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Abstract

A SIMD architecture for hard real-time systems

Roy Spliet

Emerging safety-critical systems require high-performance data-parallel architectures

and, problematically, ones that can guarantee tight and safe worst-case execution times.

Given the complexity of existing architectures like GPUs, it is unlikely that sufficiently

accurate models and algorithms for timing analysis will emerge in the foreseeable future.

This motivates a clean-slate approach to designing a real-time data-parallel architecture.

In this work I present Sim-D: a wide-SIMD architecture for hard real-time systems.

Similar to GPUs, Sim-D performs hardware strip-mining to schedule the work for a compute

kernel in entities called work-groups. Sim-D schedules the work for each work-group as a

sequence of uninterruptible access- and execute program phases, interleaving the phases of

two work-groups. By providing performance isolation between the memory- and compute

resources, the execution time of each phase can be tightly bound through static analysis.

I present a predictable closed-page DRAM controller that processes requests for large

1D- and 2D blocks of data, as well as indirect indexed transfers. These large transfers

coalesce the data requests of a whole work-group. For a linear 4KiB transfer over a 64-bit

data bus, the utilisation provably exceeds 78% for DDR4-3200AA DRAM. For 2D blocks,

a well-chosen tiling configuration can achieve near-similar efficiency. I show that bounds

on the execution time of indexed transfers are pessimistic by nature, but propose a novel

snoopy indexed transfer mechanism that permits more reasonable bounds when the buffer

size is limited.

Finally, I present a worst-case execution time calculation algorithm for Sim-D. This

algorithm is paired with two hardware work-group scheduling policies that deterministically

reduce run-time variance. The worst-case execution time analysis algorithm combines

static control flow analysis with a simulation-based cost model for execution and DRAM

transfers. Its key novelty is the addition of a stage that considers work-group scheduling

effects. I show that the work-group scheduling policies degrade performance on average

by 8.9%, but permit the calculation of worst-case execution time bounds that are tight

within 14.3% on average for benchmarks that avoid inefficient indexed transfers.
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Glossary

address mapping As a noun, refers to the scheme used to translate a physical address

to its corresponding DRAM channel, rank, bank-group, bank, row and column. Used

as a verb to describe the act of translation.

ALAP as late as possible.

ASOM addition, single-overflow modulo.

BB basic block.

CAM content-addressable memory.

CAS Column Access Strobe, delay between issuing a read command and the first data

word appearing on the DQ.

CCD CAS to CAS delay.

CFA control flow analysis.

CFG control-flow graph.

CMASK control mask.

CNN convolutional neural network.

compute unit Hardware unit that performs the computation for some or all work-groups.

CSTACK control stack.

CWD Column Write Delay, delay between issuing a write command and writing the first

data word to the DQ.

DAG directed acyclic graph.

device Massively-parallel accelerator, e.g. GPU, FPGA, DSP.

DMA direct memory access.



DQ data bus.

DQM data mask.

DRAM pattern Fixed schedule of DRAM commands, statically scheduled by a DRAM

controller to service a request spanning a fixed number of consecutive, aligned bytes

of data.

DSA domain specific architecture.

DSP digital signal processor.

FAW four-activate window.

FFT fast-fourier transform.

GPGPU General-Purpose compute on Graphics Processing Unit.

GPR general-purpose register.

GPU graphics processing unit.

GTRR greedy-then-round-robin.

HRT hard real-time.

ILP integer linear programming.

IMem instruction memory.

index iterator Sub-component in the DRAM controller front-end responsible for trans-

lating a request in the form of a set of indexes into a buffer into burst requests.

IPET implicit path enumeration.

IR intermediate representation.

ISA instruction set architecture.

JDS jagged diagonal storage.

kernel A non-interactive function designed to run on a device.

kernel-instance An instantiation of a kernel on the device as it is launched by the host

system, with it’s parameters, buffer objects and compiled kernel..



LID longest issue delay.

local memory A fast addressable storage region private to a work-group. CUDA: shared

memory.

LUT look-up table.

NDRange N-Dimensional range, describing the dimensions of the grid of work-items

launched for a kernel-instance.

pattern transaction Execution of a single DRAM pattern.

PBA processor-behaviour analysis.

PBGI paired bank-group interleaving.

PC program counter.

PR (vector) predicate register.

RCP-unit reciprocal/trigonometry unit.

remainder work-group work-group for which at least one thread falls outside the kernel-

instances’ thread dimensions.

RF register file.

RRD row-activate to row-activate delay.

SGPR general purpose scalar register.

SIMD single-instruction multiple-data.

SimdCluster Sim-D’s compute unit.

SIMT single-instruction multiple-threads.

SLAM simultaneous localisation and mapping.

SP-unit single-precision unit.

SPMD single program multiple-data.

SSP special purpose scalar register.

stride sequencer Sub-component in the DRAM controller front-end responsible for

translating a request in the form of a 2D stride pattern into burst requests.



TID global ID (OpenCL) or thread ID (CUDA), a multi-dimensional identifier within

the NDRange unique to a work-item.

VGPR general purpose vector register.

VRF vector register file.

VSP special purpose vector register.

warp trimming Technique for reducing the number of scheduled warps when executing

remainder work-groups.

WCET worst-case execution time.

WCRET worst-case request execution time.

work-group Collection of work-items that are guaranteed to run on a single compute

unit.

work-item A single thread of a kernel execution.



CHAPTER 1

Introduction

There are many emerging examples of cyber-physical systems that demand both significant

compute and hard real-time (HRT) support. In automotive, the shift towards more

autonomous vehicles requires running time-critical image processing, AI classification

and decision making algorithms on-board [1]. In medical imaging, many algorithms use

graphics processing units (GPUs) to achieve lower processing times and higher resolution

visualisations [2]. The image processing, neural networks and dense-matrix operations

required for these and many other safety-critical applications all exhibit large amounts

of data parallelism. To pursue ambitious goals in these fields, researchers and equipment

manufacturers are increasingly looking at applying semi-specialised massively parallel

accelerators in their devices. Hardware vendors are keen to fill this gap in the market,

with e.g. NVIDIA recently releasing their Drive PX1 platform for automotive [3].

An important property distinguishing hard real-time (HRT) systems from regular

systems is the stringent deadlines such systems must meet. For HRT systems, the

throughput offered by any given hardware platform is only valuable if a safe and tight

bound can be placed on the worst-case execution time (WCET) of the tasks it performs.

It is then unfortunate that, although WCET calculation methods have been researched

for GPUs programs [4, 5], none of these methods are able to derive safe bounds for

commercially available hardware. The main problem preventing the derivation of safe

bounds is the complexity of the hardware. GPUs have over the years developed themselves

into a Swiss army knife of graphics processing, containing dedicated subcomponents for

compute, video encoding and decoding, data transfers between the host and the device,

display scan-out, texture operations, rasterising and possibly many other purposes. When

these subcomponents all make use of the GPU’s shared memory hierarchy in parallel,

latencies on read and write requests are highly unpredictable. This can lead to unexpected

timing anomalies [6] that may be difficult to model or reason about in a real-time context.

Even if it is possible to disable all those components that are unused in HRT systems,
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the GPU’s execution model is difficult to reason about. The very fine grain warp-scheduling

mechanisms, designed to make the GPU strongly resilient to high DRAM latencies, permit

such a wide range of warp interleavings that practical analysis of all possible program

executions is infeasible. Without a solid understanding of the worst-case warp interleavings,

it seems impossible to claim a WCET bound as safe.

Given the problem of WCET analysis of programs running on massively parallel

accelerators, the potential solutions are obvious: either construct more sophisticated

models for existing hardware, or create simpler hardware. In the light of the corporate

secrecy that exists around current architectures, it is my expectation that the former

approach leads to a dead end. Taking the GPU’s memory system as an example, is it

reasonable to assume that the DRAM controller re-orders requests to maximise throughput.

Request re-ordering could theoretically lead to starvation, where a request is continuously

placed at the back of the queue in favour of higher priority requests. A DRAM controller

can safeguard against starvation by taking a request’s age into account when determining its

priority. However, there is no public knowledge available for any GPU that unequivocally

guarantees starvation-free request prioritisation. Without even such basic guarantees,

it seems unwise to assume that safe WCET bounds exist, let alone such bounds being

sufficiently tight for practical purposes. A more promising approach is then to design

hardware from the ground up with hard real-time requirements and principles in mind.

In this work, I present Sim-D: a wide-SIMD architecture designed for hard real-time

systems. Similar to GPUs, Sim-D performs hardware strip-mining to schedule the work

for a compute kernel in entities called work-groups. Inspired by the PRedictable Execution

Model (PREM) [7], Sim-D schedules the work for each work-group as a sequence of

uninterruptible access- and execute program phases, interleaving the phases of up to

two work-groups at a time. Owing to the strict performance isolation between Sim-D’s

compute- and storage resources, the execution time of each access- and execute phase can

be tightly bound through static analysis. Static WCET derivation of a kernel-instance is

then achieved through an analysis of the possible interleavings of these phases. Various

scheduling policies are enforced in hardware to reduce the number of possible interleavings.

The result is a WCET analysis algorithm tailored to the Sim-D architecture that derives a

safe bound tight within 14.3% on average.

1.1 Contributions

My thesis is that an efficient wide-SIMD accelerator can feasibly be designed

that permits the derivation of safe and tight bounds on the execution time of

data-parallel programs. To support this thesis, in this work I contribute the following:

• I introduce the Sim-D architecture, a wide-SIMD processor that is designed to permit
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WCET analysis. Sim-D provides performance isolation between its compute and

data storage resources such that parallel occupation does not introduce pessimism

to a program’s WCET, (Chapter 3)

• I introduce the experimental set-up used for the evaluation in this work, (Chapter 4)

• I present Sim-D’s closed-page DRAM controller, capable of servicing large requests

for 1D or 2D regions of data in bound time. Along with its design, I provide the

necessary analysis methods to derive worst-case request execution time bounds on

each transfer, (Chapter 5)

• I perform a design space exploration of Sim-D, in order to justify its design decisions

and to derive sensible parameters for the experiments in this work, (Chapter 6)

• I show that Sim-D is capable of achieving performance on par with an embedded-grade

commercial GPU, (Chapter 6)

• I introduce a WCET analysis algorithm that permits efficient derivation of safe

bounds on a program’s execution time. To support this algorithm, I introduce both

a tailored program- and system model, and I introduce two work-group scheduling

policies that introduce a 8.9% run-time overhead on average. Ignoring outliers, the

resulting WCET bounds are shown to be tight within 14% on average, (Chapter 7)

• I evaluate the impact of several known program optimisations on the WCET of a

program running on Sim-D. (Chapter 7)

1.2 Publication

Research carried out as part of this study has resulted in the following publication:

• R. Spliet and R. Mullins. The case for limited-preemptive scheduling in GPUs for

real-time systems. In ECRTS, Operating Systems Platforms for Embedded Real-Time

applications, Jul 2018. [6]
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CHAPTER 2

Background

In this chapter I set out to explain the necessary terminology and relevant work that led

up to the design and evaluation of Sim-D.

Specifically I contribute the following:

• An overview of the classes identified in the landscape of data-parallel architectures

and the position Sim-D occupies in this space (Section 2.1),

• A short introduction to DDR4 DRAM and data layout optimisation techniques

relevant to GPUs (Section 2.2),

• An explanation of related work in hard real-time DRAM controllers, worst-case

timing analysis techniques and other related work that inspired the design of Sim-D

(Section 2.3).

2.1 Data-parallel architectures

This section summarises several classes of data-parallel architectures, with the goal of

explaining Sim-D’s position in the landscape. The presented taxonomy is largely drawn

from Hennessy and Patterson [8].

2.1.1 Vector processors

In broad terms, vector processors are processors that support instructions to perform

arithmetic operations on every element of an array. A defining feature of a vector processor

is that the length of this array is run-time configurable, anywhere between 1 and the

maximum number of elements that can be stored by their SRAM- or register-backed array

storage. Such vector processor designs go back to the 1960s with the presentation of the
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ILLIAC IV [9]. More recent examples include the HWACHA architecture [10] and ARM’s

Scalar Vector Extension (SVE) [11].

Three complementary techniques are used to process vectors of independent elements in

a single-instruction multiple-data (SIMD) fashion. Firstly, pipelining permits a throughput

of one vector element per cycle. Control logic ensures that for a given vector instruction,

the operation is issued as many times as required to process the every element in the

vector. Secondly, vector chaining [12] permits multiple vector instructions to overlap

provided there are no hazards. For example, if a vector load operation is followed by

a vector addition of said vector with a different element, the vector addition can start

processing the first element of the vector as soon as it arrives, rather than waiting for

the entire load operation to finish. Chaining m instructions could therefore result in an

IPC approaching m. Finally, duplication of arithmetic units permits performing a vector

operation for multiple elements in parallel in the same cycle. A parallel processor capable

of performing n arithmetic operations in parallel are said to have n (vector-)lanes.

Transforming a loop of scalar operations into a loop of vector operations is called strip

mining [13]. Given a vector processor with a maximum array length lmax, strip-mining is

performed explicitly in assembly by replacing any scalar loop iterating over n elements

with a loop that performs
⌈

n
lmax

⌉
iterations, each iteration issuing the vector arithmetic

for up to n elements.

2.1.2 Packed SIMD extensions

To speed up applications that perform digital signal processing or graphics operations on

application processors, several instruction set architectures (ISAs) have been extended

with packed SIMD operations. These operations borrow from the parallel-processing

concepts of vector processors. Early extensions were designed to re-use existing resources

from high-end application processors. For example, Intel’s MMX-extension [14] does not

introduce specialised vector storage, but packs vectors of 2× 32-bit, 4× 16-bit or 8× 8-bit

elements into existing x87 floating point registers.

Over time, packed SIMD extensions have converged with vector processor architectures.

This is most evident from the storage reserved for vector elements: where for MMX the

size of a vector was limited to 64-bits [14], the current-generation AVX-512 [15] extension

offers dedicated vector registers of 512 bits each. For comparison, ARM SVE [11] can offer

up to 2048 bits of storage per vector.

Today, the main distinguishing property of packed SIMD extensions is that the number

of elements in a vector is fixed to the width of the register rather than configurable at

run-time. Packed SIMD extensions may define instruction variants for different register

widths. If arrays are shorter or elements must be skipped, a predicate mask can inform

instructions which elements of a vector register must be processed. Predicate masks have
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no influence on performance, rather they determine which results must be written back to

the destination vector register and which should be discarded.

Packed SIMD operations are part of the application processor’s ISA. As such, their

execution does not incur overheads paid for uploading the kernel code and data-set to

an external accelerator, like it would be the case with GPUs or digital signal processors

(DSPs). However, their throughput is generally only a fraction of the throughput achieved

even on a embedded GPU.

2.1.3 Graphics processing units

Since the advent of 3D gaming, GPUs have gradually developed into a distinct class of

massively-parallel processors. After several research projects aimed at utilising the GPUs

resources for non-graphics applications (e.g. BrookGPU [16]), NVIDIA’s CUDA was the

first commercially available architecture to offer general purpose usage of their GPU [17].

Like vector processors and packed SIMD extensions, GPUs apply pipelining and lock-step

parallel execution of operations on vector elements to reduce control overhead, resulting

in energy-efficient high-throughput processing of data-parallel kernels. However, their

hardware strip-mining single-instruction multiple-threads (SIMT) programming model

make GPUs unique in their capabilities to effectively occupy several thousands arithmetic

units and other resources in parallel.

GPUs rigorously part with the concept of processing vector elements in order. Instead,

conceptually a GPU work scheduler breaks vectors into warps, groups of 32 (NVIDIA)

or 64 (AMD) elements. Each warp is processed in a separate hardware thread, with

the operations for the warp performed in SIMD. Each compute unit in a GPU can issue

multiple instructions per cycle from a plurality of warps. The large pool of active warps

helps to mask data movement latencies between the memory hierarchy and the individual

warps, maximising occupancy of the available compute- and memory resources.

To illustrate the scale of a compute unit, each “SMX” in an NVIDIA Kepler GPU [18]

contains 192 single-precision units (SP-units) for integer and floating-point arithmetic,

32 load/store units, 32 special function units (used for e.g. trigonometry operations)

and various other units required mostly for graphics operations. A high-end GeForce

780Ti GPU contains 15 compute units [19]. At any time, a compute unit can have 64

active warps divided over four warp-schedulers. Each warp-scheduler can issue one or two

instructions per cycle.

Warp scheduling requires the GPUs to perform strip-mining in hardware. To this end,

an application that wishes to off-load computation to the GPU launches a kernel-instance

parametrised with its desired vector size. This size, called the NDRange, is specified in up

to 3 dimensions, and dictates how many work-items must be launched. Work-items are

identified by a global ID (TID), a unique identifier in the NDRange space. Work-items are
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grouped into warps, in turn grouped into work-groups. All warps in a work-group execute

on a single compute unit, allowing a work-group to share data between its work-items.

Contrary to vector processors and packed SIMD extensions, developers treat the

GPU as an external device. Relevant vectors and other parameters must be uploaded to

dedicated DRAM local to the GPU. Kernels, non-interactive functions running on the

GPU, are developed according to the single program multiple-data (SPMD) paradigm:

code specifies the work that needs to be performed for a single work-item, relying on

hardware strip-mining to run this code for every work-item.

2.1.4 Digital signal processors

DSPs are frequently found in embedded systems that perform filtering, transformation

and error-correction of digital signals. Although their architectures vary, most are best

categorised as VLIW processors with data-parallel processing capabilities, using narrow-

word SIMD techniques [20–22] for increased throughput of arithmetic operations like

multiply-accumulate.

DSPs are used to fulfil HRT tasks. For example, Qualcomm’s baseband modem is

paired with two dedicated DSPs to perform latency-sensitive audio-processing tasks [20].

To this end, pipelines are kept simple, multi-threading is limited to a few hardware threads

and input data may be processed through dedicated channels rather than over shared

buses. Software running on DSPs is generally persistent by nature, rather than acting as

a CPU-controlled accelerator device.

Exceptionally, the Qualcomm Hexagon DSP permits user-space applications running

on their mobile SoCs to upload custom kernels for execution. This brings the DSP’s role

and design closer to that of a GPU.

2.1.5 Domain-specific accelerators

Domain specific architectures (DSAs) are architectures that are highly optimised for a

single task, trading general applicability for performance and power efficiency. Such

architectures play a prominent role in the domains of video decoding (e.g. NVIDIA

Falcon [23]) and machine learning (e.g. TPU [24], NVDLA [25] and GraphCore [26]).

Besides their application in specialised high performance computing, DSAs are often used

in power-constrained mobile systems.

DSAs can be tailored to their task in various ways. Firstly, compute resources are

designed to closely match the precision requirements of the task. Secondly, the ISA of

a specialised accelerator usually contains application-specific vector instructions. Such

instructions may have non-standard result modifiers or even follow VLIW encoding

practices to maximise code density. These modifiers or fused instructions are matched
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with a non-standard pipeline to perform the task at hand as quickly as possible. Finally,

memory hierarchies are tuned to the data requirements of the task, for example by replacing

associative caches with scratchpads or introducing single-purpose buffers.

2.1.6 Comparison with Sim-D

Sim-D is designed as a general-purpose wide-SIMD accelerator tailored to HRT systems.

The targeted applications are inspired by recent trends in autonomous safety-critical

systems, such as assisted driving. Domains include computer vision, artificial intelligence

but also digital signal processing. Latencies and deadlines of such applications are often

expressed in (tens of) milliseconds [1, 27], one or two orders of magnitude larger than that

of most DSP applications and of control tasks like e.g. software-controlled fuel injection in

car engines. In the light of such latencies, fixed overheads for communication and task

scheduling have a relatively small impact on the overall execution time of a task. This

combination of large data-parallel workloads and relatively low cost of fixed scheduling

overheads resulted in Sim-D’s design to resemble existing GPUs. Besides wide-SIMD

execution, this is reflected in the way Sim-D performs hardware strip-mining and permits

parallel scheduling of multiple hardware threads processing the same vector.

Compared to a contemporary GPU, Sim-D’s unit of scheduling is more coarse-grain:

where GPUs operate on warps, Sim-D’s compute unit schedules operations at a work-group

granularity, each work-group containing 1024 work-items. Work-items within a work-group

are processed like in a regular multi-lane pipelined vector processor, without the use of

chaining techniques. Instead, parallel occupation of resources is increased by interleaving

the execution of two work-groups at any point in time. While such coarser-grain scheduling

reduces the ability for parallel occupation of resources, it increases the predictability of

instruction scheduling and data movements. This predictable execution allows Sim-D’s to

provide WCET bounds on the run-time of kernel-instances, as explained in Chapter 7.

In terms of resources, Sim-D currently positions itself as an embedded-grade accelerator.

It features a 64-bit DRAM bus and a single compute unit. Scaling this design up towards

the DRAM bus and compute resources of a discrete GPU comes with specific challenges to

the memory controller and the WCET analysis algorithm. I will outline these challenges

throughout the dissertation, but leave their resolution for future work.

Despite its resemblance to a GPU, Sim-D does not aim to implement a graphics

pipeline. Although it is conceivable that the compute resources can be used for some

graphics-related computation, it lacks features specific to 3D-rendering such as texture

sampling or rasterising.

Sim-D’s ISA more closely resembles that of a vector processor, explicitly mixing vector-

and scalar instructions in an otherwise RISC-like ISA. That being said, Sim-D is not an

application processor. Its ISA borrows heavily from NVIDIA’s GPU ISAs, and omits the
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hardware I/O and timing features required to run an operating system. Unique to Sim-D

is the ability to issue large DRAM requests for 1D- and 2D blocks of data for an entire

work-group, which is then processed by the DRAM controller in parallel with compute for

another work-group.

2.2 DRAM and data layout optimisation

In this section, I present an abstraction of DRAM as relevant to the understanding of this

thesis. This explanation is followed by an explanation of common data layout optimisation

considerations for GPUs. For a more complete overview of the internals and operation of

DRAM, I refer the reader to “Memory Systems : Cache, DRAM, Disk” [28].

2.2.1 DDR4 DRAM organisation
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Figure 2.1: Schematic abstraction of a DDR4 DRAM chip

A DDR4 DRAM chip consists of multiple bank groups, each containing an equal number of

banks. Each bank contains a 2D-grid of memories, organised as rows and columns. Each

bank additionally contains a row buffer. A DRAM chip’s interface consists of a clock

input, command- and address signals, a chip select input, a data mask (DQM) input and

a bidirectional data bus (DQ).

The DQ width of a memory chip specifies the number of data lines, and thus the

number of bits it transfers in a single cycle. A rank is generally formed of multiple DRAM

chips in parallel. For example, a 64-bit wide rank can consist of 8 chips with a DQ width

of 8, or 4 chips with a DQ width of 16. A channel consists of a set of data- and command

lines that are shared between one or more ranks. Each channel has a one-hot bit mask
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to select the destination rank for each command. In this work, I only consider a channel

containing a single rank.

Data is requested in bursts. For DDR4 DRAM, a burst consists of 8 beats. In other

words, each request issues a read or write to 8 consecutive columns in a row. Write

operations can be performed at a byte granularity by clearing each byte’s corresponding bit

in the DQM for each beat of a burst. In this work all latencies are measured in clock cycles

of the command bus. Being double data rate DRAM, a burst is thus said to complete its

transfer in 4 cycles. Transfers must be aligned to a multiple of a burst.

Operating DRAM is done using three operations: activation, read/write and precharge.

Activation brings the data from a row into the row buffer of the respective bank. Read

and write operations transfer data between the row buffer and the requestor. Finally,

precharge conceptually writes back data to the DRAM cells and prepares the row-buffer

for the next activation of that bank.

Physical properties of the DRAM chip place constraints both on the latencies of each

operations and on the distance that must be guaranteed between two operations. A chip’s

set of constraints is referred to as its DRAM timings. Although banks are conceptually

parallel independent entities within a chip, constraints exist on the minimal distance

between e.g. two activation operations to different banks. In DDR4, the minimal distance

between two consecutive operations issued to different bank groups is shorter than the

same operations issued to banks in the same bank group. A full overview of all dimensions

and timings for the Micron MT40A512M16JY-062E and MT40A1G8SA-062E DDR4-3200

DRAM chips is given in Section 4.1.1.

2.2.2 Data layout optimisation

It is generally accepted that the performance of most GPU compute (GPGPU) kernels

is bound by DRAM throughput. In turn, optimisation guides (e.g. AMD [29], Intel [30],

NVIDIA [31]) discuss programming techniques that improve memory throughput of

kernel-instances. Three themes emerge: data alignment with respect to DRAM or cache

lines, coalesced accesses of work-items in a warp and reducing DRAM accesses by using

local memory to share data between work-items in a work-group. From the architect’s

perspective, these techniques are interesting as they both determine the requirements

applications impose on a hardware design as well as set out the scope for optimisations of

common cases within the memory subsystem.

GPUs have the ability to coalesce memory requests of work-items when they access data

elements from the same cache line or DRAM burst. A straightforward way of maximising

the potential of request coalescing is to structure data such that there is a linear mapping

from a work-item’s TID and its requested data element from a buffer.

For this reason, structuring data as a struct-of-arrays is preferred over an array-of-
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structs. As a concrete example, consider a buffer for which each data element consists of

four components: x, y, z and w. Figure 2.2 shows how this data is laid out in memory

under both an array-of-structs and an struct-of-arrays arrangement for 16 work-items.

Each row aligns to a DRAM burst.
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Figure 2.2: Data lay-out examples for 4-element entries

As the red elements demonstrate, a request for the x-components of each work-item

results in loading four bursts when the data is structured as an array-of-structs, while a

well aligned struct-of-arrays buffer can provide the same data in a single burst.

Figure 2.2b demonstrates the importance of data alignment. Misaligned data neces-

sitates the request of a second burst or cache line, resulting in more pressure on the

memory system. If the nature of the data permits aligning the elements a warp requests

to the boundaries of a burst, this pressure can be reduced. However, as the class of filter

algorithms demonstrates, this is not always within control of the programmer.

Filter kernels read a n×m-region of data for each work-item, performing a weighted

multiply-addition on each element in this region to compute a final output. Regions

read by adjacent work-items may overlap. Examples of such filter kernels include image

anti-aliasing and the max-pooling operation for convolutional neural networks (CNNs).

A common technique to maximise the number of words shared within a work-group is

called tiling. To demonstrate this effect, consider a 3× 3 filter processed by a work-group

containing 16 work-items. Figure 2.3 shows the tile of data accessed by one work-group

for both a 16× 1- and a 4× 4 tiling configuration. The centre of each work-item’s 3× 3

data region is marked with its TID.
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Figure 2.3: Data regions processed by one work-group for a 3× 3 filter operation, stride 1

As Figure 2.3 demonstrates, an efficient tiling strategy can reduce the number of

elements requested by a work-group. Where for the 16 × 1 configuration 18 ∗ 3 = 54

elements must be read from memory, the 4×4 configuration reads only 6∗6 = 36 elements.

It is not immediately clear which tiling strategy gives the best DRAM throughput, as

alignment of data influences the number of bursts issued for the request of a given tile.

Tile dimensions must thus be chosen on a per-case basis.

This technique assumes an effective mechanism to share data elements within a work-

group, such that tiles are only requested once from DRAM. GPUs support both transparent

caching of tile data in associative caches, and explicit tile caching in local memory.

Even when data is not shared between work-items in a work-group, it could pay off to

load data into local memory. Consider for example a 2× 2 filter operation with a pitch of

2. The arrows in Figure 2.4 show how elements from the input buffer map to the first two

work-items. Each work-item requests its elements in the order red, green, blue, yellow.

Figure 2.4: Example 2× 2 filter operation with a pitch of 2.
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Looking at the coalesced request for all red items, we can see that the pitch between

two work-items causes every other (green) data element in a burst to be discarded even

though these are required later. Performance of the application can be improved by

pre-loading the work-group’s entire block into local memory. This way the cost of issuing

the second request for the green data words can be serviced by the lower-latency local

storage, reducing the occupation of the shared DRAM bus.

2.2.3 Edges in filter operations

Tiling techniques for filter operations must consider the way an application handles the

borders of a data set. Figure 2.5 demonstrates three edge-case strategies: trimmed edges,

constant edges and extrapolated edges.

C
C
C

C C

a) Trimmed edges b) Constant edges c) Extrapolated edges

Figure 2.5: Variations of 3*3 filter processing.

In all these cases, the most convenient TID mapping is a linear mapping of work-items

to output elements. For the trimmed edges case this mapping ensures that no boundary

cases exist for transferring tiles of data from DRAM to the compute cores’ registers. The

required tile of data for a work-group is simply of size xdim+ 2, ydim+ 2.

Requests that load a tile of data to local memory must compensate offsets and

dimensions for constant- and extrapolated edges. If edges are simply ignored, transfers can

end up reading beyond the bounds of the buffer. This poses a risk to program correctness

and could violate process isolation principles.

2.3 Real-time systems

Real-time systems are a specific class of systems that can guarantee real time constraints,

expressed as deadlines on work, that are imposed by the physical world. Consider for
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example the response time of car brakes: one deadline could express the maximum tolerable

delay between the event of operating the brake pedal and the response of an engaged

brake. An appropriate deadline is chosen by car manufacturers to ensure that the braking

distance stays within safe limits.

To reason about a system’s ability to meet such deadlines, a large body of research

analyses the problem of schedulability. Using the abstraction of a task model [32–34],

algorithms can decide for a given set of tasks and a given scheduling policy (e.g. fixed-

priority (FP) [35], earliest-deadline first (EDF) [35, 36]) whether all deadlines are met.

In these task models, a task is described by a deadline, a WCET (cost), the (minimum)

interval between two events of the same task (period), and for some scheduling policies the

priority of a task relative to others. To determine whether a task is guaranteed to meet

it’s deadline, its worst-case response time (WCRT) must be calculated. The WCRT is

the maximum time it takes for a job to complete from the moment of launch, taking into

account the worst-case blocking that can be caused by other active tasks. The WCRT is

computed either explicitly or implicitly as part of a schedulability test for a given task set.

This dissertation contributes a wide-SIMD architecture and algorithm that together

permit the derivation of a safe WCET for a given kernel-instance. In the context of

scheduling, the WCET of either a single kernel-instance or a sequence of kernel-instances

may form the cost of a task. Policies for scheduling tasks or kernels on Sim-D and

schedulability tests to assess whether tasks meet their deadlines are considered beyond the

scope of this work. Section 8.1 discusses various avenues for future work on task scheduling

with Sim-D.

In the remainder of this section I discuss related work on two topics from the field

of real-time systems relevant to this thesis: real-time DRAM controllers and WCET

computation algorithms.

2.3.1 Hard real-time DRAM controllers

DRAM controllers can be divided in two groups: closed-page and open-page. Closed-page

DRAM controllers ensure that every request starts and finishes with all banks precharged.

Open-page DRAM controllers leave rows open after servicing a request, anticipating that

more columns from that row will be requested later. The latter strategy is mostly employed

in throughput-oriented systems, as the overhead for precharging and activating rows are

substantial.

From a real-time perspective, a closed-page policy has the favourable property of

performance isolation: a requests’ execution time does not vary based on those that

precede it. This paves the way for worst-case execution analysis of individual request. At

the same time, within each request it is possible to exploit bank locality and make use

of parallel execution of activate and read/write commands to different banks. In other
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words: the deterministic closed-page property exists on the boundaries of each request,

while within a request open-page performance optimisation techniques can be employed.

To evaluate the performance of DRAM controllers, I use two definitions defined by

Paolieri et al [37], to describe the (worst-case) timing behaviour of DRAM requests:

worst-case request execution time and longest issue delay.

The worst-case request execution time (WCRET) marks the maximum delay, excluding

the time waiting for requests to wait for other requests to finish, before a work-group can

continue execution. For read operations, the WCRET spans the interval between issuing

the first bank activate command of a request and the arrival of the last data word. For

write operations, this interval spans from the first bank activate command to the instance

the last written data word is transferred on the DRAM data bus, either originating from

Sim-D’s register file or scratchpad.

The issue delay for a request is defined as the time required between starting the

current request and starting the next. For a closed-page DRAM controller, this spans

the interval from the first activate command to the first time instant at which all banks

are precharged. Bar the refresh interval counter(s), the state of the DRAM controller is

indistinguishable before a request and after passing the issue delay, a key property for

allowing the analysis of requests in isolation from others. Longest issue delay (LID) is

defined as the upper bound on a request’s issue delay.

2.3.1.1 Closed page: Memory pattern-based HRT DRAM controllers

A large body of research has focussed on memory pattern-based DRAM controllers [38–42].

In this context, a memory pattern is a predetermined schedule of DRAM commands

that services a read or write request of fixed size to an arbitrary (but aligned) address.

A request may span more than one burst of data, and may address more than a single

row. Patterns have fixed timing properties and implement a closed-page policy at the

boundaries, striking a balance between the analysability of statically scheduled DRAM

controllers on one hand, and performance and flexibility of a dynamically scheduled DRAM

controller on the other.

In the literature, the assumption is made that a request always reads or writes as many

words as are serviced by one execution of a DRAM pattern. In the light of CPUs, issuing

aligned cache-line sized requests, this assumption is valid, but in the context of our Sim-D

architecture this assumption does not acknowledge the fact that coalesced requests can

be of arbitrary size. Hence in this work I define a request to be of arbitrary size. An

execution of the commands in a DRAM pattern will be referred to as a pattern transaction.

A request could therefore require multiple pattern transactions to be performed by a

pattern-based DRAM controller.

Akesson et al. [38] describe the basic architecture of a pattern-based DRAM controller
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and show how its design leads to both performance-predictability and -composability.

These properties imply that the performance of individual consumers can be analysed

independently from one another, following the Latency-Rate model [43].

The first pattern-based DRAM controller was Akesson et al.’s “Predator” [40]. This

DDR2 memory controller guarantees bandwidth and latency of requesters by pre-computing

the latency for the execution of each cache-line sized DRAM patterns (Akesson: “memory

groups”). The memory configuration is carefully chosen such that each pattern transaction

hits all banks, helping to reduce the distance between two requests. By the time request Rn

processes the data transfer of its last bank m+ 3, the first bank will already be precharged.

Request Rn+1 is now ready to send its first request to bank m despite bank m+3 not being

precharged yet. By using a novel arbitration policy called “credit-controlled static priority”

(CCSP) [44], Predator is capable of providing both minimum bandwidth guarantees as

well as a bound latency on individual requests.

Paolieri et al. [45] propose a similar solution called “AMC”. Rather than providing

latency-rate guarantees with a CCSP-based arbiter, AMC utilises a simpler round-robin

policy. AMC provisions for mixed-criticality workloads by always prioritising HRT requests

over non-real-time requests. This leads to a simple static latency analysis where every

request is assumed to be delayed by at most the number of other HRT tasks in the system

(plus one non-HRT task) multiplied by the maximum latency of any cache-line sized

request. Like Predator, AMC makes each request iterate over all banks in the DRAM chip

for efficient operation. In [37], they discuss an extension where non-HRT requests can be

preempted between two bank-requests, thus breaking with the concept of issuing fixed

DRAM patterns. Assuming their timing analysis model, wherein every request is treated

independent rather than analysed as part of a global “sequential history”, this preemption

support reduces the analysed worst-case latency for HRT requests.

Goossens et al. [41] identify how reconfigurability could bring additional guaranteed

bandwidth to pattern-based HRT memory controllers. They extend Akesson et al.’s

model [38] in two ways. First they adjust the DRAM patterns such that read and write

operations always take the same time, regardless of the interleaving of the two. The memory

controller services clients following a TDM schedule, providing composable performance

to the clients. Secondly, they add a mechanism for reconfiguring both the client TDM slot

allocations and the memory patterns. In HRT systems following e.g. partitioned sporadic

task scheduling, they can alter the client bandwidth based on the active tasks, thus cater

for a wider range of task-sets.

Li et al. [42] identify an increasing need for a variable DRAM request size. They observe

that allowing arbitrary sized requests leads to timing anomalies caused by the history

of transactions executed. They propose a round-robin scheduling policy of requests of

variable size using a closed-page DRAM policy. For individual transactions, they propose
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a method to derive a tight bound on worst-case execution time. In subsequent work, they

propose WCET analysis methods for DRAM requests based on data-flow programming [46]

and timed automata [47], both resulting in tighter bounds.

All previous methods rely on efficient DRAM patterns to be determined. To complement

the various ad-hoc algorithms for generating memory patterns, Goossens et al. [48] propose

an ILP-based method for finding optimal DRAM patterns.

Study towards the performance characteristics of memory pattern-based DRAM con-

trollers uncovered several draw-backs. Akesson et al. [39] observe that to achieve a net

memory efficiency above 80% with DDR3 memory, they require transfers to be up to four

times larger than with DDR2 technology. They conclude that to achieve high worst-case

bandwidth, large requests are fundamentally required.

Krishnapillai et al. [49] observe that these techniques lose efficiency further on modern

SoCs as the data bus width has increased. This results in situations where an entire cache

line can be fetched in a single burst, invalidating earlier assumptions that requests can

effectively be interleaved over multiple banks [37, 40, 45].

2.3.1.2 Open page: Bank privatisation

Bank privatisation has first been proposed for multi-requester systems by Reineke et

al. [50]. The idea is that by giving individual requesters access to their own banks only,

cross-task bank collisions are eradicated. The result is that tasks can now predict the

state of the relevant row-buffers regardless of other tasks running in parallel, making it

feasible to adopt an open-row policy while maintaining performance isolation.

Farshchi et al. [51] revisit this idea by pairing bank privatisation with buffer-specific

cache write-back policies, a feature widely available in most processors implementing the

ARMv7 or ARMv8 instruction set [52]. By distinguishing private- from shared memory

and changing policies accordingly, tighter latency bounds can be given for all request to

private memory without sacrificing functionality.

2.3.1.3 Sim-D

Inspired by Akesson [38] and Krishnapillai’s [49] observations, Sim-D explores new tech-

niques to exploit the bandwidth opportunities offered by processing larger DRAM requests.

To this end, this work presents an architecture and DRAM controller that lets developers

issue DRAM requests which explicitly coalesce the loads or stores for all work-items in a

work-group.

Sim-D applies a closed-page policy between requests, but parts with the pattern-based

DRAM command scheduling researched in prior work. Pattern-based DRAM controllers

have limitations that make them unsuitable for Sim-D, as analysed in detail in Section 5.1.
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Instead, Sim-D uses a deterministic greedy DRAM command scheduler that permits static

analysis of DRAM request execution times.

Meanwhile, I consider bank privatisation techniques a bad match for Sim-D as they

rely on the presence of multiple requestors in a system. For Sim-D, a requestor can either

be defined as a kernel-instance or as a work-group. Neither of these definitions are helpful.

In the former case, at any point in time only a single requestor is active, implying that

no interleaving of requests from different requestors may be assumed. In the latter case,

partitioning of DRAM is impossible as it would prevent work-groups from sharing input

data with neighbouring work-group as is required by e.g. filter kernels.

2.3.2 Hard real-time worst-case execution time analysis

HRT WCET analysis techniques are broadly categorised into two groups: static methods

and measurement-based methods [53]. Measurement-based methods execute (parts of)

a real-time task either on their targeted hardware or on simulators derived from that

hardware, and measure meaningful timing information from them. Static methods instead

analyse the code of a program to derive a bound on execution time.

Measurement-based methods provide meaningful insight in the distribution of possible

execution times for a given task. However, it is generally accepted that such methods are

insufficient to derive hard bounds on execution times, as even for moderately complex

programs it is infeasible to characterise their timing properties under all possible combina-

tions of inputs and context. Static methods give better means to reason about code path

coverage and permit safe over-approximations of hardware-induced timing effects.

In practice, algorithms may combine static analysis with measurements to derive a

WCET. For example, Park et al. [54] combine a static program analysis with a processor-

behaviour analysis (PBA) that uses the dual-loop measurement technique to determine

the run time of single- or small blocks of instructions. This particular approach may not

be advisable for modern processors, as Altman et al. [55] show that minor variations in

hardware, program binary or run-time conditions can lead to large variations in measured

execution time. However, carefully designed measurement-based hardware characterisations

can provide a compelling alternative to complex formal processor models.

Static analysis based algorithms perform three major tasks: control flow analysis

(CFA), processor-behaviour analysis (PBA) and bound calculation. I next explain the

purpose and some of the challenges for each.

2.3.2.1 Control flow analysis

The purpose of control flow analysis (CFA) is to represent a program’s code in the form of

a graph. The type of graph produced depends on the choice of algorithms later on: for
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path-based algorithms a control-flow graph (CFG) with explicit control information is

produced, while for structure-based algorithms the control flow is more implicitly encoded

in a syntax tree.

To derive tight WCET bounds, the major challenge in CFA is to eliminate false code

paths : paths that are either impossible to reach or forbid computing a WCET altogether.

False paths may contain unbounded loops, if-statements with (mutually) exclusive condi-

tions or sequences of loops for which a bound exist on the iteration count of the sequences

as a whole but not for the individual loop. Analysis can eliminate paths or bound (re-)entry

of certain code regions by deriving flow information; additional information that excludes

or limits the entry of certain code regions. Such flow information can be either conveyed

by the system developer as annotations [56, 57] or extracted automatically from a program

by means of value analysis of control-flow-deciding variables [58–60].

2.3.2.2 Processor behaviour analysis

The processor-behaviour analysis (PBA) task is responsible for computing the execution

cost of the various paths in the graph. This analysis takes into account the targeted

processor’s pipeline, memory subsystem and other relevant I/O-devices. Generally the more

complex a processor is, the less precise the results of this step will be. As an alternative to

computing such overheads with extensive system models, measurement-based techniques

like simulation can be applied.

Many different hardware effects must be modelled. To account for pipelining, Zhang et

al [61] provide a technique that captures pipelining effects for a 2-stage pipelined processor

which prioritises memory read/write over instruction fetch. They perform analysis on a

basic block (BB) level using an elaborate and tailored formal model that tries to derive

the level of overlap of both pipeline stages. Lim et al [62] point out that this does not

take into account pipeline effects crossing BB boundaries and deeper pipeline problems,

and improves on this result by tracking the pipeline state in a resource reservation table.

This table contains one row for every pipeline stage. Engblom et al. [63] use a pipeline

simulation technique to capture pipeline effects. Unfortunately, none of the mentioned

methods explicitly address the issue of accounting for data hazards. However, I note that

Lim’s approach can easily be extended to address data hazards by adding one resource to

the table for every general purpose register in the system.

Colin et al. [64] present a safe analysis technique for Branch Target Buffer -based

branch predictors like the Pentium processor, allowing to more accurately predict pipeline

flushes in a program. For single-core application processors, analysis techniques exist that

safely estimate the state of instruction caches [65, 66], L1 data caches [67] and instruction

DRAM in Harvard architectures [68]. It is deemed unlikely that tight PBA techniques

emerge for shared associative caches [69] as they prevent analysing the timing properties
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of applications in isolation. Hardware can promote performance isolation between tasks

on different cores by supporting cache locking and partitioning [70].

2.3.2.3 Bound calculation

The final step in a static WCET derivation algorithm is bound calculation. In this step,

the critical path is sought in the timing-annotated graph that results from PBA. Three

methods are identified for such calculation: structure-based, path-based and implicit path

enumeration (IPET).

Structure-based bound calculation methods take a timing-annotated syntax tree as its

input. This tree is processed depth-first to find the globally critical path. For example,

Colin et al. [64] apply structure-based bound calculation in their branch-predictor aware

algorithm. Although structure-based methods are effective for bound calculation, the

structure of a syntax tree is limited in its abilities to represent the true control flow of

programs. This may result in an inability to represent an arbitrary program binary after

performing optimisations.

A more natural structure to capture program control flow is a CFG. To perform

critical-path analysis on such graphs directly, path-based bound calculations (e.g. Healy

et al. [71]) are used. Compared to syntax trees, such graphs can represent a wider range

of programs as it makes control flow more explicit. This expressiveness comes with the

downside of conveying accurate cost information. For example, Wilhelm et al. [53] highlight

the difficulty with conveying context- and cost information across loops at different nesting

depths.

A third method for bound calculation is implicit path enumeration (IPET). These

methods express the critical path problem as a set of constraints, to be solved through

integer linear programming (ILP). A major advantage of IPET-based methods is that the

CFA’s false code-path elimination can be performed by generating additional constraints

for the ILP model, removing the need for two separate analysis passes. For example,

Engblom et al. [57] demonstrate a technique encoding loop-bound and control-flow “facts”

into their ILP model constraints. However, ILP is a known NP-complete problem [72],

meaning a solution is not guaranteed in feasible time.

2.3.2.4 Sim-D

The WCET analysis work performed for Sim-D primarily serves as a proof-of-concept

of the architectural decisions. By gathering empirical data on the WCET of a range

of benchmarks, and contrasting them to measured average-case performance times, the

analysis is used to show Sim-D’s ability to support derivation of tight and safe WCET

bounds.

39



I do not make new contributions to the practice of CFA. Predicated execution of

if-then-else blocks already limit the scope of benefiting from such analysis, as in the

worst-case execution of a work-group both the if- and the else-branch must be executed.

Instead, Sim-D applies path-based analysis on a regular CFG and applies a fairly simple

annotation-based technique to bound loop iterations. This analysis covers most special

cases in all the benchmarks investigated.

Sim-D’s PBA is performed by means of pipeline simulation. Sim-D’s performance-

isolated in-order pipeline permits capturing all possible timing effects safely and tightly.

One interesting finding in this area is that for each BB there are only two pipeline states

to consider for timing: either a pipeline warmed up by the BB(s) directly preceding it in

memory, or a cold pipeline when branching from any other BB. This significantly limits

the amount of code paths for which the pipeline must be simulated.

The main contribution for Sim-D’s WCET analysis algorithm is in its final bound

calculation phase. For a hardware strip-mining architecture, the longest path algorithm

through the program generates the critical path of a work-group rather than a program.

I present a technique that uses the timing information encoded in this critical path and

Sim-D’s work-group scheduling behaviour to derive the kernel-instance’s WCET. To the

best of my knowledge, no prior work has looked at WCET analysis for architectures that

perform hardware strip-mining.

2.4 Miscellaneous related work

The access/execute paradigm [73–75] architecturally decouples data access from compu-

tation. In its strictest form, the paradigm mandates separate instruction streams for

access and execute operations. Decoupling access from execute essentially provides a lot of

scheduling freedom to provide prefetching of data, at the cost of complex synchronisation

between the two streams to ensure data arrives just in time for processing.

Loosely inspired by this access/execute paradigm, the PRedictable Execution Model

(PREM) [7, 76, 77] transforms programs into a succession of compute- and memory phases.

These phases execute on separate resources such as compute, DRAM, scratchpads and

other peripherals. They observe that the WCET of a program can be made significantly

less pessimistic by taking control of the scheduling of program phases and external events

on (shared) resources. PREM mainly uses software techniques to minimise performance

interference between components, which reduces pessimism in their derived WCET bounds

while allowing their model to apply to commercial off-the-shelf hardware.

This execution model provides the basis for Sim-D’s predictable work-group scheduling.

However, rather than isolating resources in COTS processors through sophisticated soft-

ware scheduling and cache prefetching techniques, Sim-D enforces this execution model
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architecturally. Sim-D achieves strict performance isolation between access- and compute

phases by replicating local storage resources for two active work-groups, as will be explained

in detail in Chapter 3.

Chen et al. [78] experimented with a compiler pass that would recognise scalar values

in SPMD-programs for GPUs, and transform them to use scalar registers and operations.

This involved extending the GPU’s ISA with scalar instructions, coincidently bringing

it more in line with the ISA of a traditional vector processor. This work has inspired

Sim-D adoption of a mixed scalar-vector ISA, aiding with the desire to encode DRAM-

and scratchpad requests as work-group-wide “scalar” instructions.

