sketch of a vertical section of two adjoining silo pits from the 1960 excavation.
8.4. Orthographic, LiDAR and topographic imagery of In-Nuffara.
8.5. The remains of a partially eroded rock-cut pit along the limestone cliff-face.
8.6. Structure from Motion orthograph and plan of the trench.
8.7. Photograph of the trench after topsoil removal, with silos visible.
8.9. Photographs of the in situ capstone of Silo 1 following the removal of topsoil.

8.10. North-facing half section of the archaeological deposits within Silo 2.

8.11. Structure from Motion model of the half sectioned deposits in Silo 2.

8.13. 3-D laser scan section and plan of the silos.

8.17. Ceramics catalogue numbers 38–45.

9.1. Holocene potential vegetation map of Malta, c. 6000 BC.

9.2. Lagoon wetlands map of Malta in the early Holocene.

9.3. Map showing the origins of exotic materials brought to Malta in prehistory.

9.4. The temporal distribution of economic evidence obtained by the FRAGSUS Project.

9.5. The Maltese pollen data over time.

9.6. Temporal distribution of cereals and legumes.

9.7. a) Cultivated plant seeds; b) wild plants; c, d) horsebeans from Tarxien Cemetery.

9.8. MN1 percentage distribution.

9.9. NISP percentage distribution.

9.10. Tač-Cawla sheep age slaughter pattern.

9.11. Percentage distribution of sheep/goat bones from Tač-Cawla.

9.13. Percentage distribution of sheep/goat bones from Kordin III.

9.15. Percentage distribution of cattle bones from Tač-Cawla.

9.17. Percentage distribution of pig fragments from Tač-Cawla.

9.18. Percentage distribution of pig fragments from Santa Verna.

10.1. Evans’ typological scheme for Maltese phases, 1953.

10.2. a) Number of sherds found per phase at FRAGSUS excavations at temple sites; b) total number; c) total number from the Cambridge Gozo Survey.

10.3. Estimated vessel sizes recorded from rim diameter in the different phases of pottery production.

10.4. Pottery frequency, fragmentation and relative presence.

10.5. Aoristic totals of pottery by phase.

10.7. Ghar Dalam pottery forms.

10.9. Skorba (Red and Grey) bowl and jar forms from Santa Verna and Skorba.

10.10. Skorba general forms.

10.11. Red Skorba.

10.13. Żebbuġ bowls.

10.15. Żebbuġ jars and bowls.

10.16. Żebbuġ inverted jars and bowls, sherds and decoration.

10.17. Mgarr inverted bowls.

10.18. Mgarr patterned sherds and bowls.

10.19. Mgarr inverted and everted forms and lugs.

10.20. Ġgantija everted tapered rim bowls and cups.

10.21. Ġgantija everted rolled rim bowls.

10.22. Ġgantija tapered rim bowls.
10.23. Ġgantija inverted rolled rim jars.
10.24. Ġgantija inverted tapered rim bowls and cups.
10.25. Ġgantija inverted tapered rim bowls.
10.26. Ġgantija inverted rolled rim jars (biconical forms).
10.27. Ġgantija rolled and collared rim jars and bowls.
10.28. Ġgantija deep and tapered rim jars.
10.29. Ġgantija lids, bases and base decorated sherds.
10.30. Ġgantija handles, lugs and decorated sherds.
10.31. Saflieni vessels and sherds.
10.32. Tarxien open carinated bowls and cups.
10.33. Tarxien small carinated bowls and cups.
10.34. Tarxien inverted jars and bowls.
10.35. Tarxien textured and rusticated surface vessels.
10.36. Tarxien rusticated coarseware and larger vessels.
10.37. Tarxien two-sided patterned vessels, lids and bases.
10.38. Tarxien handles and lugs.
10.39. Thermi and Early Bronze Age pottery from Taċ-Ċawla.
10.40. Thermi and Middle to Late Bronze Age pottery.
11.1. Querns and worked stone.
11.2. Querns, bowls and worked stone, mainly from Taċ-Ċawla.
11.3. Discs, querns and grinders from Santa Verna and Kordin III.
11.4. Sling stone and weights, loom weights, worked stone.
11.5. Terracotta objects, snails, beads, shell objects and In-Nuffara loom weights.
11.6. Worked bone and shell objects.
11.7. Pie and bar charts of obsidian and chert artefacts from Taċ-Ċawla.
11.8. Bar charts showing ratios of chert colours and chert tools/obsidian artefacts.
11.10. Santa Verna chipped stone: chert and obsidian.
11.11. Ġgantija lithics.
11.15. Kordin III chipped stone.
11.16. Geological map of the Maltese Islands including sample locations.
11.17. Geological map of Sicily.
11.18. Chert outcrops on Gozo.
11.20. Examples of Sicilian chert rocks: bedded Radiolarian outcrop along the Valona River.
11.21. Examples of black and translucent cherts recorded in Sicily.
11.22. Different angles of Radiolarian beds on the riverbed of the Valona River.
11.23. Representative FTIR spectra of the chert samples from Malta.
11.24. Representative FTIR spectra of the chert samples from Gozo.
11.25. Representative FTIR spectra of the chert samples from Sicily.
11.27. Normalized patterns of rare earth elements of Maltese and Sicilian chert samples.
11.28. Cluster bar diagram presenting the total number of each assemblage.
11.29. Pie-charts showing the ratio between the different types of rock.
11.30. Representative samples of the first group of artefacts from Ġgantija.
11.31. Representative samples of the second group of artefacts.
11.32. Representative samples of the macroscopically diverse third group of artefacts.
11.33. Comparison FTIR-ATR spectra between a representative artefact and the chert sources.
11.34. Geochemical models cross-examining the Sicilian cherts and the artefacts of group 1.
11.35. Comparable spider plots of REE concentrations of Sicilian chert outcrops.
11.36. Geochemical models cross-examining the Maltese cherts and artefacts of group 2.
11.37. Comparable spider plots of REE concentrations of local origin.
11.38. Comparable spider plots of REE concentrations: samples from Skorba.
11.41. Geochemical models cross-examining the West Sicilian chert.
11.42. Comparable spider plot of REE concentrations: West Sicilian chert Group 3.
11.43. Different flake types from Context 1019 of the Ġgantija assemblage.
11.44. Example of a blade made from the Xaghra Brochtorff Circle.
11.45. A scraper from the Xaghra Brochtorff Circle.
11.46. Unimarginal flake of non-local chert from Santa Verna.
11.47. Bi-marginal flake from Taċ-Ċawla that exhibits serration at its edge.
11.48. Unhafted biface tool from Taċ-Ċawla.
12.1. Viewshed analysis of selected prehistoric sites in Gozo.
12.2. Viewshed analysis of selected prehistoric sites in Malta.
12.3. Viewshed analysis of Borġ in-Nadur.
12.4. Viewshed analysis of the Ħal Saflieni Hypogeum.
12.5. Dendrogram of sites in Malta divided into four major clades.
13.1. Remote sensing at Ġgantija and across the landscape.
13.2. Ta’ Marzienna plan and digital scan.
13.3. Borġ in-Nadur LiDAR and digital scans.
13.4. Dating advances – the Skorba section and its layers.
13.5. Summed date ranges for the excavated sites in the FRAGSUS Project.
13.8. The multidisciplinary FRAGSUS team meeting in Cambridge in 2016.
13.9. The pollen team, with magnified 3-D-printed pollen grains.
13.10. The launch meeting in 2013 and the team with the Malta High Commissioner in 2014.
13.15. David Trump attending the 2016 team meeting in Cambridge.
13.16. Ghajnsielem Road section in 1986, the first ‘house’ excavation.
13.17. Temi Zammit with the reconstructed great stone bowl of Tarxien.
A3.7.1. Taċ-Ċawla site plan.
A3.7.2. The deep section through the karstic feature.
A3.7.3. Excavation area showing walls, floors, the deep section and section FGH.
A3.7.4. Deep section profile with the location of the micromorphological block samples.
A3.7.5. Photomicrographs of the karstic deep feature and section FGH.
A3.7.6. Section FGH, looking west.
A3.7.7. Section FGH sample G1.
A3.7.8. The Horton Trench and Profile 1/1.
A3.7.9. The Horton Trench Profile 1/2.
A3.7.10. The Horton Trench, Profile 2.
A3.8.1. Percentage distribution of different particle sizes from the vine trench samples from Taċ-Ċawla.
A3.8.2. Percentage distribution of different particle sizes from the shell midden deposits at Taċ-Ċawla.
A3.8.3. Anthropogenic and biological content of the vine trench fill samples.
A3.8.4. Anthropogenic and biological content of the shell midden deposits.
A3.8.5. The same anthropogenic and biological contents in the shell midden deposits.
A3.8.6. Land snails from the vine trench fills.
A3.8.7. Land snails from the shell midden deposits.
A3.8.8. Molluscs from the vine trench fills.
A3.8.9. Molluscs from the shell midden deposits.
A3.8.10. Edible land snail species found in the vine trench fills.
A3.8.11. Edible land snail species found in the shell midden deposits.
A3.8.12. Number of juvenile and adult edible and non-edible land snails in the vine trench fill samples.
A3.8.13. Number of juvenile and adult edible and non-edible land snails in the shell midden deposits.
A3.8.14. Number of the burrower Cecilioides acicula found in the vine trench fill samples.
A3.8.15. Number of the burrower Cecilioides acicula found in the shell midden deposits.
A3.8.16. TCC14/95 before excavation.
A3.8.17. TCC14/95 after excavation, revealing a pit.
A3.8.18. TCC14/100 before excavation. Scale in 10 cm.

A3.9.5. Lids.
A3.9.7. Flasks and amphorae.

A4.5.1. General plan of Santa Verna excavations.
A4.5.2. Section drawings of Trench E, Trump Cut 55 and the Ashby Sondage.

A5.5.1. Ġgantija trench locations and excavation trenches.
A5.5.2. WC trench profile and sample loci.

A6.4.1. Bayesian model multiplot for the AMS dates from Kordin III.

A7.7.1. Locations of OSL dating samples.
A7.7.2. Harris Matrix of the 2016 excavation trench.
A7.7.3. Skorba thin section photomicrographs.
A8.3.1. Percentage pollen diagram from the silo at In-Nuffara.
A8.6.1. In-Nuffara thin section photomicrographs.

A9.1.1. Bar charts representing the division of Taċ-Ċawla crops between cereal and pulses, and by species.
A9.1.2. Pie charts showing the division of crop groups and the percentage of crops from Taċ-Ċawla.

A10.1.1. Pot drawing frequency diagram.
A10.2.1. Samples 2, 6, 59.
A10.2.2. Samples 13, 14, 15.
A10.2.3. Samples 17, 22, 23.1.
A10.2.4. Sample 23.2, 24, 28.
A10.2.5. Sample 29, Odd 2, Odd 3.
A10.3.1. Evans’ (1971) typological scheme.
A10.3.2. Trump’s (1989) pottery recognition scheme, as used at the Xagħra Brochtorff Circle excavations.
A10.3.3. Phase sequence and forms after Evans and Trump – forms arranged chronologically.
A10.3.4. Phase sequence and forms after Evans and Trump – bowls.
A10.3.5. Phase sequence and forms after Evans and Trump – jars and flasks.
A10.3.6. Phase sequence and forms after Evans and Trump – cups.
A10.3.7. Phase sequence and forms after Evans and Trump – carinated forms.
A10.3.8. Phase sequence and forms after Evans and Trump – platter and lid forms.
A10.3.9. Phase sequence and forms after Evans and Trump – pedestal forms.

Tables

1.1. Research potential for island study and Malta.
1.2. Timetable of fieldwork.
1.3. Chronological range of FRAGSUS sites and their contribution to the project questions
1.4. Summary table of the archaeological discoveries made by FRAGSUS.
1.5. Chronological range of the FRAGSUS sites. 24
2.1. Radiocarbon dates obtained by the FRAGSUS Project. 30
2.2. 95% confidence intervals for the modelled dates of phase boundaries. 35
2.3. Simplified cultural phases. 38
3.1. Layers recorded within the stone structure. 56
3.2. Extramural deposits around the stone structure. 82
3.3. Post- and stake hole dimensions. 85
3.4. Radiocarbon dates from Pit 268. 89
3.5. Contexts containing Roman pottery. 104
3.6. Agricultural channel fills. 104
3.7. Vine channel fill and cut contexts. 113
3.8. Tač-Ċavola and the FRAGSUS questions. 122
4.1. Radiocarbon dates from Santa Verna Context (90). 146
4.2. Sample contexts for micromorphological, physical and multi-element analyses. 151
4.3. pH, magnetic and selected multi-element results from Ġgantija and Santa Verna. 153
4.4. Santa Verna and the FRAGSUS questions. 167
5.1. AMS dates from Ggantija. 187
5.2. Ggantija and the FRAGSUS questions. 190
6.1. Kordin III and the FRAGSUS questions. 225
7.1. OSL and AMS dates from Skorba. 238
7.2. Skorba and the FRAGSUS questions. 242
8.1. AMS dates from In-Nuffara. 256
8.2. In-Nuffara and the FRAGSUS questions. 259
9.1. Charcoal identification of timber from the FRAGSUS sites and cores. 290
9.2. Number of seeds recovered relative to the number of samples taken and their volume. 292
9.3. Ubiquity of cereal and pulse use at the FRAGSUS Project excavation sites. 292
9.4. MNI percentage distribution. 295
9.5. NISP percentage distributions. 295
9.6. Bird and fish bone. 303
10.1. Evans’ 1953 scheme of pottery phasing. 311
10.2. Trump’s 1966 chronology scheme. 312
10.3. Trump’s 2002 revised chronology scheme. 312
10.4. New chronological sequence. 312
10.5. Total number of pottery sherds from Neolithic sites. 313
10.6. Total number of pottery sherds from Temple Period sites. 313
10.7. Total number of pottery sherds from Bronze Age sites. 313
10.8. Total sherds recovered by the FRAGSUS Project for each phase. 313
10.9. Recognized sherd numbers as recorded in Evans (1971). 315
10.10. Frequency, relative frequency and fragmentation of pottery by phase. 324
10.11. Phase 1. Ġhajn Dalam style characteristics. 325
10.12. Pattern organization of Calabrian Stentinello pottery. 331
10.13. Phase 2. Grey Skorba, Grey to Red Skorba Transitional, and Red Skorba style characteristics. 332
10.14. Phase 3. Żebbuġ style characteristics. 341
10.15. Phase 4. Mġarr style characteristics. 352
10.16. Phase 5. Ġgantija style characteristics. 358
10.17. Phase 6. Safliei style characteristics. 375
10.18. Phase 7. Tarxien style characteristics. 377
10.19. Phase 8a. Thermi style characteristics; and Phase 8b. Tarxien Cemetery style characteristics. 390
10.20. Phase 9. Borġ in-Nadur style characteristics. 392
11.1. Chert and obsidian from FRAGSUS sites. 406
11.2. Santa Verna lithic assemblage totals. 410
11.3. Counts of raw material type from Santa Verna. 410
11.4. Chert and obsidian tool categories from Tač-Ċavola. 413