Huangfu et al. [5] introduce a WCET analysis method for a simplified GPU model. In

this work, they introduce the greedy-then-round-robin (GTRR) warp scheduling strategy

that allows modelling the execution of a kernel-instance as a sequence of code segments,

interleaving the code segments of multiple warps. Sim-D schedules work-groups in a similar

fashion to GTRR, executing instructions greedily from a single work-group until a DRAM-

or scratchpad request is encountered.
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CHAPTER 3

A wide-SIMD architecture

In this chapter I present the Sim-D wide-SIMD architecture for hard real-time systems. The

goal of this chapter is to demonstrate feasibility, within the limitations of a cycle-accurate

simulation model, of a SIMD processor pipeline that provides performance isolation among

its resources. I make the following contributions:

1. A high level overview of the Sim-D wide-SIMD architecture and its mixed scalar-

vector ISA (Section 3.1),

2. An explanation of Sim-D’s control logic (Section 3.2),

3. Details about Sim-D’s four-phase in-order pipeline, for which the decode and execute

phases have a configurable number of stages (Section 3.3),

4. An overview of the control flow mechanisms present in this mixed scalar-vector

architecture (Section 3.4),

5. An overview of the performance-isolated storage facilities present on Sim-D’s data

path: scratchpads, register files, buffer mapping tables and a scoreboard for tracking

RAW hazards. A justification is given for a three-stage decode pipeline phase,

permitting efficient fetching of vector operands of warps using 1R1W storage cells

(Section 3.5).

3.1 Overview

In this section I present the Sim-D hard real-time massively-parallel processor simulator.

The key feature of this architecture is performance isolation between the compute, DRAM

and scratchpad resources. What this means is that once a work-group obtains exclusive

access to a resource for executing a section of it’s program, be it compute or a DRAM

request, the time it takes to complete this program phase is independent of what happens
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on other resources. Treating each access- and execute phase in a program as an independent

critical section, free of performance interference, reduces the problem of finding a kernel’s

WCET to one of finding the worst-case schedule of program phases.

There are two ways of maximising the occupancy of these performance-isolated resources:

either overlap multiple program phases from the same work-group, or schedule phases

from multiple work-groups in parallel. The latter approach is more likely to yield high

occupancy: kernel-instances provide ample work-groups to overlap, and the absence of

intra-work-group dependencies offer substantial freedom on how work-groups can interleave.

To exploit intra-work-group parallelism efficiently and predictably, Sim-D implements a

double-buffered execution model processing up to two work-groups in parallel. Hardware

scheduling of work-groups follows a policy similar to greedy-then-round-robin (GTRR) [5].

A high-level overview of the Sim-D architecture is given in Figure 3.1.
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Figure 3.1: High level overview of the Sim-D simulator.

At the heart of the architecture lies one compute unit called the SimdCluster. It

contains a configurable number of arithmetic units, plus logic and storage for executing

two work-groups.

Performance isolation of resources is achieved through two design decisions. Firstly, local

storage resources (i.e. register files, scratchpads and control stacks (CSTACKs)) are repli-

cated for both active work-groups to permit a DRAM↔register file or DRAM↔scratchpad

transfer to occur in parallel with a compute phase of a different work-group. Secondly,

Sim-D adopts a Harvard architecture with a dedicated instruction memory (IMem) to elim-

inate interference on the DRAM bus between instruction fetch and data fetch. Section 6.1
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provides evidence to justify the choice for a Harvard architecture.

I have implemented a full simulation model of Sim-D architecture in SystemC, an

event-driven hardware modelling library for C++ [79, 80]. SystemC allows easy integration

of the Ramulator [81] DRAM timing model and the DRAMPower [82] DRAM power

model.

3.1.1 Instruction set architecture

For this simulation model, I define the ISA as a higher level specification, without

considering a specific instruction encoding. I constrain Sim-D’s ISA design in line with

NVIDIA’s Kepler ISA as documented in e.g. Envytools [83]:

• Each opcode is 64-bits,

• Instructions have no more than 3 source operands,

• Vector arithmetic/boolean logic instructions have no more than one immediate-,

scalar- or special-purpose source operand,

• Instructions have no more than 1 destination operand.

Defining a complete instruction encoding could uncover mandatory changes to the ISA.

Specifically, limitations in code space may forbid encoding immediate values as operands.

The alternative of allowing immediate values only in mov instructions would have a small

impact on performance as a program will be made up of different and potentially more

instructions than when encoded in the current ISA. I believe that in the light of the high

level objectives (analysable WCET, direct memory access (DMA)-style DRAM requests),

this minor effect on simulated performance bears insufficient significance to justify a more

low-level definition of the ISA at this stage of research. A full overview of the ISA is given

in Appendix A.

3.2 Control logic

The control logic of Sim-D’s simulation model has two responsibilities: program launch

and hardware strip-mining. In the process of strip-mining, many work-items are spawned

each of which must be identified with a unique global ID (TID). In this section, I explain

how both responsibilities are fulfilled, followed by a discussion on the assignment of TIDs

to work-items.

Note that the simulator currently does not model data transfers between the host

system and the device’s DRAM. It is assumed that buffers and programs have already

been uploaded to DRAM prior to kernel launch. Studying such data movements is left for

future work.
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3.2.1 Program launch and hardware strip-mining

The host launches a kernel-instance by sending a launch descriptor to the workscheduler.

This launch descriptor contains the NDRange, the work-group dimensions, a pointer to

the program binary and a list of buffer mappings. Upon receiving a launch descriptor, the

workscheduler will transition through three states: SimdCluster initialisation, work-group

enumeration and wait for completion.

In the first state, the workscheduler distributes the buffer mappings (see Section 3.5.3)

and kernel code to the SimdCluster’s dedicated memories. Sim-D models program upload

to IMem as a load from DRAM. Buffer mappings are part of the launch descriptor and

hence distributed to the SimdCluster in parallel with program upload through dedicated

channels. The initialisation latency is thus that of a DRAM read, for which the cost is a

function of the program size and DRAM timings. An equation for computing this latency

will be introduced in Section 5.4.1.

In the work-group enumeration state, strip-mining is performed to instantiate work-

groups covering the kernel-instance’s NDRange. To this end, the workscheduler fills a

FIFO with work-group descriptors, to be consumed by the SimdCluster. Every work-group

consists of 1024 work-items, each of which is uniquely identified with a two-dimensional

TID (tid x,tid y). A work-group descriptor contains the TID of its first work-item and

the (x,y)-dimensions of the work-group. The workscheduler can sustain a rate of one

work-group per cycle.

A SimdCluster has two active-work-group slots. When a slot becomes free and all

scheduling constraints have been met, the SimdCluster consumes a work-group from the

FIFO and initialises all relevant state. Once the compute resource becomes available, the

SimdCluster starts scheduling this work-group’s instructions.

Once the workscheduler adds the last work-group to the FIFO, it transitions into the

wait for completion state. It will then wait for the SimdCluster to consume and finish

execution of the final work-group. Once the SimdCluster signals completion, the host is

notified of kernel execution completion and the workscheduler returns to idle, ready to

accept the next launch descriptor.

No overlapping of work-groups from different kernel-instances is considered, as it is

likely that their contexts (IMem content, mapped buffers) differ. I leave research towards

parallel execution under multiple contexts, and the broader topic of spatial- and temporal

multitasking for future work.

3.2.2 Assigning global IDs to work-items

Work-items in CUDA and OpenCL kernel-instances use their global ID (TID) for three

main purposes: for calculating offsets within input- and output buffers, for special handling
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of the edges of a data set, and for early termination of out-of-bound work-items.

Given these use-cases, the mapping from TIDs to SIMD-lanes influences Sim-D’s design

in three ways. Firstly, the logic required in each SIMD-lane to calculate the TID of an

active work-group differs between mappings. Secondly, Sim-D’s large coalesced 1D and

2D block transfers, which assume a linear relationship from data elements to work-item,

require the DRAM controller to compute the corresponding vector register column for each

data element in such a transfer. Finally, for remainder work-groups the chosen mapping

impacts which SIMD lanes must be disabled. Although in Sim-D the disabling of lanes is

done in software upon work-group launch, the observation that this can lead to disabling

entire warps poses an opportunity to trim these warps from a work-group. The potential

efficacy of such warp trimming differs between mappings.

In the light of these implementation details, I next justify Sim-D’s linear TID-to-SIMD-

lane mapping scheme by contrasting it against a compacted scheme. To illustrate the

difference between these two schemes, assume a kernel-instance with work-groups of 16

work-items, processing a 62 ∗ 62 image in tiles of 8 ∗ 2. Work-groups processing the right

edge of this image require only 6 ∗ 2 work-items, the remaining four work-items fall outside

the NDRange. Figure 3.2 demonstrates both mappings for the top-right work-group:

(0,0)(1,0)(2,0)(3,0)(4,0)(5,0)

(0,1)(1,1)(2,1)(3,1)(4,1)(5,1)

1
0

(0,0)

1
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2
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3
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4
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5
(5,0)

6 7 8
(0,1)

9
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(3,1)
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14 15

2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(0,0)(1,0)(2,0)(3,0)(4,0)(5,0)(0,1)(1,1)(2,1)(3,1)(4,1)(5,1)

Figure 3.2: Two mappings from TID to SIMD lane: 1) linear, 2) compacted.

TID compute logic Each work-items’s TID is determined as a mapping-specific function

of the work-group’s offset within the NDRange, its width, the warp number and the SIMD

lane identifier. When there are no restrictions on the TID for an individual lane, the

computation of TIDs can require significant arithmetic logic that must replicated for each

SIMD-lane. To simplify such logic, it is thus desirable to choose a mapping that restricts

possible TID values for a SIMD-lane.

No such restrictions can be established for the compacted mapping. As a result, TID

computation requires expensive integer operations, which include a modulo operation to

transform a 1D TID into a 2D TID.

For a linear mapping, restricting the x- and y-dimensions of a work-group to powers-

of-two greatly reduces this logic. Integer modulo with a powers-of-two modulus can be

implemented using boolean OR and AND operations, and the lower bits of the TID can

47



be hard-wired to the SIMD lane number. Hence for the linear mapping, the TID for each

SIMD-lane can be derived using much simpler boolean logic and muxes. This requires

fewer hardware resources and their critical path likely fits in a single cycle.

DRAM destination calculation When transferring a 1D or 2D tile of data directly

into a vector register, the DRAM controller must calculate the destination vector register

column for each word within that tile. Chapter 5 explains in greater detail how a block

transfer descriptor is sequentially translated into a number of DRAM burst requests. On

a high level, the DRAM controller iterates over all the bursts contained in the range from

start to end address, and for each word in each burst it tests whether that word falls lies

within the 1D or 2D block. For this test, the DRAM controller contains one subcomponent

for every word in a burst. Each subcomponent keeps track which 2D-coordinate in the

buffer it is currently processing. Conceptually, translating this coordinate to a vector

register offset is no more complex as calculating the coordinate for the next burst from

the current coordinate. Although the destination calculation logic would differ for both

mappings, there is no reason for one to be significantly more expensive than the other.

Warp trimming Some remainder work-groups end up disabling entire warps. When

executing vector instructions, such empty warps can potentially be skipped to save cycles.

Warp trimming is the concept of removing warps from the work-group at run-time.

To illustrate the influence of the TID mapping on warp trimming, consider a hypo-

thetical configuration for which each work-group consists of 64 work-items, 8 work-items

per warp. The “bottom-right” remainder work-group processes a 6 ∗ 6 tile from an input

buffer. Figure 3.3 shows the resulting mapping under both schemes.

Warp 0 (0,0)(1,0)(2,0)(3,0)(4,0)(5,0)

Warp 1 (0,1)(1,1)(2,1)(3,1)(4,1)(5,1)

Warp 2 (0,2)(1,2)(2,2)(3,2)(4,2)(5,2)

Warp 3 (0,3)(1,3)(2,3)(3,3)(4,3)(5,3)

Warp 4 (0,4)(1,4)(2,4)(3,4)(4,4)(5,4)

Warp 5 (0,5)(1,5)(2,5)(3,5)(4,5)(5,5)

Warp 6

Warp 7

(0,0)(1,0)(2,0)(3,0)(4,0)(5,0)(6,0)(7,0)

(0,1)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)(7,1)

(0,2)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(7,2)

(0,3)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(7,3)

(0,4)(1,4)(2,4)(3,4)

Figure 3.3: Two mappings from global ID (TID) to SIMD lane: linear (left), compacted (right).

As this figure shows, in theory the compacted mapping can result in higher performance:

under the linear mapping the demonstrated work-group has six active warps, while the

compacting mapping allows to trim this work-group to 5 warps. In practice, Section 6.4.2

shows that warp trimming has only a negligible potential for improved performance when
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considering all work-groups of a kernel-instance. For this reason, I instead opt for pipeline-

and WCET analysis simplicity and always run every work-group with 8 warps.

3.3 Pipeline

Sim-D’s SimdCluster implements an in-order, single issue four-phase pipeline: fetch, decode,

execute, write-back. Both the decode and execute phases consist of a configurable number

of pipeline stages. In this section I explain each pipeline phase in greater detail.

3.3.1 Fetch

The fetch stage, IFetch, is responsible for timely fetching the next instruction of the

active work-group. IFetch contains one program counter (PC) per active work-group. On

each cycle, it increments the value of the active PC and requests the instruction at this

PC asynchronously from IMem, such that the instruction is presented to the decoder in

the next cycle. When the execute pipeline stage commits a control flow or load/store

instructions, it instructs IFetch to overwrite the work-group’s PC.

The fetch logic is slightly more complex than in a regular in-order pipeline. This is

due to three differences in design.

• Double-buffered execution requiring switching between two work-groups,

• Instructions not flowing through the pipeline at a uniform rate,

• Injection of cpop instructions into the pipeline.

Double-buffered execution has the implication that IFetch needs to maintain two PCs.

To make sure IFetch issues a valid PCs even in the event of a work-group switch, PCs are

post-increment. Because the PC issued to IMem could be from a different work-group

than the PC provided by instruction write-back, the execute pipeline phase must explicitly

provide the target work-group upon issuing a PC update.

To ensure that program phases execute uninterruptibly, a work-group switch occurs at

the end of a phase: either upon issuing a DRAM or scratchpad request, or on work-group

exit. Note that the former situation does not cause a work-group switch if there is only

a single active work-group, for instance when executing the last work-group of a kernel-

instance. IExecute explicitly issues a PC write upon issuing a DRAM- or scratchpad

transfer and on work-group exit, to ensure the PC is valid upon continuation. The value

of the written PC is either the instruction directly after the load/store operation, or 0 if

the switch is caused by work-group exit.

Instructions do not flow through the pipeline at a uniform rate due to vector instruction

enumeration. For DRAM efficiency reasons, a work-group contains 1024 work-items.
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However, to balance data transfer time with compute time, a SimdCluster contains fewer

SP-units. In Section 6.2 I experiment with configurations of 64, 128 and 256 SP-units. A

single vector instruction in a program will therefore occupy the instruction decode phase

between 4 and 16 cycles, providing back-pressure on IFetch to ensure correct program flow.

Finally, as part of Sim-D’s control flow mechanisms (explained in Section 3.4), control

stack pop (cpop) operations could be injected in program execution whenever a control

mask (CMASK) write disables all work-items in a work-group. The popped control stack

entry contains the PC value for continuation of program execution, which will be written

by the execute pipeline phase.

3.3.2 Decode

The instruction decoder is responsible for reading operands from the register files. The

length of this pipeline phase is configurable: depending on the register file configuration,

either one or three cycles can be spent on fetching operands. A more elaborate analysis of

register file configurations follows in Section 3.5.2.

On each cycle, the instruction decoder translates one instruction into control signals to

perform any of the following data operations:

1. Register file reads,

2. Scoreboard match and destination write,

3. Control stack read,

4. BufToPhysXlat physical address lookup for DRAM and/or scratchpad buffers.

These data operations, explained in more detail in Section 3.5, all occur in parallel. For

instructions with implicit destination operands, IDecode generates the write control signals

to pass on to both the execute pipeline stage as well as to the scoreboard. This scoreboard

is used to detect and stall on read-after-write hazards, as explained in Section 3.5.4.

The decode phase enumerates vector instructions. The number of warps to replicate a

vector instruction for is determined by dividing the number of work-items per work-group

(1024) by the number of computational resources provisioned for this instruction. When a

vector instruction appears at IDecode’s inputs, IDecode applies back-pressure on IFetch to

retain the current instruction on its outputs while enumeration takes place.

3.3.3 Execute

The execute phase performs the actual computation requested through the incoming

control signals and operands, and generates the required output signals for write-back of

results. To this end, the execute unit contains a multitude of compute resources.
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As the number of pipeline stages required for each operation cannot be determined

from a high-level simulation model, Sim-D instead resorts to a configurable number of

pipeline stages. In Section 6.2 I analyse the sensitivity of benchmark performance to the

execute pipeline depth.

IExecute also issues DMA-style DRAM- and scratchpad read/write requests. A separate

load/store unit generates the control signals for the respective memory controllers. Both

types of resources are explained in greater detail next.

3.3.3.1 Compute resources

A SimdCluster contains an array of SP-units performing 32-bit integer- and floating-point

arithmetic, several ROMs and logic for reciprocal- and trigonometric operations, an integer

divider and a load/store unit. In the simulator, the number of SP-units is configurable in

powers of two between 4 and the maximum number of work-items in a work-group.

Based on NVIDIA patents [84–86], pipelined floating-point reciprocal, reciprocal

square root and trigonometric operations are modelled using four multipliers and various

look-up tables (LUTs) per lane. Rather than adding dedicated multipliers for these

operations, I assume the SP-units’ multipliers can be re-used. Hence Sim-D models one

reciprocal/trigonometry unit (RCP-unit) for every four SP-units, the same ratio as the

NVIDIA GP100 (Pascal) GPUs [87]. Under this implementation, the throughput for

(vector) reciprocal and trigonometric instructions is 1
4

that of regular arithmetic.

Inspired by Chen et al. [78], Sim-D supports bit-wise and integer scalar operations.

The main use-cases for scalar operations are loop iteration, computing values shared with

all work-items in a work-group, and the construction of (stride) DRAM requests. Scalar

operations are performed on the first SP-unit. To effectively use shared scalar values in a

kernel, many vector instructions support taking one scalar source operand.

From benchmarks I observed that integer division is valuable for shared loop invariants

and DRAM/scratchpad pointer arithmetic. For such operations a single scalar IDiv -unit is

modelled after Intel’s 8-cycle non-pipelined radix-16 SRT divider [88]. I have not identified

a need for vector integer division. If required, programmers could refer to Juffa’s method

for performing pipelined integer division using the vector floating-point reciprocal [89], an

operation implemented by the RCP-units.

Researching reduced-precision numbers, a trend observed in neural network process-

ing [24, 90, 91], is left for future work. The implications of reduced-precision arithmetic on

DRAM transfers and compute resource provisioning are expected to differ between HRT

accelerators and general-purpose accelerators. However, I believe results from experiments

in this area are orthogonal to the theory of WCET analysis presented in this work.
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3.3.3.2 Load/store units

At the heart of Sim-D’s architecture lies the ability to issue explicitly-coalesced load/store

operations to DRAM and scratchpads. The load/store unit is responsible for preparing

such requests. Chapter 5 presents a memory controller that supports such transfers.

To cover all general cases, Sim-D supports two different types of load/store requests:

scalar transfers to one- or multiple consecutive scalar registers, and indexed (indirect)

transfers to a vector register. To optimise for common use-cases, Sim-D additionally

supports instructions that transfer 1D- or 2D tiles of data into a vector register or a

scratchpad. Sim-D’s DRAM controller supports two types of indexed transfers (iterative

and snoopy) with different performance characteristics, as analysed in detail in Chapter 5.

Finally, since the scratchpad and the DRAM controller share a similar front-end, Sim-D

supports 1D/2D tile transfers and indexed transfers between a scratchpad and a vector

register.

A snoopy indexed transfer can either cover an entire buffer, or its range can be limited

to a 1D- or 2D block within a buffer. Limiting the range of a snoopy indexed transfer

reduces both average-case and worst-case performance. This is particularly useful when

reading or writing elements from an array-of-structs.

LD/ST instruction type Loads Stores Total

1D/2D block 41 20 61

Scalar 17 - 17

DRAM snoopy indexed, full buffer 7 1 8

DRAM snoopy indexed, 1D/2D block 12 6 18

DRAM iterative indexed 9 0 9

Scratchpad snoopy indexed, full buffer 17 14 31

Total 103 41 144

Table 3.1: Frequency of occurrence, load/store instructions.

Table 3.1 shows for each class of load/store instructions how frequently they occur

in the set of benchmarks ported to Sim-D. To justify the set of supported transfers, I

highlight two things. Firstly, more than 4 in 10 data transfers are effectively described as

1D or 2D block transfers. Secondly, over half of all indexed DRAM transfers (18 out of 35)

perform best when performed as a snoopy indexed transfer over a limited 1D or 2D block.

To prepare each of the transfers above, the load/store unit must compute the necessary

parameters. The full set of parameters is described in Section 5.3.1.1. For computing the

start- and end addresses of a transfer, an integer multiply-addition of various values from

the buffer mapping (provided by the BufToPhysXLat components) and the work-group

descriptor is required. Most other parameters are determined by a min-operation on
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values derived from the NDRange, the work-item descriptor and the instruction issuing

the request. In Sim-D’s simulation model I assume that either the existing SP-units or

specialised arithmetic units can be used to calculate these parameters without additional

pipeline delays.

3.3.4 Write-back

The write-back pipeline stage commits the results from the execute stage to the register

file, the DRAM or scratchpad request FIFOs, a CMASK, the control stack (CSTACK)

and/or the active work-group’s PC in the IFetch component. For writes to the register file

and the CSTACK, the scoreboard is updated accordingly.

No write-back component is modelled explicitly inside Sim-D. Rather, all necessary

control signals for write-back are provided on the outputs of the execute pipeline phase.

3.4 Control flow

Sim-D supports two forms of control flow: per-work-item vector control flow, and work-

group-wide scalar (un)conditional branches. This section describes the mechanisms and

required hardware for both forms.

3.4.1 Vector control flow

To allow work-items within a work-group to follow diverging code paths, Sim-D makes

use of implicit predicated execution. Implicit means that every vector operation executes

conditionally on the same single per-work-group predicate mask; no explicit predicate

mask is encoded in the instruction. Coon et al. [92] describe how GPUs can implement

implicit predicated execution with support for arbitrary nesting of for-loops, while-loops

and function calls which may contain (properly scoped) break-, continue- and return

statements. Following these principles, Sim-D supports such rich control flow using two

components: hardware-managed predicate registers and a control stack.

3.4.1.1 Predicate registers

Sim-D derives its implicit predicated execution mask from four special vector predicate

registers, henceforth CMASK registers: vc.ctrl run, vc.ctrl brk, vc.ctrl ret and vc.ctrl exit.

Each of these registers have one bit for each work-item in a work-group. Upon work-group

launch these registers are initialised to all-1, indicating that all work-items are enabled.

The implicit predicate that applies to each vector instruction is the bitwise boolean AND

result of all four CMASK registers.
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Each CMASK register permit disabling work-items for different reasons. By convention,

vc.ctrl run is used to disable work-items that do not meet the condition of an if-statement.

vc.ctrl brk is used to disable work-items that hit a break statement inside a loop. vc.ctrl ret

is used to let work-items return early from a function call. Finally, vc.ctrl exit indicates

(early) exit of a work-item.

Separating the predicate mask into these four registers is crucial for allowing the

nesting of various constructions. For example, breaking out of a loop inside an if-block is

facilitated by clearing the work-items’ bits in the ctrl brk mask. At the end of the if-block,

the previous ctrl run mask is restored. As these registers are separate, restoration of the

ctrl run mask does not result in re-enabling the work-items that hit the break statement.

A control flow operation may cause all work-item in a work-group to be disabled. To

detect this situation, the register file (RF) generates a work-item active signal from the

boolean OR of all bits in the implicit predicate mask. When this signal becomes 0, the

instruction decoder injects a cpop operation in the instruction stream, causing a CSTACK

entry to be popped. This cpop-injection repeats until at least one work-item is reactivated

and the work-item-active signal becomes 1.

3.4.1.2 Control stack

Under implicit predicated execution, the control flow operation at the start of an loop,

if-(else-)block or function call pushes one or more entries to the CSTACK. Each entry

contains the CMASK that must be restored after this conditional execution, and the

reconvergence point in the program where execution should continue.

Each control stack entry consists of a (PC, predicate mask, predicate type) 3-tuple.

The PC points to the reconvergence point. The predicate mask contains the restore value

for the CMASK register identified by the predicate type, which is equal to its value prior

to diverging. The predicate type is any of run, brk or call, matching three out of four

CMASK registers. The exit mask cannot be restored as early exit of a work-item is final.

3.4.2 Scalar control flow

In addition to implicit predicated vector control flow, Sim-D supports conditional- and

unconditional scalar jumps to provide an easy-to-analyse, low-overhead mechanism for

implementing for-loops and if-statements with scalar iterators and conditions. These

methods do not make use of the control stack or predicate registers, but simply update

the program counter.
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3.4.3 Usage example

The example OpenCL kernel in Listing 3.1 implements a toy kernel that nests an if-

statement inside a for-loop. To explain the control flow in this example code, I analyse

the body from the inner to the outer scope.

C1 __kernel void scratch(

C2 int __global *in ,

C3 int __global *out) {

C4 int x = get_global_id (0);

C5 int v = in[x];

C6 int i;

C7

C8 for (i = 0; i < x; i++) {

C9 v = v + x;

C10

C11 if (v % 8) {

C12 v += 128;

C13 break;

C14 }

C15

C16 v += i;

C17 }

C18

C19 out[x] = v;

C20 }

Listing 3.1: OpenCL C

A1 .data

A2 0 0x0 640 480 //in

A3 1 0x12c000 640 480 //out

A4

A5 .text

A6 mov v0 , vc.tid_x

A7 smov s0 , 0

A8 ldglin v1 , 0

A9

A10 cpush.brk out

A11

A12 loop:

A13 isub v2 , v1 , s0

A14 itest.le p0, v2

A15 brk p0

A16

A17 iadd v1 , v1 , v0

A18 and v2 , v1 , 0x7

A19 cpush.if no_early_brk

A20 itest.nz p0, v2

A21 itest.ez p1, v2

A22 cmask p0

A23 iadd v1 , v1 , 128

A24 brk p1

A25 cpop

A26

A27 no_early_brk:

A28 iadd v1 , v1 , s0

A29 siadd s0, s0, 1

A30 j loop

A31

A32 out:

A33 stglin v1 , 1

A34 exit

Listing 3.2: Sim-D assembly

Table 3.2: Side-by-side comparison of a toy kernel in OpenCL C and Sim-D assembly.
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The assembly implementation in Listing 3.2 requires two CSTACK entries: One entry

is pushed in line A10 with a reconvergence point labelled “out” at line A32, and another

entry is pushed in line A19 reconverging at the “no early brk” label in A27.

The inner if-block in lines C11-C14 translate to the assembly in lines A17-A25. Lines

A17-A21 perform the test “v % 8”, generating both a predicate mask for the case this

test evaluates to true (p0) and false (p1). The cmask operation in line A22 disables all

work-items for which the condition ”v % 8” is false, continuing with the enabled work-items

down the conditional code in C12-C13.

All work-items that are left enabled will execute the brk instruction in A24. After

executing this instruction, all work-items must necessarily be disabled, either by the

run-CMASK, or by the brk-CMASK. This triggers IDecode to inject a cpop into the

pipeline. Indeed, the cpop instruction in line A25 will never be executed in practice, but

in absence of a static analysis technique that infers the values of the predicate registers,

this line is required for correct control-flow analysis.

If the cmask instruction in line A22 results in disabling all work-items, IDecode will

inject a cpop instruction into the pipeline, popping the top entry of the stack. Control

then resumes from the “no early brk” reconvergence point at line A27 without entering

the body of the if-block.

The loop body from lines C8-C17 translates to the assembly in lines A7 and A10-

A30. The loop invariant is tested in A13-A15, using a brk instruction to exit the loop

when finished. Loop re-entry and iterator increment is achieved in A29-A30 using scalar

operations.

Exiting the loop occurs when all work-items have executed the brk instruction in either

line A15 or A24. If the last work-item is disabled by executing line A15, the top entry on

the CSTACK is the reconvergence point past the for-loop, accompanied with a break-mask

that re-enables all work-items. If the last work-item was disabled by the brk instruction

in line A24, the “run”-type entry pushed in line A19 is popped from the stack instead.

Popping this “run”-type entry and updating vc.ctrl run will not re-enable any work-items.

Hence after executing the injected cpop instruction, the no work-items active flag remains

set, causing a second injected cpop to pop the entry from the control stack that was pushed

in line A10. Control will then continue from the reconvergence point in line A32.

3.5 Data path

A high level schematic overview of the data path is depicted in Figure 3.4. The remainder

of this section describes the data sources marked in red in greater detail.
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Figure 3.4: Data path overview of the Sim-D simulator.

3.5.1 Scratchpads

Sim-D contains two addressable local storage units, scratchpads, each dedicated to one

work-group slot for performance isolation reasons. These scratchpads fulfil the role of

OpenCL’s local memory. A scratchpad can host multiple buffers. The mapping from

a buffer index to an offset in the scratchpad is stored in a dedicated BufToPhysXLat

components, explained in greater detail in Section 3.5.3.

Scratchpads are implemented in hardware using (1R1W) SRAM cells. Such cells

facilitate lower latency access than DRAM cells, as SRAM does not suffer delays caused

by bank precharging, activation and refresh. As a beneficial side-effect of SRAM’s simpler

timing properties, upper bounds on scratchpad data arrival times are tighter than those on

DRAM requests. Discrepancy between average- and worst-case DRAM request latencies

are mainly the result of data alignment uncertainty. With SRAM storage, this uncertainty

can only cause a 1-cycle difference between the best and worst case.

Each scratchpad has two interfaces: one to transfer data between scratchpads and the

RF, and one to transfer data between DRAM and scratchpads.

For scratchpad↔RF communication, scratchpads have a similar front-end to the DRAM

controller. The SimdCluster’s load/store unit issues large coalesced requests to transfer

data between a scratchpad buffer and a register file. Additionally, snoopy indexed transfers

are supported. More details on such transfers are given in Chapter 5.

DRAM can transfer data directly into a scratchpad, even if the dimensions of the tile

exceed the dimensions of a work-group. To initiate such a transfer, the SimdCluster issues

a request to the DRAM controller specifying the scratchpad as its target destination. The
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dimensions for this transfer are taken from the mapping in the BufToPhysXLat unit.

Applications on Sim-D are expected to have a higher demand for scratchpad memory

than on traditional GPUs due to Sim-D’s absence of a transparent cache hierarchy. The

primary function for local memory is to cache tiles of data shared among the work-items

in a work-group, for example when performing filter operations. Pre-loading a tile of data

to local memory can both improve throughput and reduce congestion on the DRAM bus.

Benchmarks use Sim-D’s scratchpads in various other ways. Firstly, scratchpad buffers

are used to efficiently construct array-of-struct values one struct member at a time, before

writing these values back to DRAM in one contiguous transfer. Secondly, scratchpad

buffers serve to cache scalar values; values shared among all work-items of a work-group.

For example, the CNN convolution benchmark shares 7 ∗ 7 ∗ 3 kernel values among a whole

work-group. Pre-loading these kernel values into the scratchpad allows issuing a single

147-word DRAM transfer without the need for 147 scalar registers.

The size of each scratchpad is currently (over)provisioned at 128KiB, and its data

bus width is configurable during compilation. Static benchmark analysis in Section 6.1.2

provides data on the scratchpad usage of different benchmarks. Section 6.2.1 quantifies

the influence of the scratchpad bus width on performance.

3.5.2 Register Files

To provide fast temporary storage to the compute units with strong performance isolation

guarantees, Sim-D contains one register file (RF) per work-group. Each RF manages

different types of register banks:

• General purpose vector registers (VGPRs),

• General purpose scalar registers (SGPRs),

• (vector) predicate registers (PRs),

• Special purpose vector registers (VSPs), e.g. TID, CMASK,

• Special purpose scalar registers (SSPs). e.g. kernel dimensions.

Logically, each vector register file (VRF) is organised as a 2D grid of 32-bit registers,

rows representing the addressable vector registers (e.g. v0..v63) and columns mapping

to work-items in a work-group. The predicate register files are organised similarly, but

contain 1-bit registers. An overview of the vector- and scalar special registers is given in

Appendix A.2.

Each RF has two interfaces: one for the SimdCluster’s operand fetch and write-back,

and one to transfer data between the register file and DRAM or scratchpad storage. Access

to these two interfaces is mutually exclusive as a work-group can only occupy one compute-
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or storage resource at a time. The Sim-D simulator assumes that the RF can be clocked

at the speed of the DRAM interface (up to 1.6GHz) when transferring data to storage,

and can be synchronised to the SimdCluster’s pipeline with the use of an efficient clock

switching mechanism.

3.5.2.1 Operand interface

Through the operand interface, the RF is responsible for fetching up to three operands

per cycle. These operands could be vector registers, scalar registers, predicate registers

or special purpose registers. Additionally, the RF can process one vector- or scalar write

operation per cycle.

The second operand of a vector instruction can be a scalar register or immediate. For

these instructions, the RF broadcasts the required value to the operand input of each

work-group. The instruction decoder can provide an immediate value to this broadcast

network using a dedicated input.

3.5.2.2 DRAM- and scratchpad interface

The RFs DRAM- and scratchpad interface consists of several control signals produced by

the storage resources, along with a wide bi-directional data bus. These control signals

determine the direction of the data bus and the register(s) being targeted. For snoopy

indexed transfers, these control signals convey the buffer offsets of the data elements that

are currently being read or written.

As for indexed transfers any value on the data bus can potentially be routed to every

vector register column, routing data from DRAM and scratchpads to the vector registers

is performed using a per-RF on-chip crossbar. The dimensions of these crossbars depend

on the width of the scratchpad data bus, as this is wider than the DRAM data bus. Under

Sim-D’s widest scratchpad data bus configuration of 32 words, the dimensions of each

crossbar is 32× 1024 with 32-bit words. Control signals for this crossbar are generated by

the DRAM controller in the case of block transfers and iterative indexed transfers, and by

the register file’s array-of-CAMs (see Section 5.3.2) for snoopy indexed transfers.

To justify feasibility of a crossbar with such dimensions and latency requirements,

I highlight that Cakir et al. [93] demonstrated a 256 × 256 crossbar with 32-bit data

words. This crossbar runs at ∼800MHz and is produced with a 40nm process. Bearing in

mind recent advances in processing technology, I therefore assume that a crossbar meeting

Sim-D’s requirements is currently at the edge of feasibility, and leave studying hardware

implications for future work.
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3.5.2.3 Vector register file implementation

The biggest challenge when implementing a VRF is meeting the bandwidth requirements

of the compute resources with minimal area- and power consumption. The bandwidth

requirements are determined by the frequently-used multiply-accumulate (MAD) instruc-

tion, which reads three vector operands and writes back one vector operand. Each vector

read and write can target as many columns as there are work-items in a warp.

Without data placement considerations, four-port 3R1W SRAM cells seem required to

achieve a potential IPC of 1. Literature (e.g. Gebhart et al. [94]) suggest that commodity

GPUs design their VRF around dual-ported 1R1W SRAM banks instead. Lindholm et

al. [95] describe a technique that creates the illusion of multi-ported SRAMs using multiple

1R1W SRAM banks. For each active warp, a collector unit gathers the operands required

for its current instruction. Operand requests are placed in per-SRAM-bank FIFOs. Once

all operands for an instruction have been collected, the instruction and its operands are

issued to the execute pipeline phase. This mechanism implicitly re-orders instructions from

different warps such that each instruction is issued at the earliest moment its operands

become available. To balance access to the SRAM banks in the common case, a register’s

bank number is determined by hashing the register number with the warp ID.

To motivate the use of SRAMs with fewer ports from the perspective of power con-

sumption, Gebhart et al. [94] estimate using the GPUWattch power model [96] that the

1R1W register file of the NVIDIA GeForce GTX480, a Fermi-generation graphics card

with a similar ratio of registers per SP-unit as Sim-D, makes up 13.4% of its total power

consumption. Using McPat, Lim et al. [97] estimate that the dynamic power consump-

tion of the register file in a similar GeForce GTX580 GPU is ∼7%. Using their power

model, GPU-wide dynamic power consumption is estimated to increase by over 21% if

3R1W SRAMs were used in the same banking organisation as the current 1R1W SRAM

configuration.

From this perspective, there is a strong incentive to design Sim-D’s VRF around

1R1W SRAM banks. Unfortunately, using collector units is not practical for Sim-D as the

freedom they permit in scheduling the warps of a work-group complicates static worst-case

performance analysis. Instead, I evaluate two schemes that allow simple round-robin

scheduling of warps for each vector instruction. Figure 3.5 depicts an example bank

mapping of both schemes for warps of 128 work-items.
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v0 Bank 0

v1 Bank 1

v2 Bank 2

v3 Bank 3

v4 Bank 0

v5 Bank 1

0-127 128-255 256-383 384-511 512-639
Work-items

(a) Scheme 1: 1-stage decode
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(b) Scheme 2: 3-stage decode

Figure 3.5: Example bank-to-VGPR mappings

Scheme 1 proposes a simple mapping from register number to bank, relying on the

compiler’s register assignment pass to avoid conflicts. The second scheme maps warps to

banks and extends the operand fetch pipeline phase from 1 to 3 cycles, one per operand,

to avoid bank conflicts. Figure 3.6 shows the resulting two pipelines.

Scheme 1:

Fetch

Decode/load src1,src2,src3

Execute (n stages)

Write-back

Scheme 2:

Fetch

Decode/load src1

load src2

load src3

Execute (n stages)

Writeback

Figure 3.6: Pipeline stages for both VRF partitioning schemes.

Scheme 1: 1-stage decode Under scheme 1, the VRF is banked row-wise, mapping

VGPRs to banks. The example depicted in Figure 3.5a maps a VGPR vi to one of four

banks b = i & 0x3. Any configuration with three or more banks is able to satisfy the peak

bandwidth requirements of three-operand vector operations.

Whether this bandwidth can be sustained at run-time depends on the compiler’s ability

to allocate hardware registers such that bank conflicts are avoided. If a conflict occurs, a

pipeline bubble is inserted for every warp. These conflicts can be determined statically.

Increasing the number of banks decreases the probability of bank conflicts occurring, but

at the potential cost of reduced SRAM density.

Scheme 2: 3-stage decode Under scheme 2, registers are banked by warp as shown

in Figure 3.5b. An example mapping with 4 banks would be b = warp id & 0x3. For this

scheme, the decode pipeline phase is split up in three stages. In every stage, one operand

of an instruction is fetched. For a power-of-two number of banks and no warp trimming,

61



round-robin scheduling of the warps in a work-group ensure that bank conflicts can never

occur under this scheme.

There are two reasons that suggest that under this scheme it is best to match the

number of banks with the number of warps in a work-group. Firstly, adjacent words

transferred from DRAM or scratchpads in one cycle could be directed to disjoint columns

of the same vector register. If multiple warps map to the same register bank, a worst-case

transfer may require buffering of data elements before writing them back to the register

file to deal with bank conflicts. Buffering would increase the complexity of the RF’s

DRAM/scratchpad interface.

A second reason for matching the number of banks with the number of warps is that it

guarantees conflict-free pipelined operand fetch even when applying warp trimming on

remainder work-groups. I deem this reason of minor importance, as the limit study in

Section 6.4.2 suggests that the benefit from warp trimming is minimal.

Evaluation A thorough evaluation of both schemes requires me to quantify area and

performance implications. Dynamic power consumption for read- and write operations is

less relevant, as techniques like divided word-line (DWL) [98] or COMA [99] can help make

power consumption independent of the SRAM bank’s row width. These techniques allow

writing only parts of an SRAM row. In Sim-D’s case the parts of a row can be selected

by a warp’s implicit predicate mask. Using a technique like DWL, the dynamic power

consumption of the VRF will vary minimally between the possible banking organisations,

at an area overhead of 4%. As an added benefit, insertion of additional levels of restoring

logic on the word-line (the wire from the last level of a row decoder into each SRAM cell)

reduces its fan-out, in turn reducing parasitic capacitance originating from the SRAM

cells [28]. This results in reduced latency and power consumption of the SRAM banks.

For area and latency bounds, I need details of a hardware implementation of the

VRF under various banking schemes. Unfortunately, initial experiments with the CACTI

7.0 [100] power-, area- and latency model of SRAM-based storage structures have instilled

little confidence in the accuracy of its results when generating oblong SRAM designs.

Modelling an SRAM bank of 16 entries of width 2048b results in an SRAM density of just

over 6%. I suspect this low density is caused by CACTI’s fixed four-level hierarchy (bank,

subbank, mat, subarray) and preference for a square organisation with H-tree interconnects

being calibrated towards larger L2 and L3 caches rather than oblong VRF banks. A

custom design could well yield better results, but creating such an implementation is

beyond the scope of this work. As a general observation: given the VRF logically has

many times more columns than rows, the banking strategy for scheme two has the benefit

of producing less-oblong banks.

Performance wise, scheme 1 has the theoretical benefit of a shorter pipeline, reducing
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the pipeline warm-up and flush penalty as well as the probability and cost of RAW-

hazard resolution. The performance comparison of the two register banking schemes in

Section 6.2.2 indicates that for most benchmarks this performance effect is negligible.

3.5.2.4 n-vector load/stores

When handling structs of data, developers are encouraged to organise this data in memory

as a struct-of-arrays. This way, neighbouring work-items request values which are stored

consecutively in memory rather than spaced apart by the width of the struct, improving

net DRAM data bus utilisation. If the application’s requirements forbid such a data

organisation, adding hardware support for n-vector data elements can significantly speed

up data transfers from array-of-struct buffers.

Support for such transfers imposes additional constraints on the partitioning of the

register file, as it must be able to write to the same column of up to n consecutive vector

registers in a single cycle. This is likely to increase the area overhead of the register file.

Furthermore, as this increases the data routing options, the number of outputs from the

vector register distribution crossbar must be multiplied by n as well.

From the set of benchmarks I identified two use-cases for 2-vector loads: FFT and

the SRAD reduce kernels. Furthermore, KFusion reads 3-vector arrays. Zooming in on

the FFT benchmark, an alternative approach to yield good DRAM throughput from its

array-of-structs buffer is to preload all structs into the scratchpad, and perform a series of

indexed loads from there. In Section 6.4.1 I argue against the implementation of n-vector

loads by contrasting the performance and hardware cost of these two approaches.

3.5.3 Mapped buffers: BufToPhysXlat

Each SimdCluster contains two BufToPhysXlat units per SimdCluster: one for DRAM

buffers and one for scratchpad buffers. Each BufToPhysXlat component contains a mapping

from a buffer ID number to a (physical address, x-dimension, y-dimension) 3-tuple. Their

purpose is to provide a memory protection mechanism that isolates data between different

kernel-instances, and to provide necessary parameters to load/store instructions. For

example, the load/store unit uses the x-dimension of a buffer to determine the period

of a 2D stride request. Stride requests are discussed in detail in Section 5.3.1.1. Buffer

dimensions are also used to perform out-of-bounds checks on DRAM and scratchpad

requests, providing memory protection across kernels.

Upon launching a kernel-instance, the workscheduler uploads all mappings to the two

BufToPhysXlat units. These mappings persist throughout kernel execution.

The DRAM and scratchpad BufToPhysXlat units can be queried in parallel, simplifying

the pipeline in the presence of DRAM↔scratchpad transfers. Querying a BufToPhysXlat
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entry is done in constant time, providing a latency benefit over page tables. This benefit

comes at the cost of two hardware-imposed restrictions: a fixed limit on the number of buffer

entries and a requirements that all buffers are contiguous in physical memory. Section 5.2

demonstrates that most kernels only map a limited number of buffers. Developers can opt

to fuse buffers of similar x-dimensions if more buffers are required than can be mapped in a

BufToPhysXlat unit. I expect that the requirement for contiguous buffers is an acceptable

limitation to be paid by HRT systems.

3.5.4 Scoreboard

The scoreboard is used to mitigate read-after-write (RAW) hazards resulting from write

operations pending in the pipeline. Write operations of an instruction are added to

the scoreboard in the first cycle of the instruction decoder, and will be removed upon

committing results in the write-back pipeline stage. When the instruction decoder issues

an operand read operation for a register that matches a pending write operation in the

scoreboard, the pipeline will stall until the write operation is complete.

Write-after-read (WAR) and write-after-write (WAW) hazards cannot occur in Sim-

D’s simple single-issue in-order pipeline, and thus do not need a hardware resolution

mechanism.

Rather than storing write operations in a bit-mask of registers as is common in CPUs,

Sim-D implements the scoreboard as a queue backed by a ring-buffer of CAMs. Two

observations motivate this decision. Firstly, the single-issue in-order pipeline means that

register write reservations are first-in-first-out. Secondly, the Sim-D pipeline contains

significantly more registers to track than ordinary CPUs. Given n warps per work-group,

the default Sim-D configuration must track 64 ∗ n VGPRs, 32 SGPRs, 6 ∗ n VSPs and 3

SSPs per work-group. For n = 8, this equates 1190 registers. If each register is represented

as a bit in a bit-map, in any cycle the vast majority of these bits will be 0.

By contrast, for a pipeline of m stages between the first instruction decode stage and

the write-back stage, a queue requires m entries for safe operation. For m = 8, this reduces

the number of required storage bits from 1190 to 8 ∗ dlog2(1190)e = 88b. CAMs with

three match-lines are used for storage so that IDecode can query three registers per cycle,

satisfying the instruction throughput requirement of three register loads per cycle.

The order of operations in cycle n is as follows. First, a commit request from the

write-back pipeline stage, generated in cycle n− 1, is processed by removing the oldest

entry from the list. Second, a new write reservation, generated by the instruction decoder

in cycle n − 1, is added to the queue. Finally, the instruction decoder’s three operand

queries for cycle n are checked. If one of the queries matches, the scoreboard issues a stall

signal indicating which register is currently reserved. Scoreboard querying is performed in

parallel with the register reads. If the scoreboard issues a stall-signal for one of the words,
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the data returned by the RF is undefined and must be discarded. The instruction decoder

must repeat a request for the reserved word(s) every cycle until the stall signal is cleared.

3.5.4.1 Special cases

Although the general mechanism behind the scoreboard effectively detects RAW hazards,

four cases require special care: false WAR-hazards, pipeline flushes, control stack operations

and custom DRAM stride-requests that implicitly rely on special scalar registers. I next

explain how Sim-D handles these special cases.

False WAR-hazards When Sim-D is configured with a three-stage instruction decoder,

following scheme 2 from Section 3.5.2, false WAR-hazards could lead to a pipeline deadlock.

To explain the problem, consider the following sequence of scalar instructions:

1 smad s0 , s1 , s0 , s3

2 sadd s3 , s0 , s4

Listing 3.3: Code example exposing false WAR hazard.

This code example contains a RAW hazard on register s0. In cycle 0, the instruction

decoder issues an operand fetch for s1, the first operand for the instruction in line 1, and

reserves s0 for writing with the scoreboard. In cycle 1, the sadd instruction will enter the

instruction decoder, causing it to reserve s3 for writing in the scoreboard and attempt to

fetch its first operand s0. This fetch must be stalled until the smad operation reaches

write-back.

There are two problems in this program that each potentially cause a deadlock in the

pipeline. Firstly, the smad operation’s second operand s0 is marked on the scoreboard

as a write target by the very same instruction. Without a mechanism to convey to the

scoreboard that this operand should indeed be read before write-back, the scoreboard will

flag a false RAW-hazard in cycle 1 preventing this instruction from advancing through the

pipeline.

A second problem occurs in cycle 2. In the case that both instructions did proceed to

the next pipeline stage, in cycle 1 the sadd instruction would have reserved s3 for writing

in the scoreboard. In cycle 2, the smad operation would request its third operand, s3. The

scoreboard now indicates a false WAR-hazard on s3 by virtue of the reservation made in

cycle 1. The pipeline deadlocks as sadd will never execute before smad. The expected

behaviour would instead be for the smad operation to read the old operand value.