xxvi
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5.</td>
<td>Tač-Ċawla chert colours and flake/tool ratios.</td>
<td>413</td>
</tr>
<tr>
<td>11.6.</td>
<td>Lithics from Skorba.</td>
<td>417</td>
</tr>
<tr>
<td>11.7.</td>
<td>Chert colours from Skorba.</td>
<td>417</td>
</tr>
<tr>
<td>11.8.</td>
<td>Kordin III obsidian sources.</td>
<td>417</td>
</tr>
<tr>
<td>11.9.</td>
<td>Chert artefact types from Kordin III.</td>
<td>417</td>
</tr>
<tr>
<td>12.1.</td>
<td>Sites included in the GIS study, visibility and attributes.</td>
<td>449</td>
</tr>
<tr>
<td>12.2.</td>
<td>Pearson correlation matrix for all sites in the study.</td>
<td>451</td>
</tr>
<tr>
<td>12.3.</td>
<td>Pearson correlation matrix for sites in Malta.</td>
<td>453</td>
</tr>
<tr>
<td>13.1.</td>
<td>Dating implications and changing time range.</td>
<td>458</td>
</tr>
<tr>
<td>13.2.</td>
<td>The updated chronology of Maltese prehistory that emerges from the FRAGSUS Project work.</td>
<td>476</td>
</tr>
<tr>
<td>13.3.</td>
<td>The FRAGSUS questions and themes.</td>
<td>480</td>
</tr>
<tr>
<td>A2.1.1.</td>
<td>AMS radiocarbon dates.</td>
<td>513</td>
</tr>
<tr>
<td>A3.1.1.</td>
<td>Tač-Ċawla context register.</td>
<td>518</td>
</tr>
<tr>
<td>A3.2.1.</td>
<td>Small find register.</td>
<td>546</td>
</tr>
<tr>
<td>A3.3.1.</td>
<td>Tač-Ċawla soil samples.</td>
<td>557</td>
</tr>
<tr>
<td>A3.4.1.</td>
<td>Pottery numbers and frequency by context and phase.</td>
<td>559</td>
</tr>
<tr>
<td>A3.5.1.</td>
<td>Pottery weights.</td>
<td>566</td>
</tr>
<tr>
<td>A3.6.1.</td>
<td>AMS dates.</td>
<td>572</td>
</tr>
<tr>
<td>A3.7.1.</td>
<td>Soil samples from Horton Trench 2014 and 2015.</td>
<td>576</td>
</tr>
<tr>
<td>A3.7.2.</td>
<td>Field descriptions from deep section.</td>
<td>576</td>
</tr>
<tr>
<td>A3.7.3.</td>
<td>pH, magnetic susceptibility and multi-element analysis.</td>
<td>577</td>
</tr>
<tr>
<td>A3.7.4.</td>
<td>Results of principal components analysis.</td>
<td>577</td>
</tr>
<tr>
<td>A3.7.5.</td>
<td>Summary of micromorphological features of karstic feature.</td>
<td>578</td>
</tr>
<tr>
<td>A3.7.6.</td>
<td>Field descriptions of excavated contexts.</td>
<td>578</td>
</tr>
<tr>
<td>A3.7.7.</td>
<td>Summary of micromorphological features.</td>
<td>578</td>
</tr>
<tr>
<td>A3.7.8.</td>
<td>Field descriptions of floor deposits.</td>
<td>579</td>
</tr>
<tr>
<td>A3.7.9.</td>
<td>Summary of micromorphological features in floor deposits.</td>
<td>580</td>
</tr>
<tr>
<td>A3.8.1.</td>
<td>Handpicked shells from Tač-Ċawla.</td>
<td>595</td>
</tr>
<tr>
<td>A3.8.2.</td>
<td>Details of environmental samples taken and analysed.</td>
<td>596</td>
</tr>
<tr>
<td>A4.1.1.</td>
<td>Santa Verna context register.</td>
<td>611</td>
</tr>
<tr>
<td>A4.2.1.</td>
<td>Small find register.</td>
<td>614</td>
</tr>
<tr>
<td>A4.3.1.</td>
<td>Pottery counts and frequency by context and phase.</td>
<td>618</td>
</tr>
<tr>
<td>A4.4.1.</td>
<td>AMS dates.</td>
<td>622</td>
</tr>
<tr>
<td>A4.5.1.</td>
<td>Summary of micromorphological features in torba floors and pit fills.</td>
<td>624</td>
</tr>
<tr>
<td>A4.5.2.</td>
<td>AMS dates for micromorphological samples.</td>
<td>624</td>
</tr>
<tr>
<td>A4.5.3.</td>
<td>Field descriptions of floor samples.</td>
<td>624</td>
</tr>
<tr>
<td>A4.5.4.</td>
<td>pH, magnetic susceptibility and multi-element analysis.</td>
<td>624</td>
</tr>
<tr>
<td>A4.5.5.</td>
<td>Soil analysis.</td>
<td>625</td>
</tr>
<tr>
<td>A4.5.6.</td>
<td>LOI test table.</td>
<td>626</td>
</tr>
<tr>
<td>A4.5.7.</td>
<td>Rock fractions.</td>
<td>627</td>
</tr>
<tr>
<td>A4.6.1.</td>
<td>Physical properties of the Santa Verna megaliths.</td>
<td>628</td>
</tr>
<tr>
<td>A5.1.1.</td>
<td>Ġgantija context register.</td>
<td>631</td>
</tr>
<tr>
<td>A5.2.1.</td>
<td>Finds register 2014 WC Section.</td>
<td>632</td>
</tr>
<tr>
<td>A5.3.1.</td>
<td>Pottery counts and frequency by context and phase.</td>
<td>633</td>
</tr>
<tr>
<td>A5.4.1.</td>
<td>AMS dates.</td>
<td>635</td>
</tr>
<tr>
<td>A5.4.2.</td>
<td>Soil sample list.</td>
<td>635</td>
</tr>
<tr>
<td>A5.5.1.</td>
<td>Sample contexts for micromorphology.</td>
<td>636</td>
</tr>
<tr>
<td>A5.5.2.</td>
<td>pH, magnetic susceptibility and multi-element analysis.</td>
<td>636</td>
</tr>
<tr>
<td>A5.5.3.</td>
<td>Summary of micromorphological features.</td>
<td>638</td>
</tr>
<tr>
<td>A6.1.1.</td>
<td>Kordin III context register.</td>
<td>641</td>
</tr>
<tr>
<td>A6.2.1.</td>
<td>Small find register.</td>
<td>647</td>
</tr>
<tr>
<td>A6.3.1.</td>
<td>Pottery register by number in context and phase.</td>
<td>652</td>
</tr>
<tr>
<td>A6.4.1.</td>
<td>AMS dates.</td>
<td>656</td>
</tr>
<tr>
<td>A6.5.1.</td>
<td>Kordin III soil sample register.</td>
<td>657</td>
</tr>
</tbody>
</table>
A6.6.1. SV, LOI, RF Loss of Ignition, etc., soil samples.
A7.1.1. Skorba context register.
A7.2.2. Small find register.
A7.3.1. Pottery database.
A7.4.1. AMS dates.
A7.5.1. Skorba soil samples.
A7.6.1. OSL sample list.
A7.7.1. Sample list and contexts in Section 2, Profile D-E, Trench A, Skorba.
A7.7.2. pH, magnetic susceptibility and selected multi-element results.
A7.7.3. Loss-on-ignition organic/carbonate/calcium carbonate components and particle size analysis.
A7.7.4. Summary soil micromorphology descriptions for the floor and plaster deposits.
A8.1.1. In-Nuffara context register.
A8.2.1. Small find register.
A8.3.1. Summary pollen data and results of preservation tests.
A8.4.1. AMS dates.
A8.5.1. Soil sample register.
A8.6.1. Sample contexts in two storage pits at In-Nuffara.
A9.1.1a. Macrobotanical raw seed counts from Tač-Ċawla.
A9.1.1b. Macrobotanical raw chaff and non-seed counts from Tač-Ċawla.
A9.1.1c. Tač-Ċawla soil sample numbers, macrobotanical litres analysed, and phytolith sample.
A9.1.2a. Macrobotanical Minimum Number of Seeds from Tač-Ċawla.
A9.1.2b. Ubiquity of crops at Tač-Ċawla and Ġgantija.
A9.1.2c. Density of crops at Tač-Ċawla and Ġgantija.
A9.1.2d. Proportion of crops at Tač-Ċawla.
A9.1.3. Macrobotanical raw counts from Santa Verna.
A9.1.4a. Macrobotanical raw counts from Ġgantija.
A9.1.4b. Macrobotanical raw counts from Ġgantija compared by context.
A9.1.5. Macrobotanical raw counts from Kordin III.
A9.1.6. Macrobotanical raw counts from Skorba.
A9.1.7. Macrobotanical raw counts from In-Nuffara.
A9.2.2. Tač-Ċawla. Distribution of identifiable sheep and goat bones.
A9.2.3. Tač-Ċawla. Cattle fusion data.
A9.2.4. Tač-Ċawla. Pig fusion data.
A9.2.5. Tač-Ċawla. Sheep/goat fusion data.
A9.2.6. Tač-Ċawla. Sheep/Goat age-slaughter data based on tooth eruption and wear.
A9.2.7. Tač-Ċawla. Cattle age-slaughter data based on tooth eruption and wear.
A9.2.8. Tač-Ċawla. Pig age-slaughter data based on tooth eruption and wear.
A9.2.10. Tač-Ċawla. Pig measurements.
A9.2.15. Tač-Ċawla. Sheep and goat metacarpal measurements.
A9.2.18. Santa Verna. Cattle fusion data.
A9.2.19. Santa Verna. Pig fusion data.
A9.2.20. Santa Verna. Sheep/goat fusion data.
A9.2.21. Santa Verna Sheep astragalus measurements.
A9.2.25. Kordin III. Fragments and MNI distribution.
A9.2.27. Kordin III. Cattle fusion data.
A9.2.28. Kordin III. Pig fusion data.
A9.2.29. Kordin III. Cattle measurements.
A9.2.32. Skorba. Fragments and MNI distribution.
A9.2.33. Skorba. Cattle fusion data.
A9.2.34. Skorba. Sheep/goat fusion data.
A9.2.35. Skorba. Cattle measurements.
A9.2.36. Skorba. Sheep/Goat age-slaughter data based on tooth eruption and wear.
A9.2.38. Ġgantija. Fragments and MNI distribution.
A9.2.39. Ġgantija. Sheep/goat fusion data.
A9.2.40. Ġgantija. Bone measurements.
A9.2.42. In Nuffara. Sheep/goat fusion data.
A9.2.43. In Nuffara. Cattle fusion data.
A9.2.44. In Nuffara. Bone measurements (astragalus only).
A9.2.46. Dog measurements.
A10.1.1a. Drawn ceramics.
A10.1.1b. Counts of sherds from the FRAGSUS sites by phase.
A10.2.1. Thin sections of Maltese prehistoric pottery.
A10.2.2. Catalogue of thin section samples.
A11.1.1. Worked stone artefacts.
A11.2.1. Terracotta and shell artefacts.
A11.3.1. Worked bone objects and tools.
A11.4.1. Tač-Ċawla obsidian length and source data.
A11.5.1. Lithic counts from all sites.
A11.5.2. Santa Verna assemblage totals – chert colours and obsidian.
A11.5.3. Santa Verna obsidian object categories.
A11.5.4. Kordin III chert and obsidian artefact types.
A11.5.5. Skorba lithic categories.
A11.5.6. Skorba chert colours.
A11.5.7. Taċ-Ċawla artefact types obsidian and chert.
A11.5.8. Taċ-Ċawla Chert and Obsidian flake types.
A11.5.9. Taċ-Ċawla chert colours.
A11.5.10. Lithics catalogue.
A11.6.1. Description of the geological samples from the Maltese Islands.
A11.6.2. Description of the geological samples from Sicily.
A11.6.3. Explicatory table of the coding system for the Neolithic Maltese sites.
A11.6.4. Macroscopic description of the chert samples collected from Malta.
A11.6.5. Macroscopic description of the chert samples collected from Sicily.
A11.6.6. The LA-ICP-MS analyses results of the Maltese rock samples.
A11.6.7. Second group of the LA-ICP-MS analyses results of the Maltese rock samples.
A11.6.8. The LA-ICP-MS analyses results of the Sicilian chert samples.
A11.6.9. Second group of the LA-ICP-MS analyses results of the Sicilian chert samples.
A11.6.10. Table recording the total amount of lithics found on sites.
A11.6.11. The macroscopic description of the chert artefacts investigated from assemblages.
A11.6.14. The main and minor peaks of the minerals recorded with the FTIR.
A11.6.15. The main and minor peaks of the minerals recorded with the ATR.
A11.6.16. The LA-ICP-MS analyses results of the Xagħra Brochtorff Circle samples (BR).
A11.6.17. The LA-ICP-MS analyses results of the Kordin samples.
A11.6.18. The LA-ICP-MS analyses results of the Taċ-Ċawla samples.
A11.6.19. Second group of the LA-ICP-MS analyses results of the Taċ-Ċawla samples.
A11.6.20. The LA-ICP-MS analyses results of the Santa Verna samples.
A11.6.21. The LA-ICP-MS analyses results of the Ġgantija samples.
A11.6.22. The LA-ICP-MS analyses results of the Skorba samples.
A11.6.23. Second group of the LA-ICP-MS analyses results of the Skorba.
Malta may be small in scale but it has had a rich and important archaeological past which has been explored and enjoyed by many past scholars. A visit to the Archaeology Museums of Malta and Gozo testifies to a long history of collecting, scholarship and passion dating back to the early to mid-nineteenth century. It is a heritage that is beloved by Malta and its visitors alike.

The editors of this volume wish to pay tribute to two remarkable ‘visitors’ to Malta, each of whom, in their own way, made great contributions to our present appreciation of the islands’ ancient past and supported our early researches, teams and ideas. Now we want to record our debt as some of the continuing scholars of Maltese prehistory, since we cannot imagine where we could have begun our current quest to take the story onwards and deeper without their prior work.

On behalf of the whole FRAGSUS team, we wish to dedicate this volume to their enduring memory.

Professor John Davies Evans (OBE) (1925–2011) arrived in Malta in 1952 from Cambridge to commence the task of organizing the war-damaged museum collections in preparation for a synthesis of Maltese prehistory. His task was enormous, and involved a new assessment of the pottery and material culture sequence of Maltese prehistory. He prepared his now classic study The Prehistoric Antiquities of the Maltese Islands, published in 1971, which has remained the primary compendium of reference to this day. Together with carefully targeted excavations, John Evans set in train the many questions that inspired not only David Trump, his successor, to explore and challenge the complex story of Malta’s prehistoric past, but also ourselves over the last 35 years. John noted important aspects of sequence, material connectivity and, of course, the temples. These he recorded and described in such detail that his work remains vitally important today.

David Hilary Trump (OM) (1931–2016) succeeded John Evans, having already experienced Maltese prehistory in the field with him, and became the Curator of the Museum of Archaeology for five years until 1963. In that short time, he too made an enormous impression on the understanding of prehistoric Malta. His work at Skorba (as we discuss in Chapter 7) was inspired and informed, and it too set the direction for the future explorations of prehistory in the islands. David Trump maintained his interest in Malta throughout his career, leading regular study tours to the island and latterly, with ourselves, undertaking the sustained programme of fieldwork at the Xagħra Broc'torff Circle (1987–9). He wrote numerous books and papers on Malta’s prehistory, popular and academic; and his contribution has been widely acknowledged through museum displays, the award of the Order of Merit of Malta and an Honorary Degree from the University of Malta for which he felt hugely honoured. But back in the United Kingdom, from whence both these scholars came, there has been less mention of their work on Malta. Evans moved eastwards to Crete in his research interests, and has been identified mainly with that work; whilst Trump, a retiring and extremely modest individual, did not promote his achievements on Malta during his teaching years at Cambridge, which was arguably too theoretical to fully appreciate his remarkable contribution.
Figure 0.1. David Trump and John Evans together at the Deya Conference, Mallorca (c. 1983) (reproduced with permission of Judith Conway, niece of John Evans).
Acknowledgements

Firstly, the FRAGSUS Project is the result of a very generous research grant from the European Research Council (Advanced Grant no. 323727), without which this and two partner volumes and the research undertaken could not have taken place. We heartily thank the ERC for its award and the many administrators in Brussels who monitored our use of the grant. The research team also wants to record our indebtedness to the administrators of the grant within our own institutions, since this work required detailed and dedicated attention. In particular we thank Rory Jordan in the Research Support Office (Queen’s University Belfast – QUB), Laura Cousins (Cambridge University – UoC), Glen Farrugia and Cora Magri (University of Malta – UM), the Curatorial, Finance and Designs & Exhibitions Departments in Heritage Malta (HM) and Stephen Borg at the Superintendence of Cultural Heritage (SCH).