To mitigate these two problems, the scoreboard keeps track of the currently active ring

buffer entries in two bit-mask, one per work-group. These bitmaps are shared with the

instruction decoder through an output port called entries pop. Additionally, for each read

operand query, the scoreboard allows the instruction decoder to specify which ring buffer
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entries to match against by providing a bit-mask of equal length. The scoreboard performs

a boolean AND of this bit-mask with it’s own entries pop bit-mask when determining which

content-addressable memorys (CAMs) to match an operand against to avoid querying

inactive ring buffer entries.

The three-stage instruction decoder is modified as follows. Instructions progressing

down the pipeline are accompanied with a req sb pop register. Upon arrival of an instruction

in the instruction decoder’s first pipeline stage, this register is initialised to all-1. The first

operand is now queried with this (all-1) register value as its bit-mask. On every cycle that

this instruction remains in the decoder’s pipeline stages, it updates its req sb pop value by

performing a boolean AND with the scoreboard’s entries pop value. This disables ring

buffer entries that were just removed from the queue or were otherwise inactive, without

ever (re-)enabling entries that may have been added later. For each operand request, the

instruction decoder provides the updated req sb pop to the scoreboard.

The one-stage instruction decoder can strap each reg sb pop mask to all-1 without

consequences.

To demonstrate how and why this solution works, consider the following example

program snippet. Irrelevant registers are denoted with w,x,y,z.

1 [...]

2 sadd x, x, x

3 smad s0, x, x, x

4 sadd w, w, w

5 smad y, x, x, s0

6 sadd s0, x, x

Assume this code runs on an architecture with a 3-stage instruction decoder, a single

execute stage, and a 4-entry scoreboard ringbuffer. The state of the scoreboard and the

requests issued by the instruction in line 5 is visualised in in Figure 3.7.

5: smad y, y, y, s0

6: sadd s0, z, z

y?

y?

s0?

cycle [3] [2] [1] [0] ENTRY POP

Ringbuffer slots

n w s0 x 0111

n+1 y w s0 1110

n+2 y w s0 1101

Figure 3.7: Example execution with 4-entry scoreboard

The table on the right of Figure 3.7 shows the contents of the scoreboard and the

ENTRY POP mask for the corresponding work-group for cycles n to n+2. Grey columns

denote the smad instruction’s req sb pop register value. At cycle n, instruction 5 from the

example program (”smad y, y, y, s0”) enters the instruction decoder. As derived from the

population in the scoreboard at cycle n, this instruction will flow through the instruction
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decoder with an all-1 initial entry pop.

At cycle n+1, the instruction from line 2 has finished execution and its scoreboard

entry 0 is removed accordingly. Additionally, the target for the smad in line 5 is added to

column 3. The instruction decoder updates the req sb pop with the entry pop value from

the previous cycle, resulting in a mask that excludes its own write. In the same cycle n+1

the sadd instruction from line 6 enters the instruction decoder. Its first operand does not

appear in any of the scoreboard entries, and neither does the second operand of the smad

instruction, hence the pipeline will not stall.

In cycle n+2, the sadd instructions destination operand s0 is enqueued on the scoreboard.

The req sb pop value for smad (0111) is ANDed with the entry pop value of the previous

cycle (1110) to create the new value 0110. Note that this mask prevents matching its third

operand, s0, against the scoreboard entry in slot 0. As a result, no false RAW hazard is

flagged and execution will continue as expected.

Pipeline flushes When a control flow operation commits its new PC and triggers

a pipeline flush, the scoreboard contains write reservations for instructions that will

not commit. To avoid stalling unnecessarily on these now-obsolete reservations during

pipeline warm-up, IExecute instructs the scoreboard to clear the entry pop bit-mask for

the corresponding work-group. This disables matching against all ring buffer entries. As

the now-dead instructions pass through the write-back stage of the pipeline in subsequent

cycles, entries are dequeued from the ring-buffer to free up space for new reservations.

Control stack operations CSTACK pops can conflict with CSTACK pushes as reads

from the CSTACK are performed in the first IExecute pipeline stage while writes commit

in the write-back stage. To avoid CSTACK hazards, the scoreboard uses a per work-group

counter to track the number of CSTACK operations in the pipeline. cpop operations stall

in the instruction decoder as long as the counter is non-zero. The maximum value of this

counter is determined by the number of CSTACK instructions that can be in the pipeline

at any given time. Since CSTACK operations are vector operations, this maximum value

is 2 for a pipeline distance between the first instruction decode stage and the final execute

stage of 8 and 8 warps per work-group. Each counter thus adds two bits of storage.

Special scalar register dependencies Some memory operations depend on the values

of the three SSP stride descriptor registers: sc.sd words, sc.sd period and sc.sd period cnt.

These instructions do not load these registers explicitly as instruction operands, but rather

they are hard-wired to the load/store unit. As such, the instruction decoder does not

query write dependencies on these registers through the regular query ports. To correctly

eliminate RAW hazards for these instructions, an extra match-line is added to each CAM

that tests whether the register is a special scalar register. The instruction decoder can use
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the dedicated ssp match signal to query a write reservation for any such register, and stall

if the Scoreboard reports a match for the given work-group. No extra storage is required

for matching of these special scalar registers. Since these stride-descriptor registers are the

only writeable SSPs, a single query bit suffices.

3.6 Summary

In this chapter I presented the Sim-D wide-SIMD parallel architecture for HRT systems.

Sim-D performs strip-mining in hardware, making its execution model similar to that of a

GPU. It features a four-phase in-order pipeline of configurable length, supporting a mix of

scalar and vector instructions. Scalar instructions are used to issue large work-group-wide

DRAM requests, which I explain in Chapter 5.

Two key features make this architecture suitable for HRT systems: performance

isolation and double-buffered execution of work-groups. Together this permits a coarse

grain interleaving of the compute- and data access phases of work-groups, with predictable

execution times on each phase. This performance-isolation permits safe and tight WCET

analysis, as will be explained and evaluated in Chapter 7.
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CHAPTER 4

Experimental set-up

This chapter explains the components that comprise the experimental set-up used for

feasibility-, performance- and design space studies presented in the remainder of this thesis.

This chapter provides details on the following:

• The cycle-accurate “Sim-D” simulator and its DRAM configuration (Section 4.1),

• The software set-up and NVIDIA hardware used for data extraction and performance

comparisons (Section 4.2),

• The set of benchmarks used for evaluation (Section 4.3),

• A discussion on the limitations of experiments carried out with these components

(Section 4.4).

4.1 Cycle-accurate simulation

To perform cycle-accurate measurements on the architecture presented in Chapter 3, I

implemented a simulator in SystemC [79] comprising both the compute resources and

the memory controller. This platform was chosen for simulation performance, ease of

development and easy integration with third party simulation models written in C or

C++. As the Sim-D’s data path and mixed vector-scalar ISA differ significantly from

conventional GPU architectures, I decided against re-using existing simulation models like

GPGPU-Sim [101] or Multi2sim [102].

The Sim-D simulator integrates two external projects: Ramulator [81] and DRAM-

Power [82]. These projects provide a DDR4 DRAM timing model and a power estimation

model for streams of DRAM commands respectively. I have extended both projects with

matching timing- and power models for DDR4-1866M and DDR4-3200AA memory, the

latter for which parameters are derived from the Micron MT40A512M16 datasheet [103].
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Figure 4.1: CCMake displaying Sim-D compile-time configuration options.

Sim-D’s high configurability enables easy design space exploration. Compile-time

options (displayed in Figure 4.1) include the number of single-precision units, work-items

per work-groups, size of the instruction memory, maximum number of bound buffers,

DRAM configuration and scratchpad data bus width. These options must be chosen at

compile time because they affect widths of internal signals, which in SystemC are chosen

through C++’s object template values. C++ template values must be known statically to

the compiler. At run-time, the pipeline depth of the decode and execute phases can be

configured.

For a typical benchmark, the Sim-D simulator simulates in excess of 45,000 cycles

per second on a mid-range desktop system from 2013 containing an Intel Core i5-4670

(3.40GHz) CPU.

4.1.1 DRAM configuration

For all Sim-D experiments, the DRAM data bus is configured to be 64 bits wide. For

evaluating the full Sim-D processor, this bus width is achieved by assuming a rank of

either four parallel DRAM chips with a 16-bit data bus, or 8 chips with an 8-bit data

bus each. A full overview of both DDR4-3200 DRAM configurations and their timings is

provided in Table 4.1.
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Micron DDR4-3200AA

Symbol (1) 4*16b (2) 8*8b Description

fc 1600MHz, 1T Cmd bus frequency, cycles per command

fd 3200MHz Data bus frequency

nCh 1 Channels

nRa 1 Ranks

64-bit Effective bus width

nB 8 16 Banks / Rank

nBG 2 4 Bank groups / Rank

nR 65536 Rows / Bank

nC 1024 Columns / Row

nBW 16 Words/burst (8 beats, 64B)

Latency in cycles, tCK = 0.625ns

tRCD 22 Row-activate to CAS delay

tCAS 22 Column access strobe, RD → first burst distance

tCWD 16 Column write delay, WR → first burst distance

tRP 22 Row Precharge delay

tRPRE 1 Read preamble

tWPRE 1 Write preamble

tBURST 4 Cycles per burst (for DDR: beats / 2)

tRAS 52 Row Activate Strobe, min. ACT → PRE distance

tRTP 12 Read-to-Precharge

tWR 24 Write Recovery

tFAW 48 34 Four activate (sliding) window

tRFC 560 Refresh cycle (act, pre) time

tREFI 12480 Refresh interval

tCCDS 4 Column R/W to CAS delay, different bank group

tCCDL 8 Column R/W to CAS delay, same bank group

tRRDS 9 4 Row-activate to Row-activate delay, different bank group

tRRDL 11 8 Row-activate to Row-activate delay, same bank group

tWTRS 4 Write-to-Read, different bank group

tWTRL 12 Write-to-Read, same bank group

Table 4.1: Configuration and timing properties of Micron (1) MT40A512M16JY-062E and (2)
MT40A1G8SA-062E DDR4-3200AA.
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4.2 Real-world comparison and OpenCL data acqui-

sition

All experiments are run on an Intel Core i5-4670 (3.40GHz) based mid-range desktop

computer from 2013. This system runs Ubuntu 16.04 with Linux kernel 4.4 LTS. Several

NVIDIA graphics cards from the Kepler generation were used for static data acquisition

and performance measurements. For these cards, the NVIDIA GeForce driver version

367.27 was installed.

As a reference point for average case performance, I run OpenCL benchmarks on an

NVIDIA GeForce GT710 graphics card. This graphics card is of similar specifications to

the NVIDIA Tegra K1 embedded GPU. Like Sim-D, this card contains a 64-bit DRAM bus.

For comparative experiments, Sim-D and the GeForce GT710 card are configured to match

as closely as possible. To this end, Sim-D is configured with the DDR4-1866M DRAM

timing profile. Furthermore, the graphics card is modestly overclocked: the compute clock

is increased from 954MHz to 1GHz and the DRAM clock from 1800MHz to 1866MHz.

To guide Sim-D’s design space exploration, I analyse static program properties like

register usage, instruction mix and NDRange parameters from OpenCL kernel-instances

running on an NVIDIA Kepler GTX 650 graphics card. Data is extracted from this system

using two tools: valgrind-mmt [104] and demmt [83]. Valgrind-mmt is an extension to

the Valgrind tool that adds capabilities to intercept communication between NVIDIA’s

user-space device driver and its kernel module. This communication contains data not

otherwise exposed to users or developers, such as command buffers, launch parameters and

assembled program binaries. Note that these binaries contains more low-level information

that exposed through NVIDIA’s public PTX intermediate representation (IR) [105].

Architecture-specific optimisation- and register allocation passes have been executed,

resulting in more detailed information about instruction mix and register usage.

Demmt is capable of decoding and displaying the trace output of valgrind-mmt in a

human-readable form. Demmt ’s output contains kernel launch parameters and disassembled

kernel binaries in NVIDIA’s architecture-specific ISA.

An initial evaluation of GPGPU-Sim [101] led me to believe that its simulation results for

embedded-grade GPUs are not representative for real world performance. When simulating

a GPU resembling the NVIDIA GeForce GT710, for at least one of the CNN benchmarks

I observed a simulated execution time more than double the measured execution time on

actual hardware. For this reason I decided against using GPGPU-Sim for quantitative

experiments.
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4.3 Benchmarks

With Sim-D’s focus on hard real-time systems, I selected a set of benchmarks representative

for the expected workloads on safety-critical systems. Their use-cases include (autonomous)

robotics and medical imaging, covering massively-parallel algorithms in the classes of

neural networks, computer vision, DSP and generic linear algebra.

Where available I used existing kernels from KinectFusion [106] and SPEC Accel [107],

the latter being a benchmark suite derived from the Rodinia [108] and Parboil [109] suites.

Unfortunately, public neural network benchmarks use the proprietary cuDNN library

for acceleration, obscuring the mapping between GPGPU kernel code and the generated

assembly. For this reason, I additionally ported and optimised common convolutional

neural networks (CNNs) operations from Dr. Bates’ C implementations [110] to OpenCL.

Application domain Benchmark Source Kernel Sim-D port

AI CNN Dr. Bates convolution
√

relu
√

maxpool
√

Computer vision KinectFusion SLAMBench halfSampleRobustImage
√

depth2vertex
√

vertex2normal
√

track
√

Healthcare SRAD SPEC srad
√

srad2
√

reduce
√

reduce fpatom

MRI-Q Parboil/SPEC ComputePiMag
√

ComputeQ
√

Sparse matrix SPMV Parboil/SPEC spmv jds naive
√

Dense matrix LU Decomp. Rodinia/SPEC diagonal

perimeter

internal

Partial Diff. Eq. Stencil Parboil/SPEC naive kernel
√

FFT FFT Parboil/SPEC GPU FFT Global
√

Table 4.2: List of selected benchmarks and kernels.

All selected benchmarks are listed in Table 4.2. Kernels with a matching implementation

in Sim-D are marked in the final column. The remainder of this section describes the

benchmarks in greater detail and justifies my modifications to some of the benchmarks.
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4.3.1 CNN

The CNN benchmarks implement the operations for three types of layers: convolution,

RELU and max-pooling. Each kernel performs dense-matrix operations on large 2D- or

3D inputs. Input sizes and parameters for max-pooling and convolution are taken from the

conv1 and maxpool1 layers in Squeezenet [111]. RELU dimensions were taken from Dr.

Bates’ original kernel [110], which are deliberately small to aid architecture simulation.

As none of these benchmarks exhibit data-dependent performance variance, input data is

randomly generated.

4.3.2 KinectFusion

KinectFusion [106] implements a set of algorithms designed to map surroundings from

data gathered using a moving Microsoft Kinect camera. Central to this benchmark is the

iterative closest point algorithm which performs simultaneous localisation and mapping

(SLAM) on a succession of frames. The KinectFusion kernels used in this work are those

implemented in SLAMBench [112].

The closest point algorithm works by estimating and iteratively refining a motion

vector that describes the movement between two frames. The accuracy of a candidate

vector is assessed by calculating the per-pixel error between frame n and a transformation

of the frame n+ 1 by this vector. Edges of this transformation are extrapolated from the

edges of frame n+ 1.

I modified the halfSampleRobustImage kernel to obtain a more realistic kernel binary.

This kernel contains a nested loop that is unrolled by NVIDIA’s driver. Unfortunately,

the inner loop is unrolled with a factor larger than the number of iterations this loop

takes in practice. Manually providing the true iteration count using the #pragma unroll

annotation reduces the binary size with no measurable effects on performance.

4.3.3 SRAD

The Speckle Reducing Anisotropic Diffusion [113] benchmark implement a filtering tech-

nique to remove locally correlated noise from an image while preserving edges of features.

Of the six kernels that constitute this benchmark, I selected the three kernels performing

non-trivial work: SRAD, SRAD2 and SRAD reduce

The SRAD reduce kernel uses a binary-tree reduction to compute the sum of a list of

numbers in O(n∗log(n)) operations. Although this kernel performs well, it makes extensive

use of work-group barriers to guarantee consistency. Without diverging from the OpenCL

standard, a binary-tree reduction is the most efficient way to perform this summation.

A kernel performing this task with O(n) operations can be constructed using floating

point atomic operations. Such a kernel eliminates both all work-group synchronisation
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points, and launching of subsequent kernels that aggregate the per-work-group results.

The OpenCL standard does not support floating point atomic addition operations, but

such operations can be used on NVIDIA hardware using in-line assembly. To generate

comparison data on NVIDIA hardware for both approaches, I developed the non-portable

“reduce fpatom” kernel using in-line assembly.

The SRAD reduce kernel contains lots of duplicate code to deal with various edge

cases. Generally work-items in the same warp all tend to follow the same code path, so

despite the complex control structure there are no divergent work-items at run-time. To

report more meaningful numbers on binary size and instruction mix, I have deduplicated

this code. Despite a marked reduction in control flow around the main loop(s), this has

no measurable effect on execution time as this kernel’s inner loop is fully unrolled by

NVIDIA’s OpenCL compiler.

The srad and srad2 kernels perform complex filter operations on image data. I applied

two optimisations to both kernels. Firstly, many literals in the original kernel omitted the

f modifier and thus were provided as doubles. I have corrected these to single precision

floating point values, removing the overhead of run-time conversion to single-precision

values. Secondly, I replaced the open-coded clamp operation with the OpenCL-provided

clamp() function. Together these optimisations result in a reduction of code size of

approximately 20− 24%, and a ∼5% improvement in run time.

4.3.4 MRI-Q

The MRI-Q benchmark [109] contains a subset of a program that reconstructs an image

from non-Cartesian data obtained from MRI equipment. Input data is provided as a

collection of complex numbers. As such, this benchmark requires trigonometric operations

and is strongly compute-bound.

The main loop of the computeQ kernel as shipped with SPEC Accel is manually

unrolled by 2. Experimenting with other unroll factors shows that 2 provides the best

trade-off between binary size and performance on NVIDIA hardware. As such, I maintain

the original structure of the kernel and refrain from transforming the loop to facilitate

compiler unrolling.

In this kernel I replaced calls to sin() and cos() with native sin() and native cos().

OpenCL’s precision requirements on sin() and cos() force NVIDIA’s compiler to emit

software-emulated versions of these operations. This increases the binary size of each kernel

with 111 instructions for each sine or cosine operation when compared to using OpenCL’s

native sin() and native cos() functions. I believe that this lowering code constitutes a loss

of information, as it obscures the use of trigonometric operations in kernels, and thus opt

to replace these calls with their native counterparts. I observe no notable differences in

the quality of output data generated by this kernel.
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4.3.5 SPMV

The SPMV benchmark performs a matrix-vector multiplication on a jagged diagonal

storage (JDS)-compressed sparse matrix [114]. Decompression of the sparse matrix relies

heavily on indirect (indexed) data loads.

4.3.6 LU Decomposition

The LUD benchmark computes a set of triangular matrices from a dense matrix. The

elimination of values from a square matrix to form a triangular matrix is performed using

operations on entire rows and columns.

These row-wise and column-wise operations limit the opportunity for parallelism.

Although the dimensions of the input matrix can be chosen as a parameter, the kernel-

instances’ NDRanges are small by GPU-compute standards. The lud diagonal benchmark

is launched with 16 work-items. The run-time of each work-item varies greatly as a result

of different loop iteration bounds. The lud perimeter kernel splits a matrix into blocks

of 16 rows, launching
⌈
rows

16

⌉
work-groups with 16 work-items each. This sparseness of

work-groups leads to very poor utilisation of GPU resources. The lud internal kernel is

the only of the three that effectively utilises the GPU’s parallel execution, launching one

work-item per output word.

For this reason I deem the LUD benchmark as non-representative for a workload

targeting massively parallel accelerators. I report data obtained from the OpenCL imple-

mentation, but omit porting this benchmark to the Sim-D simulator.

4.3.7 Stencil

The stencil benchmarks performs a filter operation for each point in a 3D grid using values

from its direct neighbours, trimming edge values. Using separate input- and output buffers,

this benchmark is trivially parallelised by mapping each work-item to a point in the output

grid.

4.3.8 FFT

Fast-Fourier transformations are commonplace in many signal processing workloads,

transforming discrete values into the frequency domain or vice versa. This benchmark

performs an fast-fourier transform (FFT) operation on a (real-valued) data set with a

window size of 256. Each work-item processes two data elements, meaning 128 work-items

per window are launched. The mapping from input values to work-items is linear when

considering adjacent (r,i)-pairs as 4-vector values. Write-back of each iteration follows a
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butterfly distribution pattern, providing a particular challenge to a data path designed to

hard real-time requirements.

I made two modifications to this benchmark that improve the performance and binary

size on NVIDIA hardware. Firstly, the original FFT benchmark unintentionally performs

a double-precision floating point division. This is the result of using OpenCL’s M PI

macro rather than the M PI F macro to represent the value π. For my experiments, the

benchmark instead uses the 32-bit single precision macro. Secondly, like in the MRI-

Q benchmark, I adjusted the FFT benchmark to use the native sin() and native cos()

functions provided by hardware rather than the software emulated sin() and cos(). Both

alterations lead to a more realistic discussion on binary size and instruction mix, with a

modest speed improvement.

4.4 Limitations

Existing CUDA and OpenCL benchmarks have been large designed and optimised towards

contemporary GPUs. Inevitably, this has created a feedback loop in which the design

choices made by the benchmark developer are guided by the performance characteristics

of the targeted devices. As an unintentional consequence, any data extracted from these

benchmarks comes with the risk of predisposing conclusions and hardware design decisions

to mirror existing hardware.

That being said, within the scope of data-parallel processing there have been a lot of

common optimisation techniques shared between GPUs, DSPs, tiled multiprocessors (e.g.

Loki [115]) and packed-SIMD CPU extensions. Such techniques include loop unrolling

(e.g. [116]) and data placement strategies for contiguous memory access (e.g. [117, 118]).

The similarity of optimisation techniques for different types of platforms hints at the exis-

tence of good data-parallel programming practice that transcends wide-SIMD accelerator

architectures.

The real-world data acquired in this work must be read in this context: they are useful

as a guidance in design space exploration, but should not be interpreted as generic universal

truths on the best hardware-software combination for accelerating a given application.

Stronger evidence-based claims around hardware- and software design risk making a flawed

circular argument.

4.5 Summary

In this chapter I presented the configurable, cycle-accurate Sim-D simulator developed in

SystemC. I present 12 benchmarks taken from KFusion, Rodinia and Parboil, plus three

CNN kernels developed by my colleague Dr. Bates and myself. These benchmarks will be
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used throughout this document for evaluation purposes. To provide reference points and

to extract static information about benchmarks, NVIDIA’s GeForce GT710, GTX650 and

GTX780 Ti are used.
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CHAPTER 5

A hard real-time DRAM

controller

A key design priority of contemporary GPUs is maximising memory throughput. It is

generally assumed that GPGPU kernels implement computationally simple data-parallel

algorithms, and that synchronisation between work-items in a kernel-instance is rarely

required. As a result many kernels end up being I/O-bound.

The large data sets processed by GPGPU kernels render DRAM the only practical

memory technology. To facilitate high throughput DRAM transfers, memory controllers

in CPUs and GPUs perform optimisations that maximise parallel execution of DRAM

commands on different DRAM banks, ranks and channels. These optimisations minimise

the overhead of expensive activate- and precharge operations on the critical path by

re-ordering requests. An unfortunate downside of request re-ordering is that it makes the

response time of individual requests difficult, if not impossible to predict. In the context of

hard real-time (HRT) systems this is undesirable as pessimistic bounds on DRAM requests

result in pessimistic bounds on program execution time.

Meanwhile, HRT DRAM controllers researched in the past have not kept up with the

development of DRAM. These DRAM controllers suffer from diminishing utilisation of

the data bus with each successive generation of DRAM, as a result of both the increased

latencies between issuing and finishing DRAM commands [39], and of wider DRAM buses

reducing the potential for bank parallelism within a request [49].

Data locality properties of GPGPU programs provide interesting opportunities to

increase DRAM bank parallelism in a deterministic manner. To exploit these opportunities,

Sim-D’s DRAM controller parts with prior work by supporting large DRAM requests.

These large requests explicitly coalesce the requests of individual work-items into a single

request for an entire work-group. Deterministically re-ordering DRAM commands within

large requests often aids in effectively exploiting bank parallelism, while the closed-page
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policy between requests helps to provide tight bounds on the request as a whole.

This chapter makes the following contributions:

• An analysis of the limitations of pattern-based DRAM controllers in the context of

SIMD processing of GPGPU programs (Section 5.1),

• An analysis of buffer usage in selected benchmarks, to characterise the types of big

transfers that are encountered in GPGPU programs (Section 5.2),

• A DRAM controller design that accepts large, explicitly coalesced DRAM transfers

capable of facilitating the needs of the benchmarks investigated (Section 5.3),

• Methods for deriving the longest issue delay (LID) and worst-case request execution

time (WCRET) of transfers processed by Sim-D’s DRAM controller (Section 5.4),

• An evaluation of the performance of DRAM transfers issued to Sim-D’s DRAM

controller configured with DDR4-3200AA DRAM (Section 5.5).

5.1 Limitations of pattern-based hard real-time HRT

DRAM controllers

As discussed in Section 2.3.1, prior work on HRT DRAM controllers has mainly focussed

on application in multi-core CPUs. The Sim-D architecture differs from a multi-core CPU

in three crucial ways. Firstly, kernel-instances share the Sim-D processor temporally and

non-preemptively. This means that all requests in a DRAM controller’s request queue

must originate from the same kernel-instance. Secondly, the absence of associative caches

removes the requirement to align requests to cache-lines. Sim-D’s requests only need to

be aligned to 32-bit word boundaries. Finally, the data parallel nature of its applications

permits larger, coalesced DRAM transfers.

In the context of these differences, I previously dismissed the idea of basing Sim-D’s

DRAM controller around existing open-page partitioned DRAM concepts. In this section

I further justify my work on Sim-D’s novel coalesced large-request DRAM controller

design. To this end, I first demonstrate why a closed-page policy loses efficiency with

each successive generation of DRAM, and how this effect is mitigated by issuing larger

requests. Following from this observation, I demonstrate how the performance of existing

pattern-based DRAM controllers configured for large requests is conditional on a request’s

exact size and data alignment. I argue that these conditions are too stringent for many

GPGPU workloads, for example for implementations of common filter operations.
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5.1.1 Inefficiency on modern DRAM

Akesson et al. [39] explained how closed-page DRAM controllers’ performance is limited by

the mandatory latencies between successive DRAM commands. In terms of (nano-)seconds

these latencies have barely changed for successive DRAM generations. As a consequence,

as clock frequencies increase, the latencies between commands in terms of number of clock

cycles increase while the amount of data transferred by each command remains equal.

This in turn results in diminished data bus utilisation.

Goossens et al. [119] demonstrate the negative impact these higher latencies have

on the performance of pattern-based DRAM controllers with successive generations of

DDR2 and DDR3 DRAM. Figure 5.1 shows the results of repeating this experiment for a

wider range of DRAM generations, ranging from DDR2 at 400MHz to DDR4 running at

3200MHz. The reported latencies of the DRAM read pattern transactions are a function

of DRAM timing parameters and number of bursts per transfer. Latencies are generated

using Goossens’ et al. [48] ILP-based method for generating DRAM patterns. When a

burst size allows for multiple DRAM patterns as a result of multiple (#banks, burst/bank)

configurations, the most optimal pattern is chosen. For transfers of more than 64 bursts,

the ILP-method, backed by CPLEX, is unable to generate a command sequence within

reasonable time. However, analysis of the patterns revealed that the number of cycles for

n bursts can be accurately modelled by 4n+ tRCD − 3 + (tRRDs − tCCDs)
+.
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Figure 5.1: Data bus utilisation for read commands on successive generations of DDR DRAM

.

In line with Akesson et al.’s observations [39], Figure 5.1 demonstrates that where for

DDR2 running at 400MHz, a 100% DRAM bus utilisation can be achieved with patterns of

four bursts (one to each bank), on the latest generation of DRAM the same configuration

achieves a mere 28% bus utilisation. To achieve 80% utilisation on DDR4-3200AA DRAM

using memory-pattern based DRAM controllers, patterns must issue at least 32 bursts.

To make matters worse, reasoning about data bus utilisation degradation as a function
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of the number of bursts obscures the true scale of the problem. Krishnapillai et al. [49]

observe that practical applicability of closed-page DRAM controllers degrades further as

DRAM buses get wider. Where in the days of DDR2, a 16-bit DRAM bus was commodity,

today most SoCs feature a 64-bit DRAM bus. This means that where previously a memory

controller would issue four burst requests to read or write back a 64B cache line, today

this has been reduced to only a single burst.

On the upside, the problem of regressing data bus utilisation with each generation of

DRAM can be mitigated by issuing larger requests. Larger requests allow for more bank-

parallelism, reducing the time spent on activate- and precharge command execution [39].

To illustrate the efficacy of larger requests: a 2KiB memory pattern is capable of achieving

80% utilisation on a 64-bit wide DDR4-3200AA DRAM bus.

Contrary to CPUs whose request size is generally dictated by the size of a cache line

(typically 64B), Sim-D can coalesce DRAM requests at the granularity of a work-group,

resulting in requests of sizes that permit closed-page DRAM controllers to achieve high data

bus utilisation. However, I believe there are two mismatches between Sim-D’s requirements

and the performance characteristics of the pattern-based DRAM controllers researched in

prior work: their narrow set of transfer sizes for which a single configuration can achieve

good bus utilisation, and their stricter alignment constraints.

5.1.2 Variation in transfer sizes

The command patterns generated for pattern-based DRAM controllers assume transferring

a power-of-two number of bursts. If not, transfers of addresses near the end of a row will

require more activate commands than transfers addressing the start of a row, causing

divergence in command scripts and their timing.

To give a concrete example, consider a DRAM configuration with each row containing

1024 columns of data, corresponding with 128 burst lengths. A pattern that requests three

bursts worth of data from the start of a row would issue bursts for columns 0-7, 8-15

and 16-23. This transfer requires a single row activation. However, if the request targets

the end of the row a pattern transaction must issue bursts for columns 1008-1015 and

1016-1023 in one row, and a burst for columns 0-7 in the next row. A read of the same size

now requires twice as many row activations. Enforcing a constraint limiting patterns to

powers-of-two number of bursts ensures that a pattern transaction always reads from the

same number of rows, leading to reduced pessimism when determining a pattern’s WCET.

Having the configured pattern fixed to a power-of-two number of bursts has implications

for requests of a size that is not an exact multiple of a pattern transaction size. Figure 5.2

shows the correlation between request size and data bus utilisation on DRAM controllers

configured with patterns of 1, 2, 4 8, 16, 32 and 64 bursts, requesting between 64B and

8KiB per pattern transaction.
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Figure 5.2: Data bus utilisation for unaligned transfers processed by a pattern-based DRAM
controllers configured with different-sized patterns, DDR4-3200AA

.

This figure shows that the correlation between DRAM transfer size and net data bus

utilisation follows a sawtooth shape. Between a transfer size of 1B and the optimal point

for each configuration there is a linear correlation between transfer size and bus utilisation.

Dropping over a configuration’s pattern transaction size immediately halves bandwidth.

As transfer sizes increase, performance converges to its optimum, passing over progressively

improving local minima.

This sawtooth-shaped performance characteristic has significant drawbacks for various

common algorithms, for example those performing n× n-filter operations for n > 1. The

work-items of such kernels require access to neighbouring elements of data. An efficient

kernels preloads the tile of data required for all work-items in a work-group into local

memory. For a work-group with its x-dimension m a power of two, a requirement of Sim-D,

this tile consists of rows containing m+ n− 1 elements. The size of these rows mean that

their throughput on the graph is found at an x-coordinate just over one of the summits of

a sawtooth wave.

5.1.3 Alignment constraints

Besides the power-of-two size constraint outlined in the previous subsection, patterns

generated for pattern-based DRAM controllers also make the assumption that requests are

aligned to multiples of a pattern transaction size. CPUs with associative caches guarantee

this alignment naturally. However, this assumption does not hold for GPGPU systems

where work-groups can request overlapping tiles of data. For example: for a kernel that
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implements an extrapolated- or constant-edges filter algorithm, tiling causes not only the

size of a request to exceed a power-of-two, but also the first element of most work-groups

to be slightly before a power-of-two boundary. The alignment of the tile preload request

differs for each work-group.

With pattern-based DRAM controllers, misalignment can be dealt with in two ways.

The first way is accepting that for unaligned accesses, extra pattern transactions must be

issued. For large contiguous data requests, this implies adding one extra transactions to

the worst-case latency. When data requests are non-contiguous, the number of transactions

could potentially double in the worst-case.

If a DRAM controller is configured with a pattern reading nPW words, the number of

transactions nT through a pattern for a contiguous transfer of w words is determined by:

nT =

⌈
w + nPW − 1

nPW

⌉
To demonstrate the impact of these consequences, Figure 5.3 shows, for different

configurations of a pattern-based DRAM controller, the data bus utilisation for a range of

contiguous transfer sizes under this worst-case alignment assumptions.
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Figure 5.3: Data bus utilisation for unaligned transfers processed by a pattern-based DRAM
controllers configured with different-sized patterns, DDR4-3200AA

Comparing Figure 5.3 with Figure 5.2 shows that the additional price for assuming

worst-case data alignment is significant. For almost every transfer an extra pattern

transaction must be issued. For transfer sizes in the lower range, this leads to a doubling

of the response time. The percentage-wise penalty drops with every sawtooth-peak, but

remains significant: where the largest two pattern-configurations can achieve > 80%
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utilisation for 4KiB transfers if perfect alignment may be observed, without such alignment

constraints the 80% utilisation point shifts to transfers of 28KiB.

A second approach for dealing with unaligned requests would be to drop the alignment

requirement when generating the patterns. This has two consequences for the resulting

patterns. Firstly, patterns can no longer overlap precharge operations of request n with

bank activations of request n + 1, as the last bank of request n could now be the first

bank of request n + 1. This results in longer memory patterns, as they must include

the worst-case latency for precharging all activated banks. Secondly, memory patterns

can no longer be generated with the assumption that that multiple column operations

on the same bank hit the same row, as requests could be aligned near the end of a row.

Without these alignment assumptions, precharge and activate commands may be required

between any two read/write operations on the same bank, cancelling out any gains made

by increasing the pattern size.

5.1.4 Takeaway points

By means of experiments, I confirmed Akesson et al.’s claim [39] that the performance of

closed-page DRAM controllers scales poorly with successive generations of DRAM. To

mitigate the drop in efficiency, larger DRAM requests should be issued. I showed that

pattern-based DRAM controllers do not provide satisfying performance characteristics for

Sim-D for two reasons:

• They are optimised for a narrow set of transfer sizes, which do not include all common

cases. Particularly, 2D filter kernels are expected to perform poorly,

• Transfers performance diminishes further if data is not aligned to multiples of a

pattern size. Such alignment is unlikely when buffer widths are not a multiple of the

pattern size or the kernel performs 2D filter operations.

5.2 Buffer characterisation and data locality

Having dismissed the use of existing HRT DRAM controllers for performance reasons, in

this work I propose and study the concept of large, explicitly-coalesced DRAM requests.

To scale requests to the size required for high DRAM bus utilisation, the processor

pipeline supports scalar instructions that request to read or write data for an entire

work-group. These requests will be serviced by the DRAM controller uninterruptedly

and deterministically, benefiting from the bank parallelism within each large request.

Determinism allows to statically determine a tight bound on the WCRET of each DRAM

request in a kernel.
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This approach is particularly efficient for kernels for which the correlation between

work-item and data element(s) is easy to convey to the DRAM controller. As I show in

this section, in many cases this is true: looking at benchmarks at a work-group granularity

shows often their requests can be statically coalesced into a 1D or 2D block transfer.

By inspecting the buffer usage of all OpenCL kernels outlined in Section 4.3, I justify

four Sim-D design choices: the inclusion of 1D and 2D (strided) load/store operations, the

addition of a scratchpad local storage, the support of scalar registers and arithmetic and

the omission of atomic read-modify-write operations. Table 5.1 summarises the results of

this experiment. The columns in this table are interpreted as follows:

Type The type of a buffer could either be a primitive (float or int), a vector of primitives

(e.g. float3, three consecutive 32-bit floating point numbers) or a struct consisting of

multiple primitives. No nested structs are observed in any of the benchmarks.

R/W/A(tomic) These columns indicate whether the buffer is being read from, written

to and/or whether atomic (read-modify-write) operations are used.

#refs/WI The number of read and write operations a single work-item performs on

this buffer. If a kernel reads and writes the same word of a buffer, both are counted. It

is assumed that a work-item does not read a data word more than once except through

data-dependent indirect loads whose target cannot be determined in advance. For vectors

and structs, each access to one of its primitive members is counted separately. For example,

loading all elements of a float3 vector will result in three references.

Word (re-)use The number of work-items in a work-group that ideally use the same

word in a buffer. E.g. a kernel performing a 3× 3 filter operation on all 3× 3 areas of an

input buffer has a word re-use count of 9. Words at the borders of a buffer may be re-used

less frequently. A word-reuse factor exceeding one indicates that caching or preloading

data to a scratchpad can reduce the number of loads issued to DRAM.

“All” indicates that each word in the buffer is used by every thread in the work-group.

For the 3× 3 filter example, a buffer containing the 3× 3 filter weights is used by every

work-item. These weights can be loaded to Sim-D’s scalar registers rather than stored

redundantly in every column of a vector register, as is required on NVIDIA GPUs. For

a three-dimensional NDRange, individual work-groups often only span two dimensions.

In this case, “all” does not imply that every word is re-used by every work-item, but

merely that there is a likely optimal work-group configuration for which each work-item in

a work-group accesses the same word.
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Buffer offset parameters These columns describes which variables are used to compute

each work-item’s index into a given buffer. The TID column indicates whether the global

ID is used to determine the data point within the buffer. The const column indicates

whether the index is offset by either a fixed amount or a fixed stride. Dim is ticked when

the buffer dimensions are used to determine the offset in the buffer. Finally Data indicates

that the buffer is indexed by a value loaded from another buffer in DRAM, i.e. an indirect

memory access.

For example: a 3× 3 filter would use the TID to find the start of the 3× 3 region of

pixels that this work-item will process. A constant is used to determine the offset from

this central pixel for loading the pixels left and right. Dim would be used to index the

pixels of the previous and next rows in the image.
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Access #refs Word Buffer offset params

Kernel Buffer object(s) Type R W A /WI re-use TID Const Dim Data

CNN in float
√

147 49
√ √

convolution kernels float
√

147 all
√

(7× 7× 3) out float
√

1 1
√

relu in float
√

1 1
√

biases float
√

1 all
√

out float
√

1 1
√

maxpool in float
√

9 4
√ √

(3× 3, pitch. 2) out float
√

1 1
√

KFusion in float
√

5 1
√ √ √

halfSampleRobustImage out float
√

1 1
√

depth2vertex depth float
√

1 1
√

vertex float3
√

3 1
√

vertex2normal vertex float3
√

12 4
√ √ √

normal float3
√

3 1
√ √

track

inNormal,

inVertex,

refNormal,

refVertex

float3
√

3 1
√ √ √

output struct
√

8 1
√ √

SRAD d iN,d iS int
√

1
√
n
√

srad d jW,d jE int
√

1
√
n
√

d I float
√

1 1
√ √ √

√
4 -

√ √ √ √

d dN, d dS,

d dE, d dW, d c
float

√
1 1

√ √

srad2 d iS,d jE int
√

1
√
n
√

d dN, d dS,

d dE, d dW
float

√
1 1

√ √ √

d c float
√

1 1
√ √ √

√
2 -

√ √ √ √

d I float
√ √

2 1
√ √ √

reduce d sums, d sums2 float
√ √

log(n) log(n)
√ √

reduce fpatom d sums, d sums2 float
√ √ √

9 1/all
√ √

MRI-Q phiR, phiI float
√

1 1
√

computePhiMag phiMag float
√

1 1
√

computeQ x,y,z float
√

1 1
√

Qr, Qi float
√ √

2 1
√

ck struct
√

4096 all
√

SPMV d data, x vec float
√

n n
√

jds naive d index int
√

n n
√

d perm int
√

1 1
√

jds ptr int int
√

n all
√

sh zcnt int int
√

1 all
√ √

dst vector float
√

1 1
√

LUD diagonal m float
√ √

< 705 < 44
√ √ √

perimeter m float
√ √

39 1
√ √ √

internal m float
√ √

33 33
√ √ √

Stencil A0 float
√

7 7
√ √ √

naive kernel Anext float
√

1 1
√

FFT data0 float2
√

4 1
√ √

data1 float2
√

4 1
√ √

Table 5.1: Memory access properties for all buffers present in the selected benchmarks.
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For read-buffers, five interesting conclusions can be drawn from Table 5.1. Firstly,

the vast majority of these buffers are indexed into using only the TID, constants and

buffer dimensions. This means that work-groups can statically coalesce accesses from

neighbouring work-items at compile time to form a 1D or 2D block DRAM request. Not all

of these work-item-to-data mappings are linear. The most notable exception is FFT, which

exhibits a non-trivial data access patterns. Although on the granularity of a work-group

data is consumed from a large consecutive chunk, the distribution of individual words to

the work-items requires data elements to be shuffled.

Secondly, 24 out of 64 buffers contain words that are re-used by multiple work-items in

a work-group. This strongly motivates the inclusion of scratchpads in a SimdCluster.

Thirdly, several kernels implement variants of a filter algorithm: The CNN convolution

and max-pooling benchmarks apply filtering with trimmed edges, the stencil benchmark

performs a trimmed-edges filter operations on all direct neighbours in 3D space, and

KFusion’s vertex2normal kernel performs an extrapolated-edges filter operation on its

neighbours in 2D space. Furthermore, the KFusion halfSampleRobustImage performs a

2× 2 filter operation with a pitch of 2, which means that although no words are shared

between adjacent work-items, pre-loading tiles of data to a scratchpad will still yield

potential performance improvements.

Five read-buffers from four kernels contain scalar values that are re-used by all work-

items of each work-group. For example, work-items from the CNN RELU benchmark

share values from its “biases” buffer. Sim-D’s scalar registers permit these values to be

stored once rather than redundantly in each column of a vector register.

Fourthly, 11 buffers contain structs or primitive-vectors. When a kernel requests a

single data word from such a buffer, the data of two adjacent work-items are separated by

a pitch larger than one but generally smaller than nBW . Without caching, this leads to

poor net data bus utilisation as many data elements in a burst are discarded. However, in

all cases each work-item eventually requires all elements from its vector or struct. DRAM

data bus utilisation can be improved in such cases by preloading a tile of structs or vectors

to a scratchpad, and subsequently accessing their individual data words using indexed

transfers into this scratchpad buffer.

Finally, the SRAD and SPMV kernels perform indirect accesses into buffers, meaning

the index into the buffer is determined by data from a different buffer. From a real-time

perspective these accesses are very difficult to optimise. The unpredictability of the

required indexes results in a pessimistic upper bound on bank conflicts in DRAM. This

results in pessimistic latency estimates for such requests, as is explained in Section 5.4.3

and demonstrated empirically in Section 5.5.3.

For write-buffers, I first note that none of the original kernels makes use of atomic

read-modify-write operations. I developed the SRAD reduce fpatom kernel as an example
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of how atomic addition can improve performance of reduction kernels. Despite the potential

for performance optimisation, the absence of atomic operations in existing benchmarks led

to the decision to leave the implementation of atomic operations in Sim-D as future work.

Apart from the SRAD reduce kernel, none of the kernels output buffers see multiple

work-items alias the same element. Most kernels map their work-items linearly to one or

more output elements. Again the notable exception is the FFT benchmark which, like for

its read operations, requires output data of work-items to be shuffled within a work-group.

The output buffers from the KFusion depth2vertex, vertex2normal and track kernels

are laid out as an array of either primitive-vectors or structs. Similar to read methods of

such data, Sim-D can facilitate efficient writing of such output data by first preparing a

tile of vector- or struct-elements in local memory using indexed write operations. This tile

is then written back to the target DRAM buffer using a 1D or 2D block transfer.

5.3 Architecture

The goal of Sim-D’s DRAM controller is to efficiently service large DRAM requests such

that the WCRET and LID of each request can be statically analysed. To this end, it

implements a pipeline that dynamically translates a large request, issued by a work-

group, into a sequence of DRAM commands. To eliminate variations in latency caused

by interference between successive requests, it implements a closed-page policy on the

boundary of each large DRAM requests. Within a request, the deterministic command

scheduling policies allow exploitation of bank locality in a statically analysable manner.

Optimisations that shift the worst case to less probable scenarios are considered out of

scope for this work.

Following from the benchmark observations, Sim-D’s DRAM controller supports the

following large transfers:

• 1D- and 2D block transfers between DRAM and a SimdCluster’s scratchpad or RF,

• Indexed transfers, requesting one word for each active work-item in a work-group.

Indexed transfers provide work-groups with a universal mechanism to request data

of any layout. In this work, I evaluate two types of indexed transfers: iterative indexed

transfers, where the DRAM controller iterates over indexes one-by-one, and snoopy indexed

transfers, where (a region of) a buffer is streamed on the data bus, from which data

elements are snooped using an array of address-matching CAMs. This array contains one

CAM for each work-item in a work-group. For snoopy indexed transfers, Sim-D supports

narrowing down the scope from an entire DRAM buffer to a 1D or 2D block within that

buffer. This reduces the amount of bursts that are streamed over the data bus, improving

performance both on average and in the worst case.
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In the common case, a request routes data to vector register columns following a

well-defined linear mapping between work-item and data element(s). 1D- and 2D block

transfers can perform these transfers with high efficiency, making use of deterministic

optimisations of the DRAM command stream.

Sim-D’s DRAM controller is not intended as a drop-in replacement for a pattern-

based DRAM controller. Most importantly, Sim-D’s DRAM controller does not provide

bandwidth or latency guarantees to each requestor in a multi-requestor systems. Rather,

Sim-D can only provide bandwidth guarantees on individual requests. Combined with

the analysis technique explained in Chapter 7, this guarantee is sufficient for Sim-D’s

programming model to allow WCET analysis of kernels.

This work is restricted to DRAM configurations comprising a single channel and a

single rank. The DRAM data bus is assumed to be 64 bits wide. This bus width is in line

with the embedded-grade NVIDIA Tegra K1 SoC [120]. Experiments are performed using a

simulator developed in SystemC. This simulator integrates Ramulator [81] for guaranteeing

DRAM timing properties, and DRAMPower [82] for generating power estimates of transfers.

5.3.1 Pipeline

Sim-D’s DRAM controller is implemented as a four-stage pipeline: front-end, DRAM

command generation, DRAM command arbitration and data movement scheduling (DQ

scheduler). The front-end accepts either a 1D or 2D stride request or an iterative indexed

request, and translates this to a set of burst requests. The command generator performs

address translation on these burst requests and determines which commands must be

sent to DRAM. Scheduling these commands is done by the command arbiter. For read-

and write commands, it creates a DQ reservation. In the final stage, the DQ scheduler

generates control signals for the SimdCluster to synchronise DRAM data movement with

the register file or scratchpad.

FIFOs are added between each pipeline stage to allow buffering of messages from each

stage to the next. Two reasons necessitate this buffering. Firstly, the command arbiter

and DQ scheduler do not consume their input elements at a constant rate, but rather

at a rate dictated by DRAM latencies. Secondly, the command generator can generate

multiple commands in a cycle, one per DRAM bank.

An overview of the pipeline is given in Figure 5.4. The remainder of this subsection

provides details on each of the pipeline stages.
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Figure 5.4: High-level architecture for Sim-D memory controller

5.3.1.1 Front-end

The front-end is responsible for translating a request into a sequence of required DRAM

bursts. Two types of requests are supported: 1D/2D stride requests and iterative indexed

requests. To support these two types of requests, two subcomponents are instantiated:

the stride sequencer and the index iterator. The request input format differs between the

two subcomponents.

Both subcomponents generate DRAM burst requests a rate of one per clock cycle. The

format of a burst request is described in Table 5.2.