All archaeological excavations described in this volume were carried out using standard methods, in accordance with the policies of the SCH, in particular the guidance given in the document Operating Procedures and Standards for Archaeology Services – February 2013. Permits to enable excavation, survey, sampling and study were granted through the SCH and we are especially grateful to Anthony Pace and Nathaniel Cutajar for their unstinting efforts to ensure fieldwork was enabled.

Taċ-Ċawla

The Taċ-Ċawla excavations were directed by Prof. Caroline Malone, and the crew consisted primarily of students and staff from UoC, UM and QUB, supervised by Stephen Armstrong, Jeremy Bennett and Conor McAdams, with additional supervision from Dr Simon Stoddart, Dr Sara Boyle and Dr Emily Murray. We are also very grateful for Dr George Azzopardi who sought out accommodation for the project, assisted on site, and with his colleagues in HM enabled access to space for storage, environmental sampling and finds processing in Rabat. John Cremona and his colleagues in the Ministry for Gozo also played an important role in enabling site clearance and facilities at Taċ-Ċawla, and in securing the site following our work, with the long-promised surrounding wall. We also acknowledge a great number of local Gozitan businesses, hardware stockists, JCB drivers and cafe and restaurant owners, who supported our work in so many ways.

Santa Verna

The Santa Verna excavations were directed by Prof. Caroline Malone, assisted by Dr Simon Stoddart and Dr Rowan McLaughlin. The crew consisted primarily of a number of students and staff from UoC, QUB and UM, supervised by Stephen Armstrong, Jeremy Bennett, Dr Catriona Brogan and Eóin Parkinson. Dr Evan Hill wet-sieved the soil samples using flotation and the site was sampled for soil micromorphology and geochemistry by Prof. Charles French, Dr Sean Taylor and Conor McAdams. During the excavation, our understanding of the extant megalithic structure was improved by the superb plan produced by Stephen Ashley. Tiomoid Foley conducted a condition survey of the megalithic remains, the results of which were incorporated into an MSc project. Rupert Barker made a short film of the excavations – A Day on a Dig (https://youtu.be/cGNOGpq746I). Digital laser scanning was undertaken by John Meneely. Individuals whose efforts are warmly acknowledged include Stephen Armstrong, Dr Catriona Brogan, Dr Bela Dimova, Dr Paola Filippucci, Dr Reuben Grima, Laura James, Lottie Stoddart and Dr Sean Taylor, who supervised trenches, organized field assistants and gave logistical support to the running of the project. At Santa Verna, we particularly thank Dr George Azzopardi (HM) for his invaluable logistical
help at the start of the excavations and insightful comments made throughout, and Ella Samut-Tagliaferro, Cristian Mifsud, Mevrik Spiteri and Daphne M Sant Caruana, who accommodated the wet-sieving and flotation operations at the Ġgantija World Heritage site visitor centre. This was facilitated by Prof. Nick Vella and Chris Gemmell (UM), who organized and set up the sieving system. We acknowledge the interest taken in our work by other organizations including Xaghra parish council, Wirt Għawdex, and the staff and pupils at Gozo College. Indeed, the FRAGSUS team was delighted by the level of interest in the excavations shown by local residents and other visitors to the site. We particularly acknowledge the help, understanding and patience of the residents who offered us the use of their garage to store tools and equipment overnight, and the local farmer who provided gifts of bananas and kindly offered the use of his pumphouse as a tool shed. We especially thank Joseph Attard Tabone for his interest in and support of all our work, especially at Santa Verna.

Ġgantija

The Ġgantija excavations in 2015 were directed by Prof. Charles French, Dr Simon Stoddart, Dr Sean Taylor and David Redhouse, assisted by Stephen Armstrong, Jeremy Bennett, Dr Catriona Brogan, Conor McAdams, Aran McMahon, Eóin Parkinson, Jacob Pockney and Mariele Valci. Flotation of soil samples was undertaken by Dr Evan Hill. Digital laser scanning was undertaken by John Meneely and Jeremy Bennett. We also acknowledge the kind assistance of Fondazzjoni Wirt Artna, the Malta Heritage Trust, who granted access to the site.

Skorba

The excavations were directed by Prof. Caroline Malone and Dr Rowan McLaughlin, who were assisted by Stephen Armstrong, Jeremy Bennett, Dr Catriona Brogan, Emma Hannah and Eóin Parkinson. OSL profiling and geoarchaeological sampling was performed by Prof. Charles French, Dr Timothy Kinnaid (University of St Andrews), Dr Simon Stoddart and Dr Sean Taylor. The site was laser scanned by Jeremy Bennett. We thank HM for enabling access to the site and Dr Josef Caruana and Katya Stroud for supporting the work.

In-Nuffara

The excavations were directed by Dr Simon Stoddart and Dr Rowan McLaughlin, who were assisted by Stephen Armstrong, Stephen Ashley, Robert Barratt, Donald Horne, Katie Hutton, Christina O’Regan and Leslie Torwie. Many thanks to Dr George Azzopardi (HM) and Ella Samut-Tagliaferro (SCH) for their logistical support. John Meneely laser scanned the silos and analysed the volumetric data. We thank Dr Anthony Pace and Nathaniel Cutajar and their staff from the SCH for enabling access to the site.

Post-excavation

The Department of Classics and Archaeology, UM, kindly offered storage space during the project and accommodated the post-excavation team in the sunny courtyard where pottery and finds were studied. We thank Chris Gemmell in particular for his invaluable help throughout the project, but especially in enabling storage of material and access to it for the project team and the logistics on various sites and for his skilled assistance in setting up the flotation processing. In Belfast, Emma Hannah undertook data entry, sample sorting and volume indexing, and Georgia Vince assisted with data entry and logistics and produced many of the excavation plans and section drawings used throughout this volume. She also archived and scanned the project records along with the original Cambridge Gozo Project, and these are now housed in the National Museum of Archaeology, Valletta. In Malta, pottery was studied by Stephen Armstrong, Stephen Ashley, Prof. Anthony Bonanno, Dr Catriona Brogan, Prof. Caroline Malone, Lisa Coyle McClung.
Rowan McLaughlin, Eóin Parkinson and Dr Simon Stoddart. We thank Prof. Nicki Whitehouse for her enthusiastic support and advice on environmental matters. Thin section slides were produced by Dr Tonko Rajkovača of the McBurney Laboratory, Department of Archaeology, University of Cambridge. We are very grateful to Sharon Sultana (Curator) of the Museum of Archaeology for not only housing the study material but also providing access to it in 2017. Stephen Ashley and Prof. Caroline Malone illustrated the pottery and small finds. Dr Catriona Brogan assisted in the production and editing of this volume. We also wish to thank Ben Plumridge, Production Editor, for seeing this and the two companion volumes through the arduous process of publication. Thanks too, to Jason Hawkes (copy editing), Olivia Shelton (references) and Emma Hannah (indexing) for their careful work on the volume.

Permits and access

The FRAGSUS team is very grateful to the heritage bodies of Malta, namely HM and the SCH and their officers, who enabled access to sites and provided the permissions and opportunities to study the buried archaeology. It cannot be over-emphasized just how privileged the Project has been in having access to excavate and examine the exceptional sites of prehistoric Malta. Not only is the entire category ‘Maltese Temple’ protected, but most sites are also inscribed within the UNESCO World Heritage Site listing for Malta. Some readers may wonder why very small trenches and sondages were permitted at all, whilst others may query the value of small investigations. This volume presents a range of scales of study from the small to the large across prehistoric sites and assesses the value of particular data sets that have been collected. Together with Volume 1, which examines the wider landscapes and environments of early Malta, and Volume 3, which examines the bones and lives of the ancient individuals, this volume fills the middle ground – the sites themselves, and we thank all our collaborators and volunteers in this venture. In particular, we thank the willing site assistants, volunteers, surveyors, cooks and illustrators who gave their time and energy to the archaeological work, and we list them below:

Spring and Summer 2014, Gozo – Tač-Ċawla, In-Nuffara, Ta’ Marżiena, Ġgantija, Gozo landscapes

<table>
<thead>
<tr>
<th>University</th>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>UoC</td>
<td>Dr Simon Stoddart</td>
<td>CI/Direction</td>
</tr>
<tr>
<td>UoC</td>
<td>Prof. Charles French</td>
<td>Geoarchaeology</td>
</tr>
<tr>
<td>UoC</td>
<td>Dr Sean Taylor</td>
<td>Geoarchaeology</td>
</tr>
<tr>
<td>UoC</td>
<td>Jennifer Bates (MRes)</td>
<td>Soil sieving</td>
</tr>
<tr>
<td>UoC</td>
<td>David Redhouse</td>
<td>Technical staff</td>
</tr>
<tr>
<td>UoC</td>
<td>Hettie Hill</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UoC</td>
<td>Angus Knight</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UoC</td>
<td>Theo Arnold Foster</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UoC</td>
<td>Rosanna O’Keefe</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UoC</td>
<td>Kate Wilson</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UoC</td>
<td>Louise Green</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UoC</td>
<td>Emma Brownlee</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UoC</td>
<td>Dr Letizia Ceccarelli</td>
<td>Pottery study</td>
</tr>
<tr>
<td>HM</td>
<td>Dr George Azzopardi</td>
<td>Landscape archaeology</td>
</tr>
<tr>
<td>HM</td>
<td>Katya Stroud (MA)</td>
<td>Field/survey assistant</td>
</tr>
<tr>
<td>HM</td>
<td>Joanne Mallia (MA)</td>
<td>Archaeology/archives</td>
</tr>
<tr>
<td>HM</td>
<td>Iona Muscat (MA)</td>
<td>Archaeology/archives</td>
</tr>
<tr>
<td>HM</td>
<td>Marie Elena Zammit (MA)</td>
<td>Archaeology/archives</td>
</tr>
<tr>
<td>Norfolk CC</td>
<td>Steven Ashley</td>
<td>Illustration</td>
</tr>
<tr>
<td>Indep</td>
<td>Phil Wright</td>
<td>Field assistant</td>
</tr>
<tr>
<td>Indep</td>
<td>Dr Rebecca Enlander</td>
<td>Field assistant</td>
</tr>
<tr>
<td>Indep</td>
<td>Lottie Stoddart</td>
<td>Catering/illustration</td>
</tr>
<tr>
<td>QUB</td>
<td>Prof. Caroline Malone</td>
<td>PI/Direction</td>
</tr>
<tr>
<td>QUB</td>
<td>Conor McAdams</td>
<td>Field assistant</td>
</tr>
<tr>
<td>QUB</td>
<td>Stephen Armstrong</td>
<td>Field assistant</td>
</tr>
<tr>
<td>QUB</td>
<td>Lorraine Barry (MSc.)</td>
<td>Survey/technical</td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Sara Boyle</td>
<td>Research coordination</td>
</tr>
<tr>
<td>QUB</td>
<td>Jeremy Bennett</td>
<td>Field/survey assistant</td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Alastair Ruffell</td>
<td>GPR survey</td>
</tr>
<tr>
<td>QUB</td>
<td>Alix Baxter</td>
<td>Field assistant</td>
</tr>
<tr>
<td>QUB</td>
<td>Eóin Parkinson</td>
<td>Field assistant</td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Emily Murray</td>
<td>Staff supervisor</td>
</tr>
<tr>
<td>QUB</td>
<td>Anastasia Boomsma</td>
<td>MSc. training</td>
</tr>
<tr>
<td>QUB</td>
<td>Deborah Schroeter</td>
<td>MSc. training</td>
</tr>
<tr>
<td>QUB</td>
<td>Claire Privilege</td>
<td>MSc. training</td>
</tr>
<tr>
<td>QUB</td>
<td>Laura Patrick</td>
<td>MSc. training</td>
</tr>
<tr>
<td>QUB</td>
<td>Joel Goodchild</td>
<td>MSc. training</td>
</tr>
<tr>
<td>QUB</td>
<td>Michael Lavery</td>
<td>MSc. training</td>
</tr>
<tr>
<td>QUB</td>
<td>Naomi Finn</td>
<td>Catering</td>
</tr>
<tr>
<td>QUB</td>
<td>Tiomoid Foley</td>
<td>Field assistant</td>
</tr>
<tr>
<td>QUB</td>
<td>Jake Morris</td>
<td>Field assistant</td>
</tr>
<tr>
<td>QUB</td>
<td>Jonny Small</td>
<td>Field assistant</td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Michelle Farrell</td>
<td>Environmental PDRA</td>
</tr>
<tr>
<td>QUB</td>
<td>John Meneely</td>
<td>Digital scanning</td>
</tr>
<tr>
<td>QUB</td>
<td>Conor Graham</td>
<td>Survey/technical</td>
</tr>
<tr>
<td>QUB</td>
<td>Michael Armstrong</td>
<td>Field assistant</td>
</tr>
<tr>
<td>Rome</td>
<td>Mariele Valci</td>
<td>Field assistant</td>
</tr>
</tbody>
</table>
Acknowledgements

<table>
<thead>
<tr>
<th>Swansea</th>
<th>Lucy Stoddart</th>
<th>Ecology assistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>UM</td>
<td>Dr Reuben Grima</td>
<td>Fieldwork direction</td>
</tr>
<tr>
<td>UM</td>
<td>Dr Nick Vella</td>
<td>CI/Direction</td>
</tr>
<tr>
<td>UM</td>
<td>Dr Katrin Fenech</td>
<td>Environmental analysis</td>
</tr>
<tr>
<td>UM</td>
<td>Prof. Patrick Schenbri</td>
<td>Environmental direction</td>
</tr>
<tr>
<td>UM</td>
<td>Nicole Micallef</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Jessica Scicluna</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Luke Brightwell</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Tamsin Kingman</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Kay Mallia</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Karl Cachia</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Cecilia Zammit Endrich</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Annalise Agius</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Joseph Grima</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Dean Galea</td>
<td>Field assistant</td>
</tr>
</tbody>
</table>

April 2015, Gozo – Santa Verna, Ġgantija, In-Nuffara

<table>
<thead>
<tr>
<th>University</th>
<th>Name</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>UM</td>
<td>Gillian Asciak</td>
<td>Student training</td>
</tr>
<tr>
<td>UM</td>
<td>Stephanie Parisi</td>
<td>Student training</td>
</tr>
<tr>
<td>UM</td>
<td>Maja Sausmekat</td>
<td>Student training</td>
</tr>
<tr>
<td>UM</td>
<td>Leslie Torwie</td>
<td>Student training</td>
</tr>
<tr>
<td>UM</td>
<td>Dr Reuben Grima</td>
<td>Landscape</td>
</tr>
<tr>
<td>UoC</td>
<td>Dr Simon Stoddart</td>
<td>CI/Direction</td>
</tr>
<tr>
<td>UoC</td>
<td>Jeremy Bennett (MSc.)</td>
<td>Survey supervisor</td>
</tr>
<tr>
<td>UoC</td>
<td>Dr Letizia Ceccarelli</td>
<td>Ceramics and finds</td>
</tr>
<tr>
<td>UoC</td>
<td>Prof. Charles French</td>
<td>Geoarchaeology</td>
</tr>
<tr>
<td>UoC</td>
<td>Dr Sean Taylor</td>
<td>Geoarchaeology</td>
</tr>
<tr>
<td>UoC</td>
<td>David Redhouse</td>
<td>Survey supervisor</td>
</tr>
<tr>
<td>UoC</td>
<td>Robert Barratt</td>
<td>Digital recording</td>
</tr>
<tr>
<td>UoC (CAU)</td>
<td>Donald Home</td>
<td>Site supervisor</td>
</tr>
<tr>
<td>UoC (CAU)</td>
<td>Katie Hutton</td>
<td>Site supervisor</td>
</tr>
<tr>
<td>UoC</td>
<td>Laura James</td>
<td>Site supervisor</td>
</tr>
<tr>
<td>UoC</td>
<td>Dr Paola Filippucci</td>
<td>Student training</td>
</tr>
<tr>
<td>UoC</td>
<td>Dr Bela Dimova</td>
<td>Student training</td>
</tr>
<tr>
<td>UoC</td>
<td>Charles Barker</td>
<td>Student training</td>
</tr>
<tr>
<td>UoC</td>
<td>Tansy Branscombe</td>
<td>Student training</td>
</tr>
<tr>
<td>UoC</td>
<td>Imogen Coulson</td>
<td>Student training</td>
</tr>
<tr>
<td>UoC</td>
<td>Olivia Crawford</td>
<td>Student training</td>
</tr>
<tr>
<td>UoC</td>
<td>Louise Crawford</td>
<td>Student training</td>
</tr>
<tr>
<td>UoC</td>
<td>Josie Howl</td>
<td>Student training</td>
</tr>
<tr>
<td>UoC</td>
<td>Isaac Lawton</td>
<td>Student training</td>
</tr>
<tr>
<td>UoC</td>
<td>Jodie Manners</td>
<td>Student training</td>
</tr>
<tr>
<td>UoC</td>
<td>Aran McMahon</td>
<td>Student training</td>
</tr>
<tr>
<td>UoC</td>
<td>Susanne Navara</td>
<td>Student training</td>
</tr>
<tr>
<td>UoC</td>
<td>Jacob Pockney</td>
<td>Student training</td>
</tr>
<tr>
<td>UoC</td>
<td>Lily Rice</td>
<td>Student training</td>
</tr>
<tr>
<td>UoC</td>
<td>Alisa Santikam</td>
<td>Student training</td>
</tr>
<tr>
<td>UoC</td>
<td>Rebecca Seakins</td>
<td>Student training</td>
</tr>
<tr>
<td>UoC</td>
<td>Finnoula Taylor</td>
<td>Student training</td>
</tr>
<tr>
<td>UoC</td>
<td>Katherine Wilson</td>
<td>Student training</td>
</tr>
<tr>
<td>UoC</td>
<td>Conor McAdams (M.Phil)</td>
<td>Geoarchaeology</td>
</tr>
<tr>
<td>UoC</td>
<td>Dr Ronika Power</td>
<td>Human osteology</td>
</tr>
<tr>
<td>UoC</td>
<td>Dr Letizia Ceccarelli</td>
<td>Pottery study</td>
</tr>
<tr>
<td>INDEP</td>
<td>Rupert Barker</td>
<td>Filmmaker</td>
</tr>
<tr>
<td>Norfolk CC</td>
<td>Steven Ashley</td>
<td>Illustration/planning</td>
</tr>
<tr>
<td>QUB</td>
<td>Prof. Caroline Malone</td>
<td>PI/Direction</td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Rowan McLaughlin</td>
<td>Senior site supervisor</td>
</tr>
<tr>
<td>QUB</td>
<td>Eóin Parkinson (MSc.)</td>
<td>Site supervisor</td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Catriona Brogan</td>
<td>Site supervisor</td>
</tr>
<tr>
<td>QUB</td>
<td>Stephen Armstrong (M.Arch.Sci.)</td>
<td>Site supervisor</td>
</tr>
<tr>
<td>QUB</td>
<td>John Meneely (MSc.)</td>
<td>Digital survey/technrical</td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Sean Pyne O’Donnell</td>
<td>Coreing</td>
</tr>
<tr>
<td>LJMU</td>
<td>Dr Chris Hunt</td>
<td>Coreing</td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Rory Flood</td>
<td>Coreing</td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Michelle Farrell</td>
<td>Coreing</td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Finbar McCormick</td>
<td>Coreing</td>
</tr>
<tr>
<td>QUB</td>
<td>Tiomoid Foley (M.Arch.Sci.)</td>
<td>Survey assistant</td>
</tr>
<tr>
<td>QUB</td>
<td>Rory Sutton (M.Arch.Sci.)</td>
<td>Field assistant</td>
</tr>
<tr>
<td>QUB</td>
<td>Claire Holmes (M.Arch.Sci.)</td>
<td>Field assistant</td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Evan Hill</td>
<td>Environmental</td>
</tr>
<tr>
<td>IAC Ltd.</td>
<td>Christina O’Regan (MSc.)</td>
<td>Field assistant</td>
</tr>
<tr>
<td>RDS</td>
<td>Charlotte Stoddart (MA)</td>
<td>Field assistant</td>
</tr>
<tr>
<td>Indep.</td>
<td>Rupert Barker</td>
<td>Film maker</td>
</tr>
<tr>
<td>ROME</td>
<td>Mariele Valci</td>
<td>Field assistant</td>
</tr>
<tr>
<td>SCH</td>
<td>Ella Samut-Tagliaferro (MA)</td>
<td>Site supervisor</td>
</tr>
<tr>
<td>SCH</td>
<td>Bernardette Mercieca (MSc.)</td>
<td>Human osteology</td>
</tr>
<tr>
<td>UM</td>
<td>Gillian Asciak</td>
<td>Student training</td>
</tr>
<tr>
<td>UM</td>
<td>Stephanie Parisi</td>
<td>Student training</td>
</tr>
<tr>
<td>UM</td>
<td>Maja Sausmekat</td>
<td>Student training</td>
</tr>
<tr>
<td>UM</td>
<td>Leslie Torwie</td>
<td>Student training</td>
</tr>
<tr>
<td>UM</td>
<td>Dr Reuben Grima</td>
<td>Landscape</td>
</tr>
</tbody>
</table>
Acknowledgements

June–July 2015 – Kordin Temple

<table>
<thead>
<tr>
<th>Institution</th>
<th>Name</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>UoC</td>
<td>Dr Simon Stoddart</td>
<td>CI/Direction</td>
</tr>
<tr>
<td>UoC</td>
<td>Jeremy Bennett (MSc.)</td>
<td>Survey</td>
</tr>
<tr>
<td>UoC</td>
<td>Dr Letizia Cecarelli</td>
<td>Ceramics</td>
</tr>
<tr>
<td>UoC</td>
<td>Matthew Greenhill</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UoC</td>
<td>Beth Whitlock (MPhil)</td>
<td>Field assistant</td>
</tr>
<tr>
<td>MEPA</td>
<td>Tony Zammit (MSc.)</td>
<td>MEPA</td>
</tr>
<tr>
<td>MEPA</td>
<td>Joseph Magro Conti (MSc.)</td>
<td></td>
</tr>
<tr>
<td>QUB</td>
<td>Prof. Caroline Malone</td>
<td>PI/Direction</td>
</tr>
<tr>
<td>QUB</td>
<td>John Meneely (MSc.)</td>
<td>Survey</td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Rowan McLaughlin</td>
<td>Principal supervisor</td>
</tr>
<tr>
<td>QUB</td>
<td>Eón Parkinson (MSc.)</td>
<td>Site supervisor</td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Catriona Brogan</td>
<td>Site supervisor</td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Finbar McCormick</td>
<td>Zooarchaeology</td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Evan Hill</td>
<td>Molluscs/sieving</td>
</tr>
<tr>
<td>SCH</td>
<td>Ella Samut-Tagliaferro</td>
<td>SCH</td>
</tr>
<tr>
<td>Swansea</td>
<td>Lucy Stoddart</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Chris Gemmell</td>
<td>Logistics</td>
</tr>
<tr>
<td>UM</td>
<td>Rebecca Farrugia</td>
<td>Site supervisor</td>
</tr>
<tr>
<td>UM</td>
<td>Dr Sean Taylor</td>
<td>Geoarchaeology</td>
</tr>
<tr>
<td>UM</td>
<td>Prof. Anthony Bonanno</td>
<td>Ceramics</td>
</tr>
<tr>
<td>UM</td>
<td>Dr Nicholas Vella</td>
<td>CI/Direction</td>
</tr>
<tr>
<td>UM</td>
<td>Dr Reuben Grima</td>
<td>CI/Direction</td>
</tr>
<tr>
<td>UM</td>
<td>Adrian Camilleri</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Aidan Lehane</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Anne Marie Schembri</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Gavin Borg</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Gillian Asciak</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Prof. John Betts</td>
<td>Survey</td>
</tr>
<tr>
<td>UM</td>
<td>Leanne Azzopardi</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Luke Brightwell</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Maja Sausmekat</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Daniela Formosa</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Mara de Richter</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Maria Serpina</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Melanie Debono</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Nico Muscat</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Nicole Micaleff</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Nidia Lisc</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Rachel Grillo</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Sefora Borg</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Tamsin Kingwell</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Tore Lomsdalen</td>
<td>Field/survey assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Sandy Pirani</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Tamsin Cauchi</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Ryan Grech</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Gabriel Farrugia</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Dwayne Haber</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UM</td>
<td>Dean Galea</td>
<td>Field assistant</td>
</tr>
</tbody>
</table>

April 2016 – Skorba excavation

<table>
<thead>
<tr>
<th>Institution</th>
<th>Name</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>UoC</td>
<td>Dr Simon Stoddart</td>
<td>CI/Co-Direction</td>
</tr>
<tr>
<td>UoC</td>
<td>Jeremy Bennett (MSc.)</td>
<td>Field assistant</td>
</tr>
<tr>
<td>UoC</td>
<td>Eón Parkinson (MSc.)</td>
<td>Field assistant</td>
</tr>
<tr>
<td>HM</td>
<td>Dr Josef Caruana</td>
<td>Heritage assistant</td>
</tr>
<tr>
<td>QUB</td>
<td>Prof. Caroline Malone</td>
<td>PI/Direction</td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Rowan McLaughlin</td>
<td>Assistant direction</td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Catriona Brogan</td>
<td>Field assistant</td>
</tr>
<tr>
<td>QUB</td>
<td>Stephen Armstrong (M.Arch.Sci.)</td>
<td></td>
</tr>
<tr>
<td>QUB</td>
<td>Emma Hannah (MPhil)</td>
<td>Field assistant</td>
</tr>
<tr>
<td>SCH</td>
<td>Ella Samut-Tagliaferro</td>
<td>Field manager</td>
</tr>
<tr>
<td>Univ. St Andrews</td>
<td>Dr Timothy Kinniard</td>
<td>OSL/geomorphology</td>
</tr>
</tbody>
</table>

Summer 2016 – Pottery and finds analysis (University of Malta)

<table>
<thead>
<tr>
<th>Institution</th>
<th>Name</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>UoC</td>
<td>Dr Simon Stoddart</td>
<td></td>
</tr>
<tr>
<td>Norfolk CC</td>
<td>Steven Ashley</td>
<td></td>
</tr>
<tr>
<td>QUB</td>
<td>Prof. Caroline Malone</td>
<td></td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Catriona Brogan</td>
<td></td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Rowan McLaughlin</td>
<td></td>
</tr>
<tr>
<td>QUB</td>
<td>Stephen Armstrong</td>
<td></td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Catriona Brogan</td>
<td></td>
</tr>
</tbody>
</table>

June 2017 – Pottery analysis (University of Malta and National Museum of Archaeology)

<table>
<thead>
<tr>
<th>Institution</th>
<th>Name</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>UoC</td>
<td>Eón Parkinson (MSc.)</td>
<td></td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Rowan McLaughlin</td>
<td></td>
</tr>
<tr>
<td>QUB</td>
<td>Prof. Caroline Malone</td>
<td></td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Catriona Brogan</td>
<td></td>
</tr>
<tr>
<td>QUB</td>
<td>Dr Lisa Coyle McClung</td>
<td></td>
</tr>
</tbody>
</table>
Consider, 5000 years ago you are on one of the smallest islands in the Mediterranean, which has no water sources, dependent on brief winter rain showers, shallow soil patches, with only stone, clay and salt as natural resources, perhaps a few trees and shrubs. How would you live in such environment? This second volume of the FRAGSUS Project (2013–18) provides readers with fresh information achieved through high quality scientific research on palaeoenvironmental analysis, radiocarbon dating, human and faunal bone studies as well as on ceramics, lithics, domestic contexts and monuments, fully addressing five main questions targeted by the project. The support of the European Research Council has been transformative in making this new knowledge about Maltese prehistory more understandable and accessible, as a reader will discover throughout this and the other two volumes.

The coming of FRAGSUS was a long journey. Twenty-seven years passed since I first met the main protagonists of this project, Prof. Caroline Malone and Dr Simon Stoddart. They left a long-lasting positive impression on me. I was an archaeology undergraduate at the University of Malta in 1993, under the academic guidance of Prof. Anthony Bonanno, with colleagues Nicholas Vella (now Professor, and former Head of the Archaeology Department at the University of Malta) and Dr Anthony Pace (my predecessor as Superintendent of Cultural Heritage). I was on my first archaeological research excavation by an Anglo-Maltese mission at the unique Neolithic mass burial site of the Xagħra Brochtorff Circle in Malta’s sister island of Gozo. A couple of decades later I had the opportunity to participate on other research digs in Malta with Malone-Stoddart, this time as part of FRAGSUS at Kordin III Neolithic temples in Malta, a site about which I had long endeavoured to raise awareness for its better understanding and management.

The Temple Period is renowned for the monumental megalithic structures (presumed temples) and the associated underground mass burial places, which offer an aura about the Neolithic mindset, belief system, organisation, ritual and physical capabilities in engineering and art. But what should be further intriguing to the reader is another aspect of human life – how the early people lived? What evidence is there for this aspect from the Temple Period? Previously, such questions were largely without much evidence except sporadic discoveries of typical deposits and material culture, but which were very lacking in data to advance site prediction and environmental data collection. The very few huts so far discovered and interpreted as domestic were ephemeral and thus prone to unrecorded destruction during building construction. I was pleased to contribute my knowledge of domestic sites to the publication of the Gozo study in 2009, and delighted to write this Foreword. This work records the next stages of discovery of the inhabitation record of the Maltese islands, most notably at Taċ-Ċawla, a site preserved from development by the action of the Superintendence.

In the past fifty years, the Maltese Islands have undergone successive building booms, each significantly endangering Malta’s historic environment. In my quest as an applied archaeologist/heritage manager for over two decades at the Planning Authority and for the past two years as Superintendent of Cultural Heritage, I have endeavoured to collaborate with disparate stakeholders to save or mitigate impacts on the fragile remains of the past, and to raise awareness. The findings from FRAGSUS will be an especially useful source of information for policy makers, heritage managers, regulatory agencies and conservation scientists in their quest to preserve and understand Malta’s past. The study enables them to make informed decisions about future human impacts on the archaeological heritage, mainly caused by
in world prehistory more generally. As prehistory pre-dates the invention of writing, the approach of FRAGSUS’s research agenda turns archaeo-environmental data into ‘words’ by digging deep into the embryonic matrix of garden soils on which the temples builders sustained themselves. The project can now explain queries about this sustainability, a theme that is still relevant to modern generations. With the use of multidisciplinary and multinational teams of specialists, the study placed innovative scientific approaches at the fore, and addressed silent aspects that go beyond the traditional art-historical basics of Grand Traditions. The investigations into the core essence of life five millennia ago belong to new scientific approaches.