Name Bits Type Description

addr 32 uint Requested physical address, burst-aligned.

addr next 32 uint Physical address of next request, hint for linear precharge policy

wordmask nBW array[bool] Mask of requested (32-bit) words from burst

write 1 bool True iff operation is a write operation

pre pol 1 enum Chosen precharge policy (linear/ALAP)

sp offset 17 uint Offset in scratchpad of first word

reg offset nBW * log2(nWGS) array[uint] Destination register offset

last 1 bool True iff this burst request is the last for a DRAM req.

Table 5.2: Burst request message format

The front-end is designed as a state machine with six states: IDLE, FETCH, INIT STATE,

RUN STRIDESEQ, RUN IDXIT and WAIT ALLPRE. It resets to the IDLE state.
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When a requestor triggers a request, the front-end enters the FETCH state. In this

state, it reads a request from the incoming request FIFO. When reading is completed, it

enters the INIT STATE state.

Depending on the request type, the INIT STATE state initialises the registers of either

the stride sequencer or the index iterator subcomponent. Additionally, the output routing

logic is configured to make sure data is read or written to the correct register or scratchpad.

It then sets its state to RUN STRIDESEQ or RUN IDXIT.

In these states, the associated subcomponent iteratively generates burst requests, one

per cycle. After the last burst request is added to the output FIFO, the front-end goes

into the WAIT ALLPRE state. Here it waits until the DQ scheduler indicates that the

last precharge command has finished and all DRAM banks are precharged, marking the

completion of this request. The front-end returns to IDLE, ready to accept the next

request.

Stride sequencer The stride sequencer converts a stride request into a series of burst

requests. Incoming requests are encoded according to the format in Table 5.3. This format

allows encoding arbitrary 1D and 2D stride patterns. Granularity for requests is in 32-bit

words.

Name Bits Type Description

start addr 30 uint Requested physical start address (aligned to 32-bit words).

period 20 uint Length of the period of the stride pattern.

words period 20 uint Number of words to fetch for each period.

period count 20 uint Number of periods to cycle for.

end addr 30 uint start addr + (period count− 1) ∗ period+ words period

dst 3 struct type: (SP, reg, CAM), work-group

dst reg ∼11 struct Targeted register.

dst offset 22 uint Destination offset in scratchpad or first lane in VGPR.

dst period 20 uint Periodicity for the destination SP buffer or register file.

write 1 bool True iff write operation, false iff read.

Table 5.3: Stride descriptor format

An example of a stride pattern reading a 5 × 3 tile from a 7 × 7 buffer is given in

Figure 5.5. Reading is performed with a start addr of 2 (DRAM address 0x8), a period of

7, words period of 5 and a period count of 3.

start addr end addrwords period

period

0x0 0x10 0x20 0x30 0x40 0x50 0x60 0x70

Figure 5.5: Example stride request

Given a DRAM burst must be aligned to the size of a burst, in Sim-D’s case 64 bytes

or 16 words, this stride pattern translates into two burst requests: one burst starting at
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address 0x0, and a second request at address 0x40. The stride sequencer sequentially

creates these burst requests. For each burst request, it generates a wordmask to indicate

which words from each burst, marked in green, must be routed to registers.

An abstract representation of the sequencing logic used to generate these burst requests

is shown in Figure 5.6.

start addr end addr period countperiod words period

S
trid

e
seq

u
en

cer

Address

Next address gen.

skip

skip rest

Word mask generator[nBW-1]

Phase

Next phase

Word mask select

· · ·
Word maskAddress Next Addr.

Period #

Next Period #

VGPR Column

· · ·
Reg offset

Figure 5.6: Stride sequencer

The stride sequencer contains a next address generator, plus one word mask generator

for every word in a burst. Each word mask generator contains a phase counter, containing

the offset of the generator’s word relative to its current period. Because periods are not

aligned to bursts, different word mask generators could work on different periods. The

word mask select logic outputs a binary 1 iff its phase is smaller than words period and

the corresponding address is between start addr and end addr.

On each clock cycle, each phase counter is incremented by a separately computed phase

shift c, after which the result is scaled to the range [0 :period) using a modulo operation.

Performing a full modulo operation is too costly. Even a reasonably sized non-pipelined

radix-16 divider, like Intel’s Core2 Radix-16 divider design [88] would take 5 cycles to

perform a modulo operation on a 20-bit integer. With a peak DRAM throughput of one

burst every 4 cycles, a 5-cycle modulo operation would form a bottleneck.

To avoid the high cost of a full modulo operation, the stride sequencer calculates the

phase shift c such that phase[n] + c never exceeds 2 ∗ period for any n. By guaranteeing

this property, each word mask generator’s phase can be scaled to the range [0 :period) with

a single conditional subtraction. To perform the addition and conditional subtraction, one

addition, single-overflow modulo (ASOM) component is instantiated in each word mask

generator. Each component is connected as ASOM(phase[n],c,period). The pseudo-code

for an addition, single-overflow modulo (ASOM) module is shown in Listing 5.1.
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1 ASOM(a,b,modulo) :

2 result = a + b

3 resultMod = result - modulo

4

5 if (resultMod >= 0) /* Test for MSB == 0 */

6 return resultMod

7 else

8 return result

Listing 5.1: Addition+Single-Overflow-Modulo functional representation

Besides calculating the phase increment c, the stride sequencer also calculates the

increment inc used to obtain the address for the next burst request. The address increment

and the phase increment are related, but not equal. To calculate c and inc, three cases

must be considered depending on the value of period:

1. period ≥ nBW,words period < period < words period+ nBW

2. period < nBW

3. period > words period+ nBW

Case 1 is the normal mode of operation. In this case, c = inc = nBW .

For case 2, a burst spans more than one phase. In this case phase counters can overflow

more than once upon incrementing. To avoid multiple counter overflows for small periods,

the stride sequencer contains a look-up ROM lut containing for each period ∈ [1 : nBW )

a pre-scaled value c = (nBW mod period). With nBW equal to 16 for a 64-bit wide

DRAM data bus, this ROM contains 15 entries each of size log2(nBW ) = 4 bits.

In case 3, where period is significantly larger than words period, it is possible to skip

over those addresses where the resulting word mask is all-0. To this end the stride sequencer

implements additional skip logic, that allows the stride sequencer to sustain a burst request

generation rate of one per cycle.

To give a formal definition of this skip logic, first of all let skip words = period −
words period. In the definitions that follow, assume all variables are in an unsigned binary

form. The bit-wise AND and OR operators are depicted as & and | respectively. The

∼ prefix-operator describes a bit-wise inverse of the value that follows. skip is defined as

follows:

Definition 1. skip is the minimum number of words contained in whole bursts between

the last burst containing words from period n and the first burst in period n+ 1.

skip = (skip words− (nBW − 1)) & (∼ (nBW − 1)) (5.1)
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Under certain alignment constraints, another burst of nBW words can be skipped over.

To test whether this alignment holds, Sim-D pre-computes a skip rest value during value

initialisation that gives us the maximum value of phase[nBW − 1] for which another burst

can be skipped:

Definition 2. skip rest is the largest possible phase[nBW − 1] for which the distance

between the last burst containing words from period n and the first burst in period n+ 1 is

nBW larger than skip.

skip rest = ((skip words− (nBW − 1)) & (nBW − 1)) + words period− 1 (5.2)

Given these two definitions, inc is defined as follows:

inc =


nBW iff period < nBW OR phase[nBW − 1] < (words period− 1)

skip+ nBW iff period ≥ nBW AND phase[nBW − 1] ≥ skip rest

skip+ 2 ∗ nBW otherwise

And c is defined as follows:

c =

lut[period] iff period < nBW

ASOM(inc, 0, period) otherwise

Upon receiving a stride request, each word mask generator must initialise its phase

value. For period ≥ nBW , this can be easily achieved in parallel. Defining align off as

the low log2(nBW ) bits from the start address, period[n] = ASOM(n,−align off , period).

Note that using this assignment, period will be negative whenever the word from the word

mask generator would fall before start addr. Hence period must be a suitably provisioned

signed integer.

For 0 < period < nBW , a two-dimensional look-up table ROM init lut[period][align off ]

is added to every word mask generator, containing pre-computed initialisation values. For

the default configuration with nBW = 16, the size of each init lut ROM is 15∗16∗4 = 960b.

The stride sequencer always selects the linear precharging policy. This policy is

explained in greater detail in Section 5.3.1.2.

To calculate the destination column in a vector register, each word mask generator

additionally keeps track of its current period number. Following from the linear TID

mapping scheme, the column offset is computed by multiplying this period number by the

work-group width of the running kernel-instance, then adding the current phase value to

the result. Because the work-group width is always a power of two, this is implemented

using a left shift and a boolean OR operation.
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For transfers to a scratchpad, the destination address is only given for the first word in

every burst request. On each cycle, this address is incremented with the pop-count of the

word mask from the previous cycle.

Index iterator The index iterator takes a buffer and a sequence of buffer offsets as

input, and generates one burst request for each index. No attempt is made to coalesce

burst requests as such logic has the potential of becoming quite complex yet offers no

obvious benefits to the worst case LID or WCRET. In terms of average power consumption

there is merit to such coalescing attempts for HRT systems, but lacking a full system

power model, evaluation of a coalescing solution is beyond the scope of this work.

The index iterator has a small input FIFO to which the SimdCluster’s register file

pushes the requested indexes from the vc.cam idx special purpose vector register. This

FIFO contains (buffer offset, vector register lane, last request)-tuples. On each cycle,

the index iterator pops one entry off the FIFO, calculates the address from the buffers

base address plus the entry’s offset, then uses the lower log2(nBW ) bits of the address

to generate both a one-hot word mask and the upper bits to generate an aligned burst

request address. When the last request boolean is set, the front-end transitions to the

WAIT ALLPRE state and the “last” bit is propagated to the command generator.

The index iterator always selects the as late as possible (ALAP) precharging policy.

This policy is explained in greater detail in Section 5.3.1.2.

5.3.1.2 Command generator

The command generator takes burst requests generated by the front-end, and generates

per-bank DRAM commands. The command generator outputs 11-tuples as described in

Table 5.4. The Row and column fields contain the mapped address. pre pre, act, read,

write and pre post are booleans indicating which DRAM operations must be performed.

Word mask indicates which words from each burst must be routed to storage, and the

target, sp offset and reg offset identify the exact destination of the output words. These

11-tuples are stored in per-bank FIFOs, hence no bank field is required.
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Name Bits Type Description

row 16 uint Requested DRAM row.

column 8 uint Requested column in DRAM row, ex. burst-bits.

pre pre 1 bool Precharge before activate.

act 1 bool Activate row.

read 1 bool Read operation.

write 1 bool Write operation.

pre post 1 bool Precharge after processing act/read/write

wordmask nBW array[bool] Mask of requested (32-bit) words from burst

target 2 enum Register/CAM array/Scratchpad WG0/Scratchpad WG1

sp offset 22 uint Offset in scratchpad of first word.

reg offset nBW * log2(nWGS) array[uint] Target lane in vector register.

Table 5.4: DRAM command message format

The DRAM address mapping roughly follows the paired bank-group interleaving (PBGI)

strategy [121], where two adjacent bursts always access alternating bank groups except on

the boundary of a bank-group pair. This optimises for the common case of contiguous

transfers by minimising the amount of times the inter-bank-group tCCDL penalty must

be paid. The exact mapping is dependent on the DRAM chip configuration. For the two

DRAM configurations outlined in Section 4.1.1, where a rank consists of either four 16-bit

DRAM chips with 8 banks (2 bank-groups) or eight 8-bit DRAM chips with 16 banks (4

bank-groups) each, this mapping looks as follows:

Bit 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

index 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

4*16b r r r r r r r r r r r r r r r r b b c c c c c c c B c c c

8*8b r r r r r r r r r r r r r r r r b b B c c c c c c c B c c c

Table 5.5: Address mapping (B: bank group, b: bank, c: column, r: row)

Internally, the command generator stores for each bank which row is most recently

activated. When a burst request’s row doesn’t match the row stored as most-recently

activated for this request’s bank, the act bit of the output is set.

Generation of the precharge bit depends on the precharging strategy chosen by the

front-end. Two strategies exist: linear and as late as possible (ALAP).

The linear strategy is optimised for strided transfers where it is known that the sequence

of addresses requested is strictly monotonically increasing. In this case, when the input’s

next address exceeds the latest address that can be serviced from the bank-pair’s active

rows, the command generator performs the following three actions:

1. Set the pre post bit on the output alongside the read or write bit.

2. Issue a separate precharge command for the paired bank in the other bank group.

3. Reset the most recently activated row for both banks to a reserved value signifying

“no active row”.
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The as late as possible (ALAP) strategy is a heuristic that works better when nothing

is known about the sequence of addresses, e.g. for transfers that require the “indexed

iterative” method. In this case, a bank is precharged only when a request is encountered

that addresses a bank that has a different open row. This is achieved by setting the

“pre pre” bit on the associated read or write command. When the last command is generated,

indicated by the last bit in the input message, an additional precharge command is issued

for all remaining open banks.

5.3.1.3 Command arbiter

The command arbiter has two responsibilities: selecting the next command from the

per-bank input FIFOs to schedule, and timely scheduling of refresh commands. For

command selection, the following prioritisation rules apply in order:

1. Read/write commands are scheduled as early as possible.

2. Read/write commands are scheduled from the currently active bank-pair until a

precharge is encountered. When a precharge is encountered, the next active bank

pair is selected.

3. Read/write commands have priority over activate.

4. Activate commands have priority over precharge.

5. Row activate commands are prioritised according to the number of column access

strobe (CAS) operations present in the respective bank FIFOs targeting said row,

tie-broken by distance from the currently active bank pair.

6. Refresh operations are always scheduled between two stride requests, but may be

scheduled within an indexed-iterative request.

The priority of rule 1 over rule 2 is of particular importance for performance: when

there is a read/write command schedulable from outside the currently active bank-pair,

but none from within the currently active bank-pair, this command will still be scheduled.

With non-unit stride transfers, where certain stride-patterns could lead to an imbalance

between requests for both banks in the bank-pair, this reduces idle cycles on the data bus.

Because the worst-case stride pattern for which this behaviour can be exploited requests

subsequent bursts from the same bank shifting the relevant word within each consecutive

burst by one word, I suggest that the depth of the per-bank input FIFOs (including the

banked head) is at least equal to nBW to avoid back-pressure from the command arbiter

on the command scheduler. For a 64-bit wide DRAM data bus, this corresponds to 16

entries per FIFO.
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Rule 2 is a heuristic to achieve “greedy precharging” when the linear precharge strategy

is followed. This heuristic helps preparing a bank for activation as early as possible, which

in turn reduces the risk of a precharge or activate delay ending up on the critical path.

Rule 5 presents a small optimisation for DRAM configurations with two bank-groups, as

it maximises the opportunity for performing CAS operations in parallel with back-to-back

bank activations. In practice this optimisation only saves unit-stride transfers a single

cycle, while the benefit for non-unit stride transfers depend on data alignment. This

benefit completely disappears for DRAM configurations with four or more bank groups.

Given the cost of implementing this optimisation in hardware, predominantly for the

required per-FIFO CAS-operation counter, a hardware implementation may omit this

optimisation. However, the LID and WCRET analysis presented in Section 5.4 assumes

presence of this prioritisation rule.

During operation, the top entry of each FIFO is banked in the command arbiter. As

the various activate, read/write and precharge commands are issued by the command

arbiter, their respective bits in the banked commands are cleared. Once all bits of a banked

entry are cleared, the entry is discarded and a new entry is loaded from the corresponding

input FIFO.

Using the value of an active bank-group register for prioritisation, the arbiter will

first select three candidate commands, being the highest priority activate, read/write and

precharge request. Following the prioritisation rules 3-5, the command for this cycle is

then selected from the candidates. When a banked candidate has both its activate and

read or write bits set, the request is considered an activate request until the corresponding

“ACT” is scheduled. Similarly, a request for which the “pre pre” bit is set is considered a

precharge command until this precharge has been scheduled. The “pre post” bit promotes

a DDR4 “RD” or “WR” command to a “RDA”/“WRA” implicit-precharge command.

When issuing a read or write command, a DQ reservation is generated on the output

FIFO to schedule the data movement from the DRAM DQ lines from/to the scratchpad

or registers. The DQ reservation format is described in Table 5.6.

A hardware implementation of a command arbiter would consist of many downward

binary counters that ensure timing requirements of the DRAM chips are satisfied. Instead,

the simulation model relies on the timing model provided by Ramulator [81] to ensure

correct, cycle-accurate behaviour of the memory controller. One downward counter that

is modelled explicitly by Sim-D is the last precharge-counter. When the precharge for

the last incoming DRAM command is scheduled, this counter is reset to the number

of cycles it takes for the precharge to complete. When this counter reaches zero, the

all banks precharged signal is asserted such that the front-end can transition from the

WAIT ALLPRE to the FETCH state.
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Name Bits Type Description

cycle 64 uint Cycle when data must/will be available on DQ.

write 1 bool Operation is a write operation (false: read).

wordmask nBW array[bool] Mask of requested (32-bit) words from burst

reg offset nBW ∗ log2(nWGS) array[uint] Target lane in a vector register

sp offset 22 uint Offset in scratchpad of first word.

Table 5.6: DQ reservation message format

5.3.1.4 DQ scheduler

The DQ scheduler is responsible for generating the control signals required to instruct the

requesters’ storage resources (scratchpad, register file) to read or write data to the DRAM

data bus. The arrival of these control signals is synchronised with DRAM, taking into

account the CAS and column write delay (CWD) latencies of the read/write commands

issued by the command arbiter. The DQ scheduler’s input is a FIFO of (cycle, DRAM

word mask, scratchpad/register offset(s), R/W) 4-tuples describing at which cycle the first

beat of a burst will be available and where the data should go. When the value from the

global cycle counter matches that of the top entry on the input FIFO, the DQ scheduler

pops the entry and generates the control signals required to load or store the data from

the targeted scratchpad or register file.

In the Sim-D simulator, the DQ scheduler emulates the DRAM storage. In a real

implementation, the DQ scheduler is instead expected to buffer the DRAM data offered

on both the rising and falling edge of a clock cycle in order to transfer the data to the

register file or scratchpad at the rate of the command bus rather than at the double data

rate of the data bus.

5.3.2 Snoopy indexed transfers

For HRT systems, indexed transfers are problematic. Regardless of how indexed transfers

are implemented in hardware, there exists a worst case for which the relevant data is

stored so sparsely that for every word a full DRAM burst read/write must be issued. With

DDR4 DRAM, all words could reside in the same bank group, spacing consecutive bursts

tCCDL cycles apart. Even with an oracle to schedule DRAM commands with minimal

overhead, the worst-case data bus utilisation for such large buffers can never exceed:

1
nBW

tBURST
∗ tCCDL

→ tBURST

nBW ∗ tCCDL

(5.3)

For the two bank-group DDR4-3200AA configuration this bounds worst-case bus

utilisation to 4
16∗8 = 3.125%. Despite this low data bus utilisation, use-cases might still

necessitate indexed transfers.

For the index iteration method described in Section 5.3.1.1, the given bound is an
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upper bound on performance regardless of the buffer size. Worse, as demonstrated in

Section 5.5.3, for sufficiently large buffers the worst-case efficiency of the index iteration

method does not exceed 1
tRC

< 0.34%. This leaves scope for improvement.

In this work, I evaluate a second, snoopy, method for supporting indexed transfers.

For a snoopy indexed transfer, a sequence of burst read or write commands is issued to

cover an entire buffer. For read operations, dedicated per-work-item CAMs detect on each

cycle whether the data currently present on the bus is for the index requested by this

work-item. If so, it snoops the word from the bus into its corresponding data register. For

write-operations, when a CAM indicates that its index matches one of the words written

in a cycle, it signals a match to set the corresponding DQM bits and writes the word from

its data register to the correct DQ lines.

The main advantage of this approach is that the DRAM command stream generated

by this method is that of a (non-)unit-stride transfer. This implies that rows will never

be activated more than once and bursts can often be scheduled tCCDS apart. Snoopy

transfers efficiently coalesce multiple reads/write burst requests to the same data word.

Compared to indexed iterative reads, two downsides are identified. Firstly, because all

data from a buffer or tile is read without regard for the values in the indexes, bursts can

be read or written whose words remains unused. Secondly, the cost of implementation

is substantial. The design of this data snooping mechanism is broadly comparable to a

fully associative cache with as many entries as there are work-items in a work-group. In

the Sim-D configurations evaluated, this unit requires 1024 CAMs and a data distribution

network from each word on the data bus to 1024 registers. The wiring overhead and

fan-out of the data bus are expected to dominate the hardware overhead.

Literature gives some hints about the feasibility of this scheme in terms of latency. To

keep up with the data rate of DDR4-3200AA DRAM, comparison and data retrieval must

be completed in 625ps. Agarwal et al. [122] demonstrate how on 32nm technology, a CAM

can perform a 128-bit search in 145ps. If “don’t cares” are required in the comparison

word, Onizawa et al. [123] show that a 32-bit single cycle search is possible with today’s

technology in under the target latency of 625ps.

Implementation of this scheme requires two adaptations to the current design. Firstly,

the stride sequencer explained in Section 5.3.1.1 must be extended to augment transferred

words with their indexes. Secondly, the SimdClusters’ RFs must be extended with a data

snoop unit that performs the snoopy reads and writes. This component is replicated once

per RF to allow usage with both DRAM and scratchpad transfers.

5.3.2.1 Data snoop unit

The data snoop unit is responsible for monitoring the stream of data on the data bus. To

this end, one logical lane is instantiated for each work-item in a work-group. Figure 5.7
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displays a potential logical design of one lane in the data snoop unit, omitting the

configuration path of the address- and data registers. The displayed unit assumes a DQ of

4 words, but when re-using this component with a wider scratchpad data bus, components

must be scaled and replicated accordingly.
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Figure 5.7: Logic for snoopy indexed read/write operation, single index

Before a snoopy indexed transfer is initiated, each work-item must set the requested

index in the vc.mem idx register, which maps to each lane’s Index CAM register. For

write-operations, the data to be written must be stored in the vc.mem data data register,

which maps to the data register marked in red.

When the DRAM controller processes a read request, the index of the first element is

provided on the match lines. Contiguous data words on the DQ must necessarily contain

data from contiguous indexes. Hence only a single comparison is required per-cycle. On

a match, the CAM sets the write-bit of the data register. The difference between the

data idx value and the value in the index cam register provides the select value for the

word-select MUX. The data register is never written to if its corresponding thread active

bit is cleared. This bit is provided by the SimdCluster’s implicit predicate mask.

For a write request, again the DQ scheduler publishes the index of the first word on the

CAM’s match line. If the index matches the elements in the address register, the priority

encoder corresponding with the correct data-out word is notified. This priority encoder

then selects one lane whose data word is placed on the data bus through a wide MUX.

If multiple matches on the same word occur, for example because multiple work-items

try to write to the same location, the priority encoder ensures that only one of the words

is written while the others are discarded, ensuring validity of the resulting value. The

priority encoder additionally ensures that the DQM bit for this word is cleared correctly,

to avoid overwriting data for which no lane wishes to write a data word.

Details about the index matching logic have not been decided on at this point, and
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depend on the resulting hardware propagation delay. An important design decision is the

content of the address register. By the nature of DRAM, it is known that addresses must

be aligned to word widths. If the SimdCluster fills this register with physical addresses,

the match logic can be kept simple as it can just compare the high bits of the data idx

signal with the value of the index CAM. A downside of this approach is that applications

require additional arithmetic to transform their word offsets (indexes) into addresses.

Alternatively the index CAM contains actual indexes, offsets within a buffer at a word

granularity. Unfortunately, buffers have no strict alignment requirement. Hence in this

case the match logic will be slightly more elaborate: it would first subtract the first index

from its own index, then test whether the result is a positive number between 0 and the

DQ width. If so, it would snoop the corresponding element off the bus. This approach

allows for applications to remain oblivious of the physical address of data. As a downside,

the comparator inside the CAMs will have a longer latency.

Hardware synthesis would give more insight into the feasibility of either scheme. This

is deemed beyond the scope of this work. However, as a general note: if synthesis of

the second implementation indicates that the comparator violates timing constraints,

it is possible to instead enforce alignment constraints on the buffers that are used for

snoopy indexed transfers. This would allow to simplify the comparator to that of the first

implementation, or even smaller if limitations on buffer sizes are enforced.

5.3.2.2 Stride sequencer

Depending on the chosen hardware implementation, the stride sequencer must be extended

to convey either the address or index of the first element of the data on the DQ. This

information will then traverse down the pipeline such that the DQ scheduler can emit

them at the right time.

For the implementation where addresses are matched, this could simply be the value of

the global addr register. If an implementation is chosen that matches index lines, the stride

sequencer will need a new counter register that keeps track of the currently addressed

index in the first word of the DQ. Its increment on each cycle would be equal to the

increment of the global address, shifted by 2 locations to count words rather than bytes.

5.3.3 Takeaway points

This section introduced Sim-D’s DRAM controller as a four-stage pipeline: front-end,

DRAM command generation, DRAM command arbitration and DQ scheduling. It supports

1D and 2D stride requests, iterative indexed requests and snoopy indexed requests. For the

latter, changes are presented both to the front-end and the SimdCluster’s register file.
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5.4 Worst-case request execution time and issue de-

lay

This section presents techniques for statically deriving the worst-case request execution

time (WCRET) and longest issue delay (LID) of any DRAM request processed by the

Sim-D DRAM controller. For all these derivation methods it is assumed that:

1. The size of a buffer is known a-priori,

2. The start address for a request is only known at run-time,

3. The number of requested words w can vary during run-time but can be upper bound

statically.

None of the methods in this section consider the cost of DRAM refresh. In Section 7.4.8

I explain how refresh is safely accounted for when performing WCET analysis of Sim-D

kernel-instances.

5.4.1 Unit-stride

For contiguous, unit-stride reads or writes, two request parameters determine the worst-case

latency: request length and start address alignment.

The start address alignment influences the worst case in two ways. Firstly, because

bursts are aligned to multiples of nBW words, the alignment of data determines the

number of bursts that must be issued to access each word. Secondly, data alignment

affects the number of banks that are accessed by a request. If data is aligned such that it

starts near the end of a pair of rows, a transfer that could in the best case be serviced

from two banks could now require data from four banks (two bank pairs). The activation

delay for these four rows ends up on the critical path, increasing the delay of the request.

The length of the request can be used to bound alignment-related overhead. To do

so, I first define the length of a request in terms of the number of bursts required. For a

given maximum number of words w > 0, the maximum number of bursts n is given by the

following equation:

n = d(w − 1)/nBW e+ 1 (5.4)

For unit-stride transfers the WCRET and the LID are both monotonically increasing

with the number of requested bursts1. For this reason, for a given w only transfers with

exactly n bursts as given in Equation 5.4 need to be considered.

1When inspecting all schedules, I found that for n = 8 the worst case schedule for the two-bank
DDR4-3200AA configuration is one cycle shorter than that for n = 7, as the extra burst causes the greedy
algorithm to take a globally better scheduler decision. This provides the only known counter-example
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The LID and WCRET of a unit-transfer can be derived by considering all possible

alignments of its block of n bursts. For the address mapping outlined in Section 5.3.1.2,

the number of possible alignments is equal to four times the number of columns in a row:

two words per column for a DQ width of 64 bits and two rows in a bank pair. With the

DRAM configurations described in Section 4.1.1, this totals to 4096 unique alignments.

This bound is motivated by the observation that it makes no difference in which bank pair

the first burst of the request is situated. Performance is uniform among all bank pairs, and

command scheduling decisions taken by the DRAM controller will not change depending

on the index of the bank pair for the first issued read or write operation.

The limited number of alignment possibilities makes it feasible to exhaustively simulate

all possible schedules for a given unit-stride (or indeed non-unit-stride) request. On my test

set-up, simulating a unit-stride request for all 4096 possible alignments using the SystemC

model takes less than a minute. By analysing the simulated worst-case schedules, I found

that for unit-stride transfers it is possible to express the LID and WCRET as a function

of request size and DRAM timing parameters. This function increases monotonically with

the request size. The remainder of this subsection presents the equations resulting from

this analysis.

Traces of issued DRAM commands reveals that the command stream can be broken

up into three phases, each dominated by the following constraints:

1. Activation of first few banks, constrained by the row-to-row activation delay (tRRD).

2. Read/write of activated banks, constrained by the column-to-column delay (tCCD).

3. Precharge of the last accessed bank, constrained by tRTP+tRP.

These three phases bear some resemblance to stages of pipelined execution: warm-up,

maximum throughput and drain. The latency of the worst-case command schedules for the

first two phases is equal for both read- and write requests.

The length of the warm-up phase spans from the first activate command until the

time that at least one bank from each bank group is activated such that multiple reads or

against the property of monotonicity of latencies. Because I set out to derive an upper bound on latency,
I present equations for which the delay with n = 8 is equal to that of n = 7 to maintain the property of
monotonicity for the WCRET and LID equations.
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Figure 5.8: Partial DRAM schedule for worst-case unit-stride read, n odd.
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writes can be issued to each in an alternating fashion. A perfect oracle DRAM command

scheduler would be able to reach the second phase with exactly two activate commands.

The second activate would furthermore be overlapping with the first read or write to

the first bank, such that some work is already performed for the second phase early

on. Unfortunately, Sim-D’s greedy command scheduling strategy allows for a worst-case

situation where the first two activated rows are only accessed exactly once.

Figures 5.8 and 5.9 demonstrate, for odd and even n respectively, the first 58 cycles of the

worst-case schedules for the warm-up phase. These schedules are obtained from simulation

of a two bank-group DDR4-3200AA configuration. The arrows above the schedule indicate

the latencies that make up their critical paths. The schedule in Figure 5.8 is achieved

with an alignment such that from both bank 0 and 1 only a single burst must be read

or written from the first row. The schedule in Figure 5.9 represents the case where two

bursts must be read or written from the first addressed row in bank 0 and 1.

For both worst-case schedules, at cycle 0 the only command ready to issue is an activate

for a row in bank 0. Unfortunately, this activation limits the opportunities for executing

read commands in parallel with subsequent activates, the number of reads from row 0 is

limited.

The second activate command is issued tRRDS cycles after this row activation. At

this point, the command scheduler can issue an activate for a row in either bank 1 or bank

3. The command arbiter’s fifth command prioritisation rule (prioritise activate commands

based on the number of read or write operations present in the FIFO targeting the activated

row) demonstrates its merit by picking bank 3 over bank 1. Both banks can be activated

at this point in time, but for bank 3 there are more read or write operations available

in the command arbiter’s FIFO, hence offers more potential for masking the latency of

subsequent activate commands. This effectively substitutes tRRDL with tCCDL on the

critical path of the warm-up phase, the difference between the two being one cycle.

The third activate of bank 2, another bank for which many reads or writes are available,

is issued another tRRDS cycles later. Because bank 3 is targeted by more than one

burst, the tRRDS penalty between activating bank 3 and 2 is masked by the tCCDL

latency required for two subsequent read or write operations on bank 3. As displayed

by the annotations at the top of Figure 5.8, the total time for the warm-up phase is
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Figure 5.9: Partial DRAM schedule for worst-case unit-stride read, n even.
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tRCD + tRRDS + tCCDL cycles.

In the throughput phase, the command arbiter simply issues a DRAM read or write

command every tCCDS cycles. The chosen address mapping ensures that after the warm-

up, there is always one bank in each bank group available to read or write from. Transfers

that require more than four banks are of such size that while reading from the third and

fourth bank, there is plenty of time to perform activation of the fifth and sixth in parallel.

Figure 5.8 shows that when the throughput phase starts at cycle 39, the command arbiter

has already issued three read commands. This means there are n− 3 commands left to

be issued. As the read commands issued at cycle 31 and 39 are to the same bank group,

two reads from the same bank group remain at the end of this phase. The total length

of the throughput phase phase is thus (n− 4) ∗ tCCDS + tCCDL. Likewise, Figure 5.9

demonstrates that when n is even, the length of the throughput phase for the worst case

schedule starting at cycle 40 is (n− 5) ∗ tCCDS + tCCDL.

For requests with n ≤ 8, different worst-case critical paths emerge as a result of

disappearing delays and reduced parallelism. For example, with n = 1 there is no

requirement to wait tRRDS during the warm-up phase as there is only a single bank

to activate. Likewise, the number of reads or writes to parallelise with activates on the

critical path is limited when there is only one read/write operation per bank to begin with.

Note that the paired bank-group interleaving (PBGI) address mapping guarantees

that addressing more than four banks with a unit-stride transfer is only possible if the

length of the transfer exceeds two rows by at least three bursts. The time it takes to

issue read or write requests for these two rows greatly exceeds the four-activate window.

Similarly, for small transfers DRAM, latencies are such that the row cycle time will exceed

the four-activate window. This means that tFAW does not need to be taken into account

when performing worst-case analysis of unit-stride transfers.

An inspection of worst-case schedules results in the following definition of a function

ACTCAS(n) which, for given n, determines the time required to perform the first two

pipeline phases.

ACTCAS(n) =



(n− 1) ∗ tRRDs + tRCD iff n ≤ 4

2 ∗ tRRDS + tRCD + (n− 4) ∗ tCCDL + tCCDS iff n ∈ [5, 6]

3 ∗ tRRDS + tRCD + tCCDL + tCCDS iff n ∈ [7, 8]

tRRDS + tRCD + 2 ∗ tCCDL + (n− 4) ∗ tCCDS iff n odd

2 ∗ tRRDS + tRCD + tCCDL + (n− 5) ∗ tCCDS otherwise

The final drain phase determines the difference between the LID and the WCRET. The

distance between the last read operation of the current request and the first activate of

the next is tRTP + tRP , while the distance between the last write operation and the first
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activate of the next request is tCWD+ tBURST + tWR+ tRP . Any other bank that has

been activated during this transfer will have a read or write operation before this last one

and hence will be precharged earlier by the command arbiter. To calculate the WCRET

of a read or write operation, the drain latency is the moment the last beat of data arrives

on the data bus, defined as tCAS + tBURST and tCWD + tBURST respectively.
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Figure 5.10: DRAM schedule for worst-case read, n=2

Before a full equation for the LID can be composed, it is important to account for

read operations with n ≤ 8. For these transfers the minimum distance between precharge

and activate of a bank, tRAS, can end up on the critical path. Figure 5.10 demonstrates

the first 58 cycles for the worst-case schedule when reading two burst, one per bank. In

this example we can see that the last read operation is issued at cycle 31, as predicted

by ACTCAS(2). However, the precharge of the first activated bank only occurs after

tRRD + tRAS, which is larger than ACTCAS(2) + tRTP .

The lengths of tRAS-bound schedules are bound solely by the number of banks that

can be addressed, and hence the issue delay for read operations can simply be characterised

by min(n − 1, 3) ∗ tRRDS + tRAS + tRP . When n becomes large enough for tCCDS

to end up on the critical path, the worst-case is naturally described by the schedules

demonstrated in Figures 5.8 and 5.9. The LID is thus the maximum number of cycles

determined for the regular schedule and the tRAS -bound schedule.

The same effect does not occur for write operations, as here the minimum precharge

distance tRCD + tCWD + tBURST + tWR > tRAS. Hence, even a request with n = 1

will not have the tRAS delay on its critical path for its issue delay.

Taking all these observations into account, the following equations provide a tight

bound on the worst-case read- and write latencies by combining the components of these

three phases:

tIDR(n) =max

(
ACTCAS(n) + tRTP + tRP,

min(n− 1, 3) ∗ tRRDS + tRAS + tRP

)
tWCRETR(n) =ACTCAS(n) + tCAS + tBURST

tIDW (n) =ACTCAS(n) + tCWD + tBURST + tWR + tRP

tWCRETW (n) =ACTCAS(n) + tCWD + tBURST

(5.5)
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The pipeline of Sim-D’s DRAM controller additionally adds a fixed latency of 3 cycles

from the moment a SimdCluster kicks off a request in the front-end.

Note that for DDR4 DRAM, these equations imply that the LID is always greater than

the WCRET. For read operations this is true because tRTP + tRP > tCAS + tBURST .

For write operations, this is trivially true as tCWD+ tBURST + tWR+ tRP > tCWD+

tBURST .

The difference in cycles between the two metrics is small. For example, for the

DDR4-3200AA system the difference between tIDR(n) and tWCRETR(n) is 9 cycles for

sufficiently large n. Technically these cycles can be put to use by resuming a work-group

after expiration of the WCRET while scheduling the next DRAM request after LID has

passed, helping to reduce unnecessary stalls in applications where phases are unbalanced.

However, for strictly I/O-bound applications, the difference between a request’s WCRET

and LID is not exploitable for higher performance because the next request will not be

finished earlier, while for compute-bound applications there are no observable benefits

given the total compute time is not reduced. The scope of benefiting from this difference

in number of cycles when determining an application’s worst-case execution time (WCET)

is thus very limited.

5.4.1.1 Four or more bank-groups

For DRAM configurations with 16 banks and 4 bank groups, it is possible to simplify

the calculation of the warm-up latency. There are two main reasons for this. Firstly,

four adjacent bank pairs now all come from different groups. This means that it is less

likely to incur the higher tRRDL and tCCDL latencies for “same bank group” operations.

Secondly, for the chips used for such DRAM configurations, tRRDS is equal to tCCDS.

This means that where the greedy scheduler would previously schedule two reads to the

same bank during the activation phase on account of no banks being activated yet, now

the scheduler will have two active banks to pick its second and subsequent commands

from. As a result, the long tCCDL delay can be avoided. Both effects result in a more

straightforward command schedule.

For these reasons, ACTCAS(n) can be simplified for DDR4 configurations with four

or more bank groups to:

ACTCAS4bg(n) = tRCD + (n− 1) ∗ tCCDS (5.6)

Equations 5.5 continue to apply with this modified definition.
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5.4.2 Non-unit-stride

For non-unit-stride transfers, the WCRET and LID are determined by the three stride

request parameters introduced in Section 5.3.1.1: the period length period, a number of

words per period words period and a number of periods period count.

For 2D block transfers the period of a stride is equal to the x-dimension of the

targeted buffer. which is known a-priori. The number of requested words is equal to

words period∗period count. Like the number of words w for unit-stride transfers, I assume

that both words period and period count can be upper bounded a-priori. At run-time, a

kernel-instance may issue stride requests with smaller words period and period count, for

example when requesting data for remainder work-groups processing the edges of a 2D

data structure. Since this does not change the dimensions of the 2D data structure, the

period remains fixed.

Unfortunately, the relationship between the period parameter and the request la-

tency is non-monotonic. To illustrate this problem, consider a stride pattern for which

words period = 1 and a sufficiently large period count. If period is a multiple of 2∗nBW ,

for example 32, all burst requests are mapped to the same bank group. However, for a

period of either 31 or 33 and sufficiently large period count, the accessed bank alternates

between the two banks in the bank-pair every 16 burst requests. When the per-bank

command FIFOs are adequately provisioned with 16 entries each, the command arbiter

is able to effectively exploit bank parallelism after the warm-up phase, resulting in a

significantly more efficient transfer than when period = 32.

As for the other parameters: when period remains fixed, neither words period nor

period count can influence the alignment of data. Hence there exists a monotonic relation

between latency and the latter two parameters. This is an important observation, as

it means that the LID and WCRET found for upper-bound values of words period and

period count are safe for requests issued by remainder work-groups.

The non-monotonic relationship between a stride’s period and the request latency

makes it unlikely that a useful equation is found to bound the LID and the WCRET

for non-unit-stride transfers in the same way Equations 5.5 bound these latencies for

unit-stride transfers. Instead, given a fixed period and an upper bound on words period

and period count, the LID and WCRET of a request are determined by simulating all

possible alignments within a bank pair using the SystemC simulator.

5.4.3 Index iteration

For transfers using the indexed-iterative method, the LID and WCRET depend on two

parameters: the number of requested words w, and the size s of the buffer that data is

requested from. In the absence of logic that coalesce multiple requested words into a single
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burst request, the number of bursts n = w both in the average- and worst case.

Exhaustive simulation of all possible combinations of (1 bank, 2 bank-groups) and

(2 bank, 1 bank-group) followed by analysis of the generated trace output from Sim-

D’s DRAM controller has led to the equations for LID and WCRET presented in the

remainder of this subsection. Given timing of requests is not influenced by the column that

is accessed within a (bank,row) combination, the search space of all possible worst-case

DRAM command schedules is limited to unique sequences of (bank,row)-pairs. From this

analysis, two worst-case access patterns emerge: one for buffer sizes large enough to permit

bank conflicts, and one for buffers of a size that doesn’t.

For the case where the buffer is large enough to permit bank conflicts, a worst-

case sequence of DRAM commands is one where every pair of consecutive requests is

for a different row in the same bank. This results in the DRAM controller issuing an

expensive (activate,read/write,precharge) row cycle for every word. For reads, the LID is

n∗(tRAS+tRP ), while for writes the LID is n∗(tRCD+tCWD+tBURST+tWR+tRP ).

For buffers of smaller size, LID and WCRET can be determined the same way unit-stride

transfers are characterised, by breaking the latency down into the warm-up, throughput

and drain phases.

The length of the warm-up phase depends on the number of row activations on the

critical path. This in turn is bound by the size of the buffer to be addressed, for which I

identified three cases: buffers spanning one row, buffers spanning one row per bank-group,

and buffers spanning more than one row per bank-group. The remainder of this subsection

presents the relevant equations for the two bank-group DRAM configuration, followed by a

separate analysis for the configuration with four bank-groups. For readability, I define the

number of rows accessed for a given buffer size s in words, assuming worst-case alignment,

as:

rows(s) =


1 iff s ≤ 1

2 iff 1 < s ≤ nBW + 1

2 +
⌈
s−(nBW+1)

2∗nC

⌉
otherwise

(5.7)

The simplest case occurs when a buffer size only permits addressing a single row in a

single bank. With Sim-D’s address mapping, this can only occur in the pathological case

of a one-word buffer. In this case, one activate appears on the critical path, hence only a

latency of tRCD is paid in the warm-up phase. Since all CAS operations target the same

bank, the latency of the throughput phase is determined by (n− 1) ∗ tCCDL.

The case where an indexed buffer request spans one row in multiple banks, but no

more than one per bank-group, is slightly worse. Given Sim-D’s address mapping, this

case occurs when rows(s) ≤ nBG. In our example DRAM system with nBG = 2, this

corresponds with a buffer of size between 2 and 17 words. For this case, exhaustive

simulation of requests with n = 16 confirms that the worst case occurs for example when
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the first request accesses bank 0 and all remaining requests access bank 1. This pattern

maximises activation delay while paying the long (same bank-group) column-to-column

delay as much as possible during the throughput phase. The resulting schedule is displayed

in Figure 5.11

Bank 0

Bank 1

Cmd

DQ
τ

0 5 10 15 20 25 30 35 40 45 50 55

A

Bank activation

tRRDS

A

Bank activation

R

Read

tRCD

R

tCCDL

Read

R

tCCDL

R

tCCDL

R

Figure 5.11: Partial DRAM schedule for worst-case iterative indexed read, 2 banks.

As this schedule shows, the warm-up phase now needs to activate both banks. Since

the address mapping ensures that these banks must come from different bank groups, this

delay is equal to tRRDS + tRCD.

Compared to the single-bank case, the throughput phase is shortened by exactly

tCCDL. This is because the first read, to bank 0, is issued in parallel with the activation

of bank 1. Hence the throughput phase will take (n− 2) ∗ tCCDL cycles.

Note that a perfect oracle memory controller would benefit from activating bank 1

before bank 0, as this allows to process more reads in the warm-up phase in parallel with

row activation. However, the knowledge that bank 1 must be activated only becomes

available at time T = 1. The greedy command arbiter will instead at T = 0 decide that

the activation of bank 0 is the best option, by virtue of being the only option.

Analysis shows that, for sufficiently large n, requests that maximise precharge delay

are no worse than requests that maximise activation delay. The reason is two-fold. Firstly,

there is no minimum distance between two precharge commands to different banks like

there is between two row activation commands. Secondly, for sufficiently large n the

depth of the per-bank command buffers rules out paying tRAS on the critical path in

the drain phase. For the DDR4-3200AA timing parameters presented in Section 4.1.1,

tRAS = 6.5 ∗ tCCDL. As long as the per-bank command FIFOs can contain more than 6

entries each, all activate commands must be available tRAS cycles before the last precharge.

This means that tRAS cycles pass while the last 6 reads to the final bank are performed,

keeping this delay off the critical path. In the previous section I already suggested that

per-bank command FIFOs of 16 entries can help with the throughput of specific non-unit

stride patterns, providing a safe margin for disregarding such precharge-maximising access

patterns when determining the LID and WCRET.

For an indexed iterative request on a buffer that spans multiple rows in the same

bank-group, a slightly worse worst-case emerges. Exhaustive search reveals the following
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adversary pattern of targeted banks, assuming banks 0 and 2 are in the same bank group:

0, ((tRRDL − 1)× 2), 1, 2, 2, 2 . . .

Figure 5.12 demonstrates the first 58 cycles of the resulting schedule.
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Bank 1

Bank 2
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Bank activation

tRRDS
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Bank activation
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tRCD

R R

tCCDL

R

tCCDL

R

Figure 5.12: Partial DRAM schedule for worst-case iterative indexed read, 3 banks.

This pattern exploits another weakness in the greedy algorithm. Under normal circum-

stances, the activation of bank 1 can happen as early as tRRDS cycles after the activation

of bank 0. However, because the pipeline only feeds the command arbiter one read request

per cycle, this activation can be postponed to time T = tRRDL − 1 by instead requesting

tRRDL − 1 words from bank 2 before the first request from bank 1. Because bank 2 is in

the same bank group as bank 0, it is not activated during any of these cycles. The only

command ready to be issued at time tRRDL − 1 is thus the activation of bank 1, further

delaying the activation of bank 2 whose reads dominate the critical path of the throughput

phase. Impact from this decision is reduced slightly only by the fact that bank 2 is now in

a different bank group than the previous, and thus can be activated tRRDs time-units

after activated bank 1.

Because tRRDS + tRRDL − 1 > tRRDS ∗ 2, this pattern is worse than an extension

of the pattern found for two banks. Furthermore, any other position of the index mapping

to bank 1 in the list will lead to a better execution time. Earlier would lead to an earlier

execution of the activation of bank 1, while later in the list will result in bank 2 being

activated first, enabling parallel execution of the activation of bank 1 with several reads

from bank 2.

For these buffer sizes, the worst-case warm-up phase requires tRRDS + tRRDL − 1

cycles. Given this pattern permits another read to be performed during the warm-up

phase, the worst-case throughput phase is determined by (n− 3) ∗ tCCDL.

For a buffer spanning beyond four banks, the command arbiter’s fifth prioritisation

rule (activation of banks with many requests in its FIFO over those with fewer requests),

combined with the depth of the per-FIFO buffers, has the implication that after three

activations, there will always be at least two request ready to be issued in parallel with

another activation. To see why, consider the following sequence of targeted banks:

0, 2, 2, 2, 4, 4, 4, 6, 6, 6, 1, 1, 1, . . .
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When the command generator activates a row in each of these banks, one per cycle,

the resulting command schedule is similar to that of the worst case for three banks. An

activation for bank 0 is issued in cycle 0, and an issue for bank 1 is issued in cycle 10. At this

point the third activation must be one of bank 2, 4, 6 or 8, each of which have at least two

requests ready. In fact, one of these is guaranteed to have three entries as d tRRDL−1
3
e = 3,

in this case bank 6. Because tRRDS + tRRDL − 1 + 3 ∗ tCCDL > tRRDS + 2 ∗ tRRDL,

the fourth activation is no longer on the critical path as it can be successfully executed in

parallel with these three read operations. By the fourth activation, the command arbiter’s

fifth prioritisation rule guarantees that there are always sufficient read/write requests

available to mask the latency of all activation related delays, including the four-activate

window (FAW).

Any different set of indexes, not following the worst-case pattern for three banks,

ensures that at the time instances of any bank activation beyond the first there are always

two requests available, either in the newly activated bank or to one of the previously

activated banks. These requests can always be parallelised with subsequent row activation

latencies. Furthermore, the variation in rows accessed by an activation-latency-maximising

pattern introduces more opportunities to schedule adjacent read or write requests from

alternating banks, reducing the length of the throughput phase.