The FRAGSUS Project has addressed lacunae and used unconventional approaches in theory and method to obtain robust scientifically-backed results that have filled in significant gaps in the research agenda of Maltese prehistory and beyond. Equally, the results have surely raised many questions for future research agendas. I look forward to further collaboration, and I am eager to see more collaborative projects between Maltese veterans and upcoming academics and our overseas colleagues.

Joseph Magro Conti
Superintendent of Cultural Heritage, Malta
September 2020
6.1. Introduction

The following presents the results of the four-week excavation campaign at the Kordin III megalithic complex in June–July 2015 (site code: KRD2015), Paola, Malta (Fig. 6.1). The excavations were undertaken by the FRAGSUS research team, with assistance from students from the University of Malta. The excavations at Kordin III were aimed at locating intact archaeological deposits related to the Temple Period in order to retrieve samples for radiocarbon dating, as well as palaeoenvironmental and palaeoeconomic reconstruction. Following the findings of previous excavation campaigns at Taċ-Ċawla, Santa Verna, Ġgantija and In-Nuffara, all located on Gozo, the Kordin III excavations sought to establish a relative and absolute chronology for the site and the wider Temple Period on Malta, as well as to understand the environmental and geoarchaeological setting of the Kordin III complex and consider its relationship with the lost sites of Kordin I and II (see Fig. 6.8).

6.2. The site

6.2.1. Location and physical setting

Kordin III forms part of a larger megalithic landscape that also comprised two nearby groups of prehistoric ‘temple-like’ monuments, known as Kordin I and II (also referred to as ‘Cordin’ and ‘Corradino’). Both Kordin I and II were recorded and partially excavated between 1892 and 1909 (Figs. 6.2 & 6.3), but their remains have since been lost to building and development (Ashby et al. 1913; Caruana 1896; Evans 1971, 67). The approximate location of the two lost monuments has now been developed as an industrial estate in the 1960s (Figs. 6.4 & 6.5). Their destruction was probably contemporary with the demolition of a large fortification wall, part of which still survives today (Fig. 6.7). The Kordin sites are located on the east-facing slopes of a hill along the southern margin of the Grand Harbour of Valletta and are situated near the Tarxien temples and the hypogea at Hal-Saflieni and a lesser known site, Santa Lucija.

Before the constraints now imposed by modern-day buildings, walls and trees, those standing at Kordin III in the past would have had extensive views from the site to the west over some 23 sq. km; a view that ranged as far as the Mellieha Ridge, some 13 km away.
This prominence can be demonstrated by the application of ‘viewshed’ analysis in a computerized GIS (Fig. 6.6; Chapter 12). Kordin III is located on disturbed soils upon Globigerina bedrock at 35.87°N, 14.50°E at an elevation of around 40 m.

6.2.2. History of the site
In 1908, a group of megalithic ruins were identified on Kordin hill close to Paola (Figs. 6.2 & 6.2). The ruins were found in a field named Ix-Xagħra ta’ Cordin, located south of the road which led down into Marsa from the Military Detention Barracks. At the beginning of the twentieth century, the site was defined by a mound of earth, from which large slabs and limestone blocks stood out. Kordin South, today known as Kordin III, was first excavated in May 1909 by Thomas Ashby of the British School at Rome together with R.N. Bradley, T.E. Peet, and N. Tagliaferro (Fig. 3.6 shows images of the 1909 works). The goal of the 1909 excavation was to identify the extent of the megalithic ruins. During the first research visits, the outline of two apses and a large stone at their entrance were identified amongst the scattered remains. Site works began with soil removal in specific areas that traced the extent of stone alignments. These localized interventions later developed into the clearance of almost the entire archaeological site. Several areas revealed floor levels and fills that were excavated, some only partially, others down to bedrock. As work progressed, some areas of the remains were also reconstructed. The remains explored during the 1909 excavation were recorded and at least two site plans of the archaeological site were drawn. The cultural material was described using Tagliaferro’s pottery classification and compared with other sites in Malta and Gozo, Hal Saflieni in particular. Despite this, comparative dating of the various types of pottery proved futile. Details on this intervention were published by Ashby et al. (1913). In 1925, a boundary wall was constructed to close off Kordin III (Fig. 6.7) and to ensure that the curtilage of the site was protected as an ancient monument. In retrospect, the wall (instigated by Zammit) ensured the survival of the site, as the area became rapidly industrialized in the mid-twentieth century.

The site of Kordin III was subject to further archaeological excavations in 1954 in a programme of research that aimed to understand the chronological sequence of early Malta (Evans 1971, 67). A number of small trenches (Trenches A–E) were opened by John D. Evans in different locations within the Kordin III main

![Figure 6.2. The temples of Kordin I and Kordin II as recorded by Caruana (1896).](image)
temple complex and the smaller northern structures as illustrated in Figures 6.2 & 6.43 to test stratigraphy and chronology. The 1953 intervention was reported in Evans’s 1971 publication on the Prehistoric Antiquities of the Maltese Islands. Evans included a site plan of Kordin III, adapted from Ashby et al.’s 1913 excavation plan (Fig. 6.10). Other records published in 1971 included a section drawing of the stratification identified within Trench C, as illustrated in Figure 6.11. Through these excavations, the intent was to date or at least phase, the monument and re-assess the pottery sequence. The results suggested that although the site contained earlier buildings, the surviving remains dated from the Ġgantija phase (c. 3600–3100 BC).

In 1957, restoration works at the Kordin III site were undertaken to stabilize damage incurred during WWII when the site was hit by blasts from explosive bombs, some of which also shattered the boundary wall. These events had littered the site with debris and were reported to have caused considerable damage to the megalithic ruins. During the early post-war years, more stone slabs from inside the apses and passages of Kordin III were dislodged by intruders.

Further exploratory trenches were cut by David Trump in July 1961. Trump’s interventions at Kordin

Figure 6.3. Ashby’s plans: a) Kordin I; b) Kordin II; and c) Kordin III (Ashby et al. 1913).
Chapter 6

Figure 6.4. Orthophotograph (left) and 1968 survey map showing the location of the Kordin temple complexes (by permission of the former Malta Environment and Planning Authority).

Figure 6.5. Location of prehistoric sites in the area with a shaded relief digital elevation model derived from LiDAR.

III were associated with his second campaign at Skorba and other sites, which aimed to clarify the chronological sequence for Maltese prehistory especially after the Skorba excavations had indicated the transposition of the Żebbuġ and Mġarr phases. During this intervention, three trenches (Trench A – C) were opened as illustrated in Figure 6.11. In his field notes, held at the National Museum of Archaeology, Trump concluded that Kordin III secured the sequence of the Mġarr–Ġgantija phases.

In 1980, several prehistoric Maltese Temple sites were inscribed on the World Heritage List, but the list excluded Kordin III. From 1987 to 2016, the site was managed by a voluntary organization, Fondazzjoni Wirt Artna, whilst the other sites were cared for by the Museums Department/Heritage Malta. Between 2001 and 2004, the site was used as a case-study for the TEMPER Project led by the University of Cambridge (Borg 2007). In 2006, the Department of Classics and
Figure 6.6. Location map of Kordin III also indicating the ground-level viewshed calculated using a LiDAR-derived digital terrain model of Malta.

Figure 6.7. Image of Kordin III surrounded by the enclosing wall before the area was developed as an industrial estate (1925).
Figure 6.8. Site photos from Ashby and Peet’s 1909 excavation at the Kordin sites (Ashby Archive photographs, reproduced with permission, The British School at Rome, all rights reserved (1-XXX.075; 2-XXXVIII.023; 3-TA-XXVII.048, 4-XXX.065; 5-XXX.055; 6-XXX.087; 7-XXX.068; 8-XXX1.001)).
199

Kordin III

by Dr Reuben Grima, Dr Simon Stoddart, Dr Rowan McLaughlin and Ella Samut-Tagliaferro. The crew consisted mainly of students from the University of Malta (see acknowledgements and Fig. 6.44), supervised by Jeremy Bennett, Dr Catriona Brogan, Rebecca Farrugia, Prof. John Betts and Eóin Parkinson. In this report, levels are given in metres above sea level (ASL).

In total, five areas were granted a permit for excavation from the Superintendence of Cultural Heritage (SCH), three within the confines of the walled site and two outside it to the west. These were Trench I (A, B and C), Trench II (A and B), Trench III and outside the confines of the enclosed walled temple site, Trench IV (A and B) (Fig. 6.13). The areas within the walled area incorporated shade protection (see photos) as required for June-July fieldwork. The narrow width of the trenches and their precise orientation was dictated by the excavation permit, and this arrangement did not enable complete investigation of some of the structural aspects or deposits. The trenches were sited to test a variety of external parts of the temple complex, areas that had not received much attention in the earlier campaigns and were little understood in relation to the work done by Ashby and Peet during the first major campaign of work more than a century ago (§6.2.2).

Archaeology at the University of Malta carried out a survey of the monument in the northeastern corner of the site, and recorded the trefoil-shaped structure typical of temple buildings (Fig. 6.12), as had been suggested previously by both Magro Conti (2000) and Pace (2004). Heritage Malta (HM) assumed management of the site in 2016.

6.3. Methodology and personnel

The 2015 excavation took place from 22 June to 17 July. Excavation was done entirely by hand, under the direct supervision of University of Malta and FRAGSUS Project personnel. The excavations were directed by Prof. Caroline Malone and Dr Nicholas Vella, assisted by Dr Reuben Grima, Dr Simon Stoddart, Dr Rowan McLaughlin and Ella Samut-Tagliaferro. The crew consisted mainly of students from the University of Malta (see acknowledgements and Fig. 6.44), supervised by Jeremy Bennett, Dr Catriona Brogan, Rebecca Farrugia, Prof. John Betts and Eóin Parkinson. In this report, levels are given in metres above sea level (ASL).

In total, five areas were granted a permit for excavation from the Superintendence of Cultural Heritage (SCH), three within the confines of the walled site and two outside it to the west. These were Trench I (A, B and C), Trench II (A and B), Trench III and outside the confines of the enclosed walled temple site, Trench IV (A and B) (Fig. 6.13). The areas within the walled area incorporated shade protection (see photos) as required for June-July fieldwork. The narrow width of the trenches and their precise orientation was dictated by the excavation permit, and this arrangement did not enable complete investigation of some of the structural aspects or deposits. The trenches were sited to test a variety of external parts of the temple complex, areas that had not received much attention in the earlier campaigns and were little understood in relation to the work done by Ashby and Peet during the first major campaign of work more than a century ago (§6.2.2).

Figure 6.9. Ashby’s plan of Kordin III showing the locations of Evans’ and Trump’s trenches (prepared by Mevrick Spiteri for the FRAGSUS Project).

Figure 6.10. Evans’ plan of Kordin III (adapted from Ashby et al. 1913).
Figure 6.11. Evans’ and Trump’s section and trench drawings, the location of which are shown in Figure 6.9.

Figure 6.12. a) Aerial view of Kordin III; b) detail showing the survey carried out in 2006 by the University of Malta.
6.4. Results: Trench I

Trench I consisted of three 2 m-wide interconnected lengths forming a ‘T’ near the northeastern corner of the site, designed to investigate a small trefoil temple structure (identified as ‘O’ by Ashby et al. (1913), and 15-16 by Evans 1971). Trench IA ran east–west through the area, Trench IB ran north-south from the northern edge of Trench IA, and Trench IC ran north-south from the southern side of Trench IA (Fig. 6.14). Topsoil throughout Trench I was identified as Context (1), a firmly compacted loam with a covering of grass and other weeds, from which the megalithic remains protruded. Topsoil (1) was removed by mattock and trowel to reveal a number of different underlying spreads of soil and stones, some of which were directly associated with the upstanding megaliths, and some that were clearly spreads of material deposited during relatively recent times. These are described below.

6.4.1. Trench IA
Trench IA investigated the area within Apse ‘S’ of the trefoil structure, the threshold area that led into it, and extended into an area immediately the west of the megalithic structure. Three megaliths in the western part of the trench (M16, M17 and M18) were assigned the context number (25). The southern part of the lobe wall, where it intersected with the trench, contained five megaliths (M1, M2, M3, M4 and M5) which were assigned context number (26); and three megaliths (M42, M43 and M44) at the northern edge of the wall were assigned Context (27) (Fig. 6.15).

6.4.1.1. Contexts inside ‘Room S’
Investigation of the foundations of ‘Room S’ were undertaken in two small sondages dug to bedrock at 38.45 m ASL. A 1.25 × 0.75 m sondage was placed near the western entrance of the ‘Room’, and a 0.8 × 0.7 m sondage was placed against the inner lobe wall (Fig. 6.15). Both sondages contained a similar stratigraphic profile. Above bedrock in the western sondage, Context (99) formed an orange-brown silt loam layer with a distinctive dry and crumbly texture. The layer contained nine highly fragmented pieces of Skorba pottery, and nothing from the Temple Period, indicating that the layer was thus a remnant palaeosol, containing material from a much earlier phase of occupation than the overlying structure. A radiocarbon date of 3670–3380
cal. BC (UBA-33019, 4803±50), however, was obtained from a sample of *Olea cf. europa* (olive) charcoal from Context (99). This date relates to the Mgarr phase (Fig. 6.16), and provides a lower boundary for the period of the activity and structures that lay above. A virtually identical layer, Context (91B), was exposed in the eastern sondage. Above Context (99) in the western sondage Context (96) presented a dark brown silt loam. This was interpreted as palaeosol from a pre-temple phase. Although some 52 pottery sherds were found in Context (96), few were diagnostic (the latest being one Mgarr-phase sherd). Samples from charred *Hordeum* and *Triticum* grains in the layer returned radiocarbon dates of 3510-3200 cal. BC (UBA-33018, 4614±33) and 3090-2900 cal. BC (UBA-33017, 4363±40) respectively.

Context (91) was a very similar deposit to (96), and was exposed in the eastern sondage above (91B). The layer did not contain any pottery, but a wet-sieved sample of the fill contained a charred *Triticum* grain which was radiocarbon dated to 3500-3150 cal. BC (UBA-33015, 4593±31). Taken together in a Bayesian model of two successive phases, the radiocarbon evidence obtained from these trenches indicates that the pre-temple soils dated to a phase of activity falling roughly between 3500 and 3000 BC – the Ġgantija phase (Fig. 6.16).

The equivalent Contexts (40) and (92) that lay above the remnant soils were encountered next. These formed a layer of large, flat stones arranged to form a level and flat foundation for a *torba* (ground limestone plaster surface) floor layer, much like stone paving in...
Indeed, it is interesting that elsewhere in Trench I, smooth exposures of bedrock had been used as level foundations for much of the megalithic structure, hinting that the paving slabs functioned as a synthetic bedrock, and achieved the required level for a floor. There may also be a symbolic significance, beyond the functional or mundane, that the particular construction methods had in the minds of the builders.

The torba covering these stones was Context (30), comprising a torba floor, pale grey in colour. The floor butted against megalith M64 and covered the appearance. Similar stone paving is found elsewhere at Kordin III, most notably in the entrance court of the main temple. These stones were directly covered by a torba layer, discussed below (30/39/90) (Figs 6.14 & 6.15); this may suggest that the paving slabs found elsewhere at Kordin were also foundation deposits, and were also once covered by torba, which has long-since eroded away. The recurrence of a paving-stone feature is a point of contrast with other temple sites in Malta, where typically spreads of smaller stones appear to have had the same foundation purpose (e.g. Evans 1971, Plate 23).