Using these observations, I define a function that computes the worst case latency for

the warm-up and throughput phases of index-iterative requests as:

IIACTCAS(n, s) =


tRCD + (n− 1) ∗ tCCDL iff rows(s) = 1

tRCD + tRRDS + (n− 2) ∗ tCCDL iff 1 < rows(s) ≤ nBG
tRCD + tRRDL + tRRDS − 1 + (n-3) * tCCDL nBG < rows(s) ≤ nB

(5.8)

For all buffer sizes, the drain phase is characterised in the same way as it is for unit-

stride transfers, thus tRTP + tRP and tCWD + tBURST + tWR + tRP for the LID

of reads and writes respectively, and tCAS + tBURST and tCWD + tBURST for the

respective WCRETs. This results in the following equations for LID and WCRET:

tIILIDr(n, s) =

{
IIACTCAS(n,s) + tRTP + tRP iff rows(s) ≤ nB
n * (tRAS+tRP) otherwise

tIIWCRETr(n, s) =

{
IIACTCAS(n,s) + tCAS + tBURST iff rows(s) ≤ nB
(n-1) * (tRAS+tRP) + tRCD + tCAS + tBURST otherwise

tIILIDw(n, s) =

{
IIACTCAS(n,s) + tCWD + tBURST + tWR + tRP iff rows(s) ≤ nB
n * (tRCD+tCWD+tBURST+tWR+tRP) otherwise

tIIWCRETw(n, s) =

{
IIACTCAS(n,s) + tCWD + tBURST iff rows(s) ≤ nB
(n-1) * (tWR+tRP) + n * (tRCD+tCWD+tBURST) otherwise

(5.9)

5.4.3.1 Four or more bank groups

Re-evaluating the three cases for four bank groups results in interesting findings that again

permits to simplify the IIACTCAS(n, s) definition.
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Looking at the second case, where buffers span multiple rows but only a single row per

bank-group, for the two bank-group case a worst-case was found where tCCDL latency

could be traded for tRRDS. Table 4.1 shows that tRRDS > tCCDL for a two bank-group

configuration, hence this results in worse timing. The same is not true for the DRAM chips

containing four bank-groups. Hence, the pattern that describes the worst-case latency for

the single-row case is also the worst case latency for the warm-up and throughput phases

for buffers that span multiple rows.

Similarly, the pattern that emerged for the case where a buffer spans multiple rows in

the same bank-group is worse than that of the single-row case for chips with 2 bank-groups

because tRRDL > tCCDL. Again, this is not true for the DRAM chip containing four

bank-groups.

As a result, the definition for IIACTCAS(n, s) can be greatly simplified:

IIACTCAS4BG(n, s) = tRCD + (n− 1) ∗ tCCDL iff rows(s) < nB (5.10)

To derive the LID and WCRET, this equation can simply replace IIACTCAS(n, s)

in Equation 5.9.

5.4.4 Snoopy indexed transfers

From the DRAM controller’s point of view, a CAM-based snoopy indexed transfer is

indistinguishable from either a unit- or a non-unit-stride transfer. Therefore, methods

described in Sections 5.4.1 and 5.4.2 can be used to derive the WCRET and LID.

5.4.5 Takeaway points

This section presented methodology for deriving the LID and WCRET of DRAM requests

processed by Sim-D’s DRAM controller. Specifically, I contributed the following:

• Equations to bound the LID and WCRET for large unit-stride transfers and snoopy

indexed requests that stream a whole buffer or a 1D block within a buffer,

• A simulation method for bounding the LID and WCRET for non-unit-stride transfers

and snoopy indexed requests that stream a 2D block within a buffer,

• Equations to bound the LID and WCRET for iterative indexed transfers.

Additionally, I presented the worst-case DRAM command schedules of iterative indexed

transfers. justifying the low worst-case performance of such transfers.
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5.5 Evaluation

In this section I evaluate the worst-case performance of the different types of requests

supported by the Sim-D DRAM controller. In Sections 5.5.1 and 5.5.2 I compare the

performance of unit- and non-unit-stride transfers against the theoretical throughput of

pattern-based DRAM controllers like Predator [40]. Section 5.5.3 presents a comparison

between the iterative- and the snoopy indexed transfer methods. Unless otherwise specified,

evaluation is performed using the DDR4-3200AA configurations, for which parameters can

be found in Section 4.1.1.

I omit comparing Sim-D against a generic throughput-optimised DRAM controller

for CPUs, as their use-cases are incomparable. Sim-D’s DRAM controller is a specialised

component for HRT SIMD processors and optimised towards processing large requests. It

is expected to perform poorly when used for the single-burst accesses, which is the normal

mode of operation in application processors. Conversely, throughput-optimised DRAM

controllers for CPUs are incapable of meeting Sim-D’s requirement of processing requests

at a bound latency.

5.5.1 Unit-stride transfers

Recall from Section 5.4.1 that the LID of a unit-stride transfer, processed by Sim-D’s

DRAM controller, has a monotonic relation with the size of the requested data. To quantify

the efficiency of these transfers, Figure 5.13 shows the utilisation of Sim-D’s contiguous

memory transfers of sizes between 4B and 16KiB as a fraction of ideal throughput. For

comparison, the utilisation of different configurations of a pattern-base DRAM controller

under alignment assumptions, as presented in Section 5.1.2, are included in the graph. By

contrast, the LIDs used to calculate Sim-D’s data bus utilisation only assumes requests

are aligned to a 32-bit boundary.
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Figure 5.13: Data bus utilisation on Sim-D vs. pattern-based DRAM controller, DDR4
3200AA.

As a first observation, Sim-D’s data bus utilisation trend follows a much finer grain

sawtooth than the pattern-based DRAM controller configurations. This is caused by Sim-D

never requesting a burst whose data will be discarded entirely. On the other hand. a static

pattern-based controller configured with patterns of n bursts can end up discarding all

data of up to n−1 bursts. This more uniform correlation between transfer size and DRAM

bus utilisation makes Sim-D a favourable choice for workloads containing a variation of

transfer sizes.

Secondly, the four bank-group DRAM configuration consistently out-performs the

configuration with two bank groups. This is both the result of lower row-activate to

row-activate delay (RRD), as well as an increase in bank-groups making it more likely to

hit the short CAS to CAS delay (CCD) and row-activate to row-activate delay (RRD)

latencies in the worst case. Although returns diminish as transfers grow larger, a ∼3%

benefit is observed for 4KiB transfers.

Finally, whenever there is a pattern-based DRAM controller configured for a given

size, Sim-D performs slightly worse at each pattern-configuration’s best case. This can be

explained by the penalties paid for facilitating unaligned access and the 3-cycle pipeline

warm-up required by Sim-D’s memory controller. In return, Sim-D reclaims a lot of the

performance in situations where pattern based DRAM command scheduling results in a

low net-bandwidth.

To show this observation in greater detail, Figure 5.14 present heat bars that visualise

the absolute difference in bus utilisation between Sim-D’s two bank-group configuration and

each pattern-configuration. In this figure, the colour indicates whether Sim-D outperforms

a pattern-based DRAM controller for a given transfer size (green) or vice-versa (blue).
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The more intense the shade, the larger the absolute difference in bus utilisation. The

difference between the two is clamped between (−0.5, 0.5) for legibility.
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Figure 5.14: Pattern-based DRAM controller configuration vs. Sim-D, DDR4-3200AA with 2
bank-groups

This diagram highlights four interesting trends. Firstly, for every configuration of a

pattern-based DRAM controller, there is at least one window in which it outperforms

Sim-D. The advantage within the window(s) of pattern-based DRAM controllers is biggest

in the configurations for 16- and 32 bursts. For larger bursts, the fixed-overhead paid by

Sim-D loses dominance in the total cycle time, whereas for smaller patterns the performance

for both memory controllers is so poor that there is no significant observable difference in

bus utilisation.

Secondly, patterns up to 8 bursts (512B/transfer) are quickly out-performed by Sim-D.

These patterns perform relatively well for transfers below their configured burst size as

they can utilise the performance benefits of their stricter alignment constraints, but once

exceeding their optimum they are consistently outperformed by Sim-D as their performance

converges to a relatively low peak on modern DDR4 DRAM.

Thirdly, the larger pattern configurations each have three windows in which they

outperform Sim-D. For Pattern(n), these windows end at 64×n, 128×n and 192×n bytes.

The absolute advantage gets successively smaller with each window as the bus utilisation

of Sim-D continues to climb, but as both Sim-D and the pattern based memory controller

converge to their optimum performance, the gradients will start repeating themselves

eventually.

Finally, as represented by the saturation of the colours, the absolute benefit of pattern-

based solutions at their optimum is not as significant as their disadvantage at other

points. What this means in practice should be studied on a per use-case basis, as Sim-D’s

configuration is optimised to issue requests of 4KiB for the common case of DRAM↔RF

transfers. However, this data indicates that throughput-wise Sim-D’s memory controller is
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a strong all-round solution for large transfers in a HRT SIMD processor.

The performance advantage of Sim-D’s DRAM controller comes despite only enforcing

alignment of transfers to 32-bit word-boundaries. Figure 5.15 overlays Sim-D’s performance

curves over the performance of pattern-based DRAM controller configurations under

equal alignment assumptions, as previously shown in Figure 5.3. Figure 5.15 clearly

demonstrates the throughput performance advantage of Sim-D’s deterministic DRAM

command scheduling solution over the more rigid static DRAM command patterns.
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Figure 5.15: Data bus utilisation on Sim-D vs. pattern-based, alignment to 4B boundaries,
DDR4 3200AA.

5.5.2 Non-unit-stride transfers

Section 2.2.3 discussed how some kernels (e.g. filter kernels) employ tiling as an optimisation

technique to reduce pressure on the DRAM bus. To transfer a 2D tile of data into local

memory, a non-unit stride transfer is issued to the DRAM controller. This section presents

some evidence that Sim-D’s memory controller can efficiently handle such transfers.

To this end, Tables 5.7, 5.8 and 5.9 compare the worst-case LID of Sim-D against that

of different pattern-based DRAM controller configurations for three different filter size-

and pitch combinations. For each experiment, the buffer width is set to the number of

elements a work-group configuration of (1024,1) requires. Latencies reported for the Sim-D

DRAM controller include a 3-cycle pipeline overhead. No pipeline overhead is assumed for

the pattern-based DRAM controller as DRAM command scheduling is static. Reported

energy consumption numbers are estimates from DRAMPower [82], and do not include

DRAM controller overhead.
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Net Sim-D (min-max) Predator (n-burst fixed size, cycles) Best

Config wrds Cycles Energy(nJ) n = 1 2 4 8 16 32 64 nJ

(1024,1) 3078 830 - 840 182.2 - 188.4 14282 7178 3626 1850 1144 1064 1120 282.6

(512,2) 2056 586 - 608 126.9 - 133.8 9842 5106 2738 1554 1144 1368 1400 335.4

(256,4) 1548 466 - 496 104.8 - 112.0 7622 4070 2294 1406 1144 1064 1960 282.6

(128,8) 1300 418 - 456 98.9 - 107.2 6734 3774 2294 1554 968 1672 3080 284.0

(64,16) 1188 418 - 492 108.9 - 118.9 6734 4070 2738 1406 1672 2888 5320 368.9

(32,32) 1156 466 - 560 139.8 - 152.3 7622 5106 3774 2590 3080 5320 9800 678.9

(16,64) 1188 591 - 755 207.3 - 225.6 9842 7326 6142 5550 5896 10184 18760 1453.8

(8,128) 1300 844 - 1148 302.2 - 373.4 14430 12062 10878 10286 11880 19912 36680 2693.7

Table 5.7: 3*3 filter, pitch 1, image width (period) 1026 words, DDR4-3200AA, nBG = 2

Net Sim-D (min-max) Predator (n-burst fixed size, cycles) Best

Config wrds Cycles Energy(nJ) n = 1 2 4 8 16 32 64 nJ

(1024,1) 6147 1598 - 1608 361.2 - 367.4 28490 14282 7178 3626 2200 1976 1960 485.5

(512,2) 5125 1358 - 1383 311.8 - 318.1 24124 12284 6364 3404 2288 2432 3080 669.7

(256,4) 4617 1246 - 1312 296.5 - 304.4 22052 11396 6068 3404 2464 2888 2800 721.1

(128,8) 4369 1214 - 1313 309.2 - 319.0 21460 11396 6364 3848 3080 2736 5040 724.9

(64,16) 4257 1270 - 1380 357.7 - 368.3 22052 12284 7400 4958 2992 5168 9520 875.4

(32,32) 4225 1358 - 1462 461.9 - 472.1 24124 14504 9694 4958 5808 10032 18480 1298.9

(16,64) 4257 1707 - 1900 683.3 - 697.9 28712 19166 14356 11988 11440 19760 36400 3343.9

(8,128) 4369 3158 - 3264 1179.1 - 1190.0 38110 28564 23828 21460 24112 39216 72240 5619.1

Table 5.8: 3*3 filter, pitch 2, image width (period) 2049 words, DDR4-3200AA, nBG = 2

Net Sim-D (min-max) Predator (n-burst fixed size, cycles) Best

Config wrds Cycles Energy(nJ) n = 1 2 4 8 16 32 64 nJ

(1024,1) 5140 1350 - 1359 304.3 - 310.5 23828 11914 5994 3034 1848 1672 1680 443.4

(512,2) 3096 850 - 872 191.7 - 199.3 14726 7622 4070 2294 1672 1976 1960 489.7

(256,4) 2080 606 - 616 135.8 - 142.7 10064 5328 2960 1776 1408 1216 2240 322.8

(128,8) 1584 490 - 520 115.2 - 123.8 7992 4440 2664 1776 1056 1824 3360 309.7

(64,16) 1360 458 - 544 118.0 - 130.8 7400 4440 2960 1776 1760 3040 5600 515.4

(32,32) 1296 490 - 620 145.6 - 163.1 7992 5328 3848 3256 3168 5472 10080 926.8

(16,64) 1360 608 - 784 212.1 - 236.6 10064 7400 6216 5624 6336 10336 19040 1473.2

(8,128) 1584 855 - 1147 347.1 - 389.9 14652 12136 10952 10360 11968 20368 36960 2713.1

Table 5.9: 5*5 filter, pitch 1, image width (period) 1028 words, DDR4-3200AA, nBG = 2

From these results, three conclusions can be drawn. Firstly, Sim-D’s best tile configu-

ration consistently outperforms all configurations for a pattern-based DRAM controller.

Sim-D’s most optimistic worst case is between 49.4% and 112% faster than the pattern-

based DRAM controller’s best case, with a similar improvement in estimated energy

consumption. This can be attributed to the fact that Sim-D’s DRAM controller benefits

maximally from bank-hits while not issuing requests for bursts whose data is never read.

By contrast, the pattern-based DRAM controller configured with low burst count DRAM

command schedules fail to benefit from bank hits, whereas a high burst-count configuration

causes many bursts to be issued for words that lie outside a requested tile of data.

Note that stride patterns like the ones evaluated are bad for pattern-based DRAM

controllers because the number of words read per row only barely exceeds power-of-two
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boundaries. For large patterns in particular, this means a lot of net bandwidth is wasted

on issuing bursts for which all words are subsequently discarded. However, looking at the

design of commodity GPUs it is a fair assumption that SIMD accelerators function best

with a power-of-two number of work-items per work-group, hence the tested cases have

relevance for practical applications.

Secondly, for non-unit stride transfers a pattern-based DRAM controller performs best

when configured with a pattern that issues between 16 and 64 bursts, transferring between

1 and 4KiB per pattern transaction. However, such coarse-grain pattern transactions

prevent these DRAM controllers from performing well when processing data-conserving

tiling configurations: the data bus utilisation for the (128,8) case does not exceed 39.9%.

For the two filters with a pitch of 1, the higher utilisation achieved with less data-conserving

tiling configurations are the result of loading more words rather than reducing the number

of cycles.

Finally, the most data-conserving tiling configuration is the square (32,32) configuration.

However, Sim-D’s DRAM controller conserves the most cycles for a more oblong tiling

configuration. To give insight into the reason behind this discrepancy, Table 5.10 shows the

number of activate and burst read DRAM commands issued for each tiling configuration

in the worst case for the 3× 3 filter example with a pitch of 1.

Net Cycles DRAM cmds (max) Bus util.

Config words min - max Activate Burst read %

(1024,1) 3078 830 - 840 4 194 91.6

(512,2) 2056 586 - 608 4 133 84.5

(256,4) 1548 466 - 496 6 103 78.0

(128,8) 1300 418 - 456 8 92 71.3

(64,16) 1188 418 - 492 12 93 60.4

(32,32) 1156 466 - 560 20 107 51.6

(16,64) 1188 591 - 755 36 141 39.3

(8,128) 1300 844 - 1148 68 212 28.3

Table 5.10: Number of cycles, activate and burst read commands, 3*3 filter, pitch 1, image
width (period) 1028 words, DDR4 3200AA

As this table shows, there are two reasons behind this discrepancy. The first reason is

that the more vertically oblong a tile is, the more DRAM rows it spans. This is reflected

by a higher number of row activations. As long as a sufficient number of burst requests are

issued to each row, these activations can be performed in parallel with burst read/write

operations. However, for vertically oblong tiles this may no longer be the case.

The second reason is that for each stride pattern, the words period parameter slightly

exceeds a perfect multiple of the burst size. The more periods in a stride request, the
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more often a penalty is incurred for issuing a burst request for a limited number of

words. For this reason, the smallest number of burst requests is achieved with the (128,8)

configuration. Beyond this point, the number of issued burst reads start increasing again

despite a decrease in the net number of words read. The ideal tiling configuration is thus

a trade-off between reducing the number of net words and maintaining good data locality.

The last column in Table 5.10 translates the worst-case number of cycles to a net

DRAM data bus utilisation percentage. For the best tiling configuration, the bus utilisation

is 71.3%. To place this number in perspective, a unit-stride transfer of 1024 words takes

327 cycles in the worst case, achieving a worst-case data bus utilisation of 78.3%. This

means that Sim-D’s non-unit-stride transfers can be of practical value to applications.

5.5.3 Indexed transfers

As explained in Section 5.3.2, (indirect) indexed transfers inherently perform poorly in the

worst case. A particularly bad set of requested indexes is one where every index maps to

the same bank group, and for every DRAM burst only a single word is used in practice.

Equation 5.3 defines an upper bound on worst-case data bus utilisation of tBURST
nBW∗tCCDL

,

which for the DDR4-3200AA configurations is 4
16∗8 = 3.125%.

When the size of the buffer, or the size of the relevant region within a buffer, is

known a priori and is relatively small, better results can be achieved. Sim-D implements

two schemes for indexed accesses: index iteration and snoopy indexed transfers. This

section compares both techniques under the two DDR4-3200AA configurations explained

in Section 4.1.1.

For a given DRAM configuration, the worst-case latency of indexed transfers can be

characterised for four discrete ranges of buffer sizes using Equations 5.9. Table 5.11 lists

the resulting worst-case latencies and data bus utilisation percentages for indexed iterative

requests on the two- and four-bank group DDR4-3200AA configurations.

Buffer- 2 Bank-groups 4 Bank-groups

span Buffer size LID (n=1024) Buffer size LID (n=1024)

Rows Max (B) R % W % Max (B) R % W %

1 4 8243 3.11 8271 3.10 4 8243 3.11 8271 3.10

≤ nBG 8-68 8244 3.11 8272 3.09 8-16452 8243 3.11 8271 3.10

≤ nB 72-49220 8246 3.10 8274 3.09 16456-114756 8243 3.11 8271 3.10

> nB 49224- 75776 0.33 90115 0.28 114760- 75776 0.33 90115 0.28

Table 5.11: Worst-case latency and data bus utilisation for indexed iterative DRAM read and
write requests

Three observations can be made. Firstly, the latency differences for the first three buffer

size ranges are minimal. For the two-bank-group configuration the difference between the
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first and third case, buffers spanning 1 row versus spanning 8 or fewer rows, is merely 3

cycles. For the four bank-group configuration no difference exists in LID, as a result of

simplifying the IIACTCAS(n, s) definition in Equation 5.10.

Secondly, for small and medium-sized buffers, the data bus utilisation approaches the

theoretical bound of 3.125%. For buffers whose size exceeds one row per bank, permitting

a worst-case access pattern causing row ping-pong, worst-case utilisation drops to less

than 0.34%.

Finally, the difference in latency between the two- and four-bank-group configuration

for the different cases is negligible. However, the four-bank-group configuration is more

resilient to variations in buffer size as a result of doubling the number of banks without

changing the size of each bank. Where the two bank-group configuration can sustain its

higher performance mode for buffers up to ∼48KiB, the four bank-group configuration

sustains this performance for all buffers up to ∼112KiB.

Snoopy indexed transfers have in a much more fine-grain correlation between buffer

size and latency. To compare the two indexed transfer methods, Figure 5.16 depicts the

correlation between buffer size and absolute read latency for both methods.
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Figure 5.16: Worst-case latency for iterative- and snoopy indexed reads.

This figure shows that for both the 2- and 4-bank-group DRAM configurations, snoopy

indexed transfers remain faster than iterative indexed transfers for small- and medium-sized

buffers. The cross-over point where iterative indexed transfers become more efficient is

for buffers of over ∼1.15MiB, corresponding to a square buffer exceeding 550× 550 data

elements.
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Figure 5.17: Worst-case latency for iterative- and snoopy indexed writes.

For write-operations the same trend is observed. The higher worst-case LID for iterative

indexed write transfers causes the cross-over point to shift to buffers exceeding ∼1.37MiB.

It is worth re-iterating that snoopy indexed transfers permit to narrow down the region

of a buffer containing the requested indexes, provided this region can be described by a

(non-)unit stride pattern. If the use-case permits, bounding this region can result in a

lower LID. This makes snoopy indexed transfers worth considering even when the buffer

size exceeds the cross-over points.

5.6 Summary

In this chapter I presented a closed-page DRAM controller suitable for a HRT wide-SIMD

architecture. Its defining feature is the ability to service large, explicitly coalesced requests

in bound time. The DRAM controller is designed as a pipeline. In the front-end, I proposed

two subcomponents: the stride sequencer and the index iterator. Both subcomponents

translate a specific type of request into a sequence of DRAM burst requests. Subsequent

pipeline stages deterministically schedule these burst requests for maximum throughput.

This determinism helps to bound the execution time of each request.

The stride sequencer processes 1D or 2D stride requests. Analysis of buffer usage

by the selected benchmarks show that the majority of read and write requests can be

expressed as such 1D or 2D stride transfers. To bound the execution time of a stride

request, I provided various equations for different types of 1D stride transfers, and an

exhaustive simulation method for 2D stride transfers that can run in time proportional to

the number of columns in a pair of rows. Evaluation shows that a 1D block transfer can

achieve over 78% data bus utilisation with DDR4-3200AA DRAM, and 2D block transfers

can often nearly match this efficiency.

A limited number of benchmarks require indexed transfers for data dependent loads/s-
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tores. To service these use-cases, the index iterator iterates over a set of indexes into a

buffer and requests the associated bursts one by one. Evaluation shows that such transfers

perform poorly in the worst case, with an upper bound on data bus utilisation of 3.125%.

To improve upon this bound for cases where the targeted (region of the) buffer is small,

I introduced snoopy indexed transfers. These transfers work by streaming the contents

of either a whole buffer or a (1D- or 2D) block of data from a buffer over the data bus.

An array of CAMs, one per work-group monitor the addresses associated with the data

currently on the data bus. On a match, it snoops the correct element off the bus. At the

front-end, snoopy indexed transfers are 1D or 2D stride transfers, meaning their worst-case

performance can be analysed using the same methods.

The evaluation of non-unit stride transfers shows how kernels that use tiling can

benefit from optimising their tile dimensions. Simulated DRAM transfers show that the

most data-conserving square tiling configuration is not the configuration with the lowest

WCRET. This is caused by the generally higher number of required row activations for

such a square transfer. In Section 7.5.3.3, I will put these results in perspective by means

of a case-study, analysing the performance of the KFusion vertex2normal benchmark with

various tiling configurations.
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CHAPTER 6

Design space exploration

Sim-D’s focus on HRT applications resulted in a high level architecture design that provides

strict performance isolation between subcomponents. Within its high-level framework,

there is a large design space to be explored. This design space spans parameters such

as pipeline depth, number of SP-units and RCP-units, register file size, scratchpad size

and scratchpad data bus width. These parameters inherently present a trade-off between

performance and area.

This chapter aims to achieve two goals. Firstly, I justify several design decisions

relating to resource provisioning by means of a parameter sensitivity study. Additionally,

some more tailored performance-optimising features are discussed by contrasting them

against alternatives. These studies are best interpreted as a limit study, guiding those who

wish to implement some of Sim-D’s principles in hardware. Secondly, I demonstrate the

feasibility of the high-level Sim-D performance-isolation concepts by showing the achievable

performance of several design points. The projected performance is put into context by

comparing it against an NVIDIA Kepler-generation GPU of comparable specifications, as

well as a high-end model from the same generation.

Given Sim-D is currently implemented as a simulator, rather than a synthesisable

design, the scope of this chapter is largely limited to performance evaluation. In absence

of area-, power- and cost models for Sim-D, the chosen parameter ranges used in this

evaluation are mainly justified by their proximity to NVIDIA’s hardware design decisions

as evident from the specifications of real hardware. Some decisions are discussed in the

context of hardware modelling techniques found in literature.

This chapter makes the following contributions:

• An analysis of the resource usage of benchmarks on both NVIDIA hardware and

on Sim-D’s simulation model, justifying the provisioning of data storage resources

(Section 6.1),

• A parameter sensitivity study, characterising Sim-D’s performance for a varying
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number of configurations (Section 6.2),

• An average case performance comparison between Sim-D and an NVIDIA Kepler-

generation GPU of similar specifications (Section 6.3),

• A benchmark-driven discussion of two specialised hardware-assisted optimisations:

vector DRAM load/stores and warp trimming (Section 6.4).

6.1 Resource usage characterisation

This section characterises the resource usage of the benchmarks outlined in Section 4.3.

These characterisations are the result of an analysis of two types of assembly code: NVIDIA

Kepler-specific assembly as compiled by their binary drivers, and hand-written Sim-D

assembly code. This analysis results in data that aids with the following design decisions:

• Provisioning of registers,

• Provisioning of SP-units in a SimdCluster,

• Provisioning of dividers, trigonometric operators,

• Instruction memory type.

6.1.1 NVIDIA Kepler

As a first experiment, I analyse benchmarks as compiled for NVIDIA’s Kepler-generation

hardware. To this end, static program data is gathered by running each benchmark’s

OpenCL implementation on an NVIDIA GeForce GTX650 GPU, and obtaining the

compiled program and launch parameters using the “valgrind-mmt” and “demmt” [83]

tools. The dynamic instruction count of benchmarks is then manually reconstructed from

the assembly by analysing the control flow. Table 6.1 summarises the results of this data

acquisition. The columns signify the following:

GPRs This column list the number of 32-bit general-purpose registers (GPRs) required

for each work-item. NVIDIA Kepler does not distinguish between per-work-item vector

registers and per-work-group scalar registers; the latter values are duplicated in all columns

of a vector register. 64-bit pointers are contained in two adjacent GPRs.

Exec. # insns. The maximum number of (dynamic) executed instructions for a work-

item when launched using the launch parameters defined for the specific benchmark. For

if-else blocks, the common path is chosen. When no path is obviously dominant, the longest

of the paths is chosen instead. Arithmetic instructions that directly address constant
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memory in one of their operands are counted as two instructions: one constant load/store,

and one arithmetic instruction.

Binary The two binary columns list the size of the resulting binary both in number of

instructions and in bytes. The latter is 8 times the number of instructions as on NVIDIA

Kepler, each instruction requires 8 bytes of data. The resulting binary size does not include

the overhead added by Kepler’s static scheduling codes, as this overhead describes solely

architecture-specific properties rather than properties of the benchmark program.

Div, Trigo The last three columns indicate whether a benchmark contains Integer or

Floating-point divisions and trigonometric instructions (sine, cosine).

Benchmark Kernel GPRs Exec. Binary Div Trigo

# insn # insn B I F

CNN convolution 25 2317 133 1064

relu 9 52 43 344

maxpool 21 216 113 904

KFusion halfSampleRobustImage 21 152 84 672
√

depth2vertex 10 69 51 408

vertex2normal 24 268 248 1984
√

Track 24 282 254 2032
√

SRAD srad 20 207 167 1336
√ √

srad2 22 127 97 776
√

reduce 20 149 351 2808

reduce fpatom 18 186 42 336

MRI-Q ComputePiMag 9 29 22 176

ComputeQ 20 17451 84 672
√

SPMV spmv jds naive 21 2075 82 656
√

LU Decomp. diagonal 31 2718 244 1952
√

perimeter 34 608 803 6424
√

internal 15 104 89 712

Stencil naive kernel 18 96 68 544

FFT GPU FFT Global4 23 120 106 848
√ √ √

Table 6.1: Program characteristics

The first thing to notice is that for all but the LU decomposition perimeter benchmark,

32 GPRs is sufficient to contain all required data without spilling into main memory. This

is no coincidence: NVIDIA’s compiler register allocation pass optimises for a register

usage not exceeding 32, as a higher number of registers limits the numbers of warps the

hardware scheduler can have in-flight at any given time. The fact that NVIDIA succeeds
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in optimising programs to fit within this register budget gives an indication that Sim-D

probably requires a similar number of VGPRs and SGPR.

The larger GPR requirement for the LU Decomposition’s perimeter benchmark is

caused by aggressive loop unrolling. In Section 7.5.3.1 I show that this is an effective

technique for predictably reducing the control flow overhead of certain kernels. For this

reason, it is worth considering Sim-D configurations with a larger number of registers.

In justification of a Harvard architecture, Table 6.1 demonstrates that most kernels

contain no more than a few kilobytes of code. Assuming a similar code density for Sim-D,

this means that kernels can be contained in full in a typical contemporary L1I cache1.

Considering the cost of a Harvard architecture is not larger than the cost of a comparable

von Neumann architecture with an associative I-cache, while it provides the benefit of

timing predictability, I believe that the limited storage requirement provides a compelling

argument in favour of a Harvard architecture.

Looking at the type of instructions used, there appears to be a hard requirement for

floating-point and integer division. Floating point divisions are used for many purposes.

By contrast, integer divisions are only used for converting a multi-dimensional TID into a

1D offset into a given buffer. With Sim-D’s work-group-wide DRAM requests and scalar

operations, a single scalar divider suffices for performing the same operations.

Trigonometric operations are found in 2 of the 19 benchmarks. Despite this low

occurrence, the low implementation cost and the high latency for software emulation of

these instructions still provide a compelling motivation to support such operations in

hardware.

To understand the significance of the dynamic instruction counts, it is worth breaking

down the number of executed instructions into various categories. This break-down helps

derive an initial estimate for the required number of processing units. To this end, I

have manually annotated each dynamically executed instruction with its relevant category.

Figure 6.1 provides an overview of the instruction mix of each benchmark, normalised to

the total number of instructions executed in each. Instructions are categorised into nine

different categories:

Int/bool and FP cover all regular integer plus binary (bit-wise) operations, and floating

point operations respectively. When a conversion (“cvt” instruction) between floating

point and integer values is encountered, the destination type determines the category.

Trigonometry refers to all instructions related to sine and cosine computation.

1For example, the ARM Cortex A72 mobile processor contains 48KiB of L1I per core [124].
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Ld/st global and Ld/st local cover the regular loads and stores to global memory and

local(/shared) memory respectively

Ld/st const covers all reads and writes to constant memory. Whenever a floating point

or integer arithmetic instruction addresses constant memory as one of its operands, we

count this as a ld/st const instruction in addition to an arithmetic instruction. Thus, for

these operations two instructions are counted.

Atomic/reduction int and Atomic FP covers the integer+binary and floating point

atomic operations respectively.

Ctrl flow covers all binary-, integer- and floating point test operations, (conditional)

branches, join operations, memory fences, barriers and the final exit instruction of a

program.
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Figure 6.1: Dynamic executed # instructions, normalised

The first thing to notice is the large proportion of loads from constant memory. On

NVIDIA hardware, many arithmetic operations are able to address a constant buffer

directly in one of their source operands. The frequency of such operations and the number

of times the same constant is loaded from a buffer hints at the existence of specialised

constant cache techniques2. Such caching techniques risk making the execution time of

program phases dependent on context, adding undesired complexity to WCET analysis

2Unfortunately I am unable to confirm caching of constant buffers from official NVIDIA hardware
documentation, but constant buffer caching is documented for OpenCL programs targeting Intel FPGA
hardware [125].
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methods. An architecture tailored for HRT systems is likely to use different techniques,

such as immediate values or persistent scratchpad values, to provide constant support

with predictable latency.

To more closely match Sim-D’s ISA, Figure 6.2 depicts the instruction mix for bench-

marks when constant-memory load/stores are filtered out.
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Figure 6.2: Dynamic executed # instructions, excluding constant memory accesses, normalised

Two interesting observations are highlighted. Firstly, the majority of the benchmarks

are dominated not by floating point arithmetic, but rather by integer arithmetic. Most

integer operations fall into two usage categories: pointer arithmetic and loop invariants.

At first sight it seems that for good throughput, the number of ALUs should thus match

or even exceed the number of FPUs.

Loop invariants are often equal for all work-items in a work-group. Sim-D can replace

such vector integer arithmetic with scalar arithmetic, reducing the storage overhead.

Furthermore, Sim-D’s reliance on implicitly-coalesced DRAM requests helps to eliminate

pointer arithmetic or reduce this vector arithmetic to scalar arithmetic. However, this is

not true for all pointer arithmetic. Kernels that perform indirect accesses, such as the

SRAD and SPMV kernels, will compute per-work-item offsets within the buffers.

For such indexed accesses it is still required to support vector integer arithmetic in

Sim-D. Such support is also beneficial for neural networks or computer vision use-cases

that process e.g. unpacked RGB image data.

As a second observation, the two benchmarks that require trigonometric operations,

MRI-Q and FFT, execute such instructions for 17.6% and 5% of all instructions respectively.

Both benchmarks are examples of digital signal processing, that require conversion of data

points between discrete points and the frequency domain.
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To get a feel for the total number of resources that a SIMD architecture requires to

match a given DRAM bandwidth target, Figure 6.3 presents the dynamic instruction count

in terms of instructions executed per byte of DRAM data consumed. The number of bytes

consumed by a work-item is estimated by multiplying the number of global load/store

operations by their data size. This disregards the potential efficiency gains from coalescing

requests in the (uncommon) case that multiple work-items access the same word, and

should therefore be treated as an estimate only.

in
s
tr

u
c
ti
o

n
s
/l
d
+

s
t+

a
to

m
 b

y
te

Int/bool
FP

Trigo
Ld/st local

Ctrl flow

 0

 2

 4

 6

 8

 10

 12

 14

 16

C
N
N
 c
on

vo
lu
tio

n

C
N
N
 R

ELU

C
N
N
 m

ax
−p

oo
lin

g

KFus
io
n 

ha
lfS

am
pl
e[

...
]

KFus
io
n 

de
pt

h2
ve

rte
x

KFus
io
n 

ve
rte

x2
no

rm
al

KFus
io
n 

Tra
ce

SR
AD

SR
AD

 2

SR
AD

 re
du

ce

SR
AD

 re
du

ce
 F

PAto
m

M
R
I−

Q
 c
om

pu
te

Phi
M

ag

M
R
I−

Q
 c
om

pu
te

Q

SPM
V

LU
D
 d

ia
g

Lu
d 

pe
ri

LU
D
 in

te
rn

al

Ste
nc

il
FFT

Ave
ra

ge

440 20.1

Figure 6.3: # instructions per byte of DRAM data consumed

From these numbers, a rough approximation of required processing units (SP-units) is

derived as follows. Assume targeting a 64-bit wide DRAM bus running at 3.2GHz with an

average utilisation of 80%. This implies a sustained bandwidth of 3.2∗109∗8∗8
10

' 19.07GiB/s.

Figure 6.3 shows that three instructions are executed per byte of data transferred from

DRAM on average. Assuming this average, a SIMD processor must process 19.07∗3 ' 57.21

giga-instructions per second. Aiming for a 1GHz clock frequency and assuming that each

processing element achieves a throughput of 1 IPC, at least 58 processing elements are

required to balance DRAM bandwidth with processing power.

It would be wrong to interpret these results as rigid, as there are quite a few sources

of imprecision. Firstly, for in-order processors an IPC of 1 per SIMDs-lane is unrealistic.

Control-flow induced pipeline flushes, divergent branches and read-after-write induced

stalls all contribute to a lower net IPC. Furthermore, the throughput of specialised

components such as the RCP-units and the integer divider is lower than that of regular

vector arithmetic. Secondly, the number of instructions per bytes calculated assumes

that each load/store operation loads 4 bytes. However, associative caches can eliminate

aliasing DRAM requests. Both sources of imprecision make the estimated optimum of 58
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processing elements an underestimate. For the design space exploration that follows, I

thus choose to gather data for configurations with 64, 128 and 256 SP-units.

Note that the two benchmarks requiring trigonometric operations have an above average

number of instructions executed per byte of data consumed. This means that if the number

of processing units is balanced with bandwidth according to the average instructions/byte,

these benchmarks are expected to be compute-bound. Given software emulation of such

operations requires about 110 instructions, hardware support for trigonometric operations

provides a measurable benefit to these benchmarks. Given the low projected cost of

implementing these operations in a ROM-backed scheme that re-uses existing floating-

point multiply addition resources, I expect addition of such hardware to be a valuable

investment despite their limited scope.

The instructions/byte ratios show a few other outliers, the most significant being

MRI-Q’s computeQ kernel. When inspecting the assembly, I conclude that this ratio is

the result of its 512-entry “kValues” buffer being placed in constant memory. This is

permitted in OpenCL due to the buffer’s limited size. At first sight it seems that if each

value were to be loaded from global memory instead, the instructions/byte ratio would

approach 6. However, each of these 512 values are used by every work-item. Efficient

coalescing logic would effectively only add one global load per work-item rather than 512

to this kernel, resulting in a ratio of 384.6.

The LUD diagonal and SRAD reduce benchmarks have a relatively high instruction/byte

ratio because they successfully make use of local memory. Values that are re-used among

multiple work-items are only loaded from DRAM to local memory once per work-group,

significantly reducing the required bandwidth for this benchmark. Local memory is thus

an important optimisation to achieve high throughput for benchmarks whose performance

would otherwise be bound by DRAM bandwidth.

6.1.2 Sim-D

Architectural differences between NVIDIA Kepler and Sim-D have the consequence that

porting benchmarks between these two architectures is more involved than a one-to-one

translation of instructions. As a result, static benchmark characterisations for Sim-D

differ from those presented in Section 6.1.1. Besides coalesced large DRAM transfers, five

architectural differences lie at the heart of this:

1. On NVIDIA hardware, every operation is a vector operation. By contrast, Sim-D

provisions scalar registers and operations to be used for global loop invariants, for

work-group-wide shared values and for issuing large memory requests,

2. NVIDIA uses software emulation for (vector) integer division [89], whereas Sim-D

includes a scalar Radix-16 integer divider to cover the most important use-cases,
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3. On NVIDIA hardware, the sin and cos instructions require the use of a “presin”

operation to pre-process the values. If both cos and sin of the same value are required,

only a single presin operation is required for both. Sim-D simulates both sin and cos

as a single vector instruction,

4. Similarly, on NVIDIA the same construction is used to calculate single-precision

2x using two instructions “preex2” and “ex2”. None of our benchmarks used this

instruction, hence Sim-D’s current ISA does not model an implementation for 2x,

5. On NVIDIA hardware, many arithmetic instructions directly address constant

buffers as one of their source operands without the need for an explicit load/store

instruction, whereas immediate values can only be passed as a source operand to

the mov instruction. To reduce GPR usage and instruction count, NVIDIA thus

transforms programs to put immediates into constant buffers. Sim-D does not

support constant buffers, and instead permits instructions to accept an immediate

value as one of its source operands.

To demonstrate the consequences of these architectural differences, Table 6.2 shows

the resource usage for all the kernels ported to Sim-D. In line with Sim-D’s inclusion of

scalar registers, GPRs are split out into general purpose vector registers (VGPRs) and

general purpose scalar registers (SGPRs). In addition, columns are added to show (vector)

predicate registers (PRs), CSTACK- and scratchpad usage.

Benchm. Kernel GPRs PRs CSTACK SP Binary

Total Vec Sca max depth B/WG # insn B

CNN convolution 20 4 16 2 0 6364 45 360

relu 3 2 1 0 0 0 10 80

maxpool 14 6 8 2 0 16900 46 368

KFusion halfSampleRobustImage 14 7 7 2 1 16384 54 432

depth2vertex 21 8 13 2 1 12288 55 440

vertex2normal 24 16 8 2 0 26160 120 960

Track 45 29 16 4 2 32864 232 1856

SRAD srad 18 14 4 2 0 4016 78 624

srad2 11 7 4 2 0 0 42 336

reduce 18 9 9 2 1 8192 74 592

MRI-Q ComputePhiMag 2 2 0 0 0 0 6 48

ComputeQ 16 8 8 0 0 4096 30 240

SPMV spmv jds naive 11 7 4 1 1 200 38 304

Stencil naive kernel 10 3 7 2 0 0 36 288

FFT GPU FFT Global 19 13 6 0 0 0 60 480

Table 6.2: Program statistics of kernels ported to Sim-D
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Comparing register usage between NVIDIA Kepler and Sim-D assembly, we observe

that the total number of required GPRs remains broadly equal. On itself this observation

does not bear much significance for two reasons. Firstly, NVIDIA’s compiler doesn’t aim

to minimise GPR usage but rather aims to maximise instruction scheduling potential while

keeping GPR usage below a threshold of 32. Secondly, Sim-D kernels have their registers

allocated by hand rather than an optimising compiler. That being said, a trend can be

observed where kernels that rely on linear mappings from work-items to their data element

(e.g. the CNN relu and maxpool benchmarks) have a slightly reduced register requirement

on Sim-D, as they no longer require the GPRs reserved for pointer arithmetic.

The use of scalar instructions has reduced the need for vector registers in all-but-one

case, providing a strong motivation for the concept of mixed scalar/vector code. Only

KFusion’s tracking kernel has a slightly higher VGPR occupancy. This is largely because

the original kernel writes results to DRAM as soon as they are computed, whereas the Sim-

D implementation ensures that every work-group executes the same number of program

phases by aggregating all DRAM and scratchpad writes at the end of the program.

These benchmarks demonstrate that to avoid register spilling, the minimum number

of registers per work-group is 32 VGPRs, 16 SGPRs and 4 PRs. Common optimisation

techniques like loop unrolling could increase both the VGPR and SGPR requirement.

Section 7.5.3.1 demonstrates the cost and merit of loop unrolling in greater detail. As

an optimising compiler is beyond the scope of this project, I will not further explore the

consequences of minimising the register file size, and perform subsequent experiments

under the assumption that each work-group has access to double this number of vector-

and scalar GPRs.

Sim-D kernels binaries tend be smaller than their NVIDIA Kepler equivalents. As

explained, this is not entirely an apples-to-apples comparison. However, a large reason for

achieving smaller binaries with Sim-D’s architecture is a reduction in boiler plate code

surrounding DRAM transfers: code that calculates buffer offsets from TIDs is not required

for strided DRAM requests.

Defining an instruction encoding can result in mandatory changes to the ISA, which

will have an impact on binary size. A specific area of concern is the feasibility of encoding

instructions with immediate operands of the type and size required by the current ISA

specifications. If immediate operand support needs to be removed from some instructions,

the introduction of mov instructions to load immediates to (scalar) registers instead will

result in an increased binary size.

The scratchpad usage of all but one kernel is bound to 32KiB per work-group. The

KFusion tracking kernel forms the only exception. This kernel uses a 32KiB scratchpad

buffer to compose 8-element struct entries for storing into a global array-of-structs. Rather

than issuing 8 inefficent sparse write requests to DRAM, this kernel instead sends 8
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sparse write requests to the scratchpad, followed by a single dense transfer from the

aggregate scratchpad results to DRAM. With the SRAM-backed scratchpads offering

higher bandwidth and lower latency than DRAM, this local temporary data structure

reduces the penalty of the sparse writes significantly without specialist hardware support.

Given the provisioning of 128KiB of combined L1 caches and shared memory per

compute unit in NVIDIA’s recent Volta architecture [126], I believe that a scratchpad

between 32 and 64KiB per work-group is within reasonable bounds.

Finally, benchmarks only require a handful of CSTACK entries. In absence of unbound

recursive methods in HRT systems, I do not foresee a large rise in CSTACK depth

requirements. Given this small CSTACK size, the power- and area overhead for this

dedicated storage is expected to be negligible.

6.1.3 Takeaway points

Through static data extraction from kernels assembled both for NVIDIA hardware and for

Sim-D, I have motivated the following design choices:

• Given the limited size of kernels, a Harvard-architecture using dedicated IMem is a

natural choice for low-cost program storage with guaranteed latency,

• (Hand-optimised) Sim-D kernels are rarely observed to require more than 32 vector-

and 16 scalar registers per work-group. In the light of more advanced optimisation

techniques such as loop unrolling and instruction scheduling, this should be considered

a lower bound,

• It is expected that more than 58 SP-units are needed to balance DRAM throughput

of a 64-bit DDR4-3200AA DRAM bus with throughput of compute resources,

• The maximum observed scratchpad allocation for any Sim-D kernel is just over

32KiB per work-group,

• None of the benchmarks ported to Sim-D require more than 2 CSTACK entries. A

small hardware CSTACK is expected to suffice for most kernels.

6.2 Parameter sensitivity

This section quantifies how Sim-D’s performance scales with three major design parameters:

scratchpad bus width, number of compute resources and pipeline depth. Based on the

benchmark resource usage presented in the previous section, I narrow down the parameter

ranges to the values listed in Table 6.3
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Domain Parameter Sim-D

Compute Clock 1GHz

Work-items/WG 1024

SP/RCP-units 64/16, 128/32, 256/64

Decode stages 1, 3

Execute stages 3 - 6

Register file VGPRs 64

(per WG) SGPRs 32

PRs 4

DRAM Configuration DDR4-1866M, DDR4-3200AA

Bus width 64 bits (DDR)

Throughput 128 bits/cycle

Scratchpad Clock DRAM clock

Bus width 128, 256, 512, 1024 bits

4, 8, 16, 32 words

Throughput 128, 256, 512, 1024 bits/cycle

Capacity 128KiB/WG

Table 6.3: Summary of configurations for parameter sensitivity experiments.

6.2.1 Scratchpad bus width

Table 6.2 lists the 11 benchmarks that use scratchpads for work-group-local storage.

Invariably the performance of these benchmarks is linked to the bandwidth provided by

the scratchpads. To understand this correlation, I executed each of these 11 benchmarks

with four different scratchpad data bus widths, ranging from 4-32 words.

The bus width of a scratchpad is not an arbitrary choice, but trades off performance

with the size of a crossbar that routes data between the scratchpad and the GPRs. Recall

from Section 3.5.2.2 that routing N words from a data bus to any of M columns in a

vector register without buffering or back-pressure requires an N ∗M crossbar transferring

32-bit words. For the widest scratchpad bus evaluated, 32 words, this crossbar must be of

dimensions 32 ∗ 1024.

To provide a justification for implementing such large crossbars, Figure 6.4 demon-

strates the performance of each benchmark under different scratchpad data bus widths.

Performance is normalised to that of the 4-word scratchpad bus width. DRAM and

scratchpads are clocked at 933MHz. Numbers reported are for a 3-cycle decode phase and

a 5-cycle execute pipeline phase, as I will motivate further in Section 6.2.2.
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Figure 6.4: Sim-D performance for different scratchpad bus widths, clocked at 933MHz

This figure shows seven benchmarks for which performance in absolute terms increases

noticeably with scratchpad bandwidth. Expressed as a function of scratchpad bus width,

the observed growth of these benchmarks approaches at best a logarithmic trend, indicating

a diminishing return on investment. Negative outliers are the KFusion depth2vertex and

halfsample kernels, which seem to benefit little from a scratchpad bus wider than 8 words.

The remaining five benchmarks still gain significant additional performance with a bus

width of 16 or even 32 words.

Four benchmarks show little to no benefit from increasing the scratchpad data bus

width: KFusion track, SPMV, SRAD and MRI-Q computeQ. The first three benchmarks

are mainly bound by the execution of indexed transfers to/from large DRAM buffers, for

which Section 5.4 demonstrates poor expected performance. The MRI-Q computeQ kernel

is strongly compute bound.

6.2.2 Compute configurations

I next evaluate the influence of Sim-D’s pipeline depth and the number of SP/RCP-units

on benchmarks’ performance. When reasoning about compute performance in isolation,

the number of provisioned SP-units determines the upper bound on throughput. Net

achieved compute throughput is limited by the ratio of scalar and vector instructions, the

occurrence of pipeline bubbles due to RAW hazards and the frequency of pipeline flushes

caused by control flow- and load/store operations. For data parallel programs, pipeline

effects replicate for each work-group in a kernel-instance the same way pipeline effects

inside a for-loop replicate for each iteration. Hence even small increases in pipeline-related

costs can have large run-time consequences. However, in practice many benchmarks are
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expected to be I/O bound rather than compute bound.

To demonstrate to what degree benchmarks are sensitive to variations in the compute

configuration, I gathered average case execution times for the cartesian product of all

configurations listed in the compute domain in Table 6.3. To magnify the performance

influence of compute resources, the DRAM and scratchpads are configured for high

throughput: DRAM is modelled as a two-bank-group DDR4-3200AA configuration, and

the scratchpad has a 32-word wide data bus.

Figure 6.5 shows the performance results for the tested Sim-D compute configurations.

Each configuration is represented as a (SP-units, decode stages, execute stages) 3-tuple.

Performance is normalised to that of the lowest-performing (64,3,6)-configuration. To help

track correlations visually, configurations with the same number of SP-units share the

same colour. Lines connect all benchmark results of one configuration.

Looking at the influence of pipeline depths, this figure shows four benchmarks whose

performance varies more than 10% between the shortest and longest pipeline for configura-

tions with 128 or 256 SP-units: CNN convolution, CNN maxpool, MRI-Q computeQ and

SRAD reduce. The first three are long-running compute-bound benchmarks, the fourth is

a shorter kernel that efficiently uses the scratchpad for communication between work-items

in a work-group and is thus compute- or scratchpad I/O bound. For all other benchmarks,

the pipeline depth has very little influence on run-time. These are either memory-bound

benchmarks or benchmarks with ample vector instructions and little control flow. As a

result they require only infrequent pipeline flushes and thus introduce few pipeline bubbles.

Both the MRI-Q computeQ and the CNN convolution benchmark’s preference for a

short pipeline are caused by large control flow overhead. These benchmarks contain a

tight inner loop with a significant number of iterations: 2048 and 147 respectively. Each

iteration causes a pipeline flush, and additionally the short distance between iterator

increment and testing the loop invariant form a RAW-hazard introducing additional stalls

on each iteration. In Section 7.5.3.1 I evaluate the effects of loop unrolling on both of

these kernels, demonstrating how this technique can both reduce a benchmark’s run-time

and it’s sensitivity to pipeline depth.

The main loop inside the SRAD reduce kernel is more difficult to unroll, as the iteration

count of this loop varies between work-groups and kernel-instances. This benchmark may

benefit from a simple statically analysable branch predictor, such as static hints or a

“backwards taken, forwards not-taken” policy. Although these solutions are analysable,

they complicate the pipeline analysis pass of the WCET-analysis algorithm presented in

Section 7.4. For this reason, I leave the exploration of branch prediction techniques as

future work.

Looking at the influence of the number of compute resources on performance, the

benchmarks can broadly be grouped into three categories: I/O bound, compute-bound
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and mixed I/O- and compute-bound.

The category of I/O benchmarks contain the CNN RELU, KFusion track, MRI-Q

computePhiMag, SPMV, SRAD2, SRAD and stencil kernels. These benchmarks show

very little difference in performance between different compute resource provisions.

The second category contains the benchmarks that are strongly bound by compute

and control flow: CNN convolution, MRI-Q computeQ and SRAD reduce. Of these

benchmarks, only the MRI-Q computeQ kernel benefits nearly linearly from extra SP-units.

The other two benchmarks benefit to a lesser extent as the pipeline also stalls due to RAW

hazards and integer division latencies.

The third category of benchmarks (CNN max-pool, FFT, KFusion depth2vertex,

KFusion halfsample, KFusion vertex2normal) contain a mix of I/O-bound and compute-

bound sections on their critical path. For this category, increasing the number of compute

resources shows diminishing returns. Doubling the number of SP-units from 64 to 128

delivers a speed up of 30% or more. Again doubling the number of SP-units to 256 only

gives an additional ∼15% speed-up as the number of pipeline stalls increases.

As a final note, one effect I expected to observe is that Sim-D would perform significantly

better for decode and execute configurations whose combined pipeline depth does not

exceed the number of warps in a work-group. The reason is that for such configurations,

RAW-dependencies between two consecutive vector instructions cannot cause pipeline

stalls. This effect would be most visible in the three compute-bound benchmarks under the

configurations with 256 SP-units. From the graph, I conclude that this effect is negligible

for the examined configurations. Although some clustering of results by pipeline depth

occurs, in Section 7.5.3.1 I show that this is mostly accounted for by the cost of control

flow instead.
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Speed-up vs 64 SP-units

Benchmark 128 256

CNN Convolution 1.15 1.18

CNN Maxpool 1.24 1.31

CNN RELU 1.00 1.00

FFT 1.28 1.38

KFusion depth2vertex 1.21 1.31

KFusion halfSampleRobustImage 1.31 1.41

KFusion track 1.03 1.04

KFusion vertex2normal 1.28 1.39

MRI-Q computePhiMag 1.00 1.00

MRI-Q computeQ 1.78 2.70

SPMV 1.00 1.00

SRAD2 1.00 1.00

SRAD reduce 1.59 1.89

SRAD 1.02 1.05

Stencil 1.02 1.03

Average 1.19 1.31

Avg. mixed/compute-bound 1.35 1.57

Table 6.4: Speed-up obtained for number of SP-units, normalised to 64.

Deciding upon the best all-round configuration requires additional metrics, like area

and power consumption. In absence of a physical implementation, the speed-ups listed in

Table 6.4 provide a preliminary justification for a configuration with 128 SP-units. For a

first-order estimate, assume that the area of a SimdCluster with 64 SP-units is 50% parallel

compute resources and 50% pipeline and storage for register file and scratchpad. Choosing

a configuration with 128 SP-units would then increase the total area of the SimdCluster by

1.5×, while 256 SP-units results in a SimdCluster 2.5× the area. Given the speed-up for

mixed- and compute-bound applications on a 256 SP-unit configuration averages 1.57×,

this configuration seems uneconomical. A configuration with 128 SP-units is expected

to give a better return-on-investment, with the speed-up for mixed- and compute-bound

applications averaging at 1.35×.

6.2.3 Takeaway points

Through parameter sensitivity analysis, comparing average case performance of benchmarks

on various Sim-D configurations, I draw the following conclusions:

• The correlation between scratchpad bus width and performance is logarithmic at
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best. In absolute terms, many benchmarks benefit from a bus width of 8 or 16 words,

• The pipeline depth of the decode and execute phase generally has very little influence

on performance. For the three benchmarks that are sensitive to pipeline depth,

control flow-induced flushes are the main source of pipeline overhead,

• Assuming area of the compute resources scale linear with the number of SP-units,

configurations with 128 FPUs are expected to balance area with performance.

6.3 Average case performance comparison

To put in perspective the performance potential of Sim-D, this section compares Sim-D

under two DRAM configurations with the NVIDIA GeForce GT710 and NVIDIA GeForce

GTX780 graphics cards. The most important parameters of both systems are summarised

in Table 6.5.

NVIDIA GeForce

Parameter Sim-D GT710 GTX780

Compute

Clock 1GHz 1GHz 992MHz

Work-items/WG 1024 < 1024 < 1024

SP/RCP-units 128/32 192/323 2304/384

Decode stages 3 ? ?

Execute stages 5 ? ?

DRAM

Configuration DDR4-1866M, DDR3 @ 1866MHz GDDR5 @ 6.4GHz

DDR4-3200AA

Bus width 64 bits (DDR) 64-bits (DDR) 384-bits (DDR)

Throughput 14.4, 23.8 GiB/s 14.4 GiB/s 288.4 GiB/s

Scratchpads

Clock DRAM clock ?

Bus width 128, 256, 512, 1024 bits 2048 bits/SMX [19]

4, 8, 16, 32 words 64 words/SMX

Capacity 64KiB/WG 16KiB/SMX (+L1)

Table 6.5: Summary of configurations for average case performance experiments.

3“SFUs”, special function units, described by Oberman et al [86].
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Figure 6.6: Average-case performance of Sim-D, normalised to NVIDIA GeForce GT710.

Figure 6.6 shows the measured performance of Sim-D, normalised to the performance

of the low-end NVIDIA GPU. This figure shows mixed results. In some of the more trivial

benchmarks, such as CNN convolution, CNN RELU, FFT and the compute-bound MRI-Q

computeQ, Sim-D is able to match or even slightly outperform NVIDIA’s low-end GPU

provided sufficient scratchpad bandwidth. This is also true for MRI-Q computePhiMag,

but with a runtime of less than 2000 cycles on our system, I have little trust in the

significance of this observation. Such short kernels might exacerbate NVIDIA’s fixed-cost

overheads caused by the OpenCL run-time (e.g. command submission through the PCIe

bus). These overheads are not included in the run-times reported for Sim-D.

In many other cases Sim-D lags behind, often achieving around 40-50% performance,

with less than 10% in the worst example in the case of the SPMV benchmark. This

difference is explained by the absence of transparent caches in Sim-D. Although our

scratchpad can help fulfil some roles of transparent caches, there are two situations in

which a scratchpad-based solution ends up performing poorly: indexed requests into large

buffers and data sharing across work-groups.

SRAD and SRAD2 are benchmarks that relies on indexed transfers, loading arbitrary

data points from a DRAM buffer of ∼898KiB. Unfortunately, this benchmark does not

have any scope to bound the region its indexes can refer to. As Figure 5.16 shows, such a

buffer size is large enough to make both indexed transfer methods perform poorly. NVIDIA

benefits from the inclusion of an L2 cache to drastically speed up such DRAM accesses in

the average case. Unfortunately, I am unaware of any techniques that utilise associative

caches to improve the worst case.

For kernels that share read-only data among all work-groups, there is scope for better
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performance. Currently, to provide constants or kernel parameters, Sim-D requires each

work-group to load the same static data from DRAM. As these constant values tend to be

of a scalar nature, the DRAM bus utilisation of such transfers will be poor.

One solution to this problem that can be explored in future work involves marking

scratchpad data as persistent and read-only, loaded upon launching a kernel. Scratchpads

have significantly lower latencies than DRAM and already often serve as a cache for scalar

values when pressure on scalar registers is high. As long as non-preemptive execution is

enforced, the loads from DRAM to a persistent scratchpad buffer only needs to occur once

per kernel-instance rather than once per work-group, taking pressure off the DRAM bus.

The potential speed-up of static scratchpad buffers is limited given most such transfers only

take up less than 100 cycles per work-group, but it can be achieved with little additional

hardware support. For the KFusion halfSampleRobustImage benchmark, reading kernel

parameters from a persistent scratchpad buffer has the potential of reducing execution

time by ∼ 1.3%.

Comparing benchmark performance between a DDR4-1866M and a DDR4-3200AA

configuration, Figure 6.6 shows that the architecture still benefits from higher DRAM

throughput. The performance of memory-bound benchmarks scales nearly linearly with the

theoretical bandwidth provided by the DRAM technology. Furthermore, four bank-group

DRAM chips consistently outperform two bank-group configurations.

Cycles

Benchmark Sim-D GTX780 Speed-up

CNN Convolution 24462378 5901185 ×4,15

CNN Maxpool 368726 78122 ×4,72

CNN RELU 58985 10895 ×5,41

FFT 216062 20106 ×10,75

KFusion depth2vertex 350894 40212 ×8,73

KFusion halfSampleRobustImage 102770 19008 ×5,41

KFusion track 7015098 256715 ×27,33

KFusion vertex2normal 522664 137421 ×3,80

MRI-Q computePhiMag 1291 5091 ×0,25

MRI-Q computeQ 86547947 7669264 ×11,29

SPMV 1438668 38622 ×37,25

SRAD2 1653467 34357 ×48,13

SRAD reduce 278721 58928 ×4,73

SRAD 1745937 47182 ×37,00

Stencil 970810 46040 ×21,09

Average difference ×15.33

Table 6.6: Performance comparison of Sim-D (DDR4-3200AA, 2BG, 32-word SP bus) and
NVIDIA GeForce GTX780
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Finally, Table 6.6 shows that the high-end NVIDIA GeForce GTX780 achieves over 15×
better performance on average when compared to Sim-D. This is unsurprising considering

it’s DRAM bandwidth is over 10× larger and it contains 18× as many SP-units.

Scaling Sim-D to the size of a high-end GPU is still an open problem. This scalability

problem poses two main challenges for future research: increasing the DRAM bus width

without sacrificing data bus utilisation, and increasing the number of SimdClusters while

remaining able to derive a tight WCET for kernel-instances. I expect that a solution to

the latter challenge can provide a foundation for research towards temporal- and spatial

multitasking methods for HRT data-parallel accelerators.

6.4 Hardware-supported optimisation

While conducting average-case performance experiments, I identified two hardware optimi-

sations that could benefit some of the benchmarks: n-vector loads and warp trimming.

This section briefly discusses the trade-offs and potential gains for both techniques.

6.4.1 n-vector load/stores

Some benchmarks store data as arrays-of-structs. For example, the input and output

buffers of the FFT benchmark are list of complex numbers stored as (real, imaginary)-pairs.

If a kernel requires all elements of the struct, naively loading such data from DRAM into

vector registers is unnecessarily expensive on Sim-D: a program would first load all real

numbers into one vector register, followed by a load of all imaginary parts. The nature

of DRAM burst transfers is such that on an architecture without associative caches, two

transfers of the same memory segment are issued, each discarding half the data.

If an array-of-structs data layout is a strict requirement, it appears worthwhile to add

specialised instructions that can transfer multiple-element vectors between DRAM and

consecutive VGPRs. To this end, I next evaluate a modified FFT kernel that utilises

specialised ldglin.vec2 and stglin.vec2 2-vector load/store instructions.

To put the results in perspective, I compare this kernel with an FFT kernel variant that

does not require specialised n-vector load/store instructions. Instead, this variant uses the

scratchpad as a cache. It first loads the DRAM tile containing all (real,imaginary)-pairs

for a work-group into a scratchpad buffer, and then uses indexed transfers to load both

components from the scratchpad buffer. Compared to a naive kernel that just uses indexed

transfers to load both components directly from DRAM, this scratchpad-cached technique

reduces contention on the DRAM bus and promotes parallel execution of the two active

work-groups. Furthermore, if the scratchpad bandwidth is more than twice as high as that

from DRAM, this solution will yield higher performance.
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Given these two load strategies, I next argue argue against adding specialised 2-vector

load/store support in hardware. To motivate this claim, I first explain how I believe the

cost of implementing such specialised support is roughly equal to the cost of doubling

the scratchpad data bus width. To this end, Table 6.7 summarises the hardware changes

required to implement each solution.

Component 2-vector Double scratchpad bus width

VRF banks ×2, half # rows each (Unaltered)

VRF distribution crossbar ×2 outputs ×2 inputs

StrideSequencer DRAM +1 mux per lane (Unaltered)

StrideSequencers SP (Unaltered) ×2 lanes

StorageArray SP (Unaltered) Additional constraints

Table 6.7: Estimated implementation cost of 2-vector load/store and doubling SP bus width.

From the listed components, I expect that the cost of the crossbar size dominates. This

expectation is based on Cakir et al.’s observation [93] that a crossbar with a number of

input/output lines of the same order as required for our distribution network takes up an

area of 3.2mm2 when fabricated using a 40nm process. They report modelling the area of

the crossbar as follows:

wire lengthi/o =
wire pitcho/i ×DW ×N
number of metal layers

(6.1)

area = wire lengthi × wire lengtho (6.2)

Under the simplifying assumption that the wire pitches for input and output are

equal, doubling the scratchpad width increases the size of the cross-bar by as much as

implementing 2-vector load/store.

Table 6.8 lists the binary size for five possible kernels, each representing one strategy

for loading and one for storing. For loading the options are either to use 2-vector loads or

to cache the tile of 2-vector elements in the scratchpad. For storing the options represent

either writing to DRAM directly using two indexed transfers or first precomposing the tile

of 2-vector elements in the scratchpad before writing back the data using a single DRAM

transfer. For comparison, a base-line kernel is included that performs direct reads and

writes. Note that storing results requires a permutation of work-items to data elements

owing to the butterfly pattern of FFT write-backs. I deem the implementation of indexed

2-vector transfers prohibitively expensive as they require doubling the number of CAMs in

the snoopy indexed transfer subsystem.
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Load Store VGPRs SGPRs PRs SP Alloc Binary

B/WG # insn B

Direct Direct 13 6 0 0 76 608

2-vector Direct 13 6 0 0 59 472

2-vector SP buffered 13 6 0 16384 57 456

SP buffered Direct 13 6 0 16384 77 616

SP buffered SP buffered 13 6 0 16384 75 600

Table 6.8: Program statistics for four variants of the FFT kernel

Compared to the baseline, 2-vector loads allow a modest reduction in binary size.

Additionally, the bottom three variants require a scratchpad allocation of 16KiB per

work-group. When compared to the resource usage of the other 14 benchmarks as listed

in Table 6.2, these differences bear no significance.

Table 6.9 lists the performance of each benchmark in number of cycles. In all cases,

Sim-D was configured with 128 SP-units, a 3-stage decode pipeline phase and a 5-stage

execute pipeline phase. DRAM is configured as two-bank-group DDR4-3200AA.

Load

Direct 2-vector SP-buffered

SP width (words) 8 16 32 16 32

Store direct 744948 479900 479900 479900 506283 496640

Store SP buffered 276899 249964 223410 247405 216062

Table 6.9: Cycle count for various FFT implementations, (128,3,5)-configuration.

The first row demonstrates how both the 2-vector load variant and the scratchpad cache

variant gain significant performance over directly loading the two data pairs from DRAM

using four snoopy indexed requests, eliminating one third of the overhead. Replacing the

direct storage with a scratchpad-assisted storage eliminates another third of overhead

from the baseline. Both improvements are attributed to the improved efficiency of DRAM

transfers in this I/O-bound benchmark.

Comparing the 2-vector load variant with the scratchpad buffered load variant for equal

scratchpad configurations shows that performance is within 7% of each other. The first row

shows how 2-vector loads on themselves have a slight advantage over scratchpad buffered

indexed loads. However, the variants in the second row, performing scratchpad-buffered

write-back of data, shows a different trend. Analysis of this data reveals that the biggest

deciding factor for performance here is no longer the chosen data load mechanism, but

rather the way the program phases of two active work-groups interleave. By shifting DRAM

refresh operations or applying scheduling restrictions to the simply greedy work-group
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scheduler, the measured average-case performance of these benchmarks vary by more

than 10% either way. As I will demonstrate and explain in greater detail in Chapter 7,

understanding and constraining this performance variation is the main challenge for

determining the WCET of a program. On a like-for-like basis though, this data suggests

that there is no reason to assume that either load strategy is universally superior when

considering the behaviour of the whole kernel.

A slightly different picture emerges when comparing two solutions that under the

assumptions detailed above require roughly equal area, e.g.the 2-vector load variant with

a scratchpad bus of 16 words versus the SP-buffered load variant with a scratchpad bus of

32 words wide. For a kernel that uses unoptimised write-back of data, the 2-vector load

variant remains a faster option. However, 2-vector stores cannot be used for write-back of

data because FFT requires a permutation of data elements. This permutation breaks the

linear relationship between TID and data elements, which is a prerequisite for large 1D/2D

block transfers. Once the 2-vector load variant relies on the scratchpad for write-back of

data, the scratchpad’s throughput becomes a bottleneck, For this reason, the scratchpad

buffered load variant with a bus width of 32 words is ∼14% more efficient than the 2-vector

load variant with a 16-word wide scratchpad bus.

This latter comparison demonstrates how scratchpad load/stores are more universally

applicable than dedicated n-vector load/stores. This is backed by the static benchmark

analysis: Section 6.2.1 lists seven benchmarks that benefit from widening the scratch-

pad bus, whereas Table 5.1 lists only four benchmarks that may benefit from n-vector

load/store operations. Of these benchmarks, two would require 3-vector loads, for which

implementation is all but trivial. Whether a kernel benefits from either a wider scratchpad

bus or specialised n-vector loads ultimately depends on the nature of the kernel, but data

suggests that within a given area budget, a wider scratchpad bus provides higher returns

than n-vector load/stores.

6.4.2 Warp trimming

Section 3.2.2 introduced the concept of warp-trimming. I explained how the TID-to-SIMD-

lane mapping scheme (linear vs. compacted) influences the number of warps that could

potentially be trimmed from remainder work-groups. Generally the more warps can be

trimmed, the better these remainder work-groups perform. When mapping threads onto a

3D grid of data elements, as done by the CNN convolution and Stencil benchmarks, the

number of remainder work-groups can be potentially large.

By analysing the remainder work-groups of each benchmark, I next argue that the

performance benefit of warp trimming is expected to be negligible. To this end, Table 6.10

lists the number of dynamic instructions executed for each benchmark whose kernel-

instances have at least one remainder work-group. The number of cycles is divided into
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three categories: vector instructions, scalar instructions and no-ops. The last category

includes the cycles that the compute resources spend idling while both work-groups are

occupying other resources. Using these numbers, I extrapolate the number of cycles required

to execute remainder work-groups under both TID mapping schemes if warp trimming

were implemented. These cycle counts are derived by scaling the number of executed

vector instructions linearly with the number of active warps in each work-group. From

these scaled number, a projected total number of cycles is calculated which indicates the

best-case savings. For 1D kernel-instances, the results for the compressed- and linear TID

mapping scheme are equal. Fractional cycle counts are the results of different work-groups

taking different code paths.

Linear Compressed

Cycles/WG Work-group Warps Cycles/WG Warps Cycles/WG

Scalar NOP Location Dim # # Vector Total % # Vector Total %

CNN Convolution

876 5676.5 Default 32 ∗ 32 2304 8 1248 7800.5

East 26 ∗ 32 384 8 1248 7800.5 0% 7 1092 7644.5 -2%

South 32 ∗ 26 384 7 1092 7644.5 -2% 7 1092 7644.5 -2%

South east 26 ∗ 26 64 7 1092 7644.5 -2% 6 936 7488.5 -4%

Total 3136 24392490 -0.3% 24322602 -0.6%

CNN Maxpool

65 895.1 Default 32 ∗ 32 64 8 480 1440.1

East 23 ∗ 32 64 8 480 1440.1 0% 6 360 1320.1 -8.3%

South 32 ∗ 23 64 6 360 1320.1 -8.3% 6 360 1320.1 -8.3%

South east 23 ∗ 23 64 6 360 1320.1 -8.3% 5 300 1260.1 -12.5%

Total 256 353368 -4.2% 341848 -7.3%

SPMV

355 116556.75 Default 1024 ∗ 1 11 8 2977.41 119889.17

East 684 ∗ 1 1 6 2233.06 119144.82 -0.7% 1D

Total 12 1437925.6 -0.05%

SRAD Reduce

111.9 1094.4 Default 1024 ∗ 1 112 8 1287.1 2493.4

East 270 ∗ 1 1 3 482.7 1689 -32.3% 1D

Total 113 280947.6 -0.3%

Stencil

19 1875.5 Default 64 ∗ 16 210 8 128 2022.5

East 62 ∗ 16 210 8 128 2022.5 0% 8 128 2022.5 0%

South 64 ∗ 14 30 7 112 2006.5 -0.8% 7 112 2006.5 -0.8%

South east 62 ∗ 14 30 7 112 2006.5 -0.8% 7 112 2006.5 -0.8%

Total 480 969850 -0.1% 969850 -0.1%

Table 6.10: Projected best-case speed-up from optimising work-group size for trimmed edges.

These results show that the biggest potential speed-up is for the CNN Maxpool

benchmark, about 4.2% under the linear TID mapping and up to a 7.3% speed-up for a

compressed mapping scheme. All other benchmarks show a potential improvement of less

than 0.6%.

As argued in Section 6.2.2, many of these benchmarks are DRAM bound. For purely

DRAM-bound benchmarks, but also benchmarks whose performance is bound by the
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scratchpad throughput, the reduction of committed vector instructions gained by warp

trimming is expected to be matched by an increase in the number of idle cycles that

the work-groups spend waiting for data to be read or written. For the most promising

benchmark, CNN Max-pooling, Sim-D’s compute resource occupation is 56.4%, while

DRAM and scratchpads are occupied for 77.5% and 26.5% respectively. This is a strong

indicator that the benchmark are I/O bound rather than compute-bound, diminishing the

expected returns of warp trimming in practice.

Bar the projected speed up for the CNN max-pooling benchmark, I deem the benefits

of warp-trimming too insignificant to justify its implementation. I thus leave further

research of warp trimming techniques for future work.

6.4.3 Takeaway points

In previous chapters I have mentioned two hardware-assisted performance optimisations:

vector load/stores and warp trimming. From an initial performance evaluation of these

techniques, I conclude that neither are expected to have a significant positive effect on

performance. Specifically, I showed that:

• Tailored n-vector load/store operations can improve performance for four out of the

15 benchmarks. At a comparable area budget, better improvements are expected

from doubling the data bus width of the scratchpad,

• An initial estimate of the performance effects of warp trimming shows that four

benchmarks might perform 0.6% less computations and one benchmark could reduce

computation by up to 7.3%. The I/O-bound nature of these benchmarks make it

unlikely that these improvements translate to a significant reduction in run-time.

6.5 Summary

This chapter presented the results of a design space exploration for the Sim-D architecture.

The goal is to justify its design decisions and to present the performance of a potential

hardware implementation in the perspective of both an embedded grade- and a high-end

GPU.

From benchmark resource usage I have justified many of Sim-D’s design decisions.

Small observed kernel sizes justify a Harvard-architecture, CSTACK usage is small enough

to justify a limited hardware-backed stack and register usage is generally limited to 32

VGPRs and 16 SGPRs. Scratchpad usage of ported benchmarks rarely exceeds 32KiB per

work-group, in line with local memory sizes on modern NVIDIA GPUs.

Static analysis of benchmarks compiled for NVIDIA Kepler reveals that the average

number of performed operations per byte of data consumed is ∼3. Taking this into account,
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I experimented with Sim-D hardware designs containing 64, 128 and 256 SP-units to

balance the bandwidth from a 64-bit wide DRAM bus with the compute requirements of

these application. Based on a first-order estimate of relative area for these design points, a

design with 128 SP-units seems to offer the best trade-off between performance and area.

Comparing performance results for different pipeline depths, I conclude that most

benchmarks are not very sensitive to the number of pipeline stages. Two of the three

benchmarks that show a higher sensitivity are mainly bound by control overhead. In

Section 7.5.3.1 I will show that loop unrolling can both achieve a significant reduction

in execution time of these benchmarks and reduce these benchmarks’ sensitivity to the

pipeline depth. From this insensitivity I conclude that a 10-stage pipeline with 3 decode

stages and 5 execute stages is a reasonable design point for further experiments.

Benchmarks show that Sim-D, configured with a 10-stage pipeline, is able to match

or exceed the performance of the NVIDIA GeForce GT710 GPU for over half of the

benchmarks. As a condition for achieving such performance, Sim-D must be equipped

with a scratchpad that can sustain a throughput of at least 16 words per cycle. For wider

scratchpad data buses, Sim-D’s performance exceeds that of NVIDIA’s GPU for some

benchmarks. However, kernels that require indexed transfers into large buffers fail to

come close to the performance offered by NVIDIA’s GPU on account of Sim-D lacking the

transparent cache hierarchy required to speed up such transfers in the average case.

Comparing Sim-D’s performance against the high-end NVIDIA GeForce GTX780

graphics card reveals that there is still a large gap to potentially bridge. On average the

NVIDIA GeForce GTX780’s performance is 15.3× that of Sim-D. An interesting avenue

for future research is to explore ways in which Sim-D’s DRAM data bus and SP-unit count

can scale up to match high-end GPUs without compromising on Sim-D’s ability to provide

tight WCET bounds on the execution of kernel-instances.

Finally, experiments have dissuaded me from pursuing implementation of two hardware

performance optimisations: n-vector load/stores and warp trimming. N-vector load/stores

can help performance for benchmarks that organise data as arrays-of-struct. The practical

scope of this optimisation is limited to 2 out of 15 benchmarks. At the same area budget,

widening the scratchpad data bus has a larger positive effect on performance. Meanwhile,

out of the 5 benchmarks that may benefit from warp trimming, 4 have a maximum

projected performance increase of 0.6%. A fifth benchmark could gain as much as 7.6%

performance, but unless this benchmark is strictly compute bound it is unlikely to achieve

such speed-ups in practice.
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CHAPTER 7

Worst-case execution time

analysis

The previous chapters presented and evaluated the design and analysis of the various

resources in the Sim-D hard real-time SIMD architecture: a memory controller, a scratchpad

and a processor pipeline. A distinct feature of Sim-D is the strict performance isolation

between these resources. By virtue of this isolation, the simplest way to schedule and

hence reason about the worst-case execution time (WCET) of kernels is by modelling each

work-group as a sequence of critical sections, henceforth program phases or simply phases.

Each phase requires exclusive access to precisely one resource. To maximise hardware

utilisation and performance, Sim-D permits program phases of two different work-groups

to execute in parallel as long as they require different resources. In this chapter, I exploit

this coarse-grain program phase scheduling model to statically determine the WCET of a

given kernel in the light of this parallelism.

The main challenge with determining the WCET of a kernel is finding the worst-

case interleaving of these program phases. The size of the search space of all plausible

interleavings is non-trivial, owing to variation in the run-time of each program phase.

These variations are caused by three effects. Firstly, execution time of access phases can

vary at run-time as a result of data alignment differences and net data size differences

when processing remainder work-groups. Secondly, varying request times for the periodic

DRAM refresh can lead to variations in DRAM blocking times. Finally, the run-time of

execute-phases vary in the light of divergent control flow.

In this chapter I present an efficient solution to find the worst-case execution time of a

Sim-D program. To this end, I introduce a formal abstraction called a serialisation. This

abstraction is used to reduce the WCET-derivation problem from finding the worst-case

schedule of program phases to finding the worst-case serialisation of phases. Architecturally

I introduce two easily implementable work-group scheduling policies, each resulting in
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execution following a single worst-case serialisation. Together, these results allow a static

WCET analysis algorithm to only consider one schedule under each of the two policies.

Specifically, I make the following contributions:

• An analysis that establishes the intuition behind the search problem of a worst-case

schedule (Section 7.1),

• A formal description of a kernel, a system, a serialisation and a schedule. I prove

that for each serialisation only a single worst-case schedule exists, and that run-time

may safely skip program phases provided the order of program phases executed does

not change otherwise (Section 7.2),

• Two work-group scheduling policies that guarantee that run-time execution always

follows a single serialisation (Section 7.3),

• A full description of the WCET algorithm for either scheduling policy (Section 7.4),

• An evaluation of the performance of both scheduling policies in terms of average- and

worst-case execution times. Additionally, three case-studies evaluate the average-case-

and worst-case execution time benefits of common software optimisation techniques:

loop unrolling, instruction scheduling and tiling (Section 7.5).

7.1 Motivation for work-group scheduling constraints

In this section I provide an intuition for the interactions between run-time work-group

scheduling and static WCET analysis. Sim-D schedules each work-group as a sequence of

uninterruptible program phases, each phase occupying exactly one resource. The work-

group scheduler interleaves the execution of program phases from up to two work-groups

at a time. Owing to Sim-D’s strict performance isolation between resources, the WCET of

each phase can be determined independently. Given a sequence of program phases and

their WCETs, static analysis must find the worst-case interleaving of phases permitted by

the on-line work-group scheduler.

In this section I make two claims. Firstly, the ways in which program phases could be

scheduled on-line by a greedy scheduler is large. Variation in schedules are mainly caused

by variance in DRAM request response times. Scheduling variations are not contained to

work-groups or pairs of work-groups, but spill over to subsequent work. As a result, the

search space of schedules to evaluate when determining the WCET of a kernel-instance is

non-trivial. This motivates either a need for containing this variance using more constrained

work-group scheduling policies or a need for formally sound reasoning about the worst-case

schedule in presence of variance.
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The second claim is that a more constrained scheduling policy does not necessarily

translate to worse performance. Indeed, for one of the FFT variants in Section 6.4.1 I

observed that a stricter work-group scheduling policy led to better average- and worst-case

performance. This observation motivates my approach of analysing the performance of two

simple scheduling policies that significantly reduce the search space of potential schedules.

To support these claims, I visualise partial executions of benchmarks using occupation

graphs. An occupation graph is a time-line showing for both active work-groups which

resource it occupies at each point in time. The horizontal axis depicts time, counted in

discrete cycles at the rate of the compute resource. Different colours are used for the

different resources, while white indicates idle time and black indicates time waiting for the

DRAM resource to become available.

7.1.1 DRAM variance and schedule search space

I first demonstrate how variance in the response time of a DRAM request can result in

different program phase schedules. Variance in DRAM response time has three sources:

the number of (gross) bytes transferred, the alignment of data with respect to DRAM

burst alignment and refresh-induced blocking.

Variance in the number of transferred bytes is commonly caused by the execution of

remainder work-groups. For example, consider a kernel operating in 32 ∗ 32 work-groups

on a 257 ∗ 257 dataset. A 2D block transfer for the work-group processing the top-left tile

of data will transfer 32 ∗ 32 = 1024 words of data. However, the bottom left remainder

work-group only reads 32 ∗ 1 words, while the bottom right remainder work-group only

processes a single data word. Translated to cycles, this means the read time of a tile varies

between 31 and 311 compute cycles.

This upper bound on response time must be increased further if blocking occurs as a

result of a DRAM refresh. For the example above, refresh-induced blocking increases the

worst-case response time to 661 compute cycles.
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Figure 7.1: Occupation graph: scheduling difference between best- and worst-case DRAM
response time

Figure 7.1 displays a fragment of a occupation graph for two pathological work-groups.
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Each work-group must execute a DRAM request, after which compute and scratchpad

access alternate at 25 cycle intervals. The difference between best-case (31 cycles) and

worst-case (661 cycles) DRAM response time is displayed in light green. Note that in

non-pathological graphs, the interval spent blocking on refresh would be displayed in black

rather than light green.

This figure demonstrates how variation in a DRAM request’s response time can cause

one work-group to drift from the other. In the worst case, the work-group in slot 0

(henceforth simply work-group 0 ) can execute 26 program phases in full while work-group 1

waits for its data. In the best case work-group 0 only executes a single program phase before

work-group 1 finishes its DRAM request. Since every DRAM request must necessarily

be followed by a compute phase (or work-group exit), this difference will affect how the

phases of the two work-groups interleave, hence influence the schedule later on.

To demonstrate how drift can lead to different schedules, Figure 7.2 depicts two actual

executions of the CNN convolution kernel. Both diagrams in Figure 7.2 show the first

5000 cycles of execution for the CNN convolution kernel. The top diagram demonstrates

an execution where refresh does not cause blocking, while in the bottom diagram refresh

causes blocking on the third DRAM request for work-group 1.
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Figure 7.2: Occupation graphs for CNN convolution: no refresh-induced blocking (top), refresh-
induced blocking (bottom)

As we can see, resource usage of this kernel resembles that of the pathological case

presented in Figure 7.1. Where the top schedule shows thirty resource switches for work-

group 0 while work-group 1 waits for its DRAM request to complete, in the bottom

execution this number of resource switches increased to 54.

This work-group drift has a subtle but important effect on scheduling later on. As

expected, work-group 1 executes its next DRAM request later in the bottom schedule.

However, work-group 0’s DRAM request starts and finishes its next DRAM request a

fraction earlier. From the demonstrated interval alone it is impossible to judge which of

the two executions will finish earlier.
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As it turns out, the bottom schedule finishes its first two work-groups 519 cycles later

than the top schedule. However, letting both executions process all 3136 work-groups, the

bottom schedule finishes 120 cycles earlier than the top execution.

It is important to realise how the effects from small scheduling variations ripple through

the entire schedule. The two CNN convolution kernel executions in Figure 7.3 show how

scheduling decisions affect program phase execution across work-group boundaries. The

top graph displays execution when launching two work-groups. The bottom shows the

same kernel when launched with four work-groups and thus twice as many work-items.
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Figure 7.3: Occupation graphs for CNN convolution. 2 work-groups (top), four work-groups
(bottom).

Note how in this figure, the penultimate DRAM request for the first work-group in slot

1, around cycle 8000, is blocked by a refresh operation. This increase in DRAM response

time allows the work-group in slot 0 to drift from the work-group in slot 1 by several

program phases. The bottom occupancy graph shows the consequence of this drift. The

second work-group in slot 0 manages to execute six program phases before the final DRAM

request of the first work-group in slot 1. As illustrated by the dashed line, execution of

the second work-group in slot 0 causes additional blocking on the last DRAM request of

the first work-group in slot 1, causing the work-group in slot 1 to finish later.

This figure shows how a simple greedy scheduling policy allows work-groups to drift

with respect to each other. This drift can cause blocking that locally leads to longer

work-group response times than when drift is disallowed. It is not obvious whether this

local inefficiency is a reflection of global performance of this scheduling algorithm.

On a higher level, this example shows how for a given kernel-instance, run-time variation

in the execution time of program phases can result in many possible schedules. As it

stands, the only way to derive the WCET of an application would be to generate all

possible schedules, taking into account possible variations in response times of thousands

of DRAM requests and compute sections. As I will show in Section 7.2, evaluating all

possible schedules to find the WCET is intractable.
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There is thus a need to narrow down the set of candidate worst-case schedules. As the

examples above demonstrate, intuitions like “the worst-case schedule is one for which all

execution- and DRAM request times are maximised” are not trivially true. This motivates

a need for architectural- and formal methods to narrow down the set of candidate worst-case

schedules.

7.1.2 Scheduling policies

Having motivated the need for methods to narrow down the set of candidate worst-case

schedules, I next illustrate why architectural restrictions on work-group scheduling can

generate promising results. Run-time work-group scheduling policies must pursue two

goals: to limit the number of possible program phase schedules, and to maximise resource

occupancy. At first sight these two goals appear to conflict. However, the FFT benchmark

provides evidence to the contrary; even with simple policies it is possible to both improve

a kernel-instance’s performance and to reduce its program phase scheduling variance.

Figure 7.4 shows two executions of the FFT benchmark. The top execution is under a

simple unconstrained greedy work-group scheduling policy, while the bottom execution

enforces the additional constraint that scratchpad accesses may not overlap with compute.

This and other constraints are discussed in greater detail in Section 7.3.
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Figure 7.4: Occupation graphs for FFT: Unrestricted greedy scheduling (top), greedy scheduling,
scratchpad access not parallel with compute (bottom)

These diagrams show how placing additional constraints on the work-group scheduler

improves performance of both work-groups. Indeed, for this benchmark the constrained

scheduler achieves 6% higher performance than the unconstrained scheduler.

To break this example down, the top occupation diagram shows a long idle period for

work-group 0 between cycle 1717 and 2034, waiting for work-group 1 to finish its compute

phase. Subsequently, work-group 1’s final DRAM request suffers from a long blocking

delay. The bottom diagram shows how under this more constrained scheduling policy,
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work-group 0 no longer waits for work-group 1’s long compute section, allowing it to issue

its DRAM request 317 cycles earlier. In turn, work-group 1’s long compute section is now

scheduled in the time it would have other spent blocking on work-group 0’s final DRAM

request. The end result is a schedule under which both work-groups finish earlier, reducing

the run-time of this pair of work-groups by 195 cycles.

At the same time, this scratchpad access as compute policy narrows down the number

of candidate worst-case schedules to one. To explain why it is sufficient to evaluate only a

single schedule for deriving the WCET of a kernel-instance scheduled under this policy,

the next section introduces the necessary theoretical concepts and theorems to model

program execution on Sim-D. This is followed by an explanation and evaluation of relevant

scheduling constraints.

7.2 Program- and execution model

The formal foundation under Sim-D’s worst-case timing analysis relies on four abstractions:

a system, a kernel-instance, a serialisation and a schedule. These abstractions omit

definitions for modelling DRAM refresh. Section 7.4.8 explains how cost inflation is used

to account for refresh overhead instead. Definitions for the four abstractions follow.

A system is described by a set of resources R, each resource Ri represented by

a (τi, Ii)-pair containing the resource type τ ∈ {COMPUTE, DRAM, SP}, and the

instance number I. The Sim-D architecture is represented by the set of resources R =

{(COMPUTE, 1), (DRAM, 1), (SP, 1), (SP, 2)}.
A kernel-instance K = (w, (Φ1, . . . ,Φn)) is modelled as a sequence of n program phases

Φ and a number of work-groups w. Each program phase Φi is described as a (ρi, ci)-pair

describing the resource type ρi ∈ {COMPUTE, DRAM, SP} and the phase’s WCET (cost)

ci. Each work-group executes a kernel-instance’s program phases Φ in order.

Owing to the Sim-D execution model, a work-group must alternate between compute

and storage access phases. Formally, all odd program phases (Φ1,Φ3, . . . ,Φn−1) must

require the compute resource, and all even program phases (Φ2,Φ4, . . . ,Φn) perform either

a DRAM or scratchpad access. This follows from the fact that all DRAM and scratchpad

requests must be issued by an instruction. The first phase must therefore be compute, and

the distance between two successive accesses must be at least one compute instruction.

There is no need for any compute past the final store operation as without a store its

results can only be discarded. Hence the last program phase must be a DRAM store, and

thus a program always has an even number of program phases n.

To reason about the problem of scheduling program phases on resources, two further

abstractions are introduced: serialisations and schedules.

A serialisation of a kernel-instance describes an ordering of the program phases of every
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work-group in a kernel-instance. Formally, a serialisation S(K) = (ν1, ..., νm) is a sequence

of program phase instances νj = (φj, wj, rj, zj), φj ∈ Φ the corresponding program phase

from K, wj the work-group number, rj ∈ R the resource occupied by this program phase

instance and zj ∈ {0, 1} the work-group slot this phase instance occupies. The order of

program phases in a serialisation determines the order in which phases are launched at

run-time. For the Sim-D system, a valid serialisation is one for which the order of phases

is preserved for each work-group, and for each subsequence containing all program phase

instances of one work-group slot, no two work-groups interleave their phases.

As a second abstraction, a schedule can be informally thought of as a (run-time)

instance of a serialisation with associated time information. Formally, a schedule s(K) =

(σ1, ..σn) is a sequence of resource reservations, each entry representing a 5-tuple σi =

(φi, wi, ri, zi, [t
start
i , tendi ]) with φi ∈ Φ and wi the program phase and work-group for this

reservation, ri ∈ R the resource occupied by this reservation, zi its work-group slot and

[tstarti , tendi ] denoting the interval during which this reservation is active. In this work, all

time is measured in discrete clock cycles at the rate of the compute resource. A schedule

is said to run for the interval [1, tend], with tend defined as follows:

Definition 3. For a given schedule, tend is the last time-instant that the corresponding

kernel-instance runs.

tend = max({tendm | σm ∈ s(K)})

There is a one-to-many relationship between serialisations and schedules: From a

schedule, its corresponding serialisation can be obtained by ordering the elements by start

time, and extracting the relevant program phase instances from it. Schedules are derived

from a serialisation by augmenting each program phase instance with start- and end times.

To honour the ordering of a serialisation, for every schedule derived from a serialisation

S(K) each reservation σj corresponding with program phase instance νj must start before

or at the same time as the reservation corresponding with νj+1.

The number of resource reservations in a schedule is denoted with |s(K)|. The set of

all active reservations in a schedule s at time τ ∈ [1 : tend] is given by the function A(s, τ).

A summary of the symbols used in this work is given in Table 7.1.
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Symbol Description

Ri Resource

τi Type of resource Ri

Ii Resource instance of resource Ri

K = (w, (Φ1, . . . ,Φn)) Kernel-instance

w # Work-groups launched for kernel-instance K

Φj Program phase j for kernel-instance K

ρj Resource type required by program phase Φj

cj Worst-case execution time (cost) of program phase Φj

S(K) Serialisation of kernel-instance K

νm = (φj, wj, rj, zj) Program phase instance of serialisation S(K)

φm Program phase for m’th entry in S(K)

wm Work-group of m’th entry in S(K)

rm Resource occupied by m’th entry in S(K), rm ∈ R
zm Work-group slot for the m’th entry in S(K)

s(K) Schedule of kernel-instance K, sequence of reservations

|s(K)| Number of resource reservations in schedule s(K)

σi = (φi, wi, ri, zi, [t
start
i , tendi ]) Reservation i of schedule s(K)

φi Program phase for i’th entry in s(K), φi ∈ Φ

wi Work-group of i’th entry in s(K)

ri Resource occupied by i’th entry in s(K), ri ∈ R
zi Work-group slot for the i’th entry in s(K)

tstarti Start time of i’th entry in schedule s(K)

tendi End time of i’th entry in schedule s(K)

tend End time of the last-finishing entry in schedule s(K)

A(s, τ) Set of reservations in schedule s active at τ ∈ [1, tend]

Table 7.1: Common symbols and definitions.

7.2.1 Worst-case minimal valid schedule

The purpose of this section is to formally justify why for each serialisation there is only

one schedule relevant for WCET analysis. This schedule is called the worst-case minimal

valid schedule. To this end, I first give a formal definition of valid and minimal in the

context of a schedule derived from a specific valid serialisation, after which I prove that

the worst-case valid minimal schedule is the one where the execution time of each program

phase is maximised.

A valid schedule is one for which the following condition holds:
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Definition 4. A valid schedule s(K) for a kernel-instance K is a schedule for which a

valid serialisation S(K) exists, and additionally no resource is allocated to more than one

interval at any point in time:

∀τ ∈ [1 : tend],∀σx, σy ∈ A(s(K), τ), x 6= y : rx 6= ry (7.1)

A minimal valid schedule derived from a serialisation is a valid schedule that leaves no

resource idle when constraints permit scheduling work on them. In other words, a minimal

valid schedule schedules each program phase as early as possible, provided the requested

resource is available meeting all constraints, the serialisation’s order is honoured and for

each work-group its program phases do not overlap. In Section 7.3 I use this property of

minimality to define greedy scheduling algorithms, suitable for on-line evaluation, that

behave deterministically under varying phase execution times. Note that this property of

minimality can be considered weaker than work-conserving, as it allows for the definition

of deterministic scheduling constraints that leave some, but not all, resources idle even

when a work-group is otherwise ready to use them. Before presenting a formal definition

of a minimal valid schedule, I first provide three auxiliary functions:

Definition 5. RRes(s, ρ) is a function that for a given schedule s returns the end time

of the last resource reservation σi ∈ s for which ri = ρ, or 0 if no such reservation exists.

RRes(s, ρ) = max({tendi | ∀σi ∈ s : ri = ρ} ∪ {0}) (7.2)

Definition 6. WEnd(s, ζ) is a function that for a given schedule s returns the end time

of the last resource reservation σi ∈ s for which zi = ζ, or 0 if no such reservation exists.

WEnd(s, ζ) = max({tendi | ∀σi ∈ s : zi = ζ} ∪ {0}) (7.3)

Definition 7. Pre(s,m) is a function that returns the sub-schedule (prefix) of schedule s

containing all elements up to but excluding element m:

Pre(s,m) = (σi ∈ s : i < m) (7.4)

Using these three functions, the minimal valid schedule is defined as follows:

Definition 8. A minimal valid schedule s(K) with respect to a serialisation S(K) is
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a valid schedule for which ∀σm ∈ s(K) the following holds:

tstartm =


1 if m = 1

max

 tstartm−1,

RRes(Pre(s(K),m), rm) + 1,

WEnd(Pre(s(K),m), zm) + 1

 otherwise
(7.5)

tstartm < tendm ≤ tstartm + cm (7.6)

Phases in a minimal valid schedule are required to finish within ci cycles from start,

but no other bounds are placed on the execution time of a phase. Hence a serialisation

can result in many different minimal valid schedules.