Figure 6.15. Trench 1A and 1C contexts.
‘threshold’ leading to Apse ‘S’ (Fig. 6.15). The layers of soil overlying different areas of the torba were excavated separately, and so the same layer was assigned the context numbers (39) and (90), until it became apparent that the deposits were all the same entity. The upper surface of torba, constituting the relatively flat floor within Apse ‘S’, was assigned as Surface {35}. The apse space measured some 3 m in diameter, and was encircled by the apse wall: Contexts (25), (26) and (27). The torba floor Surface {35} was exposed over the entirety of the trench, but was left intact, except for the two sondages discussed above. Bayesian analysis of the radiocarbon determinations sought from beneath (35) suggest that the building was constructed after 3300 cal. bc (Fig. 6.16).

A sondage was opened directly east of the lobe wall of Apse ‘S’ in deposits which showed signs of disturbance from a previous excavation, presumably that of Ashby in 1909. At the base of the sondage, Context (29) comprised a concentration of medium-to large-sized stones, 25–35 cm in diameter, and was interpreted as stony packing material set against the wall (25); this was left intact and not excavated further. Above this was Context (28), an accumulation of fine silt loam with large stones embedded within it. This was followed by general backfill Contexts (13) and (12), a brown to reddish-brown mottled soil, specked with broken torba differentiated on account of the greater frequency of large stones compared with Context (13).

Elsewhere, removal of the topsoil in the eastern area of Apse ‘S’ revealed deposit (23), a disturbed dark brown, gritty silt loam, possibly resulting from the collapse/movement of the megaliths in more modern times. A similar, but less compacted, layer was found immediately below this was identified as Context (22). Overlying (22), Context (3) formed a layer of medium to large flattish stones, which appear to have been set into Context (22), with finds of mixed prehistoric pot and modern materials, including glass.

Abutting Context (23) traces of torba floor were identified directly below topsoil at the northern edge of Apse ‘S’, at the junction of trenches 1A and 1B. The torba fragments identified as Context (16) had become mixed within a matrix of small stones with brown soil, and stratified below Context (17). Context (17) formed a 10 cm-thick layer of firm, dark brown silty loam, devoid of cultural material, which had accumulated during some unknown period, between the prehistoric temple layers and modern times.

6.4.1.2. ‘Outside’ the eastern wall
The eastern end of Trench IA exposed a 2.1 m-long section through deposits ‘outside’ the curving apse wall of the megalithic structure. Here, a series of buried
soil horizons were encountered, but no clear structural features or floors were found, and the stratigraphy could not be matched directly to the layers bounded by the megalithic wall. These layers were left intact, except for a 0.7 m-wide sondage dug to bedrock at 38.54 m ASL across the easternmost end of Trench IA (Fig. 6.15). This sondage revealed Context (97) at its base, a firm brown layer of dry, crumbly earth, 0.45 m deep, which was perhaps deliberately deposited as a foundation layer. The ceramic finds consisted of highly fragmented prehistoric pottery, including at least one identifiable sherd of Ġgantija phase pottery, thereby suggesting that the floor and associated structures also date to the Ġgantija phase or later. A spread of flattish, medium sized stones, Context (68), lay above. These stones were roughly arranged in three distinct lines, and were perhaps the vestiges of a robbed-out wall (Fig. 6.15). A quern stone (SF159) was found among these stones. At

Figure 6.17. Mid-excavation plan of eastern end of Trench I showing stones (68), associated contexts, and projected outline of apse (see also Fig. 6.35).

Figure 6.18. Photograph of torba floor (89) and sondage in Context (97).
the same stratigraphic position with (68) (Figs. 6.17 & 6.18) were three mixed layers of greyish soil, Contexts (76), (79) and (80), and a torba floor, Context (89) (Fig. 6.18). These layers contained an assemblage of mixed very highly fragmented Earlier Neolithic and Temple Period pottery. This was covered by Contexts (28) and (44) forming a greyish silty soil, as a lens within (28), each containing a small assemblage of mixed prehistoric pottery. The superficial topsoil layers were (12) and (13). The floors and walling revealed at this end of the trench suggests the megalithic buildings in this part of the site were once more complex in plan (Figs. 5.14 & 6.15). Further excavation or geophysical survey in the northeast corner of Kordin III would most probably reveal hidden structures, now buried by only a few centimetres of topsoil.

6.4.1.3. ‘Outer threshold’ area
Further west, Trench IA captured the line of the outer wall associated with the western apse of the building, and another threshold stone with associated megaliths. The excavation revealed a patchwork of torba, stones and other deposits. These were excavated to the level of the floor of the entrance to the megalithic building, which was a torba floor found at 39.24 m ASL and identified as Context (45). This was a firm, pale-coloured plaster layer covering an area at least 0.9 m north–south by 0.5 m east–west, somewhat disturbed at the western end and had a sharp, smooth edge at its eastern side. This was covered by Context (46), a brown silt loam containing a piece of struck obsidian debitage (SF113) and a small quantity of prehistoric pottery. In places, between Contexts (45) and (46), traces were found of another, poorly preserved torba floor, Context (47). A square stone socket [50], with vertical sides 0.6 m long and 0.25 m deep was set into (46). The Fill (51) of the socket was a reddish brown soil, and contained highly fragmented pottery and animal bones; it was perhaps the remains of a more widespread rubbish layer once covering this part of the site, but only preserved within the stone socket.

South of these floors and associated layers, Context (53) comprised a flattish stone, also identified as M63, with a longitudinal wide, shallow groove worked across it. This buttressed against the torba floor and was interpreted as an intact, in situ and inset threshold stone, or perhaps the base of a posthole, at the western side of Apse ‘S’. It seems likely that stone M63 originally formed part of the entryway to apses ‘O’ and ‘P’ from the north of Apse ‘S’. Next to it, Context [59] represented a stone socket measuring 0.7 × 0.3 × 0.15 m reaching bedrock. The socket was filled by a friable layer of reddish-brown fine sandy loam, Context (52), which also covered threshold M63 and partly covered Context (39), the main torba floor deposit in Apse ‘S’, described above. This layer contained a very highly fragmented mixture of prehistoric pottery. Above this was topsoil (Fig. 6.16).

The excavation trench of Evans was also rediscovered in 2015. This had been extended by Trump and was located at the southern edge of the Trench IA, which overlapped it by approximately 0.7 m. The trench was assigned cut number [82] and contained backfill (83), a brown fine silty clay loam that had seemingly been sieved in the past as it contained low pottery counts and few other coarse components.

6.4.1.4. ‘Outside’ the western edge of the building
The archaeological deposits uncovered west of threshold (53) were ‘outside’ the walls of the megalithic building and, therefore, of a somewhat different character. At the extreme western end of Trench I, a 0.5 m sondage was dug to investigate the depth of deposits and identify whether or not there were features such as floors associated with the rather random arrangement of megaliths visible on the ground surface, of which megaliths M74, M75 and M76 were the most prominent members. The sondage, however, revealed only one layer, Context (81), above bedrock. This was a relatively loose reddish-brown silt loam that measured 0.4 m thick and contained Ġgantija-phase pottery. The eastern section face of the sondage was extended into the deposits under three megaliths (M74, M75, and M76), which formed a line near the western edge of the trench. At their base there was a layer of medium-sized stones (94) enveloped within Context (95), a compacted sterile layer of clay and stone. Packing material, Contexts (86) and (87), made up of yellowish-brown silt loams with some orange mottling in the case of (86), surrounded the megaliths. A sherd of Saflieni-phase pottery was found in (86) along with 13 unidentified Temple Period sherds; this was the only occurrence of Saflieni pottery in a prehistoric context found during the 2015 excavations at Kordin III.

Between the three megaliths M74–M76 and the threshold stone M63, there was a sequence of midden deposits. These were disturbed near the ground surface, but intact where buried deeply (Fig. 6.19). They spanned some 3.5 m of the trench, and existed to a depth of approximately 1 m. Above bedrock, Context (71) was revealed as a dark reddish-brown silt loam that was very rich in pottery and bone, and also contained charcoal, sometimes in concentrated pockets, and fine lenses of orange-coloured silt. When seen in section, it contained a patch of darker brown soil, Context (70), that had the appearance of being the fill of a feature cut into (71) (Fig. 6.19) The pottery assemblage from these contexts was dominated by Ġgantija-phase sherds, but also included a significant number of Mgarr-style
The relative frequency of pottery sherds (e.g. Żebbuġ: Mġarr: Ġgantija), however, although similar was not identical in both contexts (Appendix A6.4). The upper part of Context (66) was excavated separately as Context (77), which was identical to the layer above except for less fragmented pottery. A Hordeum grain found within Context (77) dated the layer to 3630–3360 cal. bc (UBA-33016, 4684±46), confirming the Ġgantija-phase date for the deposit (Fig. 6.16). Below (66), bedrock was encountered. Taken together, however,

![Photographic section and section record of (70) and (71), of the western edge of the building.](image)

Figure 6.19. Photographic section and section record of (70) and (71), of the western edge of the building.

![Mġarr pottery from midden deposit (71).](image)

Figure 6.20. Mġarr pottery from midden deposit (71).
Contexts (71), (77) and (66), and (75) discussed above, represented a mound of midden-like material over which the megalithic structure was built. There was no natural, sterile soil in this part of the site, implying that the soil had been removed or had naturally eroded away before the midden material was deposited.

The outside edge of the megalithic wall was found to be encircled by a number of angular stones each approximately 0.25 m in length, assigned Context (72) (Fig. 6.19). Among these were two much larger stones which were assigned Context (73), and together with (72) formed a facade or revetment supporting the megalithic structure. Further west, Context (57) was a dark brown layer of fine sandy loam, containing pebbles, animal bone and a large quantity of prehistoric pottery. Above this, there was a spread of angular, wedge-shaped stones, Context (56), was enveloped in a mixed topsoil-like deposit, which also contained animal bone, much prehistoric pottery and modern debris. Within this layer there was a circular bowl-shaped modern pit, 0.4 m in diameter and 0.2 m deep, filled by Context (58), which was similar to (56) and contained struck obsidian and iron debris, that may have been fragments of ordnance derived from WWII.

6.4.1.5. Superficial contexts
A layer of stones (3) intermixed with friable loam (2) was uncovered under topsoil (1) at the western end of Trench IA (Figs. 6.14 & 6.15). Elsewhere in the trench, a friable, Context (4), a reddish-brown sandy loam, was detected. This contained a mixture of prehistoric and modern pottery sherds, glass and other debris and was clearly modern topsoil. It contained a scatter of large and medium-sized stones, Context (21), which did not form any structure or surface. These stones perhaps represented the collapse of parts of the megalithic structure during relatively recent times.

6.4.2. Trench IB
Trench IB captured the walls of the northern apse of the megalithic building which was previously designated Room ‘P’ by Ashby et al. (1911), and a passageway that led into it. The megalithic wall itself was named Context (6), and was a curvilinear alignment of five large megaliths (M119 to M115) and several other stones. One of these, megalith M122, had a small quantity of a calcareous plaster-like substance, Context (15), adhering to its southeastern vertical edge. The ‘plaster’ has been noted during the survey of the site in 2006, and was believed to be a remnant of internal rendering, once much more widespread over the inside walls of the apse. Another megalith, M123, had what appeared to be tool marks on the surface. Once topsoil was removed, each part of the structure was excavated separately, as described below (Fig. 6.22).
6.4.2.1. Inner ‘smashed’ threshold area (Figs. 6.14 (number 6) & 6.15)
Wall (27) formed an alignment of four megaliths in Trench I (M41–M44). This separated the main space, Apse ‘P’, from a rectangular passageway that became known during the excavation as the ‘smashed threshold area’. This passageway originally led from the ‘lobby’ area into Apse ‘P’. The bedrock found under this area had traces of torba adhering to it. In the centre of the passageway, a rather unusual threshold stone appeared to have been ‘smashed’ with the angular fragments left in situ. The apparently damaged stone measured 1 × 0.4 m, and was orientated northwest–southeast, standing proud of the bedrock by approximately 4 cm (Fig. 6.24). The surface of the stone, together with the surrounding bedrock, was Surface (69). Covering this, Context (32) represented a jumble of large and small stones, soil and ground limestone dust within a matrix of sandy silt loam, interpreted as the collapsed remains of part of the megalithic structure, perhaps originally the roof. A large stone within this rubble was removed, and the pocket of soil found under it was sampled separately as Context (67) in order to date accurately when the collapse event may have occurred, but unfortunately no suitable sample for dating was found. A possible stone pendant (SF132) (Fig. 6.23) was found within this, together with four large sherds of Ġgantija-phase pottery. Contexts (14), (19) and (20) lay above this, all topsoil-like deposits containing prehistoric pottery but mixed with modern debris. Context (14) stopped rather abruptly along a line at right angles 1 m north of Wall (27), and hence seemed likely to signal a previous excavation trench – perhaps dating from Ashby’s campaign in 1909 and was given cut number [65].

Figure 6.23. Possible stone pendant (SF132), from Context (67).

Figure 6.24. Image of the smashed threshold stone, derived from a SfM model, with spot levels in meters ASL.
brown silt, fine gravel and occasional small stones, and a few sherds of undiagnostic prehistoric pottery. An adjacent circular posthole [42] was 0.07 m in diameter, had vertical sides and an irregularly shaped but flat base. Its opening tapered outwards with curved sides, reaching a diameter of 0.15 m. Its fill, Context (43) was a mid-brown silt loam with occasional small stones and Skorba-phase pottery. It is therefore possible that both these cut features (Figs. 6.22 & 6.29) are unrelated to the temple, but instead date to an earlier phase of the site’s history. These possible features were covered by Context (33), a dry, gritty mid-brown silt loam, clearly topsoil derived and much disturbed by roots and insects. The sequence was continued by Context (18) a thin layer of brown silt loam containing a very small quantity of highly fragmented and delicate prehistoric pottery, and topsoil (14).

Preserved on the inner face of the northern edge of the megalithic wall, on megalith M122, there was a remnant patch of plaster or render that presumably once covered the inside surfaces of the walls of this megalithic building. Further evidence of this material was unearthed during the 2015 excavation, as several pieces of ‘plaster’ were found in topsoil (14) where it butted the megalithic wall (6) (Figs. 6.14, 6.26 & 6.27).

The plaster fragments were seemingly identical in composition to the fragment still adhering to M122, Context (15), but had become dislodged from the megalithic wall and were enveloped in topsoil. The
topsoil ‘behind’ the plaster, sandwiched between it and the wall, was assigned Context (24) in the hope that cultural material might date it when it became detached. No material was identified, however, and the soil was far too contaminated with roots and living organisms to contemplate radiocarbon dating. A stray fragment of plaster in the topsoil was coloured black and red on its surface (SF15) (Fig. 6.28).

6.4.2.3. ‘Outside’ the northern edge of the building Trench I extended for some 3 m beyond the outer wall of apse ‘P’. Between the megaliths themselves, Context (31) was a gritty gravelly silt loam with randomly distributed stone rubble, interpreted as packing material; pottery was mainly from Ġgantija-phase. A small struck chert point (SF109, Fig. 11.15) was found in the packing (Fig. 6.30). The outside of the megalithic wall
Figure 6.29. Post-excavation photograph of [37] and [42] looking west.

Figure 6.30. Struck chert (SF109) from Context (31).

was encircled by a line of stones, 0.2–0.4 m in length, Context (8). This was interpreted as a kind of revetment similar to Context (72) outside Apse ‘S’. These stones were not disturbed.