The next theorem introduces the worst-case minimal valid schedule derived from a

serialisation S(K), being the one that maximises the execution time for every element.

Theorem 1. The worst-case minimal valid schedule s(K) for a given serialisation S(K)

is one where each phase executes for its worst case execution time:

∀σi ∈ s(K) : tendi = tstarti + ci (7.7)

Proof. By induction. Let s(K) and s′(K) be minimal valid schedules derived from

S(K), s(K) being a worst-case minimal valid schedule and s′(K) being a minimal valid

schedule where at least one program phase executes for a shorter amount of time. I

prove t
′end ≤ tend by proving two invariants: ∀i ∈ [1 : |s(K)|] : t

′start
i ≤ tstarti and

∀i ∈ [1 : |s(K)|] : t
′end
i ≤ tendi .

Let d be the index of the first resource reservation in both s(K) and s′(K) such that

tendd 6= t
′end
d and Pre(s(K), d) = Pre(s′(K), d). If d = 1, the first element in s(K) and

s′(K) already differ in execution time. Trivially, ∀i ∈ [1 : d) : t
′start
d ≤ tstartd and t

′end
d ≤ tendd

by definition of d.

Consider d the base case for the induction argument. Consider two cases. If d = 1,

t
′start
d = tstartd = 1 per Equation 7.5. For d > 1, Equation 7.5 evaluated to the maximum of

three components. The first component is equal for both scheduler as per the start-time

invariant. The second and third component are equal as, by definition, Pre(s(K), d) =

Pre(s′(K), d). Because all three components are equal for both schedules I conclude that

tstartd = t
′start
d . The first invariant holds.

Since tstartd = t
′start
d , the definitions given by Equations 7.6 and 7.7 guarantee that

t
′end
d ≤ tendd . Hence the second invariant holds.

For the induction case d+ 1, the start-time invariant guarantees that t
′start
d ≤ tstartd . For

the second and third component of the maximum in Equation 7.5, the end-time invariant
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guarantees that:

RRes(Pre(s′(K),d+ 1), rd+1) ≤ RRes(Pre(s(K), d+ 1), rd+1) , and

WEnd(Pre(s′(K),d+ 1), zd+1) ≤ WEnd(Pre(s(K), d+ 1), zd+1)

Since all three components of the maximum in Equation 7.5 must be smaller or equal for

s′(K), the maximum must be smaller or equal too.

For the second invariant, recall from Equation 7.7 that tendd+1 = tstartd+1 +cd+1. Substituting

this into Equation 7.6 gives t
′end
d+1 ≤ t

′start
d+1 + cd+1 ≤ tstartd+1 + cd+1 = tendd+1, proving the second

invariant holds too.

This concludes the induction argument demonstrating that both invariants hold for all

elements in the schedules. From Definition 3 it now follows that:

t
′end = max({t′endi : ∀σi ∈ s′(K)}) ≤ max({tendi : ∀σi ∈ s(K)}) = tendi

This theorem reduces the problem of finding the worst-case schedule to one of finding

the worst-case serialisation, as each serialisation only has a single worst-case minimal

valid schedule to consider. I use this result in Section 7.3 to justify designing work-group

scheduling policies that strictly limit the number of serialisations that could occur at

run-time, thus bounding the WCET analysis problem.

7.2.2 Work-group early exit

There are kernels that may require whole work-groups to exit early, thus skipping their

remaining program phases. The next theorem provides a limited scope for doing so,

following an induction-based proof very similar to that of Theorem 1.

Theorem 2. Removing a program phase from a serialisation does not increase the run-time

of its worst-case minimal valid schedule.

Proof. By induction. Let S(K) be an arbitrary serialisation of a kernel-instance K, and

S ′(K) = S(K) \ {νx} the serialisation with one element νx removed. Let s(K) and s′(K)

be the worst-case minimal valid schedules derived from S(K) and S ′(K) respectively.

Assume that both S(K) and S ′(K) are indexed contiguously. The following function maps

an index for an element in S ′(K) to its corresponding index in S(K):

map(i) =

{
i iff i < x

i+ 1 otherwise

Let d be the index of the first element after x, such that ν
′

d−1 and ν
′

d ∈ S ′(K) map to

the elements directly before and after the removed program phase νx respectively.

166



I prove t
′end ≤ tend. To this end, I prove the start-time invariant ∀i ∈ [1 : |S(K)|] :

t
′start
i ≤ tstartmap(i). The related end-time invariant ∀i ∈ [1 : |S(K)|] : t

′end
i ≤ tendmap(i) follows

trivially as, per Equation 7.7, tendi = tstarti + ci. Therefore, if the start-time invariant

holds, then t
′end
d+1 = t

′start
d+1 + c′d+1 ≤ tstartmap(d+1) + cmap(d+1) = tendmap(d+1). For i ∈ [1 : d− 1], the

start-time invariant is trivially true as Pre(s(K), i) = Pre(s′(K), i) by definition.

Consider d the base case for the induction argument. Equation 7.5 justifies that

t
′start
d−1 ≤ tstartd−1 ≤ tstartx . Furthermore, by definition Pre(s(K), x) = Pre(s′(K), d) and

Pre(s(K), x) ⊂ Pre(s(K), d). As the RRes and WEnd functions return a maximum value

from the sequence of end-times, I may conclude:

RRes(Pre(s′(K), d), r′d) = RRes(Pre(s(K), x), rmap(d))

≤ RRes(Pre(s(K),map(d)), rmap(d))

WEnd(Pre(s′(K), d), z′d) = WEnd(Pre(s(K), x), zmap(d))

≤ WEnd(Pre(s(K),map(d)), zmap(d))

As all components of the maximum in Equation 7.5 are smaller or equal for s′(K), the

maximum must be smaller or equal too. Therefore the invariant t
′start
i ≤ tstartmap(i) holds.

For the induction case d+ 1, the start-time invariant guarantees that t
′start
d ≤ tstartmap(d).

For the second and third component of the maximum in Equation 7.5, the end-time

invariant guarantees that:

RRes(Pre(s′(K), d+ 1), r′d+1) ≤ RRes(Pre(s(K),map(d+ 1)) \ σx, rmap(d+1)) and

WEnd(Pre(s′(K), d+ 1), z′d+1) ≤ WEnd(Pre(s(K),map(d+ 1)) \ σx, zmap(d+1))

As adding σx to the prefix schedule cannot decrease the outcome of the maxima, it is also

safe to assume that:

RRes(Pre(s′(K), d+ 1), r′d+1) ≤ RRes(Pre(s(K),map(d+ 1)), rmap(d+1)) and

WEnd(Pre(s′(K), d+ 1), z′d+1) ≤ WEnd(Pre(s(K),map(d+ 1)), zmap(d+1))

Since all three components of the maximum in Equation 7.5 must be smaller or equal

for s′(K), the maximum must be smaller or equal too. This proves that the start-time

invariant holds for element d+ 1.

This concludes the induction argument demonstrating that both invariants hold for all

elements in the schedules. From Definition 3 it now follows that:

t
′end = max({t′endi : ∀σi ∈ s′(K)}) ≤ max({tendi : ∀σi ∈ s(K)}) = tend

Using this theorem, Sim-D can permit work-groups to exit early without affecting the
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WCET of the kernel-instance, under the condition that this does not alter the serialisation

of all other program phases. The pairwise work-group scheduling constraint explained in

Section 7.3.1 guarantees just that.

This theorem provides additional scope to skip arbitrary program phases at run-time,

for example to skip DRAM requests in a converging algorithm. However, care must be

taken when constructing such programs as, in Sim-D assembly, program phase boundaries

are implicit upon launching a DRAM or scratchpad request. Branching over a DRAM

request causes Sim-D to execute the compute phases directly before and after this request

as a single uninterruptible program phase. If this combined phase has a cost that exceeds

the cost of the compute phase directly before the (skipped) DRAM request, the run-time

scheduler produces an execution that is not allowed by the specification of the serialisation

that produced the worst-case minimal valid schedule. To mitigate this, a mechanism must

be found to separate the two program phases explicitly. Altering Sim-D to permit such

arbitrary program phase skipping is considered beyond the scope of this work.

7.2.3 Complexity and bounds

Theorem 1 justifies why for each serialisation there is only one schedule to consider for

finding the worst-case execution time. This reduces the search problem of a worst-case

schedule to one of a worst-case serialisation. Theorem 2 allows us to only consider the

serialisations where all program phases are present.

Despite the absence of useful constraints like deadlines or periodicity as provided by

existing hard real-time task models, the work-group schedulers’ freedom is quite limited:

work-groups are indistinguishable before execution, the order of program phases within

each work-group is fixed, and Sim-D disallows more than two work-groups to be active at

any point in time. Essentially the only freedom the two on-line work-group schedulers

have are two binary decisions: whether or not to fetch a work-group, and whether or not

to enqueue the next program phase for execution.

Given the limited freedom of the scheduler, a serialisation is in essence a permutation of

a multiset containing two elements “work-group slot 0” and “work-group slot 1”, each with

a multiplicity equal to the number of work-groups assigned to each slot multiplied by the

number of program phases in the kernel-instance. Under the simplifying assumption that

work-groups are evenly distributed over the two slots (an assumption that is not necessarily

true), the number of possible permutations p for a kernel-instance K is determined by:

p =
(w ∗ |Φ|)!(⌈

w
2

⌉
∗ |Φ|

)
! ∗
(⌊

w
2

⌋
∗ |Φ|

)
!

(7.8)

If WCET analysis were to consider all possible serialisations, it’s time complexity

would be factorial. Given both w and |Φ| can run into hundreds, solving this problem
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exhaustively is clearly intractable.

Most of these serialisations are undesirable. For example, a serialisation with first all

work-groups assigned for slot 0, followed by all work-groups for slot 1 would exploit next

to no parallelism. A good work-group scheduling policy is one that limits the number

of candidate worst-case serialisations while simultaneously maximising parallel resource

occupation. Such a policy does not have to be complex: even the least constrained greedy

work-group scheduler would not generate schedules for the vast majority of serialisations.

Moreover, many schedules would only be generated if at least one of the program phases

does not execute for its maximum time.

To quantify the performance of a work-group scheduling policy, I next present both an

upper- and lower bound on WCET of a kernel-instance, assuming the cost (WCET) of

each of its program phase is tight. Firstly, the upper bound is determined as follows:

Definition 9. For any work-group scheduler that schedules only following minimal valid

schedules, the WCET of a given kernel-instance K is upper bounded by:

WCETUB(K) = w ∗
|Φ|∑
i=1

ci (7.9)

The intuition behind this definition is that the WCET can never be worse than serial

execution of the program, making no use of any resources in parallel. Minimal valid

schedules forbid leaving any resource idle when there is an active work-group that can

use it and no constraints preventing this use. No scheduling constraint may result in a

schedule in which all resources remain idle for one or more cycles. Therefore this property

rules out schedules whose execution time exceeds WCETUB(K).

The following definition of a per-resource sum of cost aids in deriving a lower bound.

Definition 10. The sum of costs of a kernel-instance K for a given resource r ∈
{COMPUTE,DRAM,SP} is given by:

C(K, r) =

|Φ|∑
i=1

{
ci if r = ρi

0 otherwise
(7.10)

A lower bound on the WCET is then obtained by taking the maximum of the sum of

costs on each resource. Formally:

Definition 11. For any work-group scheduler, the WCET of a given kernel-instance K

running on Sim-D is lower bounded by:

WCETLB1(K) = w ∗max(C(K,COMPUTE), C(K,DRAM), C(K, SP)) (7.11)
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Note that this bound is not tight as it does not take into account any constraints on

schedules that result from data dependencies between phases. Serialisation is expected

to occur as compute phases cannot start until their data is loaded or stored in full. As a

result, for a kernel-instance K no valid schedule might exist with an execution time not

exceeding WCETLB1(K).

A second non-tight lower bound can be provided by the following equation:

Definition 12. For any work-group scheduler, the WCET of a given kernel-instance K

running on Sim-D is lower bounded by:

WCETLB2(K) =
⌈w

2

⌉
∗
|Φ|∑
i=1

ci (7.12)

This second lower bound takes into account dependencies between program phases and

the fact that at any point in time two work-groups can be active in parallel, but does not

consider resource double-booking. Hence this bound is also not tight. In the remainder of

this work, the lower bound is reported as the maximum of these two:

Definition 13. For any work-group scheduler, the WCET of a given kernel-instance K

running on Sim-D is lower bounded by:

WCETLB(K) = max(WCETLB1(K),WCETLB2(K)) (7.13)

7.2.4 Takeaway points

A formal definition is provided for a system, a kernel-instance, a schedule and a serialisation.

I showed how deriving the WCET of a kernel-instance by evaluating all possible serialisa-

tions is of factorial time complexity, which deems this approach intractable. Definitions

are given for an upper- and lower bound on the WCET of a kernel-instance. Additionally,

for serialisations the following two properties are proven:

• The worst-case minimal schedule of a serialisation is one where the worst-case

execution time of each of its elements is maximised (Theorem 1),

• Removing an element from a serialisation does not result in a longer WCET (Theo-

rem 2).

7.3 Hard real-time work-group scheduling policies

In this section I explain two greedy work-group scheduling policies. These two policies

have in common that they each schedule a kernel-instance following a single worst-case
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serialisation. This reduces the problem of WCET derivation to finding the WCET of a

single worst-case minimal valid schedule.

These policies are a combination of constraints. The first constraint, pairwise work-

group launching, prevents work-group drift to influence scheduling beyond the boundaries

of a pair of work-groups. This constraint applies to both policies. This constraint is

combined with either a constraint preventing scratchpad access from overlapping with

compute, or one preventing scratchpad access from overlapping with DRAM access, to form

two scheduling policies. In the remainder of this section I justify these three constraints

and explain at a high level how they can be easily enforced by hardware.

7.3.1 Launching work-groups in pairs

The first scheduling constraint to consider is to always schedule work-groups in pairs.

When a work-group slot frees up, this slot is kept empty until the other slot enters its final

phase.

The benefits of this constraint are twofold. Firstly, by forcing reconvergence of two

work-group slots at the end of a pair of work-groups, the only valid serialisations are

sequences consisting of
⌊
w
2

⌋
serialisations of two work-groups, plus a fixed serialisation of

one work-group at the end in the case w is odd. The number of permutations is therefore

reduced to:

p =

(
(2 ∗ |Φ|)!
|Φ|! ∗ |Φ|!

)bw2 c
(7.14)

Although the reduction in search space is not asymptotic, it is significant as w can

grow to multiples of 100.

Secondly, this constraint enables early exit of work-groups. If a work-group in one of

the slots exits early, this policy will not launch the next work-group until the work-group

in the other slot starts its final program phase. As such, under the pair-wise work-groups

policy, early exit does not alter the order of any of the remaining program phases in the

serialisation, a condition required for Theorem 2 to apply.

To demonstrate the need for this constraint, reconsider the resource utilisation diagrams

from Figure 7.3, as taken from execution on Sim-D with a (128,1,3)-configuration and a

128B scratchpad data bus.
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Figure 7.5: Occupation graphs for CNN convolution: 2 work-groups (top), 4 work-groups
(middle), 4 work-groups, pairwise (bottom)

I explained earlier how drifting work-group slots cause scheduling variations beyond

work-group boundaries. As demonstrated by the dashed line, allowing immediate release

of a new work-group in slot 0 once its previous work-group has finished causes a delay

on the final DRAM request for work-group 1. In the unconstrained execution (2), at the

dashed line the two work-group slots have drifted apart by several program phases with

no sign of reconvergence in the investigated window.

In the bottom occupation diagram we see how enforcing a pairwise work-group policy

delays the start of the second work-group for slot 0. As a result, the final write request of

the first work-group in slot 1 is now no longer blocked by a work-group that is launched

later, restoring the execution schedule of the first two work-groups to that in the top

occupation diagram. As the white-coloured gap for work-group slot 0 between cycle 11000

and 12000 demonstrates, this resynchronisation comes at the expense of additional idle

time between the final DRAM write request of work-group 0 and that of work-group 1.

Section 7.5.1 presents benchmark measurements that assess the impact of this scheduling

constraint on the average case performance.

In hardware, this policy is implemented by maintaining a boolean for each work-group

slot. A slot is only permitted to fetch a new work-group when this boolean is set. Initially

this boolean is set for both slots. When a slot fetches a work-group for execution, it clears

its boolean. When a slot either exits early or begins the execution of its final DRAM write

request, it sets the boolean of the other slot.

As a run-time optimisation, a one bit exit flag is added to DRAM write instructions,

which indicates that no more program phases follow this write and the work-group finishes.

This allows the other work-group slot to fetch and start executing the compute phase of
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the next work-group in parallel with this DRAM write-back, deterministically reducing

idle time. Furthermore, a compute program phase consisting of a single exit instruction

is eliminated, shortening each work-group by the number of cycles required for pipeline

warm up plus executing a vector instruction.

7.3.2 Two-resource scheduling

To further reduce the number of possible serialisations, I propose two scheduling policies:

scratchpad as compute and scratchpad as access. Both of these build on the observation

that when a system is modelled as exactly two resources, a greedy scheduler will only

schedule program phases according to a single serialisation. This serialisation is one

where the two active work-groups swap resources every time they both finish their current

program phase. Because programs always contain phases alternating between compute

and access, as explained in Section 7.2, the resulting serialisation is one where work-groups

bounce back and forth between the two modelled resources. Both policies apply the

pairwise work-group constraint to permit early work-group exit.

These policies limit the scope for parallel occupation of resources. In the case of

modelling the scratchpads as access resources, they cannot be actively transferring data

for either work-group to the RF while a DRAM transfer is in operation and vice versa.

Modelling a scratchpad as part of the compute resource will prevent a scratchpad request

from running in parallel with another work-group’s compute phase.
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Figure 7.6: Occupation graphs for CNN convolution: pairwise work-groups (top), scratchpad
as execute (middle), scratchpad as access (bottom).

The resource occupation diagrams in Figure 7.6 show that both scheduling policies
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impact average case performance. The scratchpad as execute policy causes large intervals of

idle time when a work-group waits for the other to complete its sequence of compute- and

scratchpad accesses. These program phases are now packed tighter together, as fine-grain

blocking incurred from the other slot is eliminated. The run-time of a pair of work-groups

increases under this policy by approximately 30%.

The scratchpad as access policy results in a different execution pattern. The big blocks

of idle time observed with the scratchpad as compute policy have made place for a much

more fine-grain interleaving of compute- and scratchpad phases. This has the effect of

slightly slowing down one work-group, at the benefit of the pair of work-groups as a whole.

Which of the two policies is more efficient depends on the application. For this CNN

convolution kernel, the scratchpad as access policy results in better performance as the

use of the scratchpad has made this kernel compute-bound. DRAM-bound kernels benefit

from modelling the scratchpads as compute resources to minimise the access critical path

length. The evaluation in Section 7.5 confirms that both policies have kernels for which

they outperform the other.

Note that these strong scheduling restrictions do not always yield worse performance

than unconstrained greedy work-group scheduling, as shown in Section 7.1.2.

Implementation of both policies in hardware is fairly straightforward. Scratchpad as

compute is achieved by letting the instruction fetch unit block when a scratchpad request

is issued, preventing the handover of the resource to the other work-group. Scratchpad as

access can be implemented by having all DRAM and scratchpad request be issued from a

single request FIFO, rather than one per resource. In the Sim-D simulation model, the

latter is achieved without merging FIFOs by implementing a ticket-locking mechanism. A

ticket number is assigned to each DRAM- and scratchpad request, and a central ticket

counter determines when the next request is issued to its destination resource.

7.3.3 Takeaway points

This section introduced two greedy policies for scheduling work-groups’ program phases

on resources: scratchpad as compute and scratchpad as access. Both policies require

work-groups to be scheduled pair-wise. These policies guarantee execution following a

single worst-case serialisation. Using the theorems introduced in Section 7.2, this guarantee

allows performing WCET analysis of a kernel-instance by evaluating a single worst-case

minimal valid schedule.

7.4 WCET computation algorithm

This section presents an algorithm that determines the WCET of a kernel-instance running

on Sim-D. This algorithm combines path-based control flow analysis (CFA) with a processor-
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behaviour analysis (PBA) that is mostly simulation-based. The main contribution of

Sim-D’s WCET algorithm is its bound calculation. After identifying the critical path

through the kernel’s code, this path is used to characterise each work-group’s execution

as a sequence of program phases. A safe WCET bound is derived from this sequence by

computing the cost of the worst-case minimal valid schedule. As explained in Section 7.3,

this schedule is composed trivially for both the scratchpad as access and scratchpad as

compute scheduling policies.

Sim-D’s WCET analysis tool performs the following 8 steps, explained in detail in the

remainder of this section:

1. Parse the kernel source,

2. Perform CFA to construct a CFG,

3. Perform PBA: Compute/simulate bounds for DRAM and scratchpad requests, for

the execution time of each BB and for the cost of BB→BB transitions,

4. Transform the CFG into a weighted directed acyclic graph (DAG), unrolling loops

using iteration bounds provided by program annotations,

5. Find the critical path through the DAG,

6. Transform the critical path into a list of access and compute phases of the program,

7. Compute the WCET of the program phase list in accordance with Sim-D’s worst-case

work-group scheduling policies,

8. Inflate the WCET with the worst-case cost of DRAM refresh.

7.4.1 Parsing the program

The first step is to parse the program into an intermediate representation. Currently,

Sim-D’s program parser is not designed as a comprehensive optimising compiler. As such,

generating syntax trees and SSA-form is skipped. Instead, assembly is translated 1-to-1 to

instructions, which are grouped into BBs.

BBs terminate with an instruction that performs control flow, issues a DRAM or

scratchpad request or that could possibly result in an injected CSTACK pop. Including

DRAM and scratchpad requests into the set of BB terminators aids both with accounting

for the cost of pipeline warm-up after each request, as well as with the construction of the

DAG in step four and the program phase listing in step six.
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7.4.2 Control flow analysis

Step two transforms the list of BBs into a CFG. CFA for Sim-D differs from conventional

CFA in two ways. Firstly, Sim-D’s lack of indirect branch instructions removes the need

for complex or pessimistic heuristics to resolve the potential targets of such branches.

Secondly, analysis must be extended to include branch targets reached by instructions

that implicitly unroll the control stack. Recall that cpop operations are injected into the

pipeline whenever the implicit predicate mask changes to all-0. Thus any instruction that

writes to one of the control masks can potentially unroll the stack.

To add a safe set of outgoing edges to the BBs ending with such an instruction, the

CFA-pass annotates each edge with the state of the control stack at the end of executing its

source’s BB. Each entry of the annotated stack state is a (branch target, entry type)-pair.

Currently, the CFA pass enforces the constraint that all incoming edges for a BB must

have an equal stack state. By enforcing this constraint, the potential branch targets of an

injected cpop are known a-priori, allowing their edges to be generated. Control flow that

violates this constraint can currently not be analysed.

At present I assume that CMASK writes may lead to unrolling the entire CSTACK.

Upon encountering such an instruction at the end of a BB, an edge will be created for

each entry in the stack state found on the BB’s incoming edges. If the BB contains

CSTACK push operations, these are included as potential branch targets. To account for

the overhead of control stack unrolling, each generated edge is annotated with the number

of CSTACK entries that must be popped to reach this branch.

I suspect that in practice CSTACK-unrolling stops when a stack entry is found whose

type matches the type of the written CMASK. However, I found that the assumption that

the CSTACK may unroll in full neither hinders WCET analysis nor causes pessimism in

the determined execution bound, Therefore I leave verification of this suspicion as a future

optimisation.

This CSTACK analysis correctly derives paths resulting from divergent branches. In

Sim-D assembly a divergent branch is achieved with two instructions. The first pushes the

reconvergence address onto the CSTACK. The second instruction updates the CMASK to

execute the if-block with the correct work-items enabled, and pushes the PC and CMASK

of the else-block onto the CSTACK. At the end of the if-block, the else-block entry is

popped off the CSTACK and restored. At the end of the else-block, the reconvergence PC

and CMASK are popped and restored. Since the state of the stack is known at each point

in the program, the resulting CFG edges will represent the code path through the if- and

else-block.

The CSTACK constraint on incoming edges of a BB limits the legal control flow

constructions that a developer may apply. Specifically it forbids code sharing through

function calls, recursive calling and loops where the stack grows on each iteration. The
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latter two are common limitations in software for HRT systems as such loops and recursive

calls prohibit analysis of the worst-case control flow [56]. Code sharing, although desirable

in the interest of code maintainability, is not functionally required. Since a program binary

size is generally not a constraint, developers can easily in-line subroutines as is frequently

done by NVIDIAs kernel compiler.

I believe that with sufficient engineering effort the CSTACK constraint can be relaxed.

For example: a function does not need each entry point to carry the same stack state, as

functions do not require to break out of the loop of the caller. As long as the top entry

of the stack is of the return type, the number of return paths is bound. Furthermore, a

function’s WCET can be re-analysed for each invocation even if the underlying code is not

replicated. I leave devising a more general solution for CFA of cpop-injecting instructions

as future work.

7.4.3 Worst-case performance simulation

Step three annotates the CFG with worst-case execution times of both compute and

DRAM/scratchpad accesses.

Determining the worst-case execution time of a DRAM request can be done using the

equations and simulation techniques outlined in Section 5.4. The resulting worst-case

request times are stored as metadata on the instruction that issues the request. To match

Sim-D’s work-group scheduling behaviour, the LID is used as a DRAM request’s WCET.

The WCET of a scratchpad request is determined by counting one cycle for every line

read/written in the worst-case alignment, plus one cycle for its front-end overhead.

For some load/store instructions, the values determining a request’s stride parameters

are not computed from the kernel-instance’s NDRange and buffer mapping, but rather

provided explicitly by the program in SSP registers. When these SSP register values are

computed at run-time, the Sim-D prototype requires the developer to annotate these

register writes with their upper bounds. Implementing a constant expression analysis to

derive these values automatically is left for future work.

The WCET of a BB’s instruction execution is determined by simulating the timing

of the Sim-D pipeline twice: once with a cold pipeline and once with a warm pipeline.

The warm-pipeline case is simulated by simulating the program in linear order, as if all

branches are not taken. The absence of a branch predictor in the Sim-D design ensures

that any other BB entry is with a cold pipeline.

The compute time simulation accounts for all pipeline behaviour, specifically:

• The expansion of vector instructions into many sub-vector instructions. The exact

number of sub-vector instructions depends on the compute resources required to

perform the requested operation and their provisioning. The RCP-units are assumed
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to be provisioned at 1
4

th
the number of SP-units,

• Pipeline stalls due to RAW hazards and register file bank conflicts. Using the 3-stage

decode pipeline design, VRF bank conflicts should not occur in practice,

• Issue delays caused by the non-pipelined implementation of the scalar integer di-

vider/modulo unit, both to enforce instruction commit ordering and to keep a

minimal distance between two issued integer divide/modulo operations.

For both the cold- and the warm pipeline simulation, the cost of each BB is computed

by counting the number of cycles between it’s first instructions’ write-back and the write-

back of the following BB’s first instruction. The cost of a cold-run is the base cost of a

BB’s execution. The difference between the cost for a hot and a cold run determines the

penalties incurred by pipeline effects between a BB and the next. These penalties are

accounted for as a weight on the BB’s outgoing “fall-through” edge. Branch-taken edges

have their weight set to the cost of a pipeline flush. The edges for injected cpops have

their weight set to the cost of an injected cpop, multiplied by the number of CSTACK

entries between the top of the CSTACK and the entry represented by the edge. For the

latter two types of edges, if the destination BB starts with a scalar integer division or

modulo instruction, the pipeline penalty is adjusted to take into account the time required

for such an operation to reach its write-back stage.

It is worth noting that pipeline effects can propagate through multiple BBs. To justify

why the two simulation paths produce safe WCET bounds, consider the example CFG in

Figure 7.7.

BB:0 BB:1 BB:2

Figure 7.7: Example control flow graph fraction

Following the simulation scheme, the cost for transitioning from BB:1 to BB:2 is given by

the warm-pipeline overhead as simulated along the straight-line path BB:0→BB:1→BB:2.

However, entry of BB:2 could also occur through the alternative [. . . ]BB:2→BB:1→BB:2

path. Theoretically the pipeline state on the transition from BB:1 to BB:2 could differ

between these two paths. However, remember that pipeline effects that cross BB boundaries

are the result of temporarily reserved resources like registers or functional units. The

alternative path must enter BB:1 with no resource reservations. From this it follows that

cost at run-time for executing BB:1 plus the transition to BB:2 must be smaller than

the bounds derived from the straight-line warm-pipeline path. From this observation I

conclude that the two simulations (warm-pipeline branch never taken, and cold-pipeline)

are sufficient to produce safe bounds on execution time.
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7.4.4 Construct a DAG

Given a weighted CFG, finding its worst case execution amounts to analysing its critical

path. Critical path analysis requires a directed acyclic graph (DAG) in order to finish

in bound time. In the fourth step of this algorithm, the CFG is thus transformed to a

weighted DAG. This is achieved by eliminating cycles from the CFG through replication

of nodes.

The resulting DAG has the cost for a DRAM or scratchpad request stored as weights

associated with each vertex, or 0 if the corresponding BB does not perform such a request.

All compute costs are represented as the weights on the edges of the DAG. Weights for

these edges are computed by adding the CFG vertex’s (cold-pipeline) compute cost to the

weight of each of the CFG vertex’s outgoing edges.

Cycles in the CFG are the result of for- and while-loops in the program. To eliminate

these cycles from the CFG, each loop is transformed into a DAG containing one node for

each execution of a BB, similar to loop unrolling. Loops are processed in depth-first order

according to their nesting depth. After transforming a loop, its resulting DAG is cached

in a map indexed by their entry BB, potentially overwriting an inner loop’s cache entry. If

during the transformation of a loop or the main program body, an edge is added to the

DAG that points to a BB present in the loop-DAG cache, the cache entry’s DAG is simply

appended to the parent’s DAG.

The number of iterations of a loop must be bound with a branchcycle annotation. This

annotation describes the outcome of a branch instruction as a cyclical event using three

parameters: #branches taken, #branches not taken and start of cycle. To give an example,

the annotation “branchcycle 7 1 0” describes a branch which is taken seven out of eight

encounters, the first seven encounters being taken.

These branchcycle annotations may also be used for forward branches. For example,

the MRI-Q computeQ benchmark contains a main loop that is iterated over 2048 times.

Every 256 iterations, starting with the first, the kernel loads a tile of data from DRAM

into the scratchpad. The conditional branch jumping over this DRAM request in the other

255 iterations is annotated with “branchcycle 255 1 255”.

Caching and in-lining partial DAGs for loops imposes the following limitations:

• Each loop has a single entry point and exit target,

• Loops must be properly nested,

• Inner loop branch cycle annotations may not depend on outer scopes.

Multiple jump instructions with the same loop (re-)entry target are analysed as if they

are multiple nested loops. Early breaking out of a loop is correctly analysed as long as

each exit branch is annotated with its branch cycle.
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7.4.5 Critical path analysis

Given a DAG, its critical path is found using a dynamic programming algorithm that

determines the longest path for successively larger sub-graphs. By adding vertices from

the DAG to this sub-graph in topological order, no vertex needs to be processed more

than once. For a DAG D = (v, e) with no unconnected vertices, the resulting algorithm is

of O(|e|) time complexity.

During execution of the critical path algorithm, three pieces of information are stored

along each vertex: a visited counter, the direct predecessor of a candidate critical path

from source to this node and the cumulative cost of this candidate critical path.

When a node from the DAG is processed, it visits each of the vertices reachable through

its outgoing edges. Upon visiting a destination vertex, two actions are performed. Firstly,

it tests whether the cumulative cost of the current vertex plus the weight of the edge is

larger than the cumulative cost of the current candidate critical path of the destination

vertex. If so, the destination vertex’s predecessor and critical path cost are updated to

reflect the just-found longer path.

Secondly, the visited counter of the destination vertex is incremented. This visited

counter is used to iterate over the vertices of the DAG in topological order. Once the visited

counter of a vertex becomes equal to its indegree, the vertex is placed on a work-queue.

Initially this work-queue only contains the start node of the DAG. Topological iteration

of vertices is achieved by repeatedly dequeuing and processing the top element of the

work-queue until the last element is dequeued.

After all vertices have been processed, the critical path is extracted from the DAG by

following the trail of predecessor back-edges from the sink- to the source vertex.

This algorithm requires that all DRAM and SP requests are present on the critical path.

This requirement is critical for safe WCET analysis, as violation could cause the run-time

to schedule program phases following different serialisations from the one assumed by the

WCET computation in Section 7.4.7 with potential worse run-times. As an implication,

conditional DRAM or scratchpad requests are only permitted in two cases: either when

the condition can be described using a branchcycle annotation, such as with the MRI-Q

computeQ example given in the previous subsection, or when a whole work-groups exits

early. In all other cases, the use of conditional DRAM or scratchpad requests is forbidden.

7.4.6 Access/execute program phase lists

Sim-D’s execution model guarantees that once a work-group is assigned a compute or

execute resource, it will retain exclusive access to this resource until it either requires a

different resource to continue execution or the work-group finishes all its work. Following

the model introduced in Section 7.2, a work-group’s execution can thus be modelled as a
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sequence of program phases, alternating between compute and access.

In this step, this list of program phases Φ = {(ρ1, c1)..(ρi, ci)} is extracted from the

critical path generated in the previous step. To this end, the critical path is traversed from

source to sink, aggregating the weight of each edge in an accumulator until a vertex with

an associated DRAM or scratchpad transfer is encountered. Depending on the scheduling

strategy chosen (scratchpad as access or scratchpad as compute) this access cost must now

be accounted for.

For both strategies, if the vertex has an associated DRAM request, two program phases

are added to the list: a compute phase whose cost is the compute cost gathered in the

accumulator, followed by an access phase with its cost equal to the DRAM request WCET.

Subsequently, the accumulator is reset to 0 and the algorithm continues path traversal.

If the encountered node is a scratchpad access, depending on the scheduling strategy

chosen there are two ways to proceed. For the scratchpad as access policy, two program

phases are created similarly to the DRAM request case. For the scratchpad as compute

scheduling policy, the scratchpad access cost is added to the compute-time accumulator

and traversal of the critical path continues without creating two new entries in the list.

7.4.7 WCET computation

From a program phase list, the WCET is extracted by constructing the worst-case

serialisation. Under the constraints of both scheduling policies, this is the serialisation

under which two work-groups alternate between resources.

Since program phases alternate between access and execute, the cost for executing all

n phases for a pair of work-groups is determined by c2wg =
∑n

i=1 max(ci, c(i+1)%n). If a

work-group contains an odd number of work-groups, one work-group will execute serially

without interleaving. The cost of such execution c1wg is simply the summation of the cost

of all compute and execute phases.

The WCET is found by multiplying c2wg with the number of work-group pairs in a

program. If an odd number of work-groups was launched, c1wg is added to the total. For

an even number of work-groups, the calculated total must be compensated for the tails

of the schedule by adding the min(c1, cn) to the total. Finally, the program upload time

must be added, which is calculated from the size of the program using the equations in

Section 5.4.1. Formally, for a program binary spanning b bursts of data in DRAM the

WCET (cost) c of a program is given by:
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cedge =

{
min(c1, cn) iff w is even

c1wg otherwise
(7.15)

c =
⌊w

2

⌋
∗ c2wg + cedge + tIDR(b) (7.16)

The program phase list constructed for the scratchpad as access scheduling policy is

additionally used to calculate WCETUB(K) (Equation 7.9) and WCETLB(K) (Equa-

tion 7.13).

7.4.8 DRAM refresh inflation

Finally, following an approach proposed by Park et al [54], DRAM refresh is accounted for

by inflating the derived WCET or bound. Assuming the ratio between the DRAM clock

and Sim-D’s compute clock is rCK, inflation is performed using the following equation:

cinflated = c+

⌈
c ∗ rCK

tREFI − tRFC

⌉
∗ tRFC
rCK

(7.17)

Inflation of WCET equates to a case where refresh occurs in a “stop the world” fashion

as soon as required, halting both compute and DRAM. This is a pessimistic model of

accounting for refresh cost as it differs from the actual working of the Sim-D pipeline in

two ways:

1. Compute/scratchpads continue to run during a refresh operation,

2. Refresh is deferred until after the current DRAM stride request.

Point 2 is covered safely by this inflation method despite assuming a refresh penalty

of tRFC, thus without introducing a precharge-activate cycle required to preemptively

execute the refresh. Preemptive refresh is only required during DRAM requests that take

longer than 8 ∗ (tREFI − tRFC) cycles. In practice, such latencies can only occur for

snoopy indexed requests into very large buffers. In these cases, Section 5.5.3 shows that

the indexed iterative method should be used instead as it would give a better worst-case

LID. In all other cases refresh can safely be deferred until a request finishes, at which

point all banks are precharged.

Point 1 implies that inflation introduces a pessimism, specifically for compute- or

scratchpad I/O bound kernels. The total cost of refresh inflation assuming DDR4-3200AA

DRAM is ∼4.5%, which is also an upper bound on this pessimism. In this work I accept

this pessimism and leave research towards a more optimistic approach (e.g. based on

blocking-time analysis) for future work.
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7.5 Evaluation

In this section I discuss the results of running Sim-D’s WCET tool on the full set of

benchmarks. I present evidence to answer the following questions:

• How effective are the architecture design choices in facilitating tightly bound execution

times?

• How does worst-case performance of the proposed Sim-D architecture compare to

real-world devices?

• How well do the proposed scheduling restrictions perform in practice?

The configuration used for evaluation is a Sim-D accelerator with 128 SP-units, a

3-stage decode and 5-stage execute pipeline. The DRAM configuration is DDR4-3200AA

with two bank-groups, and the scratchpad’s clock matches the 1.6GHz of the DDR4 data

bus. Unless specified otherwise, scratchpads are configured with a data bus width of 32

words or 128B.

As an indication of real-world tractability of the WCET analysis method, data acquisi-

tion for all benchmarks combined requires ∼15 minutes on my experimental set-up.

7.5.1 Average-case performance

To understand the overhead introduced by the scratchpad as access and scratchpad as

compute work-group scheduling policies, and the fraction of this overhead attributable

to the pairwise work-groups scheduling constraint, Figure 7.8 demonstrates the run

time of benchmarks under all three constraints. Execution times are normalised to the

unconstrained scheduling case.
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Figure 7.8: Scheduling policy impact on avg. case performance.

In line with expectations, this figure shows that kernels without scratchpad buffers (i.e.

CNN RELU, SRAD2, MRI-Q computePhiMag and Stencil) are unaffected by the proposed

constraints. These benchmarks use only two resources and never exit early, hence even

the unconstrained scheduler will always schedule them following a single serialisation.

Performance of the other benchmarks drops by 7.1% on average when forcing pairwise

work-group scheduling. This penalty reflects the cost of resynchronisation of work-groups

that drift apart as a result of executing alternating compute and scratchpad accesses in

parallel with a single DRAM request, as demonstrated in Section 7.1.1. This penalty

varies between 0.3% and 17.5%.

The penalty for treating scratchpad requests of these kernels as either access or compute

is 14.3% and 13.5% on average respectively. This cost reflects the reduced scope for parallel

occupation of resources. The loss of performance is observed to be up to 31.5% under

either policy.

Like the FFT variant discussed in Section 7.1.2 (not shown here), the KFusion

depth2vertex kernel benefits from imposing a stricter work-group scheduling policy. Its

performance under the scratchpad as compute policy improved by 6.1% when compared to

the measurement under unconstrained scheduling.

Neither the scratchpad as access or the scratchpad as compute scheduling policy is a

universally superior choice. For the KFusion and SPMV benchmarks the scratchpad as

compute policy delivers better performance, whereas the CNN convolution, CNN maxpool

and SRAD reduce benchmarks perform better under the scratchpad as access policy. These

latter benchmarks are at least partially compute bound, hence being able to perform

scratchpad transfers in parallel with compute maximises their resource occupancy.
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Judging by the ease with which both scheduling policies are implemented in the

simulation model, I expect that both can be present in the same hardware implementation.

Driven by static analysis results or benchmark runs, developers can make an informed

decision on the most beneficial scheduling policy on a per-kernel basis. This appears

valuable: when comparing for each benchmark their performance under unconstrained

scheduling to that of the best-performing constrained scheduler, the measured performance

degradation is 10.8% on average, or 7.9% when including the unaffected kernels.

7.5.2 Worst-case execution time

Next I evaluate the WCET as determined by the algorithm presented in Section 7.4 along

two metrics: tightness of the produced bounds for each scheduling policy with respect

to simulated execution, and performance of both scheduling policies under worst case

conditions with respect to the lower- and upper bounds on WCET as established in

Section 7.2.3.

Table 7.2 displays simulated average-case times alongside compute worst-case execution

times and bounds. The data for columns labelled “avg” is obtained using the cycle-accurate

simulation model, while the columns labelled “wcet” contain the worst-case execution

times of a kernel as determined by the algorithm described in Section 7.4.

Benchmark Unconstr. WCETLB WCETUB SP as access SP as compute

avg avg wcet % diff avg wcet % diff

cnn convolution 24462378 22852093 42466835 30118455 32403513 7.6 35643582 38237985 7.3

cnn maxpool 368726 373469 746877 499764 543363 8.7 533841 565405 5.9

cnn relu 58985 60966 67076 58985 60984 3.4 58985 60984 3.4

fft 216062 192880 379584 315167 327966 4.1 242970 282090 16.1

kfusion depth2vertex 350894 307462 503712 368126 417001 13.2 330741 377601 14.1

kfusion halfSample[...] 102770 119902 222852 131463 176890 34.5 128090 155800 21.6

kfusion track 7015098 91111265 92146915 7249308 91744883 1165.6 7042173 91488533 1202.8

kfusion vertex2normal 522664 555830 1111230 762549 862701 13.1 751659 826301 9.9

mriq computePhiMag 1291 1669 1777 1291 1687 30.6 1291 1687 30.6

mriq computeQ 86547947 87581238 93628654 87146263 92326446 5.9 87930877 93161976 5.9

spmv 1438668 1458574 1546186 1461661 1492070 2.1 1438766 1459116 1.4

srad2 1653467 11814286 11890837 1653467 11814605 618.8 1653467 11814605 618.8

srad reduce 286514 281544 552850 347266 443790 27.8 408329 501904 22.9

srad 1745937 23199814 23413990 1737462 23252862 1238.3 1725240 23238710 1247.0

stencil 970810 1160046 1286606 970810 1171324 20.7 970810 1171324 20.7

Table 7.2: Run-time vs. WCET of kernels under various scheduling constraints, in compute
cycles.

When analysing the tightness of the WCET bounds, three negative outliers stand

out: KFusion track, SRAD and SRAD2. For these three benchmarks, the discrepancy

between the measured execution time and calculated WCET is explained by their reliance

on indexed read requests from large buffers. Section 5.4 explained that such transfers have

highly pessimistic bounds on LID that are unlikely to reflect average case performance.
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Unfortunately I see little room for improvement for these cases unless more details about

the indexes into these buffers is known.

Ignoring these outliers, the WCET derivation algorithm produces a bound which is on

average tight within 14.2% and 13.3% under the scratchpad as access and scratchpad as

compute scheduling policies respectively.

Figure 7.9 visualises the data from Table 7.2 for a subset of the benchmarks. The

range depicted in red represents the (non-tight) lower- and upper bounds on WCET. Not

shown in these visualisations are the data points for the short-running CNN RELU and

MRI-Q ComputePhiMag benchmarks, nor does the graph include the outliers that rely on

indexed DRAM transfers from large buffers.
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Figure 7.9: Performance of scheduling constraints relative to worst-case bounds.

Bar two exceptions, MRI-Q ComputeQ and SPMV, the distance between the lower-

and upper bounds indicate that there is much potential for improving kernel run times

by occupying compute- and access resources in parallel. As the figure shows, the most

effective scheduling policy for a benchmark generally achieves half of that potential.

In line with the findings from Section 7.5.1, this graph shows that neither scheduling

policy is universally better than the other. There appears to be an interesting (but

unproven) correlation between which scheduling policy produces the best WCET for a

given benchmark and which policy performs better during run-time.

The distance between the derived WCETs and the lower bound indicates that there

is still potential for more efficient program phase scheduling. Although I leave research

towards better policies as future work, I list two ideas which may be worth pursuing.

Firstly, the two-resource scheduling idea could be further refined by allowing a developer or
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compiler to decide for each scratchpad access whether it must be scheduled as a compute-

or an access phase. Secondly, explicit synchronisation points could allow limited drift in

some parts of a work-group-pair. This way it may be possible to give the greedy scheduler

more freedom in scheduling program phases in parallel while strictly limiting the number

of candidate serialisations.

7.5.3 Software optimisation techniques

One of the benefits of using a simple in-order pipeline with performance isolation guarantees

between program phases is that its performance can be modelled and simulated very

accurately. As a result, software optimisations that improve pipeline throughput on

average are also expected to improve the WCET of a kernel. In the remainder of this

section I evaluate three software optimisation techniques and their impact on average-case

and worst-case execution time: loop unrolling, instruction scheduling and 2D tiling.

7.5.3.1 Loop unrolling

In Section 6.3 I claimed that the MRI-Q computeQ and CNN convolution benchmarks

are bound by control flow. Specifically, these benchmarks contain a tight loop that is

iterated over a significant number of times. A cheap way to improve performance of these

benchmarks, without the need for branch prediction hardware, is to perform loop unrolling.

To show the importance of this pass, I have manually unrolled the main loop of the

MRI-Q computeQ kernel by a factor of 2 and 4. For the CNN convolution kernel, I unrolled

the inner loop completely, eliminating 126 branches from each work-group’s execution.

The resulting kernel binaries are summarised in Table 7.3

Kernel VGPRs SGPRs PRs SP Alloc Binary

B/WG # insn B

MRI-Q computeQ 8 8 0 4096 30 240

(unroll x2) 11 12 0 4096 40 320

(unroll x4) 17 20 0 4096 60 480

CNN convolution 4 16 2 6364 44 352

(unroll x7) 4 16 2 6364 66 528

Table 7.3: Program statistics of loop-unrolled benchmarks

Loop unrolling caused a modest increase in the number of registers used by the MRI-Q

computeQ benchmark, as a result of both pre-loading more scalar kernel values from

the scratchpad buffer with a single read, and of interleaving the computation of multiple

iterations. The register usage of the convolution kernel has remained equal. In both cases
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the binary size has grown significantly when compared to their baselines, but in absolute

terms these kernels remained small.
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Figure 7.10: Performance effect of loop-unrolling on MRI-Q computeQ (left) and CNN convo-
lution (right).

Figure 7.10 shows the average-case performance implications of unrolling the main loop

in both kernels. For the shortest pipeline configurations, unrolling MRI-Q computeQ’s

loop by 2 reduces run-time by over 5.7M cycles and unrolling by 4 reduces run-time by

over 8.6M cycles. For the longest pipeline configurations this benefit grows to over 10.7M

and 16.1M cycles respectively. The absolute number of cycles saved by unrolling these

loops shows little dependency on the number of SP-units in a SimdCluster, as the delay of

a branch-induced pipeline flush does not depend on the number of SP-units.
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Figure 7.11: Pipeline depth sensitivity effect of loop-unrolling on MRI-Q computeQ (left) and
CNN convolution (right).
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As demonstrated in Figure 7.11, reducing the number of branches makes the benchmarks’

performance less sensitive to pipeline depth variation. Where for a non-unrolled loop the

pipeline length could impact the performance of the MRI-Q computeQ benchmark by as

much as 35%, unrolling the benchmark by four reduces the performance variance between

configurations of the same number of SP-units to less than 8%. Although this effect is less

pronounced for the CNN convolution benchmarks, the distance between points for the

same number of SP-units has decreased significantly as well.
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Figure 7.12: WCET bounds for loop-unrolled kernels

Figure 7.12 demonstrates how loop unrolling improves the WCET of both kernels.

The WCET bound for MRI-Q computeQ under the scratchpad as access scheduling

policy improved by 16.7% when unrolling the main loop by 4. For the CNN convolution

benchmark, unrolling the inner loop reduces this WCET bound by 18.4%.

7.5.3.2 Instruction scheduling

Owing to its in-order pipeline, Sim-D is susceptible to performance degradation due

to RAW-hazards. In particular, pipeline performance degrades when dependent scalar

instructions are executed back-to-back. In the benchmarks studied, concentrated regions

of scalar instructions tend to mainly serve three purposes:

• DRAM/scratchpad address and offset calculation,

• Loop invariants, and

• Data shared among threads within a work-group.

The first case, RAW-hazards in a region of scalar code calculating DRAM addresses,

does not necessarily degrade a benchmark’s performance. When multiple DRAM loads

are issued in short succession, the compute resource tends to be underutilised. Hence

eliminating the RAW hazards would simply allow the compute resources to block earlier

as it waits for DRAM data to arrive. In this case DRAM is the bottleneck, and increased

efficiency of compute will not lead to lower execution time of the program.
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The second case, RAW-hazards in looping control flow code, allows for plenty of

opportunity for eliminating RAW hazards. Loop invariant code often follows a pattern

similar to the following: increment a counter, then subtracting a constant or variable from

it and finally jumping backwards if the result of subtraction is smaller than 0. Although

this loop control code is only three instructions long, the frequency of execution can be

high. More so, because each instruction relies on the result of the previous, each iteration

of the loop has the potential to block as many cycles as twice the number of pipeline

stages between the first decode cycle and the final execute cycle.

The SRAD reduce benchmark is an example that follows the loop invariant code pattern

outlined. By moving the two scalar instructions for loop counter update to an earlier

point in the loop, RAW-hazards can be completely from the invariant code, reducing the

benchmark’s total average-case run-time by ∼3.5% for most pipeline lengths. For Sim-D’s

(128,3,5)-configuration, the WCET of this benchmark was reduced by ∼1.4%.

For the final case, scalar values shared among different work-items in the work-group,

computation tends to cluster around the start of a loop to prepare values loaded from

e.g. a small buffer to be used as an operand in vector instructions. As such code appears

early in a loop, there is little opportunity of increasing the distance between instructions.

However, when multiple such values exist in a loop body, clever interleaving can reduce the

number of stall cycles paid for each hazard. Multiplicity of such values can be encouraged

by unrolling the main loop.

7.5.3.3 2D tiling

Section 5.5.2 shows that for filter operations, the chosen tiling configuration has a marked

impact on the provided DRAM throughput. To demonstrate the impact of improved DRAM

throughput on benchmark run-time, I have run the KFusion vertex2normal benchmark

with three different work-group configurations: 128× 8, 64× 16 and 32× 32.

This benchmark implements a filter, each work-item reading its four directly-adjacent

3-vector elements. It has an in- and an out-buffer of 1920×480 words, 640× 480 elements.

In addition, two scratchpad buffers are used: one to load the tile of data used by a

work-group, and a second to prepare the write-back data. Defining (x, y) as the dimensions

of a work-group, this benchmark starts by reading a (3x+ 2)× (y + 2) tile of data into

an SP buffer. Next it performs 12 snoopy indexed reads into the scratchpad. Finally, it

performs 3 writes into the output scratchpad buffer to store its resulting 3-vector element,

after which a single transfer writes the tile of scratchpad values into the output buffer in

DRAM.

Table 7.4 characterises the DRAM latency, scratchpad latency and execution times of

this benchmark under the three tiling configurations. All measurements and analysis were

performed for Sim-D parametrised with a (128,3,5)-configuration and a two bank-group
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DDR4-3200AA DRAM configuration.

Tiling Read LID Write LID SP idx Avg DRAM WCET

Config. min - max min - max cycs cycs cycs SP as access SP as compute

(128,8) 1090 - 1153 862 - 945 122 526927 389449 807151 815751

(64,16) 1058 - 1179 863 - 1039 112 515737 399029 810751 805051

(32,32) 1138 - 1295 863 - 1218 109 522664 412972 862701 826301

Table 7.4: Performance of three different tiling configurations for KFusion vertex2normal on
Sim-D (128,3,5). DDR4-3200AA 2 bank-groups.

Looking solely at DRAM performance, we can see that the worst-case LID for DRAM

reads and writes are minimised when using an (128,8) tiling configuration. This is in line

with findings in Section 5.5.2. However, while these two DRAM transfers reached their

maximum efficiency, the scratchpad performance of this configuration is the lowest of the

three as a result of requiring the largest scratchpad buffer.

When evaluating average-case performance, it turns out that the inefficiency of the 12

scratchpad accesses outweighs the benefits gained from the faster DRAM transfers. As a

result, the (128,8) tiling configuration performs worst when running without scheduling

constraints despite spending the least amount of time on DRAM transfers. The best tiling

configuration for average-case performance is the (64,16) configuration, outperforming the

(128,8)-case by ∼2.1%.

A similar picture emerges when looking at the WCETs of this benchmark. depending

on whether the work-group scheduler treats scratchpad requests as DRAM accesses or as

compute, the best tiling configuration is either (128,8) or (64,4), with the latter allowing

for a ∼0.3% lower WCET.

In all cases, the data-conserving (32,32) tiling configuration performs worst as a result

of its inefficient DRAM transfers. The difference between the achieved WCET bounds for

the (32,32)- and (64,16) tiling configurations is 2.6%, demonstrating the value of 2D tiling

optimisation.

7.5.4 Takeaway points

Evaluation has shown the following properties of the WCET analysis methods and schedul-

ing policies:

• The scratchpad as access and scratchpad as execute policies could degrade run-time

performance by up to 31.5% for applications that utilise the scratchpad. 17.5% of

this degradation can be accounted for by forcing work-groups to execute in pairs. On

average, the performance degradation caused by each benchmark’s best scheduling

policy is 10.8%,
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• Using the WCET derivation algorithm described in Section 7.4, bounds can be

derived for both scheduling policies with, ignoring outliers, a pessimism averaging at

∼13.5-14.3%,

• Outliers with pessimism exceeding 600% are the result of requiring indexed transfers

into large buffers. Bounds on such requests are pessimistic in line with conclusions

from Section 5.4,

• Neither scheduling policy performs better than the other under all cases,

• Software optimisation techniques, such as instruction scheduling and 2D tiling, can

reduce the WCET of applications running on Sim-D by a few percent. Specifically,

loop unrolling is shown to improve both average- and worst-case execution times by

up to 18.4% for relevant benchmarks.

7.6 Summary

In this chapter I introduced a theoretical framework and a WCET computation algorithm

for kernel-instances running on the Sim-D architecture. The resulting WCET bounds are

shown to be both safe, and sufficiently tight to permit practical use of this architecture in

real systems.

The major problem I identified is that of dynamically scheduling the program phases

of work-groups. Based on observations, there is a strong indication that an unconstrained

greedy work-group scheduler is able to generate a large number of different schedules, each

of which would potentially be a worst-case schedule. Computing the WCET for all possible

schedules is deemed infeasible. The solution to reducing this search space is two-fold. First

I introduced the notion of a serialisation as an abstraction capturing the order in which

program phases can be scheduled, and proved that there exists a worst-case minimal valid

schedule for each serialisation. In the architecture, I then made small modifications to

the work-group-scheduler to ensure that execution can only follow a single worst-case

serialisation. Together, this allowed me to implement a static WCET derivation algorithm

that performs its bound calculation in linear time.

Two such scheduling policies were proposed: scratchpad as compute and scratchpad

as access. Both of these policies effectively treat Sim-D as an architecture consisting of

two resources, causing the worst-case serialisation to be the serialisation for which the two

active work-groups swap their resources after each program phase. I have proven that any

other valid serialisation permitted by these two scheduling policies must result in an equal

or better worst-case minimal valid schedule.

Using experiments, I have shown that these scheduling constraints can degrade average

case performance by up to 31.5%. On average, degradation of performance is 13.5% and
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14.3% for the scratchpad as compute and scratchpad as access policies respectively. Picking

the best-performing policy on a per-kernel basis results in a performance degradation of

10.8% on average. Disregarding three outliers, calculated WCETs are on average tight

within 13.3% and 14.2% under the scratchpad as compute and scratchpad as access policies

respectively. As predicted in Section 5.4, the outliers are the result of benchmarks requiring

indexed transfers into large buffers. For such transfers no practical techniques exist that

can predict a tight and low LID.

One area for future work is in compiler-assisted optimisations. I have shown that

existing techniques like loop unrolling and instruction scheduling are capable of positively

impacting both average- and worst-case performance of kernels. Besides researching other

interesting optimisations (e.g. loop merging [127]), there is merit to investigating whether

Sim-D’s large coalesced data transfers introduce new challenges when applying existing

optimisations.
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CHAPTER 8

Conclusion

In this dissertation I studied the thesis that an efficient wide-SIMD accelerator can

feasibly be designed that permits the derivation of safe and tight bounds on

the execution time of data-parallel programs. To support this thesis I introduced

the Sim-D architecture: a wide-SIMD processor designed for hard real-time systems. Like

a GPU, Sim-D performs hardware strip-mining to maximally benefit from the parallelism

present in the targeted data parallel programs. To meet the demands of HRT systems,

Sim-D is designed to provide performance isolation between its compute- and memory

resources. At any time, Sim-D has up to two work-groups run in parallel, with the WCET

of each work-group’s program phases free of interference from the other work-group.

To make efficient use of today’s DDR4 DRAM, Sim-D schedules its work in work-groups

of 1024 work-items. DRAM requests are issued as scalar operations, requesting the data

for an entire work-group. To support such large explicitly-coalesced transfers, I presented

a DRAM controller that can process requests for large 1D and 2D blocks of data. For

common-case linear transfers of 4KiB, Sim-D is able to provably achieve a DRAM bus

utilisation exceeding 78%. Filter kernels that use tiling to optimise data flow can achieve

a bus utilisation over 70% for 2D block transfers of a similar size.

Experiments show that Sim-D is capable of achieving performance on par with an

embedded-grade NVIDIA Tegra K1 GPU. A condition for meeting such performance is

providing sufficient bandwidth between the scratchpad and the vector register file. Some

benchmarks perform poorly on Sim-D. Such benchmarks have in common that they require

indexed transfers from large buffers in DRAM. I have demonstrated that such transfers

are expected to perform poorly in the worst case due to DRAM properties, and that

known techniques using associative caches are not expected to improve the worst case. To

alleviate the problem, I introduced a mechanism providing snoopy indexed transfers. Such

transfers can provably perform better than iterative indexed transfers if the size of the

buffer is either small or if at compile time the relevant section for this indexed transfer
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can be reduced to a 1D or 2D block.

Finally, I presented a solution to derive safe and tight bounds on the execution time

of kernel-instances running on Sim-D. On the architectural side, I present two work-

group scheduling policies, scratchpad as compute and scratchpad as access, that restrict

the possible interleavings of program phases from different work-groups at run-time.

Subsequently, I introduced a novel method that determines a kernel-instance’s WCET by

evaluating a single worst-case minimal valid schedule for each policy. Evaluation showed

that if developers choose the best policy for their kernel, the average performance loss

of these work-group scheduling policies is 8.9%. In return, WCET analysis can provide

a bound on execution time which is safe and, for those benchmarks that don’t require

indexed transfers into large buffers, are tight within 13.5% and 14.3% for the respective

scheduling policies.

8.1 Future work

My main motivation for the work on Sim-D was to address the discrepancy between

the recent surge in demand for data-parallel processing in safety-critical systems on the

one hand, and the scarce offer of architectural solutions that deliver such processing

capabilities for HRT systems on the other. Given the breadth of applications in the domain

of safety-critical systems, the choice for a GPU-like accelerator seemed natural. However,

given the stringent power constraints for certain classes of safety-critical systems, I expect

there is additional scope for research in domain-specific HRT accelerators, for example

for machine learning or computer vision workloads. It is my hope that the contributions

on novel large-transfer hard real-time (HRT) DRAM controllers, processor-level work

scheduling and WCET analysis of data-parallel programs can transcend the presented

Sim-D architecture and inspire novel research in the broader space of HRT data-parallel

architectures.

Looking at the future of Sim-D, I believe that the work presented is merely a starting

point. There are many challenges left to take Sim-D from its current simulation model

to a tangible chip, and to scale Sim-D’s performance to that of a high-end GPU. I next

highlight some of these challenges.

Firstly, for practical purposes Sim-D will require a front-end. Besides kernel launch,

this front-end should facilitate the upload and download of buffers to Sim-D’s dedicated

DRAM. From a research perspective, it is interesting to analyse how such transfers can

interfere with the DRAM transfers of kernel execution, and how the worst-case response

time of a kernel-instance is calculated when taking these interference effects into account.

Secondly, in Section 6.3 I showed that Sim-D’s current performance approaches that of

an embedded-grade GPU. Such performance may be valuable for some applications, but
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it is currently unknown how its design can be scaled up to achieve the performance of a

discrete high-end GPU. The main challenge in scalability lies in widening the DRAM data

bus. This can be done in two ways: creating a wider channel, or adding more channels.

For either solution it is currently unknown how to sustain good DRAM data bus utilisation

and process such large streams of data.

One option to increase the compute throughput of Sim-D is by replicating SimdClusters.

This complicates the worst-case timing analysis as, from DRAM’s perspective, it increases

the number of requestors in a system. However, the presence of multiple SimdClusters also

brings new opportunities for sharing the device spatially among multiple kernel-instances.

Spatial multi-tasking can be beneficial when scheduling kernels with a wide range of

latencies, as schedulability of sets of tasks on multiprocessors tends to improve when tasks

of similar deadlines are clustered on each core.

In a similar vein, it is interesting to study the impact of temporal multi-tasking.

Extending Sim-D with preemption support allows high-priority kernels to preempt running

instances, increasing the schedulability of sets of hard real-time tasks on the processor. It

is currently unknown how such a preemption mechanism might be implemented, and what

the resulting preemption-related run-time overheads would be.

Both temporal- and spatial multi-tasking bring architectural- and theoretical challenges

surrounding real-time scheduling on Sim-D and the determination of WCRTs. For temporal

multi-tasking, challenges include the implementation of kernel scheduling mechanisms

that follow real-time policies, such as FP or EDF, and facilitating the preemption of

kernels either at arbitrary times (full preemption) or at specified preemption points

(limited preemption [6, 128]). Similarly, for spatial multi-tasking where different tasks

run on different compute units in parallel, real-time multi-core scheduling policies must

be implemented to permit schedulability analysis of task sets in the presence of shared

resources like the DRAM bus. A starting point for schedulability analysis under spatial

multi-tasking could be the Distributed Priority Ceiling Protocol (D-PCP) [129], which

allows to treat the DRAM bus as a remote processor running the DRAM requests as “local

agents” on behalf of the kernels running on the different compute units.

As a first step towards solving these schedulability problems, it is important to define

the notion of a task in the context of a GPU-like accelerator. Modelling each kernel as

a separate task is probably not a good approach, as the outside world may not dictate

a deadline on a per-kernel basis. For example, a neural network algorithm used for

classification generally consists of many layers, each layer implemented as its own kernel.

Real-time deadlines can be defined for the classification task as a whole, but imposing

individual deadlines on each layer is needlessly restrictive. Defining a task as a set of kernels

thus seems more productive, but this comes with new challenges. One such challenge is

how to determine the maximum preemption-induced blocking time of a task under limited-
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or full preemption. This maximum blocking time differs from kernel to kernel, but it is not

yet known whether this information can be used to improve schedulability of task sets.

As a final avenue for future research, in Section 7.5.3 I demonstrated several common

software optimisation techniques and their positive impact on a kernel’s WCET. To make

such techniques practically available to system developers, a good compiler infrastructure

is indispensable. The development of a compiler opens up new opportunities for research,

both on compiling existing languages like OpenCL C for a mixed scalar-vector processor like

Sim-D, as well as on investigating compiler optimisation techniques from the perspective

of their projected impact on WCET.

198



Bibliography

[1] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and T. Hamada. An

Open Approach to Autonomous Vehicles. Micro, IEEE, 35(6):60–68, Nov 2015.

[2] A. Eklund, P. Dufort, D. Forsberg, and S.M. LaConte. Medical image processing on

the GPU – Past, present and future. Medical Image Analysis, 17(8):1073 – 1094,

2013.

[3] NVIDIA Tegra X1 - NVIDIA’S New Mobile Superchip, 2015. Re-

treived March 2020, http://international.download.nvidia.com/pdf/tegra/

Tegra-X1-whitepaper-v1.0.pdf.

[4] A. Betts and A. Donaldson. Estimating the WCET of GPU-Accelerated Applications

Using Hybrid Analysis. In 25th Euromicro Conference on Real-Time Systems, pages

193–202, July 2013.

[5] Y. Huangfu and W. Zhang. Static WCET Analysis of GPUs with Predictable

Warp Scheduling. In IEEE 20th International Symposium on Real-Time Distributed

Computing (ISORC), pages 101–108, May 2017.

[6] R. Spliet and R. Mullins. The case for limited-preemptive scheduling in GPUs for

real-time systems. In ECRTS, Operating Systems Platforms for Embedded Real-Time

applications, Jul 2018.

[7] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. A

Predictable Execution Model for COTS-Based Embedded Systems. In 17th IEEE

Real-Time and Embedded Technology and Applications Symposium, pages 269–279,

April 2011.

[8] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 6th edition, 2019.

[9] G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, and R. A. Stokes.

The ILLIAC IV Computer. IEEE Transactions on Computers, C-17(8):746–757,

Aug 1968.

199

http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf


[10] Y. Lee, C. Schmidt, A. Ji-Hung Ou, A. Waterman, and K. Asanovic. The Hwacha

Vector-Fetch Architecture Manual, Version 3.8.1. Technical report, dec 2015.

[11] ARM. ARM Architecture Reference Manual Supplement - The Scalable Vector

Extension (SVE), for ARMv8-A, Feb 2020. Retreived 29th March 2020, https:

//developer.arm.com/documentation/ddi0584/ag/.

[12] H. Cheng. Vector pipelining, chaining, and speed on the IBM 3090 and Cray X-MP.

Computer, 22(9):31–42, Sep. 1989.

[13] M. Weiss. Strip Mining on SIMD Architectures. In Proceedings of the 5th Interna-

tional Conference on Supercomputing, ICS ’91, page 234–243, New York, NY, USA,

1991. Association for Computing Machinery.

[14] A. Peleg, S. Wilkie, and U. Weiser. Intel MMX for multimedia PCs. Communications

of the ACM, 40(1):24–38, 1997.

[15] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual, Oct. 2019.

Retrieved 2nd March 2020, https://software.intel.com/sites/default/files/

managed/a4/60/253665-sdm-vol-1.pdf.

[16] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan.

Brook for GPUs: Stream Computing on Graphics Hardware. ACM Trans. Graph.,

23(3):777–786, August 2004.

[17] D. Kirk et al. NVIDIA CUDA software and GPU parallel computing architecture.

In ISMM, volume 7, pages 103–104, 2007.

[18] NVIDIA. NVIDIA GeForce GTX 680, whitepaper. Technical re-

port, 2012. http://www.geforce.com/Active/en_US/en_US/pdf/

GeForce-GTX-680-Whitepaper-FINAL.pdf.

[19] NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110/GK210,

2014.

[20] Qualcomm Technologies Inc. Architecture of the Hexagon 680 DSP for

Mobile Imaging and Computer Vision, Aug. 2015. Retrieved 2nd March

2020, https://www.hotchips.org/wp-content/uploads/hc_archives/

hc27/HC27.24-Monday-Epub/HC27.24.20-Multimedia-Epub/HC27.24.

211-Hexagon680-Codrescu-Qualcomm.pdf.

[21] S. Wilson. FirePath Processor Architecture and Microarchitecture, Aug 2002. Re-

trieved 2nd March 2020, https://www.hotchips.org/wp-content/uploads/hc_

archives/hc14/3_Tue/23_wilson.pdf.

200

https://developer.arm.com/documentation/ddi0584/ag/
https://developer.arm.com/documentation/ddi0584/ag/
https://software.intel.com/sites/default/files/managed/a4/60/253665-sdm-vol-1.pdf
https://software.intel.com/sites/default/files/managed/a4/60/253665-sdm-vol-1.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.24-Monday-Epub/HC27.24.20-Multimedia-Epub/HC27.24.211-Hexagon680-Codrescu-Qualcomm.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.24-Monday-Epub/HC27.24.20-Multimedia-Epub/HC27.24.211-Hexagon680-Codrescu-Qualcomm.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.24-Monday-Epub/HC27.24.20-Multimedia-Epub/HC27.24.211-Hexagon680-Codrescu-Qualcomm.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc14/3_Tue/23_wilson.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc14/3_Tue/23_wilson.pdf


[22] Analog Devices. SHARC+ Core Programming Reference, Aug. 2019. Retrieved

2nd March 2020, https://www.analog.com/media/en/dsp-documentation/

processor-manuals/SC58x-2158x-prm.pdf.

[23] J. Xie. NVIDIA RISC-V Evaluation Story. 4th RISC-V Workshop, 2016.

[24] N.P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,

S. Bhatia, N. Boden, A. Borchers, et al. In-datacenter performance analysis of a

tensor processing unit. In Proceedings of the 44th Annual International Symposium

on Computer Architecture, pages 1–12, 2017.

[25] F. Sijstermans. The NVIDIA deep learning accelerator. In Hot Chips, 2018.

[26] GraphCore. How to build a processor for machine intelligence (part 2), Jul.

2017. Retrieved on 29th March 2020, https://www.graphcore.ai/posts/

how-to-build-a-processor-for-machine-intelligence-part-2.

[27] X. Wang, C. Kiwus, C. Wu, B. Hu, K. Huang, and A. Knoll. Implementing

and Parallelizing Real-time Lane Detection on Heterogeneous Platforms. In IEEE

29th International Conference on Application-specific Systems, Architectures and

Processors (ASAP), pages 1–8, July 2018.

[28] B. Jacob, S. Ng, and D. Wang. Memory Systems: Cache, DRAM, Disk. Elsevier

Science, 2010.

[29] AMD. AMD APP SDK OpenCL Optimization Guide, Aug. 2015. Retrieved on

5 Feburary 2020, http://developer.amd.com/wordpress/media/2013/12/AMD_

OpenCL_Programming_Optimization_Guide2.pdf.

[30] Intel. OpenCL Developer Guide for Intel Processor Graphics, Mar.

2019. Retrieved on 5 Feburary 2020, https://software.intel.com/en-us/

iocl-opg-optimizing-opencl-usage-with-intel-processor-graphics.

[31] NVIDIA. NVIDIA OpenCL Best Practices Guide, Jul 2009.

[32] A. Mok. Fundamental Design Problems of Distributed Systems for the Hard-Real-

Time Environment. PhD thesis, Massachusetts Institute of Technology, 1983.

[33] S.K. Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized Multiframe Tasks.

Real-Time Systems, 17:5–22, 1999.

[34] M. Stigge, P. Ekberg, N. Guan, and W. Yi. The Digraph Real-Time Task Model. In

17th IEEE Real-Time and Embedded Technology and Applications Symposium, pages

71–80, April 2011.

201

https://www.analog.com/media/en/dsp-documentation/processor-manuals/SC58x-2158x-prm.pdf
https://www.analog.com/media/en/dsp-documentation/processor-manuals/SC58x-2158x-prm.pdf
https://www.graphcore.ai/posts/how-to-build-a-processor-for-machine-intelligence-part-2
https://www.graphcore.ai/posts/how-to-build-a-processor-for-machine-intelligence-part-2
http://developer.amd.com/wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide2.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide2.pdf
https://software.intel.com/en-us/iocl-opg-optimizing-opencl-usage-with-intel-processor-graphics
https://software.intel.com/en-us/iocl-opg-optimizing-opencl-usage-with-intel-processor-graphics


[35] C.L. Liu and J.W. Layland. Scheduling Algorithms for Multiprogramming in a

Hard-Real-Time Environment. Journal of the ACM, 20(1):46–61, January 1973.

[36] M.L. Dertouzos. Control robotics: The procedural control of physical processes. In

Proceedings IF IP Congress, 1974.
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APPENDIX A

ISA

A.1 Conventions

For all instructions, an “s” prefix denotes a scalar instruction. The “i” prefix is used for

integer arithmetic. When no prefix is given, the instruction is either a floating point or

untyped vector instruction.

Optional operands are denoted between [brackets].

Special purpose vector and scalar registers can be referred to either by their alias, e.g.

vc.tid x, or by their index, e.g. vc4. We recommend the use of aliassed registers for code

readability. A full list of all special purpose registers is given in Section A.2.

A.2 Register specifications

Special vector registers:
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Idx Alias Perm. Description

0 vc.ctrl run rw Run control mask.

1 vc.ctrl break rw Break control mask.

2 vc.ctrl ret rw Return control mask.

3 vc.ctrl exit rw Exit control mask.

4 vc.tid x ro Thread ID in X-dimension.

5 vc.tid y ro Thread ID in Y-dimension.

6 vc.lid x ro Local thread ID (within work-group) in X-

dimension.

7 vc.lid y ro Local thread ID (within work-group) in X-

dimension.

8 vc.zero ro Hard-coded 0.

9 vc.one ro Hard-coded integer 1.

10 vc.mem idx rw Indexes for CAM based memory r/w.

11 vc.mem data rw Values to read/write for CAM based memory r/w

Special scalar registers:

Idx Alias Perm. Description

0 sc.dim x ro Kernel size (#threads) in X-dimension.

1 sc.dim y ro Kernel size (#threads) in Y-dimension.

2 sc.wg off x ro Work-group offset within kernel invocation, TID X

of thread 0.

3 sc.wg off y ro Work-group offset within kernel invocation, TID Y

of thread 0.

4 sc.wg width ro Width of a workgroup as scheduled.

5 sc.sd words rw Stride descriptor: Numer of words fetched in every

period.

6 sc.sd period rw Stride descriptor: Numer of words in a period.

7 sc.sd period cnt rw Stride descriptor: Numer of periods to repeat.

A.3 Floating point arithmetic

A.3.1 nop

No operation

Syntax nop
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A.3.2 mul

Floating-point multiply

Syntax mul[.op] vdst, v0, s1

mul[.op] vdst, v0, v1

mul[.op] vdst, v0, imm1

op ∈ {,neg}

Description For each vector element n, performs vdst[n] = v0[n] * v1[n]. Operand 1

may also be a scalar register or immediate.

.op Description

(omit) Normal operation.

neg Negate second operand.

A.3.3 add

Floating-point addition

Syntax add[.op] vdst, v0, s1

add[.op] vdst, v0, v1

add[.op] vdst, v0, imm1

op ∈ {,neg}

Description For each vector element n, performs vdst[n] = v0[n] + v1[n]. Operand 1

may also be a scalar register or immediate.

.op Description

(omit) Normal operation.

neg Negate second operand.

A.3.4 mad

Multiply-Accumulate

Syntax mad[.op] vdst, v0, s1, v2

mad[.op] vdst, v0, v1, v2

mad[.op] vdst, v0, imm1, v2

op ∈ {,neg}
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Description For each vector element n, performs vdst[n] = v0[n] * v1[n] + v2[n].

Operand 1 may also be a scalar register or immediate

.op Description

(omit) Normal operation.

neg Negate second operand.

A.3.5 min

Floating-point min

Syntax min vdst, v0, s1

min vdst, v0, v1

min vdst, v0, imm1

Description For each vector element n, performs vdst[n] = min(v0[n], v1[n]). Operand

1 may also be a scalar register or immediate.

A.3.6 max

Floating-point max

Syntax max vdst, v0, s1

max vdst, v0, v1

max vdst, v0, imm1

Description For each vector element n, performs vdst[n] = max(v0[n], v1[n]). Operand

1 may also be a scalar register or immediate.

A.3.7 abs

Floating-point absolute

Syntax abs vdst, v0

Description For each vector element n, performs vdst[n] = |v0[n]|.
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A.4 Reciprocal/Trigonometry (expensive FP arith)

A.4.1 rcp

Floating-point reciprocal

Syntax rcp vdst, v0

Description For each vector element n, performs vdst[n] = 1 / v0[n]

A.4.2 rsqrt

Floating-point reciprocal square root

Syntax rsqrt vdst, v0

Description For each vector element n, performs vdst[n] = 1 / sqrt(v0[n])

A.4.3 sin

Floating-point sine

Syntax sin vdst, v0

Description For each vector element n, performs vdst[n] = sin(v0[n])

A.4.4 cos

Floating-point cosine

Syntax cos vdst, v0

Description For each vector element n, performs vdst[n] = cos(v0[n])

A.5 Integer/Boolean arithmetic

A.5.1 iadd

(Signed) integer addition

215



Syntax iadd vdst, v0, s1

iadd vdst, v0, v1

iadd vdst, v0, imm1

Description For each vector element n, performs vdst[n] = v0[n] + v1[n]. Operand 1

may also be a scalar register or immediate.

A.5.2 isub

Signed integer subtraction

Syntax isub vdst, v0, s1

isub vdst, v0, v1

isub vdst, v0, imm1

Description For each vector element n, performs vdst[n] = v0[n] - v1[n]. Operand 1

may also be a scalar register or immediate.

A.5.3 imul

Signed integer multiply

Syntax imul vdst, v0, s1

imul vdst, v0, v1

imul vdst, v0, imm1

Description For each vector element n, performs vdst[n] = v0[n] * v1[n]. Operand 1

may also be a scalar register or immediate.

A.5.4 imad

Signed integer Multiply-Accumulate

Syntax imad vdst, v0, s1, v2

imad vdst, v0, v1, v2

imad vdst, v0, imm1, v2

Description For each vector element n, performs vdst[n] = v0[n] * v1[n] + v2[n].

Operand 1 may also be a scalar register or immediate.
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A.5.5 imin

Signed integer min

Syntax imin vdst, v0, s1

imin vdst, v0, v1

imin vdst, v0, imm1

Description For each vector element n, performs vdst[n] = min(v0[n], v1[n]). Operand

1 may also be a scalar register or immediate.

A.5.6 imax

Signed integer max

Syntax imax vdst, v0, s1

imax vdst, v0, v1

imax vdst, v0, imm1

Description For each vector element n, performs vdst[n] = max(v0[n], v1[n]). Operand

1 may also be a scalar register or immediate.

A.5.7 shl

Left shift.

Syntax shl vdst, v0, s1

shl vdst, v0, imm1

Description Shift each value v0[n] left by s1/imm1 bits, store the result in vdst.

A.5.8 shr

Right shift.

Syntax shr vdst, v0, s1

shr vdst, v0, imm1

Description Shift each value v0[n] right by s1/imm1 bits, store the result in vdst.
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A.5.9 and

Boolean AND

Syntax and vdst, v0, s1

and vdst, v0, v1

and vdst, v0, imm1

Description For each vector element n, performs vdst[n] = v0[n] & v1[n]. Operand 1

may also be a scalar register or immediate.

A.5.10 or

Boolean OR

Syntax or vdst, v0, s1

or vdst, v0, v1

or vdst, v0, imm1

Description For each vector element n, performs vdst[n] = v0[n] | v1[n]. Operand 1

may also be a scalar register or immediate.

A.5.11 xor

Boolean XOR

Syntax xor vdst, v0, s1

xor vdst, v0, v1

xor vdst, v0, imm1

Description For each vector element n, performs vdst[n] = v0[n] ⊕ v1[n]. Operand 1

may also be a scalar register or immediate.

A.5.12 not

Boolean NOT

Syntax not vdst, v0

Description For each vector element n, performs vdst[n] = ∼v0[n].
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A.5.13 siadd

Scalar integer addition.

Syntax siadd sdst, s0, s1

siadd sdst, s0, imm1

Description Add the value of the two scalar integer operands, store in sdst.

A.5.14 sisub

Scalar integer subtraction.

Syntax sisub sdst, s0, s1

sisub sdst, s0, imm1

Description Subtract the value of the two scalar integer operands, store in sdst.

A.5.15 simul

Scalar integer multiplication.

Syntax simul sdst, s0, s1

simul sdst, s0, imm1

Description Multiply the value of the two scalar integer operands, store in sdst.

A.5.16 simad

Scalar integer multiply-addition.

Syntax simad sdst, s0, s1, s2

simad sdst, s0, imm1, s2

Description Multiply the value of the two integer scalar operands, add the third, store

in sdst.

A.5.17 simin

Scalar signed integer min

Syntax simin sdst, s0, s1

simin sdst, s0, imm1
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Description Performs sdst = min(s0, s1). Operand 1 may also be an immediate.

A.5.18 simax

Scalar signed integer max

Syntax simax sdst, s0, s1

simax sdst, s0, imm1

Description Performs sdst = max(s0, s1). Operand 1 may also be an immediate.

A.5.19 sineg

Scalar signed integer negate

Syntax sineg sdst, s0

Description Performs sdst = -s0.

A.5.20 sibfind

Find first non-sign bit in a scalar integer register.

Syntax sibfind sdst, s0

Description Return the index of the most significant non-sign bit in s0, or ∼0 if no bit

is found. Resembles a round-down log2(s0) on any positive integer s0.

A.5.21 sshl

Scalar left shift.

Syntax sshl sdst, s0, s1

sshl sdst, s0, imm1

Description Shift the value of s0 left by s1/imm1 bits, store the result in sdst.

A.5.22 sshr

Scalar right shift.

Syntax sshr sdst, s0, s1

sshr sdst, s0, imm1
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Description Shift the value of s0 right by s1/imm1 bits, store the result in sdst.

A.5.23 sidiv

Scalar integer division.

Syntax sidiv sdst, s0, s1

sidiv sdst, s0, imm1

Description Divide integer s0 by s1 or imm1, store in sdst.

A.5.24 simod

Scalar integer modulo.

Syntax simod sdst, s0, s1

simod sdst, s0, imm1

Description Divide integer s0 by s1 or imm1, store modulo in sdst.

A.5.25 sand

Scalar boolean AND.

Syntax sand sdst, s0, s1

sand sdst, s0, imm1

Description Performs sdst = s0 & s1 resp. sdst = s0 & imm1.

A.5.26 sor

Scalar boolean OR.

Syntax sor sdst, s0, s1

sor sdst, s0, imm1

Description Performs sdst = s0 | s1 resp. sdst = s0 | imm1.

A.5.27 snot

Scalar boolean NOT.

Syntax snot sdst, s0
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Description Performs sdst = ∼s0.

A.6 Data copy, conversion and intra-lane shuffle

A.6.1 mov

Move immediate or special register to vdst.

Syntax mov vdst, vsp0

mov vdst, imm0

Description Move an immediatevalue or special purpose vector register into the lanes

of vector register vdst.

A.6.2 movvsp

Move immediate or vector register to vsp.

Syntax movvsp vsp, v0

movvsp vsp, imm0

Description Move an immediate or vector register into every lane of a special purpose

vector register in vsp. Used primarily for cam-based indexed load/store.

A.6.3 smov

Load scalar special register into an SGPR.

Syntax smov sdst, ssp0

smov sdst, imm0

Description Load scalar special register into an SGPR.

A.6.4 smovssp

Move immediate or scalar register to ssp.

Syntax smovssp ssp, s0

smovssp ssp, imm0
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Description Move an immediate or scalar register value into a special purpose scalar

register ssp. Used primarily for setting custom stride descriptor parameters.

A.6.5 cvt

Convert vector between floating point and integer formats

Syntax cvt.op vdst, v0

cvt.op vdst, vsp0

cvt.op vdst, ssp0

op ∈ {i2f,f2i}

Description Moves a vector- or special purpose register into vector register vdst, con-

verting between float and integer.

.op Description

i2f Integer to Float.

f2i Float to Integer.

A.6.6 scvt

Convert scalar between floating point and integer formats

Syntax scvt.op sdst, s0

scvt.op sdst, ssp0

op ∈ {i2f,f2i}

Description Moves a (special purpose) scalar register into scalar register sdst, converting

between float and integer.

.op Description

i2f Integer to Float.

f2i Float to Integer.

A.6.7 bufquery

Query global buffer properties.

Syntax bufquery.op sdst, imm0

op ∈ {dim x,dim y}
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Description Queries the property of a mapped buffer defined in .op.

.op Description

dim x Buffer width, in number of elements (32-bit words).

dim y Buffer height.

A.7 Load/Store

A.7.1 ldglin

Load from global buffer linear to thread configuration.

Syntax ldglin[.op] vdst, imm0[, s1[, s2]]

ldglin[.op] vdst, imm0[, s1[, imm2]]

ldglin[.op] vdst, imm0[, imm1[, s2]]

ldglin[.op] vdst, imm0[, imm1[, imm2]]

ldglin[.op] vsp, imm0[, s1[, s2]]

ldglin[.op] vsp, imm0[, s1[, imm2]]

ldglin[.op] vsp, imm0[, imm1[, s2]]

ldglin[.op] vsp, imm0[, imm1[, imm2]]

op ∈ {,vec2,vec4}

Description This operation will load one word for each thread from the buffer specified in

imm0, the offset for which is primarily determined by the thread configuration. Optionally

offset by the x and y coordinates provided in imm1 and imm2. A destination of vc.mem data

will trigger an “indexed” load, where the indexes are taken from vc.mem idx.

.op Description

(omit) Unit mapped elements.

vec2 Vec2 elements to consecutive registers.

vec4 Vec4 elements to consecutive registers.

A.7.2 stglin

Store global linear
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Syntax stglin[.op] vdst, imm0[, s1[, s2]]

stglin[.op] vdst, imm0[, s1[, imm2]]

stglin[.op] vdst, imm0[, imm1[, s2]]

stglin[.op] vdst, imm0[, imm1[, imm2]]

stglin[.op] vsp, imm0[, s1[, s2]]

stglin[.op] vsp, imm0[, s1[, imm2]]

stglin[.op] vsp, imm0[, imm1[, s2]]

stglin[.op] vsp, imm0[, imm1[, imm2]]

op ∈ {,vec2,vec4}

Description This operation will store one word for each thread to the global (DRAM)

buffer specified in imm0, the offset for which is primarily determined by the thread

configuration. Optionally offset by the x and y coordinates provided in imm1 and imm2.

A destination of vc.mem data will trigger an “indexed” store, where the indexes are taken

from vc.mem idx.

.op Description

(omit) Unit mapped elements.

vec2 Vec2 elements to consecutive registers.

vec4 Vec4 elements to consecutive registers.

A.7.3 ldgbidx

LOad whole Buffer to CAM-based InDeX registers.

Syntax ldgbidx imm0

Description This operation launches an indexed load, streaming the entire buffer

through the CAMs shared bus.

A.7.4 stgbidx

STore whole Buffer to CAM-based index registers.

Syntax stgbidx imm0

Description This operation launches an indexed store, streaming the entire buffer

through the CAMs shared bus.
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A.7.5 ldgcidx

LOad Custom stride descriptor to CAM-based InDeX registers.

Syntax ldgcidx imm0[, s1[, s2]]

ldgcidx imm0[, s1[, imm2]]

ldgcidx imm0[, imm1[, s2]]

ldgcidx imm0[, imm1[, imm2]]

Description This operation launches an indexed load with a custom stride descriptor for

which words, periods and period count are taken from the special-purpose scalar registers.

s1/imm1 ands2/imm2 respectively describe the x- and y-offsets into the buffer.

A.7.6 stgcidx

Store Custom Stride Descriptor to CAM-based index registers.

Syntax stgcidx imm0[, s1[, s2]]

stgcidx imm0[, s1[, imm2]]

stgcidx imm0[, imm1[, s2]]

stgcidx imm0[, imm1[, imm2]]

Description This operation launches an indexed store with a custom stride descriptor

for which words, periods and period count are taken from the special-purpose scalar

registers. s1/imm1 ands2/imm2 respectively describe the x- and y-offsets into the buffer.

A.7.7 ldgidxit

LOad from DRAM to CAMs, iterating over indexes.

Syntax ldgidxit vdst, imm0

Description This operation launches an indexed load, iterating over indexes one by

one.

A.7.8 stgidxit

Store Custom Stride Descriptor to CAM-based index registers.

Syntax stgidxit vdst, imm0

226



Description This operation launches an indexed store, iterating over indexes one by

one.

A.7.9 ldg2sptile

Load tile from DRAM buffer imm0 to scratchpad buffer dimm.

Syntax ldg2sptile dimm, imm0[, s1[, s2]]

ldg2sptile dimm, imm0[, s1[, imm2]]

ldg2sptile dimm, imm0[, imm1[, s2]]

ldg2sptile dimm, imm0[, imm1[, imm2]]

Description This operation will load a tile of data from a DRAM buffer imm0 to

scratchpad buffer dimm. Size is determined by the scratchpad buffer size.

A.7.10 stg2sptile

Store tile to DRAM buffer imm0 from scratchpad buffer dimm.

Syntax stg2sptile dimm, imm0[, s1[, s2]]

stg2sptile dimm, imm0[, s1[, imm2]]

stg2sptile dimm, imm0[, imm1[, s2]]

stg2sptile dimm, imm0[, imm1[, imm2]]

Description This operation will store a tile of data from scratchpad buffer dimm to

DRAM buffer imm0. Size is determined by the scratchpad buffer size.

A.7.11 ldsplin

Load from scratchpad buffer linear to thread configuration.

Syntax ldsplin vdst, imm0[, s1[, s2]]

ldsplin vdst, imm0[, s1[, imm2]]

ldsplin vdst, imm0[, imm1[, s2]]

ldsplin vdst, imm0[, imm1[, imm2]]

ldsplin vsp, imm0[, s1[, s2]]

ldsplin vsp, imm0[, s1[, imm2]]

ldsplin vsp, imm0[, imm1[, s2]]

ldsplin vsp, imm0[, imm1[, imm2]]
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Description This operation will load one word for each thread from the scratchpad

buffer specified in imm0, the offset for which is primarily determined by the thread

configuration. Optionally offset by the x and y coordinates provided in imm1 and imm2.

A destination of vc.mem data will trigger an “indexed” load, where the indexes are taken

from vc.mem idx.

A.7.12 stsplin

Store to scratchpad buffer from linear

Syntax stsplin vdst, imm0[, imm1[, s2]]

stsplin vdst, imm0[, imm1[, imm2]]

stsplin vsp, imm0[, imm1[, s2]]

stsplin vsp, imm0[, imm1[, imm2]]

Description This operation will store one word for each thread to the scratchpad buffer

specified in imm0, the offset for which is primarily determined by the thread configuration.

Optionally offset by the x and y coordinates provided in imm1 and imm2. A destination of

vc.mem data will trigger an “indexed” store, where the indexes are taken from vc.mem idx.

A.7.13 ldspbidx

LOad whole ScratchPad Buffer to CAM-based InDeX registers.

Syntax ldspbidx imm0

Description This operation launches an indexed load, streaming the entire buffer

specified by imm0 through the CAMs shared bus.

A.7.14 stspbidx

STore whole ScratchPad Buffer to CAM-based index registers.

Syntax stspbidx imm0

Description This operation launches an indexed store, streaming the entire buffer

specified by imm0 through the CAMs shared bus.
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A.7.15 sldg

Scalar load

Syntax sldg sdst, imm0[, imm1]

Description Load one or more words from DRAM buffer imm0 to sdst and subsequent

scalar registers. imm1 specifies the number of words to be loaded, defaults to 1.

A.7.16 sldsp

Load scalar from scratchpad

Syntax sldsp sdst, imm0[, s1[, s2]]

sldsp sdst, imm0[, s1[, imm2]]

sldsp sdst, imm0[, imm1[, s2]]

sldsp sdst, imm0[, imm1[, imm2]]

Description Load one or more words from scratchpad buffer imm0 into sdst and

subsequent scalar registers. imm1/s1 determines the x-offset, imm2/s2 the y-offset. The

number of words loaded is controlled by sc.sd words.

A.8 Control flow

A.8.1 j

Jump to an absolute location in the program.

Syntax j imm0

Description Update PC with the value given by imm0.

A.8.2 sicj

Scalar Integer Conditional Jump to an absolute location.

Syntax sicj.op imm0, s1

op ∈ {ez,nz,g,ge,l,le}
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Description If the integer in s1 passes the test specified by the suboperation, update

PC with the value given by imm0.

.op Description

ez Equal to Zero.

nz Non-equal to Zero.

g Greater than zero.

ge Greater than or Equal to zero.

l Less than zero.

le Less than or equal to zero.

A.8.3 bra

Conditional (divergent) branch,

Syntax bra imm0, p1

Description Perform a branch conditional on p1 to a destination PC given in imm0.

A.8.4 call

Call

Syntax call imm0[, p1]

Description Call a function at the PC given by imm0. Conditional on p1. Will push a

call type entry onto the control stack for return purposes.

A.8.5 cpush

Push an element onto the control stack.

Syntax cpush.op imm0[, p1]

op ∈ {if,brk,jc}

Description Store a control flow entry onto the control stack. imm0 specifies the PC

to push. p1 defines an optional predicate register to push. If p1 is omitted, the CMASK

corresponding to the given suboperation will be loaded.
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.op Description

if Control mask.

brk Break mask.

jc Call/return mask.

A.8.6 cmask

Manipulate the “control” CMASK directly

Syntax cmask p0

Description Disable all threads t for which p0[t] is set to 1. Used in part to implement

C and C++’s “continue” statement to skip to the next iteration of a for-loop.

A.8.7 cpop

Pop an element off the control stack.

Syntax cpop

Description Pops an entry off the control stack, which is equivalent to either ending

the innermost control flow action (such as brk or call) or, in the case of bra, to continue

execution of the else branch.

A.8.8 ret

Conditional return.

Syntax ret p0

Description Return from call conditional on predicate register p0. For unconditional

return, use CPOP.

A.8.9 brk

Conditional break.

Syntax brk p0
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Description Disable all threads t for which p0[t] is set to 1. Used in part to implement

C and C++’s “break” statement to break out of a for-loop. For an unconditional break,

use CPOP.

A.8.10 exit

Exit program,

Syntax exit [p0]

Description Exits program. Can optionally be conditional on predicate register p0.

A.9 Predicate manipulation

A.9.1 test

Test floating point number against given condition.

Syntax test.op pdst, v0

op ∈ {ez,nz,g,ge,l,le}

Description Tests each element in vector v0 against the condition provided in .op,

produce 1 in the corresponding predicate register bit if the condition holds, 0 otherwise.

.op Description

ez Equal to Zero (0.f or -0.f).

nz Non-equal to Zero.

g Greater than zero.

ge Greater than or Equal to zero.

l Less than zero.

le Less than or equal to zero.

A.9.2 itest

Test integer number against given condition.

Syntax itest.op pdst, v0

op ∈ {ez,nz,g,ge,l,le}
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Description Tests each element in vector v0 against the condition provided in .op,

produce 1 in the corresponding predicate register bit if the condition holds, 0 otherwise.

.op Description

ez Equal to Zero.

nz Non-equal to Zero.

g Greater than zero.

ge Greater than or Equal to zero.

l Less than zero.

le Less than or equal to zero.

A.9.3 pbool

Perform a boolean operation on two predicate registers.

Syntax pbool.op pdst, p0, p1

op ∈ {and,or,nand,nor}

Description For each element n in the (vector) predicate register, perform pdst[n] =

p0[n] (op) p1[n].

.op Description

and Boolean AND.

or Boolean OR.

nand Boolean Not-AND

nor Boolean Not-OR

A.10 Debug

A.10.1 printsgpr

Print the value of a scalar register

Syntax printsgpr s0

A.10.2 printvgpr

Print the value of a vector register lane

Syntax printvgpr v0, imm1
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Description imm1 specifies the lane number to print.

A.10.3 printpr

Print the values of a predicate register

Syntax printpr p0

A.10.4 printcmask

Print the value of a CMASK.

Syntax printcmask.op

op ∈ {if,brk,jc,exit}

.op Description

if Control mask.

brk Break mask.

jc Call/return mask.

exit Exit mask.

A.10.5 printtrace

Enable/disable trace printing in the simulator.

Syntax printtrace imm0
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