Further north, under topsoil, the excavation encountered an assortment of medium-sized stones set in a matrix of compacted topsoil, Context (9). Many of the stones were firmly adhering to a thick layer of porous, almost tufaceous, lime-based deposit, presumably a natural concretion that had developed over time, sandwiched between the stones and bedrock. The concretion was identified as Context (11). These deposits were covered by topsoil, here given the Layer number (10).

6.4.3. Trench IC

The southern part of Trench I extended 1.5 m beyond the outer wall of Apse ‘S’ (Figs. 6.14 & 6.15). The stratigraphy was founded on Context (93), a compacted reddish-brown soil resembling a disturbed terra rossa, which also contained a small number of Mgarr sherds and nothing else that was diagnostic. Taken together, these deposits represent palaeosols from a time that preceded the main phase of megalithic construction at Kordin. Their possible Mgarr date is significant given the predominance of Ġgantija-phase archaeology elsewhere on the site. This was covered by Contexts (74) and (78), which were separated by Megalith M5 and another large stone at a lower level (Figs. 6.31, 6.32 & 6.33). A firm reddish-brown silt loam faced Context (74), containing unsorted stones, a large quantity of pottery (particularly Żebbuġ-phase sherds but also Mgarr and Ġgantija styles) and animal bone. This was a build-up of material and did not necessarily have any direct relationship with the megalithic building. In the centre of the trench that separated it from Context (78), there was a spread of a similar deposit, somewhat paler in colour. The only diagnostic pottery in this spread was from the Mgarr-phase (Fig. 6.34a). The topsoil in Trench IC, identified as Context (5), contained a sling stone typical of the Ghar Dalam-phase (Fig. 6.34b).
Figure 6.31. North-facing section in Trench 1C.

Figure 6.32. East-facing section in Trench 1C.

Figure 6.33. South-facing section in Trench 1C.
6.5. Results: Trench II

Trench II consisted of two separate 2 m-wide strips; Trench IIA running north-south and Trench IIB running westwards from near the southern end of IIA (Fig. 6.36). Trench II was opened in order to investigate what appeared to be various ruined structures north of the main Kordin III temple, and it was hoped that the area had not been subject to much excavation in the past, and therefore the stratigraphy of the area would be intact.

6.5.1. Trench IIA

The layers of soil present in Trench IIA were founded on Context (144), a firm sandy loam, containing small crumbs of poorly preserved Skorba-phase pottery but also one sherd tentatively identified as Roman-period. This was covered by (135), a similar layer containing sporadic finds of mixed prehistoric pottery, including Skorba and Ġgantija-phase sherds. This was covered by (119), a firm, dark brown silt, that was relatively sterile. The sequence was continued by a series of related but distinctly coloured deposits: Context (110) at the northern end of the trench; Context (121), a band of light grey soil running across the trench; Context (112), an extensive spread of brown soil; Context (113), a roughly circular patch of orange-brown soil approximately 1 m in diameter; and Context (114), a mixture of greyish soil and stones, found along the southern edge of the trench. Context (121) proved to be the upper fill of a steep-sided trench, 0.8 m wide, whose upper fill was (111). Both of these fills contained relatively modern ceramics. It is possible that this was cut during Ashby’s excavation campaign in 1909. Similarly, Context (114) was found to be the fill of a cut that spanned the width of the trench from stones (107) by a distance of 0.8 m and was 0.17 m deep. From these layers, two alignments of large stones, perhaps fragments of a destroyed megalithic building, contexts (106) and (107) were protruding along the
southern end of the trench. The stones were found to be resting within a matrix of dark brown silty sand, Context (108), which was bereft of cultural material. These assorted layers were covered by Context (102) – a sandy loam that contained modern material. The topsoil in Trench IIA, which was very similar to that found in Trench I, was identified as Context (100). A friable lens within it, Context (101), was a modern feature.

Taken together, the various layers in Trench IIA indicate that this part of the site, although once containing signals of Temple Period and Early Neolithic activity, was heavily disturbed during the twentieth century and perhaps during Roman times also.

6.5.2. Trench IIB

Trench IIB was also heavily worked and had little remaining stratigraphy. The sequence in this part of the excavation was founded on Context (145), a disturbed *terra rossa* extending to bedrock that contained some Skorba-phase pottery and a slingstone (SF131). An interesting sequence of deposits relating to a former *torba* floor was found in the centre of the trench. This consisted of a series of differently coloured floor layers, each approximately 2–3 cm thick. These were contexts (153), (152) and (151), were exposed, recorded and all were left *in situ* except for a small sample taken for the study of their micromorphology (Fig. 6.37). Context (153) was a light brown soil covered by a mottled grey/brown Context (152) in turn supporting (151), a pinkish grey *torba* floor of some kind. This sequence was covered by Context (150), a firm pinkish brown sandy silt containing three pieces of chert (SF139–141) and large sherds of undiagnostic prehistoric pottery. This was covered by Context (143), a firm deposit of brown sandy silt, containing mostly Mġarr pottery, a piece of obsidian (SF133) and a possible slingstone (SF140).

Figure 6.36. Trench II during excavation in 2015, at different stages of work: a) Trench IIa before excavation; b) the start of excavation; c) during excavation; d) sondage in Trench II.
containing plaster fragments, a large number of bones and a relatively small quantity of Temple Period pottery. It is possible this was a midden deposit or rubbish pit. At the same point in the stratigraphy, there were three Globigerina slabs, perhaps each forming part of a floor, lying flat and at various angles to each other. These were assigned Contexts (122), (123), (124) and (129). An arc of slightly smaller stones was positioned immediately westwards and was assigned context number (126). A dark brown silt (131) encompassed these stones and included one large Temple Period sherd broken into three. The sequence was continued by Context (156), a compacted pale greyish brown deposit only 2 cm thick, which was found along the southern edge of the trench. This context contained Mġarr pottery, and perhaps constituted an earth floor or what was once an open surface, with the layers above it interpreted as layer collapse and build-up of material. Context (133) covered (156) and was accompanied at a similar level by Context (148). Both of these contexts were very dark brown clayey silts, of which (133) was left unexcavated, whilst (148) contained a sling stone (SF135, see Chapter 11) and no pottery later than the Mġarr phase. A radiocarbon date of 3260–2900 cal. bc (UBA-33020, 4741±45) from a Hordeum vulgare grain was obtained from Context (148). This date falls within the Saflieni phase, and is therefore either from an intrusive

The eastern part of the trench presented a more elaborate stratigraphy. Sondages dug into the layers above revealed that covering (145) was a similar terra-rossa like Context (155), which was not excavated. Cutting this was a 0.77 m-wide linear feature [160=161] containing two fills: Context (159), a group of medium-sized stones typically c. 0.3 m in any dimension and associated with one sherd of Skorba pottery; and Context (149), a layer of rubble containing earlier Neolithic and undiagnostic Temple Period pottery. Covering this was (147), a mixture of soil and rubble and almost pure Mġarr sherds among those that were identifiable. Two small, broken chert blades and a piece of chert (SF146–148) were also found within Context (147). Charcoal samples taken from (147) returned a date of 3630–3375 cal. bc (UBA-33020, 4741±45). Context (142), a pale grey soil diffusely covering an area 0.5 × 0.1 m, and a similar Context (136=158) were at the same level. These deposits had been disturbed by a rectangular pit [138], cut into (136) measuring 0.5 × 0.4 m orientated north-south, filled with (128), a friable dark brown silt containing plaster fragments, a large number of bones and a relatively small quantity of Temple Period pottery. It is possible this was a midden deposit or rubbish pit. At the same point in the stratigraphy, there were three Globigerina slabs, perhaps each forming part of a floor, lying flat and at various angles to each other. These were assigned Contexts (122), (123), (124) and (129). An arc of slightly smaller stones was positioned immediately westwards and was assigned context number (126). A dark brown silt (131) encompassed these stones and included one large Temple Period sherd broken into three. The sequence was continued by Context (156), a compacted pale greyish brown deposit only 2 cm thick, which was found along the southern edge of the trench. This context contained Mġarr pottery, and perhaps constituted an earth floor or what was once an open surface, with the layers above it interpreted as layer collapse and build-up of material. Context (133) covered (156) and was accompanied at a similar level by Context (148). Both of these contexts were very dark brown clayey silts, of which (133) was left unexcavated, whilst (148) contained a sling stone (SF135, see Chapter 11) and no pottery later than the Mġarr phase. A radiocarbon date of 3260–2900 cal. bc (UBA-33020, 4391±34) from a Hordeum vulgare grain was obtained from Context (148). This date falls within the Saflieni phase, and is therefore either from an intrusive
Kordin III

Figure 6.38. a) Plan of Trench II (Contexts 131, 133, 147, 148); b) Trench II looking east; c) Trench II looking east with megaliths 126 exposed.

grain, or a signal that the Mgarr phase ceramic material found in considerable density in this part of the site is disturbed and residual (Chapter 2).

The superficial deposits in the trench consisted of Context (146), a friable dark brown silt loam with plentiful stone rubble and Ġgantija pottery. Two large stones (154), measuring c. 0.4 m in all dimensions, were associated with this, and may be part of a collapsed structure. A stony Layer (125) covered (154) and (146). At the same point in the stratigraphy, there were dark brown silt sands (134) and (139), which were both rather stony, especially in comparison to Context (105), which covered them but was otherwise similar. Context (126) was a line of medium sized stones found at the same level that formed an arc. Several other contexts occurred at this point: Context (127), a stone rubble in a matrix of soil; Context (140), a compacted, dark brown deposit, containing rubble (141), sherds of Mgarr and Ġgantija pottery and a small, broken obsidian blade (SF127 see Chapter 11); and Context (130), a roughly circular patch of firmly compacted dark grey sandy silt, which was only 4 cm thick and therefore perhaps the remnant of an earth floor. Context (103/117) was placed above these layers, and consisted of a compact black sandy loam, very similar to topsoil, containing some stones. Finds included prehistoric pottery (mostly of the Ġgantija type) and some modern debris such as glass, and a Globigerina Limestone block, Context (104), measuring 0.72 × 0.45 × 0.33 m.

6.6. Results: Trench III

Trench III was placed to examine the stratigraphy at the southwest corner of the site, as there were no records of investigation by Evans or Trump in this locality. Contexts (220), (219), (214) and (213) were found immediately above bedrock. All were sterile and rather compacted mid-brown clay loams, presumably ‘natural’ palaeosols.
These were covered by: Context (215), a soil accumulation containing undiagnostic Temple Period pottery and chert; and (216), a layer of firm silt that butted against (215), which on the basis of pottery finds was probably Ggantija in date. A modern radiocarbon date of AD 1994–1995 (UBA-33022, 1.1238±0.0037) was obtained from an *oryza* grain likely to have worked its way down into this layer. In the northern part of the trench, the next level was Context (211), a firmly compacted yellowish-brown silt loam. This was rich in prehistoric pottery, bone and chert. The pottery from this layer contained a mixture of mainly Temple Period ceramics, including two sherds of Safleni-phase ceramics (Fig. 6.40a).

Context (217), a spread of stones not associated with cultural material, was observed at the same point in the stratigraphy in the northeastern part of the trench. This was covered by dumps of stones and soil, which were assigned context numbers (208) and (212). Context (212) resembled the footing for a wall that had subsequently collapsed and had largely been robbed away. Context (210) covered these layers, taking the form of a firmly compacted yellowish-brown silt loam that contained animal bones and prehistoric pottery.

The more superficial deposits in the trench had evidence for disturbance. Contexts (207) and (209) were two very similar orange brown silt loams that were probably the same entity. They contained a significant amount of prehistoric pottery, chert debitage and struck chert pieces (Appendix A6.2), as well as

Figure 6.39. a) View of Trench III, looking west; b) test trenches in Trench III; c) Stratigraphic sequence exposed in Trench III looking north.
modern ceramics and plastic fragments. These contexts were found on either side of a band of firmly compacted orange-brown soil, which was assigned as Context (201). This cut through the topsoil, and was thus interpreted as an old trench, presumably from Ashby’s excavation. The cut was assigned context number [202] and was 0.9 m wide, running north–south. It contained a decorated clay tobacco pipe and sherds of prehistoric pottery, including many Għar Dalam-phase sherds. Contexts (203) and (221) lay above this and consisted of modern soils mixed with many small stones, as well as a large shallow sub-circular Pit [205], 0.8 m in diameter. This pit contained two contexts: the basal Fill (206) and the upper Fill (204), which upon investigation proved to contain modern ceramics and other debris, including pieces of iron. This pit is similar to Context (58) in Trench I and could indicate WWII damage. The topsoil in the trench was Context (200), a firm, rocky dark brown silt loam much disturbed by roots from nearby trees and containing chips of Globigerina Limestone. The latter had presumably been deposited by workers dressing the stones of the nearby boundary wall. The profile through the section of the trench is illustrated in Figure 6.39.

6.7. Results: Trench IV

Trench IV was, in fact, two separate small units that were positioned outside the perimeter wall to establish whether or not the site extends beyond the walled enclosure. The aim was to break down the heritage definition of the site, by working outside the protected area.

6.7.1. Trench IVA

This trench contained two patches of sterile terra rossa found immediately above bedrock: Contexts (313) and (316). Above this lay palaeosols that were equivalent Contexts (310) and (314). Both were firm orange-brown clay slits with sherds of Early Neolithic pottery in poor condition; and Context (317), a sterile patch of darker soil, disturbed by roots. Context (309) covered these and comprised a dark brown sandy silt loam containing modern porcelain and debris. Excavation revealed that this was the fill of a cut feature (311), although the size and shape of the cut were not clear due to the limited size of the excavation unit. This was covered by Context (307) (Fig. 6.41), a layer of medium-sized stones including one with plough marks, which was perhaps a terrace build-up; and, in turn, Context (305), which was a friable, culturally sterile, dark greyish-brown sand. Next came Context (301), a firm sandy loam made up of topsoil and poorly sorted stony inclusions. When viewed in section, it was possible to make out three distinct layers in this deposit, although these were grouped together during their excavation. The context was likely associated with various phases of recent agricultural and horticultural activity in this area. Topsoil (300) overlay the whole area.

6.7.2. Trench IVB

Founded on bedrock, the sequence in this trench consisted of natural terra rossa (318) which was covered by (306), a firm dark yellowish brown sandy silt. This had been disturbed during relatively recent times by an amorphous Cut [315], filled with dark brown clayey
layers probably represent the down slope movement of sediments from the temple site, trapped here by the contour of the underlying bedrock.

6.8. Discussion

6.8.1. Palaeosols

The presence of an earlier soil, preserved by the megalithic ‘temple’ at Kordin III was attested by Contexts (93), (91B), (97) and (99) in Trench I, all of which were a similar orange-brown, dry, relatively coarse-grained
deposit. This palaeosol deposit repeats the pedostratigraphic pattern uncovered by recent excavations at ‘temple’ sites in Gozo, specifically Santa Verna and Ġgantija (Chapters 4 and 5). Unlike at Santa Verna and Ġgantija, however, the Kordin palaeosol was disturbed during the Temple Period, with the introduction of bones and plant remains dating to 3500 to 3400 cal. bc. The addition of material probably occurred when the megalithic structure was being built. The palaeosol was also in a thinner and fragmented state, and it proved impossible to retrieve an intact sample to study its micromorphology.

6.8.2. Possible Skorba phase features
In Trench IIB, rubble layers (149) and (159), associated with Skorba pottery, were found in a linear ‘cut’ made in sterile deposits, but not completely excavated. Context (149) also contained some Temple Period pottery and was, therefore, not a sealed Skorba-phase layer. It is possible that some kind of earlier Neolithic structure or surface once existed here and was destroyed during the Temple Period phase of activity. Indeed, of the 117 contexts from the 2015 excavations that contained pottery of any kind, 51 contained residual Skorba-phase pottery, indicating that activity during that time was widespread over the entire site (Appendix A6.3). Though it is noted that undisturbed Skorba-phase structures at Kordin III have yet to be discovered.

6.8.3. Mgarr phase layers
Mgarr-phase activity was found in both Trench I and Trench II at Kordin. Two large structural stones associated with Mgarr-phase layers were buried below a build-up of material that had accumulated against the southern edge of Ashby’s Room ‘S’. The Mgarr-phase layers abutted the eastern side of the wall where the upper Context (71) contained slightly more Mgarr pottery than the lower Context (77). Without further excavation, it is difficult to ascertain the relevance of these stones and the associated Mgarr pottery. Yet, it is possible that this may have been a substantial structure, possibly even an Mgarr-phase hut similar to the one excavated by Trump (2015, 36) at Skorba; or it may even represent a more substantial Mgarr-phase temple that pre-dated the main temple and the trefoil structure.

Elsewhere on the site, Mgarr levels were also located in Trench II. These consisted of several layers that contained either purely Mgarr pottery or pottery dating to no later than the Mgarr-phase. No definitive structures were found in association with these Mgarr layers, although it possible that Context (156) may represent an Mgarr-phase earthen floor or old land surface.

6.8.4. Pre-temple Ġgantija phase layers
Evidence of pre-temple Ġgantija-phase activity is represented in the form of a thick layer of midden material, over which the later trefoil structure was built. The midden, comprised of Contexts (71), (75), (77) and (65), was made up of a thick layer of soil containing numerous sherds of pottery, dating primarily to the Ġgantija phase, as well as a large amount of animal bone and charcoal. It is difficult to provide a definitive interpretation for these deposits, although it is possible that they may represent the remnant of feasting activity at the site, before the megalithic structures were built. It would appear that the midden material was cut into on the eastern side in order to construct the trefoil structure. The animal bone assemblage contained sheep, goat, pig and cattle in the usual proportions for prehistoric sites in Malta (Chapter 9).

6.8.5. The megalithic ‘temple’ and its date
The evidence from the excavation indicates that the trefoil structure dates to the end of the Ġgantija phase c. 3000 bc. Radiocarbon dates obtained from pre-temple layers (91), (91b), (96) and (99), located under the torba floors of Apse ‘S’, provide a terminus post quem for the construction of the trefoil building, dating it to the Ġgantija phase or later. This is supported by the discovery of the rich Ġgantija-phase midden Context (71), (75), (77) and (65) that were found to run below Apse ‘S’ and finds of Ġgantija-phase pottery from within the packing material of the wall in apse ‘P’.

The excavation also revealed that the trefoil structure was not built in a single phase but rather appears to have been modified and added to throughout its use. The original structure consisted of apses (or Ashby’s ‘Rooms’) ‘O’, ‘P’ and ‘S’, although there are hints that there may have been a fourth apse (§6.4.1.2). Outside the eastern wall of the trefoil structure, adjoining Apse ‘S’, vestiges of a possible robbed-out curvilinear wall and traces of a torba floor were discovered. This structure was only partially excavated and, based on the current evidence, it is not possible to ascertain if it was part of the original building or a later addition.

Before the construction of the trefoil structure it would appear that the builders attempted to create a more level surface by either levelling sections of bedrock (as was discovered under apse ‘P’), or by laying stone paving slabs, similar to the ones located in the forecourt area of the main temples at Kordin. This was slightly different to the composition of foundation layers found at the other Maltese temples, where smaller stones were used instead. The walls of the trefoil structure comprised double skin walls that were infilled with loose packing stones.
The apses were roughly 3 m in diameter and were floored with *torba*, which in some instances was replaced several times during the buildings’ use. In apse ‘P’ traces of a calcareous plaster-like render (15) found adhering to M122 and a larger section that appears to have become dislodged from the wall indicate that the interior of these buildings may have been rendered and painted. Evidence of internal render has also been recovered from Ġgantija and Santa Verna, which demonstrates that this was not a feature unique to Kordin.

The excavation revealed that the trefoil structure was augmented through the addition of a ‘lobby’ area and an ‘outer threshold’ area to the west of the structure. The lobby was constructed between the outer to apses ‘P’ and ‘S’ linking them to the outer threshold area. The threshold area acted as an entrance into the trefoil structure, whose western extent was delimited by a threshold stone, separating the internal areas of the structure from this more open space.

Possible evidence of roof collapse was found in the ‘lobby’ area, just outside of apse ‘P’. A layer of small and large stones mixed with plaster, Context (32), was found to overlie the smashed threshold stone. As (32) contained pottery no later than the Ġgantija-phase, it seems likely that the threshold stone may have been smashed in prehistory, perhaps as a result of this roof collapse or other related violent events.

6.8.6. Later activity

The 2015 excavations contributed new evidence to understanding the level of very sparse activity in post Neolithic times at Kordin III. No Bronze Age pottery sherds were identified within any of the strata – not even residual material from within topsoil contexts. Many topsoil and disturbed contexts did contain Roman and post-medieval / modern pottery, although there was no clear spatial patterning to these finds.

6.8.7. Re-arrangement of the megaliths

A comparison between Ashby *et al.*’s 1909 plan and the site as surveyed in 2015 reveals that several stones have moved. They have either appeared since 1909, or disappeared altogether (Fig. 6.42). The megaliths south of the ‘smashed threshold’ stone were not

Figure 6.42. Overlay of 2015 FRAGSUS survey of the trefoil temple on Ashby’s 1909 plan.
recurring theme from our excavation has been the examination of evidence that suggests just that. While they are battered and damaged from activity in recent centuries, the very survival of these structures in their current urban setting is remarkable. Indeed, they are especially valuable given the unfortunate fates that befell the neighbouring complexes of Kordin I and II. Kordin III is sited in a prominent place in the landscape, overlooking significant swathes of countryside as well as the Grand Harbour, one reason perhaps why the site was chosen in prehistory as a place on which to mark, build and celebrate. The extant megaliths are a palimpsest of structures dating to various points of the Mġarr and Ġgantija phases of the earlier Temple Period, and our excavations have gathered significant new data about the sequence and the economy of narrow slices of time within this. Of particular importance are the midden-like deposits found outside the western edge of the small ‘temple’ building in Trench 1 that were sealed by subsequent construction. The midden provides valuable data for the kind of activities that occurred at these megalithic complexes, in terms of the consumption of meat (Chapter 9) and the elaborate ceramic material culture associated with the implied feasting (Chapter 10). Importantly, the quantity of the rather rare and little known Mġarr pottery retrieved from Kordin III adds considerably to the range of forms and decoration of the style (see Chapter 10). In the case of the 2015 excavations, the retrieval of traces of feasting activities early in the Ġgantija phase, around 3400 cal. BC are important because they are early and dated. They constitute one clear example to suggest that the temple complex functioned as a place of formal ritual consumption and performance – activities that the FRAGSUS questions have focused on. It seems likely that such feasts and events acted to bind ancient society together, and the evidence helps us contextualize the Maltese megaliths as monuments that were integral with celebrations. We return to these themes later in this volume.

In conclusion, the 2015 work at Kordin III has effectively tackled some of the FRAGSUS questions, by adding considerably to knowledge of food materials in the earlier Temple Period. These data expand our discussions on the role of temple structures and on where they lie in their landscapes, and allow us to model more effectively how they were related. In hindsight, we would have liked to have sampled beneath the floors of Trench 1 more thoroughly, to explore the primary phases of building and the environment in which the early episodes took places. Such evidence is significant, since the more superficial levels that were examined all proved to be disturbed and unsuitable for the extensive environmental sampling that was conducted at the

planned in 1909; a tin cup (Fig. 6.43) found under one of them suggests they were moved into their current position during relatively recent times. It is possible that the temple was heavily disturbed by bomb blasts during WWII, which Evans notes did displace some of the stones (Evans 1971, 67). Possible bomb damage at Kordin was recorded in both Trench I and Trench III, where circular pits containing a mixture of prehistoric and modern material including iron debris were recorded. The iron debris is likely to represent the remains of exploded ordnance. Further destruction occurred at the site when intruders gained access to the site through the compromised outer wall, which had been damaged by bomb blasts, and the intruders vandalized the site (Evans 1971, 67; MAR 1946–7, 2; MAR 1956–7, 1–2). These two events may account for the differences observed between the 1909 survey and the present layout of Kordin III.

6.9. Conclusion

Whilst it may seem trite to state that the temples of Kordin III have a long and complex history, the

Figure 6.43. Sectioned deposit revealing the ‘modern’ tin cup at the base of section, under megalith.
Figure 6.44. *View of excavation before closure, showing exposed lobe walls in Trench 1.*

Figure 6.45 *Laser scan of Trench 1 after removal of shading at end of excavation (John Meneely).*
Table 6.1. Kordin III and the FRAGSUS questions.

<table>
<thead>
<tr>
<th>FRAGSUS questions</th>
<th>Kordin III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a. What was the impact of human settlement on Malta?</td>
<td></td>
</tr>
<tr>
<td>1b. How rapid was the process of deforestation, erosion and degradation?</td>
<td></td>
</tr>
<tr>
<td>1c. When did technical mechanisms to manage the environment develop – such as terracing, water and food storage?</td>
<td></td>
</tr>
<tr>
<td>1d. Were such mechanisms in place before or after the Temple Culture collapsed?</td>
<td>Kordin III fell out of use before end of the Temple Period.</td>
</tr>
<tr>
<td>2a. How did a very small island community in prehistoric times manage to sustain dense, complex life over millennia, and what specific social, economic and ritual controls emerged to enable this?</td>
<td>Kordin complex of sites on the edge of the harbour and overlooking the wide Maltese landscape had access to many resources, evidenced by occupation from at least Skorba phase. Evidence for long continuity through earlier Temple Period.</td>
</tr>
<tr>
<td>2b. Were the monumental temples instrumental in the process of sustaining cultural life?</td>
<td>Kordin III represents an early example of temple function with food evidence in place.</td>
</tr>
<tr>
<td>3a. What sort of agriculture was used, and what did people eat, especially as the landscape became increasingly degraded and the environment more unpredictable?</td>
<td>Cereals and pulses in use at site. Stock animals evidently slaughtered and eaten at site.</td>
</tr>
<tr>
<td>3b. Were there failures in the food supply?</td>
<td>Abandonment of site by the full Temple Period could imply that the major site, Tarxien, close by assumed the role of feasting centre in the third millennium BC. Possibly water supply failed locally.</td>
</tr>
<tr>
<td>3c. What impact did diet, disease and stress have on the population?</td>
<td>Feasting evidence implied at Kordin III with animals evidently eaten and disposed of within the precinct.</td>
</tr>
<tr>
<td>4a. What was the size and nature of the early Maltese population?</td>
<td>Small scale of Kordin III and its neighbouring monuments implies a much lower population density compared with late Temple Period times with huge temple complexes.</td>
</tr>
<tr>
<td>4b. What role did demographic connectivity (immigration) play in maintaining island sustainability?</td>
<td>Evidence of imported chert and obsidian. Stock and plants.</td>
</tr>
<tr>
<td>5a. Was there social-economic or environmental failure at the end of the Temple Culture, and what may have caused society to collapse or change so drastically?</td>
<td>End of the Temple Period not evidenced at Kordin, which may have been little used by that time.</td>
</tr>
<tr>
<td>5b. Was there a hiatus between the Temple Culture and later Bronze Age settlers?</td>
<td>No Bronze Age at the site to demonstrate this. Slight earlier Neolithic evidence beneath later Temple Period occupation could imply a break between, but this is not dated.</td>
</tr>
<tr>
<td>5c. Are other hiatuses apparent in the sequence, such as between the earlier Neolithic and the Temple Period?</td>
<td>The presence of earlier Neolithic activity in Ghar Dalam and Skorba phases implies settlement in the sixth / early fifth millennium BC.</td>
</tr>
</tbody>
</table>

Figure 6.46. The team at Kordin.
other sites reported on in this volume. Yet, Kordin III is a protected and extremely important site, and potentially soon to be added to the World Heritage Site list of temples in Malta. We were privileged to examine the deposits in the most expansive excavations on the site since their first study in 1908–9. (Figs. 6.44 & 6.45).

Notes

1. FRAGSUS: Fragility and sustainability in restricted island environments: Adaptation, cultural change and collapse in prehistory. A collaborative programme of research between Queen’s University Belfast, Heritage Malta, Cambridge University, the University of Malta and the Superintendence of Cultural Heritage, Malta. European Research Council seventh framework programme (FP7) ‘Ideas’ Advanced Grant: 323727. Principal Investigator: Prof. Caroline Malone http://www.qub.ac.uk/sites/FRAGSUS/

2. In the descriptions of contexts that follows, layers, fills and structural contexts are denoted in parentheses (), cut features in square brackets [], and surfaces in curly brackets { }.

3. As a biographical note, this was by far the most comfortable part of the site to excavate, located securely in the shade with a good internet connection from the local technical school.
Temple places

The ERC-funded FRAGSUS Project (Fragility and sustainability in small island environments: adaptation, culture change and collapse in prehistory, 2013–18) led by Caroline Malone (Queen’s University Belfast) has focused on the unique Temple Culture of Neolithic Malta, and its antecedents and successors through investigation of archaeological sites and monuments. This, the second volume of three, presents the results of excavations at four temple sites and two settlements, together with analysis of chronology, economy and material culture.

The project focused on the integration of three key strands of Malta’s early human history (environmental change, human settlement and population) set against a series of questions that interrogated how human activity impacted on the changing natural environment and resources, which in turn impacted on the Neolithic populations. The evidence from early sites together with the human story preserved in burial remains reveals a dynamic and creative response over millennia. The scenario that emerges implies settlement from at least the mid-sixth millennium BC, with extended breaks in occupation, depopulation and environmental stress coupled with episodes of recolonization in response to changing economic, social and environmental opportunities.

Excavation at the temple site of Santa Verna (Gozo) revealed an occupation earlier than any previously dated site on the islands, whilst geophysical and geoarchaeological study at the nearby temple of Ġgantija revealed a close relationship with a spring, Neolithic soil management, and evidence for domestic and economic activities within the temple area. A targeted excavation at the temple of Skorba (Malta) revisited the chronological questions that were first revealed at the site over 50 years ago, with additional OSL and AMS sampling. The temple site of Kordin III (Malta) was explored to identify the major phases of occupation and to establish the chronology, a century after excavations first revealed the site. Settlement archaeology has long been problematic in Malta, overshadowed by the megalithic temples, but new work at the site of Tač-Cawla (Gozo) has gathered significant economic and structural evidence revealing how subsistence strategies supported agricultural communities in early Malta. A study of the second millennium BC Bronze Age site of In-Nuffara (Gozo) likewise has yielded significant economic and chronological information that charts the declining and changing environment of Malta in late prehistory.

Editors:

Caroline Malone is a Professor in the School of Natural and Built Environment, Queen’s University Belfast.
Reuben Grima is a Senior Lecturer in the Department of Conservation and Built Heritage, University of Malta.
Rowan McLaughlin is Senior Researcher in the Department of Scientific Research at the British Museum, and previously Research Fellow for the FRAGSUS Project; he is honorary research scholar at Queen’s University Belfast.
Eóin W. Parkinson completed his PhD at Cambridge University and is currently Leverhulme Research Fellow at the University of Malta.
Simon Stoddart is Reader in Prehistory in the Department of Archaeology, University of Cambridge.
Nicholas C. Vella is Associate Professor of Mediterranean Archaeology in the Department of Classics and Archaeology, University of Malta.

Published by the McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK.

Cover design by Dora Kemp and Ben Plumridge.

ISBN: 978-1-913344-03-0